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ABSTRACT

A Comparison of Spatio-Temporal Prediction Methods of

Cancer Incidence in the U.S.

by

Michelle Hamlyn

Dr. Kaushik Ghosh, Examination Committee Chair

Assistant Professor of Biostatistics

University of Nevada, Las Vegas

Cancer is the cause of one out of four deaths in the United States, and in 2009,

researchers expected over 1.5 million new patients to be diagnosed with some form

of cancer. People diagnosed with cancer, whether a common or rare type, need to

undergo treatments, the amount and kind of which will depend on the severity of

the cancer. So how do healthcare providers know how much funding is needed for

treatment? What would better enable a pharmaceutical company to determine how

much to allocate for research and development of drugs, the amount of each drug

to manufacture, or the time spent to improve or reformulate those drugs? How do

government planners determine which cancers need more attention than others? To

answer these questions, it becomes extremely important to get accurate predictions
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of new cancer cases (also known as cancer incidences) that will occur in the future

based on past data.

Past data on cancer incidences in the U.S. is available only at certain cancer

registries. These registries did not all come online at the same time, resulting in

varying lengths of incidence data. Prediction into the future would require one to

account for these varying lengths. Additionally, since these registries do not cover

the entire United States, one needs to incorporate some spatial projection methods.

In this thesis, we develop a Bayesian spatio-temporal method of predicting future

cancer incidences based on past data. A conditional autoregressive prior is used for

the spatial component and an autoregressive model is used for the temporal part. We

use standard Bayesian Markov chain Monte Carlo techniques to develop predictions

four years into the future for individual states. The method is illustrated using

incidence data for some rare and common cancers.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Cancer is the cause of one out of four deaths in the United States, and, in 2009,

researchers expected over 1.5 million new patients to be diagnosed with some form of

cancer [2]. According to the Centers for Disease Control and Prevention, breast cancer

and lung cancer are two of the most common cancers. Based on rates from 2005 to

2007, the National Cancer Institute reported that one in eight women in the U.S. will

be diagnosed with breast cancer in their lifetime [4]. In 2010, the American Cancer

Society estimated that there would be about 222,520 new cases of lung cancer, the

second most common cancer [3]. The rates from 2005 to 2007 lead experts to expect

that almost seven percent of men and women will be diagnosed with lung cancer in

their lifetime [9]. On the other side of the spectrum, less than half a percent of the

population born today will be diagnosed with cancer of the small intestine. Hence

the number of cancer cases diagnosed can vary widely.

People diagnosed with cancer, whether an ordinary or rare type, need to undergo
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treatments, the amount and kind of which will depend on the severity of the can-

cer. So how do healthcare providers know how much funding is needed for future

treatment? What would better enable a pharmaceutical company to determine how

much to allocate for research and development of drugs, the amount of each drug

to manufacture, or the time spent to improve or reformulate those drugs? How do

government planners determine which cancers need more attention than others?

To answer these questions, it becomes extremely important to get accurate pre-

dictions of new cancer cases (also known as cancer incidence) that will occur in the

future. Statisticians continue to search for models that will accurately predict future

cancer incidences based on historical data and allow healthcare providers to set aside

a reasonable amount of funding for research, detection, and treatment of new cases

[13]. The main focus of this thesis will be to use observed incidence data to project

future counts for the entire U.S.

1.2 Data

Currently, data on cancer incidence is collected at several cancer registries, which

are spread across the United States and cover only a small fraction of the total

population. The data for this study was obtained from registries affiliated with the

National Cancer Institute’s Surveillance, Epidemiology and End Results program,

henceforth to be called SEER registries. The SEER program has been collecting

incidence data since 1973, when it started with seven registries [10]. Over the years,

it has grown to its current size of seventeen registries shown in the map in Figure 1.1.
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Since not all registries went online at the same time, some registries have thirty years

worth of data while others may have only ten.

San Francisco 
& Oakland 
1973

Connecticut
1973Detroit

1973

Hawaii
1973

Iowa
1973

New Mexico
1973

Seattle
1974

Utah
1973

Atlanta
1975

San Jose &
Monterey
1992

Los Angeles
1992

Alaska
1992

Georgia
(excludingAtlanta)

1992

California
(excluding SF/SJ/LA)

2000

2000
Kentucky

Louisiana

2000

New Jersey
2000

Map of 17 SEER Registries

Figure 1.1: U.S. map showing the 17 SEER registries.

Currently, the incidence and survival data published by SEER covers about twenty-

eight percent of the U.S. population and includes many demographics, such as race,

which includes African American, Hispanic and Asian subgroups. Among the rou-

tinely collected data for each incidence, SEER is the only program in the U.S. to

include the stage of cancer at the time of diagnosis. Not only does SEER allow

access to the data for analysis by different organizations, it is also committed to con-

tinually improving methods so that complete and accurate data are collected. The
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program’s goals, statistics, data and information for registrars can be found on the

SEER website, http://seer.cancer.gov/ [8].

The SEER data used in this study provided incidences for seventeen different

registries broken down by cancer type. SEER collects data on new cases as well as

other variables such as whether the person was a smoker or had a family history of

cancer. For this study we have used only the incidence counts to keep our model

simple.

Some registries had collected data for the whole state, while some were focused

on specific locations. For example, California had four different registries: one for

the Los Angeles area, one for the San Jose area, one for San Francisco and Oakland

and the last one collected data for the remaining part of California. Unfortunately,

these registries were not all online at the same time, so we were unable to get a

clear picture on total California incidences. To simplify our model, we decided to

study only states that had a single registry collecting data anytime between 1973 and

2003. Those nine states were Connecticut, Hawaii, Iowa, New Mexico, Utah, Alaska,

Kentucky, Louisiana and New Jersey. Although this may seem like a small sample,

these registries provide valuable information on cancer incidences across the country.

For this study, we have chosen to focus and test our model on two common

cancers – breast and lung cancer, and one rare type – cancer of the small intestine.

The original data can be seen in Tables 5.1 - 5.3 in the Appendix. As can be seen

in Figure 1.2 and Figure 1.3, the number of new breast and lung cancer cases has for

the most part been increasing over the years, although a slight decline can be seen

after 2000. Three of the four states from the west side of the country – New Mexico,

4
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Figure 1.2: SEER data for breast cancer incidence from 1973 to 2003.

Utah and Hawaii – have close to the same number of new cases each year. However,

based on Figure 1.2 and Figure 1.3, we could not conclude that region alone drives

the number of new incidences, since New Jersey has a significantly higher number

of incidences even though it is in closer proximity to Connecticut than Hawaii is to

Utah or New Mexico.

In Figure 1.4, the number of new small intestine cancer cases show an overall

increase, but in general from year to year, seems to fluctuate between increasing and

decreasing more than the breast and lung cancer incidences. As we saw with the

other cancer types, the incidences for cancer of the small intestine in New Jersey are

also significantly higher than those in the other regions.

As can be seen in all figures, not all states had observed incidences every year.
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Figure 1.3: SEER data for lung cancer incidence from 1973 to 2003.
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Figure 1.4: SEER data for small intestine cancer incidence from 1973 to 2003.
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Due to the incomplete and irregular nature of the past data, incidence prediction

presents several challenges. First, in any particular year, incidence data are available

only at the SEER registries, leaving counts outside those locations unobserved. This

requires some sort of spatial projection to “fill-in” the unobserved sites. Next, the

data need to be temporally projected. Some feel that any incomplete data should

just be removed. However, this can lead to a loss of power and in our case would

remove almost twenty years worth of data [13]. Therefore, we plan to research and

investigate methods for projecting future incidence counts in the SEER as well as the

unobserved non-SEER regions and then compare them to methods currently being

used by the American Cancer Society (ACS).

1.3 Past Work

Currently, ACS is responsible for incidence projection using a two step method as

follows. First, for any year, it spatially extrapolates the incidence counts to non-

SEER regions. To estimate the incidences for every state in that particular year,

ACS assumes that the number of new cases in county i and age-group j has a Poisson

distribution with the intensity λi,j having the following log-linear structure

ln(λij|α, β, γ, δ, ζ) = αr + f(aj)β + ln(mij)γ +X ′iδ + Y ′i ζ,

where αr is the intercept for region r (r = 1, 2, 3, 4) where county i is located, and aj is

the centered midpoint for age group j. To accommodate potential downturns in cancer

rates among older patients, f(aj) was taken to be a cubic function of age aj. The

mortality rate is represented by mij and the vectors Xi and Yi represent demographic

7



covariates and lifestyle covariates respectively [11]. Next, the output from the spatial

projection is used in a temporal model that projects incidence counts four years

into the future. Based on a study that compared four different types of temporal

methods, ACS determined that a piecewise linear regression method, also known as

a joinpoint method, was most accurate [10]. For observations (x1, y1), · · · , (xn, yn)

with x1 ≤ · · · ≤ xn, the general joinpoint model can be written as [6]

E(y | x) = β0 + β1x+ δ1(x− τ1)+ + · · ·+ δk(x− τk)+,

where τk’s are unknown joinpoints and

a+ =


a when a > 0,

0 otherwise.

Although the ACS determined it to be the best method for projecting new cases

in SEER and non-SEER regions, there are several drawbacks to this method, the

biggest one being that one must use two separate methods to model the spatial and

temporal components. As a result, it is difficult to provide accurate measures of

overall uncertainty for the projected counts.

Therefore, our primary goal in this project will be to combine the spatial and

temporal estimation into one single model and study the effectiveness of the proposed

model. For simplicity, we will only use observed incidence counts as inputs to our

model and ignore other covariates such as mortality counts, average income, etc.

In Chapter 2, we propose a temporal prediction model to be fitted using Bayesian

techniques and apply it to the three cancers in Chapter 3. A spatial improvement

is introduced and tested in Chapter 4. Finally, we compare our predictions for the

8



year 2006 to some of the predictions published by the ACS and also discuss further

research.
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CHAPTER 2

A TEMPORAL PROJECTION MODEL

2.1 Introduction

As previously mentioned, SEER started in 1973 with seven registries and over the

years has grown to its current size of seventeen registries. Not all affiliated registries

came online at the same time, giving rise to an incomplete data problem. Below we

propose a model that is able to accommodate vectors of different data lengths and

use it to generate predictions.

Consider a specific cancer. Let Yi,t be the incidence count in state i at time t and

yi,t be its observed counterpart. We assume that the time series of incidence counts

for each state is driven by a common underlying time series xt with state-specific

multipliers of θi. Let Yi = (yi,1, · · · , yi,n), X = (x1, · · · , xn) and σ2 be the variance.

We assume Yi,t∼N(θixt, σ
2). For the five states with data for all thirty-one years,

(Connecticut, Hawaii, Iowa, New Mexico, and Utah) the likelihood contribution for

state i is

f(Yi|X, θi, σ2) = f(yi,1|θi, x1, σ2) · · · f(yi,n|θi, xn, σ2),

10



where i = 1, 2, 3, 4, 5 and n = 31. Alaska did not start recording incidences until

1992, so its conditional distribution only had twelve years of data and therefore its

likelihood contribution is of the form

f(Y6|X, θ6, σ2) = f(y6,t0+1|θ6, xt0+1, σ
2) · · · f(y6,n|θ6, xn, σ2),

where t0 = 19. The remaining three states, Kentucky, Louisiana and New Jersey only

began collecting data in 2000 so they could only contribute four years of data and in

general their likelihood contribution looks like

f(Yi|X, θi, σ2) = f(yi,t0+9|θi, xt0+9, σ
2) · · · f(yi,n|θi, xn, σ2),

for i = 7, 8, 9.

We now focus on the prior distribution of the model parameters, X, θ1, · · · , θ9 and

σ2. As a first pass, we assume that for t = 1, 2, · · · , n,

Xt∼N(xt−1, τ
2),

so we expect the conditional on the value at the current year to be the same as the

current value. The joint distribution of X then looks like

f(X|x0, τ 2) = f(x1|x0, τ 2)f(x2|x1, τ 2) · · · f(xn|xn−1, τ 2).

We also assume that the state-specific factors θi are independent of each other as well

as the underlying process X. Hence,

f(X, θ1, · · · , θ9, σ2|x0, τ 2) = f(X|x0, τ 2)f(θ1) · · · f(θ9)f(σ2).

Then the joint distribution of all the variables is

f(Y,X, θ1, · · · , θ9, σ2, x0, τ
2)

11



= f(Y|X, θ1, · · · , θ9, σ2)f(X, θ1, · · · , θ9, σ2|x0, τ 2)f(x0, τ
2).

The joint distribution can be used to obtain the posterior distribution of the model

parameters. Since there is no explicit closed-form expression, a Markov chain Monte

Carlo approach will be used to sample from the posterior distribution. In particular,

a Gibbs sampler will be used, as the univariate posterior conditionals have simple

closed-form expressions. In order to calculate the full conditional distributions, the

prior information had to first be identified and are as follows:

σ2∼IG(a1, b1),

where a1 and b1 are known,

τ 2∼IG(a2, b2),

where a2 and b2 are known,

X0∼N(µ0, w
2),

with µ0 and w2 both known, and θi has a non-informative prior

f(θi) = constant.

Here we use N to denote the normal distribution and IG to denote the Inverse Gamma

distribution which has a pdf of

f(x|a, b) =
(1/b)a

Γ(a)
y−a−1exp

{
−1/b

y

}
,

for y > 0.
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2.2 Posterior Sampling

The univariate conditional posterior distributions for each parameter can be obtained

from the joint distribution in the previous section. Beginning with X, which allows

us to account for the time dependency for new incidences, the posterior conditional

distribution for Xt where t = (1, · · · , n− 1) is obtained as

f(xt| · · · ) ∝

exp

{
− 1

2σ2

m∑
i=1

(yi,t − θixt)2
}

exp

{
− 1

2τ 2
(xt+1 − xt)2

}
exp

{
− 1

2τ 2
(xt − xt−1)2

}
,

with m equal to the total number of states and f(xt| · · · ) denoting the distribution

of Xt given all other quantities. That is,

Xt| · · · ∼N

(∑m
i=1 yi,tθi
σ2 + xt+1+xt−1

τ2∑m
i=1 θ

2
i

σ2 + 2
τ2

,

(∑m
i=1 θ

2
i

σ2
+

2

τ 2

)−1)
.

Similarly the distribution of Xn is

Xn| · · · ∼N

∑9
i=1 yi,nθi
σ2 + xn−1

τ2∑9
i=1 θ

2
i

σ2 + 1
τ2

,

(∑9
i=1 θ

2
i

σ2
+

1

τ 2

)−1 .

The posterior conditional distribution for X0 is

X0| · · · ∼N

(
x1
τ2

+ µ0
w2

1
τ2

+ 1
w2

,

(
1

τ 2
+

1

w2

)−1)
.

For θi (i = 1, 2, 3, 4, 5) we have

θi| · · · ∼N

(∑n
t=1 yi,txt∑n
t=1 x

2
t

,
σ2∑n
t=1 x

2
t

)
.

As previously mentioned, four states had less than thirty-one years of observed data

so the posterior reflected only the years for which data was collected. For θ6 (corre-

sponding to Alaska) which had data for the years t0 + 1, t0 + 2, · · · , n, the posterior

13



had the following normal distribution

θ6| · · · ∼N

(∑n
t=t0+1 y6,txt∑n
t=t0+1 x

2
t

,
σ2∑n

t=t0+1 x
2
t

)
.

Only four years worth of data was available for Kentucky, Louisiana, and New

Jersey corresponding to θ7, θ8 and θ9 but they still had similar distributions which in

general can be shown to be

θi| · · · ∼N

(∑n
t=t0+9 yi,txt∑n
t=t0+9 x

2
t

,
σ2∑n

t=t0+9 x
2
t

)
,

where i = 7, 8, 9. Finally, for the variances, σ2 and τ 2, the posteriors had Inverse

Gamma distributions. For σ2, we have

σ2| · · · ∼IG(a∗1, b
∗
1),

where

a∗1 =
9n− 4t0 + 24

2
+ a1,

and

b∗1 =

{
1

2

5∑
i=1

n∑
j=1

(yi,j − θixj)2 +
1

2

n∑
i=t0+1

(y6,j − θ6xj)2 +
1

2

n∑
i=t0+9

9∑
j=7

(yi,j − θixj)2 +
1

b1

}−1

and for τ 2 we have ,

τ 2| · · · ∼IG

(
n

2
+ a2,

{
1

b2
+

∑
(xi − xi−1)

2

}−1)
.

The Gibbs sampler samples each parameter from its conditional posterior distri-

bution and generates a dependent sequence that eventually converges to the joint

posterior distribution of interest. For example, if at the sth iteration, the parameter

14



values are given by (x(s), σ(s)2 , τ (s)
2
, θ(s)), the next iteration of parameter values will

be obtained by generating θ(s+1) from

p(θ|y,x(s), σ(s)2 , τ (s)
2

),

X(s+1) from

p(x|y,θ(s+1), σ(s)2 , τ (s)
2

),

σ(s+1)2 from

p(σ2|y,θ(s+1),x(s+1), τ (s)
2

),

and τ (s+1)2 from

p(τ 2|y,θ(s+1),x(s+1), σ(s+1)2).

This process is repeated for each parameter until the Gibbs sampler converges.

2.3 Predictions

Once the Gibbs sampler has converged, predictions into the future could be made

based on samples drawn from the posterior. Suppose we want to predict new in-

cidences for Connecticut in 2004, based on data from 1973 to 2003. Then we are

essentially looking for a 1-year-ahead prediction. The prediction will be given by the

mean of the one-year-ahead predictive density. In general, if Y represents all available

prior year data, we will denote the one-year-ahead prediction for region i by Ŷi,n+1

15



which will be calculated as

E(Yi,n+1|Y) =

∫
yi,n+1f(yi,n+1|y)dyi,n+1

=

∫ ∫ ∫
yi,n+1f(yi,n+1|θi, xn+1,y)f(θi, xn+1|y)dyi,n+1dθidxn+1 (2.1)

=

∫ ∫
θixn+1f(θi, xn+1|y)dθidxn+1 (2.2)

=

∫ ∫
θixn+1f(θi, xn+1|y)dθidxn+1

=

∫ ∫ ∫
θixn+1f(θi, xn+1, xn|y)dθidxn+1dxn

=

∫ ∫ ∫
θixn+1f(xn+1|xn, θi,y)f(θi, xn|y)dθidxn+1dxn

=

∫ ∫
θixnf(θi, xn|y)dθidxn

= E(θiXn|y),

where we move from Step (2.1) to Step (2.2) using

Yi,n+1|θi, Xn+1∼N(θixn+1, σ
2).

Then E(θiXn|y) can be approximated by

1

M

M∑
m=1

θ
(m)
i x(m)

n ,

where M is equal to the total number of iterations of the Gibbs sampler.

Using the same principle, the two-year-ahead prediction for state i, denoted by

16



Ŷi,n+2 will be calculated as

Ŷi,n+2 = E(Yi,n+2|Y)

=

∫
yi,n+2f(yi,n+2|y)dyi,n+2

=

∫ ∫ ∫
yi,n+2f(yi,n+2|θi, xn+2,y)f(θi, xn+2|y)dyi,n+2dθidxn+2

=

∫ ∫
θixn+2f(θi, xn+2|y)dθidxn+2

=

∫ ∫ ∫
θixn+2f(θi, xn+2, xn+1|y)dθidxn+2dxn+1

=

∫ ∫ ∫
θixn+2f(xn+2|xn+1, θi,y)f(θi, xn+1|y)dθidxn+2dxn+1

=

∫ ∫
θixn+1f(θi, xn+1|y)dθidxn+1

=

∫ ∫ ∫
θixn+1f(θi, xn+1, xn|y)dθidxn+1dxn

=

∫ ∫ ∫
θixn+1f(xn+1|xn, θi,y)f(θi, xn|y)dθidxn+1dxn

=

∫ ∫
θixnf(θi, xn|y)dθidxn

= E(θiXn|y),

which is the same as the one-year-ahead prediction. Proceeding similarly, it can be

shown that Ŷi,n+k = E(Yi,n+k|Y) = E(θiXn|y) for k = 2, 3, · · · . That is, the k-year-

ahead prediction is the same for all k.

However the variance for each year will show how the uncertainty changes as

predictions are made further away from the last year observed. Consider the variance

for a one-year-ahead prediction for region i given by,

V ar(Yi,n+1|Y) = E(Y 2
i,n+1|Y)− {E(Yin+1|Y)}2.

17



First, we can reduce E(Y 2
i,n+1|y) using the definition and integrating

E(Y 2
i,n+1|y) =

∫
y2i,n+1f(yi,n+1)dyi,n+1

=

∫ ∫ ∫
y2i,n+1f(yi,n+1|θi, xn+1,y)f(θi, xn+1|y)dθidxn+1dyi,n+1

=

∫ ∫ ∫
y2i,n+1f(yi,n+1|θi, xn+1)f(θi, xn+1|y)dθidxn+1dyi,n+1. (2.3)

Now

∫
y2i,n+1f(yi,n+1|θi, xn+1)dyi,n+1

= V ar(yi,n+1|θi, xn+1) + {E(yi,n+1|θi, xn+1)}2

= σ2 + (θixn+1)
2,

since Yi,n+1|θi, xn+1∼N(θixn+1, τ
2).

Then (2.3) becomes

∫ ∫ ∫
y2i,n+1f(yi,n+1|θi, xn+1,y)f(θi, xn+1|y)dθidxn+1dyi,n+1

=

∫ ∫
(σ2 + θ2i x

2
n+1)f(θi, xn+1|y)dθidxn+1

= σ2 +

∫ ∫
θ2i x

2
n+1f(θi, xn+1|y)dθidxn+1

= σ2 +

∫ ∫
θ2i x

2
n+1f(xn+1|θi,y)f(θi|y)dxn+1dθi

= σ2 +

∫ ∫ ∫
θ2i x

2
n+1f(xn+1|θi, xn,y)f(xn|θi,y)f(θi|y)dxn+1dxndθi

= σ2 +

∫ ∫ ∫
θ2i x

2
n+1f(xn+1|xn)f(xn|θi,y)f(θi|y)dxn+1dxndθi.

We know by definition that

∫
x2n+1f(xn+1|xn)dxn+1 = E(X2

n+1|xn),
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which can be broken down into

V ar(Xn+1|xn) + {E(Xn+1|xn)}2,

which is equal to

τ 2 + x2n,

since

Xn+1|Xn∼N(Xn, τ
2).

Therefore,

σ2 +

∫ ∫ ∫
θ2i x

2
n+1f(xn+1|xn)f(xn|θi,y)f(θi|y)dxn+1dxndθi

= σ2 +

∫ ∫
θ2i (τ

2 + x2n)f(xn|θi,y)f(θi|y)dxndθi

= σ2 + τ 2
∫ ∫

θ2i f(xn|θi,y)f(θi|y)dxndθi +

∫ ∫
θ2i x

2
nf(xn|θi,y)f(θi|y)dxndθi

= σ2 + τ 2E(θ2i |y) + E(θ2i x
2
n|y).

Next,

{E(Yi,n+1|y)} =

∫
yi,n+1f(yi,n+1|y)dyi,n+1

=

∫ ∫ ∫
yi,n+1f(yi,n+1|θi, xn+1,y)f(θi, xn+1|y)dθidxn+1dyi,n+1. (2.4)

Since Yi,n+1|θi, xn+1∼N(θixn+1, σ
2), we have Equation (2.4) equal to,∫ ∫ ∫

yi,n+1f(yi,n+1|θi, xn+1,y)f(θi, xn+1|y)dθidxn+1dyi,n+1

=

∫ ∫
θixn+1f(θi, xn+1|y)dθidxn+1

=

∫ ∫ ∫
θixn+1f(θi, xn+1, xn|y)dθidxn+1dxn

=

∫ ∫ ∫
θixn+1f(xn+1|xn, θi,y)f(xn, θi|y)dθidxn+1dxn.
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Since Xn+1|xn∼N(xn, τ
2), we have

∫ ∫ ∫
θixn+1f(xn+1|xn, θi,y)f(xn, θi|y)dθidxn+1dxn

=

∫ ∫
θixnf(xn, θi|y)dθidxn,

which by definition is equal to E(θiXn|y). Therefore,

V ar(Yi,n+1|y) = σ2 + τ 2E(θ2i |y) + E(θ2iX
2
n|y)− {E(θiXn|y)}2,

which can be approximated by

1

M

M∑
m=1

σ(m)2 +
1

M

M∑
m=1

τ (m)2θ
(m)2

i +
1

M

M∑
m=1

θ
(m)2

i x(m)2

n −

(
1

M

M∑
m=1

θ
(m)
i x(m)

n

)2

.

In a similar manner, we can obtain expressions for the variances for the two-year-

ahead and three-year-ahead predictions. In general, for k-year-ahead predictions, we

will have

V ar(Yi,n+k|Y) = σ2 + kτ 2E(θ2i |y) + E(θ2iX
2
n|y)− {E(θiXn|y)}2,

which can be approximated by

1

M

M∑
m=1

σ2(m) + k(
1

M

M∑
m=1

τ 2(m)θ
(m)2

i ) +
1

M

M∑
m=1

θ
(m)2

i x(m)2

n − (
1

M

M∑
m=1

θ
(m)
i x(m)

n )2.

Since the parameters and their distributions have all been identified, we can now run

our model and begin making predictions.
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CHAPTER 3

TESTING THE MODEL

3.1 Predictions

We applied the model developed earlier to the three data sets. First, we ran the Gibbs

sampler in R to get samples from posterior distributions and then used the posterior

samples to approximate the expected values found in Chapter 2 to make predictions

for 2001 to 2003. The predictions were then compared to the observed values by

finding a quantile interval for the prediction. Observed values that fell within the

interval were considered “good” predictions.

We used the following prior distributions for model parameters as outlined in

Chapter 2:

σ2∼IG

(
2.01,

1

1.01

)
,

and

τ 2∼IG

(
2.01,

1

1.01

)
.

These choices reflect uncertainty in the prior information and were guided by the fact
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that if X∼IG(a, b) we have

E(X) =
1

b(a− 1)
,

and

V ar(X) =
1

{b(a− 1)}2(a− 2)
,

when a > 2. We also chose

X0∼N(0, 5000),

where the large variance was choosen to make up for the uncertainty of X0. State-

specific θi–values were chosen to have a non-informative prior

f(θi) = constant,

again to reflect uncertainty in prior information.

We used the data from each state to get starting values for θ and X. Since X

represents year-to-year dependency over all the states, the starting value for X was

estimated at the mean number of incidences at each year. Then θ was estimated

using the mean number of incidences per state divided by the mean of the xt starting

values. The starting values for τ 2, σ2 and X0 were randomly drawn from the prior

distributions mentioned previously.

The Gibbs sampler was coded in R. It was run for 25,000 iterations and the first

500 iterations were discarded since the sampler had not yet converged. Convergence

was verified using traceplots where the parameter values were plotted against the

iteration number for each parameter σ2 and τ 2. When looking at the traceplot of θi

and xt they show non-convergence due to lack of identifiability but a plot of θixt for
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Figure 3.1: Convergence check for Gibbs sampler to predict 2001-2003.

i = 1, 2, · · · , 9 and t = 1, 2, · · · , 28 showed convergence. Figure 3.1 shows an example

of the traceplots when the sampler converged. One should not be able to identify

a pattern; that is we expect to see a line jumping back and forth but no obvious

increase or decrease.

The model was then tested using lung, breast and small intestine cancer data.

We used our model to predict for 2001 based on data from 1973 to 2000 and then

compared those predictions to the observed counts. As can be seen in Table 3.1, for

lung cancer, the model seems to be most often under-predicting. To determine if the

difference between the prediction and the actual count is significant, we should look

at a prediction interval.

Based on the variances discussed in Chapter 2 the approximate 95% prediction
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Table 3.1: 2001 Observed and predicted lung cancer incidences for 2001 using data

up to 2000.

State Prediction Observed Difference

CT 2539 2529 10

HI 576 611 -35

IA 2206 2174 32

NM 700 813 -113

UT 427 503 -76

AK 46 53 -7

KY 4142 4263 -121

LA 3422 3494 -72

NJ 6024 6065 -41

intervals Ŷi,n+1 ± 1.96
√
V ar(Yi,n+1|Y ) should also show how the uncertainty changes

as we predict further ahead. However, as the samples of σ2 were very large as shown

in Figure 3.2, the prediction intervals constructed in this fashion were not practically

useful.

Therefore it was decided to calculate the 2.5% and 97.5% quantiles for each pre-

diction since this would give us similar results as using an interval two standard

deviations from the mean. Table 3.2, Table 3.3 and Table 3.4 show the predicted

value along with the 95% interval and the observed incidences for 2001, for three

different cancers. As we can see, the observed incidences fall within the interval in

over half the states for each cancer type. The observed incidences for New Mexico
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Figure 3.2: Boxplot of a sample of 100 iterations of σ2.

Table 3.2: Predictions of breast cancer incidences for 2001 using data up to 2000.

State 2.5% Quantile Prediction 97.5% Quantile Observed

CT 2796 2917 3037 3026

HI 628 679 731 913

IA 2265 2368 2468 2291

NM 848 906 964 1125

UT 800 855 912 1095

AK -24 42 1086 46

KY 2654 2842 3034 2872

LA 2787 2975 3163 2906

NJ 6473 6662 6851 6725
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Table 3.3: Predictions of lung cancer incidences for 2001 using data up to 2000.

State 2.5% Quantile Prediction 97.5% Quantile Observed

CT 2476 2539 2601 2529

HI 551 576 601 611

IA 2149 2206 2261 2174

NM 673 700 727 813

UT 404 427 451 503

AK 14 46 78 53

KY 4047 4142 4239 4263

LA 3327 3422 3517 3494

NJ 5928 6024 6119 6065
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Table 3.4: Predictions of small intestine cancer incidences for 2001 using data up to

2000.

State 2.5% Quantile Prediction 97.5% Quantile Observed

CT 55 61 67 59

HI 12 15 18 17

IA 54 60 65 60

NM 17 20 23 33

UT 21 24 27 34

AK -2 1 4 3

KY 72 81 90 76

LA 72 81 90 91

NJ 139 148 157 169
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and Utah did not fall within the interval for any type of cancer. Data for these two

states show some unusual fluctuations taking place beginning about 1995 and 1996

that aren’t happening in the other states. According to the observed values, there

seem to be some significant unexpected increases and decreases in the number of cases

which maybe causing some inaccuracies in our predictions.

Although this method does a decent job of predicting incidences, the predictions

are only falling in the intervals about half the time. As shown in Chapter 2, the mean

for the k-year-ahead prediction will be the same as the one-year-ahead prediction.

This is a strong limitation of the model since for most cancers we would expect to

see an increasing or decreasing trend. Since we weren’t able to use the variances

to calculate the prediction method, we no longer have the ability to see how the

uncertainty changes when two and three-year predictions are made. Therefore, this

model seems to only be useful for one-year-ahead predictions.

3.2 Modified Model

In an attempt to improve the predictions and see how the two- and three-year-ahead

predictions would change, we incorporated an autoregression coefficient φ into the

distribution of Xt. Starting with the original model tested

Yit∼N(θixt, σ
2),

where we assumed

Xt∼N(xt−1, τ
2),
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we will now assume

Xt∼N(φxt−1, τ
2).

With the additional parameter φ, the posterior distributions in our Gibbs sampler

will need to be updated. The univariate posterior conditional distribution for Xt

where t = 1, 2, · · · , n− 1 becomes

Xt| · · · ∼N

∑9
i=1 yi,tθi
σ2 + φ(xt+1+xt−1)

τ2∑9
i=1 θ

2
i

σ2 + 1+φ2

τ2

,

(∑9
i=1 θ

2
i

σ2
+

1 + φ2

τ 2

)−1 .

The posterior conditional of Xn is given by

Xn| · · · ∼N

∑9
i=1 yi,nθi
σ2 + φxn−1

τ2∑9
i=1 θ

2
i

σ2 + 1
τ2

,

(∑9
i=1 θ

2
i

σ2
+

1

τ 2

)−1 .

The posterior conditional distribution for X0 and τ 2 will also have slight modifications

as can be seen below. First, the posterior conditional of X0 is,

X0| · · · ∼N

(
φx1
τ2

+ µ0
w2

φ2

τ2
+ 1

w2

,

(
φ2

τ 2
+

1

w2

)−1)
.

Then the posterior conditional distribution for τ 2 will look like

τ 2| · · · ∼IG

(
n

2
+ a2,

(
1

b2
+

∑n
i=1(xi − φxi−1)2

2

)−1)
.

Finally, we will also need to update φ with each iteration. Assuming a non-informative

prior for φ, the posterior can be found using the definition and is equal to

f(φ| · · · ) ∝ f(x1|φ, x0, τ 2) · · · f(xn|φ, xn−1, τ 2)

∝ exp

{
− 1

2τ 2

∑
(x1 − φx0)2} · · · exp{− 1

2τ 2

∑
(xn − φxn−1)2

}
= exp

{
− 1

2τ 2

∑
(x21 − 2φx1x0 + φ2x20)

}
· · · exp

{
− 1

2τ 2

∑
(x2n − 2φxnxn−1 + φ2x2n−1)

}
= exp

{
−1

2

[
φ
(x1x0
τ 2

+ · · ·+ xnxn−1
τ 2

)
+ φ2

(
x20
τ 2

+ · · ·+
x2n−1
τ 2

)]}
.

29



This gives us a posterior distribution of

N

(
x1x0 + x2x1 + · · ·+ xnxn−1

x20 + · · ·+ x2n−1
,

τ 2

x20 + · · ·+ x2n−1

)
.

With the addition of φ, predictions in general will be

Ŷi,n+k = E(Yi,n+k|Y) = E(θiφ
kxn|Y)

which is estimated using

E(θiφ
kxn|Y) ≈ 1

M

M∑
m=1

θ
(m)
i φ(m)kx(m)

n ,

where i represents the region, M is the number of iterations and k is number of years

ahead for which prediction is desired.

A histogram of posterior samples of φ for breast cancer data up to 2000 is presented

in Figure 3.3. The corresponding summary statistics are in Table 3.5. Since the 95%

credible interval does not include one, we can conclude that φ is actually greater than

one, supporting a growing trend for the incidence counts.

Table 3.5: Posterior summary of φ for breast cancer incidences.

Min 1st Qu. Median Mean 3rd Qu. Max

0.9867 1.0190 1.0220 1.0220 1.0250 1.0640
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Figure 3.3: Histogram of posterior samples of φ for breast cancer incidences. The

value of φ = 1 shown in red.

3.3 Modified Predictions

We next used our modified model to develop predictions and prediction intervals for

2001 to 2003. As before, we applied our method to the data on the three cancer sites.

For intervals, we continued to use the quantile-based method. Results are presented

in Tables 3.6 - 3.14.

When we look at the predictions for 2001, we can see that for each cancer, the ac-

tual incidence counts for at least five or six of the nine states fell within the prediction

interval. As we move further out and begin predicting two or three years ahead, the

predictions become less accurate for the common cancers. Looking at 2002, cancer of

the small intestine has just under half of the actual incidences within the prediction
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interval and for 2003, over half the states’ predictions fell in the interval. For New

Mexico and Utah, there was only one prediction that was within the prediction inter-

val. However, Kentucky, Louisiana, and New Jersey were fairly accurate considering

they had the least amount of data.

Table 3.6: Predictions of breast cancer incidences for 2001 using data up to 2000 and

the modified model.

State 2.5% Quantile Prediction 97.5% Quantile Observed

CT 2917 3047 3166 3026

HI 655 709 764 913

IA 2364 2473 2573 2291

NM 886 946 1005 1125

UT 834 893 952 1095

AK -26 44 112 46

KY 2710 2905 3098 2872

LA 2849 3041 3234 2906

NJ 6604 6807 7010 6725
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Table 3.7: Predictions of breast cancer incidences for 2002 using data up to 2000 and

the modified model.

State 2.5% Quantile Prediction 97.5% Quantile Observed

CT 2965 3113 3248 2824

HI 668 725 783 904

IA 2402 2527 2639 2278

NM 902 967 1030 1109

UT 850 913 975 1046

AK -26 45 115 46

KY 2765 2968 3172 2827

LA 2907 3107 3312 2889

NJ 6722 6956 7188 6479
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Table 3.8: Predictions of breast cancer incidences for 2003 using data up to 2000 and

the modified model.

State 2.5% Quantile Prediction 97.5% Quantile Observed

CT 3010 3182 3335 2693

HI 680 740 802 853

IA 2440 2582 2709 2121

NM 917 988 1057 1036

UT 864 933 1000 1018

AK -27 46 117 61

KY 2819 3033 3250 2761

LA 2962 3175 3395 2879

NJ 6832 7108 7382 6294
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Table 3.9: Predictions of lung cancer incidences for 2001 using data up to 2000 and

the modified model.

State 2.5% Quantile Prediction 97.5% Quantile Observed

CT 2540 2611 2680 2529

HI 566 592 620 611

IA 2205 2268 2329 2174

NM 691 720 748 813

UT 415 440 464 503

AK 14 48 80 53

KY 4117 4219 4321 4263

LA 3387 3485 3586 3494

NJ 6027 6135 6244 6065
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Table 3.10: Predictions of lung cancer incidences for 2002 using data up to 2000 and

the modified model.

State 2.5% Quantile Prediction 97.5% Quantile Observed

CT 2574 2659 2740 2613

HI 575 603 632 679

IA 2235 2310 2381 2196

NM 702 733 764 891

UT 422 448 474 478

AK 15 49 82 53

KY 4179 4297 4417 4244

LA 3439 3550 3664 3301

NJ 6110 6248 6389 6077
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Table 3.11: Predictions of lung cancer incidences for 2003 using data up to 2000 and

the modified model.

State 2.5% Quantile Prediction 97.5% Quantile Observed

CT 2606 2708 2805 2559

HI 583 615 646 695

IA 2263 2353 2438 2248

NM 711 747 782 787

UT 428 456 484 514

AK 15 50 83 53

KY 4235 4376 4521 4134

LA 3485 3615 3748 3397

NJ 6185 6364 6548 5888
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Table 3.12: Predictions of small intestine cancer incidences for 2001 using data up to

2000 and the modified model.

State 2.5% Quantile Prediction 97.5% Quantile Observed

CT 53 62 70 59

HI 12 15 18 17

IA 52 60 68 60

NM 16 20 23 33

UT 20 24 28 34

AK -2 1 4 3

KY 71 82 93 76

LA 71 82 93 91

NJ 135 150 165 169
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Table 3.13: Predictions of small intestine cancer incidences for 2002 using data up to

2000 and the modified model.

State 2.5% Quantile Prediction 97.5% Quantile Observed

CT 50 62 75 82

HI 12 15 19 26

IA 49 61 73 69

NM 16 20 25 32

UT 19 25 30 42

AK -2 1 4 2

KY 68 83 100 85

LA 67 83 100 89

NJ 126 152 179 180
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Table 3.14: Predictions of small intestine cancer incidences for 2003 using data up to

2000 and the modified model.

State 2.5% Quantile Prediction 97.5% Quantile Observed

CT 47 63 81 72

HI 11 16 21 27

IA 46 62 80 67

NM 15 20 27 34

UT 18 25 33 39

AK -3 1 4 0

KY 63 85 108 71

LA 63 85 108 86

NJ 117 154 195 181
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3.4 Discussion

It appears that the model is predicting more accurately for cancer of the small in-

testine, which seems unusual since we assumed a normal distribution, and for a rare

cancer, a Poisson distribution may be a more appropriate fit. It also appears that

predictions seemed better for the states with the least amount of prior year data.

Overall, the model with φ predicted slightly higher for the one-year-ahead predic-

tions than the model where φ = 1. For example, looking at breast cancer incidences

in Table 3.15, most of the predicted values using the modified model are closer to the

observed values than the original model where φ = 1. This supports our previous

conclusion that φ is greater than one. Then we can see the growing trend for incidence

counts when we look at the two and three-year ahead predictions. Note however that

the methods discussed so far do not allow one to predict incidences for those states

without prior data. We attempt to do so in the next chapter.
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Table 3.15: Prediction comparison of breast cancer incidences for 2001 using data up

to 2000.

State φ=1 Modified Model Observed

CT 2917 3047 3026

HI 679 709 913

IA 2368 2471 2291

NM 906 946 1125

UT 855 893 1095

AK 42 44 46

KY 2842 2905 2872

LA 2975 3041 2906

NJ 6662 6807 6725
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CHAPTER 4

ADDING THE SPATIAL COMPONENT

4.1 Spatial Model

The previous models did not take into account the spatial structure of the states. We

now incorporate such information to improve the predictions. This final piece will

also allow us to use information from neighboring states to help predict incidences

for states where data had not been collected. In addition, this will help improve

predictions of states with prior data by sharing of information.

We will look at incorporating neighborhood information using the intrinsic Gaus-

sian Markov random field (IGMRF) described in Rue and Held [12]. We will use the

idea of first-order IGMRFs on regular lattices. Let

θ = (θ1, · · · , θ51)

be the θ-paramters for the fifty states and District of Columbia. For neighboring

states i and j, we will assume normal “increments”

θi − θj∼N(0, η2).
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Assuming that “increments” are independent, the IGMRF model is given by

π(θ) ∝
(

1

η2

)(p−1)/2

exp

{
− 1

2η2

∑
j∼i

(θi − θj)2
}
,

where p = 51 for our case and j∼i represents the unordered pairs of neighbors, with

two states defined as neighbors if they share a border. If we let

θ−i = (θ1, · · · , θi−1, θi+1, · · · , θp),

it follows tha t

θi|θ−i, η2∼N

(∑
j∼i θj

ni
,
η2

ni

)
,

where ni represents the number of neighbors of state i. If prior year data are available

for state i, the posterior conditional of θi is

f(θi| · · · ) ∝ exp

{
− 1

2σ2

n∑
t=1

(yi,t − θixt)2
}

exp

{
− ni

2η2

(
θi −

∑
j∼i θj

nj

)2
}
,

which can be written in the form

exp

{
−a
∗

2

(
θi −

b∗

a∗

)2
}
.

Therefore,

θi| · · · ∼N

(
b∗3
a∗3
,

1

a∗3

)
,

with

a∗3 =

∑
x2t
σ2

+
1

η2
ni,

and

b∗3 =

∑
yi,txt
σ2

+
1

η2

∑
j∼i

θj.
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If state i does not have prior year information, the posterior will be

N

(∑
j∼i θj

ni
,
η2

ni

)
.

Thus, for states with past data, θ values are updated based on the past data as well

as data from neighboring states. For states with no past data, θ values are updated

based on θ’s of those neighboring states only. The case could exist where state i

does not have prior year data and does not share a border with region j for all j; for

example an island. In this instance we would have a difficult time updating the value

of θi. However for our study, the only two states without neighbors are Alaska and

Hawaii but we do have data from prior years, so this situation did not arise.

4.2 Spatial Predictions

Since the code is now quite complex, the iterations are running slower and the chain

is taking longer to converge. Therefore, we updated the Gibbs sampler using 15, 000

iterations with the first 5, 000 iterations removed for burn-in. As before, we used

samples from the posterior distribution to get Ŷi,n+k as well as the 95% prediction

intervals. ACS predictions for 2006 were estimated using data up through 2002,

so our prediction results for 2006 use data up to 2002 as well. Prediction results,

ACS predictions and observed values provided by the National Cancer Institute are

presented in Table 4.1, Table 4.2, and Table 4.3.

Looking at the spatial predictions found in Tables 4.1 - 4.3, it seems that the

predictions are now relatively close to the predictions made by the ACS. For breast

cancer (shown in Table 4.1), states that had prior year data look good, and for some
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states (Hawaii, Louisiana and New Jersey), our model is performing better than the

ACS model. Similar results can be seen for lung cancer in Table 4.2. For cancer

of the small intestine, because it is a rare form of cancer, the results by state were

not published by ACS. When we compare our predictions with the observed values

in Table 4.3, there are a few cases where fairly significant variations can be seen.

It appears though that the predictions for cancer of the small intestine are more

consistent and accurate than the predictions for lung or breast cancer.

Overall, the addition of the spatial component has improved the predictions made

in Chapter 3. For states where we had prior year data, being able to use information

from neighboring states allowed us to make predictions that were comparable to the

ACS predictions, and in some cases predictions were better than those reported by

ACS. We were also able to use the neighboring region’s information to make fairly

accurate predictions for states that did not have prior year information. There are

still some states where significant departures can be seen between the predicted and

the observed values. For these cases, further research needs to be done to identify

weighted values by state that could be incorporated as part of our neighborhood

information.
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Table 4.1: 2006 spatial predictions of breast cancer inci-

dences for all states using data from 1973 to 2002.

State Observed ACS Pred Spatial Pred 2.5% Quan 97.5% Quan

Alabama 3226 3740 3693 -16788 23906

Alaska 342 310 47 -22 115

Arizona Missing 3740 1644 -13049 16175

Arkansas 1847 2030 2653 -13111 18226

California 22085 21200 2188 -15457 19913

Colorado 2863 2650 2507 -11037 16541

Connecticut 2860 2600 3195 3026 3358

Delaware 599 570 2291 -17438 21618

D.C. 436 470 2476 -20575 26080

Florida 12862 13360 2757 -23773 28933

Georgia 5474 5920 3472 -11402 17901

Hawaii 836 680 770 707 833

Idaho 921 940 2219 -12159 16925

Illinois 8843 9250 2473 -14450 18372

Indiana 3965 4680 2419 -16606 21036

Iowa 2156 2230 2584 2445 2718

Kansas 2011 2080 2076 -14560 19255

Continued on next page . . .
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Table 4.1: 2006 spatial breast predictions contd.

State Observed ACS Pred Spatial Pred 2.5% Quan 97.5% Quan

Kentucky 2979 3220 3059 2888 3228

Louisiana 2763 4000 3139 2963 3313

Maine 1107 1040 2339 -33362 35794

Maryland 3608 4310 2402 -13242 18351

Massachusetts 5083 4680 2466 -12701 18238

Michigan 6965 7070 2498 -17307 22299

Minnesota 3575 3070 2476 -14813 19919

Mississippi 1701 2290 2314 -13763 18407

Missouri 4041 4570 2087 -10733 14787

Montana 642 620 2386 -15958 20556

Nebraska 1263 1200 2334 -12347 16847

Nevada 1405 1660 2037 -12202 16459

New Hampshire 993 940 2120 -17800 22514

New Jersey 6489 8110 7112 6794 7402

New Mexico 1144 1090 1016 946 1089

New York 14211 14400 2353 -13207 17790

North Carolina 6299 6290 2434 -17503 22353

North Dakota 460 470 2701 -17240 21924

Ohio 7935 9610 2218 -14232 19196

Continued on next page . . .
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Table 4.1: 2006 spatial breast predictions contd.

State Observed ACS Pred Spatial Pred 2.5% Quan 97.5% Quan

Oklahoma 2455 2860 1955 -11238 15664

Oregon 2791 2810 1851 -15696 19091

Pennsylvania 9831 12320 2494 -11702 16459

Rhode Island 850 780 2763 -19872 25615

South Carolina 3027 3170 2418 -24910 30724

South Dakota 476 520 2581 -12366 17854

Tennessee 4166 4630 2458 -11987 17172

Texas 12750 13150 2040 -14159 18930

Utah 1153 1200 961 893 1031

Vermont 526 520 2575 -19033 24383

Virginia 5167 6080 2319 -12794 17434

Washington 4449 4000 2418 -21438 27668

West Virginia 1317 1400 2263 -14254 18878

Wisconsin Missing 4000 2646 -16066 21556

Wyoming 317 260 2063 -11962 16420

49



Table 4.2: 2006 spatial predictions of lung cancer inci-

dences for all states using data from 1973 to 2002.

State Observed ACS Pred Spatial Pred 2.5% Quan 97.5% Quan

Alabama 3784 3530 3520 -33709 40379

Alaska 324 240 52 18 86

Arizona Missing 3140 1558 -25290 28183

Arkansas 2452 2350 2648 -25948 31040

California 16872 14900 2031 -30827 34319

Colorado 1995 1790 2556 -21829 27504

Connecticut 2631 2000 2768 2667 2869

Delaware 783 550 2259 -33985 38136

D.C. 340 290 2636 -39169 45596

Florida 15891 13280 2561 -45381 49411

Georgia 5734 4860 3227 -23368 29731

Hawaii 744 500 635 602 667

Idaho 756 670 2177 -24711 28624

Illinois 9012 7290 2429 -27641 31773

Indiana 4955 4620 2497 -31975 35992

Iowa 2283 1850 2401 2312 2489

Kansas 1960 1650 1979 -28375 33057

Continued on next page . . .
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Table 4.2: 2006 spatial lung predictions contd.

State Observed ACS Pred Spatial Pred 2.5% Quan 97.5% Quan

Kentucky 4345 3760 4529 4376 4684

Louisiana 3344 3170 3657 3528 3789

Maine 1256 1030 2358 -61514 64657

Maryland 3489 3320 2484 -25835 31043

Massachusetts 4505 4070 2817 -25176 31205

Michigan 7589 6240 2606 -33206 38771

Minnesota 2882 2610 2538 -29204 33927

Mississippi 2280 2200 2180 -26546 31123

Missouri 4914 4130 2028 -21392 24899

Montana 650 620 2290 -31204 35219

Nebraska 1142 1000 2359 -24356 28335

Nevada 1732 1520 1870 -23880 28037

New Hampshire 928 770 2088 -34323 39170

New Jersey 5975 4960 6503 6289 6713

New Mexico 871 820 778 742 815

New York 13004 9900 2628 -25785 30669

North Carolina 6798 5480 2446 -33395 38046

North Dakota 378 330 2333 -34030 37640

Ohio 9096 7900 2177 -28214 32569

Continued on next page . . .
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Table 4.2: 2006 spatial lung predictions contd.

State Observed ACS Pred Spatial Pred 2.5% Quan 97.5% Quan

Oklahoma 3097 2560 1864 -22388 26614

Oregon 2554 2290 1647 -29747 32830

Pennsylvania 10432 8450 2524 -23250 27991

Rhode Island 822 680 3515 -37412 44992

South Carolina 3290 3040 2432 -47650 53410

South Dakota 524 440 2631 -24683 30464

Tennessee 5332 4680 2262 -23680 28799

Texas 12312 10780 2057 -27323 32576

Utah 542 480 472 443 501

Vermont 554 390 2718 -36288 41507

Virginia 4952 4840 2323 -25488 29864

Washington 4054 3540 2576 -40769 49034

West Virginia 2038 1640 2179 -27701 31995

Wisconsin Missing 3040 2743 -30961 36489

Wyoming 257 290 1960 -23656 27676
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Table 4.3: 2006 spatial predictions of small intestine can-

cer incidences for all states using data from 1973 to 2002.

State Observed Spatial Pred 2.5% Quan 97.5% Quan

Alabama 126 106 -369 580

Alaska Suppressed 1 -3 5

Arizona Missing 50 -290 391

Arkansas 66 76 -287 449

California 552 67 -349 494

Colorado 80 75 -235 393

Connecticut 86 84 63 108

Delaware 20 69 -386 535

D.C. Suppressed 72 -464 622

Florida 385 77 -529 686

Georgia 143 101 -237 455

Hawaii 26 21 16 28

Idaho 30 66 -275 408

Illinois 262 75 -304 452

Indiana 140 73 -361 513

Iowa 71 81 61 104

Kansas 59 59 -328 458

Continued on next page . . .
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Table 4.3: 2006 spatial small intestine predictions contd.

State Observed Spatial Pred 2.5% Quan 97.5% Quan

Kentucky 105 98 74 126

Louisiana 90 106 80 136

Maine 30 71 -732 867

Maryland 116 73 -288 440

Massachusetts 158 75 -277 433

Michigan 242 74 -380 545

Minnesota 123 74 -327 481

Mississippi 61 65 -300 443

Missouri 107 63 -229 367

Montana Suppressed 71 -358 498

Nebraska 62 70 -271 410

Nevada 38 63 -273 401

New Hampshire 24 64 -394 538

New Jersey 204 203 154 258

New Mexico 38 29 21 38

New York 457 72 -285 433

North Carolina 183 72 -384 528

North Dakota Suppressed 79 -385 544

Ohio 254 66 -327 461

Continued on next page . . .
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Table 4.3: 2006 spatial small intestine predictions contd.

State Observed Spatial Pred 2.5% Quan 97.5% Quan

Oklahoma 74 57 -256 374

Oregon 74 57 -340 452

Pennsylvania 315 78 -241 409

Rhode Island 24 85 -446 632

South Carolina 104 71 -572 724

South Dakota 21 76 -274 425

Tennessee 121 70 -257 403

Texas 443 60 -314 453

Utah 32 35 26 45

Vermont Suppressed 77 -417 569

Virginia 141 70 -289 437

Washington 132 71 -492 659

West Virginia 45 67 -308 454

Wisconsin Missing 80 -343 515

Wyoming Suppressed 61 -264 397
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CHAPTER 5

CONCLUSION

In this thesis, we have attempted to develop a spatio-temporal model for projecting

U.S. cancer incidence counts into the future based on SEER registry data. Using

a normal distribution and making assumptions regarding prior distributions allowed

us to find conditional posterior distributions for θi (the effect of region i from year

to year), xt (which captures the dependency of counts for time t for all regions),

and the variance σ2. While first year predictions seemed realistic, this model did not

consistently provide a reasonable two or three-year-ahead predictions. The predictions

were then improved upon by the addition of the autoregressive variable φ into the

distribution of xt.

Finally, we found a way to incorporate the spatial structure of states by the

IGMRF model. Overall, with this addition, we saw an improvement in the predictions,

especially for small intestine cancer. Therefore, we can conclude that we have a

decent model that can predict cancer incidences for rare or common cancers across

the U.S. using prior year data when it is available. If prior year data are unavailable,

the model uses information from neighboring states to make predictions. As the
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ability to register new incidences becomes easier and more consistent from state to

state, researchers will continue to look for ways to improve the prediction of cancer

incidences.

To help enhance our model some further research could be done. For example,

had the data included other information such as ethnicity, smoking rate, etc., we may

have been able to use a regression model to improve our predictions. It is possible

that by knowing if the patient had a family history of cancer, was a smoker or was

exposed to other elements that increase the risk for cancer, we could determine if

there was a correlation between the variables and the number of new incidences. If a

relationship was found, it could also help the health care industry to better educate

the community on early detection and ways to avoid cancer causing risks.

As we mentioned in Chapter 1, not all the data provided from the SEER registry

was used in this study. Some of the registries were for major cities instead of the

entire state so this study used only the data collected for an entire state. Although

a registry for Atlanta may not give us a complete picture of cancer incidences in

Georgia, it would still provide some information and might allow a more accurate

prediction for Georgia as well as the neighboring states.

In the final model which incorporated the spatial component, we could also look

at the effect of the predictions when µ and η2 are updated. In Chapter 4 we let µi

equal the state mean and µj be the neighboring mean. We then assumed that µi was

equal to µj and did not change as θ converged. However, as the seen in Figure 1.2,

Figure 1.3 and Figure 1.4 there were significant differences in the number of incidences

between some states. Therefore, it seems reasonable that by identifying and updating
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the mean for each state we may improve our predictions.

Finally, a normal distribution was used throughout the model but since the cancer

incidences are count data, a Poisson model might better represent that data. Lawson

(2009) described a model by Besag (1975) which uses an autologistic model on binary

data in a spatiotemporal setting [7]. The model is able to capture spatial correlation

effects as well as allowing conditioning on time labeled neighborhood counts using a

pseudolikelihood. Such a model could be modified to use a Poisson distribution but

would need to be explored further.
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APPENDIX

SEER Incidence Data Used

Table 5.1: Breast cancer incidences from SEER registries

Year CT HI IA NM UT AK KY LA NJ

1973 1543 247 1411 311 365 NA NA NA NA

1974 1766 267 1542 413 388 NA NA NA NA

1975 1817 266 1451 358 391 NA NA NA NA

1976 1713 256 1426 217 384 NA NA NA NA

1977 1721 296 1448 432 382 NA NA NA NA

1978 1714 284 1475 442 422 NA NA NA NA

1979 1790 318 1523 424 473 NA NA NA NA

1980 1831 319 1540 461 432 NA NA NA NA

1981 1949 318 1606 479 459 NA NA NA NA

1982 1914 359 1518 488 464 NA NA NA NA

1983 2044 356 1612 521 549 NA NA NA NA

Continued on next page . . .
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Table 5.1: Breast cancer incidence contd.

Year CT HI IA NM UT AK KY LA NJ

1984 2183 401 1688 575 591 NA NA NA NA

1985 2293 466 1769 606 576 NA NA NA NA

1986 2273 530 1939 624 671 NA NA NA NA

1987 2502 536 2024 711 698 NA NA NA NA

1988 2538 534 2158 677 693 NA NA NA NA

1989 2482 556 2010 707 686 NA NA NA NA

1990 2629 593 2032 822 710 NA NA NA NA

1991 2578 614 2077 816 776 NA NA NA NA

1992 2574 628 2191 875 750 26 NA NA NA

1993 2596 683 2125 795 815 32 NA NA NA

1994 2667 655 2094 916 836 35 NA NA NA

1995 2623 699 2160 964 887 48 NA NA NA

1996 2772 704 2121 1030 868 47 NA NA NA

1997 2707 872 2226 1008 904 35 NA NA NA

1998 2895 905 2385 1069 1034 48 NA NA NA

1999 2950 878 2337 1161 1008 32 NA NA NA

2000 2869 783 2188 1118 1053 56 2842 2975 6662

2001 3026 913 2291 1125 1095 46 2872 2906 6725

2002 2824 904 2278 1109 1046 46 2827 2889 6479

Continued on next page . . .
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Table 5.1: Breast cancer incidence contd.

Year CT HI IA NM UT AK KY LA NJ

2003 2693 853 2121 1036 1018 61 2761 2879 6294

Table 5.2: Lung cancer incidence from SEER registries

Year CT HI IA NM UT AK KY LA NJ

1973 1344 264 1298 305 216 NA NA NA NA

1974 1443 268 1223 310 203 NA NA NA NA

1975 1512 261 1327 364 242 NA NA NA NA

1976 1615 288 1364 366 248 NA NA NA NA

1977 1635 365 1366 364 228 NA NA NA NA

1978 1704 339 1504 419 251 NA NA NA NA

1978 1704 339 1504 419 251 NA NA NA NA

1979 1805 348 1545 463 292 NA NA NA NA

1980 1895 355 1557 451 281 NA NA NA NA

1981 1921 358 1615 490 315 NA NA NA NA

1982 2009 432 1631 497 299 NA NA NA NA

1983 2029 376 1732 494 358 NA NA NA NA

1984 2121 464 1807 535 350 NA NA NA NA

1985 2070 414 1854 534 339 NA NA NA NA

Continued on next page . . .
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Table 5.2: Lung cancer incidence contd.

Year CT HI IA NM UT AK KY LA NJ

1986 2174 459 1898 571 358 NA NA NA NA

1987 2304 517 1978 598 374 NA NA NA NA

1988 2389 480 2051 638 346 NA NA NA NA

1989 2388 488 2013 599 331 NA NA NA NA

1990 2359 563 1993 688 395 NA NA NA NA

1991 2485 568 2076 637 393 NA NA NA NA

1992 2414 595 2173 707 418 31 NA NA NA

1993 2405 598 2148 685 440 49 NA NA NA

1994 2383 580 2164 729 453 50 NA NA NA

1995 2485 593 2131 723 434 53 NA NA NA

1996 2521 623 2274 728 440 45 NA NA NA

1997 2480 658 2228 808 458 50 NA NA NA

1998 2628 672 2226 791 487 48 NA NA NA

1999 2483 687 2196 807 523 40 NA NA NA

2000 2459 650 2225 830 435 48 4142 3422 6024

2001 2529 611 2174 813 503 53 4263 3494 6065

2002 2613 679 2196 891 478 53 4244 3301 6077

2003 2559 695 2248 787 514 53 4134 3397 5888
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Table 5.3: Small intestine cancer incidence from SEER

registries

Year CT HI IA NM UT AK KY LA NJ

1973 31 6 25 6 6 NA NA NA NA

1974 32 5 38 11 13 NA NA NA NA

1975 28 2 39 6 10 NA NA NA NA

1976 34 9 22 11 8 NA NA NA NA

1977 22 4 26 7 11 NA NA NA NA

1978 26 9 21 11 7 NA NA NA NA

1979 22 6 35 10 8 NA NA NA NA

1980 36 8 27 9 10 NA NA NA NA

1981 34 5 39 2 6 NA NA NA NA

1982 37 6 38 8 15 NA NA NA NA

1983 35 7 38 10 9 NA NA NA NA

1984 39 6 35 11 13 NA NA NA NA

1985 31 11 36 15 9 NA NA NA NA

1986 43 5 35 9 23 NA NA NA NA

1987 47 11 49 10 9 NA NA NA NA

1988 45 12 46 18 21 NA NA NA NA

1989 41 10 52 18 16 NA NA NA NA

Continued on next page . . .
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Table 5.3: Small intestine cancer incidence contd.

Year CT HI IA NM UT AK KY LA NJ

1990 46 5 35 14 9 NA NA NA NA

1991 66 22 46 19 17 NA NA NA NA

1992 47 15 49 18 17 0 NA NA NA

1993 49 17 44 14 23 1 NA NA NA

1994 51 15 42 16 23 0 NA NA NA

1995 50 18 63 16 31 0 NA NA NA

1996 49 13 48 21 19 0 NA NA NA

1997 73 20 63 19 36 2 NA NA NA

1998 67 7 60 25 26 2 NA NA NA

1999 74 21 80 27 30 0 NA NA NA

2000 55 15 58 22 33 0 81 81 148

2001 59 17 60 33 34 3 76 91 169

2002 82 26 69 32 42 2 85 89 180

2003 72 27 67 34 39 0 71 86 181
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R Code

library(MCMCpack) #for rinvgamma function

rivg<-function(a, b){

rinvgamma(1, a, 1/b)

}

##data

d <- read.table("BreastNY.txt", header=TRUE)

d <- d[1:30,] #only used for testing predictions

#MH 04.28

#neighborhood matrix

n.m <- read.table("StateMatrix3.txt",header=TRUE)

c.mean=apply(d, 2, mean, na.rm=T)

c.var=apply(d, 2, var, na.rm=T)

r.mean = apply(d, 1, mean, na.rm=T)

r.var = apply(d, 1, var, na.rm=T)

#means used to calc starting values for x & theta

n <- nrow(d)

set.seed(1)

#these lines generate the initial values of the parameters x0,

tau^2, sigma^2, x1 - x19, theta1 - theta9

mu.0 <- 0
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t.0 <- 19

a<-2.01; b<-1/1.01

t.2 <- rivg(a,b) #tau^2

s.2 <- rivg(a,b) #sigma^2

w.2 <- 5000 #var for w^2

eta.2 <- 5000

phi <- 1

r = n+1

x.0 <- rnorm(1,mu.0,sqrt(w.2))

x <- c(x.0, r.mean)

theta <- c.mean/mean(r.mean)

#starting values for theta

#MH 04.28

theta.n <- c(theta,runif(42,0,1))

##starting values

S <- 500 #number of iterations

PHI <- matrix(nrow=S, ncol=r)

PHI[1,] <- x

PHI.2 <- matrix(nrow=S, ncol = 3)

PHI.2[1,] <- c(t.2, s.2,phi)

#MH 04.28

PHI.4 <- matrix(nrow=S, ncol = 51)

#matrix of 51 theta’s updated using spatial techniques
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PHI.4[1,] <- theta.n

##Gibbs Sampling

for(s in 2:S) {

cat("s=", s,"\n")

#### phi

ss.x <- sum(x[-r]^2)

s2.s <- t.2/ss.x

mu.t<-sum(x[1:n]*x[2:r])/ss.x

phi <- rnorm(1,mu.t, sqrt(s2.s))

#cat("phi=", phi, "\n")

#### x0

mu.t <- (phi*x[2]/t.2 + mu.0/w.2)/(phi^2/t.2 + 1/w.2)

#posterior mean of x0

s2.s <- 1/(phi^2/t.2 + 1/w.2) #posterior variance of x0

x[1] <- rnorm(1, mu.t, sqrt(s2.s))

#### x1 - x19

s2.s <- 1/((sum(theta.n[1:5]^2)/s.2 + (1+phi^2)/t.2))

#posterior variance of x

for (i in 1:t.0) {

mu.t <- (sum(d[i,1:5]*theta.n[1:5])/s.2 + phi*(x[i+2] + x[i])/t.2)

*s2.s #posterior mean of x

x[i+1] <- rnorm(1, mu.t, sqrt(s2.s)) #sample from the posterior of x
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}

#### x20 - x27

s2.s <- 1/((sum(theta.n[1:6]^2)/s.2 + (1+phi^2)/t.2))

for (i in (t.0+1):(t.0+8)) {

mu.t <- (sum(d[i,1:6]*theta.n[1:6])/s.2 + phi*(x[i+2] + x[i])/t.2)

*s2.s

x[i+1] <- rnorm(1, mu.t, sqrt(s2.s))

}

#### x28 - x29

s2.s <- 1/((sum(theta.n[1:9]^2)/s.2 + (1+phi^2)/t.2))

for (i in (t.0+9):(n-1)) {

mu.t <- (sum(d[i,1:9]*theta.n[1:9])/s.2 + phi*(x[i+2] + x[i])/t.2)

*s2.s

x[i+1] <- rnorm(1, mu.t, sqrt(s2.s))

}

#### xn: n=30 (through 2002)

s2.s <- 1/((sum(theta.n[1:9]^2)/s.2 + 1/t.2))

mu.t <- (sum(d[n, 1:9]*theta.n[1:9])/s.2 + (phi*x[n]/t.2))*s2.s

x[n+1] <- rnorm(1, mu.t, sqrt(s2.s))

#### tau.2

mu.t <- (n/2) + a #posterior mean of tau^2

s2.s<-1/(1/b + sum((x[2:r]-phi*x[1:n])^2)/2)

#posterior var of tau^2
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t.2<-rivg(mu.t, s2.s)

#### sigma.2

mu.t <- ((5*n + n - t.0) + 3*(n - (t.0 + 8)))/2 + a

#posterior mean of sigma^2

term<-sum((d[,(1:5)]-outer(x[-1], theta.n[1:5]))^2)

term<-term+sum((d[(t.0+1):n,6] - theta.n[6]*x[(t.0+2):(n+1)])^2)

term<-term+sum((d[(t.0+9):n,7:9]

- outer(x[(t.0+10):(n+1)], theta.n[7:9]))^2)

s2.s <- 1/(term/2 + 1/b) #posterior var of sigma^2

s.2<-rivg(mu.t, s2.s)

#cat("tau_sq=", t.2, "sigma_sq=", s.2,"\n")

#MH 04.28

#no y information available - theta being updated using information

from neighbors - 41 states, theta.10 to theta.51

for(j in 10:51){

mu.t <- sum(n.m[j,3:53]*theta.n)/sum(n.m[j,3:53])

s2.s <- eta.2/sum(n.m[j,3:53])

theta.n[j] <- rnorm(1,mu.t,sqrt(s2.s))

}

#MH 04.28

#update theta 1 - 9 using spatial posterior

#theta 1 - 5

x.sqsum <- sum(x[-1]^2)
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for(j in 1:5){

s2.s <- 1/(x.sqsum/s.2 + (1/eta.2)*sum(n.m[j,3:53]))

mu.t <- ((sum(d[,j]*x[-1]))/s.2 + sum(n.m[j,3:53]*theta.n)/eta.2)

*s2.s

theta.n[j] <- rnorm(1,mu.t,sqrt(s2.s))

}

#### theta 6

x.sqsum <- sum(x[(t.0+2):(n+1)]^2)

s2.s <- 1/(x.sqsum/s.2 + (1/eta.2)*sum(n.m[6,3:53]))

mu.t <- ((sum(d[(t.0+1):n,6]*x[(t.0+2):(n+1)]))/s.2

+ sum(n.m[6,3:53]*theta.n)/eta.2)*s2.s

theta.n[6] <- rnorm(1, mu.t, sqrt(s2.s))

#### theta 7-9

x.sqsum <- sum(x[(t.0+10):(n+1)]^2)

for(j in 7:9){

s2.s <- 1/(x.sqsum/s.2 + (1/eta.2)*sum(n.m[j,3:53]))

mu.t <- ((sum(d[(t.0+9):n, j]*x[(t.0+10):(n+1)]))/s.2

+ sum(n.m[j,3:53]*theta.n)/eta.2)*s2.s

theta.n[j] <- rnorm(1, mu.t, sqrt(s2.s))

}

PHI[s,] <- x

PHI.2[s,] <- c(t.2, s.2, phi)

PHI.4[s,] <- theta.n
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}

#Predictions 2003 - 2006

start.i = 5000

end.i = S

N=n

pred.1 <- matrix(nrow=3, ncol=51)

pred.2 <- matrix(nrow=3, ncol=51)

pred.3 <- matrix(nrow=3, ncol=51)

pred.4 <- matrix(nrow=3, ncol=51)

for(i in 1:51){

pred.1[1, i]<-quantile(PHI.4[start.i:end.i, i]

*PHI.2[start.i:end.i, 3]^1*PHI[start.i:end.i, N+1],.025)

pred.1[2, i]<-mean(PHI.4[start.i:end.i, i]

*PHI.2[start.i:end.i, 3]^1*PHI[start.i:end.i, N+1])

pred.1[3, i]<-quantile(PHI.4[start.i:end.i, i]

*PHI.2[start.i:end.i, 3]^1*PHI[start.i:end.i, N+1],.975)

pred.2[1, i]<-quantile(PHI.4[start.i:end.i, i]

*PHI.2[start.i:end.i, 3]^2*PHI[start.i:end.i, N+1],.025)

pred.2[2, i]<-mean(PHI.4[start.i:end.i, i]

*PHI.2[start.i:end.i, 3]^2*PHI[start.i:end.i, N+1])

pred.2[3, i]<-quantile(PHI.4[start.i:end.i, i]

*PHI.2[start.i:end.i, 3]^2*PHI[start.i:end.i, N+1],.975)
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pred.3[1, i]<-quantile(PHI.4[start.i:end.i, i]

*PHI.2[start.i:end.i, 3]^3*PHI[start.i:end.i, N+1],.025)

pred.3[2, i]<-mean(PHI.4[start.i:end.i, i]

*PHI.2[start.i:end.i, 3]^3*PHI[start.i:end.i, N+1])

pred.3[3, i]<-quantile(PHI.4[start.i:end.i, i]

*PHI.2[start.i:end.i, 3]^3*PHI[start.i:end.i, N+1],.975)

pred.4[1, i]<-quantile(PHI.4[start.i:end.i, i]

*PHI.2[start.i:end.i, 3]^4*PHI[start.i:end.i, N+1],.025)

pred.4[2, i]<-mean(PHI.4[start.i:end.i, i]

*PHI.2[start.i:end.i, 3]^4*PHI[start.i:end.i, N+1])

pred.4[3, i]<-quantile(PHI.4[start.i:end.i, i]

*PHI.2[start.i:end.i, 3]^4*PHI[start.i:end.i, N+1],.975)

}
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