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Abstract

Many well-known determinacy results calibrate determinacy strength in terms of large cardi-
nals (e.g., a measurable cardinal) or a ”large cardinal type” property (e.g., zero sharp exists).
Some of the other results are of the form that subsets of reals of a certain complexity will
satisfy a well-known property when a certain amount of determinacy holds. The standard
game tree considered in the study of determinacy involves games in which all moves are
from omega and all plays have length omega (i.e. the game tree is w<“ and the body of
the game tree is w*). There are also many well-known results on the game trees w<® for
a countable (all moves from omega and all paths are of fixed length «). However, one can
easily construct a nondetermined open game on a game tree 7', in which all moves are from
w, but some paths of T" have length omega while the others of length w + 1.

Many determinacy results consider games on a fixed game tree with each path having
the same length. In this dissertation, we investigate the determinacy of games on game trees
with variable length paths. Especially, we investigate two types of such game trees, which
we named Type 1 and Type 2. The length of each path in a Type 1 tree is determined by
its first w moves. A Type 2 tree is generalization of a Type 1 tree. In other words, a Type

1 tree is a special case of a Type 2 tree. We shall consider collections C of such game trees,

il



that will be defined from particular parameters ranging over certain sets. A Tree; collection
will be a collection of Type 1 trees. A Trees collection will be a collection of Type 2 trees.
Given a Tree; (respectively, Treey) collection C and a fixed complexity (e.g., open, Borel,
¥1), we calibrate the strength of the determinacy of games with that complexity on all trees

in the collection C in terms of well-known determinacy.
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Chapter 1

Preliminaries and Introduction

The determinacy of games has been an active area of study in set theory. In this dissertation,
we will focus on two-player perfect information games on a certain type of “long trees”, all
of which have heights greater than (or equal to) w. Our goal to this dissertation will be
the classification of certain long games. Before we start discussing games, we will review
standard definitions and well-known theorems.

In this chapter, we will review the basic concepts of games and set of notations for this
dissertation. In section 1.1, we will review some notations for a product space and sequences.
In section 1.2, we will define trees and games. In section 1.3, we will define complexities. We
will use the product topology taking each set as a discrete space. Thus defining open sets,
we will use “finiteness”. Then we will define the Borel, projective, and difference hierarchies.
In section 1.4, we will review several well-known determinacy results for games on trees w<*
and X <“ for any nonempty set X. Then in section 1.5, we will start the introduction to this

dissertation and introduce some new concepts and notations, particular to this dissertation.



We will use the following notation 1.0.1 throughout the paper.

Notation 1.0.1. We use - to signify that this is the end of the statement of definition,

theorem, proposition, lemma, corollary, observation and notation. .

By using notation 1.0.1, it is easier to distinguish the end of a statement. While we use
“—H” symbol to identify the end of a theorem, we will use this “[J” symbol to identify the end

of a proof.

For the material in this dissertation, the following books and publication are standard

references:

e Martin (2017 draft). Borel and Projective Games (unpublished).
http://www.math.ucla.edu/~dam/booketc/thebook.pdf.

The main reference for this dissertation is Martin’s unpublished book. The 2017 draft
does not include Chapter 5. The cited page numbers and theorems for Chapter 5 are

from an older draft.

e Jech (2003). Descriptive Set Theory, the Third Millennium Edition, Revised and

Expanded. Springer, 2003.

e Kechris (2010). Classical Descriptive Set Theory, Graduate Texts in Mathematics: vol.

156. Springer-Verlag.



e Moschovakis (2009). Descriptive Set Theory, Second Edition. American Mathematical

Society.

e Neeman (2004). The Determinacy of Long Games: de Gruyter Series in Logic and Its

Applications, vol. 7 Berlin, Germany: de Gruyter GmbH, Walter.

e Steel (1988). Long Games. In: Kechris A.S., Martin D.A., Steel J.R. (eds) Cabal

Seminar 81-85. Lecture Notes in Mathematics, vol 1333. Springer, Berlin, Heidelberg

https://link.springer.com /chapter/10.1007%2F BFb0084970

These and the additional references are listed under the References on page 418.



1.1 General notations for a product space

In this section, we will review some standard notations for sequences.

Definition 1.1.1. (Definition of countable, denumerable and uncountable sets)

A set X is finite if there is a bijection between X and some finite subset of the set of natural
numbers. A set X is denumerable if there is a bijection between X and the set of all natural
numbers. A set X is countable if it is either finite or denumerable. A set X is uncountable

if it is not countable, i.e., it is infinite and not denumerable. -

Definition 1.1.2. w is the least countable ordinal and wy is the least uncountable ordinal.-

Suppose X and Y are nonempty sets. XY is a set of functions from Y into X and thus
it is called a function space. In particular, we will consider the case that Y is an ordinal
number o. Then X® = {f|f:a — X}. Since the domain of each function in X¢ is an
ordinal «, by letting x5 = f (8) for each 5 € «, each function f can be identified with a
sequence of length «. Thus each element of X is a sequence (zg, 21, ..., T3, ...) where § € «
and each 23 € X. Each x5 is called the 8-th entry of the sequence. Hence X is the «
Cartesian product of X, i.e., X x X X --- multiplied o times. Recall {0, 1}* = 2¢ is called
the Cantor space and w¥ is called the Baire space. We also use N to represent the Baire

space. We define X<* and X=* by X< = |J,_, X7 and X=* = J,, X’.
Notation 1.1.3. The length of a sequence p is the domain of p and is denoted by lh(p). -

Note that for any sequence p, there exists a unique ordinal « such that

p= <p07p17 ooy Piy > 7i Se



Thus p can be identified with the function {(i,p;) |i € a}. Hence the domain of a sequence

p is the domain of the corresponding function, i.e., lh(p) = a.

Definition 1.1.4. (Definition of a concatenation)
Suppose f = (f(0), f(1),...) and g = (g(0),g(1),...) are sequences. Then a concatenation of
f and g, denoted by f~g is defined to mean (f(0), f(1),...,9(0),g(1),...). i.e., if « = dom(f)

and 8 = dom(g), then dom(f~g) = a+ 5 and

fO) ify<a
frg(y) =

g(0) ifa<~y<p, wherey=a-+0. 4

Notation 1.1.5. (Definition of | for a sequence)
Suppose x is a sequence of length . Then for any f < «, define x | B to be the sequence
of length B such that (x | B)(v) = z(y) for v € B, i.e., x | f and x have the same ~th

component for any v € 8. If B > «, then we define x | 3 to be x. .

For a function f and a set A, the restriction of f to A, f [ A,

1A= [fT1(Andom(f)).

Since any sequence x can be identified as a function, we can obtain x | =z [ (6Ndom(z)).
Since the domain of x is the length of z, if 8 > [h(x), then SN dom(x) = fNIh(z) = lh(z).

Thus we obtain = [ f = z as in notation 1.1.5.

x| =z (BNlh(x))=2a]lh(z) =2

Definition 1.1.6. (Definition of an initial segment and an extension of a sequence)
If s =t | a for some ordinal o, then we say s is an initial segment of t and t is an extension

5



of s (possibly s =t). If s =t | « for some ordinal o and s # t, then we say s is a proper

wnitial segment of t and t is a proper extension of s. .



1.2 Definition of a game

In this section, we will give standard definitions related to game trees. We regularly refer
to a “game tree” as a “tree”. Then we will give standard definitions related to a game on a

tree. By a “game”, we mean a “two-player perfect information game.”

1.2.1 Definitions related to a game tree

Definition 1.2.1. (Definition of a game tree)

T is a game tree if T satisfies the following 4 properties.
1. T is a set of sequences.
2. T is closed under initial segments, i.e., if t € T thent [ a € T for all a € lh(1).
3. If s € T and lh(s) is a limit ordinal, then there exists t € T such that s C t.

(Property 3 is a convention that we need to fix to avoid confusion. This assumption implies
that there is no path of limit length which is a position. A path and a position are defined in

definition 1.2.3 below.)

When we say a “tree”, we mean a “game tree”. Note that every tree contains the empty

sequence. .

Note that w* is not a tree since it is not closed under initial segments. The typical

example of a game tree is w<¥. If the game tree is not specified, we assume this tree.

Definition 1.2.2. (Definition of the height of a tree)



Suppose T is a tree. The height of T, denoted by ht(T) is defined by

ht (T) = sup (1h (p)) -

peT

Definition 1.2.3. (Definition of a position, a move, a play and a path)

Suppose T s a tree. Each p € T is called a position. For any p € T, define
M, ={m|p~(m) € T}.

Then a move at p in T is an a such that a € My, i.e., p~(a) € T. a is called a move if
there exists a position p € T' such that a € M,. A play is a sequence x in which every proper
initial segment of x is in T and for any move a, x~{a) is not in T. Each play is also called

a branch or a path through the tree T. -

Note that property 3 in definition 1.2.1 affects of a definition of a play. Suppose every
proper initial segment of x is in 7" and no proper extension of x is in T". If the length of x
is a successor ordinal and x € T, then z is a play in T'. If the length of x is a limit ordinal,

then z is a play in 7" but = ¢ T.

Definition 1.2.4. (Definition of the body of a tree)

Suppose T is a tree. The body of a tree is the set of all plays in T and is denoted by [T]. -

If x € [T]\T, then the length of x is a limit ordinal. If x € T'N [T, then the length of =

is a successor ordinal.



Do
P

X

Figure 1.2.1: Tllustration of p € T" and z € [T].

Definition 1.2.5. (Definition of a well-founded tree)

Suppose T is a tree. If T' has no infinite branches, T is called well-founded. Otherwise, T is

called ill-founded. =

Definition 1.2.6. (Definition of the rank of a well-founded tree)

Suppose T is a well-founded tree. Then [T| C T. Define the rank of T recursively.

rankr : T — w

0 ifpell],

sup {rankr (p~(k)) + 1| p~(k) e T} ifpe T\[T]. 4

p =

1.2.2 Definitions related to a game on a tree

Definition 1.2.7. (Definition of a two-player perfect information game G(A;T))
Define a two-player perfect information game G(A;T) as follows (see Figure 1.2.2 ):

9



1. There are two players, usually called player I and player 11.

2. Player I and player 11 alternatively play mowves as follows: Suppose p € T.

(a) If h(p) is even (e.g., Ih(p) = 0), then I plays a move a such that a € M,, i.e.,
p(a)eT.
(b) If Ih(p) is odd, then player II plays a move a such that a € M,.
3. Fach player has complete knowledge of the previous moves of the way that has been

played, i.e., when a player makes a move a, at a position p € T', then the player knows

p, therefore knows all moves previous to a,.

4. A play of the game is exactly a play on the tree, i.e., f € [T].

5. f is a win for player I if and only if f € A, respectively, f is a win for player 11 if
and only if f ¢ A. A is called the payoff set for player I. [T|\A is called the payoff set

for player I1.

We denote such a game by G(A;T). We will also use G(A, [T]) for the notation (sometimes

it is easier to use [T| rather than T for notational issues with cross products). -
I x T2 e Ty Tw+2
N\ /! \ /! N /! AVERER ¢
17 T T3 cee Tw+1
T = (T, X1y oy Tigy Tior 1, ---) € [T]. stops when z € [T

Figure 1.2.2: Illustration of a play = € [T] for [h(z) > w.

The notation G(A;T) is not universal. In Jech (2003, p. 627), he uses G 4 with fixed tree

w<*. In Moschovakis (2009, p. 218), he uses Gx(A) for a fixed tree X<*. In Kechris (2010,
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p. 137), he uses G(X, A) or G(A) for a fixed tree X <. Since we will be considering games
on different trees, we will use Martin’s notation G(A;7) by Martin (2017 draft, p. 5). We

will sometimes use G(A4;[T]) since we can uniquely obtain 7" from [T7].

From now on, we will only consider two-player perfect information games.

Definition 1.2.8. (Definition of a strategy)
Suppose T is a tree. Recall M, = {m|p~(m) € T} for each p € T. A strategy s for player

I is a function such that

s:{peT\[T] | lh(p) is even} — U M,

peT

and s(p) € M,.

Stmilarly, a strategy s for player 11 is a function such that

s:{peT\[T] | lh(p) is odd} — | J M,

peT

and s(p) € M,.

s is a strategy on the tree T if s is a strateqy for player I or player I1. -

Definition 1.2.9. (Definition of being according to a strategy)

Suppose T is a tree and s is a strateqy on T. For any f € TUIT], f is according to s if and

only if for any B such that f | p € dom(s), f(B) =s(f | 5). =

Note that each strategy s gives rise to the following tree T, = T (T, s).
Notation 1.2.10. Suppose T is a tree and s is a strateqy on T'. Define
Ts ={p € T| p is according to s}. -

11



Definition 1.2.11. (Definition of a winning strategy for a game G(A;T))
Suppose T is a tree and A C [T] is a payoff set for player I. A strategy s is a winning
strategqy for player I for G(A;T) if for any f € [T] according to s, f € A, i.e., [T;] C A.

Similarly, a strategy s is a winning strategy for player II for G(A,T) if for any f € [T]

according to s, f ¢ A, i.e., [Ts] C [T]\A. =
[llustration of [Mlustration of
a winning strategy o for / a winning strategy ¢ for I/
o restricts I's moves 7 restricts /I's moves

1) X, «<—— played by I —X;

X, < played by II > X,

All plays in 7_ are in . All plays in 7_ are in.

Figure 1.2.3: Illustration of winning strategies.

Definition 1.2.12. (Definition of a game being determined)

Suppose T is a tree and A C [T is a payoff set for player I. We say the game G(A;T) is
determained if and only if player I or player 11 has a winning strateqgy, i.e., there exists a
strategy s on T such that [Ts) C A and s is a strategy of player I, or [Ts] C [T)]\A and s is

a strategy for player I1. -

Notice that determinacy corresponds to the existence of a subtree 7, or 7, of T as

illustrated in Figure 1.2.3.
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1.3 Definition of complexities

In this section, we will review standard complexities on subsets of [T]. We will first define
open sets in a space, from which we will define Borel hierarchy, projective hierarchy, and the

difference hierarchy on ITj sets.

Notation 1.3.1. (Definition of a complezity)

In this dissertation, whenever we mention a “complexity” in chapters 2 and 3, we mean
the complexities defined in this section, i.e., Borel, projective and difference hierarchy, un-
less specified. More precisely, the definition of a complexity in this dissertation is the fol-
lowing: Suppose we have = such that for each tree T, = | [T] C p([T]) is defined (e.g.,

30 M0 3L TTL ). Then we say = is a complexity. =

1.3.1 Definitions related to topologies

First, we will review the definition of topologies.

Definition 1.3.2. (Definition of a topology)

Suppose X 1is a set. A topology on a set X is a collection T of subsets of X such that:
1.0, X er,
2. Any union of elements in T is in T,
3. The finite intersection of elements of T is in T.

A set X with a topology T, (X, T) is called a topological space. The elements of T are called

open sets in X. —|

13



A basis for a topology (X, 7) is B C 7 in which every open set A € 7 can be written as

unions of elements of B.

Definition 1.3.3. (Definition of a basis)

Suppose X is a set. A basis of a topology (X, T) is a collection B of subsets in X such that
1. For every x € X, there exists B € B such that x € B.

2. If there exist B1, By € B such that x € By N By, then there exists By € B such that

ZL’EngBlﬂBQ. -

If B satisfies both of the conditions 1 and 2, then there is a unique topology on X for

which B is a basis. It is called the topology generated by B.

We will consider the product topology [[..; X; with each X; discrete. We will review the

icl
product topology and the discrete topology.
Definition 1.3.4. (Definition of the product topology)

Suppose X; are sets and T; is a topology for X; for i € I. Consider the Cartesian product
[Lic; Xi- The basic open sets of [[,.; Xi are sets of the form [[,.; U; where each U; is an

open set in X; and U; # X; for finitely many i € I (that is, “finiteness”). =

Definition 1.3.5. (Definition of the discrete topology)
Suppose X is a set. The discrete topology on X is defined by setting every subset of X to be

an open set in X. =

14



1.3.2 Open sets

We will review open sets in product topology [[,.; X; with each X; discrete. Then we will

iel
define open sets over a tree T' by using “finiteness”.
Observation 1.3.6. Suppose X; fori € I are nonempty sets with the discrete topology. Then
for every x; € X;, {x;} is an open set in X;. Consider the product topology for [[,c; Xi.

Note that every x € [[,.; X; is a sequence x = (x; [t € I) with x; € X;. The basic open sets

iel

are of the form

O({(i,a;) i € E}) = {f e [[x

il

f2 A,z lie E}}
for some finite E C I and some x; € X; fori € 1. =

For a tree T', we will define open sets over 7' in a way similar to our definition of open
sets in the product topology, by using “finiteness”. Once we define open sets over [T, we

can naturally define the Borel and projective sets on [T7].

Definition 1.3.7. Suppose T is a tree. Define Finite(T) by
Finite(T) = {q|q is finite AIp € T(q Cp)}
The basic open sets in [T] are the O(q)’s for q € Finite(T) where

O(q) = {h € [T][h 2 q}. B

NN
finite
(possibly @)

(possibly past o)

Figure 1.3.1: Hllustration of ¢ and O(q).
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Proposition 1.3.8. Suppose T is a tree. The set of open sets defined in definition 1.3.7

form a basis for a topology on [T)]. =

1.3.3 Borel hierarchy

Sets are classified in hierarchies according to the complexity. The collection of Borel sets on
a set [T] are the smallest collection containing all open sets and closed under complements
and countable unions. We will denote the class of Borel sets over [T] by B | [T]. Borel sets
are defined by the smallest o-algebra containing all open sets. We will review the definitions

of algebra and o-algebra.

Definition 1.3.9. (Definition of an algebra and o-algebra)

An algebra of sets is a collection S of subsets of a given set S such that
1. Se€S8,
2.ifXeSandY € S then XUY €S,
3. if X € S then S\X € S.

Note that S is also closed under finite intersections. A o-algebra is additionally closed under

countable unions (and countable intersections):

4. If X, €S foralln € w, thenJ ., X, €S. —|

new

Now, we define the Borel sets over a tree [T']. First, we will define the restriction notation

over classes.
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Notation 1.3.10. (Moschovakis, 2009, p. 27)

Suppose X is a space and A is an arbitrary collection sets. Then define A | X by
AT X={ACX|Aec A}.
If the space is clear from the context, we will omit it. -

Definition 1.3.11. (Definition of the Borel sets over [T)])
Suppose T is a tree. A set B C [T] is Borel if it belongs to the smallest o-algebra of subsets
of [T] that contains all open sets of [T]. We will use B | [T] to represent the collection of

Borel sets over [T]. .

We will review the definition of the Borel Hierarchy. The notation of the 3’s, IT's and
A’s were introduced by Addison (1959). For more details, see Moschovakis (2009, p. 48)

and Jech (2003, p. 153).

Definition 1.3.12. (Hierarchy of Borel sets for [T|)(Notation by Addison, 1959)

Suppose T is a tree. For any 1 < a € wy,

SO1[T)= the collection of all open sets on [T},
I1° [T = the collection of all closed sets on [T,

X0 [T]= the collection of all sets A=|J, ,, An,where each A, XTI} T[T for some B,€a,

new

I1° 1 [T|= the collection of all complements of sets in X° [T,

= the collection of all sets A=, .. An,where each AHEE%R T for some ,€q,

new

A [T]=Z3 [[T]NIIL T [T7].

o

Note that

B - UaGM Eg r [T] - UanN Eg‘ r [T] - UanN Hg r [T] - Ua6w1 Hg [ [T}



where ON represents the class of all ordinal numbers.

Proposition 1.3.13. (Martin, 2017 draft, p. 7, Lemma 1.1.1 for X*)
Suppose each collection in Figure 1.3.2 is defined over X“. For any o € wy, we have the

following inclusions.

30 39 30
74 O 7 O 7 C// O <7
Al Aj Ay A Aot
S RS RS 'S < S
[N 119 I
Figure 1.3.2: Diagram of Borel hierarchy for X“. B

To show the diagram above, one needs to show X9 | X* C 39 | X, For a countable X,
one can use separability to get this. However, for even uncountable X, 3% | X« C 39 | X«
holds as shown in Martin (2017 draft).

In Martin (2017 draft), for T = X<, to show X | [T] C X9 | [T], he uses that
O, =L Ip € T Alh(p) = n A [T) € A}

is clopen where

T,={q€eT|lgCpVvplq}.

It is routine to adjust the above argument to get X9 | [T] C X9 | [T] for game trees
of countable height. Thus, the diagram in figure 1.3.2 is true for any tree with countable
height.

In general, one must be careful whether the above diagram holds for other game trees T'.
Dr. Burke communicated that X9 | 29t ¢ 39 | 2** so that the above diagram is false when
T = 25w,
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Assume that T = 2<%, Let
O = {f € [T]|38 € w;y such that f(3) =0}.

Then O € ¥ | [T]. Notice that [T]\O = {f1} where f; : w; — {0,1} is the constant
function f(a) =1 for any o € wy.
We show that O ¢ 39 | [T]. Suppose, for a contradiction, O € 39 | [T]. Then there

exists (Cp|n € w) such that each C,, € II{ | [T] and O = {J,,,, Cn- Then [T\O =, On

new

where each O,, is a complement of C,. Thus each O,, is open. Hence each O,, = Umew B

where each B a basic open neighborhood. Then for each B!, there is ¢/ € Finite(T) such

that B]" = O(q") (see notations for definition 1.3.7). Hence

{ny=mno=_0.=_U o

Thus, for any n € w, there exists m,, such that f; € O (¢™), i.e., fi 2 ¢. Hence each ¢

is a sequence of countable length such that every entry is 1. Define

T W — W
n—wicw(fi €0(q)) *

Then we have

fl < ﬂnew O (qz(n)) g ﬂnew Ume O (qz;n) - new On - [T]\O

Let r = sup dom(q,q(n)). Then r € w; since w; is regular.? Let f € 2t such that f | ris a
necw

sequence with every entry 1 and f(r) = 0. Then for every n € w, f D g™, Thus

fel,,0@™) SITNO = {f}

111 represents “the least”.
2An infinite cardinal « is regular if cofinality of « is a.
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Since f # fi1, this is a contradiction. Hence O ¢ X9 | [T7].

1.3.4 Projective hierarchy

The collection of Borel sets of reals is closed under countable unions and intersections and
closed under complements, but it is not closed under continuous images. The image of a
Borel set by a continuous function need not be a Borel set (Jech, 2003, p. 142).

Beyond the Borel hierarchy, we have the projective hierarchy. The X1 | [T] sets are
obtained from taking projections of a closed subset of [T] x A along the Baire space. The
IT} | [T] sets are the complement of X} | [T] sets. In general, for 1 < n < w, the ¥} |
([T]x N'™) sets are obtained from taking projections of II% | ([T]x N™*1) sets along the Baire
space. In this section, we will review basic definitions associated with projective hierarchy:.

We will denote the class of projective sets over [T] by P [ [T7].

Definition 1.3.14. (Definition of the projection of S along Y )(Moschovakis, 2009, p. 19)

The projection of a set S C X XY along Y (into X ) is the set

Ps={reX|FyeY ((z,y)€95)}. -

X

Projection along Y

Figure 1.3.3: Tllustration of a projection along ).
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Suslin first discovered that there are X} sets which are not Borel. Together with Lusin,
they established most of the basic properties of analytic sets (as cited in Moschovakis, 2009,
p. 2). Projective sets were introduced by Lusin in 1925 and independently by Sierpinski in

1925. (as cited in Moschovakis, 2009, p. 47). See more historic details in Moschovakis (2009,
p. 2, p. 47).
Definition 1.3.15. (Hierarchy of projective sets over [T])(Lusin, 1925 3)

Suppose T is a tree. Define 3} | [T] = X9 | [T] and II} = 119 | [T]. For each n € w and

1 € w, inductively define

2L ([T X NP = the collection of the projections along N of the II} [ ([T] x N 1) sets,
IT) ,, [ ([T]xN*)= the collection of complements of the 3, [ ([T]xN") sets,
AL H(TIX A= [(T) XAV AL, [(T) A7),

Denote that the collection of projective sets over [T] by P | [T]. —|

Thus, for example, for any A C [T], A is X} | [T] if and only if A is the projection of a

closed set of [T] x N along N and the collection of projective sets P [ [T is

_ 1 _ 1
P[T=] = 1= _ I
B [ [T] € A} | [T] is obtained from the following well-known proposition.

Proposition 1.3.16. (Sierpinski, 1928 *)

ST and IIL | [T] are closed under countable unions and countable intersections. -

There is a proof for the cases X1 and II} in Jech (2003, pp. 142-143). See lemma 2.3.22

and lemma 2.5.13 for proofs of proposition 1.3.16.

3as cited in Moschovakis (2009, p. 29).
4as cited in Moschovakis (2009, p. 47).
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Theorem 1.3.17. (Suslin °)
Suppose T is a countable tree. Every X1 | [T] whose complement is also X} | [T is a Borel

set. Thus Al | [T] =B | [T]. =

Definition 1.3.18. (Definition of an open-separated union)(Martin, 1990; Martin, 2017

draft, p.80)

Suppose T is a tree. A C [T] is the open separated union of {B; C [T]|j € J} where each

1. A - Uje] B]
2. there are disjoint open sets D;, j € J such that B; C D; for each j € J -

Definition 1.3.19. (Definition of a quasi-Borel set)(Martin, 1990; Martin, 2017 draft, p.80)
Suppose T is a tree. The quasi-Borel subsets of [T] form the smallest class of subsets of [T

containing all open sets and closed under the operations:

1. complementation

2. countable union

3. open-separated union

We will denote the collection of quasi-Borel sets on [T] by qB [ [T]]. .

By closure under complementation (1) and countable union (2) of quasi-Borel sets, B |

[T C gB | [T] for any tree T.

Sas cited in Jech (2003, p. 145, Theorem 11.10).
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Theorem 1.3.20. (Martin, 1990, p281 Remarks (1))
Suppose T is tree. If T is countable, the quasi-Borel subsets of [T are Borel subsets of [T].

Thus gB | [T] = B | [T] for a countable tree T =

If T is uncountable, not all the quasi-Borel subsets of [T] are Borel. For example, let
T = {{a)"plp € w“ A a € wy}. For each o € wy, fix B, € (ITY | w*) \(X? | w¥). Define
A = {{a)"yly € B,}. Then A is quasi-Borel but not Borel (Martin, 2017 draft, p. 83,

Remark(a)).

Suslin’s theorem 1.3.17 generalizes:

Theorem 1.3.21. (Hansell, 1975 °)

For any tree T, Al | [T] = qB | [T]. -

This is shown in Martin (1990, p. 281, Theorem 1).

1.3.5 Difference hierarchy
The difference kernel was discussed by Hausdorff (as cited in Welch, 1996, p. 1).

Definition 1.3.22. (Definition of the difference kernel)(Hausdorff, 1944 ")

—,

Denote the difference kernel of A = (Ag |8 € «) by dk(A) and define

-,

dk(A) ={x e [T |uB(x ¢ AgV = «) is odd} . .

Definition 1.3.23. Suppose A is a class of subsets of [T] and A is closed under countable

intersections. Suppose o € wy. Define

a-A T [T)={ACT] 3A= (418 € ) (each As €A and A = dk(A)) } 4

6as cited in Martin (1990); Martin (2017 draft, p. 84, Theorem 2.2.3).
"as cited in Welch (1996, p. 1).
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Since A is closed under countable intersections, without loss of generality, we can assume
each Ag O A, for any 3 < 7. Note that
I-A=A
2-A ={AC[T]|3Ap, A1 € A(A = Ap\ A1)}

1-A

3-A = {A - [T] |E|A0, Al; A2 S A(A = AO\ (Al\AQ))}

2-A

4N = {ACT]|3A0, A1, Ay, As € A(A = Ag\ (A;\ (Ax\A3)))}

3-A

In general, for any finite n,

n-A = {A C [T]|3A0, Ar, ...; An1 € A(A = Ag\ (A1 (A2\ (A3\ (- (An2\An1)))))) }

. S

(n:I)—A

A 2-A 3-A 4-A

Figure 1.3.4: Tllustration of difference kernel.

Consider 2-A. Then

Ag \ AL = Ap N(X\A) = (X¥\A) \ (X\A).
~N O~ N — N— N——
AlT]  A[T] AT co-Al[T) co-Al[T] co-A[T]
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Thus

2-A [ [T] = (AAco-A) [ [T] = 2-(co-A) | [T]
where the notation A is defined in notation 1.5.5 on page 43. In particular,
210 | X¥ = (] AIL) | XY =23 | X¥.
This gives us
co-2-II} | X¥ ={AC X¥|X“\Ae2II}} = (S} VIL) | X¥

where notation V is defined in notation 1.5.5 on page 43. We also have ¥} [ X* C 2-I1} | X¥

since for any E € 31 | Xv,

_ w w 17l w
E= XY \(X“\E)c2II} | X*.

XY ol
The following classes are also well-known and are presented in Martin (2017 draft). Note

that Martin (2017 draft) does not include Chapter 5. The page numbers listed below under

Chapter 5 are from an older draft.
Definition 1.3.24. (Martin, 2017 draft, p. 24, Chapter 5, p. 203)
. 1 _ 1

Diff (I1} | [7]) = Ua@l a-I1} | [T .
Definition 1.3.25. (Martin, 2017 draft, p.275, Chapter 5 Section 5.4)
Define X9 (I1}) to be the collection of all countable unions of Boolean combinations of sets
belonging to T} sets. -
Lemma 1.3.26. (Martin, 2017 draft, p. 276, Chapter 5 Lemma 5.4.1)
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Suppose T is a tree and let A C [T]. Then A € X9 (I1}) | [T] if and only if A is a countable

union of differences of 1} sets. -
Thus for any v < 3, we have

v—1II; | [T] C g —1I; | [T] C Diff (I1; | [T]) € X9 (IL3) | [T].
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1.4 Well-known determinacy results

In this section, we will list some well-known determinacy results. In section 1.4.1, we will list
some well-known determinacy results from ZFC. In section 1.4.2, we will list some well-known
determinacy results from large cardinal properties. The list of well-known determinacy

results are also on page 367 Appendix D.
Definition 1.4.1. (Azioms of Zermelo-Fraenkel (ZF) and ZFC)(Jech, 2003)

1. Aziom of Extensionality.

If X and'Y have the same elements, then X =Y.

2. Aziom of Pairing.

For any a and b, there exists a set {a,b} that contains exactly a and b.

3. Aziom Schema of Separation (Comprehension).
If P is a property (with parameter p), then for any X and p, there exists a set Y =

{u € X|P(u,p)} that contains all those u € X that have property P.

4. Axiom of Union.

For any X, there ezists a set Y = |J X, the union of all elements of X.

5. Aziom of Power Set.

For any X, there exists a set Y = p(X), the set of all subsets of X.

6. Axiom of Infinity.

There exists an infinite set.
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7. Axiom Schema of Replacement.

If a class F is a function, then for any X there ezists a setY = F(X) = {F(z)|xr € X}.

8. Aziom of Regularity (Foundation).

Every nonempty set has an €-minimal element.

9. Axiom of Choice.

Every family of nonempty sets has a choice function.

The theory with axioms 1-8 is the Zermelo-Fraenkel aziomatic set theory ZF; ZFC denotes
the theory ZF with the Aziom of choice; ZF-P denotes the theory with ZF without the Power

_|
Set Axiom.

1.4.1 Determinacy results from ZFC

Theorem 1.4.2 through theorem 1.4.9 are theorems of ZFC.

Theorem 1.4.2. (Gale and Stewart, 1953)

Suppose T is a tree. If T is well-founded, then for any A C [T], G(A;T) is determined.

Theorem 1.4.3. (AC)(Gale and Stewart, 1953)(as cited in Moschovakis, 2009, p. 222,
6A.6)

There exists A C w® such that G(A;w<¥) is not determined. .

Definition 1.4.4. (Definition of an open game)
Suppose T is a tree. Suppose A C [T]. If A is an open set, we call G(A;T) is called an open

game. Similarly for the other complexities. -
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Notation 1.4.5. Suppose T is a tree. We denote all open games on T" are determined by
Det(X9 | [T]). In this case, we say X9 determinacy on T holds. Similarly for the other

complexities. .

Theorem 1.4.6. (Gale and Stewart, 1953)

Suppose T = X< for some nonempty X. Then Det(X | [T]) and Det(I1§ | [T}). =

Theorem 1.4.7. (Wolfe, 1955)

Suppose T = X=¥ for some nonempty X. Then Det(X9 | [T]). =

Theorem 1.4.8. (Martin, 1975; Martin, 1990)

Suppose T = X< for some nonempty X. Then Det(B | [T)). =

Theorem 1.4.9. (Martin, 1990)

Suppose T'= X <% for some nonempty X. Then Det(gB [ [T1). .

1.4.2 Determinacy results from large cardinals

An uncountable cardinal x is a measurable cardinal if there is a k-complete nonprincipal
ultrafilter on k. We will review definitions of filters related to the definition of a measurable

cardinal.

Definition 1.4.10. (Definitions of a filter, a principal filter, an ultrafilter and a k-complete

filter)

A filter on a nonempty set S is a collection F of subsets of S such that

1. SeF and ) #F,
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2.if X € FandY € F, then XNY € F,
3. X, Y CS, XeFand X CY, thenY € F.

Let Xy be a nonempty subset of S. The filter FF = {X C S|X D X} is a principal filter.
A filter U on S is an ultrafilter if for every X C S, either X € U or S\X € U.
If K is a regular uncountable cardinal and F' is a filter on S, then F is called k-complete

if F is closed under intersection of less than k sets, i.e., for any {X, € Fla € v} with v € &,

Nac, Xa € F. .

Definition 1.4.11. (Definition of a measurable cardinal)
An uncountable cardinal k is measurable if there is a k-complete nonprincipal ultrafilter U

on K. -

1.4.2.1 List of results related to the existence of measurable cardinals

The following are results obtained from the existence of a measurable cardinal.

Theorem 1.4.12. (Martin, 1970)

If there is a measurable cardinal, then Det(I1] | w®). .

Theorem 1.4.13. (Martin, 1970)(as cited in Martin, 2017 draft, p.187, Theorem 4.1.6)
Let T be a game tree. Assume there is a measurable cardinal larger than |T|. Then Det(I1} |

[T7). a

Theorem 1.4.14. (Martin, 1990, p. 287, Theorem 3)

If there is a measurable cardinal, then Det(w*-I1] | w*). -
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Martin proved the above result in 1970’s. In the 1980’s he proved the following general-

ization which uses quasi-Borel determinacy.

Theorem 1.4.15. (Martin, 1990, p. 292, Theorem 4)

If there is a measurable cardinal, then Det A((w? + 1)-TI1 | w®). -

Theorem 1.4.16. (Martin, 2017 draft, p.241, Chapter 5 Theorem 5.2.32)
Let a be a countable ordinal and T = X<%. If the class of measurable cardinals greater than

|T| has order type > «, then Det A((w? - + 1)-I1E | [T]). =
Martin’s student John Simms proved the following in his dissertation.

Theorem 1.4.17. (Simms 1979 8)
Let T = X<%. If there is a measurable limit of measurable cardinals that is larger than |T|,

then Det(X°(I1}) | [T7). 2

1.4.2.2 Projective Determinacy

In general, to obtain each level of projective determinacy Det(II},,, [ w*), we will need the
existence of n Woodin cardinals. We will review the definition of an elementary embedding

and define a Woodin cardinal.

Definition 1.4.18. (Definition of an elementary embedding and a critical point)
Suppose M = (M, E) and N = (N, F) are models of set theory. An elementary embedding
of M into N is a function j : M — N such that for any formula ¢ (v1, ..., v,) of the language

of set theory and for any ay,...,a, € M,

8as cited in Martin (2017 draft, p. 281, Chapter 5 Theorem 5.4.5).
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ME play,..;a,)) N E@lj(ar),...,j(a,)]

Suppose M and N are both transitive and j : M — N is an elementary embedding. Then

an ordinal k € M 1is the critical point if k is the least such that j(k) # k. -

If o is an ordinal, then j(«) is an ordinal and if o < 3, then j(«) < j(f) so that o < j(«).
Thus we can replace j(k) # k by j(k) > k. Also, for any n € w, j(n) = n and thus j(w) = w.

Hence k > w.

Theorem 1.4.19. (Jech, 2003, p. 287)
If there exists a measurable cardinal, then there exists a nontrivial elementary embedding of
the universe. Conwversely, if 7 : V. — M 1is a nontrivial elementary embedding, then there

exists a measurable cardinal. =

Definition 1.4.20. (Definition of the cumulative hierarchy V,, of sets )

Inductively, for each ordinal o, define a set V,, by :

1. %:Q)J

2. Va+1 = p(Va),

3. Vi = Uy Vo if X is a limit ordinal.

Define the class V =], con Va- -

Definition 1.4.21. (Definition of a Woodin cardinal)

A cardinal § is a Woodin cardinal if for all A C Vs there are arbitrary large k < & such that
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for all A < § there exists an elementary embedding j : V' — M with critical point k such that

j(H)>)\, V)\gMandAﬂV,\:j(A)ﬂV)\. =

Each level of projective determinacy Det(IT},,; [ w*) is obtained from the existence of a

measurable cardinal above n Woodin cardinals.

Theorem 1.4.22. (Martin and Steel, 1985)
Forn € w, if there exist n Woodin cardinals with a measurable cardinal above them, then

Det(IT}, ,; [ w®). =

Projective determinacy Det(P | w®) is obtained from the existence of infinitely many

Woodin cardinals.

Theorem 1.4.23. (Martin and Steel, 1985)

Suppose there are infinitely many Woodin cardinals. Then Det(P | w®). -
1.4.2.3 Lightface results related to the existence of 0%

We will observe theorems of difference hierarchy of lightface version. Recall that definition

of T} is obtained from a recursive relation.
We will review the definition of 0#. The theory of 0% is provided in Jech (2003, p. 313,

chapter 18). First, we will review the definition of Gédel’s constructible universe L.

Definition 1.4.24. (Definition of the Gédel’s constructible universe L)(Martin, 2017 draft)

Godel’s constructible universe L and hierarchy of constructible sets are defined as follows:

1. Ly=10
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2. Lo 1s the collection of all subsets of L, that are first order definable over L, from
elements of L. In other words, a set x belongs to L1 if and only if there is a formula

©(vg, ..., v,) of the language of set theory and there are elements yi, ..., Yn of Lo such

that
2= {Yo € La|(La; €) F @ [Yo, Y1, Yn] } -
3. If a is a limit ordinal, then Lo =Jg_, Lg-

4' L= UaEON La' =

By Gdodel, L is a transitive class model of ZFC (as cited in Martin, 2017 draft; Kunen,

2006). See Kunen (2006) for details.

We will review the definition of a class of indiscernibles.

Definition 1.4.25. (Definition of a class of indiscernibles)(Martin, 2017 draft)

A class U is a class of indiscernibles for a transitive class M if
1. UCONNM;

2 ifa; < < ay and By < -+ < B, are elements of U and p(vq,...,v,) is a formula of

the language of set theory, then

ME ¢lag,....a,) < ME @[B, ..., B 4
We will review the definition of 0%.

Definition 1.4.26. (Definition of 0% )(Martin, 2017 draft)

Fiz some recursive bijection ¢ — ny, from the set of formulas of the language of set theory
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whose free variables are among vy, vy, .. to the set w. If there is a closed unbounded subset C'

of wy such that C is a set of indiscernibles for Ly, , then 0% is

where oy < --- < oy, are elements of C. In such case, we say that 07 exists. -
It is well-known that if a measurable cardinal exists, then 0% exists (Martin, 2017 draft,

p. 173, Corollary 3.4.9).

1.4.2.4 List of results related to the existence of 0%

Initially, Martin proved the following lightface result of theorem 1.4.12 with a weaker hy-

pothesis than an existence of a measurable cardinal.
Theorem 1.4.27. (Martin, 1970; Martin, 2017 draft, p.2.9, Theorem 4.4.3)

If 0% emists, then Det(I1} | w®). .

Theorem 1.4.28. (Friedman, 1971 °)

If 0% emists, then Det(3-I1} | w*). 2

Theorem 1.4.29. (Martin, early 1970’s '°)

If 07 exists, then Det(Uge,e B-T7 [ w®). -

Theorem 1.4.30. (Martin, 1975)

Det(3-113 | w®) implies 0% exists. =

9as cited in DuBose (1990, p. 504).
045 cited in DuBose (1990, p. 512).

35



Theorem 1.4.31. (Harrington, 1978 '*)

Det(II} | w®) implies 0% exists. =
All together, we have the following.

Theorem 1.4.32. (Martin and Harrington)

Det(IT} | w*) if and only if 0% exists if and only if Det(Use,2 G111 | w®). =

Martin commented that no direct proof of Det(IT} [ w*) if and only if Det({ge,. 6-111 |
w*) is known witout going through the existence of 0% (Martin, 2017 draft, p. 253, Chapter
5 Remark (a)). One can find more details regarding to these theorems in DuBose (1990, p.

512) and Martin (2017 draft, p. 253, under Remarks after Chapter 5 theorem 5.3.10).

Has cited in DuBose (1990, p. 512); Martin (2017 draft, p. 209).
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Large cardinal properties

3 infinitely many Woodin cardinals =eP [ X¥  Martin-Steel [1985]

3 a measurable cardinal above n Woodin cardinals =

3 a measurable limit of measurable cardinals =

3 a measurable cardinal :>{

ZFC =

IT! | X* Martin-Steel [1985]

INED.C
SUIL) | w® Simms [1979]

A((w? 4+ 1)-II} | w*) Martin [1990]
W1} | w¥ Martin [1970’s]
Il | X« Martin [1970]

B | X¥  Martin [1975]

301 X“  Wolfe [1955]
91 X¢  Gale and Stewart [1953]

Figure 1.4.1: Tllustration of well-known boldface determinacy results. The "Det” before each

class is suppressed /excluded.

In the above Figure 1.4.1, A = B abbreviates A implies the determinacy of B. Similarly,

/

B

A=< (¢

D

\

abbreviates A implies the determinacy of the classes listed, i.e., A implies the determinacy

of B, A implies the determinacy of C'; and A implies the determinacy of D.
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1.5 Introduction to this dissertation

In this dissertation, we will focus on a certain type of “long trees”. Typically, these trees
will have height greater than w. Our goal to this dissertation is to classify determinacy
involving certain long games. Also, we will work on determinacy comparison in a different
way as usual determinacy comparison. In section 1.5.2, we will explain the difference. The
big picture for some of the determinacy results in this dissertation is shown in Appendix A

on page 355.

1.5.1 Motivation to study long trees

As we have seen in section 1.4, games on trees w<* and X <“ for a nonempty X, have been
extensively studied. Every path in the trees X<“ has length w. Next, we will consider trees
with height greater than w.

First, let’s consider two contrasting examples about open games.

Proposition 1.5.1. ZF-P(folklore)

Suppose n € w. Then for odd n such that 1 <n < w,
Det (29 | w¥) < Det (29 | w™71).
(See more details in theorem 2.4.5). .

Thus in ZF, we have determinacy of open games for the tree w*™ ! for any odd n € w

by theorem 1.4.8.

For our contrasting example, consider A C w* such that G (A;w<*) is not determined.
Such a set A exists by theorem 1.4.3. By theorem 1.4.8, this A is not Borel. Define a tree T’

38



as follows.

hew' ifhlwéA,
hell) <

hew™ ifhlwe A

Then ht(T) = w + 1. Define B = {h € [T]|lh(h) =w + 1}. We can see that B € X9 | [T]
since

B = O ((w,n)).

new

Suppose G (B;T) is determined. Then there is a winning strategy s* for player I* or player
II* for G(B;T). If s* is player I*’s winning strategy for G (B;T), then define s = s* [ w<*.
Then any play f according to s is according to s* and playing one more move (a) according
to s* gives us that f~(a) € B. Thus f € A so s is a winning strategy for player I for
G (A;w=v). If s* is player I1*’s winning strategy for G (B;T), then define s = s*. Then any
play f according to s is according to s*. Thus f € [T]\B. Hence f ¢ A so s is a winning
strategy for player I for G (A;w<¥). Thus G (4;w<¥) is determined, a contradiction. Hence
G (B;T) is not determined.

Therefore, there is an open nondetermined game on a long tree (just one more move
is added to some plays in w<*). Note that above game has variable length. Thus we can
conclude that there is a long tree T such that Det(2? | [T1]) fails and such T is above. Hence

we have the following proposition.

Proposition 1.5.2. There ezists a game tree T with ht(T) = w + 1 such that

~Det (29 [ [T]). .

A natural project is to characterize such long T for which open determinacy holds (or
fails). The trees that we will be considering will have variable length as in example above. We
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will calibrate the determinacy strength on these trees, by trying to obtain such determinacy
that is equivalent to well-known determinacy results (as founded in section 1.4).

In this dissertation, we will define two types of trees, Type 1 trees and Type 2 trees. Type
1 trees are special case of Type 2 trees and the tree mentioned above is a special case of a
Type 1 tree. Each play in these trees possibly has variable length. We will determine which
games are determined on these long trees by comparing determinacy of games on these long
trees and determinacy of games on the usual tree X <“. In order to talk about determinacy

of games on long trees, we will introduce some new concepts.

1.5.2 Difference from usual determinacy results

Each of determinacy results in section 1.4 refer to determinacy results on a fixed tree. Often
we consider determinacy of games on a fixed a tree T. For example, Det(X¢ | [T]) refers to
any open set A C [T], G(A;T) is determined. Thus every game in {G (A;T)|A € X9 | [T]}
is determined for a fixed tree T

When we compare determinacy, often we are comparing the determinacy of certain games
on a fixed game tree T to determinacy of certain games on a fixed game tree T, (possibly

T, = T5). For example, we have
Det (29 | w*) < Det (A} | w*™)

for any n € w. For Det (X2 | w*), we are considering the tree w<* and for Det (A | w*™™),
we are considering the tree w=<“+".

In this dissertation, instead of fixing one tree and considering certain games on the one

fixed tree, we will consider collections of trees, a Tree; collection (respectively, a Tree;
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collection), corresponding to Type 1 trees (respectively, Type 2 trees). Then for each tree T
in a Tree collection and A C [T, we have the game G(A;T). Thus when we say “games on

a T'ree collection”, we mean

U {(GmAacny.

TeTree

Similar to how we defines open games on a fixed tree T', we will define open games on a T'ree

collection. When we say “open games on a T'ree collection”, we mean

U {G@n)|ae =) (1]}

TeTree

As a notation, we use G for games on a Tree collection. We will denote open games on a

Tree collection by

G(E%Tree) = | J {G(AT)|Ae=] (1]}

TeTree

Similarly, we shall define other complexities of games on a Tree collection. With respect
to determinacy, we usually write Det(X? | [T]) for ¢ determinacy on the game tree T.
Similarly, 3¢ determinacy on a Tree collection will be expressed by Det G(X9; Tree). See

definition 2.2.7 and definition 3.2.10 for precise definition.

1.5.3 Notations for this dissertation

We will define notations particular to this dissertation. Some of the notations that we will
see often in this dissertation are listed in Appendix B : List of Symbols (page 359). Notations
and definitions are also listed on page 371 Appendix E.

Consider the game tree X=“"" We shall identify the body of the tree [X<¢+"] = X« +n
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with the product X* x X™. Let z = (x¢,x1,...) € X¥ and g = (g0, 91, -+, gn—1) € X"™. Then

xﬁg = <IO’I17'“7907917"'7.971—1) S Xw—‘r'n,'

Thus we can think X=" as a “tail tree” and games on X=<“*" as games on X <“ composed
with “tail games”, i.e., games on X =". Using the idea of a tail game, we will apply the cross

product notation with X" being replaced by arbitrary tail games.

Notation 1.5.3. (Abuse of product notation)

Suppose T, Ty, Ty are trees and satisfies the following properties.

1. every path of [Th] has length « for a fized a,

2. for any (f,g) € [I] x [T2], fg € [T] and

3. forany h € [T], (h | a,h | [a,lR(h))) € [T1] x [T3].

Then to simplify notation, we abuse the cross product notation and express

[T] =[] x [13].

Caution :
We will use the actual cross product in some places. Readers should identify them from

the context. =

Notation 1.5.4. (Abuse of inverse image notation)
Suppose f is a function from A to B. If b € B is a singleton, we suppress {} for f~1({b}),

i.e., we write f~1(b) to mean f~1({b}). =
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Notation 1.5.5. Define
(ANE) [T ={A|3Be A [T|3C €= [T](A=BnC)}.
Similarly, define

(AVE)[[T]={ABBeA[[T)3C €= [[T](A=BUC)}. 4

Notation 1.5.6. Define

Define

Definition 1.5.7. f: X — X, is A-measurable if for any open O C Xy, f~1(0) € A | X,

Notation 1.5.8. Define I' (Y, A) = {V : X* = Y |V is A-measurable}.

Note that X0-measurable is continuous. -

Observation 1.5.9. Suppose = is any complexity. Then

['w,E) =T (w,A(E)) =T'(w, co-Z).
In particular, for any v € wy and n € w, N'w, X)) = T'(w, AY) = T'(w, 1)) and I'(w, X,) =
['(w,Al) =T(w,II}). =

Proof.
Show I'(w, =) C I'(w, A(Z)). Suppose ¥ € I'(w,Z). Then ¥ is a function from X*“ into w
such that for every open set O C w, ¥"}(0) € = | X¥. Fix O € X? | X“. Since we are
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using the discrete topology on w, O = (J,,co {n} and each singleton {n} is clopen. Consider
w\O = U,eo {7} Then w\O is open. Thus ¥~ (w\O) € Z [ X, Since ¥~ (w\O) =
XN\T1(0), U1 (0) € coE | X¥. Thus U1 (0) € E | X*NeoE | X¥ = A(Z) | X¥.
Therefore, ¥ € I'(w, A(Z)). Since I'(w, A(Z)) C I'(w, =), we have I'(w, A(F)) = I'(w, 2).

Similarly, we have I'(w, A(Z)) = I'(w, co-Z). O

Notation 1.5.10. Let FIN be the collection of nonempty finite sets and CTB be the col-

lection of nonempty countable sets. -

Notation 1.5.11. Let WF be the set of nonempty well-founded trees. Let CWF C WF
be the set of nonempty well founded trees such that each move is from some countable set.
Similarly, let FWEF C CWF be the set of nonempty well-founded trees such that each move

is from some finite set. -
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Chapter 2

Type 1 Tree : T)\Ié’g

In this chapter, we will consider games on a certain type of long trees, called a “Type 1
tree”.

In section 2.1, we will define a “Type 17 tree. Paths of a Type 1 tree typically will have
variable lengths. Some paths will have length w while other paths will have length greater
than w and less than w + w. The first w-moves of each play will come from a nonempty set
X. Any move made at a position of infinite length will come from a nonempty set Y. Note
that Y could be just X. The length of each play will be determined by a function ¥ and a
subset B of X“. B will be used to determine whether any play ends at length w. If a play
doesn’t end at length w, we will use the function ¥ to decide the length of the play. We will
also provide a separate characterization of Type 1 trees called (X,Y)-TEP-lw,w + w) (TEP
is an abbreviation for “tail exchange property”).

In section 2.2, we will define a certain collection of Type 1 trees, called a “T'ree; collec-
tion”. Each Tree; collection will have four parameters, a fixed nonempty set X, a collection

of nonempty sets Y, a collection of functions and a collection of subsets of X“. Then, we will
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use standard complexities on trees (29 | [T, II} | [T]) as in section 1.3 to define complexities
on each Tree; collection. (Recall section 1.5.2.)

In sections 2.3 through 2.6, we will observe the determinacy strength on games on T'ree;
collections. In section 2.3, by shifting, we will compare the determinacy of X2 (respectively,
31) games on a particular Tree; collection and TI? (respectively, IT!) games on the same
Tree; collection, for @ € wy and n € w. In sections 2.4 through 2.6, we will compare the
determinacy strength of games on a certain Tree; collection and standard determinacy of

games on X <¥:

e In section 2.4, we will use the determinacy of a fixed complexity of games on a certain

Tree, collection to obtain the determinacy of a certain complexity of games on X <“.

e In section 2.5, we will obtain the determinacy of Borel and projective games on par-
ticular T'ree; collections from the determinacy of a fixed complexity of games on X <“.

Some of these results will be converses to results in section 2.4.

e In section 2.6, we will conclude this chapter with the resulting determinacy equivalences
from the earlier determinacy results between games on X <“ and games on a T'ree;

collection.

Lastly, in section 2.7, we will generalize a Type 1 tree to an a-Type 1 tree for a limit

ordinal «.
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2.1 Definition of a Type 1 tree

In this section, we will give a definition of a Type 1 tree. We will also provide a separate
characterization of Type 1 trees called (X,Y)-TEP-[w,w + w) (TEP is an abbreviation for
“tail exchange property”). Throughout this chapter, we will assume the following notation

2.1.1.

Notation 2.1.1. We will assume the following notational conventions throughout chapter

2:
e X andY will always denote nonempty sets.
o B will always denote a subset of X¥.

o U will always denote a function from X* into w.

Definition 2.1.2. (Definition of a Type 1 tree)
Suppose X and 'Y are nonempty sets. Let B be a subset of X and let ¥ be a function from
XY into w. For any h € X¥ X Y<¥ define [T)\?f] by :
h e X% ifhlwé¢ B,
he [T}?ﬂ o
heX¥x YY)+t 4t h | we B.
A tree T is a Type 1 tree if and only if T = ng;{f for some nonempty sets X and Y, a
function U from X* into w and a subset B of X*. (Possibly X =Y and also B could be the
empty set.) =
As in definition 2.1.2, fix X,Y, a function ¥ from X“ to w and B C X*. Then for any
he b,
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l.h=h|we€ X“\B,orh | wé& Band h [ [w,lh(h)) € YYP+ 1 We will call
h | [w,lh(R)), the “tail of h”. Hence the tail of A is in YY*“)+1 Thus [h(h) = w if

and only if h € X“\B, lh(h) > w if and only if h € B.

2. If Ih(h) > w, then the length of h is determined by W and h [ w. The length of h is
w+¥(h | w)+1. Thus, the length of a long play h depends on which ¥~!(n) contains

h as an element.?

Therefore, [T;f] = Upeo (BNTUT () x YU (X¥\B). * In particular, when B = 0),

[T)\??/] — X% and when B = X* and ¥ is a constant function at n € w, then [Tyy | =

Xv x Yyl
Case | : hfwogB | Y J tail of &
h=hlw h l
Case 2 : hlweB | J
|
hlw

‘P(h[a))+1—moves

Figure 2.1.1: Tllustration of paths h € [T] for a Type 1 tree T' = T)\f”f for B # ().
Next, we provide an alternate description of Type 2 trees. In definition 2.1.3 below, we
will define a property “(X,Y)-TEP-|w,w + w) property” for a tree T.

Definition 2.1.3. (Definition of the (X,Y)-TEP-|w,w + w) property)

Suppose X and Y are nonempty sets. Let T be a tree. T satisfies (X,Y)-TEP-lw,w + w)

11 is added to make sure that the plays with length w are exactly the ones that are not in B (e.g., if
hlwe Band ¥(h |w)=0, then lh(h) =w +1).

2Recall notation 1.5.4. Abuse of notation : we suppress {} for ¥=1({n}), i.e., we write ¥~!(n) to mean
U~1({n}). ¥=1(n) does not mean the inverse image of {0,1,...,n — 1} here.

3Recall notation 1.5.3: abuse of product notation. The dot “” above the union symbol represents the
disjoint union.
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property if for all y € [T, y satisfies the following four properties:
1. ylweXY.
2. lh(y) € [w,w+w).
3. If lh (y) > w, then each move of the tail of h is from Y .
4. Iflh (y) > w, then there exists a unique n € w\ {0} such that
VgeY" (ylw) gel[T] (tail exchange property) 4

TEP abbreviates the “tail exchange property”. For any nonempty sets X,Y, a function

V: XY —>wand BC X%, T)\I(/”B satisfies (X,Y)-TEP-[w,w + w) property.

Observation 2.1.4. Every Type 1 tree satisfies (X,Y)-TEP-lw,w + w) property. Con-
versely, for any (X,Y)-TEP-[w,w + w) tree T', there exist ¥ : X* — w and a unique B C X¥

such that T = T)‘?,’{f. In fact, B={h [w|h € [T]ANlh(h) >w} and V | B is unique. .
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2.2 Definition of a Tree; collection and a collection of

games on a Tree; collection with complexity =

In this section, we will first define a Tree; collection of Type 1 trees. Then we will de-
fine games on a Tree; collection. We will be considering a collection of trees T)\g”f in
which Y varies over ©, ¥ varies over I' and B varies over A, while X is fixed. Thus,
each Tree; collection will be defined from X,0,I" and A. We will denote a Tree; collec-
tion by Tree; (X,0,T,A) constructed from some X,0,T" and A. Throughout the rest of
this chapter, we will assume notation 2.2.1 below. Then, in definition 2.2.7, we will define
games on a Tree; collection with complexity = (e.g., X9, X9, ...). We will also make some

observations concerning T'ree; collections and games on T'ree; collections.

Notation 2.2.1. We will assume the following notation throughout the chapter 2:

e O, respectively, ©; will always denote a nonempty collection of nonempty sets.

o ', respectively, I'; will always denote a nonempty collection of functions from X“ into

o A, respectively, A; will always denote a nonempty collection of subsets of X“.
We next define a collection of Type 1 trees constructed from X, ©,I" and A.
Definition 2.2.2. (Definition of a Treey collection)

Fiz a nonempty set X. Let © # () be any collection of nonempty sets. Suppose A # 0 is any

collection of subsets of X¥ and I" # () is a collection of functions from X“ to w. Define

Tree, (X,0,T,A) = {ng;f Y €0,0el,B e A} .
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A collection is a Treey collection if and only if it is Tree;(X,0,T,A) for some nonempty
set X, a nonempty collection © of Y’s, a nonempty collection I' of functions from X% into
w and a nonempty collection A of subsets of X“.

We sometimes let Ty be a Treey collection when we wish to suppress X,0,I" and A, i.e.,

Ti =Tree, (X,0,I'A). =

For example, Tree; (X,0,T(w, AY), I | X*) 4 is a collection of trees such that each tree

is constructed by a set Y € O, a continuous function ¥ from X* into w and B € II{ | X¥.

Notation 2.2.3. When dealing with singletons for any of the last three components of
Treey (X,0,1,A), we will suppress {}, i.e., if © is a singleton {Y'}, Treey (X,Y,I',A) abbre-
viates Treey (X, {Y},I,A). Similarly, if I is a singleton {f}, Tree, (X, 0, f,A) abbreviates
Treey (X,0,{f},Nand if A is a singleton {B}, Tree; (X,0,T', B) abbreviates Tree;(X,

o,T,{B}). §

Observation 2.2.4. Fiz a nonempty set X. Suppose ©,01,0, are collections of sets;
[Ty, Ty are collections of functions from X into w; and A, Ay, Ay are collections of subsets

of X¥. If ©1 C O, then

Tree, (X,01,T,A) C Tree; (X,0,,T,A).

Similarly, if I'y C 'y, then

Tree, (X,0,T'1,A) C Tree; (X,0,I5,A),

and if Ay C Ay, then

TT'€€1 (X, 6, F, Al) g TT€€1 (X, @, F, AQ) .

4Recall for notation 1.5.8, T'(w, AY) is a set of continuous functions from X* into w.
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Thus Treey is an increasing operation on last three components. -

Now we will consider the set of functions I'(w, Z) for some complexity = over X“. Since
we are using the discrete topology on w, we have I'(w, Z) = I'(w, co-Z2) = I'(w, A(Z)) by
observation 1.5.9 on page 43. Thus we have observation 2.2.5. (Recall that for example, if

= is 309, then co-Z is IT) and A(Z) is AY.)
Observation 2.2.5. Let © be a collection of sets and A C X¥. Suppose we have = such
that Z | X¥ is defined (e.g., 3°,T1° 33! TI! ). Then the following are equal.

o Tree; (X,0,I'(w, =), A)

o Tree; (X,0,I'(w,co-E),A)

o Tree; (X,0,I'(w,A(Z)),A) -

Now, we consider games on a Tree; collection. Corresponding to each tree 71" in a Tree;

collection and A C [T], we have the game G(A;T).

Definition 2.2.6. (Definition of “games on a Treey collection”)
Let Treey collection Ty = Tree1(X,0,T,A) for some X,0,T" and A. Define “games on the

Treey collection T1” by

U {Gm)ac 4

TeTh

If = is a complexity, we define = games on a Tree; collection as follows.

Definition 2.2.7. (Definition of = games on a Treey collection)

Let Treey collection T = Tree (X,0,I,A). Suppose we have = such that for each T €
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Treey, = | [T] C o ([T]) is defined (e.g., X2, 11, 3L TI ). Define = games on a Tree;
collection Ty by

G(ET)=J{eUn)|AcE (T}

TeT

As a notation, we will use G for a collection of games on a Tree; collection. -

For example, open games on a T'ree; collection T; = Tree; (X, 0,1, A) is

6L = J {eunm)|Aex) 1]}

TeT

Though often Z will be a standard classes (e.g., X9 TI2, 3! TI!), note that G(Z;T) is

defined as long as we have defined = | [T] C p ([T7]).

Definition 2.2.8. (Definition of = determinacy on a Treey collection)

Let Treey collection Ty = Tree1(X,0,T,A). Suppose we have = such that for each T € Ty,
E | [T) C o([T)) is defined (e.g., X2, T2, LTI ). Define = determinacy on the Tree
collection Ty by

Det G(Z;Th),
i.e., for any T € Ty and A € Z | [T, every game G(A;T) is determined. =

Next, we will make three observations about games on Type 1 trees.

Observation 2.2.9. Suppose X is a nonempty set, © is a collection of sets, I" is a collection
of functions from X“ into w, A is a collection of subsets of X¥. Let Ty = Tree;(X,0,I, A).
Suppose we have =1, =y such that for each T € Ty, Z1 | [T] C o ([T]) and Z2 | [T] C o ([T])

are defined (e.g., O, T2, LTI ). If for any T € T1, =, | [T] C 2y | [T], then

G(E,;T) CG(ELT).
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Thus G is an increasing operation on the first component. -

Since the three T'ree; collections in observation 2.2.5 are equal, we have the following

observation.

Observation 2.2.10. Let © be a collection of sets and A C X*“. Suppose we have = such
that = | X% C p(X%) is defined (e.g., X2, T1°, B! TI! ). Suppose we have =, such that for

eachT € Tree; (X,0,T(w,=),A), 2, | [T] C o ([T]) is defined (e.g., 0,112, 3L T1L). Then

«

the following are equal.

° g (Ela TT6€1 (Xa @7 F(wa E)) A))

e G(=;Tree; (X,0,T(w, co-2),A))

o G(21;Tree; (X,0,T(w, A(Z)),A)) B
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2.3 Equivalence between X' and IT determinacy on a
Tree; collection and equivalence between X! and

IT! determinacy on a Tree; collection

In this section, for a countable a, we will show that the determinacy of XY and I1° games on
certain Tree; collections of Type 1 trees are equivalent. We will also obtain the determinacy
equivalence of X! and II! games on certain Tree; collections for a finite n. The main

theorem of this section is theorem 2.3.1.
Theorem 2.3.1. Suppose a € wy and n € w. Then for any X and O,
Det G (22;T1) < Det G (I1; T1) (2.1)
Det G (2,;T1) < Det G (I1,;; 1) (2.2)
for T = Tree; (X,0,T(w,C), B | X¥) ® where:
o Cc{X0,1I),AY B, X} II, A, 3 AL P}, v €w and m € w.
e B e {EO,H%,A%,B,E}YL,H#L,A%,E}TL AL P}, B € w and m € w. -
We will prove this theorem on page 80.

For each Type 1 tree T, we will define a corresponding “Shift tree” S ft(T') in definition
2.3.3. Then in definition 2.3.7, we will define a function “Shift” which takes a subset of [T
for a Type 1 tree T to a particular subset of [Sft(T")]. In lemma 2.3.9 and lemma 2.3.15, we

will find the complexity of Shift(A) for A being Borel (respectively, a projective set) on [7]

Recall notation 1.5.8 for I'(w,C).
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for Type 1 trees in a specific Tree; collection. For each Type 1 tree, there is a natural Shift
tree which is also a Type 1 tree. In order to define a Shift tree for each Type 1 tree T' = T)\I(j”f ,
we define BT and U™ from B C X% and a function ¥ from X“ into w which satisfy “shift”
relation. BT corresponds to adding a “dummy” copy of X to the front of B: for any a € X,
(a)~f € BT if and only if f € B. Hence there is a “shift” relation between B and B*. ¥+
is a function on X“ into w and for any f € X“ and for any a € X, UF((a)"f) = U(f) + 1.

Hence there is a “shift” relation between ¥ and U.

Definition 2.3.2. (Definition of B™ and ¥*)

Fiz a Type 1 tree T;’g. Then B C X* and ¥ : X* = w. Define
1. BF=XxBCXv, 6
2. Ut XY = w such that O (f) =¥(f | [1,w)) + 1. .
By using BT and ¥, we will define a Shift tree as follows.

Definition 2.3.3. (Definition of a Shift tree Sft(T))

Fix a Type 1 tree T = T;?:g. Define a Shift tree Sft(T) by

SFHT) =Ty .

6Recall abuse of notation 1.5.3 on page 42.
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he [T hilw h T w,lh(h))
helSfuT)| = hilw Yy || hllwlh(h))
any x € X any y € Y

Figure 2.3.1: Tllustration of h € [Sft(T)] with lh(h) > w.

Observation 2.3.4. For any Type 1 tree T = T)‘?’f, B =10 if and only if T = Sft(T).

Proof.
Notice that B = () if and only if BT = ().

(=) For any Type 1 tree T' = T)\I(l”f with B=0, T = X< = Sft(T).

(<) Suppose T'= Sft(T). Show B = Bt = ().

First, show B = B*. Suppose B # B* for a contradiction. Then there exists f € B\B*
or f € BT\B. Suppose f € B\B". Pick an arbitrary h € [T] such that h | w = f. Since
h|w=fe€ B,lh(h) > w. By assumption, we have T' = S ft(T") so that h € [Sft(T)]. Since
hlw=f¢ B Ih(h)=w, a contradiction. Similarly for the case f € BT\ B. Therefore,
we have B = B™ and thus B = X x B.

Show B = () or B = X“. Suppose B # (). Since B=X x B, B=X x (X x B) =
X x X x B. Inductively, we have that each component of elements of B is from X. Hence
B = X*“.

Show B # X“. For a contradiction, assume B = X“. Let f € X¥ = B = BT be the

sequence of all 0’s. Notice that since f is the sequence of all 0’s, f Ml,w) = f . Pick an
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arbitrary h € [Sft(T)] such that i | w = f. Then
h(h) = Ut (h w)+1=T(h [ [Lw)+2="0(f [Lw)+2=0(f)+2

Since T'= Sft(T), h € [T]. Thus

Hence, U(f) = ¥(f) + 1, a contradiction.

Therefore, B = BT = (). ]

Notice that for each Type 1 tree T' = T;’f and for each h € [Sft(T)], there is a unique
f € [T] such that h(i+1) = f(i) for every i € Ih(f) (e.g., h(1) = f(0),h(2) = f(1),..., h(w+

1) =f(w),hMw+2)= fw+1),..for h |we B).
Proposition 2.3.5. Fiz a Type 1 tree T = T;I(’,’f. Then for every h € [Sft(T)],
Bl L) e [T) ifhw¢ BY,

hi[L,w) hlw+1,1h(h)€T] ifh|we B gy

Proof.
Pick an arbitrary h € [Sft(T)]. Notice that h | w € BT if and only if h | [1,w) € B. Also,

UH(h [ w)=TYT(h(0)"h|[l,w)=T(h[l,w))+ 1. Thus
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heXxv if h | w¢ B,
heSft[T] <
heX9xYY (ol ifhwe BT,
\
(
heXx® if h | [1,w) ¢ B,
3
he X@ x YYCILeD+2 if b | [1,w) € B.
\
(
hllw) eX¥ if h | [1,w) ¢ B,
<
h[lL,w) h|w+1,lh(h)) € X x YYRILIFL §f b 11, w) € B.
\
(
h][l,w) € [T] if hlwée BT,
—
hl[L,w)  hlw+1,lh(h)e[T] ifhlwe Bt =

Proposition 2.3.5 give us a natural erasing function e from [Sft(7)] into [T7].

Definition 2.3.6. (Definition of the erasing function e : [Sft(T)] — [T])

Fiz a Type 1 tree T = T)\?”f. Define the erasing function e from [Sft(T)] into [T] by

e: [Sft(T)] —[T]
hillw) ifhlwé¢ BT,

hi[l,w) hlw+1,1h(h) ifh|we B gy

Now, we define a function “Shift” which maps subsets A of [T] for a Type 1 tree T to a

particular subset of [Sft(T)].

Definition 2.3.7. (Definition of Shift)
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Fiz a Type 1 tree T = T;?:g. Define

Shift: o ([T]) — o ([Sft(T)])

A= {he[Sft(D)]|e(h)e[T]\A}. 4

Theorem 2.3.8. For any Type 1 tree T, the determinacy of G(Shift(A); Sft(T)) implies

the determinacy of G(A,T). .

Proof.
Pick an arbitrary Type 1 tree T = T;’f. Assume G(Shift(A); Sft(T)) is determined.
Then I* or II* has a winning strategy s* for G(Shift(A); Sft(T)). Show that G(A;T) is
determined.

Case I : s* is a I*’s winning strategy for G(Shift(A); Sft(T)). Define a strategy s for 11
for G(A;T) as follows: Suppose ag = s*(0).
For p € T such that p is finite and (ag)"p € dom(s*) or
p is infinite and (ao)"p | w™{a,)"p | [w,lk (p)) € dom(s*) where a, = s* ({ao)" p | w),

p € dom(s) and
s* ({aop)"p) if p is finite,

s(p) =
s*({ap)"p | w{aw)"p | [w,lh(p))) if pis infinite.
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s* I* ag P S ag, Puw+1

Sft(T)
Ir* Po P2 e Puw Puw+2 ‘e
2 2 2 A
plw /\/p | [w, Lh(h))
I Po P2 e Pw Puw+2 e
T
s Il P1 P3 cee Pw+1 Puw+3

Figure 2.3.2: Illustration of p € T', lh(p) > w according to I1’s strategy s.

Show s is a w.s. for 11 for G(A;T). Pick an arbitrary x € [T] according to s.

Subcase 1 : z [w ¢ B.
Then x = = [ wand s*(0)"x ¢ BT. Thus s*(0)"x € [Sft(T)] and it is according to s*. Hence
s*(0)"x € Shift(A) and thus z = e(s*(0)"z) ¢ A. 7

Subcase 2 : x [ w € B.

Then s*(0)"z | w e Bt and ¥ (s*(0) "z | w) = ¥(z [ w) + 1 = lh(x). Let
h=s(0)"(z | w) s*(s*(0) "z | w) = | [w,lh(z)).

Then Ih(h) = lh(z) + 1, h € [Sft(T)] and h is according to s*. Thus h € Shift(A). Hence
x =e(h) ¢ A. Therefore, s is a w.s. for I for G(A;T).

Case II : s* is a I1"’s winning strategy for G(Shift(A); Sft(T)).
Define a strategy s for I for G(A;T) as follows: Suppose ag € X and a,, € Y are arbitrary.

For p € T such that p is finite and (ag)"p € dom(s*) or

"Recall definition 2.3.6 for the erasing function e.
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p is infinite and (ag)"p [ w™{(a,)"p | [w,lh (p)) € dom(s*), p € dom(s) and

s* ({(ap)"p) if p is finite,
s(p) =
s* ((ao)"p [ w™(aw)"p [ [w,lh(p))) if p is infinite.
I @ pl e Qg Puw+1

//f "/ S Foo

Pw+2

Pu+1 Puw+3

plw p | [w,th(h))
Figure 2.3.3: Tllustration of p € T, lh(p) > w according to I’s strategy s.

Show s is a w.s. for I for G(A;T). Pick an arbitrary x € [T] according to s. Let ag € X
and a, € Y be arbitrary.

Subcase 1 : =z [ w ¢ B.
Then z = x | w and {(ag)"x ¢ B*. Thus (ag)"x € [Sft(T)] and it is according to s*. Hence
(ap)~x ¢ Shift(A) and thus x = e({(ap)"z) € A.

Subcase 2 : x [ w € B.

Then (ag)"z [ w € BT and U ({ag)"z | w) = ¥(x | w) + 1 = Ih(x). Let

h'=(ao)" ([ w)™{aw) x| [w, 1h(z)) .

Then [h(h) = lh(z) + 1, h € [Sft(T)] and h is according to s*. Thus h ¢ Shift(A). Hence
x = e(h) € A. Therefore, s is a w.s. for I for G(A4;T).

By cases I and II, G(A;T) is determined. O
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We shall eventually use theorem 2.3.8, to prove theorem 2.3.1.

Theorem 2.3.1. Suppose a € wy; and n € w. Then for any X and O,
Det G (S0: ;) & Det G (I1%: ;) (2.1)
Det G (S4:7T7) & Det G (TIL; ;) (2.2)

for T, = Tree; (X,0,T(w,C),B | X¥) 8 where:
o Cc{X,1I),AY B, X} II, A, /3, AL P}, v €w and m € w.

o Be {29, II% A% B X! I}, AL =L ATLL, P}, B €w and m € w. -

For the equivalences in theorem 2.3.1, we won'’t be obtaining the determinacy of a game
G(A;T) from the same tree T (except for the case when B = (), recall observation 2.3.4).

We will instead use two trees T and S ft(7T') in the same T'ree; collection.

Before we prove theorem 2.3.1, we will find the complexity of Shift(A) for Borel sets A on
[7] in lemma 2.3.9. In lemma 2.3.15, we will find the complexity of Shift(A) for projective
sets A on [T] . In sublemma 2.3.19 and sublemma 2.3.20, we will find the complexity of
BT for each B € B where B is as in theorem 2.3.1. In sublemma 2.3.19, we will find the
complexity of BT when B is a Borel set, and in sublemma 2.3.20, we will find the complexity
of BT when B is a projective set. In sublemma 2.3.21, we will find the complexity of ¥+ for
each ¥ € I'(w,C) where C is as in theorem 2.3.1.

First, we compute the complexity of Shift(A) for Borel set A on [T].

Lemma 2.3.9. Fix a Type 1 tree T = T;’g. Then, for any o € wy:
8Recall notation 1.5.8 for I'(w,C).
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1. If A€ TIO | [T), then Shift(A) € X0 | [SFH(T)].
2. If A€ 0 | [T, then Shift(A) € TI | [Sf(T)). .

We will prove lemma 2.3.9 by using sublemma 2.3.14 below. Given S C [T, we define

ST C [Sft(T)] as follows.
Definition 2.3.10. Fiz a Type 1 tree T = T;’f. Given S C [T, define

St ={h e [Sft(T)||e(h) € S}. 4

Observation 2.3.11. If A C [T, then
([TI\A)" = {h e [Sft(T)]|e(h) € [T]\A} = Shift(A). B

In definition 2.3.2, for B C X%, we defined BT = X x B. The following observation
shows that the 4+ notation in definition 2.3.10 is a consistent notation with definition 2.3.2

over X%,

Observation 2.3.12. Recall that X 1is the special case of Type 1 trees T = T;’f with

B = (. By observation 2.3.4, T = Sft(T) = X<%. Thus for S C X*,
St={heX“le(h)e S} =X xS.
Thus the definition of + that appear in definitions 2.3.2 and 2.3.10 are the same for subsets
of T = X<, -
Sublemma 2.3.13. Fiz a Type 1 tree T = T;I(I”f. For any S C [T,
[SfE(T)N\ST = ([T]\S)". B
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Proof.

Fix S C [T]. Then

([SFTNN\ST ={h € [Sft(T)]]e () ¢ S}
={h e [Sft(T)]le(h) € [T]\S}
= ([T1\S)". =
Using sublemma 2.3.13, we obtain the following.
Sublemma 2.3.14. Fiz a Type 1 tree T = Tyy.. For any a € w\{0} and for any S C [T]:
1. If S eX0 | [T], then St € X2 1 [Sft(T)].

2. If S € TI° | [T), then S+ € TI° | [SFt(T)). B
Proof.
We prove both (1) and (2) simultaneously by induction on a. (2) follows from (1) and
sublemma 2.3.13. The case for S € X | [T] is obtained from sublemma 2.3.18 below.

Base case : a = 1.
Show that if S € X9 | [T], then ST € X% | [Sft(T)]. We shall obtain this as a special case
of sublemma 2.3.18 below with k£ = 0.
Show that if S € TI9 | [T], then ST € II{ | [Sft(T)]. --- (x)

Suppose S € II{ | [T]. Then [T]\S € ¢ | [T]. Since we have already shown (1) for
a =1, we have:

([T1\8)" € =7 1 [Sf(T)].

By sublemma 2.3.13,
[SfE(DINST = ([T1\S)".
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Thus ST € IIY | [Sft (T)].

Induction step : As an induction hypothesis, assume that for any g € «, if S € E% [T,
then ST € 39 | [Sft(T)] and if S € IT} | [T], then S* € I} [ [Sft(T)].
Assume S € X0 | [T]. Show ST € X2 | [Sft(T)].

Since S € X, | [T], there exists (A, |n € w) such that each A, € II} [ [T], 3, € a and

S = U,ew An- Then by induction hypothesis, each A} € IIy [ [Sft(T)].

ST = {he [Sft(T)]|e(h) € S}

e(h) € UA”}

ncw

:{hewﬁam

= Jtnelsst@)]len) € A}

new

_ +
U 4

o s CRIRT )

€ Xy [ [Sfe(T)].

Show that if S € IO | [T], then ST € IIY | [Sft(T)]. We repeat the same proof of (x) on
page 65.
Suppose S € IIY | [T]. Then [T]\S € X0 | [T]. Since we have already shown (1) for the

case «, we have:

([T1\8)" € =3 T [Sft(T)].

By sublemma 2.3.13,

[SFHTNNST = ([T1\S)".

Thus ST € 12 | [Sft(T)]. O
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Lemma 2.3.9 is obtained immediately from sublemma 2.3.14. Recall lemma 2.3.9.
Lemma 2.3.9. Fix a Type 1 tree T' = T)‘g’g. Then, for any o € wy:
1. If A€ I1I2 | [T], then Shift(A) € X0 | [Sft(T)].

2. If A€ X0 | [T], then Shift(A) € TI° | [Sft(T)]. B
Proof.
Suppose A € II2 | [T]. Show Shift(A) € X0 | [Sft(T)].

Since A € II? | [T7], [T]\A € X° | [T]. By sublemma 2.3.14,
([T\A)" € =5 1 [SfHT))-

By observation 2.3.11,

Shift (A) = (T]\A)*.

Thus Shift(A) € X2 | [Sft(T)).
A similar proof gives a proof of (2): Simply interchange X2 and TTC. [

In lemma 2.3.9, we computed the complexity of Shift(A) for Borel sets A on [T]. Now,

we will compute the complexity of Shift(A) for projective sets A on [T].
Lemma 2.3.15. Fiz a Type 1 tree T = T)\g’f. Let n € w\{0}.
1. If A€ II} | [T], then Shift(A) € 3L 1 [Sft(T)].

2. If A€ XL [ [T], then Shift(A) € IIL | [SFH(T)). B
We will prove lemma 2.3.15 using sublemma 2.3.18. We will first prove sublemma 2.3.18
below by induction on n. We will use the following notation.

We generalize definition 2.3.10 as follows.
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Definition 2.3.16. Fiz a Type 1 tree T = T)\?,’g. Pick an arbitrary k € w. Recall

w

(WP =¥ x - xw”.

k many

Given Sy, C [T] x (w*®)*, define

S = {(h g1, i) € [SFE(T)] x (W) e (h) g1, 1) € Sk} 5
In particular, similar to observation 2.3.11, if £ = 0 and Sy = [T] \ A, then
([T\NA)" = 5§ = {h e [Sft(T)]|e(h) € So} = {h € [Sft(T)]|e (h) € [T]\A} = Shift (A).
The following is a similar result to sublemma 2.3.13. We will use the following sublemma
to prove sublemma 2.3.18 below.
Sublemma 2.3.17. Fiz a Type 1 tree T = T)\I(jv’f. For any k € w and Sy C [T] x (w*),
w w +
(171 (1)) > (*))\S = (7] % ))\Si) " -
Proof.
Fix k € w and Si C [T] x (w*)*. Then
([Sft (T)] X (ww)k) \S+ = {(hagla >gk:> € [Sft (T>] X (ww)k |<€ (h) » 91, >gk> ¢ Sk}

= {(h,gl, o gr) € [SfE(T)] x (ww)k ‘(e (h), 91, gx) € ([T] X (ww)k) \Sk}

= ((IT] % (*)*)\SK) " O
We will use sublemma 2.3.17 to prove sublemma 2.3.18 (2).

Sublemma 2.3.18. Fiz a Type 1 tree T = T)\I(/”f. For any k,n € w and for any S, C
(1] % (w*)*:
1. If S e BL 1 ([T] x (w)k), then SiF € BL T ([Sft(T)] x (w)*).
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2. If S € TIL | ([T] x (w*)F), then Sit € TIL | ([Sft (T)] x (w*)*). .

Proof.
We prove both (1) and (2) simultaneously by induction on n. (2) follows from (1) and
sublemma 2.3.17.

Base case : n = 0. (Recall by definition 1.3.15: X} | [T] = X9 | [T], II} = I1Y | [T].)
Pick an arbitrary k£ € w.

Show that if Sy € X9 | ([T] x (w*)*), then S} € By | ([Sft(T)] x (w*)*).

Suppose Sy, € B¢ | ([T] x (w*)*). Pick an arbitrary (h, g1, ..., gx) € S;. Then

<€ (h’) y g1y -y gk> € Sk

Since S;, € X9 | ([T} X (w“)k), there exist finite £, F}, ..., Fj, such that for any (z,y1,,,, .yx) €
[T] x (w*)* if x De(h) | Fandforall 1 <I<k,y Dg | F then (x,y1,...,yx) € Sy. Define
E* ={i+1|i € E}. Then E* is finite. Pick an arbitrary (h, g1, ..., x) € ([Sft(T)] x (w*)*)

such that h D h Et,and for all 1 <1<k, g D ¢ | F;. Then for any j € FE,

(e(h))(7) = h(j +1) = h(j + 1) = (e(R))()-

Thus e(h) D e(h) | E so that (e(h),d1,....,c) € Sp. Thus (h,§1,...,0%) € S;. Hence
Sy € B[ ([SFUT)] x (w*)").
Show that if S € TIO | ([T] x (w*)¥), then S € TIO | ([Sft(T)] x (w*)¥). --- (%)
Suppose Sy € I} | ([T] x (w®)*¥). Then ([T] x (w*)¥)\Sy € B9 | ([T] x (w*)¥). Since

we have already shown (1) for n = 0, we have:

(([7] % @) \Sk) " € B9 T ([SFL(T)] x (w)").
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By sublemma 2.3.17,

([SfE (D)) % (@))\SF = ((IT] % (@*)*)\S) "

Thus S € IY | ([Sft(T)] x (w*)¥).

Induction Step :

Assume that, as an induction hypothesis, for all [ € w, if 5} € X! | ([T] X (w“’)l),
then S;" € X! | ([Sft (T)] x (w“’)l) and if S; € II} | ([T] X (w‘“)l), then S}t € I} |
([SfE(T)] > (w*)").

Pick an arbitrary k € w. Suppose Sy € Xp ., | ([T] x (w*)¥). Show S € =L, |
(IS8 (T)) x ().

Since Sy € 3, | ([T] x (w*)*), there exists Spyq € ITL | ([T] X (w®)**!) such that for
any (z,y1, ..., yx) € ([T] x (*)¥), (z,41,...,ys) € Sk if and only if there exists y1 € w®

such that <l’,y1, "'aykayk-‘rl) € Sk-l—l'

S = {(h.g1, s i) € [SFE(T)] x (W) [{e (h), g1, - 91) € Sk}
= {(h,gl, o gk) € [STE(T)] X (W) [Agria € W ({e(h), 91, - Gk Gry1) € Sk:+1)}

= {(hagla 7gk> S [Sft (T>] X (ww)k |39k+1 € w* (<h7 g1, "‘7gkvgk+1> S S]j—i—l) } .
Since S, € II} | ([Sft(T)] x (w*)*™) by induction hypothesis,
St e Shyy 1 (185t x ().

Show that if Sy € II} ., | ([T] % (w*)*), then S} € IIL., | ([Sft(T)] x (w*)¥). We
repeat the same proof of () on page 69.

Suppose Sy € ITL,, | ([T] % (w*)*). Then ([T]x (w*)*)\Sk € =L, I ([T] x (w*)F).
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Since we have already shown (1) for the case n + 1, we have:

((IT) % (@) \Sk) T € BL T(ISFE(T)] % (w*)").

By sublemma 2.3.17,

(IS7E(D] x (@) )\SE = (([T] % (@))\Sk) ™
Thus S € ITL ;| ([SfE(T)] x (w*)¥). O
Lemma 2.3.15 is obtained immediately from sublemma 2.3.18. Recall lemma 2.3.15.
Lemma 2.3.15. Fir a Type 1 tree T = T;’f. Let n € w\{0}.
1. If A€ II} | [T], then Shift(A) € L 1 [Sft(T)].
2. If A€ XL | [T, then Shift(A) € TIL | [Sft(T)]. B

We will prove lemma 2.3.15 using sublemma 2.3.18. The proof of lemma 2.3.15 is similar

to the proof of lemma 2.3.9.

Proof.
Suppose A € II! | [T]. Show Shift(A) € XL | [Sft(T)].

Since A € I}, | [T], [T]\A € X! | [T]. By sublemma 2.3.18,
(T1\A)" € 3, [ [SFUT)].

By observation 2.3.11,

Shift(A) = ([T]\A)".

Thus Shift(A) € L | [Sft(T)].
A similar proof gives a proof of (2): Simply interchange 3! and II}. O

71



Next, we compute the complexity of BT = X x B for Borel set B on X“. Recall that X*

is a special case of Type 1 trees T)\?’f with B = (). By observation 2.3.4, T'= Sft(T) = X<¥.
Sublemma 2.3.19. Suppose a € wy.

1. IfBeX? | X% then Bt € 30 | Xv.

2. If BeII? | X%, then Bt € II? | X%,

3. If Be A% | X%, then BT € A? | X¥,

4. If Be B | X%, then Bt € B | X¥. —|

Proof.

Fix a Type 1 tree T;’g with B = (). Then T = X<“. We have (1) and (2) by sublemma

2.3.14. (3) and (4) easily follow from (1) and (2). O
Similarly, we obtain the following using sublemma 2.3.18.
Sublemma 2.3.20. Suppose n € w.
1. If BeX! | X% then Bt € ! | X¥.
2. If BeII! | X%, then Bt € II! | Xv.
3. If Be Al | X%, then BT € Al | X¥.
4. If Be (ZLATLL) | X%, then BT € (3L ATILL) | X*.

5. If BeEP | X¥, then Bt € P | X¥. -
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Proof.
Fix a Type 1 tree T)\I(j”g with B = (). Then T = X<“. We have (1) and (2) by sublemma
2.3.18. Consequently, we have (3) and (5).

Show (4). Suppose B € (X! AILL) | X¥. Then B = B;N By for some By € ¥ | X¥ and
B, € II' | X¥. Thus Bf = X x By € £ | X* and Bf = X x By € IT! | X by sublemma

2.3.18. Hence
Bt =XxB=Xx(BNBy)=(XxB)N(X xBy) =B NBJ € (TLAIL) | X¥.
O

Finally, we compute the complexity of the function ¥+ when W is Ag—measurable and

Al_measurable.

Sublemma 2.3.21. Suppose n € w and v € wy.
1. If ¥ e T'(w, Ag), then UF € T'(w, Ag).
2. If U e T(w,Al), then ¥F € I'(w, A}).
3. If U el (w, XL ATLL), then U € T'(w, BL ATLL). © =

Proof.
Show (1).
Suppose ¥ € I'(w, Ag). Then ¥ is a function from X* into w such that for every open set

O Cw, ¥ 10) e AY | X¥. Show U* € T'(w, AY).

9Recall definition 2.3.2 for U,
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Show U*~'(0) € =0 | X¥.
Fix O € 39 [ X¥“. Since O = [J,co, {i} and we are using the discrete topology on w, each
singleton {i} is clopen.

First, compute the complexity of \Iﬁ*l(i) for i € w. 19
Case 1:1=0.

By the definition of U*, U+~1(0) = 0.

Case 2 : 7 # 0.

U ) =X x {fe XY|U(f)+1=1i}

=X x¥t(i—1).

Since ¥ € I'(w, A9), U~ (i — 1) € AY | X*. By sublemma 2.3.19, U+~ (i) € A [ X¥.

Thus, by cases 1 and 2,

v 0) = ot (U {z}) U, v o estx (2.3)

€0

Show ¥U*~'(0) € ITY | X*. Show X“\¥+ '(0) € 29 | X¥.

Since w\O = U, 0 11}, w\O € XY | w. Thus
XAUHH0) =0 (w\0) € 20 T X~

Hence U '(0) € I | X*.
Therefore, U € T'(w, AY).
Show (2).

If U e I(w,Al), then U~'(n—1) € AL | X*. By sublemma 2.3.20, U+ " (i) = X x U~ 1(i —

10Recall notation 1.5.4 Abuse of notation : we suppress {} for $=1({i}), i.e., we write ¥1(i) to mean
U—1({i}). ¥71(i) does not mean the inverse image of {0, 1,...,i — 1} here.
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1) € Al | X¥. Since X! | X* is closed under countable unions by lemma 2.3.22 below (page

75), U € T'(w, A}) (replace XJ in equation (2.3) by X,).

Show (3).

A similar proof of sublemma 2.3.20 (4) gives (3): if ¥ € I'(w, B ATLL), then UF € T'(w, XL A

IT}). O
We used the well-known closure property of projective sets in the proof of 2.3.21. Sierpin-

ski proved this in 1928 (as cited in Moschovakis, 2009, p. 47). We will prove the closure under

countable unions for X} | X“ and the closure under countable intersections for IT), [ X“.

Readers familiar with this proof may skip to theorem 2.3.1 on page 55.
Lemma 2.3.22. Let n € w.

1. 3! 1 X% is closed under countable unions.

2. I} | X¥ is closed under countable intersections.
We will prove lemma 2.3.22 by using sublemma 2.3.25 below. The proof of lemma 2.3.22

is on page 79. We first define the following notation.

Definition 2.3.23. Let k € w. Suppose (S¥|i € w) to be such that each SF C X* xw® x (w)*.

Define

<Szk‘z € w>_ = {<fa hagla 7gk’> € X¥ xw” X (ww)k |<f>h [ [170‘)) » 915 >gk’> S SE(O) } .
We will use the following sublemma to prove sublemma 2.3.25.
Sublemma 2.3.24. Let k € w. Suppose (SF|i € w) to be such that each S¥F C X* x w* x
(w*)*. Then
(XY x w” x (w)*) \(SFli € w)™ = ((X¥ x w* x (w*)*) \SF|i € w)™. .
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Proof.

Fix k € w and (SF|i € w) with each SF C X¥ x w* x (w¥)*.
(X% x w” x (w?)*) \(SFli € w)™
= {<fa hagla 7gk’> € XY xw” X (ww)k ‘(f)h r [17("}) » 91, 7gk‘> ¢ SE(O)}

= {(f, hygi, .., ge) € XY x w? x (w?)* ’(f,h FL,w), g1, gk) € (Xw X w* X (ww)k) \S,]f(o)}

= (X x w* x (@*)*) \SFli € w)~. 0

Sublemma 2.3.25. Suppose n,k € w, n > 1. Suppose (SF|i € w) to be such that each

SEC XY xw? x (w)k.
1. If every SF € 3L | (X% x w® x (w)F), then (SF|i € w)™ € BL | (X¥ x w® x (w¥)¥).

2. If every SF € TIL | (X% x w* x (w*)*), then (SF|i € w)™ € T} | (X¥ x w® x (w“’)k)._|
Proof.
We prove both (1) and (2) simultaneously by induction on n. (2) follows from (1) and
sublemma 2.3.24.

Base Case : n = 1.

Pick an arbitrary k € w and fix (S¥|i € w).
Suppose every SF € X9 | (X¥ x w¥ x (w?)¥). Show (SFli € w)™ € Y | (X¥ x w® x (w¥)F).

Pick an arbitrary (f,h,g1,...,gx) € (SF|i € w)~. Then (f,h | [L,w),q1,...,9x) € S}’f(o)-
Let hy = h [ [1,w). Since S,’f(o) € X0 1 (X% x w® x (w¥)¥), there exist finite F' C w, H; C w
and G; C w, 1 < i < k such that for all (z,y,21,...,2x) € X¥ x w* x (w*)*, if x D f | F,

y2hy | Hyand forall 1 <i <k, 2z DO g | Gy, then (z,y,21,...,2) € Sﬁ(o). Define

H={n+1|ne H }U{0}.
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Suppose y € w* and y D h [ H. Then y (0) = h(0). Also, for any j € H;,

I Lw) @)=y +1)=h(+1)=(T[1w)G) =m0

Thus y | [1,w) D hy | Hy. Thus for all (z,y, 21, ..., 2x) € X¥ x w* x (w)F, ifx D f | F,yD
h | Handforalll <i<k, z Dg |G then (x,y [ [1,w),21,..., 2k) € S}’f(o) = 55(0). Hence,
for all (x,y,21,...,2,) € X¥ x w* x (W), if D f [ F,y D h | Hand for all 1 <i <k,
2 D gi | Gy, then (z,y, 21, ..., 2zx) € (SFli € w)~. Thus (SF|li € w)™ € Y | (X¥ xw¥ x (w*)F).
Suppose every SF € TI{ | (X% x w® x (w*)*). Show (SFli € w)~ € TI{ | (X% x w* x (w*)F).
()

Since every SF € TIY | (X xw* x (w®)*), each (X* x w*” x (w*)¥) \SF € B | (X xw® x

(w*)*). Since we have already shown (1) for n = 1, we have: ((X“ x w® x (w*)*)\SF|i €

W)~ € XY T (XY x w* x (w¥)¥). By sublemma 2.3.24,
(XY x w” x (w)*) \(SFli € w)™ = ((X¥ x w* x (w*)*) \SF|i € w) ™.

Thus (X% x w® x (w*)*) \(SFli € w)™ € B | (X¥ x w* x (w*)*). Hence (SFli € w)~ € I |
(X9 x w x (w)F).

Induction Step : Assume that, as an induction hypothesis, for all | € w, if every S! €
LT (XY x w? x (w?)!), then (Sli € w)™ € B | (XY x w* x (w¥)!) and if S! € II} |
(X% x w? x (w)!), then (S!i € w)™ € I} | (X¥ x w® x (w*)!).

Pick an arbitrary k € w.

Suppose every SF e XL [ (XY x w? x (w*)¥). Show (SFli € w)™ € BL.; | (X% x w¥ x
(w)").

Since each S¥ € BL .| | (X¥ X w® x (w®)*), there exists SFH' € I} | (X¥ X w® x (w?)k+1)
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such that for any (x,y, 21, ..., 21) € (X¥ X w* x (w)*), (x,y,21,...,2x) € SFif and only if

there exists zx11 € w* such that (z,y, 21, ..., 2k, 2k+1) € Sf“.

(SFli € w)™
= {<fa hagla 7.gk’> € XY X w” x (ww)k ‘(f?h r [1’0‘}) » 915 7gk> S Sl’:(())}
— {<f,h,g1, ...,gk> e XY x w¥ x (ww)k‘ ‘Elgk_,,_l e wv <f,h [ [1,(4)) ,gl,...,gk,ng) € Ss(—gi}

= {<f7 hagla 7gk> € X X w” x (wLU)k ‘Elgk-i-l € w” <f7 h? g1, "‘7gkvgk+1> S <Szk+1|7’ S w>_ } .

Since each SF € TTL | (X¥ x w® x (w?)*1), by induction hypothesis, (SF*|i € w)~ € II}, |
(X% x w? x (w)F*1). Thus (SFli € w)™ € Zp ., | (X9 x w x (w¥)k).

Suppose every SF € II%, | | (X* X w* X (w*)*). Show
(SFliew)” eI 4 | (XY xw x (w)").

We repeat the same proof of (x) on page 77.

Since every SF € ITV | | (X* x w*” X (w¥)¥), each
(XY x w” x (W) ) \SF e =01 1 (XY xw” x (w)").

n+1

Since we have already shown (1) for the case n + 1, we have:
(X9 x w? x (W) )\SFli ew)™ € B} T (XY x w? x (w*)F).
By sublemma 2.3.24,

(X% x w” x (w)*) \(SFli € w)™ = ((X¥ x w* x (w*)*) \SF|i € w)™.
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Thus (X% x w® x (w*)¥) \(SFli e w)™ € B0, | I (X¥ x w” x (w*)*). Hence
(SFli e w)™ eI,y | (XY xw* x (w)"). O

Using sublemma 2.3.25, we prove lemma 2.3.22. Recall lemma 2.3.22. (2) is obtained

from (1).
Lemma 2.3.22. Let n € w.
1. 3} | X% is closed under countable unions.

2. TIL | X% s closed under countable intersections. -

Proof.

Show (1). When n = 0, 3} | X¥ = 39 | X“. Since X{ | X“ is closed under countable
unions, assume that n > 0. Show 3! | X“ is closed under countable unions. Let (4;|i € w)
be such that each A; € 3! | X“. Since each 4; € X! | X%, there exists C; € TIY_| | X xw®
such that

feA < 3Jgew’(f, g) €.

Show .., A; € B | X,

€W

erAi<:>E|i€w(fEAl-)
& Jiewdg e w? ((f,g9) € Cy)

~ ~

& 3h e w((f,h [ [1,w)) € Cyg) (h(0) =i and h | [1,w) = g)

& Jh e w((f,h) € (Cyli € w)7).
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Since each C; € TI?_; | X* x w¥, by sublemma 2.3.25,
(Cili €ew)™ € T2, [ X¥ x w*.

Thus |, A; € B | X*.

€W

Show (2). Suppose (A;|i € w) be such that each A; € II} | X“. Show ), A; € IT} | X*.

1EW

Since each A4; € II! | X¥ X“\A; € X! | X“. Since we have already shown (1), we have:
U€ (X“\A;) € =6 1 X¥.

Since X\ (Nic, A1) = Uic, (X\A4), X\ (Mjew 4i) € BE T X% Thus N, 4 € I} |

1€w
X¥. O
Finally, by using above lemmas and sublemmas, we will prove theorem 2.3.1 on page 55.

Recall theorem 2.3.1.

Theorem 2.3.1. Suppose a € wy and n € w. Then for any X and O,
Det G (Eg; Tl) < Det G (Hg;’Tl) (2.1)
Det G (ZJTIZ; ’Tl) < Det G (H}z;’ﬁ) (2.2)

for T = Tree; (X,0,T(w,C), B | X¥) " where:
o Cc{X0,1I),AY B, X II, A, 3, AL P}, v €w and m € w.

e Be{X),II},AY, B, X 11 A} 3L AT P}, B €w and m € w.
Proof of Theorem 2.3.1.
Fix 71 = Tree; (X,0,I(w,C), B | X“) in the theorem with fixed complexities for B and C.

Pick an arbitrary T = Ty’ € 7. Show the equivalence (2.1).
"Recall notation 1.5.8 for I'(w,C).
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(=) Suppose A € II? | [T]. Since B € B | X%, by sublemma 2.3.19 and sublemma 2.3.20,
Bt € B | X¥. Also, by sublemma 2.3.21, U* € T'(w,C). Therefore, Sft(T) = T)\I(j;’B+ €T

By lemma 2.3.9, Shift(A) € X9 | [Sft(T)]. Thus
G(Shift(A), SfH(T)) € G (20;Th) -

Hence G(Shift(A),Sft(T)) is determined. By theorem 2.3.8, G(A,T') is determined.

(<) By switching IT? and XY in the above proof, we can obtain this direction.

Show the equivalence (2.2).

(=) Suppose A € IT! | [T]. Since B € B | X*, by sublemma 2.3.19 and sublemma 2.3.20,
BT € B | X¥. Also, by sublemma 2.3.21, ¥* € I'(w,C). Therefore, Sft(T) = T;’;B+ e Tl

By lemma 2.3.15, Shift(A) € X1 | [Sft(T)]. Thus
G(Shift(A),Sft(T)) € G (X} Th)

Hence G(Shift(A),Sft(T)) is determined. By theorem 2.3.8, G(A,T) is determined.
(=) Switch IT! | [T] and X! | [T] in the (=) direction of the equivalence (2.2). By

lemma 2.3.15, Shift(A) € II | [Sft(T)]. O
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2.4 Using the determinacy of games on a Tree; collec-

tion to obtain the determinacy of games on X*“

In this section, we will use the determinacy of games on a T'ree; collection to obtain deter-
minacy of games on X <%,

In section 2.4.1, under ZF-P, we will focus on using AY determinacy on a T'ree; collection
to obtain finite Borel determinacy on X<“. We will obtain the determinacy of finite Borel
games on X <¥ from the determinacy of clopen games on a particular Tree; collection.

In section 2.4.2, we will focus on using X{ determinacy on a Tree; collection to obtain
the determinacy of games on X <“. In section 2.4.2.1, we will define a special open set Long
on a Type 1 tree. Long includes all plays of the tree which have length greater than w and
excludes those of length w. In section 2.4.2.2, we will define a special open set Max on a
Type 1 tree. Maz is defined only on Type 1 trees with paths having maximum length. We
will obtain the determinacy results using Max in sections 2.4.2.3 and 2.4.2.4.

In section 2.4.3, we will obtain a + 1-TI} determinacy on X*“ for even a € wy using a-I1}
determinacy on T'ree; collection. We will again obtain the determinacy results using Max

in this section.
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2.4.1 (ZF-P) Using AY determinacy on a Tree; collection to obtain
finite Borel determinacy on X<¥

In this section, we will focus on obtaining in ZF-P the determinacy of finite Borel games on
X<¥ from the determinacy of games on a Tree; collection.!?

First, consider the special case of Type 1 trees T = T)\I(l”f with B = (). Since [T)\?g} = XV,
G (5 Treei (X,0,1,0)) = {G (A4 X™)[A€ E T X¥}
for any X, © and I'. Thus, we have the following observation 2.4.1.

Observation 2.4.1. For any X,Y, any function ¥ from X% into w and any complezxity =

(in which Z | [T] C ¢ ([T]) is defined),
Det G (Z;Tree; (X,Y,U,0)) = Det (E | X¥). —|

= | X% could be any subset of X“ in observation 2.4.1.
As an example to observation 2.4.1, consider T; = Tree; (X,Y,T(w, AY), A | X¢) for
any X and Y. Recall that I'(w, AY) is the set of continuous functions. Since § € A | X¥,

by observation 2.4.1, we have G (X9; 7;) contains all open games on X <%,

Corollary 2.4.2. Suppose o € wy and n € w. Fiz nonempty sets X and Y .

Let 7; fry T?”eel (X, Y, F(w, A?), A[]:_’ r XUJ) Then
Det G (22;T1) = Det (X0, | X¥).

Det G (=);T1) = Det (%, | X¥). 4

12The proof of Det(B | X¢) in ZFC uses the power set axiom.
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Proof.

Since ) € AY | X, we have the results by observation 2.4.1 when = is 3 and X!. O

Observation 2.4.3. Assume that I' contains all constant functions from X% into w. Then
for any XY and complezity = (in which Z | X¥ x Y™ C (XY xY™) is defined for all
new),

Det G (Z; Tree, (X,Y,T, {0, X*})) = Det (U =1 (XY x Y")) . 4

new

Proof.
Fix X,Y and Z. Assume Det G (Z; Tree; (X,Y,T', {0, X“})). Pick an arbitrary A € J,,,Z [
(X“ x Y™). Then 3n € w such that A € = | (X¥ x Y™).

Case 1: n=0.
See observation 2.4.1.

Case 2 : n # 0.
Let B = X“ and V is the constant function at n — 1. Then ¥ € I'. Note that [T)\I(’fw] =
X9 x Y™ Thus G(A; X< x Y1) = G(A; Tyy ) € G(5;Treer (X,Y,T, {0, X“})). Hence

G(A4; X¥ x Y™) is determined. O

Theorem 2.4.4. (ZF-P)
Suppose I' contains all constant functions from X% into w and Y s denumerable. Then

Det G (AY; Treey (X,Y,T,{0, X*})) implies Det ({J, ., X0 | X*), finite Borel determinacy

new

on X<¥. -
The proof of theorem 2.4.4 consists of the following two parts:

1. For any n € w, Det (X9 | X¥) & Det (AY | X9 x Y™).
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2. Use observation 2.4.3 with = = AY.

In pages 85-104, we will prove (1) as theorem 2.4.5. Then we will prove theorem 2.4.4 on

page 104. (1) is “well-known”. Readers familiar with the proof of (1) may skip to page 104.

Under ZF-P (i.e., ZF - power set), we will see some general results about the finite Borel

games on trees with fixed length. Recall the following well-known results.

Theorem 2.4.5. ZF-P(folklore)
Suppose n € w and Y is denumerable. Then for anyn € w,
Det (3, | X¥) & Det (A} | X9 xY"). 5
Theorem 2.4.5 follows from repeated application of lemma 2.4.6 below. After proving

lemma 2.4.6, we prove theorem 2.4.5 on page 102.

Lemma 2.4.6. (Main lemma)
Suppose m,l € w and Y is denumerable.

If | is even, then

Det (20, | X¥ x Y') & Det (II9,_; | X¥ x Y1) (2.4)
Det (29 | X¥ x Y') & Det (A} | X¥ x Y1) (2.5)
If 1 is odd, then
Det (TII%, | X¥ x Y') & Det (29, | X¥ x Y1) | (2.6)
Det (TIIY | X* x Y') & Det (A | X¥ x Y'*). (2.7)
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We will separate proof of lemma 2.4.6 by directions. First, we will prove (=) direction
of lemma 2.4.6 on page 93. Then we will prove (<) direction of lemma 2.4.6 on page 101.
For each direction, we will prove four sublemmas. None of these sublemmas use that Y is
denumerable. The proof of the equivalences (2.4) through (2.7) from sublemmas use that ¥
is denumerable.

Towards the prof of (=) direction, we define A", We will use sublemma 2.4.8 to show
the equivalences (2.4) and (2.5). We will use sublemma 2.4.9 to show the equivalences (2.6)
and (2.7). We will find the complexity for As"*"* in sublemma 2.4.11 given the complexity

of A.
Definition 2.4.7. Suppose | € w. Let A C X x Y'*'. For each a €Y, define

Ashort — {f e X x Y!|f(a) € A}. .

Sublemma 2.4.8. Assumel € w is even.

If G(Uuey Ashort; X9 x Y1) is determined, then G(A; X“ x Y1) is determined. .

Proof.

Suppose G({J,cy AsM; X x Y') is determined. Then I* or IT* has a winning strategy s*
for G(U,cy A2t X© x Y.

Ashort: X 5 Y1),

Case 1 : s is a I*’s winning strategy for G (|,
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Define I’s strategy s for G(A; X* x Y'+1) by

s* (p) if h(p) <w+1,
s(p)=9 pacy (p € Ashort) BB if Ih (p) = w + L and p € oy A,
1] otherwise. !
\
s* I* |Po P2 o Pw Puw+2 s Pwti—2
X¥ x Yl P c UaeY Azhort
Ir P1 S Puw+1 ce Pu+i—1
x| w x| |w,w+1—1]
s [ |Po D2 SR % Pu+2 <o Pwtl—2 a
Xv x Yl+1
I P1 ce Puw+1 s Puw+i—1 /I\
x

s gives s(p) = a such that p~(a) € A

Figure 2.4.1: Tllustration of x € X x Y ([ is even) according to I’s strategy s (corre-
sponding to the (=) direction of the equivalence (2.4) on page 85).

Show s is a winning strategy for I for G(A; X* x Y'*1). Pick an arbitrary € X¢ x Y1

according to s. Then z [ (w+1) is according to I*’s winning strategy s* for G(U,oy A5 X“x

V') so that @ | (w +1) € Uyey A3 Since x is according to s, [ (w+1) € A%, Thus

r € A.
A(slhort;Xw % Yl)

Case 2 : s is a I1*’s winning strategy for G(|J,cy

Define I1’s strategy s for G(A; X¥ x Y!*1) by s = s*.

131, represents “the least”. If Y is well-orderable, fix a well-ordering of Y. Otherwise, pick any a € Y such
that p € Ashort,
14This otherwise case does not occur for plays according to s.
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I* | Do D2 ce Puw Puw+2 <o Pwtl—2

X¥ x Yl P ¢ UaeY Azhort
s*IT* P1 S Puw+1 e Pu+ti-1
x| w x| |w,w+1—1]
I |Po D2 s Pu Puw+2 <o Poti-2 a
Xv x Yyl
s Il D1 ce Puw+1 s Puw+i-1 /I\
T

every a gives p~(a) ¢ A

Figure 2.4.2: Illustration of z € X x Y+ (I is even) according to II’s strategy s (corre-
sponding to the (=) direction of the equivalence (2.4) on page 85).

Show s is a winning strategy for I for G(A4; X* x Y1), Pick an arbitrary = accord-
ing to s. Then = [ (w + [) is according to s*. Since s* is a II*’s winning strategy for
G(U,pey Ashort; Xox YY), & | (wH1) & U, ey At Thus forany a € Y, (2 | (w+1))(a) ¢ A,

ie,x ¢ A. O

Sublemma 2.4.9. Assume [l is odd.

If G(Naey Ashort; X< x Y1) is determined, then G(A; X“ x Y1) is determined. .
Proof.

Assume G([,cy A2 X% x Y') is determined. Then I* or I1* has a winning strategy s*
for G(N,ey A4S X9 x Y1),

Case 1 : s* is a [*’s winning strategy for G([,y A3 X* x V7).

Define I’s strategy s for G(A; X“ x Y*1) by s = s*.
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s* I* |Po P2 e Puw Puw+2 s Pwti—1
X¥ x Yl P c ﬂaEY Azhort

Ir P1 ce Puw+1 s Putl—2
T w x| |w,w+1—1]
s [ |Po D2 ce Pw Puw+2 s Puti-1
Xv x Yl+1
I P1 tee Puw+1 s Puti—2 ?
T

every a gives p~{(a) € A

Figure 2.4.3: Illustration of z € X* x Y (I is odd) according to I’s strategy s (correspond-
ing to the (=) direction of the equivalence (2.6) on page 85).

Show s is a winning strategy for I for G(A; X* x Y'*1). Pick an arbitrary xz € X¢ x Y1
according to s. Then x | (w + () is according to s*. Since s* is a [*’s winning strategy for
G(Naey Ashort; X x Y, 2 | (w+1) € ey A, Thus forany a € Y, x | (w +1) € Ashort,

Thus z [ (w+1) € A;?Z’IZ). Hence z € A.

Case 2 : s* is a [T*’s winning strategy for G((0,oy A X@ x Y1).

Define I1’s strategy s for G(A; X% x Y!*1) by

(

s* (p) if h (p) < w+1,
s(P)=19 pacy (p ¢ Ashor) 15 if lh (p) =w + 1 and p & (,oy AS,

0 otherwise. 16

\

151, represents “the least”. If Y is well-orderable, fix a well-ordering of Y. Otherwise, pick any a € Y such
that p ¢ Ashort,
16This otherwise case does not occur for plays according to s.
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I* | Do D2 ce Puw Puw+2 s Puti-1
XY x Yl P ¢ maeY Azhort

s*IT* P1 Puw+1 <0 Puti—2
T w x| |w,w+1—1]
I |Po D2 ce Pw Puw+2 s Puti-1
Xv x Yl+1
s I P Puw+1 <o Puti—2 g
T

s gives a such that p~(a) ¢ A

Figure 2.4.4: Tllustration of z € X x Y!*! ([ is odd) according to I[’s strategy s (corre-
sponding to the (=) direction of the equivalence (2.6) on page 85).

Show s is a winning strategy for I1 for G(A; X* x Y1), Pick an arbitrary z ac-
cording to s. Then z | (w + [) is according to s*. Since s* is a II*’s winning strat-
egy for G(N,ey At X9 x Y1), 2 | (w41) ¢ Ny 45", Since z is according to s,

x| (w+l) ¢ Afc}(‘gﬁfl). Hence x ¢ A. Therefore, G(A4; X x Y1) is determined. O

Recall that we are proving lemmas to obtain (=) direction of the equivalences (2.4)
through (2.7) of the main lemma (lemma 2.4.6). Note that we have sublemmas 2.4.8 and
2.4.9, what remains is to compute the complexity of (A)3 for A € X9 | X x Y*! and
ATl | X¥ x YHL,

In sublemma 2.4.11, we will find the complexity of (A)3""* for for A € X9 | X« x Y+
and A € TIY | X¥ x Y g € Y. For X,Y and a € Y, we first note that the function
A (A)shert from subsets of X“ x Y to subsets of X x Y preserves complementation

and unions:
Sublemma 2.4.10. Let I be an index set. Suppose | € w. For any A, A; C X* x Y+,
1€1,
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1((X% x YE\ AP = (X2 x y1) \ Ashort,

a

2 (Uier Ai)ih(’” = Uier (A", -
Proof.
Show (1).
short

(X9 xYTINA) ™ ={fe X xY'|f(a) € (XY x YT \A}

= (X x YO\ {fe XxY'|f(a) € A}
— (Xw % Yl) \Azhm‘t‘

Show (2).

short

(Ue )

:{fEX“xYl‘ﬂ@eUigAi}

a

_ w ! .
= | |i61{feX xY'|f(a) € A; }
short
— | l A O
i€l (4™
By using sublemma 2.4.10, we will find the complexity of A"t for A € X9 | X« x Y+

AeIl) | X x Y and A€ A | X¥ x Y for any a € Y.

Sublemma 2.4.11. Suppose | € w. Let a € Y. Assume A C X¥ x YL Then for any

ke w,
1 if Ae X0 | X9 x Y then each Astort € 390 | X x Y and
2. if A€ TIY | X* x YL then each AsMrt € TIY | X* x Y.

Consequently, if A € A | X x YL then each Ashort € AV | X« x Y, -
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Proof.
We prove both (1) and (2) simultaneously by induction on k. (2) follows from (1) and
sublemma 2.4.10 (1).

Base Case : k = 1.

Show (1). Suppose A € 39 | X x Y+, Show Astort € 39 | X x Y!. Pick an arbitrary
f € Astert. Then f~(a) € A. Since A is open, there is a finite £ C w + [ such that for any
ge XY xYH if gD f(a) | E, then g € A. Define E = E\{w +1}. Pick an arbitrary
f e X¥xY!such that f D f | E. Then f~(a) D f(a) | E so that f~(a) € A. Hence
f e Ashort Thug Ashort ¢ 330 1 X x Y1,

Show (2). Suppose A € TI9 | X¥ x Y1 Show Ashrt € TI9 | X x Y!. Since A €
IO | X% x Y (X9 x YH)\A € ) | X¥ x YL By above (1), ((X* x Yl+1)\A)Z"°” €
30 | X¥ x Y% By sublemma 2.4.10 (1), (X x YHN\A)™" = (X¥ x ¥!) \ A", Thus
Ashort € TI9 | X x Y.

Induction Step : Assume as an induction hypothesis, if A € X9 | X x Y1 then
Ashort € 30 1 X% x Y and if A € IO | X x Y, then AS*t € TI9 | X x Y'. Show if
Ae Xl | XY x Y then APt € B0 [ X¥ x V! and if A € II),; | X* x Y, then
Ashort € TIO, | 1 X% x Y,

Show (1). Suppose A € 2., | X¥ x Y. Show At € 39 | | X¥ x Y. Since
Ae X, | X9 x Y there exists (A;|i € w) such that A = J,, 4; and each 4; € II) |

X x Y1 Since A; € II? | X x Y!*1 by induction hypothesis, (4;)s"* € TI) | X x Y.
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By sublemma 2.4.10 (2), (U A-)Shm = (A" Thus, we have

i€Ew ) g - 1EW a

short

shor shor w
A = (UiEw Ai>a - UiEw (A" € Mo [ X9 x Y

Show (2). We repeat the same proof the base case for (2). Suppose A € II)_; | X*x Y"1,
Show Ashort € TI, | | X* x V! Since A € TI,, | X¥ x Y1 (X¥ x YHI\A € 39, |

short

X x Y1 By above (1), ((X¥ x Y1)\ A) € 3P, | X¥ x Y'. By sublemma 2.4.10

a

(1), ((x¥ x Yl+1)\A)th = (X* x V') \Ashort. Thus Aghrt e I, | X¥ x Y.

Consequently, if A € AY | X¥ x Y1 then each A3t € A} | X¥ x Y. O

Now, we prove the (=) direction of the main lemma (lemma 2.4.6) from the four sub-

lemmas 2.4.8, 2.4.9 2.4.10 and 2.4.11.

Proof of (=) direction of the main lemma (lemma 2.4.6 on page 85).
Suppose Y is denumerable. Fix m,[ € w.
Suppose and [ is even.

Show the (=) direction of the equivalence (2.4) :
Det (29, | X¥ x Y') = Det (II)),_; | X¥ x Y'*).

Assume Det (29, | X* x Y'). Pick an arbitrary A € II%, _; | X x Y™ Then by sublemma

2.4.11, for all a € Y, Ashort ¢ TI? | | X* x Y. Since Y is denumerable, | J,__, Ashrt €30 |

acY

X¢xY! Then G(,y At X x V') is determined. By sublemma 2.4.8, G(A4; X* x Y1)

a€cY

is determined.

A similar proof works for the (=) direction of the equivalence (2.5) :

Det (29 | X¥ x Y') = Det (A} | X¥ x Y1)
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Simply replace X9 by 3¢ and replace ITY, | by Al.

Suppose [ is odd.

Show the (=) direction of the equivalence (2.6) :
Det (TI%, | X¥ x Y') = Det (29, | X¥ x Y1)

Assume Det (IT, | X x Y'). Pick an arbitrary A € £% | | X*x Y"1, Then by sublemma

2.4.11, for all a € Y, Ashort € 30 | | X x Y. Since Y is denumerable, (), ., As"rt €19, |

acyYy

X¢x Yl Then G(), oy A2t X x Y) is determined. By sublemma 2.4.9, G(A4; X* x Y+1)

a€eY

is determined.

A similar proof works for the (=) direction of the equivalence (2.7) :
Det (I | X¥ x Y') = Det (A} | X x Y'*).

Simply replace TI%, by ITY and replace X2, _; by AY. O

Now that we have completed the proof of the (=) direction of the main lemma (lemma
2.4.6 on page 85), we will prove (<) direction of the main lemma (lemma 2.4.6) on page
101 after proving some sublemmas. Towards the proof of (<) direction, we will define
(Ag]a € YY" We will use sublemma 2.4.13 to show the remaining direction of the equiv-
alences (2.4) and (2.5). We will use sublemma 2.4.14 to show the remaining direction of the
long

equivalences (2.6) and (2.7). In sublemma 2.4.16, we will find complexity of (4, |a € V')

for the relevant A,’s.
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Definition 2.4.12. Suppose | € w. Let A, C X¥ x Y for alla €Y. Define

(Agla € V)" ={h € X x Y L | (w+1) € Anorp) } - s
Sublemma 2.4.13. Suppose | € w is even and A =, . Aa € X¥ X Yt
If G({Aq |la € Y)Y, X9 x YY) s determined, then G(A; X¥ x Y is determined. —|

Proof.
Assume G((A, la € YY" X x Y*1) is determined. Then I* or I1* has a winning strategy
s* for G((Aq|a € YY1, X x Vi),

Case 1 : s* is a [*’s winning strategy for G((A, |a € Y)Y ; X x Y1),

Define I'’s strategy for G(A; X* x Y!) by s = s* | T where [T] = X* x Y. 17

s* I* | Po D2 oo Dw Puw+2 cee Duw+l
Xw % Yl+1
Ir P1 ce Puw+1 ce Pu+i—1
rlw x| |lw,w+1—1] pe (A, lacy)on
s [ |Po P2 o Pw Puw+2 <o Pwti—2
Xv xY!
II P1 e Put1 RN Puw+i-1
T

r=p f (w + l) € Ap(w+l)

Figure 2.4.5: Tllustration of x € X“ x Y (I is even) according to I’s strategy s (corresponding
to the (<) direction of the equivalence (2.4) on page 85).

Show s is a winning strategy for I for G(A4; X* x Y!). Pick an arbitrary x € X* x Y!
according to s. Then z~s*(z) is according to s* so that s*(z) € Y.
Since s* is a I*’s winning strategy for G((A, |a € V)" : X« x Y+1),

175%(z) € (Ag|a € V)", Hence x € A, )y C A
17g* | T abbreviates s* | (T N dom(s*)).
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Case 2 : s* is a [T*’s winning strategy for G((A, |a € V)" ; X« x Y1),

Define I1’s strategy for G(A; X x Y') by s = s*.

any P+l
l
I* | Po P2 v Pu Puw+2 Puw+i
Xv x Y+t
s*II* P1 S Puw+1 ce Puw+i—1
T | w x| [w,w+1—1] ng(Aa|aEY)l(mg
I | Do D2 tee Pw Puw+2 s Potl—2
Xv x Y!
s Il P1 ce Puw+1 ce Pu+i—1
T

r=pl(w+1) ¢ Apwry for every p,i

Figure 2.4.6: Illustration of r € X“xY" (I is even) according to I I’s strategy s (corresponding
to the (<) direction of the equivalence (2.4) on page 85).

Show s is a winning strategy for I1 for G(A; X* x Y'). Pick an arbitrary x € X x Y!
according to s. Then for any a € Y, x7(a) is according to s*. Since s* is a I[*’s winning
strategy for G((Ag|la € YY" X% x Y1) for alla € Y, 27{a) ¢ (Aq|a € V). Hence

forallaeY, z ¢ A, Thusz ¢ |J,.y As = A. Therefore, G(A; X¥ x V') is determined. [J

Sublemma 2.4.14. Suppose | is odd and A =,y Aa € X¥ x Y.

If G({Ag la € YY" . X x Y1) s determined, then G(A; X¥ x Y1) is determined. -

Proof.
Assume G((A, |a € YY" ; X¥ x Y1) is determined. Then I* or IT* has a winning strategy
s* for G((Aq|a € YY1, X x Y,
Case 1 : s* is a I*’s winning strategy for G((A, |a € YY" ; X© x YI+1),
Define I’s strategy for G(A; X x Y!) by s = s*.
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s* I* |Po P2 o Pw Puw+2 v Pwti—1
X@ % Yl+1

Ir* D1 <. Pu+1 cor Putl—2 | Pw+l — aNy Pyt
r|w x| |w,w+1—1] pe (A, lacy)on
s [ |Po D2 ce Pw Puw+2 s Puti-1
Xv xY!
11 D1 tee Puw+1 s Puti—2
T

any a gives x = p [ (w+ 1) € Ay for every pyy
Figure 2.4.7: Tllustration of z € X x Y (I is odd) according to I’s strategy s (corresponding
to the (<) direction of the equivalence (2.6) on page 85).

Show s is a winning strategy for I for G(A; X¥ x Y!). Pick an arbitrary z € X* x Y!
according to s. Then for any a € Y, 27 (a) is according to s*. Since s* is a [*’s winning
strategy for G({(Aq|a € YY" X* x YY) for all a € YV, 27(a) € (Aq|a € V). Hence
T € Npey Aa = A

Case 2 : s* is a [T*’s winning strategy for G((A, la € V)" ; X¥ x Y1),

Define I1's strategy for G(A4; X* x w') by s = s* | T where [T] = X x Y. 18

I* |Po D2 cee Pw Puw+2 s Puti—1
Xw x Yl+1
s*IT* D1 e Puw+1 cor Dwti—2| Puw+l +— ¥ gives Py
rlw rllwwtl=1" pe(4,|aecY)m
I |DPo P2 o Pw Puw+2 s Pwti-1
Xv x Y!
s 11 P1 e Puw+1 s Pwtl—2
T

r=p f (w + l) ¢ Ap(w+l)

Figure 2.4.8: Tllustration of z € X“xY! (I is odd) according to I1I’s strategy s (corresponding
to the (<) direction of the equivalence (2.6) on page 85).

18¢* | T abbreviates s* | (T N dom(s*)).
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Show s is a winning strategy for I for G(A; X x Y!). Pick an arbitrary z € X% x Y!

according to s. Then z~s*(x) is according to s*. Since s* is a [[*’s winning strategy
for G({Ag|a € YY" X x YY), 27s%(z) ¢ (Ag]a € V). Hence = ¢ A+ (). Thus

& & Nuey Aa = A. Therefore, G(A; X x Y?) is determined. O

Recall that we are proving lemmas to obtain the (<) direction of the equivalences (2.4)
through (2.7) of the main lemma (lemma 2.4.6) on 85. Now that we have sublemmas 2.4.13
and 2.4.14, we next compute the complexity of (A, |a € V') for relevant A,’s.

In sublemma 2.4.16, we will find the complexity of (A, |a € V). For X,Y, we first
note that the function (A, |a € V) — (A, |a € YY" from a sequence of subsets of X* x Y

to a subset of X* x Y!*! preserves complementation and unions:

Sublemma 2.4.15. Let I be an index set. Suppose | € w. Let Ay, AL C X% x Y for all

a€Y andi € w. Then
1. <(X“J><Yl+1) \Aa{ aey>10ng: (XWXYZ+1)\<Aa|aEY>long,

2. (Ui Al la € YY" = U, <<A; la € Y>long>' .

Proof.

Show (1).

(X x Y\ A, Ja e Y™ = {h e X x Y R | (w+1) € (X¥ x YY) \ Ay }
= (X x YO\ {h e X x Y™ R T (w+1) € Apry }

= (X x YU\ (AyJa € V).
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Show (2).

<Ui€I AZ ja € Y>long - {h € X x YA (w1)€ Uie] Ai(w-*-l)}

— Uiel {he X x Y™ |h| (w+1) € Al }

U, (¢mer). D

By using sublemma 2.4.15, we will find the complexity of (A, |a € Y)"" for the following
cases: foralla € Y, A, € B0 | X¥ x YHl: foralla € Y, A, € IT} | X¥ x Y!*1; and for all

a€Y, A, € AV | X@ x YL

Sublemma 2.4.16. Suppose | € w. Let A, C X¥ x Y! for alla € Y. Then for any k € w:
1 IfforallacY, A, € 201 X9 x Y, then (A |a € Y)Y € 39 | X¥ x YL,
2. If foralla €Y, A, e TI | X¥ x Y, then (A, |a € YY" € TIY | X¥ x Y1,

Consequently, if for alla €Y, A, € AY | X¥ x Y, then (A, |la € V) € A | X x Y1,

_|

Proof.
We prove both (1) and (2) simultaneously by induction on k. By sublemma 2.4.15 (1), (2)
follows from (1).

Base Case : k = 1.

Show (1). Suppose for all a € YV, A, € 39 | X x Y. Show (A, |a € V)" € 29 |
X¢ x Y1, Pick an arbitrary h € (A, |a € V). Since h(w+1) €Y, h | (w+1) € Apr-
Since Ap(,4q) is open, there is a finite £ C w + [ — 1 such that for any g € X x Y, if

g 2 h | E, then g € Ap4yy. Define E=EuU {w +1}. Pick an arbitrary h e X¥ x Yl
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such that h D h | E. Then h | (w+1) € X* xY'and h | (w+1) 2 h | E. Thus

~

hl(w+1) € Apsny. Since h 2 h | E, h(w +1) = h(w +1). Hence h | (w+1) € Aj)-
Therefore, h € (A, |a € Y. Thus (A, |a € V) € 0 | X« x Y1,

Show (2). Suppose for all a € Y, A, € II? | X x Y'. Show (A, ]a Y)Y ¢
MY | X“ x Y Since for all a € YV, A, € TI? | X¥ x V! (X¥ x Y)\4, € 2V |
X x Y for all a € Y. By above (1), ((X¥x Y1) \A,|a € V) € 20 | X¥ x YL,
By sublemma 2.4.15, {(X* x Y1) \A, |a € V)" = (X* x Y1)\ (4, ]a € Y)'". Thus

(Agla e YY" e TI9 | X« x Y1,

Induction Step : As an induction hypothesis, assume for all a € Y, if A, € 39 | X* x Y,
then (Ayfa € Y)Y € 29 | X x YH! and for all a € Y, if A, € II? | X¥ x Y, then
(Agla e VY e II0 | X x YI+1,

Show(1). Suppose for all a € YV, A, € 0., | X* x Y'. Show (4, |a € V)" €
0.0 1 XY x YL Since for all a € YV, A, € )., | X¥ x Y, for each a € Y, there
exists (Al |i € w) such that A, = [J,., AL and each A% € II} | X x Y'. Since each
Al € TI9 | X x Y!, by induction hypothesis, (A% |a € Y)"™ € IIY | X* x Y"1 By
Alla € Y}lmg. Thus

sublemma 2.4.15, <U Al la € Y>long Yy

€W 1EW <

(Agla € Y)r9 = <U Alla e Y> Y U, (Ailae )™ e, 1 X2 x v
Show(2). We repeat the same proof of the base case for (2). Suppose for all a €
Y, A, € TIY,, | X¥ x Y. Show (A,|a € Y)™ € T, | X¥ x Y*1. Since for all

@€Y, Ay € T, | X x Y, (XX Y)NA, € 20, | X*x Y forall a € Y.

By above (1), ((X“ x Y1)\ A, |a € Y>long € X0, | X¥ x Y. By sublemma 2.4.15,
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(X2 x Y1)\ A, la € V) = (X% x Y1)\ (A, |a € V)", Thus (A, |a € V)" e TIY, | |
X@ x YL,
Consequently, if for all a € YV, A, € AY | X¥ x V!, then (A4,]a e V)" ¢ A? |

X9 x Yyt [l

Now, we prove (<) direction of the main lemma (lemma 2.4.6) on page 85 from sublem-

mas 2.4.13, 2.4.14 2.4.15 and 2.4.16.

Proof of the (<) direction of the main lemma (lemma 2.4.6) on page 85.
Suppose Y is denumerable. Fix m,[ € w.

Assume [ is even. Show the (<) direction of the equivalence (2.4) :
Det (20, | X¥ x Y') & Det (II9,_; | X¥ x Y1)

Recall we already have (=) direction on page 93.

(<) Assume Det (IT9,_; | X¥ x Y'*1). Pick an arbitrary A € 3 | X* x Y'. Since
Y is denumerable and A could be written as a denumerable union of TI?, | sets, there
exists (A,]a € Y') such that A = (J,o As and each A, € II9_; | X“ x Y'. Then by
sublemma 2.4.16, (A, |a € YY" € 19 | | X* x Y*1. Thus G((A, |a € V)" ; X@ x YIH1)
is determined. By sublemma 2.4.13, G(4; X* x Y') is determined.

A similar proof works for the (<) direction of the equivalence (2.5):
Det (A} | X¥ x Y™) = Det (2] | X¥ x Y').

Simply replace 39 by 3¢ and replace I1Y, | by Al.
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Suppose [ is odd. Show the (<) direction of the equivalence (2.6) :
Det (TII0, | X¥ x Y') & Det (9| | X¥ x Y*)

Recall we already have (=) direction on page 94.

(<) Assume Det (29 | | X¥ x Y1), Pick an arbitrary A € II%, | X“ x Y'. Since Y
is denumerable and A could be written as a denumerable intersection of X2 | sets, there
exists (Aq]a € Y) such that A = (,.y 4, and each 4, € ¥ ;| | X x Y. Then by
sublemma 2.4.16, (A, la € YY" € 30 | | X x Y. Thus G((4, |a € )" ; X« x Y1)
is determined. By sublemma 2.4.14, G(4; X* x Y!) is determined.

A similar proof works for the (<) direction of the equivalence (2.7):
Det (A} | X¥ x Y1) = Det (II] | X¥ x Y')
Simply replace II2, by II{ and replace XY | by AY. O

By proofs in 93 and 101, we have lemma 2.4.6.
Now we will show theorem 2.4.5 by repeated application of the main lemma (lemma 2.4.6

on page 85). Recall theorem 2.4.5.

Theorem 2.4.5. ZF-P(folklore)

Suppose n € w and Y is denumerable. Then for anyn € w,
Det (3, | X¥) & Det (A} | X9 x V") :

Proof of theorem 2.4.5.

Pick an arbitrary n € w.
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By lemma 2.4.6 the equivalence (2.4) on page 85 with [ = 0, we have
Det (3 | X¥) & Det (II)_; | X¥ xY).
By lemma 2.4.6 the equivalence (2.6) on page 85 with [ = 1, we have
Det (H?h1 I X“ x Y) < Det (2272 I X% x YZ) .

Continue applying lemma 2.4.6 the equivalences (2.4) and (2.6) alternately.
Case 1 : n is even.

By lemma 2.4.6 the equivalence (2.4) with [ = n — 2, we have

Det (39 | X¥ x Y"?) & Det (ITI] | X¥ x Y"') .
By lemma 2.4.6 the equivalence (2.7) with [ =n — 1, we have

Det (IIY | X x Y"™') & Det (A} | X¥ x Y™").

Consequently, we have
Det (3, | X¥) & Det (IT)_, | X xY) & Det (B)_, | X*xY?) & .-

& Det (89| XY xY"?) & Det (I | X¥ x Y™ ') & Det (A} [ X xY™").

Case 2 : n is odd.

By lemma 2.4.6 the equivalence (2.7) with [ = n — 2, we have
Det (TI | X¥ x Y"?) & Det (37 | X¥ x Y"1).
By lemma 2.4.6 the equivalence (2.5) with [ = n — 1, we have

Det (39 ] X¥ x Y™ ') & Det (A} | X¥ xY™).
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Consequently, we have
Det (X)) | X¥) < Det (IT)_, | X* xY) < Det (E)_, | X* xY?) &

- Det (TI3 | X¥ x Y"7?) & Det (B9 | XY x Y1) & Det (A] | X xY").

Finally, by using the general results for the finite Borel sets for fixed length, we will prove

the main theorem. Recall theorem 2.4.4.

Theorem 2.4.4. (ZF-P)
Suppose T' contains all constant functions from X into w and Y is denumerable. Then

Det G (A} Tree; (X,Y,T,{0,X*})) implies Det (U, ., % | X), finite Borel determinacy

new

on X<v. .

Proof of theorem 2.4.4.
Assume Y is denumerable and Det (AY; Tree; (X,Y,T,{0, X“})). Pick an arbitrary A €

U, =5 1 X, Then there exists n € w such that A € 9 | X“. By theorem 2.4.5,
Det (0 | X*) & Det (AY [ X x Y").

new

By observation 2.4.3, we have Det ({J, ., A} I (X¥ x Y™)). Thus G(A4; X<¥) is deter-

mined. Hence Det (|, Z9 [ X“). O
Corollary 2.4.17.
Det G (A Tree, (X,CTB,T(w, AY), A | X*)) = Det (U = [X“J) RCR

Proof.

Since each constant functions is continuous, I'(w, AY) contains all the constant functions

9Recall notation 1.5.10 for CTB and notation 1.5.8 for I'(w, AY).
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from X¥ into w. Also 0, X¥ € A{ | X¥. Thus, we have the result by theorem 2.4.4. O
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2.4.2 Using X determinacy on a Tree; collection to obtain the
determinacy of games on X<¥

In this section, we will obtain the determinacy of games on X<“ from the determinacy of
open games on a 1'reey collection.

In section 2.4.2.1, we will define a open set Long on a Type 1 tree. Long includes all
plays of the tree which have length greater than w and excludes those of length w.

In section 2.4.2.2, we will define an open set Max on a Type 1 tree. Max is defined only
on Type 1 trees with paths having maximum length. We will obtain the determinacy results

using Maz in sections 2.4.2.3 and 2.4.2.4.

2.4.2.1 Definition of the open set Long(B) on the body of a Type 1 tree and
using the determinacy equivalence of open games Long(A) on a Tree;

collection to obtain the determinacy of games A on X*

In this section, we will define the open set Long on a Type 2 tree and obtain the determinacy

of games A on X<“ from the determinacy of open games Long(A) on a Trees collection.

For this section, it will be convenient to consider for any Type 1 tree T, the length

function lhz.

Definition 2.4.18. (Definition of the length function lhyr)

lhir 2 [T] = w+w
hs 1h(R).

In this section, we will define the open set Long on a Type 1 tree. By definition of
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T = T)\g’f, we can split the body of the tree into two pieces, the “short” piece, lh[_Tl}(w),
which consists of paths of length w, and the “long” piece which consists of paths of length
greater than w. Long is the subset of the body of a Type 1 tree that consists of all plays
of length greater than w. By using this open set, Long, we will obtain the determinacy of

games on X ¥,

Definition 2.4.19. Suppose B C X%, V¥ is a function from X*“ into w and Y is arbitrary.
Define

Long (B) = {h € [Txy]| Ih(h) > w}. 4

Then Long (B) = {h € [T)\?f] | h [ w € B}. This set is the set of plays of length longer
than w. It is easy to see that Long(B) is open in [T)\?f] for any B C X* by taking the finite
set to be {w}: for any h € Long(B), every g € [T)\ff] with ¢ O h | {w} has w € dom(g) and
thus it is in Long(B). Long(B) is open in [T )‘?5 | even if B is a collection of nondetermined

sets. Also, the complement of Long(B);

[Ty \Long (B) = {h € [Txy]| th(h) = w} = {h € [Tyy]| h | w € X“\B}
is closed in [T)\I(j”g | for any B C X“. Note that the complement of Long (B) is open in [T)‘l(j:,]/3 ]

if and only if B is closed in X“. Hence Long (B) is clopen if and only if B is closed. In

general, for n € w, {h € [T)‘fg] | Ih(h) > w +n} is open.

Theorem 2.4.20. For any X,Y, ¥ : X* = w, for any A C X*,

G (A; X¥) is determined if and only if G(Long (A) ;T)?’{é) is determined. =

Proof.
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Fix XY, ¥: X¥ - wand A C X% arbitrary. Recall

he[T;’ﬂH h e X¥ ifhlwéeA,
he XY xYYhw+l 4f b [ w e A.

(<) Assume G (A; X¥) is determined. Then [ or /] has a winning strategy s for G (A4; X*).
Define s* to be such that s* [ X<“ = s and play anything after that to finish the play. Show
s* is a winning strategy for G(Long (A) ;T)\g’;‘ ). Pick an arbitrary f € [T ;’{,‘] according to
s*.

Case I : s is a winning strategy for I.
Since f | w is according to s, f [ w € A so that (A(f) > w. Thus f € Long (A).

Case II : s is a winning strategy for I1.

Since f [ w is according to s, f [ w ¢ A so that [h(f) = w. Thus f ¢ Long (A). Hence

G(Long (A) ;T;’é ) is determined.

(=) Assume G(Long(A); T )\I(’é ) is determined. Then I* or II* has a winning strategy
s* for G(Long (A) ;T)‘I(’”é). Define s = s* | X<¥. 20 Show s is a winning strategy. for
G (A; X¥). Pick an arbitrary f € X according to s. Play according to s* after f, call it g,
until fog € [T)‘f{}]

Case I : s* is a winning strategy for I*.
Then f~g € Long (A) so that g # ), i.e., f € A. Hence s is a winning strategy for I for
G (A; Xv).

Case II : s* is a winning strategy for [1*.

Then f~g ¢ Long (A) so that f~g € X, ie., g = (), hence f ¢ A. Hence s is a winning

20g* | X<« abbreviates s* | (X<% N dom(s*)).
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strategy for 11 for G (A; X¥). Thus G (A; X¥) is determined. O
The following three corollaries follow from theorem 2.4.20.
Corollary 2.4.21. For any X,Y, ¥ : X¥ — w and A,
Det G (X9; Tree; (X,Y, U, A | X¥)) = Det (A ] X¥). .

Proof.
Pick an arbitrary A € A | X*. Fix X,Y and ¥ : X* — w. Then, Long(A) € Xy | [T)\?é]

Thus G(Long(A); T)\I(’”é) is determined. By theorem 2.4.20, G(A; X<¥) is determined. O

Corollary 2.4.22. (Corollary to Corollary 2.4.21)

Foranyacw,new, XY and ¥ : X¥ — w,

Det G (%;Tree; (X,Y, ¥, 50 | X¥)) = Det (22 | X¥).

Det G (X0;Tree; (X,Y, ¥, 3, | X¥)) = Det (2, | X¥). 4
Proof.

By corollary 2.4.21 with A = 3% and A = X! O

Corollary 2.4.23. (Corollary to Corollary 2.4.21)
Suppose X is a nonempty set, © is an arbitrary collection of sets, I' is any collection of

functions from X“ into w and A is a collection of nondetermined sets on X¥. Then,
—Det G (XV; Tree; (X,0,I,A | X)) . =

Proof.
Assume A is a collection of nondetermined sets. Then —Det(A | X). By corollary 2.4.21,
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—Det (X9; Tree; (X,Y,¥,A | X¥)) for any Y and ¥ : X* — w, i.e.,
—Det G (Eg;Treel (X,0,T,A [X“’)) .

In fact, G(Long(A); T )\I(’é ) is not determined for any nondetermined set A C X*“ and any

X,Y and function ¥ from X into w. O
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2.4.2.2 Definition of the open set Maz (¥, B) on a Type 1 tree

In this section, we will consider Type 1 trees T;’f such that ¥ | B is bounded below w. We
will define the open set Max(V, B) on a Type 1 tree. This open set is defined only on Type
1 trees with height bounded below w +w. Max consists of all plays of the maximum length.

In sections 2.4.2.3 and 2.4.2.4, we will obtain some determinacy results using Max.

Definition 2.4.24. (Definition of Max)
Suppose W | B is bounded below w. Let nY:B be the mazimum tail length determined from W

max

and B. (%8 = max(Im(¥ | B))+1.) If ¥ and B are clear from the context, we suppress

max

v,B

max-*

U and B, i.e.Npaxy =N

Define

Maz (U, B) = {h € [Ty¥]| Ih(h) = & + Nupax} = zh[—Tg,B (@ + Ninax). .

X,Y]
It is easy to see that Max (¥, B) is open in [T° ;’5 ]. In general, if n is not the maximal

length, {h € [T;f] | th(h) = w + n} may not be open.

2.4.2.3 Using the determinacy of open games Max(x 4, X“) on a Tree; collection

to obtain the determinacy of games A on X<¥

In this section, we will obtain the determinacy of games A on X <% from the determinacy of
open games Maz(xa, X¥) on a Tree; collection. Let A C X*“. We will consider the case
for the Type 1 tree T)\I(’”f in which U is the characteristic function x4 of A and B = X¥.

By using x4, we can split the body of the tree T'= T}g}XW into two pieces, lh[_Tl] (w—+1) and
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lh[_Tl](w—i—Q). Recall
xa: XY —{0,1}

0 if f ¢ A,

1 if fe A

Note that

X heXv if h|wée X%,
h € [TXAY’ ] “
h e X% x Yxalhlo)tl §f b 1w e Xv,

heX“xY ifhlwé A,

he X*xY? ifhlwéeA.

Thus Vh € T34,
w+1l ifhJwe XY\A,
lh(h) =
w+2 ifhJweA

XUJ
Hence, for tree T3, Nuax = 2 and

Maz (x4, X?) = {h € [T ]| Ih(h) =w+2} = {h € [T ]| h [ w e A},

Theorem 2.4.25. For any A C X¥,

G (A; X¥) is determined if and only if G(Max(xa, X*); ngf‘}}Xw) is determined.

Proof.

Pick an arbitrary A C X*.

(2.8)

(=) Assume G(A; X<¢) is determined. Thus [ or II has a winning strategy s for

G(A; X=¥). Define s* to be such that s* | X<¥ = s and play anything after that to finish

the play (note that there is no play of length w in T;? w). Show s* is a winning strategy
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for G(Maz (x4, X%) ;T;gg}xw). Pick an arbitrary h € [T)’gg}xw] according to s*. Then h | w
is according to s.

Case 1 : s is a winning strategy for I for G(A; X<%).
Then h | w € A. Thus the length of h is w + 2 so that h € Max (xa, X*). Hence s* is a
winning strategy for I* for G(Max (x4, X*) ;ngj;;X“).

Case 2 : s is a winning strategy for I1 for G(A; X<).
Then h [ w ¢ A. Thus the length of h is w + 1 so that h ¢ Max (x4, X*). Hence s* is a

winning strategy for I7* for G(Max (x4, X*) ;Tjgg;xw).

(<) Assume G(Mazx (x4, X%) ;T}ﬁ}xw) is determined. Thus I* or I7* has a winning
strategy s* for G(Max (x4, X?);T¥4" ). Define s = s* | X<“. 2! Show s is a winning
strategy for G(A; X<¥). Pick an arbitrary f € X*“ according to s. Then f is according to
s*. Thus f € ngj;;X“ (note that there is no play of length w in T)\I(’ff w). Then play g € Y<¥
according to s* to get f g € [T)’gg}xw].

Case 1 : s* is a winning strategy for I* for G(Max (x4, X*) ;T)’gﬁ}xw).

Then f~g € Max (x4, X%) so by equation (2.8) on page 112, f € A. Thus s is a winning
strategy for I for G(A; X<%).

Case 2 : s* is a winning strategy for IT7* for G(Max (x4, X*) ;ngg}xw).

Then f~g ¢ Max(xa, X*) so by equation (2.8) on page 112, f ¢ A. Thus s is a winning

strategy for 11 for G(A; X<¢). Therefore, G(A; X<“) is determined. O

Observation 2.4.26. Suppose = is a complezity (in which = | X* C o (X¥) is defined).

2Lg* | X<¢ abbreviates s* | (X<“ N dom(s*)).

113



For any A € = | X¥, the characteristic function x4 on A is in I'(w,2-E) = I'(w, E A co-E).

_|

Proof.

Pick an arbitrary O C w. Then O =, ., {n}. Recall

neo
Xa: X¥—{0,1}
0 if f & A,
fr=
1 if f e A
Case1:0,1€ 0.
Then x;'(0) = X¥ € AY | X«
Case 2: 1f 0,1 ¢ O.
Then x;'(0) =0 € A9 | X“.
Case3: 0¢ Oand 1€ O.
Then x,'(O) = A€ Z ] X%. Since A= AN X%, x;'(0) €EZ | X¥ A co-Z | X¥.
Case4: 0€Oand1¢O0.
Then x;'(0) = X“\A € co-Z | X¥. Since X“\A = X“N(X“\A), x;' (0) €| X¥Aco-Z |
X,
Thus x,'(0) € Z | X¥ Aco-Z | X¥ for any open O C X. Since Z [ X¥ Aco-Z | X¥ =

221 X% x4 € I'(w,2-2). ]

The following corollaries are direct results from theorem 2.4.25. Determinacy of any
game A of length w can be obtained from the determinacy of open games Maxz(y4, X*) on

a particular T'ree; collection.
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Corollary 2.4.27. For any X,Y and complexity =,
Det G (X0;Tree; (X,Y, {xa|A€Z] X}, X¥)) = Det (E | X¥).

Thus,

Det G (2% Tree; (X,Y,T(w,2-2), X¥)) = Det(Z | X¥). 4
1

Proof.

Fix X, Y. Pick an arbitrary A € = [ X*“. Then
G(Max (xa, X°);TXAY) € G (29 Treer (X, Y, {xa|A €2 X¥},X¥)).

Thus G(Max(xa, X¥); T;gg}xw) is determined. By theorem 2.4.25 G(A; X*) is determined.
Hence

Det G (XV; Tree; (X,Y,{xa|A€E | X}, X¥)) = Det (Z | X¥).
Since xa € I'(w, 2-Z) by observation 2.4.26,

Det G (2% Tree; (X,Y,T'(w,2-2), X)) = Det(Z | X¥). O
1

Corollary 2.4.28. (Corollary to Corollary 2.4.27)
For any o € wy and any X,Y,
Det G (X9; Tree; (X,Y,T'(w, 2 ATI2), X¥)) = Det(X0 | X¥).
Det G (20; Tree; (X,Y,I(w, AY), X)) = Det(A | X¥). 4
Proof.

By corollary 2.4.27 with = is 3% and AY. O
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2.4.2.4 Using the determinacy of open games Maz(y4, B) on a Tree; collection

to obtain the determinacy of games AN B on X<¥

In this section, we will obtain the determinacy of games AN B on X <“ from the determinacy
of open games Max (x4, B) on a Tree; collection. Let A C X“. In section 2.4.2.3, as a special
case of Type 1 tree, we considered Type 1 trees T;’{f such that B = X% and ¥ to be the
characteristic function x4 of A. In this section, as a generalization of trees in section 2.4.2.3,
we will consider Type 1 trees ng{f such that B is an arbitrary subset of X* and ¥ to be
the characteristic function x4 of A.

Suppose A, B C X“. Note that

. heX® if h | wé¢ B,
he |17
h e X¥ x Yxall)tl §f p 1w e B.
heXx® if h | wé¢ B,

Y heX¥xY ifh[wée B\A,

heX*xY? ifhlwe ANB.

Thus Vh € [ngg}B} :
w if h | we X“\B,
Ih(h) =9 w+1 if h|we B\A,

w+2 ifhlweANB.

\

Hence for the tree T ;gg}B, nXaB =2 and
Maz (x4, B) = {h e [T Ih(h) =w+2} ={he [T |hfwe ANB}.  (29)

Thus, in this case, we consider the game AN B on X*.
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Theorem 2.4.29. For any A, B C X*,

G(AN B; X¥) is determined if and only if G(Maz (x4, B); TX%P) is determined. -
XY

Proof.
Pick arbitrary A, B C X“.

(=) Assume G(A N B; X<¥) is determined. Then I or I has a winning strategy s for
G(AN B; X<¥). Define s* to be such that s* [ X<“ = s and play anything after that (if
needed) to finish the play. Show s* is a winning strategy for G(Max (x, B) ;T;gg;B). Pick
an arbitrary h € [T%}B] according to s*. Then h | w is according to s.

Case 1 : s is a winning strategy for I for G(AN B; X<¥).

Then h | w € AN B. Thus the length of h is w + 2 so that h € Max (xa, B). Hence s* is a
winning strategy for I* for G(Max (x4, B) ;T)?“X}B)_

Case 2 : s is a winning strategy for I for G(AN B; X<¥).

Then h [ w ¢ AN B. Thus the length of h is w or w+ 1 so that h ¢ Max (x4, B). Hence s*
is a winning strategy for I7* for G(Max (xa, B) ;ngg}B).

(<) Assume G(Mazx (xa, B) ;ng;;B) is determined. Then I* or I7* has a winning strat-
egy s* for G(Mazx (x4, B) ;Tjgg}B). Define s = s* | X<¥. 22 Show s is a winning strategy
for G(AN B; X<¥). Pick an arbitrary f € X“ according to s. Then f is according to s*. If
fe [ng}B], thenlet g =0. If f € T)’gg}B play g € Y<¥ according to s to get f~g € [T)’gg}B].

Case 1 : s* is a winning strategy for I* for G(Max (x4, B) ;ngﬁ}B).

Then f~g € Max (xa, B) so by equation (2.9) on page 116, f € AN B. Hence s is a winning
strategy for I for G(AN B; X<¥).

Case 2 : s* is a winning strategy for I7* for G(Max (xa, B) ;T;g}B).

22g* | X<¢ abbreviates s* | (X<% N dom(s*)).
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Then f~g ¢ Max (xa, B) so by equation (2.9) on page 116, f ¢ AN B. Hence s is a winning

strategy for 11 for G(A N B; X<¥). Therefore, G(AN B; X<¥) is determined. H
The following corollaries are direct results from theorem 2.4.29.
Corollary 2.4.30. Suppose =Z1,=5 are complexities. Then for any X,Y,
Det G (X0;Tree; (X,Y,{xalA €1 | X¥},Z5 | X¥)) = Det((Z1 AZp) | X¥).  (2.10)
Similarly,

Det G (X0;Tree; (X,Y, {xa|A€Z: | X} 21 | X¥)) = Det((E; AZp) | X¥).  (2.11)

Proof.
Fix X,Y. Pick an arbitrary A € (21 A Z) [ X¥. Then there exists B € Z; [ X* and
CeZy | X¥such that A=BnNC.

Show the implication (2.10).

max

Since x5 € {x4| A e = | X¥}, we consider the tree T;gﬁ}c. In this tree, nX2:¢ = 2. Then
Maz (xp,C) = {h € [T¥5 ]| lh (h) =w+2} = {h € [T¥5°] | h [w e BNC}.
Since
G(Maz(xp,C); TX3C) € G (X9 Treey (X, Y, {xa|A €2, | X*},Z5 [ X¥)),

G(Max(xp,C); T§ﬁ}c) is determined. By theorem 2.4.29, G(B N C; X<¥) is determined.
Hence G(A; X<¥) is determined.

Show the implication (2.11).
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Since o € {x4| A € IT) | X“}, we consider the tree T)’gg/’B. In this tree, nX¢:2 = 2. Then

Maz (xc, B) = {h € [TX3"] | th (h) =w + 2} = {h € [TXS"] | h fw e BN C}.
Since
G(Maz(xc, B); TXS") € G (8% Treey (X, Y, {xa|A € [ X¥},21 [ X¥)).

G(Max(XC,B);Tjgg}B) is determined. By theorem 2.4.29, G(C N B; X<¥) is determined.

Hence G(A; X<¥) is determined. O

Corollary 2.4.31. (Corollary to Corollary 2.4.30)

Suppose =1, =9 are complexities. Then for any X,Y,
DetG (X0; Tree; (X,Y,D(w,E1 A co-E1),Es | X¥)) = Det((E1 AZs) [ X¥). (2.12)
Similarly,

DetG (X0; Tree; (X,Y,I(w, Z5 A co-E), 1 | X¥)) = Det((E1 AZs) [ X¥). (2.13)

Proof.
Since {xa|A €= | X} C I'(w,=Z; A co-Z1) by observation 2.4.26, we obtain the impli-
cation (2.12) from corollary 2.4.30 the implication (2.10). Since {xa|A €=y | X¥} C

I' (w, 25 A co-E3) by observation 2.4.26, we obtain the implication (2.13) from corollary 2.4.30

the implication (2.11). O

We list some obvious special case of corollary 2.4.30. We obtain corollary 2.4.32 from
replacing Z; = X0 and =, = H% in corollary 2.4.31. We obtain corollary 2.4.33 from
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replacing Z; = 3! and =, = H}; in corollary 2.4.31.

Corollary 2.4.32. (Corollary to Corollary 2.4.31)

Suppose o, 3 € wy. Then for any Y,
Det G (20 Treey (X, Y, T (w, B3 AILY) I3 | X¥)) = Det((S2 AII5) | X¥).
Similarly,
Det G (2;Tree; (X,Y,T (w, BHAI), 22 | X)) = Det((3o, AITY) | X¥).
We get similar results for projective sets.

Corollary 2.4.33. (Corollary to Corollary 2.4.31)

Suppose n,m € w. Then for any Y,

Det G (XV;Tree; (X,Y,T (w, X, AILY) I, | X¥)) = Det((S, AILL) | X¥).
Similarly,

Det G (X0;Tree; (X,Y, T (w, X, AILL) ,E) | X¥)) = Det((Z) AILL) [ X¥).

In particular, if « = 3 = 1, we can get a 2-IT} set.

Corollary 2.4.34. (Corollary to Corollary 2.4.33) For any Y,
Det G (XY; Tree; (X,Y,T(w, 2-I1}), 2] | X)) = Det(2-I1] | X¥).
Similarly,

Det G (X9; Tree; (X,Y,T'(w,2-IT}), I} | X¥)) = Det(2-II} | X¥).
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Proof.

Note that X} A TI} = 2-T17. O

Question 1. By corollary 2.4.34 on page 120, corollary 2.4.21 on page 109 and corollary
2.4.1 on page 83, all of the following imply Det(2-I1} | X*):

(i) Det G (X% Tree; (X,Y,'(w,2-I1}), X1 | X¥))

(it) Det G (29 Treey (X,Y,T(w,2-I1}), I1} | X¥))

(it7) Det G(X0;Treey (X,Y,T(w,AY), 2-T1} | X¥))

(iv) Det G (2-I1}; Tree; (X,Y,T(w, AY), AY))

What is the relation between (i), (i1), (i1i) and (iv)? =

Recall definition 1.3.23 on page 23. For every n € w, if A € (n + 1)-II} | X“, then
A = A\A; = Ay N XY\A; where Ag € TI] | X and A; € n-IIl | X% (hence X“\A; €
co-n-II} | X*). We obtain corollary 2.4.35 the implication (2.14) from replacing =; = 3
and Z = co-n-II] in corollary 2.4.31 the implication (2.12). We obtain corollary 2.4.35
the implication (2.14) from replacing Z; = co-n-II} and Z, = 31 in corollary 2.4.31 the

implication (2.13).
Corollary 2.4.35. (Corollary to Corollary 2.4.31) For any Y and n € w,

Det G (X9; Tree; (X,Y,T(w,2-IT}), (co-n-II7) | X¥)) = Det(n+ 1-II} | X¥).  (2.14)
Similarly,

Det G (X9; Tree; (X,Y,T'(w,n-IT} A co-n-IL}), I} | X¥)) = Det (n+ 1-IT; [ X*). (2.15)
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Proof.
Since{xa |A € I} | X*} C T (w,2-I1}) and {x4|A € con-II} | X¥} C

I (w, n-II} A co-n-II3}) by observation 2.4.26, we have the results by corollary 2.4.31. O

Question 2. By corollary 2.4.35 on page 121, corollary 2.4.21 on page 109 and corollary

2.4.1 on page 83, all of the following imply Det(n + 1-TI} [ X*):

(i)  Det G(X0;Tree, (X,Y,T'(w, 2-I1}), (co-n-T1}) | X*))

(it)  Det G(X9;Tree, (X,Y,T(w,n-II} A co-n-I1}), I} | X¥))
(it7) Det G(X9;Treey (X,Y,T(w, AY),n + 1-I1] | X¥))

(i) Det G (n+ 1-II}; Tree; (X, Y, T'(w, AY), A?))

What is the relationship between (i), (ii), (iit) and (iv)? —
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2.4.3 Using a-I1} determinacy on Tree; collection to obtain a+1-I1}
determinacy on X“ for even a € w;

In section 2.4.2.4, we used Max on certain T'ree; collections to obtain the determinacy
of games on X<¢. In theorem 2.4.29, we obtained the determinacy equivalence of games
G(AN B; X<¥) and G(Max(XA,B);Tjgg}B) for any A, B C X*.

In this section, we will obtain a + 1-II} determinacy on X* for even o € w; from a-II}
determinacy on Tree; collection. Fix a € w; and (Ag|f < a) where each Az C X¥. By
observation 2.4.38 below, dk ((Ag [ < o)) = dk ({(Ag |8 € a)) U (g, Ap). We set A= A,
and B = (g, A so that AN B =, Ag. Thus, we will consider a Type 1 tree T;gﬁ“B

with B = ;. As.

he x* iAW & Ny As,
he [Tﬁ}nﬁ et } - o

he X@ x Yxallotl it b w e Mg, As.

he X if 2 ) w ¢ Nyew Aps

) heXYXY ifh[we (NpeqAs)\Aas

he X xY? ifh|we (N, As

Thus Vh € [T}f—fﬁ’mﬁe”ﬂ,

W ifh T we X9\ MNsen 45,

h(h) =9 w+1 ifh]we (Nsea As)\Aa,

w2 ifhwe Nyen Ape

\
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XA »mﬁe AB
For tree TXj T Npax = 2.

Mazx (XAa? ﬂﬁea A/g) = {h c [T)ﬁ?ﬂﬁea AB}

_ {h c [Tg?nﬁeaﬂ ‘ hlwe ﬂﬁga AB} , (2.16)

, A
We will obtain the determinacy equivalences of a certain game for such Type 1 tree T;ﬁ? Moea 4o

and a dk((As|F < «)) games on X <“. In definition 2.4.36, we will define dk,, ((45 |8 < a)) C
e e ) I observation 2.4.37, we will show that dk.o ((As |8 < o)) = dk (A5 |8 € a)).
Then in theorem 2.4.40, we will show that the determinacy equivalence of a dk ({43 |8 < a))
game on X = and a dk<o ((A |8 < @)U Thraz(Xan, seq As) game on the tree T;Af Neeads
In particular, for even a € w and sequences (A |8 < «) with each Az € II] | X¥, we
will obtain a + 1-TI} games on X< from «o-II} games on a particular Tree; collection in
corollary 2.4.42. As a special case, when « is a limit ordinal and A, € 39 for some \ € wy,
we will obtain a similar result for a-IT} + X9 games on X <% from «o-II} games on a particular

T'reey collection in corollary 2.4.44.

First, recall definition 1.3.22 on page 23.

Definition 1.3.22. (Definition of the difference kernel)(Hausdorff, 1944 *3)

-,

Denote the difference kernel of A = (Ag |8 € o) by dk(A) and define

-

dk(A) ={x e [T |uB(x ¢ AgV =) is odd} . -

Given (Ag|f < ) where each Ag C X“, we define dk., ((As]5 < a)) on the tree

XAaNpea A8
Txy )

Zas cited in Welch (1996, p. 1).
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Definition 2.4.36. Suppose o € wy is even and (Ag |3 < a) where each Az C X¥. Fiz a

7ﬂ[36a A

Type 1 tree T;AY"‘ . Define

dk<o ((Ap |8 <)) = {h € [T;j“;’ﬂﬁea AB}

hiwe (), AsAuB(hlwg Ag) is odd}.—|

Notice that if « is even, we have:

dk ({4318 € a)) = { f € X*

&, As ARB(T & Ag) is odd}.

Thus

dkco ({(Ag|B < a)) I X¥ =dk ({(Ag|B € a)).

In fact, we have the following.

Observation 2.4.37. Suppose o € wy is even and (Ag |f < a’) where each Ag C X*. Then
dk<o ({(As |8 < a)) = dk ((Ap |5 € a)) € X¥. 5

Proof.

Notice that since « is even,

dh ({4518 € a)) = { f € X*

F &), AsAuB(f ¢ Ag) is odd }

Also, if h € dkey ((Ag]8 <)), then h € [T ™™ and h | w ¢ My, As so that

h=h | w. Thus
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wé ), Aﬂ/\uﬁ(h[wgéAﬁ)isodd}

M, As A (S & Ag) is odd}

{

:{he[ij-f;nBe“AﬁHh hiwnhg (), AsAub(h ¢ Ag) is odd |
{re
= dk ({4318 € ). -

Since av € wy is even, dk ((Az |8 < a)) could be express as a union of dk ({435 € a))

and (<, A Thus we have the following.
Observation 2.4.38. Suppose a € wy is even and (Ag |8 < a) where each Ag C X*. Then

dk (4318 < ) = dk (4518 € a)) U ([ _ 4s). .

Proof.

Since a € wy is even,

dk ({4518 < a)) = {f € x*

(£ ¢, AsAuB(F ¢ Ag)isodd) v Fe () As}

(f ¢ ﬂﬁ@ A NuB(f & Ag) is 0dd> } U <ﬂ5§a Aﬁ)
= dk ((As|B € a)) U (ﬂﬁga/xﬁ). 0

:{feX“

Proposition 2.4.39. Suppose T' = ng:f is a Type 1 tree. Assume the following:
1. C,D C X¥ and E,F C [T].
2. s is a strategy for X <¥.
3. s* is a strategy for T such that s* | X<¥ = s.

4. for any h € [T] according to s*, h [ w € C if and only if h € E.
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5. for any h € [T] according to s*, h [ w € D if and only if h € F.

Then s is a winning strategy for I for G(C'U D; X<¥) if and only if s* is a winning strategy
for I* for GIEU F;T). Also s is a winning strategy for I1 for G(C U D; X<¥) if and only

if s* is a winning strategy for IT* for G(E U F;T). =

Proof.
Show that s is a winning strategy for I for G(C U D; X<¥) if and only if s* is a winning
strategy for I for G(EU F;T).

(=) Assume s is a winning strategy for /I for G(C' U D; X<¥). Show s* is a winning
strategy for I* for G(E'U F;T). Pick an arbitrary h € [T] according to s*. Then h | w is
according to s. Thus h [we CUD. If h Jwe C,then he E. If h | w e D, then h € F.
Thus h € EU F. Hence s* is a winning strategy for I* for G(E U F; T).

(<) Assume s* is a winning strategy for I* for G(EFUF;T). Show s is a winning strategy
for I for G(C'U D; X<%). Pick an arbitrary f € X*“ according to s. Then f is according to
s*. Play according to s* after f, call it g, so that f~g € [T] (if f € [T], then g = (). Then
f~g € EUF. Since f~g is according to s*, if f~g € F, then f € C and if f~g € F, then

f € D. Thus f € CUD. Hence s is a winning strategy for I for G(C' U D; X<¥).

Show that s is a winning strategy for 17 for G(C'U D; X<¢) if and only if s* is a winning
strategy for [1* for G(EU F;T).

(=) Assume s is a winning strategy for /1 for G(C' U D; X<*). Show s* is a winning
strategy for IT* for G(E U F;T). Pick an arbitrary h € [T] according to s*. Then h | w is

according to s. Thus h [ w ¢ CUD. Hence h [ w ¢ C and h [ w ¢ D. Therefore, h ¢ E
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and h ¢ F. Thus h ¢ E'UF. Hence s* is a winning strategy for I7* for G(E U F; T).

(<) Assume s* is a winning strategy for I7* for G(E U F';T). Show s is a winning
strategy for I1 for G(C' U D; X<¥). Pick an arbitrary f € X*“ according to s. Then f is
according to s*. Play according to s* after f, call it g, so that f~g € [T] (if f € [T], then
g=10). Then f~g¢ EUF. Thus f~g ¢ F and f~g ¢ F. Since f~g is according to s*, f ¢ C

and f ¢ D. Thus f ¢ C'UD. Hence s is a winning strategy for IT for G(C' U D; X<¥). O
By proposition 2.4.39, we obtain the following.

Theorem 2.4.40. Suppose o € wy is even and (Ag|f < a) where each Ag C X*“. Let

T = T;ﬁ?ﬂﬁea Y Then G (dk ((Ag |8 < a)); X<¥) is determined if and only if
G (dk‘<a ((Ag|p < a))UMax (XA‘“ﬂﬁea Ag) ;T)
is determined. -

Proof.

Use proposition 2.4.39 with:

C=dk({Ag]f € a)).

E = dkeq (A58 < )

= Max (XAcmeea A[g)

Then this satisfies property (1) of proposition 2.4.39. By observation 2.4.38,

dk ((Ag|8 < a)) = dk ({458 € a)) U (ﬂ Aﬁ) —CuUD.

BLa
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By observation 2.4.37 and equation 2.16 shows that properties (4) and (5) of proposition
2.4.39 are satisfied.

Show G (dk ((Ap |8 < a)); X=¥) is determined if and only if

G (dk<a (4318 < DU Thtaw (Xar[ ), 42)57)

is determined.

(=) Suppose G (dk ((A5 |8 < a)); X<¥) = G (C U D; X<¥) is determined. Then [ or I/
has a winning strategy s for G (C'U D; X<%). Define s* to be such that s* [ X<¥ = s and
play anything after that. Then this satisfies properties (2) and (3) of proposition 2.4.39. By
proposition 2.4.39, If s is a winning strategy for I for G(C' U D; X<%), then s* is a winning
strategy for I* for G(E' U F;T). If s is a winning strategy for /7 for G(C U D; X<“), then
s* is a winning strategy for I7* for G(E'U F;;T). Thus I* or I1* has a winning strategy for
G(E U F;T). Therefore, G(EU F;T) = G(dk<o ({45 |8 < a)) U Maz(xa,, Ngea Ap); T) is
determined.

(«) Suppose G(dk<o ((A5]8 < a)) U Maz(xa,,geq Ap);T) = G(EUF;T) is deter-
mined. Then I* or I7* has a winning strategy s* for G (F' U F;T). Define s to be such that
s = s* | X=“. Then this satisfies properties (2) and (3) of proposition 2.4.39. By proposition
2.4.39, If s* is a winning strategy for I* for G(E U F;T), then s is a winning strategy for [
for G(C' U D; X<¥). If s* is a winning strategy for I1* for G(E U F;T'), then s is a winning
strategy for I for G(C'U D; X<¥). Thus I or IT has a winning strategy for G(C'U D; X<¥).

Therefore, G (C U D; X<¥) = G (dk ((Ap |8 < a)); X=¥) is determined. O

Now, let’s consider the complexity of each Ag. Recall definition 1.3.23 on page 23.
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Definition 1.3.23. Suppose A is a class of subsets of [T] and A is closed under countable

intersections. Suppose o € wy. Define
a-A T [T] = {A C (1] ‘3/1’: (4518 € a) (each As €A and A = dk:(A)) } . 4

We will consider theorem 2.4.40 with (Ag |8 < «) where each Ag € II} | X“. Then

dk ((Ag|p < a)) € a+ 1-II] | X* where a € w; is even.
Lemma 2.4.41. Suppose a € wy is even. Fiz (Ag|8 < a) where each Ag € II7 | X¥. Then
1 XAaNpea A8
dk<o ((Ag|B < a)) € o-T13 | [TX,Y } . -

Proof.
Suppose (Ag |8 < a) where each Ag € II] | X“. Since each Ag € II} | X¥, there exists
Op € XY | X¥ x w* such that = € Az if and only if for all y € w* (z,y) € Op. For all 3 € a,
define

O = {(hy) € T35 ] s | (h [ w,) € 04
Then each O3 € X9 | [T;ﬁf Noce Aﬁ] X w”. Define
Ag = {h e [T =" vy € w® (h,y) € Oy}
Then Az € IT! | [T;ﬁ?’nﬁe“ Aﬁ]. Also, for all z € [T;g?ﬂﬁea Aﬁ],

~

€ AgeVycw (z,y) €0
S Vyew’ (x w,y) € Op

S lwe Ag.
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Thus

Naca A
dhea ({4518 < a)) = { b € [T =]

JBealhlwd Ag) Auf(hlwd Ap) isodd}

_ {h e [T e )38 € a(h ¢ Ag) A pBlh ¢ Ap) is odd}

€ a-TI! | [ Toee b O
Using theorem 2.4.40 and lemma 2.4.41, we have the following.

Corollary 2.4.42. Assume a € wy is even. Then for any Y,

Det G (a-ILj; Tree; (X,Y,T(w,2-IT}), I} | X¥)) = Det(a + 1-II} | X¥). -

Proof.
Fix Y. Suppose a € w; is even A € a+ 1-II} | X“. Then there exists a sequence

-,

A = (A3|8 < ) witness that A = dk(4) € a+1-II} [ X“. Then (o, As € I} |

’nﬁea Aﬂ

X%, By observation 2.4.26, xa, € ['(w,2-II}). Let T = T;A;‘,’ . By lemma 2.4.41,

dko ((Ag|B < a)) € o-IT} [ [T]. Since Max(xa,,(Ngeq As) € T4 1 [T1,

dk<o ((Ap |8 < a)) U Max <XA°"m,3ea Ag) € o-I1; | [T].

Thus G(dk<o ((Ap |8 < a)) U Maz(xa.,\geqa As); T) is determined. By theorem 2.4.40,

-,

G(dk(A); X¥) is determined, i.e., G(A; X*) is determined. O

Question 3. By corollary 2.4.1 on page 83, corollary 2.4.21 on page 109 and corollary 2.4.27
on page 114, all of the following imply Det(a + 1-I1] | X*¥):

(i) Det G(a+ 1-II}; Tree; (X,Y,T'(w, A?), A?))

(it) Det G(X0;Tree; (X,Y,T'(w, A?), a + 1-I1} | X))

(i11) Det G(X0;Tree; (X,Y,T'(w, a + 1-I1} A co-a + 1-I17), X¥))
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Moreover, if a € wy 1s even, then by corollary 2.4.42,
(iv) DetG (a-I}; Tree; (X,Y,I(w, 2-I17), II} | X¥))

implies Det(a + 1-I1} | X¥).

What is the relationship between (i), (i1), (ii1) and (iv)?

One might notice that when we reduce the complexity of A, the payoff set for the player

I, we raise the complexity of the function ¥ and/or the complexity of B.

Now, suppose a € wj is a limit ordinal.?* As a special case of « + 1-I1}, we will define

a-TI7 4+ X9 sets over a tree T.

Definition 2.4.43. (Definition of o-T1} + X9 | [T])
Suppose a € wy is a limit ordinal. Let A € wy. Suppose T is a tree. Define A € (a-I1] + X9) |

[T if and only if there is a sequence A = (Ag |3 < a) witness that A = dk(A) € a+1-TI} | [T]

and A, € X% 1 [T}, i.e.,

. VB € a(As eI | [T]),
(0TI} +3) 1 [7] = § A C [T] |34 = (458 < )

—,

A, € 30 1 [T] and A = dk(A)

We have a similar result for a-IT; + 39 sets to corollary 2.4.42.
Corollary 2.4.44. Assume a € wy is a limit ordinal and A\ € w. Then for any Y,

Det G (a-IIj; Tree; (X,Y,T(w, E§ AILR), IL; | X¥)) = Det((o-IT} + X3) | X¥).

24Recall that limit ordinals are even.
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Proof.

A similar proof of corollary 2.4.42 with x4, € I'(w, X3 ATI}) by observation 2.4.26. O

Question 4. Suppose a € wy is a limit ordinal. By corollary 2.4.1 on page 83, corollary
2.4.44, corollary 2.4.21 on page 109 and corollary 2.4.27 on page 114, all of the following

imply Det((a-II] + X3) | X¥):

(1)  DetG (a-IT] + X9; Tree; (X,Y,T'(w, AY), AY))

(ii) Det G (a-I1}; Tree; (X, Y, T(w, 29 ATIS), II} | X¥))

(ii1) Det G (X9;Tree; (X,Y,T(w, AY), a-II] + X9 | X¥))

(iv) Det G(X9;Tree; (X,Y,T(w, a-II] + 9 A co-a-IT7 + 29), X¥))

What is the relationship between (i), (ii), (ii1) and (iv)? =

Through out this section, we set that « is even so that a4+ 1 is odd. One might ask for
the case that « is odd, i.e., the case for a + 1 even.

In this section, we generalized the idea of using A N B from section 2.4.2.4 setting
A= A, and B = (g, Ap so that AN B = (5., As. This is because when « is even,

dk ((Ag |8 < o)) = dk ((Ag |B € a+ 1)) and thus we have

dk ({4518 < ) = dk ((Ag18 € a) U (), 4s).

Ba
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However, when « is odd, then a + 1 is even so that

dk (A58 < a)) = dk ({45 ]6 € a + 1))
—{ze[T)|uB(x ¢ AsV B =a+1) is odd}

(€T3 €a+1(z ¢ Ag) Auf(z & Ag) is odd}

{ ‘ ¢ (), As b (a ¢ Ay) isodd}

Thus

ﬂﬁga As & dk ((Ag |8 < ).

Hence we do not obtain the same determinacy result for « is odd using the method we

described.
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2.5 Getting the determinacy of the games on a T'ree;
collection from the determinacy of the games on

X<“ (Reversed direction of section 2.4)

In section 2.4, we obtained the determinacy of games on X <“ from the determinacy of games
on a certain Tree; collection. In this section, we will focus on the other direction, in some
cases, results from section 2.4 leading to the determinacy equivalences. This section is the
main section in this chapter.

In section 2.5.1 through section 2.5.4, we will obtain the determinacy of games on a
certain T'ree; collection such that each tree T)\g’f in the T'ree; collection has a countable Y,
from the determinacy of games on X <¥.

In section 2.5.1, we will give definitions and notations. We will set up all the notations

in this section, e.g., given A C [T)‘? ’5 |, we will define the following notations:

A" for all n € w.

o Ay.

A? for all n € w and g € Y"1

n n+1
A% for all n € w and p € Y <"+

We will use these notations in the later sections.

In section 2.5.2, we will obtain level by level results for the determinacy of open games
on a certain T'ree; collection from the determinacy of games on X<¢“. The main theorems
in this section are theorem 2.5.18 on page 156 and theorem 2.5.20 on page 160.
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In section 2.5.3, we will obtain level by level results for the determinacy of Borel games
on a certain Tree; collection from the determinacy of certain games on X<“. The main
theorems in this section are theorem 2.5.29 on page 167 and theorem 2.5.30 on page 168.

In section 2.5.4, we will obtain level by level results for the determinacy of projective
games on a certain T'ree; collection from the determinacy of certain games on X<“. The
main theorem in this section is theorem 2.5.38 on page 183.

In section 2.5.5, we will discuss the reason we focused on Y to be countable in earlier

sections 2.5.1 - 2.5.4 by using well-known results about uncountable Y = N.
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2.5.1 Getting the determinacy of games on a Tree; collection with
countable Y from the determinacy of games on X<¥

Notation 2.5.1. (Definition of a Tree; collection with/over countable Y')
Let T be a Treey collection. Suppose for every Type 1 tree T)\I(j”{f € T, Y is countable. Then

we say Ty is a “Treey collection with/over countable Y. 25 =

In sections 2.5.2 through 2.5.4, we will obtain level by level results for the the determinacy
of games on a particular Tree; collection with countable Y from the determinacy of games
on X <¥. In section 2.5.2, we will obtain the determinacy of open games on a certain Tree;
collection with countable Y from the determinacy of games on X <. In section 2.5.3, we
will obtain the determinacy of Borel games on a certain T'ree; collection with countable Y
from the determinacy of games on X<“. In section 2.5.4, we will obtain the determinacy
of projective games on a certain Tree; collection with countable Y from the determinacy of
games on X <¥. In this section, we will give definitions and prove some lemmas which we

will use throughout sections 2.5.2 through 2.5.4.

For each Type 1 tree T)\I(/”g and A C [T)\?”g ], we will find A* C X* which will satisfy the

following;:

f € A* if and only if

there is a winning strategy at f in the Type 1 tree T;’g for G(A; Tgf)

2°Note that possibly different Y’s for different T°s. A Tree; collection with/over countable Y does not
mean that Y is fixed.
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We will now describe our A*. Recall from page 48,
T = (BAw () x Y"O(X\B).

We will split A into pairwise disjoint pieces Ay and A™ for n € w. Ay will be a subset of
X“\B and A" will be a subset of B for each n € w. Then we will define Ay for each n € w
and g € Y™ such that if a play f in A* isin Ay, then f~g will be in A. Then, by backwards
induction, we will define Aj from {A7|g € Y™*'} using n + 1 many unions and intersections
(countable unions and countable intersections when Y is countable). Whenever a play f of
A* is in Ajj, there is a canonical strategy at f to get into A. Let A* =, ., Aj U Ap. We

will show that:
o If f € A* then I has a winning strategy at f to get into A.

o If f ¢ A* then I has a winning strategy at f to avoid A.

Definition 2.5.2. Suppose A C [ngf] For each n € w, define
A" = AN ((BNU¥1(n)) x Y™,
Ay = AN (XY\B).

Then A=, A"UAp. .

new

In definition 2.5.3, for each ¢ € Y™, we define Ay © X% as a collection of f € X*
such that f~g € A™. In definition 2.5.4, by backwards induction, we will define for each

i <n+1=1Ih(g), Ay, from {A’(lgmm<m>|m €Y}
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Definition 2.5.3. Suppose A C [T)‘?f] For everyn € w and g € Y™, define

Ay ={feX”|[frgeA"}. .
Since A" C (BNW~!(n)) x Y™ A" C BN W' (n) for every g € Y.

Definition 2.5.4. Suppose A C [T)\?f] For allm € w and for all p € Y<"* define

A" 1k . ;
A”ﬁ mLeJy p~(m) if (p) 18 even
p

mQYAZA<m> if th (p) is odd. _|

Note that for all n € w and for all p € Y=< we have AP Definition 2.5.3 applies if

Ih(p) =n+1.

Observation 2.5.5. Suppose A C [ngf} For all n € w and for all p € Y="*1 A" C

BNY(n). —

Proof.
Pick an arbitrary n € w. Suppose p € Y="*!. The proof is by backwards induction on the
length of p.
Base case : [h(p) =n+ 1.
Then we have A? = {f € X“[fpe A"} C BNVY~'(n) since A" C (BNWY~!(n)) x Y+
Induction step : As an induction hypothesis, assume that for all p € Y=+ if [h(p) =
I+1<n+1, then A? C BNW¥~!(n). Suppose lh(p) = 1. Show A? C BN W¥~!(n). Pick an
arbitrary f € A},
Case 1 : [ is even. Then A} = LGJY A;Z (m)” Then f € AZ“ (m) for some m € Y. Since
Ih(p~(m)) = [+ 1, by induction hypothesis, we have A" .~ C BN ¥ (n). Thus f €

BN ¥ (n). Since f € A7 is arbitrary, A7 C BN W~ (n).
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Case 2 : [ is odd. Then A7 = A;A<m>. Then f € A}(m) for every m € Y. Since
meyY
Ih(p~(m)) =1+ 1 for every m € Y, by induction hypothesis, we have Ay € BN U—1(n)

for every m € Y. Thus f € BNW~!(n). Since f € A7 is arbitrary, A7 C BN¥~'(n). [

For each strategy s* on X<“  we define the canonical strategy s on a Type 1 tree T.

First, we define the canonical strategy for player I.

Definition 2.5.6. (Definition of the canonical tail strategy s for player I)
Fix a Type 1 tree T = T)‘g’f. Let S;(X<¥) be the set of strategies for I on X<“ and let S;(T)

be the set of strategies for I on T. Define
©r - S[ (X<w) — S[ (T) .

For each s* € §;(X<¥), Define s = ¢[(s*) as follows: For p € T\[T] such that either p is

finite and p € dom(s*), or p is infinite and lh(p) is even,

(

s"(p) if p finite,
— ¥ (plw) 26 Y(plw) _ ¥ (plw)
s(p)={ pmey (p e ) <m>> if plweB and plweA, ) mLEJYApr[w,lh(p))“<m>’
| wm(meY’) otherwise,*”

when Y is well-orderable. Then s is a strategy for I for T.
(We define for the case that Y is well-orderable. See footnote (26) for the case that'Y is

not well-orderable.) -

Lemma 2.5.7. Fiz a Type 1 tree T' = T)\?”g and A C [T]. Suppose I* has a winning strategy

s* for G(U, e, Aj U Ap; X=). Then the canonical tail strategy s = ;(s*) is a winning

26,, represents “the least”. If Y is well-orderable, fix a well-ordering of Y. Otherwise, pick any m € Y’
such that p | w € A‘I’F([pr;z( ) ()
pllw,lh(p))” (m
2TThis otherwise case does not occur for plays of interest. If Y is not well-orderable, pick any m € Y.
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strategy for I for G(A;T). -

Proof.
Pick an arbitrary h € [T] = [T;’:{f | according to s. Show h € A. Since h [ w is according to

s, h [ w is according to s*. Since s* is a [*’s winning strategy for G({J, ¢, Aj U Ag; X=),

new
[w € Upeo 45 U Ap.
Case1: hJwe€ B.

Then h [ w ¢ Ay. By observation 2.5.5, h [ w ¢ Aé) for any | # W(h | w). Thus h | w €

A;’(h[w). Since h is according to the canonical tail strategy s = ¢;(s*) for I, h [ w € AEI;L((M»)

Since th(h | (w+ 1)) = w+ 1, by definition, AR = M,y Al ). Thus for any

I'smove m € Y, h | w € A‘I](h ymy* In particular, h [ w € A\WL) h(w+1))" Repeat this

argument. Eventually, we get h [ w € A [ lh(h . Since (h(h | [w,lh(h))) = VU(h | w) + 1,
h=(hlw hT!wlh(h) e AYPW) C A,

Case2: h|w¢ B.
By observation 2.5.5, h [ w ¢ A} for any n € w. Thus h=h [w € Ay C A.

In either case, h € A. Hence the canonical tail strategy s = p;(s*) is a winning strategy

for I for G(A;T). O
Now, we define the canonical strategy for player /1.

Definition 2.5.8. (Definition of the canonical tail strategy s for player I1)
Fix a Type 1 tree T = T)‘Ig”f. Let Sp(X<¥) be the set of strategies for I1 on X<% and let

S11(T) be the set of strategies for II on T. Define

PIr - SII (X<w) — S[[ (T) .
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For each s* € S;;(X<¥), define s = ¢r;(s*) as follows: For p € T\[T] such that either p is

finite and p € dom(s*), or p is infinite and lh(p) is odd,

;

s*(p) if p finite,
— ¥ (plw) 28 Y(plw) _ ¥ (plw)
() “mey<p [wéApmw,zmp)mm) i plweB and plwEAy i ing)= 1 A mm o
um(mey) otherwise,?

\

when Y is well-orderable. Then s is a strategy for I1 for T.
(We define for the case that'Y is well-orderable. See footnote (28) for the case that 'Y is

not well-orderable. ) =

Lemma 2.5.9. Fiz a Type 1 tree T = T)\I(’:g and A C [T]. Suppose s* is a I1*’s winning
strategy for G(U,.c, Aj U Ap; X=°). Then the canonical tail strategy s = pr7(s*) is a winning

strategy for I1 for G(A;T). -

Proof.

Pick an arbitrary h € [T] = [T)\I(j:{/3 | according to s. Show h ¢ A. Then h [ w is according to

s*. Since s* is 11*’s winning strategy for G({J, o, Af U Ap; X=9), b [ w & e, Af U Ap.
Case1: hJwe B.

Since h [ w & U,c, AfUAg, h [ w ¢ Ag’(mw). By definition, A;'(h[w) = Upney AZI;(L;”“’). Thus

for any I'smove m € Y, h | w ¢ Azpn(yw). In particular, h | w ¢ AEI;L((}L{;‘;). By definition,

A;I;L((Zr;;) = Mmey A?h(w))“ (m)” Since h is according to the canonical tail strategy s = prr(s*)

for I, h | w ¢ AEI;Z((]ZJ)“ })L(w L1y Repeat this argument. Eventually, we get h | w = Af[([ﬁrfh)(h)).

Since th(h | [w,lh(h))) =V (h [w)+1, h=(h]w)h | [w,Il}k(h)) ¢ AY*«) By observation

2.5.5, h [ w ¢ Al for any | # ¥(h | w). Hence h ¢ |, o, A"UAy = A.

28,; represents “the least”. If Y is well-orderable, fix a well-ordering of Y. Otherwise, pick any m € Y’
h that AT @) .

such that p Tw & A L ) (m)
29This otherwise case does not occur for plays of interest. If Y is not well-orderable, pick any m € Y.

new
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Case2: h|w¢ B.

Since h [ w ¢ U,e, Af U Ag, b = h [ w ¢ Ay. By observation 2.5.5, h [ w ¢ Aj for any

n € w. Hence h ¢ |J _ A"UAy = A.

new
In either case, h ¢ A. Hence the canonical tail strategy s = ¢;;(s*) is a winning strategy

for 11 for G(A;T). O

Let o = pUprr. Then ¢ takes strategies on X <% to strategies on T;’f. By lemmas 2.5.7

and 2.5.9, we have the following.

Theorem 2.5.10. If G(U,,c,, Aj U Ap; X*) is determined, then G(A; T;g’f) is determined.

_|

Now, we will find the complexity of Ajj for each n € w assuming some fixed complexity

for each Aj.

Lemma 2.5.11. Suppose n,m € w, m > 1 and a € wy.
1. If for all g € Y™, A% € 30 | X¥ and Y is finite, then A} € X9, [ X,
2. If for all g € Y™, A} € 30 1 X% and Y is denumerable, Aj € Eg+w PG
3. If for all g € Y™, A} € 31 X and Y is countable, then A € 3L X,
4. If for all g € Y™, A} € IT} | X“ and Y is countable, then Ay € I | xv.
5. If for all g € Y™, A} € Al 1 X¥ and Y is countable, then Ap € Al T Xw,

6. If A is an algebra, for all g € Y™, Ay € AT XY and Y 1s finite, then Aj € A | X*.

7. If A is a o-algebra, for all g € Y1, Ay € A X¥ and Y is countable, then Aj € A |
Xv, a
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Proof.

Fix n € w. Then

U N - U A, ., ifniseven,

A(VBL — ag€Y a1€Y ancy 7

U N - N A, ., ifnisodd

ag€Y a1€Y ancy 7

Show (1). Suppose for all g € Y™, A% € 37 | X“ and Y is finite. Prove A7 € 30 [ X
by backwards induction on the length of p € Y7+,

Base Case : lh(p) =n+ 1.

Then p € Y"*'. Thus A7 € X9 [ X*.

Induction Step : Let k& < n. Assume, as an induction hypothesis, for any p € Y<"*! such
that [h(p) = k+ 1, A7 € X9 | X* for some [ € w. Pick an arbitrary p € Y=""! such that
lh(p) = k.

Case 1 : [h(p) is even.

Then LEJY APy € 2o [ X¢ since 3 [ X is closed under finite unions.

Case 2 : [h(p) is odd.

Then AZ” (my € 30 1 X% since X9 | X“ is closed under finite intersections.

meyY

In particular, when k = 0, Aj € 39

ate | X©.

Show (2). Suppose for all g € Y"1, Ay € 30 | X¥. Suppose Y is denumerable. Prove
Al e 30, | X¥ for some | € w by backwards induction on the length of p € Y="*+1.

Base Case : lh(p) =n + 1.
Are 30| X,

Induction Step : Let k& < n. Assume for any p € Y="*! such that lh(p) = k + 1,
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A} € 30 1 X¥ for some | € w. Pick an arbitrary p € Y="*! such that lh(p) = k.

a—+l
" mLEJY Ay € 01X if k is even,
p =
M A €TI0, [ X O, [ X% if ks odd.
meyY

Thus A7 € X9, | X¥.

X,

o+w

In particular, when k = 0, Aj € 39

Show (3). Suppose each A7 € 3, [ X* and Y is countable. Since 3, is closed under
countable unions by lemma 2.3.22 and 3! is closed under countable intersections by lemma
2.5.13 below, by the similar argument as (1) (replace 3° to X! and finite to countable), we
have Aj € 3, | X*. Similarly for (4), the case for IT}, and (5), the case for A},

Show (6). Suppose A is an algebra, each Ay € A [ X* and Y is finite. Since A is closed
under finite unions and finite intersections, by the similar argument as (1) (replace X9 to
A), we have Ay € A [ X“.

Show (7). Suppose A is a o-algebra, each Ay € A [ X¥ and Y is countable. Since A is
closed under countable unions and countable intersections, by the similar argument as (1)

(replace X2 to A and finite to countable), we have A7 € A [ X*. O
Next, we will find the complexity of Ay and A} for each g € yntt

Lemma 2.5.12. Let n € w be arbitrary. Suppose Ny and Ay are complexities. Suppose

Uln)eAy | X¥, BeA | XY and Ae XV | [Tgf} Then for every g € Y"1,
Al e (BYA N AN | XY and A € (29 Aco-Ay) | X, =

Proof.

Pick arbitrary n € w and g € Y"™!. First, we consider Ajy. Since g € Yyt g £ (. Since

145



Ae | [Ty,
A" =AN((BNU 1) x Y™™ e X 1 (BNTU 1 (n)) x Y™,

Thus there exist (O; |i € w) such that A" =, O; where each O; is a basic open neighbor-

hood of (BN ¥t (n)) x Y™ ie., there exists p; € X< and ¢; € Y™ such that
Oi={he BNE ') xY" ' |hlwDp AR [w,w+n+1) =g}
Define G = {i € w|g; = g}. Then

TLdf w ~ n
Ay ={feX¥|frge A"}

:{fEXw fAQEUOi}

= J{rex“|fgeoi}

€W

=Jlrexeifgeos

1eG

(*) w —1

= BE)
U{f€X|f_@}ﬂ¢ (n)n _B_
i€G Aol X Ap[X

'

201X
€ (ZEYAAAA) | XY

[Proof of (x)]

(C) Pick an arbitrary f € U, {f € X“|f g € O;}. Then Ji € G such that f~g € O;.
Thus f D p; and ¢ = ¢;. Since f°g € [T)\?f] and g € Y™ f € U~l(n) N B. Hence
feUalf € X*1f 2p) U ()N B.

(D) Pick an arbitrary f € Uica{f € X¥| f 2 p;} NP~ (n) N B. Then 3i € G such that
fop;and f e U~1(n) N B. By the tail exchange property of the tree T;?:g, Vg € Yntl
frge [T;’f] In particular, f~g € [T)\?f] Since i € G, ¢; = g. Thus f~g € O;. Hence
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feUia{f € X*|fg€0i}. O(+)
Now, we consider Ay. Define J = {i € w|g; = 0}. Then for all f € X¥,

fedpe feAn(X\B)< fedjeJ(f Dop)N X\B .
S—— ~ ~ S——
co-Aq [ X« 2(1) [ Xw co-N1 [ X ¥

Thus Ay € (X9 Aco-Ay) | X¥. O

By lemmas 2.5.12 and 2.5.11, we obtain the complexity of Ay and A} for all n € w
and g € Y™ from the complexity of B and ¥. In the next section, we will obtain the
determinacy of open games on Tree; collections from the determinacy of games on X <% by
using theorem 2.5.10 lemma 2.5.11 and lemma 2.5.12.

We used lemma 2.5.13, well-known closure property of projective sets, in the proof of
lemma 2.5.11. Sierpinski showed this property in 1928 (as cited in Moschovakis, 2009, p.
47). The following is a proof for this property. Readers familiar with this proof may skip

the rest of this section.
Lemma 2.5.13. Let n € w\{0}.
1. 3L 1 X% is closed under countable intersections.
2. TIL | X% s closed under countable unions. -

First, we prove sublemma 2.5.14. Given S* C X% x w* x (w*)*, we will define S¥,_ in
definition 2.5.15 by using sublemma 2.5.14. Then we will prove sublemma 2.5.17 by using
sublemma 2.5.16. We will use sublema 2.5.17 to prove lemma 2.5.13. The proof of lemma

2.5.13 is on page 154.
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Sublemma 2.5.14.
1. N¥ is homeomorphic to N .

2. For any k € w, N* is homeomorphic to N . B

Proof.

Show (1). Fix a bijection 7 : w X w L . Define

onto
Q: N — N¥
fr{faln€w)

where each f, (i) = f (7 ((n,i))).

Show ¢ is a homeomorphism.

1. Show ¢ is one to one. Suppose f,g € N such that f # g. Show p(f) # ¢(g).

Since f # g, there exists k € w such that f(k) # g(k). Since 7 is a bijection, there

exists n,4 € w such that 77! (k) = (n,i). Then
fu (i) = f (w((n,))) = [ (k) # g (k) = g (7 ({n,7))) = gn (i)
Thus f, # g,. Hence

e(f)=(faln€w)# (gnln€w)=0(g).

2. Show ¢ is onto. Pick an arbitrary (f,|n € w) € N¥. Since 7 is a bijection, for each

k € w, there exists ny, i, € w such that 7! (k) = (ny,ix). For each k € w, define
[ (k) = fu (ir) -

Then f € N. Since each f,, (ix) = f (k) = f (7 ((ng,ix))), ¢ (f) = (fu|n € w).
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3. Show ¢ is continuous. Pick an arbitrary O € XY | N*. Show ¢! (O) € X¢ | V. Since

0 e 30 [ N¥, O =, O where each

O, = H]@ U

and

e cach Ul € I0 [ V.

o for each | € w, B' = {j € w|U! # N} is finite.

Pick an arbitrary f € ¢! (O). Then ¢ (f) = (f, |n € w) € O. There exists j € w such
that ¢ (f) = (fu|n € w) € O;. For each j € E', f; € U]. Since U} € XY | N, there

exists finite F/ C w such that for any g; € N with g; 2 f; | F}, g; € U}. Define
G'={k|Fje E'(m " (k)€ E' x F}) }.

Since E' is finite, each F]l is finite, and 7 is a bijection, G! C w is finite. Pick an arbitrary
g € N such that ¢ D f | G'. Show g € =1 (0). Show ¢ (g) = {gn |n € w) € O,. Pick

arbitrary j € E' and i € F}. Then 7 ((j,7)) € G'. Thus

9 (1) = g (w ((4,)) = [ (7 ((5,2))) = f; (i) .

Since i € F} is arbitrary, g; 2 f; | F}. Thus g; € U}. Since j € E' is arbitrary, for

each j € E', g; € UL Thus ¢ (g) = (gn In € w) € O; € O. Therefore, g € ™" (0).

4. Show ¢! is continuous. Pick an arbitrary O € X{ | N. Show ¢ (0) € X{ | N¥.
Pick an arbitrary (f,|n € w) € ¢ (O). Then there exists f € O such that ¢ (f) =
(fuln € w). Since O € XY | N, there exists finite G C w such that for any g € N, if
g2 f1G,geO. Let F={j|Fiecw(nm({(ii)) € G)}. Since G is finite, F' is finite.
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For any j € F, define
Uj={heN|Vicwif m({j,i)) € G then h (i) = f; (i) }.
Since G is finite, each U; € X9 | N. Define

E: Hj

JEW
where

Uj if 7 € F,

N otherwise.

Then E € 39 | N¥. Show E C ¢ (O). Pick an arbitrary (g, |n € w) € E. Then for any
JjEeF, gi €U Let ¢ (9) = (g |n € w). Show g € O. Since for every j € F, g; € Uj,
for any j € F and i € w, if 7 ((j, 7)) € G, then g; (i) = f; (¢). Thus for any ¢,j € w, if
7 ((i,7)) € G, then g; (i) = f; (). Hence for any k € G, g(k) = f(k). Therefore, g € O

so that E C ¢ (O). Hence ¢ (0) € ¢ | N¥.

Consequently, by (1)-(4), ¢ is a homeomorphism.
Show (2).

Pick an arbitrary k£ € w. Fix a bijection 7 : k X w l;tl> w. The rest of proof is the same as
onto

the proof of (1). O

Definition 2.5.15. Let k,i € w. Suppose p is the homeomorphism defined in 2.5.14 and

for each h € w*, p(h) = (h, |n € w). Suppose S* C X x w* x (w*)*. Define

Szki = {<f, h,gl, ,gk> € X% xw¥ x (w“’)k ‘(f, hi7g17 ,gk> S Sk} . =
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Sublemma 2.5.16. Let k,i € w. Suppose p is the homeomorphism defined in 2.5.14 and
for each h € w*, p(h) = (h, |n € w). Suppose S*¥ C X* x w* x (w*)k. Then
(X% xw? x (w))\SE = ((X¥ x w x (w)*)\S¥) .. -
Proof.
Fix k € w and S* C X* x w® x (w¥)F.
(X % w? x (@)*) \Si
- (Xw X w x (ww)k) \ {(f? h? g1, "‘7gk:> € XY X w* x (ww)k ‘<f7 hiagla 7gk> S Sk}

= {<f7 hugla 7gk> € X¥ x w” X (ww>k |<f7 hi7g17"'7gk> € (Xw X w* X (ww)k) \Sk}

= (0w @)\, 0

Sublemma 2.5.17. Suppose n, k,i € w. Suppose ¢ is the homeomorphism defined in 2.5.14

and for each h € w*, @(h) = (h, |n € w). Suppose S¥ C X x w* x (w*)*.

1. If Sk € BL 1 (X% x w? x (w)k), then SF, € BL 1 (X% x w® x (w*)").

2. IFS* € IIL | (X% x w¥ x (w*)¥), then SF, € TIL | (X x w* x (w*)b). N
Proof.
We prove both (1) and (2) simultaneously by induction on n. (2) follows from (1) and
sublemma 2.5.16.

Base Case : n = 0.

Pick an arbitrary k € w.

Suppose S¥ € B9 | (X x w* x (w¥)*). Show S¥. € B9 | (X x w* x (w*)*).
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Pick an arbitrary (f,h,g1,...,gx) € S¥. Then (f, hi, g1,...,gr) € S*. Since S¥ € X9 |
(X% X w* x (w‘*’)k), there exist finite /' C w, H; C w and G; C w, 1 < i < k such that
for all (z,y,z1,...,2,) € XY X w* x (w)¥, if x D f [ F, y D h; | H;y and for all 1 < i < k,

2 D gi | Gy, then (x,9y, 21, ..., z) € S*. Define

0= HjEw Us

where

{yewly2hi [ Hi} j=i,

N otherwise.
Then O € ¢ | N¥. Since ¢ : N' — N* is continuous, ¢! (0) € ¢ | N. Let H = ¢~ (0).
Suppose y € w* and y D h [ H. Then ¢ (y) = (y,|n € w) € O so that y; D h; | H;. Thus
for all (z,y,21,...,2k) € X¥ xw* x (W) if x D f | F,y D h | H and for all 1 < i <k,
2 D g; | Gy, then (x,y;, 21, ..., zx) € S¥. Hence, for all (z,y, 21, ..., 2) € X¥ X w* x (w*)¥, if
r D f | F,y2h| Handforall 1 <i<k, 2 2g |G then (x,y,2,..., 2) € SF.. Thus
Sk € 30 1 (X% x wv x (w*)F).
Suppose S¥ € TIY | (X* x w® x (w*)¥). Show SF. € TI9 | (X% x w® x (w®)*). «-- (%)

Since S¥ € ITY | (X¥ x w x (w*)F), (X% x w* x (w?)*) \S* € B9 | (X¥ x w” x (w*)¥).

Since we have already shown (1) for n = 0, we have:
((X* x w” x (w*)¥) \Sk)ii € XY 1 (XY x w? x (w)h).
By sublemma 2.5.16,

(X% x w” x (W) ) \SE = ((X¥ x w” x (w*)*) \S*)

it
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Thus (X% x w® x (w*)¥) \SE € 29 | (X x w” x (w*)¥). Hence
SFETI) | (X% x w x (w?)h).

Induction Step : Assume that, as an induction hypothesis, for all | € w, if S' € X! |
(X% x w* x (w”)!), then S, € B! | (X9 x w” x (w¥)!) and if S' € TI} | (X% x w* x (w*)!),
then SF_ € TIL | (X% x w® x (w*)).

Pick an arbitrary k£ € w.

Suppose S* € B | (XY x w” x (w*)¥). Show SF, € BL. | | (X¥ X w” x (w*)¥).

Since S* € L., | (X9 x w” x (w*)*), there exists S¥ € IT} | (X x w* x (w*)F*1)
such that for any (x,y, 21, ..., 2,) € (X¥ X w* x (W)¥), (x,y,21,...,2:) € S* if and only if

there exists 2,1 € w* such that (z,y, 21, ..., 21, 2p41) € SFHL.

Szk:lz = {(f» Ry g1y gr) € X2 X W X (Ww)k }<f, his g1, s k) € Sk}
= {{f. h g1, s ) € X¥ X w0 X (w*)"|3gut1 € W (f, his g1, ey Grs Grorr) € SFT)
= {{f. h, g1, .. g) € X¥ x w* x ()" |Iger1 € W (f. h, g1, o, Gi, Gri1) € ST
Since each S¥*! ¢ TI! | (X¥ x w” x (w*)**!), by induction hypothesis, SF™ € I} |
(X¥ x w? x (w)¥T1). Thus S, € B, | (X9 x w® x (w?)).
Suppose S¥ € I} ., | (X X w* X (w®)*). Show S¥, € IT} | | (X¥ X w” X (w¥)*). We
repeat the same proof of () on page 152.
Since S* € TIL | | (X“xw*x (w?)F), (X9 x w® x (w)*)\S¥ € BL 4 | (X9 xwx (w)k).

Since we have already shown (1) for the case n + 1, we have:

(X% x w” x (w*)¥) \Sk)ii €Nl T (XY xw” x (w)F).
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By sublemma 2.5.16,
(XY x w” x (w)*)\SE = ((X¥ x w? x (w)¥) \Sk)ii
Thus (X% x w* x (w*)F)\SF. € B!, | (X¥ x w* x (w”)¥). Hence

Sk e T, (X% x W x (w)F). =

Using sublemma 2.5.16, we prove lemma 2.5.13. Recall lemma 2.5.13. (2) is obtained

from (1).
Lemma 2.5.13. Let n € w\{0}.
1. 3! 1 X% is closed under countable intersections.

2. I} | X¥ is closed under countable unions. -

Proof.

Suppose ¢ is the homeomorphism defined in 2.5.14 and for each h € w*, p(h) = (h, |n € w).
Show (1). Assume that n > 0. Show X! [ X“ is closed under countable intersections. Let
(A;li € w) be such that each A4; € XL | X“. Since each A; € XL | X* there exists

C; e II? | | X% x w® such that

feA < 3Jgew’(f, g) €.
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Show (., A; € BL | X©.

=)
feAevicw(feAl)
€W
& Viewdgew ((f,g) €y
& Ih e wVi € w ({f, i) € Cy)
< dhew(f,h) € ﬂ(ci)i:l:
€W

Since each C; € TI? | | X“ x w*, by sublemma 2.5.16,
(Ci)is € I | | XY xw”

so that

()(Ci)ix €TI0 [ X x w.

n—1
=)

Thus ., A € 2} | X¥.

€W

Show (2). Suppose (A;|i € w) be such that each A; € I} | X“. Show | J,_ A; € IT} | X*.

1Ew

Since each A4; € II! | X¥ X“\A; € X! | X“. Since we have already shown (1), we have:
ﬂe (X“\4;) e L T Xv.

Since X\ (Uic, A1) = Nicw (XN\A), X\ (Uje 4i) € B T X9 Thus (J,, A € I |

1EW

X¥. [l

155



2.5.2 Obtaining the determinacy of open games on a Tree; col-

lection with countable Y from the determinacy of games on
X<w

In section 2.5.1, we defined notations and proved some lemmas. In this section, we will obtain
open determinacy on a certain Tree; collection with countable Y from the determinacy of
games on X <“ by using theorem 2.5.10, lemma 2.5.11 and lemma 2.5.12. The main theorems
of this section are theorem 2.5.18, theorem 2.5.20 and theorem 2.5.26. In theorem 2.5.18, we
will obtain the determinacy of open games on a T'ree; collection such that each T;’g in the
Treey collection having finite Y, a Borel function ¥ and a Borel set B from the determinacy
of Borel games on X <“. In theorem 2.5.20, we will obtain the determinacy of open games on
a T'ree; collection such that each T)\I(l,’f in the Tree; collection having countable Y, a Borel
function ¥ and a Borel set B from the determinacy of Borel games on X<“. In theorem
2.5.26, we will obtain the determinacy of open games on a Tree; collection such that each
T )‘?5 in the Tree; collection having countable Y, a projective function ¥ and a projective
set B from the determinacy of projective games on X <%,

The proofs of theorem 2.5.18, theorem 2.5.20, corollary 2.5.23, corollary 2.5.24, corollary
3.5.20 and theorem 2.5.26 are similar. First, we consider T'ree; collections over F'IN. Then

we obtain results for Tree; collections over C'T'B on page 160.

Theorem 2.5.18. Suppose 3,7 € w;.

If B,y > 1, then

Det(A} 5y | X) = Det G (X9; Treey (X, FIN,D(w, AY), Aj | X)) .50 (2.17)
30Recall notation 1.5.10 for FIN.
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If B <,

Det G (X9; Tree; (X, FIN,T'(w, AY), 35 | X¥)). (2.18)
Det (A) | X¥) =
Det G (X9; Treey (X, FIN,T'(w, AY), II | X¥)). (2.19)

If >,

Det G (ZQ;Treel (X, FIN,T'(w, Ag), E% [X”)) . (2.20)
Det (X5 VII) | X¥) =
Det G (2);Tree; (X, FIN, T(w, AY), II3 | X¥)). (2.21)

Also,

Det (X9 | X¥) = Det G (X); Tree; (X, FIN,I(w, AY), A} | X¥)). (2.22)

The implications (2.18) through (2.21) state that we set
Ti = Treey (X, FIN,D(w,A?), (B3 UILY) | X¥),

then Det G (X9;T7) follows from

Det (A9 | X*) when 3 < 7,
Det ((Zg Vv H%) i X“’) when [ > 7.
Proof.

Show the implication (2.17). Fix 3, € w; greater than 1. Pick an arbitrary Type 1 tree
Tyy € Tree; (X, FIN,T'(w, A%), AY | X¥).

Then Y is finite, ¥ € T’ (w, Ag) and B € A% | X“. Pick an arbitrary A € X9 | [T)\I{If]

Assume Det(A?naX{ﬁﬂ} I X“). By lemma 2.5.12, for every n € w and every g € Y™,

each A) € A?ﬂax{ﬁﬁ} I X and Ay € Ag [ X“. Since Y is finite, by lemma 2.5.11, each

Aj e AY I X, Thus |J

max {51} AjUAy e AY I X“. Hence G(U

new new
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determined. By theorem 2.5.10, G(A; T )\?5 ) is determined. Therefore, we have
Det G (X; Treey (X, FIN,T(w, AY), A} | X¥)).

The proofs for the implications (2.18) through (2.22) are similar. Fix a Type 1 tree T' ;’5

in the appropriate Tree; collection. We only need to check the complexity of | J,,,, Aj U Ag.

new

For the implication (2.18), pick an arbitrary Type 1 tree
Ty € Tree; (X, FIN,T'(w, A?), 25 [ X¥).

Then Y is finite, ¥ € T’ (w, Ag) and B € 2% I X, Pick an arbitrary A € 39 | [T)\I(’g] By
n+1 n 0 w 0 w

lemma 2.5.12, for every n € w and every g € Y™ each Ay € AT T X% and Ay € 1L [ X*.

Since Y is finite, by lemma 2.5.11, each Aj € Ag [ X“. Thus J,., Aj U Ap € Ag I XY,

For the implication (2.19), pick an arbitrary Type 1 tree
Ty € Tree; (X, FIN,T'(w, A?), 1T} | X¥).

Then Y is finite, ¥ € T’ (w, Ag) and B € H% I X“. Pick an arbitrary A € 39 | [T)\I(jf] By
n+1 n 0 w 0 w
lemma 2.5.12, for every n € w and every g € Y™ each Ay € AT T X% and Ay € X [ X¥.

new

Since Y is finite, by lemma 2.5.11, each Aj € Ag [ X¢. Thus (U, Af U Ag € Ag [ X%,

For the implication (2.20), pick an arbitrary Type 1 tree
Ty € Tree; (X, FIN,T'(w, A9), 5 [ X¥).

Then Y is finite, ¥ € T’ (w,Ag) and B € E% | X“. Pick an arbitrary A € X{ | [T;f]
By lemma 2.5.12, for every n € w and every g € Y™ each A7 € X5 [ X“ and Ay €

H% [ X*“. Since Y is finite, by lemma 2.5.11, each Aj € E% [ X, Thus (J,e, Aj U Ap €

new

(29 v II) | X,
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For the implication (2.21), pick an arbitrary Type 1 tree
Tyy € Tree, (X, FIN,D(w, A%),II3 | X*).

Then Y is finite, ¥ € ' (w, A9) and B € IS [ X“. Pick an arbitrary 4 € %9 | [TYy].
By lemma 2.5.12, for every n € w and every g € Y™™ each A7 € I} | X and Ay €

E% [ X*. Since Y is finite, by lemma 2.5.11, each Aj € H% [ X Thus (J,e, A U 4p €

new

(29 v IIY) | X,

For the implication (2.22), pick an arbitrary Type 1 tree
Ty € Tree; (X, FIN,T'(w, AY), A} | X¥).

Then Y is finite, ¥ € I' (w, AY) and B € AY | X“. Pick an arbitrary A € XY | [T)\?{/B] By
lemma 2.5.12, for every n € w and every g € Y™™ each A7 € X} | X¢ and 4y € X9 | X¥.

Since Y is finite, by lemma 2.5.11, each Aj € X9 [ X*. Thus {J,, Af U Ag € 39 | X¥. O
Combining corollary 2.4.32 on page 120 and theorem 2.5.18, we have the following.

Corollary 2.5.19. Suppose (3,7 € wy. Then for any 8 >,
@ Det G (29; Treey (X, FIN,T (w, 29 ATI9) , IS | X¥))
@ Det G (29 Treey (X, FIN,T (w, 3% ATI) , 3 | X))
= @ Det((X3 A IID) | X¥)
& @ Det (35 VILY) | X¥)
N ® Det G (29;Treey (X, FIN,T'(w, AY), 2% | X¥)).
©® Det G (X9;Treey (X, FIN, T (w, AY),II | X¥)) .

That is : Q) implies @), @ implies @), @) if and only if @ and @) implies both &) and ©).
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So far, we focused on getting the determinacy on T'ree; collections over FIN. Now, we

consider T'ree; collections over CT B.

Theorem 2.5.20. Suppose 3,7 € wy. Then
( Det G (2;Tree; (X,CTB,T'(w,AY), 35 | X¥)) 3 (2.23)

Det(2Y | X¥) = { Det G(XY;Treey (X,CTB,T(w, AY), I} | X¥)). (2.24)

max{B,7}+w

| Det G (X;Tree; (X,CTB,T'(w,AY), Ay | X¥)). (2.25)
_|

Proof.

Show the implication (2.23). Fix 3, € w; greater than 1. Pick an arbitrary Type 1 tree
TYy € Tree; (X,CTB,T(w,A)), 2% | X¥).

Then Y is countable, ¥ € T' (w, A?) and B € X% | X*. Pick an arbitrary A € X9 | [T)\Igf]

Assume Det(X°

max(3n}tw | X©). By lemma 2.5.12, for every n € w and every g € yntt

cach A7 € E?Hax{ﬁﬁ} | X“ and Ay € IT} | X“. Since Y is countable, by lemma 2.5.11,

each A} € 30

max{orw | X Thus e, A U Ay € DI I X« (If ¥ is bounded,

max{f,y}+w

then there exists m € w such that (J,., Aj U Ap € E?Hax{ﬁﬁ}m | X¢.) Hence G(U, ., Af U

Ap; X¥) is determined. By theorem 2.5.10, G(A;T)\I(jf ) is determined. Therefore, we have
Det G (29;Tree; (X,CTB,T(w,AY), X% | X¥)).
The proofs for the implications (2.24) and (2.25) are similar. Fix a Type 1 tree T)\I("’f in

the appropriate Tree; collection. We only need to check the complexity of (., Aj U Ag.

new

For the implication (2.24), pick an arbitrary Type 1 tree

Ty € Tree; (X,CTB,T(w, A), I} | X¥).
31Recall notation 1.5.10 for CTB.
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Then Y is countable, ¥ € T’ (w, Ag) and B € H% I X“. Pick an arbitrary A € 39 | [T)\?f]
By lemma 2.5.12, for every n € w and every g € Y™, each A} € H?nax{ﬁ,'y} I Xv C

EO

max{f}+1 | X and Ay € E% [ X“. Since Y is countable, by lemma 2.5.11, each Aj €

EO

max{f) 4w | X Thus U,ew A5 U Ap € X0 I XY,

max{B,7}+w

For the implication (2.25), pick an arbitrary Type 1 tree
Ty € Tree; (X,CTB,T(w, AS), AY | X¥).

Then Y is countable, ¥ € T' (w, AY) and B € AY | X¥. Pick an arbitrary A € 29 | [Tyy].

By lemma 2.5.12, for every n € w and every g € Y"*' each A7 ¢ A?nax{ﬁﬁ} I Xv C

E?nax{ﬁﬁ}ﬂ I X“ and Ay € A% [ X“. Since Y is countable, by lemma 2.5.11, each Aj €
0 w n 0 w
Y ax{fttw | X Thus Unew Af U Ap € Y e (Bttw | X O

Combining corollary 2.4.17 on page 104 and and theorem 2.5.20, we have the following.
Corollary 2.5.21. For any finite n and m,
Det (%0, | X¥)
= Det G (X);Tree; (X,CTB,T(w,A)), X0, | X))
= Det G (A?;Treel (X, CTB,T(w,AY), A? [X“))
= Det (Unew 30 | X”) . 4
Question 5. Are any of the collections in corollary 2.5.21 determinacy equivalent? -

Combining observation 2.4.1 on page 83 and theorem 2.5.20, we have the following.
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Corollary 2.5.22.

DetG (Shanipnyswi Treer (X, CTB, T(w, AY), 0))
= Det(X° [ X9)

max{B,7}+w

= DetG (XV; Tree; (X,CTB,N(w,A), X5 | X¥)). =

Corollary 2.5.23. Suppose A is an algebra. Then
Det(A | X¥) = Det G (2; Treey (X, FIN,T(w,A), A | X)) . =

Proof.

Pick an arbitrary Type 1 tree T)\g’f € Tree; (X, FIN,I'(w,A),A | X¥). Then Y is finite,
U €T(w,A) and B € A [ X¥. Pick an arbitrary A € 39 | [T/y]. Assume Det(A | X¥). By
lemma 2.5.12, for all n € w and for all g € Y™, each Ay € A T X* and since A is closed
under complement, Ay € A [ X*. Since Y is finite and A is closed under finite unions and
finite intersections, by lemma 2.5.11, each Aj € A [ X*. Thus (J,., Aj U Ap € A | X¥.

Hence G(U,,¢,, Aj UAp; X¥) is determined. By theorem 2.5.10, G(A; T)‘I(’y’g) is determined. [J

Corollary 2.5.24. Suppose A is o-algebra. Then
Det(A | X¥) = Det G (20;Treey (X,CTB,T(w,A),A | X¥)). -

Proof.

Pick an arbitrary Type 1 tree T)\?”f € Tree; (X,CTB,I'(w,A),A | X¥). Then Y is countable,
U € I'(w,A) and B € A | X¥. Pick an arbitrary A € X9 | [T)\I(’g] Assume Det(A [ X*).
By lemma 2.5.12, for all n € w and for all ¢ € Y™™ each Ay € A1 X% and since A
is closed under complement, Ay € A [ X¥. Since Y is countable and A is closed under
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countable unions and countable intersections, by lemma 2.5.11, each Aj € A [ X*. Thus

Unew A U Ag € A T X*. Hence G(U, ., Aj U Ap; X¥) is determined. By theorem 2.5.10,

necw

GAT )\?5 ) is determined. O

Corollary 2.5.25.

Det G (X9;Tree, (X, FIN,T(w,B),B | X¥))
Det(B | X¥) =

Det G (XY;Tree, (X,CTB,T'(w,B),B | X¥))

Proof.
Corollary 2.5.25 follows immediately from corollaries 2.5.23 and 2.5.24 since B is o-algebra.

]

So far, we focused on getting the determinacy on T'ree; collections such that each Type
2 tree T)‘I(’”f in the T'ree; collection satisfying Y € C'T'B, V¥ is a Borel function and B is a
Borel set. Now, we we focus on getting the determinacy on a T'ree; collection such that each
Type 2 tree T)\g’f in the T'ree; collection satisfying Y € C'T'B, ¥ is a projective function and

B is a projective set.
Theorem 2.5.26. Suppose m,n € w\{0}.

Det(A] | X¥) = Det G (21;Tree; (X,CTB,T(w,A}), A, | X¥)) 32 (2.26)

max{n,m}

If n < m,
Det G (X0; Tree; (X,CTB,T'(w,A},), =), | X¥)). (2.27)
Det (A, | X¥) =
Det G (X9; Tree; (X,CTB,I'(w, A,,), I, | X¥)). (2.28)

32Recall notation 1.5.10 for CTB.
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If n>m,

Det G (X9; Tree; (X,CTB,T'(w,A},), S, | X¥)). (2.29)
Det ((%, VIL}) | X¥) =
Det G (X9;Tree; (X,CTB,T(w,A}),II, | X¥)). (2.30)

The implications (2.27) through (2.30) state that we set
Ti =Tree; (X,CTB,I(w, A},), (Z, UIL) | X¥),

then Det G (X9;T;) follows from

Det (Al | X¥) when n < m,
Det (XL VIIY) | X¥) when n > m.
Proof.

Show the implication (2.26). Fix n,m € w; greater than 1. Pick an arbitrary Type 1 tree
Ty € Tree; (X,CTB,T(w,AL), A} [ X¥).

Then Y is countable, ¥ € I'(w,Al) and B € Al | X*. Pick an arbitrary A € X9 |

[T)\I(lf] Assume Det(Al | X¥). By lemma 2.5.12, for each i € w and g € Y

max{n,m}

Al e Al I X¥ and Ay € Al | X Since Y is countable, by lemma 2.5.11, each

max{n,m}

Ay e A} [ X¢. Thus ;. Aj U 4p € A] [ X¥. Hence G(U,e, A U Ap; X¥) is

max{n,m} max{n,m}

determined. By theorem 2.5.10, G(A;T' ;’5 ) is determined. Therefore, we have
Det G (XV; Tree; (X,CTB,I(w, A},), A [ X¥)).

The proofs for the implications (2.27) through (2.30) are similar. Fix a Type 1 tree T' )\?5

in the appropriate Tree; collection. We only need to check the complexity of  J Aé) U Ag.

1EW
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For the implication (2.27), pick an arbitrary Type 1 tree
Ty € Tree; (X,CTB,T(w,AL), S [ X¥).

Then Y is countable, ¥ € T' (w, AL) and B € £ | X¥. Pick an arbitrary A € 29 | [Ty ].
By lemma 2.5.12, for each i € w and g € Y, AY € A} | X* and Ay € IT}, | X“. Since Y’

is countable, by lemma 2.5.11, each Aj € A}, [ X“. Thus J,., AjUAg € A} | X¥.

S

For the implication (2.28), pick an arbitrary Type 1 tree
TYy € Tree; (X,CTB,T(w,AL),II} | X¥).

Then Y is countable, ¥ € T' (w, AL) and B € IT} | X“. Pick an arbitrary A € 39 | [Tyy].
By lemma 2.5.12, for each i € w and g € Y, A; € Al | X¥ and Ay € B! | X¥. Since Y
is countable, by lemma 2.5.11, each Aj € A}, [ X“. Thus (J,., AjU Ay € A} | X¥.

For the implication (2.29), pick an arbitrary Type 1 tree
Ty € Tree; (X,CTB,T(w,AL), S, [ X¥).

Then Y is countable, ¥ € T (w, AL) and B € £ | X¥. Pick an arbitrary A € 39 | [Ty ].
By lemma 2.5.12, for each i € w and g € Y, Ag € Xl | X¥and Ay € I | X¥. Since YV

is countable, by lemma 2.5.11, each Aj € X} | X¥. Thus |J,., AjU 4y € (X}, VII}) | X¥.

S

For the implication (2.30), pick an arbitrary Type 1 tree
Ty € Tree; (X,CTB,T(w,AL),II} | X¥).

Then Y is countable, ¥ € T' (w, AL) and B € IT} | X“. Pick an arbitrary A € 29 | [Tyy].
By lemma 2.5.12, for each i € w and g € Y1, Ag eIIl | X« and Ay € X! | X¥. Since Y is

countable, by lemma 2.5.11, each A} € IT}, [ X“. Thus {J,., AjUAp € (X}, VIL)) | X¥. O

1EW
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Corollary 2.5.27. (Corollary to Theorem 2.5.26)

Det (2-I17 | X¥) = Det G (29; Tree; (X,CTB,T'(w, A]), (21 UIL) [ X¥)).
By combining corollary 2.4.34 on page 120 and corollary 3.5.20, we have the following.

Corollary 2.5.28. For any nonempty X and Y,

@D Det G (X0;Treey (X,Y,T'(w,2-I1}), B! | X))

@ Det G (X0;Tree; (X,Y,T'(w, 2-I1}), I1] | X¥))
= @ Det (2-I1] | X*)
= @ Det G (XV; Tree; (X,CTB,I'(w, A}), (] UIL}) | X¥)).

That is : Q) implies 3), ) implies 3), and @) implies @).

Question 6. With respect to corollary 2.5.28, does &) imply @) or @ 7?
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2.5.3 Obtaining the determinacy of Borel games on a Tree; collec-
tion with countable Y from the determinacy of Borel games

on X<V

In section 2.5.2, we focused on obtaining the determinacy of open games on a certain Tree;
collection with countable Y from the determinacy of games on X <“. In this section, as a
general case of open games on a Tree; collection, we will consider games which are more
higher complexity. The main theorems in this section are theorems 2.5.29 and 2.5.30. We will
obtain level by level results for the determinacy of Borel games on a certain T'ree; collection

with countable Y from the determinacy of games on X <.
Theorem 2.5.29. Suppose «, 3,7 € wy and o > 1. Then

Det(3) oisyia | X2) = Det G (29; Treey (X, FIN,T(w,AD), A% | X¥)).  (2.31)

Moreover, if B < vy, then

Det(X0,, | X¥) = Det G (29;Tree, (X, FIN,I'(w,AY), X5 | X¥)). (2.32)

If B =, then
Det(Xlg 1) 10 | X¥) = Det G (2]; Treey (X, FIN,I(w,AY), 25 | X¥)). (2.33)
_|

The implications (2.32) and (2.33) states that when we set

Ti = Treey (X, FIN,T(w, A%), % | X¥),
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Det G (X2;Tq) follows from

Det (29, | X¥) when (3 < 7,
Det (E?BH)JW | XW> when [ > 7.

We will prove this theorem on page 178.
Theorem 2.5.30. Suppose o, 3,y € wy. Then
Det(E),isytatw | X¥) = Det G (X0;Treey (X,CTB,I(w, AY), Ay | X¥)).  (2.34)
Moreover, if B < v, then
Det(2) 10 | X¥) = Det G (29 Tree; (X,CTB,T(w, A)), =5 | X¥)). (2.35)
If 8 > ~, then

Det(Xg,1)sar0 | X¥) = Det G (o; Treey (X,CTB,T(w, AY), S5 | X¥)). (2.36)

The implications (2.35) and (2.36) states that when we set
Ti = Treey (X,CTB,T(w,AY), 55 | X¥),

Det G (X2;T;) follows from

Det(39, .., | X¥) when 3 < 7,
Det(El5, 1) 1are | X¥) when 8> 1.

We will prove this theorem on page 180.

The idea of the proofs are similar as in section 2.5.2. We will use the same definition of
Am, Ay and Ay from section 2.5.1. We will find the complexity of each A} and Ay in lemma
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2.5.33. Then, by using lemma 2.5.11 and theorem 2.5.10, we will obtain the determinacy
results in theorems 2.5.29 and 2.5.30. To obtain the complexity of each Ay and Ay, we will
define a function Fiz form X“ into [T;’g | and find the complexity of Fliz in lemma 2.5.32
This Fiz will be the key to find the complexity of A7 and Ay. For each g € Yl we will
collect all of f € X¥ such that f~g € [T)\I(/,’{,3 | by using Fiz. Fiz will be the identity map for

any f € X“\B and if f € B, then it will fix the tail.
Definition 2.5.31. (Definition of “Fix”)
For allm € w, fix a,, € Y™, Define

Fiz(apm :mew): XY — [T)\I(’f]

f if | ¢ B,
f—

[ ayy otherwise.

If {(ay, - m € w) is clear from the context, we will denote Fix to mean Fix (G, :m € w). -
We will compute the complexity of Fix.

Lemma 2.5.32. (Finding the complezity of Fix)
Fiz a Type 1 tree T = ng:{f. Suppose Y is countable. For allm € w, fix a,, € Y™ . Suppose

a, By, Y € w1, N E W.
1. Suppose:
e Be A} X¥,
o foralln ew, ¥H(n) € AY | X¥,

then Fixz € T'([T], X° ).33

> “max{S,sup vn}
new

33Recall notation 1.5.8 for T'([T], X

max{S,5up,, ¢, Vn} )-
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2. Suppose:

o foralln e w, B> v,
. BGE%[X‘“,

o foralln ew, ¥H(n) e AY | X¥,
then Fiz € I'([T],X3,,).
3. Suppose:

e there exists n € w such that ~, > (3,
e Be Eg I X,

o foralln ew, ¥~H(n) e AY | X¥,

then Fiz € T'([T], X2 ).

Supnew'yn

4. Suppose A is o-algebra and:

e BeA| X¥,

o UVel(wA),
then Fiz € T'([T],A). .

Proof.
Pick an arbitrary O € £y | [T]. Then there exists (O; |i € w) such that O = [J,., O; where
each O; is a basic open neighborhood of [T], i.e., there exists p; € X% and ¢; € Y<* such
that

O;={he[T||hw2Dp;ANh||w,lh(h)Dq}.
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Since each tail has finite length and Y is countable, there are countably many tails. Thus

each O; can be written as | J 0” where each

JEW
Oij={he[T]|hlwDp;=piAh|[wlh(h) =g}

for some ¢; ; € Y<*. Then O = {J,c, Oi = U;e, U O = Urkew Or where O’s enumerate

JEW

Oi s, ete. Op ={h € [T]|h w2 pp Ah | [w,Ih(h)) = G}. Since

Fiz ' (0) = Fz’x’l(Uke Op) = UkE Fiz ' (Oy),

we find the complexity of each Fiz~'(Oy).

Case 1 : g, = 0.

Fiz™'(Oy) = {h € X“|h | w D pr } N (X“\B).

201X

It Be AY | X% Fiz ' (Op) € (Z)AAY) [ X,
If B € X% | X¥, Fiz ' (O) € (Y ATIY) | X

If A is o-algebra and B € A | X¥, then Fiz~'(O;) € A | X“.
Case 2 : ¢ = a;, for some [ € w.

Fiz HO) = {h € X¥|h [ w D pp} N T (1) NB.
~ ~ Y N——

=01 xw IR

0 w -1 0 w =10 0 0 w
If Be A | X¥ and U (l;) € A%k I X then Fix™'(Oy) € (21 A Amax{ﬁmk}> I X*.
0 w -1 0 w 1O 0 “
If BeXy | X¥and ¥ (Ix) € A“ﬂk I X, then Fiz="'(Oy) € Emax{ﬁ,’nk} [ X%,

If A is o-algebra, B € A | X and U € D(w, A), Fia=*(O;) € A | X¥.
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Case 3 : x # 0 and §j, # a; for any [.

~

Fix_l(Ok) = 0.

Show (1). Suppose B € Aj | X and for all n € w, ¥~'(n) € A [ X“. Then

- —1 _ - =1/ 0 w 0 w
FigH0)=\],_ Fia'(Ox) € Dtz ) [ X € Do sup oy [ X7
0 0 w
<21 /\Amax{,ﬁ,'ylk }> 1 X

Since O € XY [ [T is arbitrary, Fiz is 3, 5.sup .y-measurable.
Show (2). Suppose for alln € w, > v,, B € X3 | X¥ and for alln € w, ¥~ (n) € A |
X“. Then Fiz~'(0) € X%, | X¥. Since O € X [ [T] is arbitrary, Fiz is X3, -measurable.

Show(3). Suppose there exists n € w such that v, > 3, B € Z% | X“ and for all n € w,

UH(n) € A | X¥. Then Fiz~'(0) € £J,, . | X“. Since O € £ | [T] is arbitrary, Fix
370
1S Xgup, oy -Measurable.

Show (4). Suppose A is g-algebra, B € A | X¥ and ¥ € I'(w, A). Then Fix’l(OAk) € A for

any k € w and thus Fiz='(0) € A. Since O € XY | [T] is arbitrary, Fix is A-measurable. [J

Using the complexity of Fiz computed in lemma 2.5.32, we find the complexity of A}

and Ag. In the proof of lemma 2.5.33, we use sublemma 2.5.34 on page 176.

Lemma 2.5.33. (Finding the complexity of Ay and Ap)
Fiz a Type 1 tree T = T)\?,’g. Assume Y s countable. Suppose o, f € wy, a > 1, and m € w.

Assume that for alln € w, v, € w;.
1. Suppose:

° BGA%[X“’,
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o foralln € w, ¥ (n) e Agn I X,

. Aesy [T
then Ay, A € E?nax{/a’ Sup, v} 0 for any n € w and for any g € Y™,

2. Suppose:

o foralln € w, B> y,,
e BeX)| XY,
o foralln ew, ¥ (n) e AY | X¥,

QAGng[T],

then Ay, Ay € E(()BH)Jra I X% for any n € w and for any g € YL

3. Suppose:

e there isn € w such that v, > [,
e Be E% I X,
o forallnew, ¥H(n) e AY | X¥,

e ACELI[T],

then Ay, A7 € X I X% for any n € w and for any g € YL

SUPpewIn +a

4. Suppose A\ is o-algebra, closed under A-substitution and:

e BeA| X¥,

o Vel (wA),
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e Ac A [T],
then Ag, Ay € A | X¥ for any n € w and for any g € Y"1 N

Proof.
Fix n € w and g € Y™ First, we will find the complexity of Ay We will use Fliz with
a, = g. Show

nﬁ w | £~ ny _ R _
Ar={feX¥|frge A"} = Fiz ' (A)n¥ ' (n) N B.

Recall A" = AN ((BNY~l(n)) x Yyt 34
(€) Suppose f € A}. Since g € YY"l and frge A", f e U1 (n)NB and f~g € A. Since
f € Band ¥(f) =n,

Fix(f) = frawy = [Tan = [g.

Thus Fiz(f) € A so that f € Fiz™'(A).
(D) Suppose f € Fiz™'(A) N ¥~ (n)N B. Since f € Fiz™'(A) and f € B,
Fix(f) = frawy) = fan = fg € A
Since g € Y™, frge AN((BNW¥ ™ (n)) x Y™) = A" Hence f € A7.
First, we consider the complexity of AJ.

nd w | L~ n . _
Al={feX“|frge A"} = Fiz"' (A)Nn¥ " (n)NB.

Show (1) for A7. Suppose B € A} [ X¢, for all n € w, ¥"'(n) € A) | X* and

A € X0 | [T]. Then by lemma 2.5.32, Fiz is X° measurable. Note that since

maX{ﬁ,supnew'yn}_

34Recall definitions 2.5.2 through 2.5.4.
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wy is regular, sup,,c, 7, € wi. Since A € X0 | [T], by sublemma 2.5.34 below,*

Fiz™' (A) € 20 X

max{ﬂ?suanw’Y’ﬂ }+a

Thus A" € %2 X,

max{ﬁvsuanW’yn}—’—a

Show (2) for Aj. Suppose for all n € w, 8 > v,, B € 2% I X, for all n € w,

U'(n) € AY | X“and A € X, | [T]. Then by lemma 2.5.32, Fiz is X}, -measurable.

Since A € X9 | [T], by sublemma 2.5.34 below, Fiz~'(A) € E[()B+l)+a [ X¥. Thus A} €
E(()B+1)+a [Xw

Show (3) for Aj. Suppose there is n € w such that v, > 3, B € E% I X« for all n € w,
UHn) € AY | X¥and A€ X) | [T]. Then by lemma 2.5.32, Fix is X _-measurable.

SUPpewY

Since A € X% | [T], by sublemma 2.5.34 below, Fiz~!(A) € X!

SUP,, ¢ Ynto

I X“. Thus
Ay € Egupnew'WrHI [ X

Show (4) for Aj. Suppose A is o-algebra, closed under A-substitution. Suppose ¥ €
I(w,A),B e A X¥and A € A | [T]. Since A is o-algebra, by lemma 2.5.32, Fix is

A-measurable. Since A is closed under A-substitution, Fiz='(A) € A. Since ¥ € T'(w, A)

and B € A | X¥, each Ay € A | X*.

Now, we consider the complexity of Ag. Recall long(B) = {h € [T]| Ih(h) > w}. Then
long(B) € 39 | [T].

([T]\long(B)) N \//1/ e X0 1 [T] for a > 1.

g (7] )

Ag={f € X*\B|f € A} = Fiz™* (([T)\long(B)) N A)

Show (1) for Ap. Suppose B € A} | X¥ and A € X [ [T]. Then by lemma 2.5.32, Fix

35See sublemma 2.5.34 on page 176.
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is AV

max{3,sup, c.,Vn}

0 w

-measurable. By sublemma 2.5.34 below, Ay € Zmax{/o’,supnemnHa I X%,
Show (2) for Ay. Suppose for all n € w, § > v, B € X} | X¥ and A € 3, [ [T]. Then
by lemma 2.5.32, Fiz is Xj, ,-measurable. By sublemma 2.5.34 below, Ay € E[(]ﬁ+1)+a P X,
Show (3) for Ay. Suppose there is n € w such that v, > g, B € Z% I X and A €
30 I [T]. Then by lemma 2.5.32, Fix is 3° _-measurable. By sublemma 2.5.34 below,

a SUP oY
Ag € zgupnemm I X,

Show (4) for Ag. Suppose A is o-algebra and closed under A-substitution, ¥ € I'(w, A), B €
A X“and A € A | [T]. Then by lemma 2.5.32, Fiiz is A measurable and ([T]\long(B)) N A €
A | [T]. Since A is closed under A-substitution and ([T|\long(B))NA € A | [T], Ag € A |

X¥. [l

We used to the following sublemma 2.5.34 for the prove of lemma 2.5.33 to find the
complexity of A7 and Ag. We prove the following well-known property about the measurable

functions. This is listed in Moschovakis (2009, p. 43, Exercise 1G.7.).
Sublemma 2.5.34. Suppose o,y € wi\{0}. Suppose f: X1 — X is Eg-measumble.

1 IfPeXl | Xy, then [ (P) €20,

I X

2. If P eTI° | X,, then f~}(P) € II°

Tt

I Xi.
Consequently, B is closed under Borel-substitution. =

Proof.

Fix v € w;\{0}. We prove this by induction both (1) and (2) simultaneously on « .
Base Case : a = 1. Pick arbitrary Zg—measurable f: X1 — Xo
Suppose P € XY | X,. Then by definition of X9-measurable, f~ (P) € X9 | X;.
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Suppose P € ITY | X,. Show f~1(P) e Hg I X;. Since P € II? | Xy, Xo\P € 30 | X,.
Since we have already shown (1) for o = 1, we have: f~'(X,\P) € X9 | X;. Since

THR\P) = X\ f7H(P), f7H(P) €TI0 | Xy - (%)

Induction Step : As an induction hypothesis, assume for all EQ—measurable f: Xy — Xy,
Vi3 € a,
if P e E% I X, then f~1(P) € ng [ Xq and if P € H% I Xy then f~1(P) eI, , | X;.

y+8

Suppose P € X% | X,. Show f~!(P) € X

91a | Xi. Since P € XJ | X*, there exists

Pi|i € w) such that each P' € I1I$ | X5, 8; € a and P = Pt
Bi

€W

PP = U Py =P e S, 1 X

——
0
H’Wrﬁi

Suppose P € IL), [ X,. Show f~'(P) € ITY,, [ X;. We repeat the same proof of (x) on
page 177.
Since P € TIY | Xy, Xo\P € X9 | X,. Since we have already shown (1) for the case «,

we have: f~1(X,\P) € X9

vt+a

er. Since fil (XQ\P) = Xl\fil (P),
P e, | X,

Suppose f : X; — X, is Borel-measurable. Then if P € B | X5, then f~! (P) € B | X;.

Consequently, B is closed under Borel-substitution. O

We computed the complexity of each Aj and Ay in lemma 2.5.33. Using lemma 2.5.11
and theorem 2.5.10, we obtain the determinacy results in theorems 2.5.29 and 2.5.30. First,

we consider T'ree; collections over F'IN. Recall theorem 2.5.29.
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Theorem 2.5.29. Suppose o, 3,7 € wy and o > 1. Then

Det(X° | X¥) = Det G (29;Tree; (X, FIN,I'(w,AY), A% | X¥)). (2.31)

max{B,7}+a

Moreover, if B < 7, then

Det(X0,,, | X¥) = Det G (29;Tree; (X, FIN,I(w,AY), X5 | X¥)). (2.32)

If B =, then
Det(Elg11)10 | X¥) = Det G (29; Treey (X, FIN,I(w, AY), 25 [ X¥)) . (2.33)
_|

Proof of theorem 2.5.29.
Fix a, 8,7 € wy such that a > 1.

Show the implication (2.31). Assume Det(3°

max{ B} +a)- Pick an arbitrary Type 1 tree

TYy € Treey (X, FIN,T(w,AY), A% | X¥).

Then Y is finite, ¥ € I' (w, AY) and B € AY [ X¥. Pick an arbitrary A € X0 | [Ty]. By

lemma 2.5.33, for all n € w and g € Y™, each A7, Ay € E?nax{ﬁﬁ}ﬂy | X“. Since Y is finite,

by lemma 2.5.11, each A} € 3V I X“. Thus |J

max{B,7}+a Ay U Ay € 30 I Xv.

new max{3,7}+o

Hence G(U,,e., Af U Ap; X¥) is determined. By theorem 2.5.10, G’(A;T;’g) is determined.

new

Therefore,

Det G (Eg;Treel (X, FIN,T'(w, Ag), A% [X“)) .
Similarly, for the implication (2.32), suppose 5 > 7. Pick an arbitrary Type 1 tree

Tyy € Tree; (X, FIN,T(w,AY), 59 [ X¥).

178



Then Y is finite, ¥ € T' (w, Ag) and B € E% | X“. Pick an arbitrary A € X9 | [T)\?ﬂ By

lemma 2.5.33, for all n € w and g € Y™™, each A7, Ay € 2(()6+1)+a | X“. By lemma
2.5.11, each Aj € E(()ﬁ+1)+a | X“ and thus J,., Aj U Ay € Z(()B+1)+a I X“. Hence

G(Unew A U Ag; X¥) is determined. By theorem 2.5.10, G(A; T)‘g’f) is determined. There-
fore, Det G (X9; Tree; (X, FIN, T (w, AY), 2% | X¥)).

For the implication (2.33), suppose v > 3. Pick an arbitrary Type 1 tree
Tyy € Tree; (X, FIN,I(w, A%), 5 [ X¥).

Then Y is finite, ¥ € I' (w,A?) and B € X% | X* Pick an arbitrary A € X9, | [T)\?f]
By lemma 2.5.33, for all n € w and g € Y™, each AL Ay € >0 I X“. Then by

Yt+a

lemma 2.5.33, each A7 € X%, . | X“ and thus {J

yta

A UAy € X9, | X Hence

new Yo

G(Upeo Af U Ag; X¥) is determined. By theorem 2.5.10, G/(A; T;’f) is determined. There-

fore, Det G (Eg;Treel (X, FIN, T'(w, Ag), 2% [X”)). H
Now, we consider Tree; collections over C'T'B. Recall theorem 2.5.30.

Theorem 2.5.30. Suppose a, 3,y € wi. Then
Det(E s tatw | X) = Det G (Bo; Treey (X,CTB,T(w, AY), A% | X¥)).  (2.34)

Moreover, if B < v, then

Det(2), .., | X¥) = Det G (29;Tree; (X,CTB,T(w,A)), 55 | X¥)). (2.35)
If B =, then
Det(Bs 1y 10t | X¥) = Det G (29; Treey (X,CTB, T(w,AY), 55 | X¥)).  (2.36)
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Proof of Theorem 2.5.30.
Fix a, 8,7 € w;.

Show the implication (2.34). Assume Det(X° . Pick an arbitrary Type 1 tree
max{8,y}+a+tw y

T;’f € Treey (X,CTB,T(w, AY), A% | X¥). Then Y is countable, ¥ € I' (w,AY),B €
A% | X¥. Pick an arbitrary A € X9, | [T;?f] By lemma 2.5.33, for all n € w and g € Y,

each A7 € E?nax{ﬁﬁ}m and Ay € Eglax{ﬁﬁHaH (1 is added for the case @ = 1). Since Y is

countable, by lemma 2.5.11, each Aj € E?nax{ﬁﬁHaer I X“. Thus

A(BL U A@ S E?nax{,@,'y}JrOz«Hu f X

new

Hence G(UJ,,c,, Aj U Ap; X¢) is determined. By theorem 2.5.10, G(A4; T;Ié’f ) is determined.

new
Therefore, Det G (Eg; Tree; (X, CTB,T'(w, Ag), A% [X“)).

Similarly, show the implication (2.35). Suppose v > . Assume Det(E?ﬁ )tatw | X9)

Pick an arbitrary Type 1 tree T;’;f € Treey (X,CTB,I(w,AY), %% | X“). Then Y is
countable, ¥ € T’ (w, Ag) and B € E% I X“. Pick an arbitrary A € 39 | [ng?] By lemma

2.5.33, for all n € w and g € Y™, each A7 € X

I X“ and Ay € X° | X¥. Since Y is
7+a

Y+a+1

countable, by lemma 2.5.11, each Aj € X9, ., | X* and thus {J,o,, AjUAp € 39, ., [ X¥.

Hence G (U, e, Aj U Ag; X¢) is determined. By theorem 2.5.10, G(4; T)\Ig”g ) is determined.

new
Therefore, Det G (X9; Treey (X,CTB,(w, A?), X9 | X¥)).

Show the implication (2.36). Suppose 8 > . Assume Det(23+a+w I X¢). Pick an
arbitrary Type 1 tree T;’f € Treey (X,CTB,I(w,AY), X% | X¥). Then Y is countable,
U el (w,AY) and B € X% | X¥. Pick an arbitrary A € X0 | [T/y]. By lemma 2.5.33,
for all n € w and g € Y™™, each A7 € X? I X¢ and Ay € X PXe.

(B+1)+a (B+1)+a+1
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Since Y is countable, by lemma 2.5.11, each Aj € E?B+1)+a+w [ X¢ and thus J, ., Aj U

Ay € X0 | X“. Hence G(U

(B+1)+atw A U Ap; X¥) is determined. By theorem 2.5.10,

new

G(A; T;’:f) is determined. Therefore, Det G (X9; Tree; (X,CTB,I'(w,A?), X% | X¥)). O
Combining corollary 2.5.21 on page 161 and theorem 2.5.30, we have the following.
Corollary 2.5.35. For any finite n,m and k,

Det (22 X*)

= Det G (5; Tree; (X,CTB,T(w,A)), 5, | X¥))
= Det G (£1; Tree; (X,CTB,T'(w, A)), %), | X))
= Det G (AY; Treey (X, OTB,T'(w, A), A} | X¥))

= Det (UHEW 30 | X“) . 4

Question 7. Are any of the collections in corollary 2.5.35 determinacy equivalent? -

Corollary 2.5.36. Suppose A is a o-algebra and A is closed under A-substitution. Then
Det(A | X¥) = Det G (A;Treey (X,CTB,T'(w,A),A | X¥)). -

Proof.

Assume Det(A [ X¥). Pick an arbitrary Type 1 tree
T =Tyy €Tree; (X,CTB,I(w,A),A | X¥).

Then Y is countable, ¥ € I (w,A) and B € A | X“. Pick an arbitrary A € A [ [T]. By

lemma 2.5.33, for all n € w and g € Y™, each A} and Ay are in A [ X*. Since YV is
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countable, by lemma 2.5.11, each Aj € A [ X¥. Thus {J,., Aj U Ap € A [ X, Hence

new

G(Upew Af U Ap; X¥) is determined. By theorem 2.5.10, G(A; T') is determined. Therefore,

Det G (A;Tree, (X,CTB,T'(w,A),A | X¥)). O

Corollary 2.5.37. (Corollary to Corollary 2.5.36)

Det(B | X*) = Det G (B;Tree; (X,CTB,I'(w,B),B [ X¥)). -

Proof.

Since B is o-algebra and closed under Borel-substitution, by corollary 2.5.36, we have the

O]
result.
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2.5.4 Obtaining the determinacy of projective games on a Tree;
collection with countable Y from the determinacy of projec-

tive games on X <¥

In section 2.5.2, we focused on obtaining the determinacy of open games on a certain Tree;
collection with countable Y from the determinacy of games on X <. In section 2.5.3, we
focused on obtaining the determinacy of Borel games on a certain Tree; collection with
countable Y from the determinacy of Borel games on X <“. In this section, we will generalize
Borel games on a T'ree; collection to projective games on a particular Tree; collection. We
will obtain the determinacy of projective games on a certain T'ree; collection with countable
Y from the determinacy of projective games on X <. The main theorem in this section is

theorem 2.5.38.

Theorem 2.5.38. Suppose m € w. Suppose Ty = Treey (X,CTB,T'(w,B),B | X¥). Then
Det(%), | X¥) = Det G (£,,;Th) -
Det(I1}, | X*¥) = Det G (IL},; T7) .
Det(A,, | X¥) = Det G (A,,;T1) .

Note that Al | X% is Borel if X is countable and if X is uncountable, it is the quasi-Borel.

_|

The idea of the proof is similar as in sections 2.5.2 and 2.5.3. We will use the same
definition of A", A} and Ay from section 2.5.1. We will find the complexity of each A} and
Ay in lemma 2.5.39 using sublemma 2.5.40 on page 185. Then, by using lemma 2.5.11 and

theorems 2.5.10, we will obtain the determinacy results in theorems 2.5.29 and 2.5.30. The
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proof of the theorem is on page 185.

Lemma 2.5.39. Fiz a Type 1 tree T = T)\?,’g. Assume Y is countable. Suppose m € w,

a,f,y€w, ¥Vel' (w,B) and B B | X¥.
1. If Ae X, | [T], then for alln € w and for all g € Y™, each A}, Ay € 3, | X¥.
2. If Ac I, [ [T], then for alln € w and for all g € Y™, each A7, Ay € II}, | X“.

8. If Ac AL, | [T], then for alln € w and for all g € Y™, each A7, Ap € A}, | X¥.

Proof.
The proof is similar to the proof of lemma 2.5.33. We will show the case for (1): A € X} | [T].
The proofs are similar for cases (2): A € IT}, | [T] and (3): A € AL | [T].

Suppose A € X! | [T]. By lemma 2.5.32, Fix is Borel-measurable under ¥ € T (w, B)
and B € B | X“. By sublemma 2.5.40 below,*® Fiz™! (A) € ) | X*.

First, we consider A} for g € Y.

ArL(fex®|fge Ay = Fie (AU ()N B € T | X¥.
—_——— ——

=L X B Xv BiXxw

Now, we consider Ag. Recall long(B) = {h € [T]| [h(h) > w}. Then long(B) € X | [T].

([T)\long(B))n A € X, [ [T].
(7] M1

Ag={f € X\B|f € A} = Fiz™* (([T\long(B)) N 4) € £, | X*

by sublemma 2.5.40 below.

Similarly for the cases (2) and (3). O

36See sublemma 2.5.40 on page 185.
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We computed the complexity of each A} for n € w and g € Yt and Ap in lemma
2.5.39. Using lemma 2.5.11 and theorem 2.5.10, we will obtain the determinacy results in

theorem 2.5.38. Recall theorem 2.5.38

Theorem 2.5.38. Suppose m € w. Suppose Ty = Treey (X,CTB,T'(w,B),B | X¥). Then
Det(2,), | X¥) = Det G (Z,,;T1) -
Det(IT,, | X*) = Det G (I1,,; T1) -
Det(A,, | X¥) = Det G (A,,;T1) .

Note that Aj | X% is Borel if X is countable and if X is uncountable, it is the quasi-Borel.

_|

Proof of Theorem 2.5.38.
We will show the case for X! . The proofs are similar for case IT}, and Al .

Show Det(X! | X“) implies Det G (2} ;71). Assume Det(Z} | X¥). Pick an arbitrary
Type 1 tree T = Ty € Ti. Then Y € CTB, ¥ € I'(w,B) and B € B | X*. Pick an
arbitrary A € X}, | [T]. By lemma 2.5.39, for all n € w and g € Y"*', each A7 € X} | X
and Ay € 3, [ X“. Since Y is countable, by lemma 2.5.11, each A} € X, | X*. Thus

Uneo A U Ay € 21, | X¥. Hence G(U, o, Aj U Ag; X¢) is determined. By theorem 2.5.10,

new

G(A;T) is determined. Therefore, Det G (X};T7) . O

Now, we will show that for each n € w, 3L TI! Al are closed under Borel-substitution.

Readers familiar with the proof of sublemma 2.5.40 may skip the rest of the section.

Sublemma 2.5.40. Suppose n € w\{0}.

Then XL IIL, AL are closed under Borel-substitutions. —|
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We will prove sublemma 2.5.40 on page 190. First, for each k € w and a function f from
X to X, we define a function ¢! from X; x (w*)* x w* into X5 x (w*)¥ x w®. In sublemma
2.5.43, we will show that if f is Borel-measurable, then go£ is also Borel-measurable for
every k € w by using sublemma 2.5.42. Using sublemmas 2.5.43 and 2.5.44, we will prove

sublemma 2.5.40.

Definition 2.5.41. Suppose f : X1 — X5. Define
<,0£ DX X (W)= Xy x (w)F
<:C7y17 7yk> = <f (l’) » Y1, 7yk>

Note that if k = 0, then ¢! = f for any f: X; — X,.

Sublemma 2.5.42. Suppose f : X1 — Xo. Assume that E C X5 and for 1 < j < k,

Fi C w®. Then
W (Ex F'x - x F*) = fH(E) x F' x -+ x F*, =

Proof.

Suppose £ C X, and for 1 < j <k, F7 C w>.

(T, Y1, Uk) € (g@ﬁ)‘l (E X Flx .. x F’“)
S (f @),y yk) = ol (T g1, yk) € EX FLx oo x FF
S fa)eEANy €F'A--- Ny, € FF

sref Y E)Apy €F'A--- ANy, € FF

<:><x7y17-'-7yk>€f71(E>Xle'*-XFk, N

We prove the following sublemma using sublemma 2.5.42.
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Sublemma 2.5.43. For any f: X1 — Xy and k € w, if f is Borel-measurable, then <,0£ 18

Borel-measurable. —

Proof.
Suppose Borel-measurable [ : X; — X, and k € w. Suppose S, € B | (X2 X (w“)k). Show
()1 (Sp) €B | (X1 x (w*)*). We prove this by induction on the complexity of Sj.
Base Case : S € B9 | (X x (w*)F).
Show ()71 (Sk) € B | (X1 x (w¥)*). Since Sy € 9 [ (X5 x (w*)¥), there exist E; € B9 |

X5 andFijEE(I)[w“’,lﬁjgk:andiewsuchthat

Se=J, (Bix Fl < x FF).

(@180 = (D) (U, (B x R xoox F))

:U(Qpi)_l(EiXF;lx...xF;k)

1EW

= U (fY(E;) xF}! x -+ x FF) by sublemma 2.5.42
1Ew B{IX
1

N J/
n'g

B (X1x(w)F)

e B | (X1 x (w)h).

Induction Step : Assume, as an induction hypothesis, for any g € «, if S, € E% i
(Xo x (w*)*), then (¢)71(Sk) € B | (X1 x (w*)*¥) and if Sy € I | (X5 x (w*)*), then
(@)1 (Sk) € BT (X1 x (w*)").

Suppose Si € £ | (X2 x (w*)¥). Show ()1 (Sp) €B | (X1 x (w*)k).

Since Sy € X% | (X2 x (w*)¥), there exists (A4; |i € w) such that each A; € I} |

(X2 X (w”)k), B; € a, and Sy = o, 4i- By induction hypothesis, for each i € w,

187



(‘Pi)il (A;) € B (X1 x (w*)*). Since

@D s =D (U 4) =U_ eh " (4

and B | (X; x (w*)¥) is closed under countable union, (D)1 (Sp) €B | (X1 x (w)*).
Suppose Sy, € TI% | (X2 x (w¥)¥). Show (¢})~' (Sy) € B | (X1 x (w*)*). Since Sj, €
I | (X2 % (w®)F), (X1 x (w)")\Sk € =% | (X3 x (w”)¥). Since we have already shown

(1) for the case «, we have:
(207" (X X (@)N\Sk) € BT (X1 x (w)").

Since (X7 x (w))\(@])~" (Sk) = (¢)! (X2 x (w*)F)\Sk) and B | (X1 x (w*)¥) is closed

under complement, (¢f)~ (S;) € B | (X1 x (w*)F). O
Now, we show that there is a homeomorphism between X; x (w*)**! and X; x (w*)~.

Sublemma 2.5.44. Let k € w be arbitrary. By sublemma 2.5.14, there exists a homeomor-

phism 7 from (w*)* x w* to (w*)*. Suppose 7 is a homeomorphism from (W*)* x w* to (w*)k.

Define
pr Xpx (W) xw — X x (w¥)*
(2,y,2) = (z,7(y,2))
Then p is a homeomorphism from X; x (w*)*1 to X; x (w*)*. =
Proof.

Since 7 is a bijection, p is a bijection.

Show p is continuous. Pick an arbitrary O € X9 | (X1 X (w“)k). Then there exist
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EiEZ?[XlandeEE(f[w“,iﬁjﬁkforiéwsuehthat

O:Uiew(Eixﬂlx”'xEk)

0= (U (Bx Bl xo x )

= -1 (E, ... k
_Uiewp (B; x F! x -+ x FF)

:U' E, x7 ' (E! x - x Ff)
1EW N~~~

N J/
'

91X 9 (ww)k xww

(. >
~~

9K x (@) k xwe )

€ X0 | (X1 x (w)* x w).

Thus p is continuous.
Show p is an open map. Pick an arbitrary E € 3¢ | (X; x (w”)* x w”). Then there

exist 0; € 39 | X, Pij eXllwv 1<j<kand Q; € X? | w” for i €w such that
— . 1. k .
E—Uiew(OszZx x P x Q).
Since p is a bijection,
p(E) :p(UIE (Oi x P! x -+ x PF XQZ-)>

- X Plx - x PP xQ,
_Uiewp(lePiX x PFx Q)

(.

:Uiew \O;;XW(Rlx";XBkXQi)

2(1) [ X1 2(1)[((‘#;)1@

e XV (X1 x (w)h)

Thus p is an open map.

Therefore, p is a homeomorphism. ]
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Finally, we prove sublemma 2.5.40 using sublemmas 2.5.43 and 2.5.44. Recall sublemma

2.5.40.

Sublemma 2.5.40. Suppose n € w\{0}.

Then 3L TIL, AL are closed under Borel-substitutions. =

Proof of Sublemma 2.5.40.

Suppose f: X; — X, is Borel-measurable. Let k € w. Show that
L forall P € =} 1 (Xa x (w*)b), (o))" (P) € B} T (X1 x (w)F),
2. for all P e I}, | (Xz x (w)¥), (@)~ (P) € IL, T (X1 x (w*)b),
3. for all P e AL | (X, x (w*)¥), (pl)"1(P) € AL [ (X7 x (w¥)),

by induction on n.

Show both (1) and (2) simultaneously. (2) follows from (1).

Base Case : n =1
Pick an arbitrary k € w. Show that for all P € ! | (X x (w*)¥), (¢])"'(P) € ! |
(X, % (@)

Pick an arbitrary P € X1 | (X5 x (w*)¥). Then there is a closed C' C X, x (w*®)**! such

that for all € Xy x (w*)*,

r€ P+ Jyecw’(zy) eC.
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Then

(@51, 9x) € (1) (P) & (01) ({291, s yn)) € P
< ((f (@), 91, u) € P

&z ew’ (f(x), v, Yk, 2) € C
= E|Z € ww <x7yla vy Yk Z) S (S0£+1)—1 (C) :
By sublemma 2.5.43, since C' € TI{ | (X, x (w®)*1), (90£+1)_1(C) € B | (X x (w*)*1).

Since B | (X x (w@)k*1) C B | (X x (w?)**1), there is a closed D C X; x (w*)**? such

that for all a € X, x (w@)k+L,
0 € (¢l H(C) 0 T e w (a,b) € D,

By sublemma 2.5.44,
P Xy x (W) T xwe — Xy x ()
(,y,2) = (2,7 (y,2))
is a homeomorphism from X; x (w*)f*2 to X; x (w*)*L. Since D € TI{ | (X} x (w*)*+2),

p(D) € TIY | (X; x (w)*+1).
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(@91, ur) € (1) (P) & (91) (2,51, 00)) € P
& ((f (@), y1ue) €P
S Jzew (f(x), 91, Y, 2) € C
& Jz e w’ (Y1, .oy Yk, 2) € (g0£+1)_1 ()
& Jz e w¥Iw € W (z, Y1, o, Yk, 2, w0) € D

< Jh e w(z,y1, ..., yx, h) € p(D).

Therefore, ()~ (P) € 1T (X x (w*)").
Show if P € TI} | (X, x (w®)*), then (¢f)~" (P) € I} | (X, x (w®)*). Suppose P € IT} |
(X2 x (w¥)*). Then (X5 x (w*)*) \P € B} | (X3 x (w*)*). Since we have already shown (1)

for n = 1, we have: ()~ (X2 x (w)*)\P) € 1 | (X1 x (w®)*¥). Since

(20 @) )\ D) THP) = (D) (e x (@)F) \P),

(Pl (P) € I} 1 (X0 x (w*)").

Induction Step : As an induction hypothesis, suppose that for all [ € w, if P € X! |
(X5 x (W), then (p!)™"(P) € BL | (X1 x (w*)!) and if P € TIL | (X5 x (w®)!), then
(p)7H (P) € L, T (X1 % (w®)!).

Pick an arbitrary k& € w. Show if P € BL. | | (Xy x (w*)*), then (p)"'(P) € =L, |

(X1 % (w*)*). Suppose P € B! | | (Xax (w*)¥). Then there exists C' € IT} | (X2 x (w”)**1)

such that for all x € X5 x (w*)k,

r€ P+ Jyew’(xy) eC.

192



By induction hypothesis, (gpgﬂ)*l (C) € BT (X x (wv)F1).

(@51, 0x) € (1) (P) & (01) ({2, 91,y pn)) € P
< ((f (@), 91, u) € P

S Jdzew (f(x), 91, Y, 2) € C
& Iz ew’ (X, Y1,y Ypy 2) € (g0£+1)_1 ().
Therefore, (p])" (P) € B, | (X1 x (w*)").
Show if P € TIL,, | (X x (w*)¥), then (o))"1(P) € TIL,, | (X1 x (w*)¥). Suppose
P eIl | (X5 x (w?)*). Then (X5 x (w?)*)\P € 3t,; | (X2 x (w*)*). Since we have
already shown (1) for the case n+1, we have: f,”' (X2 x (w*)*)\P) € =L, I (X1 x (w*)k).

Since

(20 @)\ D) HP) = St (e x (@)F)\P),

(ph) 7 (P) € Ty 1 (X1 % (w)F).
Therefore, we have (1) and (2). Consequently, we have (3).

In particular, if £ = 0, then gog = f.

1. forall Pe X! | Xy, f7H(P) e 2! | X,
2. forall P eII! | Xy, f~1(P) € I} | X;,
3. forall Pe Al | Xy, f71(P) e AL | X;.

Therefore, 3! TIL, Al are closed under Borel-substitution. O

193



2.5.5 Well-known results about uncountable Y = N

In sections 2.5.1 through 2.5.4, we obtained the determinacy of games on a certain Tree;
collection with countable Y from the determinacy of games on X <“. The way we obtained the
determinacy results in these sections are using the fact that each Tfﬁ;{? in the T'ree; collection
having a countable Y. Without this restriction, we need to have the determinacy of games
on X“ with higher complexity, even just an open game on a Type 1 tree. Since B | X%,
3! 1 X% and II} | X“ are closed under countable unions and countable intersections, we

were able to conclude the results.

Consider the special case of uncountable Y where Y = N (= w¥). Suppose Cj to be
the constant function from X at 0. Then Tg’%XW = X% x N. In this particular tree, it is

well-known that

Det (I} | X¥) < Det (2] | (X¥ x N)) .7

Hence

Det (I | X*) & Det (2? r[Tgwa“]) .
: w) _ Co, X~
Since Tree; (X, N, Cy, X¥) = { XA },
Det (I} | X¥) & G (X9, Tree; (X, N, Co, X¥)).

In general,

Det (2, | X¥) & Det (27 [ (X¥ x N™)).

37see outline of the proof for Fraker, 2001, pp.59-62, Corollary 5.3.
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Hence for n € w and constant function C), from X% at n,
Det (! [ X*) & Det (2? r [nggyw]) .
Since Treey (X,N,Cp,_1,X%) = {T)ﬁ’j\}l’xw},
Det (1 | X*) & G (50, Tree, (X, N, Cy1, X¥)) .
Therefore, if I is the set of the constant functions from X* into w,
Det (P | X¥) & G (20, Tree; (X,N,T, X¥)).

Since

Tree; (X,N,T', X“) C Tree; (X,N, [(w, AY), A?) ,
we have the following.
Observation 2.5.45.

G (2], Tree; (X,N,I'(w,A}), A})) = Det (P | X¥).

Question 8. Which class over X“ is equivalent to the determinacy of

G (=], Tree; (X,N,T'(w,A}),A}))?
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2.6 Determinacy equivalences between games on X ¥

and games on T'ree; collections

In sections 2.3 through 2.5, we observed the determinacy strength on games on Tree; col-
lections. In section 2.3, by shifting, we compared the determinacy of 3? (respectively, X.)
games on a particular Tree; collection and TIY (respectively, IT!) games on the same Tree;
collection, for o € w; and n € w. In section 2.4, we used the determinacy of a fixed complex-
ity of games on a certain Tree; collection to obtain the determinacy of a certain complexity
of games on X <“. In section 2.5, we obtained the determinacy of Borel and projective games
on particular Tree; collections from the determinacy of a fixed complexity of games on X <.

In this section, we will combine results from section 2.3, section 2.4 and section 2.5.
we will conclude this chapter with the resulting determinacy equivalences from the earlier
determinacy results between games on X<“ and games on a Tree; collection.

In section 2.6.1, we will obtain the determinacy equivalences between Borel games on
X <% and games on particular Tree; collections.

In section 2.6.2, we will obtain the determinacy equivalences between projective games

on X<¥ and games on particular Tree; collections.
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2.6.1 Determinacy equivalence between Borel games on X< and
games on 1'ree; collections

In this section, we will obtain the determinacy equivalences between Borel games on X <¥

and games on particular T'ree; collections.

Theorem 2.6.1. For any nonempty © C FIN, the determinacy of following (2.37) through

(2.42) are all equivalent to Det (X9 | X¥).

G (29 Tree; (X,0,I(w, A)), Al | X¥)) (2.37)
G (29 Tree; (X,0,I(w, =), Al | X¥)) (2.38)
G (X1; Tree; (X,0,T(w, I0}), A} [ X¥)) (2.39)
G (I1Y; Tree; (X,0,0(w, AY), Al | X¥)) (2.40)
G (I13; Tree; (X,0,T(w, X9), A} | X¥)) (2.41)
G (I1); Tree; (X,0,0(w,II7), A | X¥)) (2.42)

N

Theorem 2.6.1 says that if we let
T = Tree, (X7 0,I'(w,A?), A! [Xw) ,
T2 =Tree (X, 0,l(w,XY), AV ] X“’) ,

T2 = Tree, (X, 0,I'(w, ), AY [X“’) ,
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then

Det G (£9;T) & Det (£ | X¥) & Det G (I13; /)
for any ¢ = 1,2,3 and 7 = 1,2, 3.

Proof.
Suppose () # © C FIN. We obtain Det (X9 | X¥) if and only if the determinacy of (2.37)
by theorem 2.5.18 and corollary 2.4.2.

(=) We obtain this from theorem 2.5.18.

(<) We obtain this from corollary 2.4.2.

By observation 2.2.10, (2.37), (2.38) and (2.39) are the same set. Similarly, (2.40), (2.41)
and (2.42) are the same set. The determinacy of (2.37) and the determinacy of (2.40) are
equivalent by theorem 2.3.1. Consequently, the determinacy of (2.37) through (2.42) are all

equivalent to Det (39 | X¥). O

Theorem 2.6.2. Suppose 3,7 € wy and > . Then for any nonempty © C FIN, the

determinacy of following (2.43) through (2.48) are all equivalent to Det (A% [X”).

G (X0 Tree; (X,0,0(w, AY), Ay | X¥)) (2.43)
G (X0 Tree; (X,0,0(w, %), A% | X¥)) (2.44)
G (20 Tree; (X,0,0(w,IL), A} | X¥)) (2.45)
G (I1Y; Tree; (X,0,T(w, AY), A | X¥)) (2.46)
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G (IIY; Tree; (X,0,T(w, X9), A} | X¥)) (2.47)

G (I1Y; Tree; (X,0,T(w, I19), A | X¥)) (2.48)

Theorem 2.6.2 says that if we let
T =Tree; (X,0,T(w,AY), A | X¥),
T? =Tree; (X,0,T(w,X9), A5 | X¥),
T = Tree; (X,0,0(w,II)), A} | X¥),

then

Det G (20 T7) © Det (A% | X¥) & Det G (I T7)
forany i =1,2,3 and j = 1,2, 3.

Proof.
Suppose ) #© C FIN. We obtain Det (A% I X‘”) if and only if the determinacy of (2.43)
by theorem 2.5.18 and corollary 2.4.21.

(=) This is obtained from theorem 2.5.18.

(<) This is obtained from corollary 2.4.21

By observation 2.2.10, (2.43), (2.44) and (2.45) are the same set. Similarly, (2.46), (2.47)
and (2.48) are the same set. The determinacy of (2.43) and the determinacy of (2.46) are
equivalent by theorem 2.3.1. Consequently, the determinacy of (2.43) through (2.48) are all

equivalent to Det (A | X¥). O
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Theorem 2.6.3. Suppose 3,7 € wy; and 1 < B <. Then for any nonempty © C FIN, the

determinacy of following (2.49) through (2.66) are all equivalent to Det (Ag [X“’).

G (X0 Tree; (X,0,0(w, AY), 55 | X)) (2.49)
g (E?;Treel (X,@, ['w, 22), E% [X“)) (2.50)
g (E?;T?‘eel (X, @,F(w,ﬂg), 2% [X“’)) (2.51)
G (II}; Tree; (X,0,T(w, AY), X5 | X¥)) (2.52)
g (H?;Treel (X, 0,Nw, Eg), Z% [Xw)) (2.53)
G (I13; Tree; (X,0,T(w, I19), 55 | X¥)) (2.54)
G (X0 Tree; (X,0,0(w, A),II; | X¥)) (2.55)
G (X0 Tree; (X,0,0(w, %9),1I; | X¥)) (2.56)
G (XV; Tree; (X,0,0(w,IL)), II} | X¥)) (2.57)
g (H?;Treel (X,@,F(w, Ag),H% [Xw)) (2.58)
G (I13; Tree; (X,0,T(w, X9), 113 | X¥)) (2.59)
G (I1Y; Tree; (X,0,0(w, 119), 113 | X¥)) (2.60)
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G (X0 Tree; (X,0,0(w, AT), A | X))
G (X0 Tree; (X,0,0(w, %), A% | X))

G (X0 Tree; (X,0,0(w,IL)), A} | X¥))

g (H?;Treel (X, 0, '(w, Ag), A% [X“’))
G (I1Y; Tree; (X,0,T(w, X9), A} | X¥))

G (IL); Tree, (X,0,0(w,I1), A% | X¥))

Theorem 2.6.3 says that if we let
TA% =Tree; (X,0,T(w,AY), 35 | X¥),
T =Tree; (X,0,0(w,X9), 35 | X¥),

T = Tree, (X, @,F(W,Hg>7 E% | Xw) y

TAYN = Tree, (X, 0, I'(w, Ag)’ H% er) 7
T2 = Tree (X’@a I(w, 22)’1_[2 f Xw) 7

TH = Tree, (X, @,F(W,Hg),ﬂg [X“’) ,
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TA% =Treey (X,0,I(w,A%), A} | X¥),

T4 =Tree; (X,0,T(w, %), A% | X¥),

T4 =Tree; (X,0,T(w, I19), AY | X¥),
then

Det G (2% T?) < Det (A) | X¥) < Det G (I13; T*)
for any 7, j, k,l € {A, 3, I1}.

Proof.
Suppose () # © C FIN. We obtain Det (Ag [ X‘“) if and only if the determinacy of (2.49)
from theorem 2.5.18 and corollary 2.4.27.

(=) We obtain this from theorem 2.5.18.

(<) We obtain this from corollary 2.4.27.

Similarly, we obtain Det (Ag | X*) if and only if the determinacy of (2.55);
and Det (AY | X) if and only if the determinacy of (2.61).

By observation 2.2.10, (2.49), (2.50) and (2.51) are the same sets. Similarly, (2.52), (2.53)
and (2.54) are the same sets. The determinacy of (2.49) and the determinacy of (2.52) are
equivalent by theorem 2.3.1. Consequently, the determinacy of (2.49) through (2.54) are all
equivalent to Det (AY | X+).

By observation 2.2.10, (2.55), (2.56) and (2.57) are the same sets. Similarly, (2.58), (2.59)
and (2.60) are the same sets. The determinacy of (2.55) and the determinacy of (2.58) are
equivalent by theorem 2.3.1. Consequently, the determinacy of (2.55) through (2.60) are all

equivalent to Det (AY | X*).
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By observation 2.2.10, (2.61), (2.62) and (2.63) are the same sets. Similarly, (2.64), (2.65)
and (2.66) are the same sets. The determinacy of (2.61) and the determinacy of (2.64) are
equivalent by theorem 2.3.1. Consequently, the determinacy of (2.61) through (2.66) are all
equivalent to Det (Ag | X“). O
Corollary 2.6.4. Suppose A is an algebra. Then for any nonempty © C FIN,

Det(A | X¥) < Det G (20;Tree; (X,0,0(w,A),A | X¥)). -
Proof.
(=) We obtain this from corollary 2.5.23.
(<) We obtain this from corollary 2.4.21. O
Corollary 2.6.5. Suppose A is a o-algebra. Then for any nonempty © C CTB,

Det(A | X¥) < Det G (2);Treer (X,0,0(w,A), A | X)) . -

Proof.
(=) We obtain this from corollary 2.5.24.

(<) We obtain this from corollary 2.4.21. O

Corollary 2.6.6. For any o, 8,7 € wy,
Det(B | X¥) < Det G (A;Tree; (X,0,T'(w,C),B | X))
where:

e ) £0CCTB,
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A=B, or

® 3 Ac {0 TII°, A%} fora>1, or

A e {30 119} for a =1,
\

B < {EO,H%,A%,B},

Ce {01 A% B},

at least one of A, B or C is B.

Proof.

(=) Corollary 2.5.37 gives
Det(B | X¥) = Det G (B;Tree; (X,CTB,I'(w,B),B [ X¥)).
Under the condition for ©, A, B and C,
G (A;Tree; (X,0,T'(w,C),B | X¥)) CG(B;Tree; (X,CTB,I'(w,B),B | X¥)).

Thus we have (=) direction.
(<) Recall that at least one of A, B or C is B.

Case 1 : A= B. By observation 2.4.1, we have
Det G (A;Tree; (X,0,I'(w,C),B | X¥)) = Det(B [ X*).

Case 2 : B=B.
Subcase 1 : X{ C A. By corollary 2.4.21, we have the results.

Subcase 2 : A =TI{. By theorem 2.3.1,
Det G (H?;Treel(X,@,F(w,C),B [X“’)) < Det G (E?;Treel (X,0,I'(w,C),B [Xw)).
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By subcase 1 for A = XY,
Det G (XV; Tree; (X,0,I(w,C),B | X¥)) = Det(B | X¥)

Hence

Det G (I1{; Tree; (X,0,T'(w,C), B | X¥)) = Det(B | X¥).
Case 3 : C = B. By corollary 2.4.27, we have

Det G (A;Tree; (X,0,'(w,C),B | X¥)) = Det(B [ X¥).
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2.6.2 Determinacy equivalence between projective games on X%
and games on Tree; collections

In this section, we will obtain the determinacy equivalences between projective games on

X <% and games on particular Tree; collections.

Theorem 2.6.7. Suppose n € w\{0}, 3,7 € w;.
For any nonempty © C CTB, B € {£§ 113, A} B} and C € {X9,II5, A, B}, the

determinacy of following (2.67) and (2.68) are equivalent to Det(X} | X¥).
G (2 Tree (X,0,(w,C), B | X¥)) (2.67)
G (IT}; Tree; (X,0,T(w,C), B | X¥)) (2.68)

For any nonempty © C CTB, B € {EO,H%,A%,B} and C € {Eg,Hg,Ag,B}, the

determinacy of following (2.69)is equivalent to Det(AL | X¥).

G(A);Tree; (X,0,T(w,C),B | X¥)) (2.69)

Proof.

We obtain
1. Det(X}L | X*) if and only if the determinacy of (2.67),
2. Det(X} | X¥) if and only if the determinacy of (2.68),

3. Det(Al | X*¥) if and only if the determinacy of (2.69).
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(=) Let Ty = Tree, (X,CTB,I'(w,B),B | X*). By theorem 2.5.38,
Det(%,, | X¥) = Det G (2,;T1) .
Det(A, | X¥)= Det G (AL Th).
By theorem 2.3.1,

Det G (Ei; Tl) < Det G (H}l;ﬂ) )

Thus we have

Det(2), | X¥) = Det G (IT; T1) -
By observation 2.2.4, for any B € {EO,H%,A%,B} and C € {Eg,l‘[g, Ag,B},
Tree, (X,0,T'(w,C),B | X¥) C Ti.

Thus, we have (=) of (1) through (3).

(<) By corollary 2.4.2, for any Y € O,
Det G (X,;Tree; (X,Y,T(w, A}), A} | X¥)) = Det (£}, | X¥).
By observation 2.2.4, for any B € {EO,H%, A%,B} and C € {Eg,l_[g, Ag,B},
Tree; (X,Y,T'(w,AY), A} | X¥) C Tree; (X,0,T(w,C), B | X¥).
Thus, we have (<) of (1) through (3). O
Corollary 2.6.8. Suppose A is o-algebra and closed under A-substitution. Then for any
nonempty © C CTB,

Det(A | X¥) < Det G (A;Tree; (X,0,1(w,A),A | X¥)) =
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Proof.

(=) By corollary 2.5.36,

Det(A | X¥) = Det G (A;Treey (X,CTB,T'(w,A),A | X¥)).

Since Tree; (X,0,1'(w,A),A | X¥) C Treey, (X,CTB,T'(w,A),A | X¥) for any © C CTB,

Det(A | X¥) = Det G (A;Treey (X,0,0(w,A),A | X¥)).

(<) Since B € A [ X¥, by observation 2.4.1, we have the result. O
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2.7 Generalization of a Type 1 tree

Instead fixing the first part as X“, we can take X for any limit ordinal .. The following is

the generalization of a Type 1 tree, named an a-Type 1 tree.

Definition 2.7.1. (Definition of an «-Type 1 tree)
Suppose « is a limit ordinal. Suppose X and Y are nonempty sets. Let B be a subset of X

and let W be a function from X into w. For any h € X* X Y<¥ define [QT;’;?] by :

. heXe ifh | ad¢ B,
h € [aTX,’Y] >
heX*xYYrlatl yfph o e B.

Thus a Type 1 tree is an w-Type 1 tree. Notice that we can obtain the similar results for

a-Type 1 trees. Simply replace X by X (respectively, X<“ by X <%).
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Chapter 3

Type 2 Tree : T)\g’iq

In chapter 2, we introduced a “Type 1”7 tree and obtained the determinacy results between
games on particular Tree; collections and games on X <“. In this chapter, we will introduce
a “Type 2”7 tree and consider games on Type 2 trees. Type 2 tree will generalize Type 1
tree: all Type 1 trees are Type 2 trees.

In section 3.1, we will define a Type 2 tree. This section will be a Type 2 tree version of

section 2.1. Recall that every Type 1 tree T' = T)\g’f satisfies the following properties:
1. Every h € [T] has lh(h) > w.
2. For any h € [T, every move of h [ w is from X.
3. For every h € [T], if h | w € B, then lh(h) > w and if h [ w ¢ B, then lh(h) = w.

4. For any h € [T], if Ih(h) > w, then h | [w,lh(h)) € YV 5o that [h(h) = U(h |

w +1l<w+w.
Given an w-sequence of nonempty trees Ty, = (T,,|n € w) and X, ¥, B as before, a Type
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2tree T' =T )‘fi , satisfies the following conditions: Properties 1-3 above and 4 below.
4*. For any h € [T, if [h(h) > w, then h [ [w,lh(h)) € [Twnhw))-

Thus the play of the tails is different in Type 1 tree and Type 2 tree. If every path in T,
has the same fixed length, then every path of a Type 2 tree constructed by these trees will
have the fixed length. Typically, the paths of a Type 2 tree will have variable lengths. In
observation 3.1.3, we will show that every Type 1 tree is a Type 2 tree.

There are Type 2 trees which are not Type 1 trees. These are differences between

properties 4 and 4*.

1. We do allow the trees T,,’s on Ty, = (T,,|n € w) to have any height greater than 0
(including greater than w). Recall that the height of every Type 1 tree is < w + w, so

that there are “long” Type 2 tree which are not Type 1 trees.

2. There are Type 2 trees in which each T}, from Ty, = (T,,|n € w) has finite height that
are not Type 1 trees. Moves of positions in each T, doesn’t necessarily come from a
same set. For example, [T},] could be Y x Z for some Y # Z. Moreover, for distinct
p,q € T, with lh(p) = lh(q), the set of possible moves at p and the set of possible

moves at ¢ could be different.

3. There are Type 2 trees in which each 7,, from Ty, = (T,,|n € w) has finite height and
every move of each T,,’s are from the same set that are not Type 1 trees. The length
of every play h with [h(h) > w in a Type 1 tree is computed from W(h [ w). For a

Type 2 tree, h [ w decides that the tail 2 [ [w,lh(h)) € [Tynw)]- If T has paths
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of different lengths ¢ and j, then this Type 2 tree contains paths h; of length w47 and

hsy of length w + j such that hy [w = hy [ w.

We will also provide a separate characterization of Type 2 trees called (X,countable tail
trees)-[w, 00) trees.

In section 3.2, we will define a Trees collection and games on a Trees collection. This
section will be a Type 2 tree version of section 2.2.

In sections 3.3 through 3.6, we will observe the determinacy strength on games on T'ree;
collections. To be consistent, we will observe the determinacy comparison in the same order
as in chapter 2. We can obtain similar results the same way as we proved in chapter 2. In
section 3.3, by shifting, we will compare the determinacy of 3° games and I1° games on a
particular Tree, collection and the determinacy of 3! games and IT} games on the same
T'reey collection, for a € wy and n € w. This section will be a Type 2 tree version of section
2.3. In sections 3.4 through 3.6, we will compare the determinacy strength of games on a

Treey collection and games on X <“:

e In section 3.4, we will use the determinacy of games on a particular 7T'ree, collection
to obtain the determinacy of certain games on X <“. This section will be a Type 2 tree

version of section 2.4.

e In section 3.5, we will obtain the determinacy of Borel and projective games on certain
Treey collections from the determinacy of games on X<“. Some of these results are
converses of results from section 3.4. This section will be a Type 2 tree version of

section 2.5.
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e In section 3.6, we will conclude this chapter with the resulting determinacy equivalences
from the earlier determinacy results between games on X <“ and on T'reey collections.

This section will be a Type 2 tree version of section 2.6.

Lastly, in section 3.7, we will generalize a Type 2 tree to an a-Type 1 tree for a limit

ordinal . This section will be a Type 2 tree version of section 2.7.
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3.1 Definition of a Type 2 tree

In this section, we will give a definition of a Type 2 tree. Throughout this chapter, we will

assume the following notation 3.1.1.
Notation 3.1.1.
o T, will always denote some w-sequence of nonempty trees.
As in chapter 2, we will have the following notational conventions throughout chapter 3:

o X will always denote a nonempty set.
o B will always denote a subset of X¥.

o U will always denote a function from X* into w.

A Type 2 tree is a tree with the following form.

Definition 3.1.2. (Definition of a Type 2 tree)
Suppose X is a nonempty set, ¥ is a function from X“ into w, B is a subsets of X* and

Tsy = (T, In € w) where each T,, is a tree. Define [T;’iq] by :

v B h e X¥ ifh lwé¢ B,
he |17 |«

h e X“ x [T\I/(h[w)} ’th [WEB.
A tree T is a Type 2 tree if and only if T = T)\I{fiq for some nonempty set X, a function ¥

from X¥ into w, a subset B of X“and some Ts, = (T, |n € w), where each T,, is a nonempty

tree. =

As in definition 3.1.2, fix X, ¥ : X¥ — w, B C X* and Toy = (Tn|n € w). [Ty ]is
the disjoint union of plays of the short play (length w) and the long play (length greater
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than w). Thus we have [T;’gq] = Uneo [(BNYTH(n)) x [T,]JU(X“\B). ! In particular,
Ty, = X*
Then for all n € w, for all f € BNV~ (n) and for all g € [T},],
g elTyr).
Each element of T, corresponds to a “tail” of a play. For each f € BN ¥~ (n), we can

attach any tail in T,,. This is the reason we use/abuse the cross product notation.

Case 1 : hfweB

\ Y J tail of h
h=hfa) h l
Case 2 : hfweB | )
h| @ T
plays from [Tq,(hm)]

Figure 3.1.1: Tllustration of paths h € [T] for a Type 2 tree T' = T;’iq for B # ().

Now, we observe that Type 1 trees are a special case of Type 2 trees. Suppose Y is a
nonempty set, ¥ is a function from X* into w and B is a subset of X“. Define T, = Y<"+!

for any n € w. Then [T,,] = Y. Let Ty, = (T,, |n € w). Then

'Recall notation 1.5.3 : abuse of product notation.
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o heXx® if h|wé B,
he [TX;Y] o
he X¥ x YYRItL Sf b 1w e B,

he X ifhwé B,

h e X% x [T\y(h{w)] ifhlweB.

\

ohe |rig ]

Thus [TYy] = [Tx7 ] e, Txy = Tyrp, for Ty = (Y="!|n € w).
Observation 3.1.3. For each Type 1 tree Ty, [Txy] = [T)\I(/,’iq] where Tyq=(Y =" ncw).
Thus any Type 1 tree is a Type 2 tree. -

Note that for each Type 1 tree, for any two functions f; and f, in X* such that U(f;) #
U(fs), it is impossible to share the same tail since the length of play is depending on W.
However, unlike Type 1 trees, for Type 2 trees, it is possible for two functions f; and f5 in
X to be followed (in play) by the same tail, even if W(f;) # W(fy). For example, suppose
[T,,] N [T;,] # 0 for some n # m. Then for all f; € BN W~(n) and for all f, € BNV ~(m),
if g € [T,] N [T0] then frg, fyg € [Ty, ]. Thus, for h € [TX7 ], h | [w,h(h)) € [T,] does

not necessarily imply ¥(h [ w) = n.

Next, we provide an alternate description of Type 2 trees. In definition 3.1.4 below, we

will give a definition of the “tail tree” T/ of f.

Definition 3.1.4. (Definition of the tail tree T/ of f)

Suppose T is a tree. For each f € X%, define [T7] to be the set of tails for f, i.e., for any
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f € X% and for any g € [TY], f~g € T. Then f € X“ N [T) if and only if [T'] = 0. Notice

that each T is a tree. Define TS to be the tail tree of f. -
We will define “the countable tail trees property” on a tree 7'

Definition 3.1.5. (Definition of the countable tail trees property)
Suppose T' is a tree. Define that T has “the countable tail trees property” if and only if

{[T7]|f € X*} is countable. =

Definition 3.1.6. (Definition of (X,countable tail trees)-[w, o0))
Suppose X is a nonempty set. Define that a tree T is “(X,countable tail trees)-[w, 00)” if [T]]

satisfies the following three properties:
1. forally e [T),y | we X¥.
2. for ally € [T, lh(y) > w.

3. T satisfies the countable tail trees property. -

Observation 3.1.7. For any X, ¥ : X¥ — w, for any nonempty B C X*“ and any w-
sequence of nonempty trees T, T)\Ig”fsq satisfies (X,countable tail trees)-[w, 00) . Conversely,
for any (X, countable tail trees)-[w, 00) tree T, there exists ¥ : X* — w and a unique B C X¥

such that T = T)‘l(’,’fsq. 4

Proof.

(=) Show T)\I(I”iq is (X ,countable tail trees)-[w, 00). Clearly, (1) and (2) holds. Show (3). By
definition of the Type 2 tree, for each f € BNV ~Y(n), [T/] = [T,]. Since ¥ maps form X
into w, there are at most w many distinct [T]s.
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(<) Suppose T is (X,countable tail trees)-[w,00). Let B ={f [ w € T | Ih(f) > w}.
Then B C X* by (1). Since there are countable many distinct [TV]’s, let ([T}3]|3 € w) be an
enumeration of nonempty [T7]’s. Define

U: XY —>w
f = n where [T,] = [T/].
Show [T] = [Ty, ].
(C) Pick an arbitrary h € [T.
By (1), h w e X¥. Case 1: lh(h) = w.
Then h | w ¢ B so that h=h [ w € [TY7 ].

Case 2 : lh(h) > w.

Then h | w € B. Since h | [w,lh(w)) € [T"*] = [Tynw)), h € [ng;ﬁq].

(D) Pick an arbitrary h € [T)\I(’”fsq].

Casel: h|w¢ B.

Then (h(h) = w so that h = h | w. Hence [T"“] = (. Thus h | w € T.

Case2: h|JweB.

Then (h(h) > w. By definition of [Ty ], h | [w, lh(h)) € [Tu(nw)] = [T"*]. Thus h € [T].

Show uniqueness. Suppose B C X% such that T = T)%"’i .= T)‘ff , for some W from X*
into w and qu. Show B = B. Suppose, for a contradiction, B # B. Then there exists h € [T]
such that h [ w € B\B or h | w € B\B. Suppose h | w € B\B. Since h € [T] = [T)\I(J”fsq] and
hlwé¢ B,lh(h) =w. Since h € [T] = [T\i”B ] and h | w € B, lh(h) > w, a contradiction.

X:f@q

Similar for the case h | w € B\B. Thus B = B. O
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3.2 Definition of a T'reey collection and a collection of

games on a T'rees; collection with complexity =

In this section, we will define a Trees collection of Type 2 trees. We will use T to be a
nonempty collection of nonempty trees?. We will be considering a collection of trees T)‘?:ﬁ .
for which Ty, varies over T*, U varies over I' and B varies over A, while X is fixed. Thus,
each T'reey, collection will be defined from X, Y, I" and A. We will denote a T'ree, collection
by Treey (X, T, T',A) constructed from some X, T, T" and A. Throughout the rest of this
chapter, we will assume notation 3.2.1. Then, in definition 3.2.10, we will define a collection
of games on a Treey collection with complexity =. We will use = | [T] for each tree T in
Treey collection. We will also make some observations of Trees collections and collections

of games on T'reesy collections.

Notation 3.2.1. We will assume the following notation throughout chapter 3.
o Y will always denote a nonempty collection of nonempty trees.

As in chapter 2:

o I' respectively, I'; will always denote nonempty collection of functions from X“ into

w.
o A, respectively, A; will always denote nonempty collection of subsets of X*. =

We next define a collection of Type 2 trees constructed by X, T, I" and A.

2Y (a Greek letter uppercase Upsilon) corresponds to the letter Y. The position for Y in a Type 1 tree
T)\g"g is replaced by Ts, € T in a Type 2 tree T;’:i Y I choose T just because its shape resembles the trees.
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Definition 3.2.2. (Definition of a Treey collection)
Fiz a nonempty set X. Let T # () be any collection of nonempty trees. Suppose A # 0 is

any collection of subsets of X*, T' # () is a collection of functions from X* to w. Define
Trees (X,T,T,A) = {ng;gq T, € T*, U ecl,Be A}.

A collection is a Treey collection if and only if it is Trees( X, Y, I, A) for some nonempty
set X, a monempty collection T of nonempty trees, a nonempty collection I" of functions
from X“ into w and a nonempty collection A of subsets of X“.

We sometimes let Ty be a Trees collection when we wish to suppress X, Y. I" and A, i.e.,

To = Treeg( X, T, T, A). =

Notation 3.2.3. If T is a singleton {T}, we will write Trees (X,{T}’,T,A). To avoid
confusion, we do not supress the brackets {} in {T}*, we do not write Treey (X, T, T, A).
If we fiz an w-sequence of trees Ty, we will write Treey (X, Ty, I', A). When dealing with
the singletons for any of the last two components of Trees (X, Y, T, A), we will suppress {},
i.e., if T is a singleton {f}, Trees (X, Y%, f,A) abbreviates Trees (X, Y {f},A) and if A

is a singleton {B}, Treey (X, Y¥, I, B) abbreviates Trees (X, Y. I',{B}). .

Now, we will observe a relation between Tree; and Trees. By observation 3.1.3, each

Type 1 tree is a Type 2 tree. Thus, we have the following inclusion.
Observation 3.2.4. Suppose Y is a nonempty set and {YS”Jrl In € w} C7Y. Then

Treey (X,Y,I,A) C Treey (X, T, T, A).
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In general, if {Y=""'|Y € O, ncw} C T, then

Treey (X,0,T,A) C Trees (X, T T, A). .
Proof.
Suppose {Y="*!|n € w} C Y. Pick an arbitrary Tyy € Tree; (X,Y,T,A). Then ¥ € T
and B € A. Define 7" = Y="*! for all n € w. Let Ty, = (T,,|n € w). Then Ty, € T¥. By
observation 3.1.3, [T)‘I(If] = [T;’ﬁq}. Thus T)\I;”f = T;’ﬁq € Treey (X, Y%, I A).
Suppose {YS”“ Y €eO©,n¢e w} C Y. Then forany Y € ©, T}, = <Y§"+1 In € w> e Tv,
Thus we have

Treey (X,0,T,A) C Trees (X, T, T',A). ]
We will consider the Type 2 tree in which Ty, is an w-sequence of well-founded trees.

Recall the following notation.

Notation 1.5.11. Let W F be the set of nonempty well-founded trees. Let CWF C WF
be the set of nonempty well founded trees such that each move is from some countable set.
Similarly, let FWEF C CWF be the set of nonempty well-founded trees such that each move

is from some finite set. -

Observation 3.2.5. Suppose ¥ is a function from X into w and B C X% is nonempty.

Then Ty, € WEF* implies T;’iq is (X, countable tail trees)-[w,w + w).

Observation 3.2.6.
Treey (X,FIN,I';A) C Treey (X, FWF* T A).

Tree; (X,CTB,T,A) C Trees (X,CWF“ T, A). 4

221



Proof.
For any Y € FIN, each Y=<' € FWF so that Ty, = (Y="" |n € w) € FWF“. Similarly,
for any Y € CTB, each Y<"™' € CWF so that T, = (Y=""'|ncw) € CWF“. By

observation 3.2.4, we have the results. O

We have the following inclusions similar to T'ree;. The following is a T'ree, version of

observation 2.2.4 on page 51.

Observation 3.2.7. Fix a nonempty set X. Suppose T, T1, Ty are collections of nonempty
trees; I',1'1, 'y are collections of functions from X into w; and A, Ay, Ay are collections of

subsets of X“. If T1 C Ty, then
Treey (X, Y4, T, A) C Trees (X, 15, T,A).

Similarly, if I'y C 'y, then

Treey (X, Y, T'1,A) C Trees (X, T¥, T, A),
and if A1 C Ao, then

Treey (X, Y% ', A1) C Treey (X, Y9, T',Ay).
Thus Trees is an increasing operation on last three components. .

The following is a Treey version of observation 2.2.5 on page 52.

Observation 3.2.8. Let T be a collection of nonempty trees and A C X¥. Suppose we have

= such that Z | X% is defined (e.g., 32, T1° 3L TI! ). Then the following are equal.
o Trees (X, T I'(w,Z),A)

222



o Treey (X, Y% T'(w,co-E),A)

o Treey (X, Y I'(w, A(2)),A) 5

We will define a collection of games played on a Tree; collection similar to a Tree;

collection. The following is a T'ree, version of definition 2.2.6 on page 52.

Definition 3.2.9. (Definition of “games on a T'reey collection”)
Let Treey collection Ty = Treey (X, Y, T, A) for some X, T, " and A. Define “games on the

Treey collection Ty” by

U {cn)acnl. .

TeT2

If = is a complexity (e.g., X9 TI0 31 TI!), we define = games on a Treey collection as

follows. The following is a T'rees version of definition 2.2.7 on page 52.

Definition 3.2.10. (Definition of = games on a Treey collection)

Let Trees collection Ty = Treey (X, T, T',A). Suppose we have = such that for each T €
Treey, Z | [T] C o ([T]) is defined (e.g., X2, T2, LTI ). Define = games on a Tree,
collection Ty by

G(ET)=J{cUn)|Ac= [T}

TeT2

We will use G for a collection of games.

Though often = will be a standard classes (e.g., X9 TI2, 3! TI!), note that G(Z;T) is
defined as long as we have defined = | [T] C ¢ ([T]). The following is a Treey version of

observation 2.2.8 on page 53.

Definition 3.2.11. (Definition of = determinacy on a Treey collection)
Let Treey collection Ty = Treeo( X, Y, ', A). Suppose we have = such that for each T €
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Treey, = | [T] C o ([T]) is defined (e.g., X2, 110 3L TI! ). Define = determinacy on the
Treey collection To by

Det G(Z;7T3),
i.e., forany X, Ty, € T¥, W eI, Be Aand A€ = | [T;ﬁq], every game G(A;T;’iq) is
determined. -

Next, similar to Type 1 trees, we will make three observations about games on Type 2

trees. The following is a T'rees version of observation 2.2.9 on page 53.

Observation 3.2.12. Suppose X is a nonempty set, T is a collection of trees, I' is a col-
lection of functions from X% into w, A is a collection of subsets of X“ and =Z,,Z5 are

complexities. Let To = Trees(X, Y T A). If for any T € To, Z1 | [T] C Zs | [T], then
G(E1;T2) CG (x5 T2) -
Thus G is an increasing operation on the first component. -

The following is a Treey version of observation 2.2.10 on page 54.

Observation 3.2.13. Let T be a collection of trees and A C X*. Suppose we have = such

that = | X¥ C o (X¥) is defined (e.g., X%, TI0 3L TI! ). Suppose we have =y such that for

each T € Trees (X, T T'(w,=2),A), 21 | [T] C 9 ([T)) is defined (e.g., X2, 1%, L TI! ).

Then the following are equal.
e G(=;Treey (X, T T'(w, =), A))
o G(Z1;Trees (X, 1%, I'(w, co-E), A))

o G(Z1;Trees (X, 1%, T(w, A(Z)), A)) :
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3.3 Equivalence between X! and II) determinacy on
Type 2 trees and equivalence between X{ and II;

determinacy on Type 2 trees

As in section 2.3, we will obtain the determinacy equivalence of particular games on Trees
collections. All of the results in this section is the Type 2 version of results in section 2.3.

The main theorem of this section is theorem 3.3.8, which is a T'ree, version of theorem
2.3.1 on page 55. In this theorem, we will show that the determinacy of 32 and IT? games on
certain T'rees collections of Type 2 trees are equivalent. We will also obtain the determinacy
equivalence of X! and IT! games on certain Tree, collections. For each Type 2 tree T', we will
define a corresponding “Shift tree” S ft5(7T") in definition 3.3.2 (We will use the subscript 2 to
represent Type 2 trees). S fto(T) is similar to Sft(T') for a Type 1 tree T, and it is slightly
modified for a Type 2 tree. In lemma 3.3.9 and lemma 3.3.10, we will find the complexity of
Shifty(A) for A being Borel (respectively, a projective set) on a T'reey collection.

For each Type 2 tree, there is a natural Shift tree which is also a Type 2 tree. In order
to define a Shift tree for each Type 2 tree T' = T;’ﬁ o we define W3 and TSZ from ¥ and T,
which satisfying a “shift” relation. W3 is a function on X* into w and for any f € X* and
for any a € X, U3 ((a)"f) = ¥(f). Thus ¥] is just ignoring the first move. Recall that U
in section 2.3.2 had an extra 1; i.e., for any a € X, T ({a)"f) = ¥(f) + 1. Instead, we will

define T.F for each tree T, in T,, which has an extra move.

Definition 3.3.1. (Definition of W3 and T}
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Fiz a Type 2 tree T)‘g’iq. Then B C X¥, ¥ : X¥ — w and Ty, = (T, |n € w) is an w-sequence

of nonempty trees. Define
1. U X% — w such that U5 (f) =U(f | [1,w)).
2. For each n € w, T;f =Y, x T, for some nonempty set Y, and T = (I;} |n € w).

Recall we have defined Bt for B C X“ as Bt = X x B C X*“ by definition 2.3.2 on page

56. 3 By using B*, U' and T, we will define a Shift tree as follows.

5q7

Definition 3.3.2. (Definition of a Shift tree S fto(T))

Fix a Type 2 tree T = T;?:ﬁq. Define a Shift tree S fto(T') by

Sft(T) = Tyl E
h
he [T hlw h 1 [w,ih(R))
C tailof he T,
P
h € [Sft(T)] v hilw Y || hllwlh(h))
any 7 € X tail of h € T)F

any y € Y,

Figure 3.3.1: Illustration of i € [Sfto(T)] with (h(h) > w.

For any Type 2 tree T' = T)\g’iq with B =0, T = X<“ = Sfty(T).
Unlike observation 2.3.4, T' = S fto(T) doesn’t imply B=0. Set X =Y =w. Let T,, =

w* for all n € w. Then for B = w* and any function ¥ from w* into w, T' = T,};7 = wtv.

3Recall abuse of notation 1.5.3 on page 42.
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Since BT = w X w¥ = w*, Sfto(T) = Tfﬁt’m = wt. Hence we have T' = S fto(T).

Notice that for each Type 2 tree T = T)‘I(’”I]?S , and for each h € [Sfty(T)], there is a
unique f € [T] such that h(i + 1) = f(i) for every i € lh(f) (e.g., h(1) = f(0),h(2) =

f), . h(w+1) = f(w),hlw+2) = flw+1),..for h [we B).
Proposition 3.3.3. Fiz a Type 2 tree T = ng:ﬁq. Then for every h € [S fto(T)],

h1l,w)el[T] ifhlwé¢ BT,

hi[l,w) h'lw+1,h(h)€T] ifh|we B gy

Proof.
Pick an arbitrary h € [Sft2(T)]. Notice that h [ w € B* if and only if A | [1,w) € B. Also,

U5 (h [w) = U (h(0)h | [L,w) = U(h | [1,w)). Thus

p

h e X% ifhlwée BT,
h e [Sfty(T)]
h e X“ x T\;(h[w) if h |we BT.
\
(
h e X% if h [ [1,w) ¢ B,
e
heXYxTyp, thl[lw) eB.
\
(
h|lw)e X if h|[l,w) ¢ B,
g
h | [1,w)Ah i [w +1,1lh (h)) € X x T\Ij(hm7w)) if A | [1,w) € B.
\
(
h][l,w) € [T] ifhlwée BT,
—
hl[l,w)h|w+1,lh(h)e[T] ifh|we BT . ]

Proposition 3.3.3 give us a natural erasing function ey from [S ft2(7)] into [T7].
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Definition 3.3.4. (Definition of the erasing function ey : [S fto(T)] — [T])

Fiz a Type 1 tree T = T)?,’TB;q. Define the erasing function e from [S fto(T)] into [T] by

ey: [Sfta(T)] — [T
B (Lw) ifhwé B,
h
hl[l,w)" h|[w+1lh(h)) ifh|we Bt 4
Now, we define a function “Shift” which maps subsets A of [T] for a Type 2 tree T to a

particular subset of [S fto(T)].

Definition 3.3.5. (Definition of Shifts)

Fiz a Type 2 tree T' = T)\?ﬁq. Define

Shifty: o ([T]) = ¢ ([Sft2(T)])

A= {he[Sfta(T)]| ea(h) € [T]\A}. 4

Theorem 3.3.6. For any Type 2 tree T, the determinacy of G(Shifts(A); S fta(T)) implies

the determinacy of G(A,T). =

Proof.
Pick an arbitrary Type 12 tree T = T;ﬁq. Assume G(Shifta(A); Sfta(T)) is determined.
Then I* or I1* has a winning strategy s* for G(Shifty(A); Sfte(T)). Show that G(A;T) is
determined.

Case I : s* is a I*’s winning strategy for G(Shifta(A); Sfto(T)). Define a strategy s for
II for G(A;T) as follows: Suppose ag = s*(0).

For p € T such that p is finite and (ag)"p € dom(s*) or
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p is infinite and (ao)"p | w™{a,)"p | [w,lk (p)) € dom(s*) where a,, = s* ((ao)" p [ w),

p € dom(s) and

s* ({ao)"p) if p is finite,
s(p) =
5 ({ao)p 1w (as)p | [w,lh (p))) it p is infinite.
s* gives a, € Y,
eTr
4
s* I* ag h e Qg Puw+1
Sfta(T)
Ir* Po P2 e Pw Puw+2
N2 7 2 2
plw p | [, Ih(R) €T,
I Po D2 s Puw P2
T
s I D1 D3 s Puw+1 Pw+3
plw p | [w,lh(h)) €T,

Figure 3.3.2: Hlustration of p € T, [h(p) > w according to I1’s strategy s.

Show s is a winning strategy for I for G(A;T). Pick an arbitrary = € [T according to

Subcase 1 : =z [w ¢ B.
Then z = z | w and s*(0) "z ¢ BT. Thus s*(0)"x € [Sft2(T)] and it is according to s*.
Hence s*(0)"x € Shifty(A) and thus z = ey(s*(0)"z) ¢ A. 4

Subcase 2 : x [ w € B.

Then s*(0)"z | w € BT and ¥ (s*(0) "z | w

I
<
8
£
ot
.
)
-+

4Recall definition 3.3.4 for the erasing function es.
Recall definition 3.3.1 for W3 .
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Then z | [w,lh(z) 4+ 1) € T™. Let
h=s"(0)"(z | w)s*(s*(0) "z | w) z | [w,lh(z)).

Since z is according to s, h is according to s*. Since s* is a strategy for I* for

G(Shifts(A); S fta(T)), 57 (s*(0) "z | w) € Y,,. Thus
s (s*(0) z fw) @ | [w,lh(z)+1) €Y, xT,, =T/

Hence h € [Sfty(T)]. Since s* is a winning strategy for I* for G(Shifta(A); S fta(T)),

h € Shifty(A). Hence z = e(h) ¢ A. Therefore, s is a winning strategy for 11 for G(A;T).
Case II : s* is a II"’s winning strategy for G(Shifts(A); S fto(T)).

Define a strategy s for I for G(A;T) as follows: Suppose ayp € X and a € Y,,, n € w are

arbitrary.

For p € T such that p is finite and (ag)"p € dom(s*) or

p is infinite and (ag)"p [ w™(a)"p | [w,lh (p)) € dom(s*), p € dom(s) and

w

s* ({ap)"p) if p is finite,
s(p) =
s* ({ap)"p [ w{(a™)"p | [w,lh(p))) if pis infinite.
Note that for (ag)"p [ w™(a])"p | [w,lh(p)) € Sfta(T), al, € Y,, and p [ [w,lh(p)) € T,

w

where n = U5 ({ag)"p | w) = ¥U(p | w).
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any ag € X any a, €Y,

| |

I*  ag P1 e a Pu+1

S ftaT)
s*II* Po P2 . Pw+2

/ //prw / /\/p[[w,lh(h))eTn

s ] Po P2 Pw+2

eTr

II b1 P3 s Pu+1 Pu+3

plw p 1w, h(h)) € T,
Figure 3.3.3: Illustration of p € T, lh(p) > w according to I’s strategy s.

Show s is a winning strategy for I for G(A;T). Pick an arbitrary x € [T'] according to s.
Let ap € X and a], € Y,,, n € w be arbitrary.

Subcase 1 : =z [w ¢ B.
Then = 2 [ w and (ag)"x ¢ BT. Thus (ag)"x € [Sft2(T)] and it is according to s*. Hence
(ag)~x ¢ Shifta(A) and thus x = ey((ap)"z) € A.

Subcase 2 : x [ w € B.
Then (ag)"x [ w € Bt and U ({ag)"x | w) = ¥(z [ w). Let n = ¥ ({ag) "z [ w) = ¥(z | w).
Let

h = (ao)™(z [ w)™(ag) = [ [w, th(z)).

Then (a)"x | [w,lh(z)) € T, . Since x is according to s, h is according to s*. Since s* is
a winning strategy for IT* for G(Shifta(A); S fto(T)), h ¢ Shift(A). Hence z = e(h) € A.
Therefore, s is a winning strategy for I for G(A;T).

By cases I and II, G(A;T) is determined. O
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Definition 3.3.7. (Definition of a “shifting tree”)
For a tree T, define a shifting tree to be Y x T for some nonempty Y. Suppose Y is a
collection of nonempty trees. Define T to be closed under shifting trees if for each T € T,

there is a shifting tree Y x T € Y for some nonempty Y . -
Using theorem 3.3.6, we have the following theorem 3.3.8.

Theorem 3.3.8. Supposen € w and a € wy. Suppose Y is closed under shifting trees. Then
for any X,

Det G (X2;T3) < Det G (I1; T3) (3.1)
Det G (2,;Tz) < Det G (I1;; T5) (3.2)
for Ty = Treey (X, Y9, T'(w,C), B | X¥) ¢ where:
o Cc{X),II),AY,B, X, 11|, A, 3, AILL P}, v €w and m € w.
e Bec {EO,H%,A%,B,E}W,H}W,A%,E}” ATIL P}, B€w and m € w. -

Similar to theorem 2.3.1, for the equivalences in theorem 3.3.8, we won’t be obtaining
the determinacy of a game G(A;T) from the same tree T' (except for the case when B = 0)).

We will instead use two trees T" and S fto(7) in the same Treey collection.

We have similar results as lemmas 2.3.9 and 2.3.15: lemma 3.3.9 and lemma 3.3.10. The
similar proof as lemma 2.3.9 gives us lemma 3.3.9 and the similar proof as lemma 2.3.15

gives us lemma 3.3.10. In lemma 3.3.9, we obtain the complexity of Shifty(A) for each

6Recall notation 1.5.8 for I'(w,C).
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AeXl | [T] and A € II? | [T]. In lemma 3.3.10, we obtain the complexity of Shifty(A)

for each A € 37 | [T] and A € I13 | [T].
Lemma 3.3.9. Fiz a Type 2 tree T' = T;’fsq. Then, for any o € wy:

1. IfA €TI0 | [T), then Shifty(A) € 50 | [SFto(T)].

2. If A€ X0 | [T, then Shifty(A) € TIO | [Sfto(T)]. -
Proof.
The proof is similar to lemma 2.3.9. ]

Lemma 3.3.10. Fiz a Type 2 tree T = Tgﬁq. Then for any n € w\{0}:

1. If A€ IIL | [T], then Shifty(A) € SL | [Sfta(T)).

2. If A€ XL | [T], then Shifty(A) € TIL | [Sfto(T)]. -
Proof.
The proof is similar to lemma 2.3.15. O

Now, we prove theorem 3.3.8 on page 232. Recall theorem 3.3.8.

Theorem 3.3.8. Supposen € w and o € wy. Suppose Y is closed under shifting trees. Then
for any X,

Det G (9 73) < Det G (I: T5) (3.1)
Det G (2,;Tz) < Det G (I1;; T5) (3.2)

for To = Treey (X, Y%, T'(w,C), B | X*) " where:
"Recall notation 1.5.8 for I'(w, C).

233



o Cc{X,I1),AYB, X, 11, A, 3, AILL P}, v €w and m € w.
o Be (X313, A%, B, X I, A2, AITLL P}, B €w and m € w. -

Proof of Theorem 3.3.8.
The proof is similar to theorem 2.3.1. Readers familiar with the proof of theorem 2.3.1 may
skip the proofs.

Pick an arbitrary nonempty set X. Suppose T is closed under shifting trees. Fix 75 =
Trees (X, Y% I'(w,C),B | X¥) in the theorem with fixed complexities for B and C. Pick an
arbitrary T = T;’ﬁq € Tz. Let Ty, = (T),|n € w). Show the equivalence (3.1).

(=) Pick arbitrary A € II? | [T]. Since Y is closed under shifting trees, for each T},, there
exists a nonempty set Y, such that 7,7 =Y, x T, € T. Then T = (Y, x T, |n € w) € T¥.
Since B € B | X“, by sublemma 2.3.19 and sublemma 2.3.20, Bt = X x B € B[ X“. Also,
by sublemma 2.3.21, U5 € ['(w,C). Therefore, Sft(T) = T " € Ty. Since A € TIY, | [T,

by lemma 3.3.9, Shifty(A) € X2 | [Sfto(T)]. Thus
G(Shifts(A), Sft(T)) € G (S0 T)

Hence G(Shifta(A), Sfta(T)) is determined. By theorem 3.3.6, G(A,T) is determined.
(<) By switching IT? and 32 in the above proof, we can obtain this direction.
Show the equivalence (3.2).
(=) Suppose A € IT} | [T]. Since B € B | X“, by sublemma 2.3.19 and sublemma 2.3.20,
Bt € B | X¥. Also, by sublemma 2.3.21, " € T'(w,C). Therefore, Sft(T) = T)\I{;’f+ € 7Ts.

By lemma 3.3.9, Shift(A) € X} | [Sft(T)]. Thus
G(Shifta(A),Sfto(T)) € G (2 T2) -
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Hence G(Shifta(A), Sfta(T)) is determined. By theorem 2.3.8, G(A, T) is determined.
(=) Switch IT! | [T] and X! | [T] in the (=) direction of the equivalence (3.1). By
lemma 2.3.15, Shift(A) € IL}, | [Sft(T)].

(<) By switching IT! and X! in the above proof, we can obtain this direction. O
The following is a corollary to theorem 2.3.1.
Corollary 3.3.11. Suppose n € w and o € wy. Let:
o T} =Treey (X, FWF“ T'(w,C),B | X%).
o T2 =Treey (X,CWF“ '(w,C),B | X¥). 8

Then

Det G (50:T,') & Det G (I1; T,')
Det G (29;77) < Det G (TI); T5)
Det G (B4 T;)) & Det G (T1,; T5)
Det G (£,:T7) & Det G (IL; ;)

for any C € {X9, 110, AY, B, X} | II) A}, X} AL P}, v € wy and m € w;

and any B € {X9, 113, A}, B, X 11, A} S0 AT PY, B € w and m € w. .

Proof.
Since FWFE and CWEF are closed under shifting trees, we have the results by theorem

3.3.8. O

8Recall notation 1.5.11 for FWF and CWF.
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3.4 Using the determinacy of games on a T'ree, collec-

tion to obtain the determinacy of games on X <“

In this section, we will use the determinacy of games on a T'ree; collection to obtain the
determinacy of games on X <“. We will obtain similar results to those in section 2.4 on page
82 for T'reey collections except sections 3.4.1.2 and 3.4.4. These sections will be distinct as
the type of trees we will use in these sections will be Type 2 trees which are not Type 1
trees.

In section 3.4.1, under ZF-P, we will focus on using AY determinacy on a Tree, collection
to obtain Borel determinacy on X <“. The results in section 3.4.1.1 are Type 2 tree version
of the results in section 2.4.1. We will obtain the determinacy of finite Borel games on X <¢
from the determinacy of clopen games on a particular Treey collection. In section 3.4.1.2,
we will use the determinacy of clopen games on a certain Trees collection to obtain the
determinacy of Borel games on X<“. We will use the tree defined in Yost’s thesis (Yost,
n.d.).

In section 3.4.2, we will focus on using X9 determinacy on a Treey collection to obtain
the determinacy of games on X<“. The results in this section are Type 2 tree version of
the results in section 2.4.2. We will obtain similar results to section 2.4.2.1 through 2.4.2.4
in sections 3.4.2.1 through 3.4.2.4. In section 3.4.2.1, we will obtain the similar results as
sections 2.4.2.1. We will define Longs, which is the Type 2 tree version of Long. In sections
3.4.2.2,3.4.2.3 and 3.4.2.4, we will obtain the similar results as sections 2.4.2.2, 2.4.2.3 and

2.4.2.4, respectively. We will define Ty, on Type 2 trees which corresponds to Maxz for
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Type 1 trees. T4, will be defined on Type 2 trees with ¥ bounded over B.

In section 3.4.3, we will obtain « + 1-TI} determinacy on X* for even o € w; from the
determinacy of a-IT} games on Treey collection. The results in this section are Type 2 tree
version of the results in section 2.4.3. We will again use Th;qz.

In section 3.4.4, we will obtain the determinacy of a-IT3, (o € w;) games on X* from
the determinacy of open games on a T'rees collection. We will define T'ail which is a gener-
alization of Thse,. Tail will be defined on any Type 2 trees. Using T'ail, we will obtain the
determinacy of a-IT} games on X< from the determinacy of open games on a certain Tree,

collection.

237



3.4.1 (ZF-P) Using AY determinacy on a Tree; collection to obtain
Borel determinacy on X <“

In this section, we will focus on obtaining the determinacy of Borel games on X<“ from
the determinacy of a certain Tree, collection.? First, in section 3.4.1.1, similar to section
2.4.1, we will obtain the determinacy of finite Borel games on X <“ is obtained from the
determinacy of open games on a particular Tree; collection. In section 3.4.1.2, we will
obtain the determinacy of Borel games on X<“ from the determinacy of clopen games on a

certain T'rees collection by using the tree defined in Yost’s thesis (Yost, n.d.).

3.4.1.1 (ZF-P) Using AY determinacy on a Tree, collection to obtain finite Borel

determinacy on X<¥

We will obtain the determinacy of finite Borel games on X <“ from the determinacy of open
games on a Treey collection Treey (X, T, T, {(), X¥}) where I' contains all the constant
functions from X* into w and T contains Y<"*! for all n € w for some countable Y. The
results of section are similar to section 2.4.1.
Observation 3.4.1 below is the special case of a Type 2 tree with B = (). Since [T)‘?gq] = X,

G (E;Treey (X, Y T,0)) ={G(A; X<¥)|[A € Z | X¥} for any T and . Thus, for example,
G (X9 Treey (X, T¥, T'(w, A?), A? | X*)) contains all open games on X <* for any T since
e AV X¥ and T'(w, AY) is the set of continuous functions from X* into w. The following

is a Trees collection version of observation 2.4.1 on page 83.

Observation 3.4.1. For any X, any w-sequence of nonempty trees Tsq, any function f from

9The proof of Det(B | X¥) in ZFC uses the power set axiom.

238



XY into w, and any complexity E (in which for any T € Trees (X, Tsg, f,0), E 1 [T] C ¢ ([T])
is defined),

Det G (2;Trees (X, Tsq, f,0)) = Det (2 | X¥). -
= | X“ in observation 3.4.1 could be any subset of X“.
Corollary 3.4.2. Fix nonempty X and nonempty Y.
Let Ty = Trees (X, Y, T'(w, AY), AV | X¥). For any complexity =,
Det G(2;T1) = Det (2] X¥). =

Proof.
Note ) € A | X“. Since observation 3.4.1 is true for any function f from X* into w, by
taking f to be the continuous function, we have f € T'(w, A?). Since observation 3.4.1 is

true for any w-sequence of nonempty trees Ty,, for any nonempty T, we have
Trees (X, Tsq, f,0) C Treey (X, T, T(w, AY), AY [X“) =T5.
Thus, by observation 3.4.1, we have the result. O

By replacing = by ¥ and X! in corollary 3.4.2, we obtain corollary 3.4.3. The following

is a T'rees collection version of corollary 2.4.2 on page 83.

Corollary 3.4.3. (Corollary to Corollary 3.4.2)
Suppose o € wy and n € w. Fix nonempty X and nonempty Y.

Let Ty = Trees (X, Y% T'(w, AY), AY | X¥). Then
Det G (22;T5) = Det (0, | X¥).

Det G (=);T) = Det (X, | X¥). 1
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The following is a T'rees collection version of observation 2.4.3 on page 84.

Observation 3.4.4. Suppose I' contains all constant functions from X* into w. Suppose Y
is a nonempty set and Y contains Y=" for alln € w. Then for any complexity = (in which

ETXYXY"Cp(XYxY™) is defined for alln € w),

Det G (Z; Trees (X,%,T, {0, X*})) = Det (U = (XY x Y”)) . 4

new

Before we prove observation 3.4.4, recall observation 3.2.4.

Observation 3.2.4. Suppose Y is a nonempty set and {an+1 In € w} CTY. Then
Tree; (X,Y,I',A) C Treey (X, T, T,A).
In general, if {Y<""'|Y € ©,n€w} C T, then

Treey (X,0,I,A) C Trees (X, T, T',A). =

Proof of observation 3.4.4.

Since YT contains Y="*! for all n € w, by observation 3.2.4,
Tree; (X,Y, T, {0, X“}) C Treey (X, Y, T, {0, X*}).

Thus

G (E;Treer (X, Y, I, {0, X*})) € G (E;Treez (X, 17,1, {0, X*})) .
Since I' contains all constant functions from X into w, by observation 2.4.3,

Det G (Z; Tree; (X, Y, T, {0, X*})) = Det (U =1 (X% x Y”))

new
Thus

Det G (Z: Trees (X, T2, T, {0, X*1)) = Det (U =1 (X% x Y”)) . O

new
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The following theorem 3.4.5 is a T'ree, version of theorem 2.4.4 on page 84. Recall

theorem 2.4.4.

Theorem 2.4.4. (ZF-P)
Suppose I' contains all constant functions from X% into w and Y 1is denumerable. Then

Det G (AY; Treey (X,Y,T,{0, X“})) implies Det (U, , X0 | X*), finite Borel determinacy

new

on X<¥. -
By theorem 2.4.4 and observation 3.2.4, we have the following theorem.

Theorem 3.4.5. (ZF-P)
Suppose I' contains all constant functions from X% into w and YT contains Y <" for all € w

for some countable Y. Then
Det G (A; Treey (X, 1%, T, {0, X“})) = Det (U = er). .

By using theorem 3.4.5, we can obtain corollary 3.4.6. The following is a T'reey collection

version of corollary 2.4.17 on page 104.
Corollary 3.4.6.
Det G (AY; Treey (X, CWF® T(w, AY), AY [ X*)) = Det (U = [X“). =

Proof.
Since each constant functions is continuous, I'(w, AY) contains all the constant functions

from X“ into w. Also 0, X* € A} | X% and CWF contains Y=""! for all n € w for all

countable Y. Thus, we have the result by theorem 2.4.4 and and observation 3.2.4. O]
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3.4.1.2 (ZF-P) Using AY determinacy on a Tree; collection to obtain Borel

determinacy on X<¥

In section 3.4.1.1, we obtained finite Borel determinacy on X <% from the determinacy of
clopen games on a particular T'rees collection. In this section, we will obtain Borel determi-

nacy on X < from the determinacy of clopen games on a particular Tree; collection.
Corollary 3.4.7. Suppose I' is a nonempty collection of functions from X% into w. Then
Det G (AY); Trees (X,CWF*, T, X¥)) = Det(B | X¥). -

This result follows from a result in Yost’s thesis (Yost, n.d.) In Yost (n.d.), for each
a € wi, Yost defines a tree T, (which I shall call a Yost tree). We give a definition of T},
in appendix C.6 on page 365.

For each limit ordinal a € wy, the Yost tree T7, is constructed by the following manner:
1. Fix a decomposition of .
2. Each play in T3, is a finite sequence from w.

3. The length of a play is determined by certain moves for player I. These moves to

calculate the length of each play depends on the decomposition of .
Yost proves the following theorem in Yost (n.d.) (it might be open instead of clopen).

Theorem 3.4.8. (Yost, n.d.) For each limit ordinal o € wy,
Det (A | (X¥ x [T, ])) < Det (0, | X*).

Thus

Det ( U Al (x+x [T;ft_])> & Det (B | X¥). 4

acwil
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In the next lemma, we show that X* x [T goftl is in fact a Type 2 tree.
Lemma 3.4.9. For each limit ordinal o € wy, X¥ X [Tg".t} is a Type 2 tree. =

Proof.
Pick an arbitrary function ¥ from X* into w. Let Ty, = (T, |[n € w) be such that for every
ne€w, T, =T, . Show

Xo x 15, = [T,

feXx¥x [T;‘t] & f € XY x [Ty

WX
& fe [TX,TSq]-

so that X« x [T, ] = [ng%{:] Therefore, X* x [T, ] is a Type 2 tree. O

There are multiple ways to prove lemma 3.4.9. We could use ¥ to be a constant function

at 0 and Ty, = (T}, |n € w) to be such that Ty = T

ot and T, could be any tree for n > 0

instead. We can use on any function ¥ from X* into w if we set Ty, to be in the proof of
lemma 3.4.9.

Using theorem 3.4.8 and lemma 3.4.9, we obtain corollary 3.4.10.

Corollary 3.4.10. Suppose ¥ is any function from X*“ into w and {Tgcft. lac € wl} CT.

Det G (AY; Tree; (X, Y%, ¥, X¥)) = Det(B | X¥). -

Proof.
Assume Det G (AY; Treey (X, T, ¥, X*)). Pick arbitrary A € B | X¥. Then A € X0 | X¥

for some limit ordinal o € w;. By theorem 3.4.8,

Det (A} | (X x [T2,])) & Det (29, ] X¥).
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By lemma 3.4.9, X* x [T, ] = [T)\?;{:] where Ty, = (T,,|n € w) and for every n € w,

T, =T Thus Ty, € {T2, o € wy }¥ =17 Since
G (AL TS ) € G (A Tree; (X, 74,0, X4)),
AV [T;’? :] is determined. Since
Det (A? i [T)‘ﬁ;ﬁ‘;’]) & Det (50 [ X*)
30 I X“ is determined. Since o € wy is arbitrary, we have
Det G (AY; Trees (X, T, ¥, X¥)) = Det(B | X¥). O
By corollary 3.4.10, we obtain corollary 2.4.32. Recall corollary 3.4.7.

Corollary 3.4.7. Suppose I' is a nonempty collection of functions from X* into w. Then

Det G (AY; Tree; (X,CWF“,T', X¥)) = Det(B | X¥). .

Proof of Corollary 3.4.7.
Fix a collection I' of functions from X* into w. Notice that for any a € wy, T3}, € CWF.

Thus {Tga_t_ la € wl} C CWF'. By corollary 3.4.10, for any ¥ € I,
Det G (AY; Trees (X,CWF*, ¥, X¥)) = Det(B | X¥).
Since for any ¥ € I,
Trees (X,CWF, ¥, X¥) C Tree;, (X,CWF“,T,A} | X¥),

Det G (AY; Tree, (X,CWF* T, A | X¥)) = Det(B | X*).
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3.4.2 Using XY determinacy on a Tree, collection to obtain the
determinacy of games on X<¥

In this section, we will obtain the determinacy of games on X<“ from the determinacy of
open games on a 1'reey collection. We will obtain similar results to sections 2.4.2: We will
obtain similar results to sections 2.4.2.1 through 2.4.2.4 in sections 3.4.2.1 through 3.4.2.4,
respectively.

In section 3.4.2.1, we will define Longs, which is the Type 2 tree version of Long.

In section 3.4.2.2, We will define T, on Type 2 trees which corresponds to Max for
Type 1 trees. In sections 3.4.2.3 and 3.4.2.4, we will consider T, on two special cases of

Type 2 trees.

3.4.2.1 Definition of the open set Long; (B) on a Type 2 tree and using the
determinacy of open games Longs(A) on a Trees collection to obtain the

determinacy of games A on X¥

In this section, we will define the open set Longs on the body of a Type 2 tree and obtain the
determinacy of games A on X <“ from the determinacy of open games Longs(A) on a Treey
collection. We will obtain the similar results as section 2.4.2.1. Longs will be the Type 2
tree version of Long. The only difference will be that Long is defined on the body of Type
1 trees and Longs is defined the body of on Type 2 trees. Recall by observation 3.1.3, every
Type 1 tree is a Type 2 tree. Longs will be a generalization of Long.

The following definition is a Type 2 tree version of definition 2.4.19 on page 107.
Definition 3.4.11. Suppose B C X%, VU is a function from X* into w and Ty, is an w-
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sequence of nonempty trees. Define
Longy (B) ={h € [T;ﬁq] | Ih(h) > w}. -

Then Long, (B) = {h € [T)\I(/:TB;(Z] | h [ w e B}. It is easy to see that Longs(B) is open.

We also have a Type 2 tree version of theorem 2.4.20 on 107.

Theorem 3.4.12. For any w-sequence Ty, of nonempty trees, ¥ : X“ — w, for any A C X%,

G (A; X¥) is determined if and only if G(Longs (A) ;T;’;}sq) is determined . —

The proof of this theorem is similar to the proof of theorem 2.4.20. Simply replace a
Type 1 tree T )‘I;f} \ by a Type 2 tree T;I(’,Lﬁs .

The following is a T'rees collection version of corollary 2.4.21 on page 109.
Corollary 3.4.13. For any nonempty collection T of nonempty trees, ¥ : X¥ — w and A,
Det G (X9; Trees (X, T, ¥, A | X¥)) = Det (A | X¥). =

Proof.
Pick an arbitrary A € A | X“. Then, for any T, € T, Longs(A) € X9 | [T)\I(’,’éq]. Thus

G(Longa(A); T;’;‘Sq) is determined. By theorem 3.4.12, G(A; X<¥) is determined. O
The following is a T'rees collection version of corollary 2.4.22 on page 109.
Corollary 3.4.14. For any a € wy, T and ¥ : X¥ — w,
Det G (S%;Tree; (X, T, 0,30 | X¥)) = Det (30, | X¥). 2

Proof.

By corollary 3.4.13 with A = X2. O
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The following is a T'rees collection version of corollary 2.4.23 on page 109.

Corollary 3.4.15. Suppose Y is an arbitrary nonempty collection of nonempty trees, I' is
any collection of functions from X% into w and A is a collection of nondetermined sets.
Then,

—Det G (XV; Trees (X, T, T,A | X¥)). -

Proof.
Assume A is a collection of nondetermined sets. Then —Det(A | X¥). By corollary 3.4.13,

—Det (9% Treey (X, Y%, U, A | X¥)) for any T and ¥ : X — w, i.e.,
—Det G (2Y; Trees (X, T, T, A | X¥)).

In fact, G(Longs(A); T )\I(/;‘ ,) is not determined for any nondetermined set A and any T}, and

function ¥ from X% into w. O

Corollaries 3.4.13, 3.4.14 and 3.4.15 state that the respective relation holds for every
T. Since by observation 3.1.3, every Type 1 tree T;g is a Type 2 tree T;’g . where
Ty = (Y="n € w), by letting T D {Y=""'|n € w}, we see that these corollaries are

generalization of corollaries 2.4.21, 2.4.22 and 2.4.23, respectively.
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3.4.2.2 Definition of the open set Ty, (V, B) on a Type 2 tree

In this section, we will consider Type 2 trees T)\I(’”fs . such that ¥ | B is bounded below w.
We will define Ty, (¥, B) on appropriate Type 2 trees which corresponds to Maz(¥, B)
defined on appropriate Type 1 trees in section 2.4.2.2. In sections 3.4.2.3 and 3.4.2.4, we will

obtain some determinacy results using Max. First, recall definition 2.4.24 on page 111.

Definition 2.4.24. (Definition of Max)
Suppose W | B is bounded below w. Let nY:B be the mazimum tail length determined from W

max

and B. (%8 = max(Im(¥ | B))+1.) If ¥ and B are clear from the context, we suppress

max

U and B, i.e.Npax = nr‘lrjla?(

Define

Maz (¥, B) = {h e [ng;f] | Ih(h) = W + Nax } = Zh[—Tg,B (W =+ Minax)- .

Xy
Let’s consider the set Max for a Type 2 tree. Suppose we define a Type 2 tree version of
Max the same way as we defined Maz on a Type 1 tree. Even when ¥ [ B will be bounded
below w, the tail lengths in [T)\I;f q] may not be bounded. Notice that unlike Type 1 trees,
the maximum length is not determined by W and B. It is determined by the definition of
each tree T, in Ty, = (T,|n € w). Therefore, we modify this definition as follows. Same as

Mazx, Thiq, will be defined on Type 2 trees with ¥ bounded over B.

Definition 3.4.16. Suppose ¥ | B is bounded below w and let V., € w be the maximum

value of ¥ over B. Define

Thiae (¥, B) = {h € [Tz, ]| B | [w,h(h)) € [Tu,,.]}- 5

Recall that h € Ty (¥, B) doesn’t necessary imply V(A | w) = V.. See comment
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below observation 3.1.3 on page 216.

Now, we observe the relationship between Maz(¥, B) and Th.. (¥, B). Recall by obser-

vation 3.1.3 on page 216, every Type 1 tree is a Type 2 tree.

Observation 3.1.3. For each Type 1 tree Ty, [Txy] = [T)\g’ﬁq] where Tyq=(Y =" ncw).

Thus any Type 1 tree is a Type 2 tree. .

Fix a Type 1 tree T = Ty . Set T}, = Y="*! for each n € w and Ty = (Ty|n € w). Then
T =Tyy =Ty, Suppose ¥ | B is bounded below w. Then Maz(¥, B) and Tyes(¥, B)

are both defined on T'. Note that nyax = VYimax + 1. Thus

Mazx (¥,B)=3h¢€ T;f} \lh (h) = w + nmax}
he -T;ﬂ B ] [w, h(h)) € Y"mx}

he [TVE] 11 lo.th(w) € YPort )

he [TXR] 10 1w, th(h) € [Tu,) }

= Trtaz (¥, B).

Hence Ty (¥, B) is a Type 2 version of Maz(¥, B).

Recall that Maxz (U, B) is open on Type 1 trees T ;’5 for ¥ bounded over B (see page
111). For an arbitrary w-sequence of trees Ty,, Thrq, may not be open. We will restrict the
trees T, as follows.

For each finite set of nonempty trees T and an enumeration (7, [n < N) of T, we will

define the two properties, “the N maximal tree property”, which will be defined in definition
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3.4.17 and “the N disjoint tree property”, which will be defined in definition 3.4.19.

In order to satisfy the NV maximal tree property, we require that T is a well-founded tree.
It is possible for T, n # N, to be ill-founded. We also require that there is no path in 7T,
for n < N such that its proper initial segment is in 7,,. Thus it is possible for [T,,]N[Tx] # 0

but there is no g € [Tn] N T,\[7},] for every n < N.

Definition 3.4.17. (Definition of the N mazimal tree property)
Fiz N € w. Suppose T 1is a set of nonempty trees of size N + 1 satisfying that: there is an

enumeration (T, [n < N) of T such that

1. Ty 1s well-founded.

2. For each n < N and for every g, € [T,], g, does not properly extend g for every

g € [Tn].

Then we say Y satisfies the N mazimal tree property. We also say (T, |In < N) has the
N mazimal tree property. We say Ty, = (I, |n € w) has the N mazimal tree property if

(T, |n < N) satisfies the N maximal tree property. =

In proposition 3.4.21 below, we will show that for ¥ from X“ into w such that ¥ | B
is bounded below w and Ty, satisfying W, maximal tree property, Ty, (¥, B) is open in
the Type 2 tree [T)\I(’f - Recall that for (T;, [n < N) to satisfy N maximal tree property, we
required Ty being a well-founded tree. One may wish to get rid of this restriction. We will
define “N disjoint tree property” below in definition 3.4.19. For (T, [n < N) to satisfy this
property, none of the trees are required to be well-founded. Instead, we will restrict the set

of the possible first moves of T to be disjoint from the set of possible first moves of T}, for
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n < N. First, we will define a notation corresponds to the set of each possible move at a
position p in T},. A similar definition was given in definition 1.2.3 on page 8 for a fixed tree

T.

Notation 3.4.18. Suppose for eachn € w, T,, is a tree. For eachn € w and for any p € T,
define

M7 = {m |y (m) € Ty} .

In particular, if p = (), then M is the possible initial moves of T;,. Now, we define “N

disjoint tree property” for a set of trees T and an enumeration (7}, |n < N) of T.

Definition 3.4.19. (Definition of the N disjoint tree property)
Fix N € w. Suppose T is a set of nonempty trees of size N + 1 satisfying that: there is an

enumeration (T,,|n < N) of T such that
for every n < N, My 0 My = 0.

Then we say Y satisfies the N disjoint tree property. We also say (T, |n < N) has the
N disjoint tree property. We say Ty, = (I, |n € w) has the N disjoint tree property if
(T, In < N) satisfies the N disjoint tree property. If Ty, = (T, |n € w) satisfies that each

My is pairwise disjoint, then we say Ty, has the disjoint tree property. -

Note that the set (T, |n < N) to satisfy N disjoint tree property, for n,m < N with
n # m, M and My need not to be disjoint. Also, if Ty, = (T}, [n € w) satisfies the disjoint
tree property, then each My is pairwise disjoint so that each T, is pairwise disjoint. Thus,

we have the following.
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Observation 3.4.20. Fiz a Type 2 tree T = T;’gq. Suppose Ty, = (T,|n € w) satisfies the

disjoint tree property. Then each (X x [T,]) N [T] is pairwise disjoint. .

Proposition 3.4.21. Fiz a Type 2 tree T;ﬁq. If U | B is bounded below w and Ty, =
(T, In € w) satisfies the Wy, mazimal tree property or a V.. disjoint tree property, then

Thrrax (V, B) is open in [T)\I(jﬁq]' =

Proof.
Pick an arbitrary h € Thrr (¥, B). Then h [ [w,lh(h)) € [Ty,,.]-

Case 1 : T}, satisfies the ¥y, maximal tree property.
Then for every n < Wy and for every g € (T3], g 2 h | [w,lh(h)). Let E = [w,lh(h)).
By property (1) of definition 3.4.17, h | [w,lh(h)) is finite. Thus FE is finite. Pick an
arbitrary h such that & D h | E. Then h | [w,lh(h)) = h | [w,lh(h)). Thus lh(h) > Ih(h).
Show [h(h) = Ih(h). Suppose, for a contradiction, [h(h) > lh(h). Then by property (2) in
definition 3.4.17, h | [w,lh(h)) ¢ [T,] for every n < W, By the definition of T;ﬁq and
the fact that ¥ | B is bounded below w, h | [w,lh(h)) € [T},] for n < Wy, a contradiction.
Thus [h(h) = Ih(h) and thus h | [w,lh(Rk)) € [Ty,..]. Therefore, h € Thrae (¥, B). (Note
that & | [w,lh(h)) € [Ty,..] does not guarantee that h € (BN U (W) X [Ty, ]. Tt is
possible that & | [w,h(h)) € [Ty,..] N [T,] for some n < U,

Case 2 : T, satisfies the U, disjoint tree property.
Let F' = {w}. Then F is finite. Pick an arbitrary h € [T)‘?ﬁq] such that h D h | F. Then
h(w) = h(w). Since h(w) € M;’m‘”‘, hw) € My, Thus h | [w,Ih(h)) € [Ty,.]. Hence
h € Thiae (¥, B). (In this case, we have h € (BN ¥ (¥,.,)) X [Ty,..]. Note that for each
n € Wy, M 0 My = ). Thus h(w) ¢ M for any n € W,y Hence h | [w,lh(h)) ¢ [T,]
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for any n € Wpax.)

Therefore, Thq: (¥, B) is open in [T)\I(jﬁ - O

By proposition 3.4.21, the maximal tail tree property is enough to make Ty (¥, B)
open in [T)\I(/f q]. However, for a Type 2 tree T;’fs , With Ty, satisfying the maximal tail
tree property, h € Thae(V, B) doesn’t necessary imply U(h [ w) = Wpay (it is possible that
[Ty, ]N[T,] # 0 for some n < Uy, ). We will slightly restrict the maximal tail tree property

to satisfy the condition [Ty, | N [T,] = 0 for every n < U ...

Definition 3.4.22. (Definition of the modified N maximal tree property)
Fiz N € w. Suppose T 1is a set of nonempty trees of size N + 1 satisfying that: there is an

enumeration (T,,|n < N) of T such that
1. Ty is well-founded.

2. for each n < N and for every g, € [T,], g. does not extend g for every g € [Tn] (This

gwes us [Tn] N [T,] =0 for everyn < N.)

Then we say T satisfies the modified N mazimal tree property. We also say (T,,|n < N)
satisfies the modified N mazimal tree property. We say Ty, = (T,, |n € w) has the modified

N mazimal tree property if (T, |n < N) satisfies the N mazimal tree property. .

By the property (2) of definition 3.4.22, if (T, [n < N) satisfies the modified N maximal

property, then we have:
if g € [Ty], then g ¢ T, U [T,] for every n < N.
Thus, we have the following.
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Observation 3.4.23. Fix a Type 2 tree T = T)\?”g_q. Suppose U | B is bounded below
w. Suppose Ty, = (T,|n € w) satisfies a the modified Vyax mazimal tree property. Then
(XY x [Ty,..]) N[T] is disjoint from each (X* x [T,]) N [T]. .

A similar proof of proposition 3.4.21 gives us that if ¥ [ B is bounded below w and Ty,

satisfy the modified W ,,,x maximal tree property, Th/.. (¥, B) is open in [T;’i q].

In sections 3.4.2.3 and 3.4.2.4, we will be looking at Type 2 trees T)\?ﬁq such that Ty, =
(T|n € w) satisfying the modified 1 maximal tree property or the 1 disjoint tree property.

To prepare for these sections, we will observe the following special case.

Observation 3.4.24. Suppose Ty, = (T,,|n € w) satisfies the modified 1 mazximal tree prop-

erty or the 1 disjoint tree property. Then

3.4.2.3 Using the determinacy of open games T}, (x4, X“) on a Tree; collection

to obtain the determinacy of games A on X<¥

In this section, we will obtain the determinacy of games A on X<“ from the determinacy
of open games Tyrqa (X4, X*) on a Trees collection. We will obtain the similar results as
section 2.4.2.3. Let A C X“. As a special case of Type 2 tree, we will consider Type 2 trees

T)%"’fs , such that B = X* and ¥ to be the characteristic function x4 of A. Recall

Xa: XY —{0,1}
0 if f ¢ A,
f—
1 if f e A.
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Then

) he Xx® ithlwe X*,
e Tt | o
h e X% x [TXA(hfw)] if h [w € Xv.

\
,

heX“x [Ty ifhlwéA,

heXYx[T] ifh|weA.

\

Note that it is possible that [Tp] N [T1] # O (Ty could be equal to Ty). h € [ngf;jj“] such
that h [ [w,lh(h)) € [To) N [T1] does not mean h | w ¢ A and h [ w € A. Recall that for
Type 2 trees T)\I(j,’fsq with h € [T;’iq}, h | [w,lh(h)) € [T,] does not imply ¥(h [ w) = n (see

comment under observation 3.1.3 on page 216).

Observation 3.4.25. Let A C X“ and x4 be the characteristic function of A. Suppose T,
satisfies the modified 1 maximal tree property or the 1 disjoint tail tree property. Then
Tataw (x4, X) = {h € TN Ih Twe A} 4

Proof.
Suppose Ty, = (T,,|n < N) satisfies the modified 1 maximal tree property or the 1 disjoint

tail tree property. Since (X4)max = 1, % by definition 3.4.16,
Thtaw (Xa, X¥) = {h € [T |0 | [w, 1h(R)) € [T1]}.
Show

{he XTI T .)€ M)} = {ne M) hTwea}.

(C) Pick an arbitrary h € {h € [T¥4" "] |h | [w,lh(h)) € [T1]}. Then h | [w, lh(h)) € [T}].

Show h [ w € A. Suppose, for a contradiction, h [ w ¢ A. Then ya(h | w) = 0. Thus
0Recall definition 3.4.16 for W, ..
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h | [w,lh(h)) € [To]. Hence h | [w,lh(h)) € [To] N [T1]. Since Ty, satisfies the modified 1
maximal tree property or the 1 disjoint tail tree property, by observation 3.4.24, [To]N[T1] = 0.
This is a contradiction. Thus h € {h € [T;gAwa] |hJwe A}

(D) Pick an arbitrary h € {h € [T}:‘,}’iw] |h Jwe A}, Then xa(h [ w) = 1. Thus
h | [w,lh(h)) € [T] by definition of [T "]. Hence h € {h € [TX4 "] |h | [w, lh(h)) € [T1]}.

]
The following is a Type 2 tree version of theorem 2.4.25 on page 112.

Theorem 3.4.26. Suppose T ?‘wa is a Type 2 tree such that Ty, satisfying the modified
1 maximal tail tree property or the 1 disjoint tail tree property. Then for any A C X¥,

G (A; X¥) is determined if and only if G(Tyrax (X4, X*) ;ng;:jj“) is determined. .

Proof.
Pick an arbitrary A C X“.

(=) Assume G(A; X<¥) is determined. Thus I or II has a winning strategy s for
G(A; X<¥). Define s* to be such that s* | X<“ = s and play anything after that to finish
the play. Show s* is a winning strategy for G(Tyaz (Xa, X¥); T%“‘T)q(w) Pick an arbitrary
h e [T)?T‘T’jjw] according to s*.

Case 1 : s is a winning strategy for I for G(A; X<).

Then h [ w € A. Since T}, satisfying the modified 1 maximal tail tree property or the 1
disjoint tail tree property, by observation 3.4.25, h € Thas (x4, X*). Hence s* is a winning
strategy for I* for G(Maz (x4, X*) ,T}AT):W)

Case 2 : s is a winning strategy for I1 for G(A; X<).

Then h [ w ¢ A. Since Ty, satisfying the modified 1 maximal tail tree property or the 1
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disjoint tail tree property, by observation 3.4.25, h & Thsq. (x4, X*). Hence s* is a winning
strategy for IT* for G(Max (x4, X¥) ,T)’?‘wa)

(<) Assume G(Thraz (x4, X%); T%“‘wa) is determined. Thus I* or II* has a winning
strategy s* for G(Thraz (X4, X¥); T;gﬁr’jjw). Define s = s* [ X<“. Show s is a winning
strategy for G(A; X<¥). Pick an arbitrary f € X“ according to s. Then f is according to
s*. Note that f € T)’ng’s)jw since there is no path of length w in ngATjj‘” Play g according to
s* after f to get f~g € [ng“}):w]

Case 1 : s* is a winning strategy for I* for G(Thrae (x4, X¥) ,Tjg*‘lf):w)

Then f~g € Thiaz (x4, X*). Since T}, satisfying the modified 1 maximal tail tree property or
the 1 disjoint tail tree property, by observation 3.4.25, f € A. Hence s is a winning strategy
for I for G(A; X<¥).

Case 2 : s* is a winning strategy for I17* for G(Threz (x4, X¥) ;Tjgj}’jjw)

Then f~g & Thiaz (x4, X*). Since T}, satisfying the modified 1 maximal tail tree property or

the 1 disjoint tail tree property, by observation 3.4.25, f ¢ A. Hence s is a winning strategy

for 11 for G(A; X<%). Therefore, G(A; X<*) is determined. O

By theorem 3.4.26, the determinacy of any game A of length w can be obtained from
the determinacy of open games Thqs (X4, X¥) of a Type 2 tree.!! The following corollaries
3.4.27 and 3.4.28 are direct results from theorem 3.4.26.

The following is a T'rees collection version of corollary 2.4.27 on page 114.

Corollary 3.4.27. Suppose {Ty,T1} satisfies the modified 1 mazximal tree property or the 1

1Tn particular, if A is a nondetermined game of length w, then our result gives a corresponding nondeter-
mined game on a Type 2 tree.
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disjoint tree property. Then for any complexity = and for any Y D {Ty, T1 },
Det G (X0;Trees (X, Y, {xa|A€E | X¥},X¥)) = Det (2 | X¥).

Thus,

Det G (X9; Trees (X, T, T'(w,2-E), X¥)) = Det(E | X¥). 4

Proof.

Pick an arbitrary A € = [ X“. Since {Tp, 71} satisfies the modified 1 maximal tree property
or the 1 disjoint tree property, (To,T1) or (Ty,T,) satisfies the modified 1 maximal tree
property or the 1 disjoint tree property. Without loss of generality, assume (Tp,T7) satisfies
the modified 1 maximal tree property or the 1 disjoint tree property. Define T}, = (Tn In € w)
to be such that TO =T, Tl = T; and for any n > 1, Tn € T to be arbitrary. Then T, satisfies
the modified 1 maximal tree property or the 1 disjoint tree property. Since (XA)max = 1, by

proposition 3.4.21, Thras (x4, X*) is open in [ngé[fw] Thus
G(Twhraz (x4, X?) ;T;gj}:jjw) € G(X); Trees (X, Y {xa|A€Z | X¥}, X¥)).

Hence G(Tarar (x4, X¥); T)’g“wa) is determined. By theorem 3.4.26, G(A; X*“) is determined.
Therefore, if {Ty, T} satisfies the modified 1 maximal tree property or the 1 disjoint tree

property, then for any Y D {7}, T3},
Det G (XV; Trees (X, T, {xa|A€Z | X¥},X¥)) = Det (Z | X¥).
Since x4 € I'(w, 2-Z) by observation 2.4.26,
Det G (2; Trees (X, T%,T'(w,2-E), X)) = Det(Z | X*). O

The following is a Treey collection version of corollary 2.4.28 on page 115.
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Corollary 3.4.28. (Corollary to Corollary 3.4.27)
Suppose {Ty, 11} satisfies the modified 1 mazximal tree property or the 1 disjoint tree property.

Then for any Y D {Ty, T1},
Det G (X9; Trees (X, T, T'(w, X2 AILY), X¥)) = Det(Z0 | X¥).
Det G (X0 Trees (X, T, T'(w, A2), X¥)) = Det(A) | X¥). -

Proof.

By corollary 3.4.14 with = is 39 and AY. O

Corollaries 3.4.27 and 3.4.28 state that the respective relation holds for every Y D {Tp, T}
where {T}, T1 } satisfying the modified 1 maximal tree property or the 1 disjoint tree property.
Notice that (Y=!Y=?) satisfies the modified 1 maximal tree property. Let Ty, = (T,,|n € w)
be such that Ty = YS!, T} = Y=2 and for any n > 1, T, € T to be arbitrary. Then
for A C X“ a Type 1 tree T;gj“}}xw is a Type 2 tree T))gf‘T’jjw. Therefore, by letting T to
be arbitrary such that T D {Y=! Y=?} we see that these corollaries are generalization of

corollaries 2.4.27, and 2.4.28, respectively.

3.4.2.4 Using the determinacy of open games 7)., (x4, B) on a Trees collection

to obtain the determinacy of games AN B on X<¥

In this section, we will obtain the determinacy of games AN B on X<“ from the determinacy
of open games Tyru: (Xa, B) on a Trees collection. We will obtain similar results as section
2.4.24. Let A C X*. In section 3.4.2.3, as a special case of Type 2 tree, we considered Type

2 trees T)\?’ﬁq such that B = X“ and VU to be the characteristic function y4 of A. In this

259



section, as a generalization of trees in section 3.4.2.3, we will consider Type 2 trees T;’g .
such that B is an arbitrary subset of X“ and ¥ to be the characteristic function y 4 of A.

Suppose A, B C X¥. Then

he[T)’g‘T’ﬂH heX ifhlwéeB,
hEXwXTXA(h[w) if hlweB.

\
p

h e X* ifhlwé¢B,
Ty he XY x [Ty ifhlwe B\A,

he XYx[T] ithlweANB.

\

Note that it is possible that [Ty] N [T1] # O (T could be equal to Ty). h € [T%“T‘f] such
that h | [w,lh(h)) € [To) N [T1] does not mean h | w € B\A and h [ w € AN B. Recall that
for Type 2 trees Ty, with h € [TX’7. ], b | [w,lh(h)) € [T;)] does not imply ¥(h [ w) =n
(see comment under observation 3.1.3 on page 216).

A similar proof of observation 3.4.25 gives us the following.

Observation 3.4.29. Let A, B C X¥ and xa be the characteristic function of A. Suppose

T, satisfies the modified 1 mazximal tree property or the 1 disjoint tail tree property. Then
TMam(XAaB):{hG[T;g%SB;HhTWEAﬂB}. -
The following theorem is a Type 2 tree version of theorem 2.4.29 on page 116.

Theorem 3.4.30. Suppose Tjgf;fz is a Type 2 tree such that Ty, satisfying the modified 1
mazimal tail tree property or the 2 disjoint tail tree property. Then for all A,B C X%,

G(AN B; X¥) is determined if and only if G(Tprax (X4, B) ; T)?“Tf) is determined. =

Proof.
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Pick arbitrary A, B C Xv.

(=) Assume G(A N B; X<¥) is determined. Then I or /] has a winning strategy s for
G(AN B; X<¥). Define s* to be such that s* | X<¥ = s and play anything after that (if
necessary) to finish the play. Show s* is a winning strategy for G(Thas (x4, B); T;gép’f:).
Pick an arbitrary h € [T)’?‘TB;] according to s*.

Case 1 : s is a winning strategy for I for G(AN B; X<¥).

Then h | w € AN B. Since T, satisfying the modified 1 maximal tail tree property or the
1 disjoint tail tree property, by observation 3.4.29, h € Thaz (Xa, B). Hence s* is a winning
strategy for I* for G(Max (x a, B) ;T;ng’i).

Case 2 : s is a winning strategy for I1 for G(AN B; X<¥).

Then h [ w ¢ AN B. Since Ty, satisfying the modified 1 maximal tail tree property or the
1 disjoint tail tree property, by observation 3.4.29, h & Thse. (x4, B). Hence s* is a winning
strategy for I1* for G(Max (xa, B) ,T)%“Ti)

(<) Assume G(Thar (X4, B); T%}’E) is determined. Then [* or I/* has a winning
strategy s* for G(Thaz (X4, B); T§§AT5) Define s = s* | X<“. Show s is a winning strategy
for G(AN B; X<¥). Pick an arbitrary f € X according to s. Then f is according to s*.
If fe [T))gj‘T’i] then let ¢ = (0. If f € T;gj*T’f;, play g according to s* to get g such that
frg € [T¥5).

Case 1 : s* is a winning strategy for I* for G(Thaz (x4, B) ; T)’g‘}j)

Then f~g € Thrax (x4, B). Since Ty, satisfying the modified 1 maximal tail tree property or
the 1 disjoint tail tree property, by observation 3.4.25, f € AN B. Hence s is a winning
strategy for [ for G(AN B; X<¥).

Case 2 : s* is a winning strategy for I7* for G(Tpraz (X4, B) ; T§‘}f)
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Then f~g & Thrax (X4, B). Since Ty, satisfying the modified 1 maximal tail tree property or
the 1 disjoint tail tree property, by observation 3.4.25, f ¢ A. Hence s is a winning strategy

for I1 for G(A N B; X<¢). Therefore, G(AN B; X<¥) is determined. O
The following is a T'rees collection version of 2.4.30 on page 118.

Corollary 3.4.31. Suppose a, f € wy and =1, 25 are complezities. Suppose {To,T1} satisfies

the modified 1 mazimal tree property or the 1 disjoint tree property. Then for any T 2O

{T07T1};
Det G (X0; Trees (X, T, {xa|A€Z1 | X¥},55 | X¥)) = Det((E1 AZs) | X¥).  (3.3)
Simalarly,

Det G (X0 Trees (X, T, {xa|A € Z5 | X¥},Z1 | X¥)) = Det((E1AZs) | X¥).  (3.4)

Proof.

Pick an arbitrary A € (Z; A Z3) | X“. Then there exists B € =; [ X¥ and C € Z5 | X¥
such that A= BnNC.

Show the implication (3.3).

Since xg € {x 4| Ae= X“}, we consider the tree T}%i Since {Tp, T} satisfies the mod-
ified 1 maximal tree property or the 1 disjoint tree property, (1o, T1) or (T4, Tp) satisfies the
modified 1 maximal tree property or the 1 disjoint tree property. Without loss of generality,
assume (Tp, T1) satisfies the modified 1 maximal tree property or the 1 disjoint tree property.

Define Ty, = (Tn In € w) to be such that To =Ty, Ty =Ty and for any n > 1, T, € T to
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be arbitrary. Then T}, satisfies the modified 1 maximal tree property or the 1 disjoint tree

property. By observation 3.4.29,
Maz (x5,C) = {h € [TX%]|h |we BNCY.
Since
G(Max(xp,C); T¥%C) € G (2 Trees (X, Y%, {xa|A € E1 | X¥},5, | X¥)),

G(Max(XB,C);T)’gFT’SCq) is determined. By theorem 3.4.30, G(B N C; X<¥) is determined.
Hence G(A; X<¥) is determined.

Show the implication (3.4).
Since xc¢ € {x4| Ae H% I X“}, we consider the tree T;gf}i where Ty, is defined above.
Then Ty, satisfies the modified 1 maximal tree property or the 1 disjoint tree property. By

observation 3.4.29,
Maz (xc, B) = {h € [T¥3C] | h | we BN C}.
Since
G(Maz(xc, B); TX5.) € G (29 Trees (X, 0%, {xa|A € 5 | X¥},E1 [ X¥)).

G(Max(Xc,B);T§%j) is determined. By theorem 3.4.30, G(C N B; X<¥) is determined.

Hence G(A; X<¥) is determined. O
The following is a T'rees collection version of corollary 2.4.31 on page 119.

Corollary 3.4.32. (Corollary to Corollary 3.4.31)

Suppose =1, =y are complexities. Suppose {Ty, T1} satisfies the modified 1 maximal tree prop-
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erty or the 1 disjoint tree property. Then for any Y D {Ty, T1},
DetG (X0; Trees (X, T, T(w,Z1 A co-E1),Es | X)) = Det((E1 AEs) | X¥). (3.5)
Similarly,

DetG (X9; Trees (X, T, T(w,Za A c0-E),E; | X¥)) = Det((E1 AZs) | X¥). (3.6)

Proof.

Since {xa|A € Z; | X¥} CT'(w, =1 A co-Z;) by observation 2.4.26, we obtain the implication
(3.5) from corollary 3.4.31 the implication (3.3). Since {xa|A € 25 [ X¥} CI' (w, Ey A co-Z5)
by observation 2.4.26, we obtain the implication (3.6) from corollary 3.4.31 the implication

(3.4). O

We list some obvious special case of corollary 3.4.32. We obtain corollary 3.4.33 from
replacing Z; = X0 and 55 = H% in corollary 3.4.32. This is a T'reey collection version of
corollary 2.4.32 on page 120. We also obtain corollary 3.4.34 from replacing =; = 3! and
2y = H% in corollary 3.4.32. This is a Trees collection version of corollary 2.4.33 on page

120.

Corollary 3.4.33. (Corollary to Corollary 3.4.32)
Suppose o, f € wy. Suppose {Ty, T1} satisfies the modified 1 maximal tree property or the 2

disjoint tree property. Then for any Y D {Ty, T1},

Det G (S0;Treey (X, 19,1 (w, X0 ALY II5 | X¥)) = Det((22 ATLY) | X¥).
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Similarly,

Det G (2;Trees (X, Y9, T (w, B3 ATLY) X0 | X¥)) = Det((E3 AILY) | X¥). =
Proof.
Since {xa A €2 | X} CT'(w, B ATLY) and {xa|A € IT) | X“} C I(w, X4 AILY) by

observation 2.4.26, we have the results by corollary 3.4.32. ]

Corollary 3.4.34. (Corollary to Corollary 3.4.32)
Suppose n,m € w. Suppose {Ty,T1} satisfies the modified 1 mazimal tree property or the 2

disjoint tree property. Then for any Y D {Ty, T1},
Det G (X9; Trees (X, T, T (w, X, AIL) II}, | X¥)) = Det((), AILL,) | X¥).
Simalarly,

DetG (X9; Trees (X, T9.T (w, X, AILL) 2, | X¥)) = Det((Z), AIL) | X¥).
Proof.
Since {xa|A € XL | X*} C T (w, B AILL) and {xa|A €I} | X} C T'(w, X}, AILL) by

observation 2.4.26, we have the results by corollary 3.4.32. [

In particular, intersection of 3} and I} sets are 2-II{. Thus, the following is a special

case of corollary 3.4.34 and this is a T'rees collection version of corollary 2.4.34 on page 120.

Corollary 3.4.35. (Corollary to Corollary 3.4.34)
Suppose {Ty, T1} satisfies the modified 1 mazximal tree property or the 1 disjoint tree property.

Then for any T 2 {Ty, T1},

Det G (XV; Trees (X, 1%, T'(w, 2-IT}), X1 | X¥)) = Det(2-1I] | X*).
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Simalarly,
Det G (X9; Trees (X, T%,T'(w, 2-I1}), I} | X¥)) = Det(2-IT} | X*). %

Proof.

Note that X} A TI} = 2-T1]. O
The following is a T'rees collection version of question 1 on page 121.

Question 9. Suppose {Ty, 11} satisfies the modified 1 mazximal tree property or the 1 disjoint
tree property and Y 2 {Ty,T1}. By corollary 3.4.35 on page 265, corollary 3.4.13 on page

246 and corollary 3.4.1 on page 238, all of the following imply Det(2-I1} | X*):

(i) Det G (X9 Treey (X, Y, T'(w,2-I1}), X1 | X¥))
(it) Det G (X9 Trees (X, T, T'(w, 2-I17), 1] | X¥))
(i13) Det G (X9;Treey (X, Y%, T(w, AY), 2-TT] | X*))
(iv) Det G (2-I1}; Treey (X, T, T'(w, A?), A?))

What is the relationship between (i), (i), (iii) and (iv)? =

Let’s consider (n + 1)-IT} | X¥ sets for finite n. Recall definition 1.3.23 on page 23. For
everyn € w, if A € (n+1)-I1} | X%, then A = Ag\A; = AgNX*\A; where Ay € I} | X* and
Ay € n-I1} | X% (hence X“\A; € co-n-II | X*). Thus we can express A as an intersection
of a I} | X* set and a co-n-II | X“ set. We obtain corollary 3.4.36 the implication (3.7)
by replacing Z; = 31 and =, = co-n-II} in corollary 3.4.32 the implication (3.5). We obtain
corollary 3.4.36 the implication (3.8) by replacing Z; = co-n-II} and =, = X1 in corollary
3.4.32 the implication (3.6). This is also a Trees collection version of corollary 2.4.35 on

page 121.
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Corollary 3.4.36. (Corollary to Corollary 3.4.32)

Suppose {Ty, 11} satisfies the modified 1 mazximal tree property or the 1 disjoint tree property.

Then for any Y D {Ty, T} and for any n € w,
Det G (X9; Trees (X, T, T'(w, 2-I1}), (co-n-II}) | X¥)) = Det(n+ 1-II} | X¥).  (3.7)
Similarly,
DetG (3; Trees (X, T, T'(w, n-II} A co-n-I1}), TI; | X¥)) = Det (n+ 1-II} | X¥) . (3.8)

Proof.
Since{xa|A € I} | X*} C T (w,2-I1}) and {x4|A € con-II} | X¥} C

I (w,n-IT} A co-n-I1}) by observation 2.4.26, we have the results by corollary 3.4.36. O

267



3.4.3 Using o-II] determinacy on T'ree; collection to obtain a+1-II}
determinacy on X< for even a € w;

In this section, we will obtain similar results for Type 2 trees as section 2.4.3. The only
difference is the trees are Type 2 trees instead of Type 1 trees.

In section 3.4.2.4, we used T)s., on certain Trees collections to obtain the determinacy
of games on X<“. In theorem 3.4.30, we obtained the determinacy equivalence of games
G(AN B; X<¥) and G(Tpraz (x4, B) ;T;f‘T’j) for any A, B C X¥ and T}, satisfying a certain
condition.

In this section, we will obtain « + 1-TI} determinacy on X* for even a € w; from a-IT}
determinacy on T'reey collection. Fix o € wy and (Ag|f < a) where each Az C X*“. Recall
that by observation 2.4.38, dk ((Ag |8 < ) = dk ({(Ag [B € a))U (<, Ap)- Weset A= A,
and B = (g, A so that AN B =, Ag. Thus, we will consider a Type 2 tree T;j‘ﬁf

with B = ., As and T, satisfying a certain condition.

;

he X ifh T wé N, As,
he [T;xﬁ;ﬂgea Aa] N Be
h e X% x [TXA(h[w)] if h [w € ﬂ,@’Ea Aﬁ.

\
,

he X if ) w ¢ Nyew Ass

© 1 he XX [T ifhTwe (Nsea A5)\Aas

he X9 x[T] ifhlweNse,Ap-

\

A
We will obtain the determinacy equivalence of a certain game for such Type 2 tree T;j;‘fs’nﬁ Gl

and a dk ((As |8 < a)) game on X <“. In definition 3.4.37, we will define dk2 , ({45 |8 < a)) C

9 A . . . .
[T;?quﬂﬁ €] (we will use the “superscript 2” to represent that this set is defined on Type 2

268



trees). This is a Type 2 tree version of dk2, ((45]8 < a)) C [T;’%‘} Neea s | which we defined
in definition 2.4.36 on page 125. In theorem 3.4.41, we will show that the determinacy equiv-
alence of a dk ({(Ag |8 < a)) game on X< and a dk<, ((45 |8 < a)) U Thraz(Xaa, Ngea 48)
game on the tree T;gfﬁ’qﬂﬂ cafls

In particular, for even o € w and sequences (A |8 < «) with each Az € II] | X¥, we
will obtain a + 1-TI} games on X< from «o-II} games on a particular Trees collection in
corollary 3.4.43. As a special case, when « is a limit ordinal and A, € 39 for some \ € wy,

we will obtain a similar result for a-IT} + X9 games on X<“ from «o-II} games on a particular

T'reey collection in corollary 3.4.44.

First, recall definition 1.3.22 on page 23.

Definition 1.3.22. (Definition of the difference kernel)(Hausdorff, 1944 %)

-,

Denote the difference kernel of A = (Ag |8 € «) by dk(A) and define

-

dk(A) ={x e [T |uB(x ¢ AgV =) is odd} . =

Given (Ag|f < ) where each Ag C X“, we define dk., ((As]5 < a)) on the tree
XAq 7mﬁ€a AB
X, Tsq :

The following is a Type 2 tree version of definition 2.4.36 on page 125.

Definition 3.4.37. Suppose o € wy is even and (Ag |3 < a) where each Ag C X*“. Define

dkia ((A,B ’ﬁ < Oé>) = {h c [T;g;g;;ﬂﬂw AB}

hiwg (), As AnBlhlw ¢ Ag) is odd}.

12as cited in Welch (1996, p. 1).
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Notice that if « is even,

ak ({4516 € a)) = { € x*

F &), AsAuB(f ¢ Ag) is odd } .
Thus

dkZ, ((As|B < a)) | X¥ =dk ((As]B € a)).

In fact, we have the following. This is a Type 2 tree version of observation 2.4.37.
Observation 3.4.38. Suppose a € wy is even and (Ag |8 < a) where each Ag C X*. Then
dkZ, (A5 |8 < a)) = dk ({4518 € a)) C X*. B

Proof.
A similar proof to observation 2.4.37 gives observation 3.4.38. Simply replace a Type 1 tree

A A
T;ﬁ‘,’ Naea As by a Type 2 tree T;éﬁs;nﬁe“ - 0

The following is a special case of observation 3.4.29 for B = [, 4.

Corollary 3.4.39. (Corollary to Observation 3.4.29)
Suppose o € wy is even, (Ag|B < a) where each Ag C X* and x4, to be the characteristic
function of A,. Suppose Ty, satisfies the modified 1 mazimal tree property or the 1 disjoint

tail tree property. Then

) o A
TMax (XAa> mﬁea Aﬁ) = {h € [T;j‘j‘j;qﬂ/ie 5]

hiwe(N, As}- -
Since a € wy is even, dk ((As |8 < a)) could be express as a union of dk ({45 € a))

and (V<o As)- Recall 2.4.38.
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Observation 2.4.38. Suppose a € wy is even and (Ag |3 < o) where each Ag C X*. Then

ah ({4518 < a)) = dk ({4518 € a) U () 4s). .

B<a
The following is a Type 2 tree version of proposition 2.4.39 on page 126.
Proposition 3.4.40. Suppose T = T;ﬁq is a Type 2 tree. Assume the following:
1. C,D C X% and E,F C [T].
2. s is a strategqy for X <¥.
3. s* is a strategy for T such that s* | X<¥ = s.
4. for any h € [T] according to s*, h [ w € C if and only if h € E.

5. for any h € [T] according to s*, h [ w € D if and only if h € F.

Then s is a winning strategy for I for G(C'U D; X<¥) if and only if s* is a winning strategy
for I* for G(EU F;T). Also s is a winning strateqy for I1 for G(C' U D; X<¥) if and only

if s* is a winning strategy for II1* for G(E U F;T). =

Proof.
A similar proof of proposition 2.4.39 gives proposition 3.4.40. Simply replace a Type 1 tree

T;’f by a Type 2 tree T)\I(J”fs . O

By proposition 3.4.40, we obtain the following. This is a Type 2 tree version of theorem

2.4.40 on page 128.

271



Theorem 3.4.41. Suppose o € wy is even and (Ag|B < «) where each Ag C X*“. Let

T = T;f‘ﬁ;ﬂﬂea Y Then G (dk ((Ag |8 < a)); X<¥) is determined if and only if

G (k2 (4518 < ) U Do (a0, 45) )
18 determined. =

Proof.

Use proposition 3.4.40 with:

C = dk (438 € a)).

D = ﬂgga Ag.

E =dkZ, (456 < a))

F =Ty (XAM ﬂBEQ Aﬁ)
The rest of the proof is similar to the proof of theorem 2.4.40. m
Now, let’s consider the complexity of each Az. Recall definition 1.3.23 on page 23.

Definition 1.3.23. Suppose A is a class of subsets of [T and A is closed under countable

intersections. Suppose a € wy. Define

a-A | [T] = {A C [T ‘M: (A58 € a) (each As €A and A = dk(A)) } 4

We will consider theorem 3.4.41 with (A |8 < «) where each Ag € II} | X“. Then

dk ((Ag |8 < a)) € a+ 1-II} | X* where o € w; is even.

Lemma 3.4.42. Suppose a € w; is even. Fix (Ag|B < a) where each Ag € II} | X¥. Then

(a3 S o ] %

272



Proof.
A similar to lemma 2.4.41 gives lemma 3.4.42. Simply replace a Type 1 tree T;A{; Nsea Ao by

A
a Type 2 tree T;Zi:;ﬂﬁea 7 O

Using theorem 3.4.41 and lemma 3.4.42;, we have the following.

Corollary 3.4.43. Assume a € wy is even. Suppose {Ty, T1} satisfies the modified 1 mazimal

tree property or the 1 disjoint tree property. Then for any T 2 {Ty, T1},
Det G (a-Iy; Trees (X, 19, T'(w, 2-I1}), I} | X)) = Det(a + 1-IT} | X¥). -

Proof.

Suppose @ € wy is even and A € a+ 1-II1 | X“. Then there exists a sequence A=
(Ag |8 < o) witness that A = dk(A) € o+ 1-IT} | X*. Since {Tp, T}} satisfies the modified
1 maximal tree property or the 1 disjoint tree property, (Ty,T1) or (13,T)) satisfies the
modified 1 maximal tree property or the 1 disjoint tree property. Without loss of generality,
assume (Tg, T1) satisfies the modified 1 maximal tree property or the 1 disjoint tree property.
Define Ty, = (Tn In € w) to be such that Ty = Ty, Ty = Ty and for any n > 1, T, €T to
be arbitrary. Then Ty, satisfies the modified 1 maximal tree property or the 1 disjoint tree
property. Let T = T;:‘;?;;nﬁe" 4% We have Np<a 45 € Il | X“. By observation 2.4.26,
Xa, € ['(w,2-I1). By lemma 3.4.42, dk., ((As|8 < «a)) € oIl | [T]. By proposition

3.4.21, Tarar(Xans Nseq As) € T [ [T]. Hence

dk<a (4318 < @) UTuras (a1, As) € oI} [ (7).

Thus G(dk<o ((Ap [8 < @) U Thraz(Xaa, Ngea As); T) is determined. By theorem 3.4.41,

G(dk(A); X<¢) is determined, i.e., G(A; X<¢) is determined. O
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Question 10. Suppose {Ty, T1} satisfies the modified 1 mazximal tree property or the 1 dis-
joint tree property. Assume that T DO {To,T1}. By corollary 3.4.2 on page 239, corollary
3.4.13 on page 246 and corollary 3.4.27 on page 257, all of the following imply Det(a + 1-TI7 |
X¥):

(i) Det G(a+ 1-II}; Tree; (X, Y%, T(w, AY), AY))

(ii) Det G (X9;Tree; (X, Y%, I'(w, AY), a + 1-I1] | X¥))

(iit) Det G (X9;Tree; (X, Y%, T'(w, a + 1-II} A co-a + 1-I17), X¥))

Moreover, if a € wy is even, then by corollary 3.4.43,
(iv) Det G (a-IIj; Tree, (X, T, T'(w, 2-I1}), I} | X))

implies Det(a + 1-II} | X¥).

What is the relationship between (i), (i), (iii) and (iv)? =

Suppose « € wy is a limit ordinal. As a special case of a + 1-II}, we will define o-II} + X
sets over a tree T

Recall definition 2.4.43 on page 132.

Definition 2.4.43. (Definition of a-II} + X9 | [T])

Suppose o € wy is a limit ordinal. Let X € wy. Suppose T is a tree. Define A € (a-I1} + X9) |

-,

[T if and only if there is a sequence A = (Ag |3 < a) witness that A = dk(A) € a+1-TI} | [T]

and A, € 9 1 [T], i.e.,

. VB € a(As eIy | [T]),
(a-II} + X9) [[T] =S AC[T]|3A = (438 < a)

-,

Ay € X0 1 [T] and A = dk(A)
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We have a similar result for a-IT + 39 sets to corollary 3.4.43.

Corollary 3.4.44. Assume o € wy is a limit ordinal and A € w. Suppose {Ty, T1} satisfies

the modified 1 mazximal tree property or the 1 disjoint tree property. Then for any T D

{T07T1}7
Det G (a-ILy; Trees (X, T, T(w, 23 ATIR), I} | X¥)) = Det((a-II; + X3) | X¥).

Proof.

Similar proof for corollary 3.4.43 with x4, € T'(w, X A II$) by observation 2.4.26. O

Question 11. Assume o € wy is a limit ordinal and \ € w. Suppose {Ty, 11} satisfies
the modified 1 mazimal tree property or the 1 disjoint tree property. Assume T 2 {Ty, T1}.
By corollary 3.4.2 on page 239, corollary 3.4.44, corollary 3.4.13 on page 246 and corollary

8.4.27 on page 257, all of the following imply Det((a-II} + X3) | X*):

(1)  DetG (-1 + X9; Tree; (X,Y,T(w, AY), AY))

(ii) Det G (a-II}; Tree; (X, Y, T(w, X9 ATI9), I1] | X¥))

(iii) Det G(X9;Tree; (X,Y,T(w, AY), a-II] + X9 | X¥))

(iv) Det G(X9;Tree; (X,Y,T(w, a-II] + 9 A co-a-IT] + 29), X+))

What is the relationship between (i), (i), (iii) and (iv)? =

As we discussed on page 133, through out this section, we set that « is even so that a+1
is odd. In this section, we obtained the determinacy of a+1-IT{ games on X<“ from the
determinacy of a-IT} games on a particular Tree; collection for even a € wy.

In the next section 3.4.4, we will obtain the determinacy of a-IT{ games on X <% from

the determinacy of open games on some T'rees collections for a € wy for any countable a.
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3.4.4 Using the determinacy of open games on a Tree; collection
to obtain the determinacy of a-II} games on X~<%

In this section, we will focus on obtaining the determinacy of a-IT games on X <* from the
determinacy of open games on some Trees collections for a@ € w; for any countable a. In
sections 3.4.2.2, 3.4.2.3, 3.4.2.4 and 3.4.3, we obtained the determinacy results using Thsqz-
In corollary 3.4.36 of section 3.4.2.4 , we obtained the determinacy of n + 1-II} games on
X<“ from the determinacy of open games on a particular Tree; collection for all n € w. In
section 3.4.3, we obtained the determinacy of a+1-II} games on X <% from the determinacy
of a-TI} games on a particular Treey collection for even o € w;. There are two things to

notice here:
e We only obtained the determinacy results for even « (so that a+1 is odd).

e We obtained the determinacy of a+1-II} games using the determinacy of a-IT} games

a particular T'rees collection, not open games on a T'rees collection.

In this section, we will obtain the determinacy of a-ITi games on X<¢ from the deter-
minacy of open games on a certain Trees collection for any o € wy. We will define T'aul.
Recall that Tha.(V, B) was defined on a Type 2 tree T)\Ig”ﬁ \ with ¥ having the maximum
value U .c. Tail(V,n, B) will be the generalization of Ty, (V, B) for any function ¥ from
X“ into w. For any h € Tail(V,n, B), the tail of h will be in [T,] (the converse may be

false).

Definition 3.4.45. For any n € w, define

Tail (V,n,B) = (BNY~' (n)) x [T,). =
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Recall that for a Type 2 tree T)\?:ﬁq, [T)\?ﬁq] = Upeo (BN (n)) x [T},]) U(X“\B). '?

Thus using T'ail (¥, n, B), we can express the body of a Type 2 tree ng:ﬁ , as following.

Tz, =, (Bne (n) x [T,]) U (X“\B)

=|J _ Tail (¥,n,B)U(X“\B).
new
Note that if ¥ has a maximum value ¥,

Trtar (¥, B) = {h € [T{L ]I | [w,1h(h)) € [Ty,,.]}
= (BN (Wpa)) X [Ta]

= Tail (U, Upox, B) .

A similar comment to the comment on page 216, T'ail(¥,n, B) is not the collection of
h € [Ty, ] such that h | [w,ih(h)) € [To]. Recall that if [T,] N [T5,] # @ for n # m,
there exists h € [T;’:ﬁq] such that h | [w,lh(h)) € [T,] but b ¢ Tail(V,n, B) (for the case

h|wée B with U(h [ w)=m).

Proposition 3.4.46. Fiz a Type 2 tree T = T)‘l(’,’riq. Suppose T satisfies at least one of the

following conditions:
1. Be XV | X¥ and ¥ is a continuous function from X¥ into w.
2. Tyy = (T, |n € w) satisfies the disjoint tree property.'*
Then for any n € w, Tail (¥,n, B) € X9 | [T]. .

Proof.

Pick an arbitrary n € w. Pick an arbitrary h € Tail (¥,n, B). Then h | w € BNY~! (n).

13Recall page 215.
14Recall definition 3.4.19 on page 251.
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Case 1 : Suppose T satisfies condition (1).
Since ¥ is a continuous function, ¥=!(n) € A? | X%, Since B € XY | X¥, BNU¥ ! (n) €
20 | X@. Since BN¥ ! (n) € XY | X¥ there exists a finite F C w such that for any
feXvif fOh] E, then f € BNU~!(n). Thus for any h e 1], if h D h | E, then
he (BNU ' (n)) x [T,] = Tail (¥,n, B).

Case 2 : Suppose T satisfies condition (2).
Since Ty, = (T}, |n € w) satisfies the disjoint tree property, each My is pairwise disjoint.
Let F = {w}. Then F is finite. Pick an arbitrary k € [T] such that A D h | F. Then
h(w) = h(w). Since h(w) € My, h(w) € M. Thus h | [w,lh(h)) € [T,]. Note that for each
m € w such that m # n, we have Mj N Mj* = (). Thus h(w) ¢ Mg for any m € w with
m # n. Thus h | [w,lh(h)) & [T)] for any m € w with m # n. Hence h | w ¢ U~ (m) for
any m € w with m # n. Thus h € (BN U~ (n)) x [T,,] = Tail (¥, n, B).

Therefore, for T satisfying conditions (1) or (2), we have Tail (V,n,B) € X0 | [T]. O
Next, we define functions least, and ¥, for each countable a.

Definition 3.4.47. (Definition of least, and ¥, )

Suppose A = (Az|B € ) is a sequence of sets. Define

least, : X“ = a+1

uB(f ¢ Ag) if f ¢ Npea Ass

f=
« otherwise.

Then define
U,: XY—>w
f+— n where least,, (f) =~v+mn, v=0 or -~ is a limit ordinal. —
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In particular, suppose (Az |8 € a) is a sequence of II} | X“ sets. We calculate the

complexity of ¥,,.

Lemma 3.4.48. Let a € wy be even. Suppose (Ag|B € a) is a sequence of II7 | X* sets.

Then ¥, € T (w, 39 (I1})). 5 =

Proof.

Pick an arbitrary O € 39 [ w. Then O = J, ., {n}. First, let’s find the complexity of each
U1 (n). Fix n € w.

67

Case 1 : a =4 + n for some limit ordinal 4 or a = n.

-1 _ 0 1 w
V.t (n) = U (e, A\ A [V, As € S0 (I0) | X*
Y=0 or YEQ liMit —mm— — I [ X N —
I X« 1 mijxe
Case 2 : a # 4 + n for any limit ordinal 4 and « # n.
-1 _ 0 (1Tl w
vt (n) = 0 L! 1. 't((ﬂmevam)\A%n) e =0 (I0}) | X.
=0 or Y€ limit N —m— N
Y v H%[Xw H% [ Xw
Thus
-1 _ -l _ -1 0 (17l w
v, 0) = (U, ) = wa' () € 39 () | X, O

By taking union of Tail(¥,,n, X*) for all odd n, we have the following determinacy

equivalence.

Theorem 3.4.49. Suppose o € wy. Fix Tyy = (T, |n € w). Let T = T;‘yj{fw. Let A =

-

(AglB ea). G(U,ugnTail (Vo,n,X¥);T) is determined if and only if G(dk(A); X¥) is

determined. -

"Recall definition 1.3.25 on page 25 for X9 (I11}).
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Proof.
(=) Suppose G(U,4g , Tl (¥o,n,X*);T) is determined. Then [* or II* has a winning
strategy s* for G(U, 4y, Tatl (¥o,n, X*);T). Define s = s* [ X<“. Pick an arbitrary f
according to s. Then f € X*“ according to s*. Since there is no path of lengthw in T, f € T'.
Play according to s* after f, call it g, so that f~g € [T]].

Case 1 : s* is a winning strategy for I* for G(U 4y ,, Tail (Vo,n, X*); T).
Show s* is a winning strategy for I for G(dk‘(/T); X¥). Since fg is according to s*, f7g €
Ui » Tail (o, n, X¢). Since Tail (Vo,n, X¥) = (XN, 1 (n)) x [T,] by definition, there
exists a unique odd m € w such that f~g € Tail (V,,m, X¥) = ¥ (m) x [T,,]. Hence
f €Wt (m). Thus least,(f) = v +m for some limit ordinal v € « or v = 0.

Subcase 1 : « is even.

Then least,(f) =+ m # a since m is odd. Thus f & (s, As. Hence v+ m is the least

-,

B such that f ¢ Agz. Since m is odd, f € dk(A).
Subcase 2 : «a is odd.

Subsubcase a : least,(f) =~v+m # a.

-,

Then f ¢ (3¢, Ap- Hence y+m is the least 3 such that f ¢ Ag. Since m is odd, f € dk(A).
Subsubcase b : least,(f) =~v+m = a.

Then f € Ngeq Ass O f & geq As and v+ m is the least 3 such that f ¢ Ag. Since m and

-,

a are odd, f € dk(A).

Case 2 : s* is a winning strategy for I7* for G(U,,, ,, Tail (Vq,n, X¥);T).

—,

Show s* is a winning strategy for I1 for G(dk(A); X*). Since f~g is according to s*, f~g ¢
Uvoaa » Tail (Uo,n, X¥). Thus for all odd n € w, f~g ¢ Tail (Vo,n, X¥) = U1 (n) x [T,].

(%

Hence f ¢ W' (n) for all odd n. Since ¥, is a function, there exists a unique even m such
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that f € W, ! (m). Thus least,(f) = v+ m for some limit ordinal v € o or v = 0.
Subcase 1 : «a is even.
Subsubcase a : least,(f) =y +m # a.
Then f ¢ (e, Ap- Hence y+m is the least 3 such that f & Ag. Since m is even, f ¢ dk(A).
Subsubcase b : least,(f) =7+ m = a.
Then f € Ngeq Ass Or f & (g As and v +m is the least 3 such that f ¢ Agz. Since m and
o are even, f ¢ dk(A).
Subcase 2 : « is odd.
Then least,(f) = v+ m # a since m is even. Thus f ¢ (s, As. Hence v +m is the least

—,

B such that f ¢ Agz. Since m is even, f € dk(A).

-,

Hence G(dk(A); X¥) is determined.

-,

(<) Suppose G(dk(A); X¥) is determined. Then [ or II has a winning strategy s for
G(dk;(ff); X¥). Define a strategy s* in T to be such that s* | X = s and play anything after
that. Show s* is a winning strategy for G(U,,y ,, Tl (¥o,n, X¥);T). Pick an arbitrary
h € [T] according to s*. Then h | w is according to s.

Case 1 : s is a winning strategy for I for G(dk(A); X*).

Then h [ w € dk(A).

Subcase 1 : «a is even.

Then h [ w ¢ (Nge, As and the least 8 such that h [ w ¢ Ag is odd. Thus leasty(h | w) is

odd so that ¥, (h | w) = m for some odd m € w.

he (XNt (m)) x [T,] = Tail (Vo,m, X¥).
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Since m is odd, h € 4y , Tail (Vo,n, X¥).

Subcase 2 : « is odd.
Then f € (Nzeq Aps Or h [ w & (N3¢, Ap and the least 3 such that h | w ¢ Ap is odd.
If f€NgeaAs, then leasto(h | w) = a. If h[wé s, As and the least 8 such that
h | w¢ Agis odd, then by definition, least,(h [ w) = 8. In either case, m = U, (h [ w) is
odd. Thus

he (XNt (m)) x [Tn] = Tail (Vo,m, X¥).

Since m is odd, h € |,y ,, Tatl (Yo, n, X¥).

-,

Case 2 : s is a winning strategy for I for G(dk(A); X*).
Then h | w ¢ dk(A).

Subcase 1 : « is even.
Then f € (e, Apy Or h [ w ¢ (e, Ap and the least 3 such that h [ w ¢ Ag is even.
If f€NgeqAs, then leasto(h | w) = a. If h[w¢ (s, As and the least 8 such that

h | w ¢ Ag is even, then by definition, least,(h | w) = 5. In either case, least,(h | w) is

even. Thus U, (h [ w) = m for some even m € w. Thus
he (XNt (m)) x [T,] = Tail (Vo,m, X¥).

Since m is even, h ¢ |,y , Tail (¥o,n, X¥).
Subcase 2 : « is odd.
Then h [ w ¢ (N3¢, Ap and the least 3 such that h [ w ¢ Ag is even. Thus least,(h [ w) is

even so that W, (h [ w) = m for some even m € w. Thus

he (XNU.t (m)) x [T,] = Tail (Vo,m, X¥).
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Since m is even, h ¢ |, 4y, Tail (Vo,n, X¥). O
We obtain the following corollary from theorem 3.4.49.
Corollary 3.4.50. Suppose o € wy. Suppose Ty, satisfies the disjoint tree property. Then
Det G (X9; Trees (X, Ty, T'(w, 27 (I1})), X¥)) = Det(a-II7 | X¥). -

Proof.

Pick an arbitrary A € o-IT! | X“. Then there exists A = (4|5 € o) witness that A =
dk(A) € o-IT} | X¥. By lemma 3.4.48, ¥, € T (w, X9 (IT})). Let T = Ty5" . Then T €
Trees(X, Ty, I'(w, XY (I1})), X¥). Since Ty, satisfies the disjoint tree property, by proposition

sq»

3.4.46, U Tail (V,,n, X¥) € Y | [T]. Thus

odd new

G (Uodd nTail(\Ija,n?Xw);T) = g (E?? TT6€2 (X7 qu> F (wv 2(1] (H%)) 7Xw)) :

—,

Hence G(U, 4y, T@il (¥o,n, X*¥);T) is determined. By theorem 3.4.49, G(dk(A); X¥) is

determined. N
In particular, FW F“ contains T, which satisfies the disjoint tree property.
Corollary 3.4.51. Suppose o € wy.
Det G (X9; Trees (X, FWF*,T(w, 2] (I1})), X*)) = Det(a-II; | X*). -

Proof.
{0,(n)} € FWF. Take T,, = {0, (n)} for all n € w. Then Ty, = (T,|n € w) satisfies the

disjoint tree property. Since Ty, € W EFW®, by observation 3.2.7, we have
Trees (X, Ty, T'(w, 29 (I17)), X¥) C Tree; (X, FWF,I'(w, &} (II})), X*) .
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Recall notation 3.2.3. We use the fact that {T,,} € FWF“. Thus we have the result by

corollary 3.4.50. |
Recall that in section 3.4.2.3, we obtained corollary 3.4.27:

Corollary 3.4.27. Suppose {Ty,T1} satisfies the modified 1 mazximal tree property or the 1

disjoint tree property. Then for any complexity = and for any Y D {1y, T1 },
Det G (20;Trees (X, Y, {xa|A€E | X¥},X¥)) = Det (Z | X¥).

Thus,

Det G (X9; Trees (X, T, T'(w,2-2), X¥)) = Det(Z | X¥). 4
In particular, if we take = to be a-II} for @ € w, we have

Det G (29; Trees (X, Y, T(w, a-II} A co-a-I1}), X*)) = Det(a-II; | X*).

Question 12. Fiz T, satisfying the disjoint tree property. Then both of
Det G (X9; Trees (X, Ty, T'(w, 27 (I}) ), X))
Det G (X9; Trees (X, Tyy, T'(w, o-IT} A co-a-I1}), X*))

implies Det(a-II7 | X*). What is the relationship between X9 (I1}) | X¥ and (-1 A co-a-I13) |

X“? More precisely, for some «,
(a—H} A co—oz-H}) XY Cxf (H}) I X or

(a-IIj A co-o-IT}) | X =300 (IT}) | X¥ 7 1
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3.5 Getting the determinacy of games on a T'ree, col-
lection from the determinacy of games on X<“ (Re-

versed direction of section 3.4)

In section 3.4, we obtained the determinacy of games on X <“ from the determinacy of games
on a certain Trees collection. In this section, we will focus on the other direction, in some
cases, results from section 3.4, leading to the determinacy equivalences. This section will be
the Type 2 tree version of section 2.5.

Throughout this section, we will use the same notation A" and A} we defined on definition
2.5.2 even if it is defined over a Type 2 tree. (Recall that in section 3.4, we defined notation
with “superscript 2”7 to represent that the set is defined on a Type 2 tree. We will avoid
using “superscript 2” to simplify the notation.)

In section 3.5.1 through section 3.5.3, we will obtain level by level results for the deter-
minacy of games on a certain Trees collection with FW F and CW F' from the determinacy
of games on X<“ (recall notation 1.5.11 of FWF and CW F' below). Recall notation 1.5.11

on page 44.

Notation 1.5.11. Let WF' be the set of nonempty well-founded trees. Let CWF C WF
be the set of nonempty well founded trees such that each move is from some countable set.
Similarly, let FWEF C CWEF be the set of nonempty well-founded trees such that each move

s from some finite set. -

In section 3.5.1, we will give definitions and notations for Type 2 trees which are similar
to the one in section 2.5.1 for Type 1 trees. We will set up all the notations in this section;
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e.g., suppose Ty, = (T, |[n € w) € WF¥. Given A C [T)\g,iq]v we will define the following

notations:

A" for all n € w.

o Ay.

A7 for all n € w and g € [T5,].

Ap for all n € wand p € T,,.

We will use these notations in the later sections.

In section 3.5.2, we will consider open games on a certain Tree, collection and in section
3.5.3, we will consider Borel games on a certain T'rees collection. In section 3.5.4, we will
consider projective games on a certain Trees collection. The proofs for these sections are
similar to the one in section 2.5.2, 2.5.3 and 2.5.4 respectively. The key to this direction is
that we will take any Ty, = (T,|n € w) with each T}, being well-founded and each move is
from a finite or a countable set.

The way we obtained the determinacy results in sections 3.5.1 through 3.5.4 are using

the fact that each T)\?:ﬁq in the T'rees collection having Ty, = (T,,|n € w) € CWF¥, ie.,
1. each T, is well-founded,
2. for every position p € T,\[T},], the set of moves at p is countable.

In section 3.5.5, we will observe examples of open games on particular Trees collections. In
section 3.5.5.1, we will observe particular examples of the case for a Trees collection does

not satisfy the condition (1). In section 3.5.5.2, we will observe particular examples of the
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case for a Treey collection does not satisfy the condition (2). This section corresponds to

section 2.5.4 on page 183 for Type 1 trees.
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3.5.1 Getting the determinacy of games on a T'ree; collection with
FWF and CWF from the determinacy of games on X <%

Notation 3.5.1. (Definition of Trees collection with/over FWF and CWF')
Let Ty be a Treey collection. Suppose for every Type 2 tree ngﬁq € Ty Tsg € FWFEF®.

Then we say Ty is a “Trees collection with/over FW F”. Similarly, if for every Type 2 tree

T)\I(I;iiq €Ty, Ty, € CWEY, then we say Ty is a “Treey collection with/over CW F”. =

In sections 3.5.2 through 3.5.4, we will obtain level by level results for the determinacy of
games on a certain T'rees collection with FW F and CW F' from the determinacy of games
on X<“. In section 3.5.2, we will obtain the determinacy of open games on a certain Trees
collection with FWF and CW F' from the determinacy of games on X <. In section 3.5.3,
we will obtain the determinacy of Borel games on a certain Treey collection with FW F
and CWF from the determinacy of games on X<“. In section 3.5.4, we will obtain the
determinacy of projective games on a certain Tree, collection with FWF and CW F' from
the determinacy of games on X <“. In this section, we will give definitions and some lemmas
which we will use throughout sections 3.5.2 through 3.5.4.

In this section, we will discuss results similar to section 2.5.1 by replacing all Y=" to [T,,].
We will modify the notation in section 2.5.1 for Type 2 trees. The difference between Type
1 trees and Type 2 trees will appear in lemma 2.5.11 and lemma 3.5.11 for the countable tail

trees.

For each Type 2 tree T)\?”i ,and A C [Tgﬁ q], we will find A* C X*“ which will satisfy the

following:
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f € A* if and only if

there is a winning strategy at f in the Type 2 tree T;’:ﬁ , for G(A; T;’i q).

We will describe our A*. Recall from page 215,

e = (BNU ) x L)O(X\B).

We will split A into pairwise disjoint pieces Ay and A" for n € w. Ay will be a subset of
X“\B and A" will be a subset of B for each n € w. Then we will define A} for each n € w
and g € [T,] such that if a play f is in A}, then f~g will be in A. Then, by backwards
induction, we will define Aj from {A}|g € [T,]} using unions and intersections. (For the
cases that we are interested, it will be the countable unions and intersections.) Whenever a
play f of A*isin Aj, there is a canonical strategy at f to get into A. Let A* = |, AjUAp.

We will show that:

o if f € A* then I has a winning strategy at f to get into A.

o if f ¢ A* then II has a winning strategy at f to avoid A.
The following is a Type 2 tree version of definition 2.5.2 on page 138.

Definition 3.5.2. Suppose A C [T;fq] For each n € w, define
A" = AN (BN (n)) x [T)),
Ay = AN (X“\B).

Then A=J,,.,6 A"UAy. .

new
In definition 3.5.3, we will define A7 C X* as a collection of f € X* such that f~g € A".
The following is a Type 2 tree version of definition 2.5.3 on page 138.
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Definition 3.5.3. Suppose A C [T)‘g’ﬁq] and assume Ag, A" for alln € w defined in definition

3.5.2. For everyn € w and g € [T,], define
Ay ={feX¥|frge A"}. .

Since A" C (BN Y~ (n)) x [T,], Ay € BNW~!(n) for every g € [T,].

Recall notation 3.4.18.

Notation 3.4.18. Suppose for eachn € w, T), is a tree. For eachn € w and for any p € T,
define

M7 = {m | (m) € Ty} .

Suppose Ty, = (I, |n € w) € WF¥. Then each T, is a nonempty well-founded tree.
In definition 3.5.4, by backwards induction, we will define for each i € [h(g), Ay from

{A?g[i)“ (m) im € Mg, }. The following is a Type 2 tree version of definition 2.5.4 on page 139.
Definition 3.5.4. Let Ty, = (T}, |n € w) € WF“. Suppose A C [ngﬁq]. Define

U ALy LR (p) is even,

AZ ﬁ meMp
N ALy LR (p) is odd.
meMp
Since T, is well-founded, each A} is well-defined. =

Note that for all p € T},, we have A7. Definition 3.5.3 applies if p € [T].

The following is a Type 2 tree version of observation 2.5.5 on page 139.

Observation 3.5.5. Suppose A C [ng:ﬁq] and Ty, = (I, |n € w) € WEF“. Then for all
n € w and for all p € T},
n -1
AD C BNY (n). 4
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Proof.
Suppose Ty, = (T, |n € w) € WF“. Then for all n € w, T,, N [T,,] # 0. Fix n € w. Let
p € T,. We prove this by backwards induction on the length of p.
Base case : p € [T,,].
Then we have A? = {f € X¥|f"pe A"} C BN¥~'(n) since A" C (BNY(n)) x [T,].
Induction step : As an induction hypothesis, assume that for all p € T,,, if lh(p) =1+ 1,
then A? C BNW~!(n). Suppose lh(p) = I. Show A7 € BNY~'(n). Pick an arbitrary f € A7.
Case 1 : [ is even. Then A} = gﬂ AZA (m)* Then f € AZA (m) for some m € M.
Since (h(p~(m)) = | + 1, by induction h;pothesis, we have Azﬁ<m> C BN Y~ !(n). Thus
feBNU¥(n). Since f € Ay is arbitrary, A? € BN U~!(n).
Case 2 : [ is odd. Then A} = QW AZ”(m)' Then f € AZA<m> for every m € M}'. Since

h(p~(m)) = [+ 1 for every m € M, by induction hypothesis, we have ALy € BN U—1(n)

for every m € M'. Thus f € BNW~!(n). Since f € A" is arbitrary, A7 C BN¥~(n). O

For each strategy s* on X <“ we define the canonical strategy s on a Type 2 tree T'. First,
we define the canonical strategy for player /. This is a Type 2 tree version of definition 2.5.6

on page 140.

Definition 3.5.6. (Definition of the canonical tail strategy s for player I)

Fiz a Type 2 tree T = T)\I(’”fsq. Let §;(X <) be the set of strategies for I on X<“ and let
S?(T) be the set of strategies for I on T (we use the “superscript 2”7 to represent a Type 2
tree). Define

07 Sp (X)) = SF(T).

For each s* € 8§;(X<*), Define s = p3(s*) as follows: For p € T\[T| such that either p is
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finite and p € dom(s*), or p is infinite and lh(p) is even,

(

s*(p) if p finite,

if plweB and

s(p)= U (plw) U(plw) 16
)=\ pmen; (p rweApr[w,zh(pwm)

Y(plw) U (plw)
PIWEA 1L inry) = U Apr[w,lh(p)wmv
mEMZ\;p(er)
pm(me M, P')) otherwise, '

when M];P(p[w) 1s well-orderable. Then s is a strategy for I for T.
(We define for the case that M,;Ij(prw) is well-orderable. See footnote (16) for the case that

M) s not well-orderable. ) =
The following is a Type 2 tree version of lemma 2.5.7 on page 140.

Lemma 3.5.7. Fiz a Type 2 tree T' = ng;ﬁq and A C [T]. Suppose I* has a winning

strategy s* for G(U, e, Aj U Ag; X<*). Then the canonical tail strategy s = 7(s*) is a

new

winning strategy for I for G(A;T). =

Proof.
Pick an arbitrary h € [T] = [Tgf ,] according to s. Show h € A. Since h | w is according

to s, h | w is according to s*. Since s* is a I*’s winning strategy for G(|J

new Ag U AQ); X<°"),

hlwelU,e, AU A

Casel: hJweB.

161, represents “the least”. If M,;Ij (Plw) g well-orderable, fix a well-ordering of M,‘,P (plw) Otherwise, pick

any m € M;}’(Pf‘*’) such that p | w € A:!r([ir(;z(p))"(m)

"This otherwise case does not occur for plays of interest. If M, (#1%) ig not well-orderable, pick any
m € M‘I’(PW)
» .
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Then h [ w ¢ Ay. By observation 3.5.5, h [ w ¢ Aé) for any [ # ¥(h [ w). Thus h [ w €

Agj(h[w). Since h is according to the canonical tail strategy s = ¢*(s*) for I, h | w € AEI;L((M»)

Since [h(h | (w+ 1)) =w + 1, by definition, AEI;Z((IZJ)“;) = (Mear?@19) Ay )y~ (my- LThus for any
(h(w))

\I/(h w)

II’s move m € M<hgw)°;), hlwe Ag;f{j;j%w. In particular, h | w € A (@) A1) Repeat
this argument. Eventually, we get h [ w € A\IJ(Z any- Thus b= (h [ w)"h | [w,lh(h)) €

A\I!(h[w) C A
Case2: h|w¢ B.
By observation 3.5.5, h [ w ¢ A} for any n € w. Thus h=h [w € 4y C A.

In either case, h € A. Hence the canonical tail strategy s = ¢;(s*) is a winning strategy

for I for G(A;T). O

Now, we define the canonical strategy for player II. The following is a Type 2 tree

version of definition 2.5.8 on page 141.

Definition 3.5.8. (Definition of the canonical tail strategy s for player I1)
Fiz a Type 2 tree T = T;’gq. Let S;1(X<%) be the set of strategies for 11 on X<* and let

S%,(T) be the set of strategies for IT on T. Define
w1 S (X=9) = S (T).

For each s* € S;(X<%), define s = p3;(s*) as follows: For p € T\[T| such that either p is
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finite and p € dom(s*), or p is infinite and lh(p) is odd,
s"(p) if p finite,
if plweB and

¥(plw) ¥ (plw)
p rW%Azﬂw,lh(lﬁ)_ m Apf[wﬁlh(:p))“(my

meM;’(F[w)

U (plw VU(plw
s(p)=< pmeM, ¥ <p “"gAm([i[m)<p)>“<m>> N

19

pm(me M;I(prw)) otherwise,

when M,;Il(p[w) 18 well-orderable. Then s is a strateqy for 11 for T.
(We define for the case that M;I](pm) is well-orderable. See footnote (18) for the case that

My P s not well-orderable. ) =
The following is a Type 2 tree version of lemma 2.5.9.

Lemma 3.5.9. Fiz a Type 1 tree T = T)\I(l”iq and A C [T]. Suppose s* is a IT*’s winning
strategy for G(U,,, Aj UAp; X=). Then the canonical tail strategy s = ¢3,(s*) is a winning

strategy for 11 for G(A;T). =

Proof.

Pick an arbitrary h € [T] = [T)\I(’”fsq] according to s. Show h ¢ A. Then h | w is according to

s*. Since s* is a II*’s winning strategy for G(|J,,c,, Af U Ap; X=°), h [ w & U,,c., Af U Ag.
Casel: hJweB.

Since h [ w & Upeo AU Ag, h [ w ¢ Ag(hw. By definition, A;I(h[w) = Umqu;p(pM AEIIW(SM.

Thus for any I’s move m € M;j(prw), hlwé Ag}n%ww)- In particular, i [ w ¢ A?;L((]Zj)u;)-

181, represents “the least”. If Mgp (P1e) g well-orderable, fix a well-ordering of Y. Otherwise, pick any

m € M;Ij(prw) such that p | w ¢ Aj[(ﬁ‘l"}z(p)r(m).

YThis otherwise case does not occur for plays of interest. If M, (#1%) ig not well-orderable, pick any
m € M‘I’(PW)
» .
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By definition, AZI;((};F)‘*;) — mmer;‘(p » Al my- Since N is according to the canonical tail
strategy s = %,(s*) for II, h | w ¢ A‘y(};) hwt1)y- Repeat this argument. Eventually, we
get h | w ¢ A\P([Z ey Thus b= (h [ w)h | [w,lh(h)) ¢ AY(®1w) By observation 3.5.5,
w ¢ Al for any | # U(h | w). Hence h ¢ J,,o, A"UAy = A.
Case2: h|w¢ B.
Since h [ w ¢ U,e, Ay U Ap, b = h [ w ¢ Ap. By observation 3.5.5, h [ w ¢ Aj for any

n € w. Hence h ¢ |J _ A"UAy = A.

new

In either case, h ¢ A. Hence the canonical tail strategy s = ¢?%;(s*) is a winning strategy

for 11 for G(A;T). O

Let p? = p2Up?;. Then ¢? takes strategies on X <% to strategies on T)\g’i ,- By lemmas
3.5.7 and 3.5.9, we have the following. The following is a Type 2 tree version of theorem

2.5.10 on page 143.

Theorem 3.5.10. If G(U,,c,, Aj U Ap; X*) is determined, then G(A; Xf ) is determined.

new

-
The following is a Type 2 tree version of lemma 2.5.11 on page 143.
Lemma 3.5.11. Suppose n,m € w, m > 1 and o € wy.
1. If for all g € [T5,), A7 € 30, | X¥ and T,, € FWF, then Aj € ) [ X*.
2. If for all g € [T,,], A} € Y | X¥ and T,, € CWF, then Aj € B | X,
3. If for all g € [T,], A7 € B}, | X* and T,, € CWF, then A} € X} | X¥.
4. If for all g € [T,)], A} € I}, | X¥ and T,, € CWF, then Aj € I}, | X,
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5. If for all g € [T,,), Ay € A} | X¥ and T, € CWF, then A} € A}, | X¥.
6. If A is an algebra, for all g € [T,], Ay € AN XY and T, € FWF, then Aj € A | X*.

7. If A is a o-algebra, for all g € [T,,], Ay EANT XY and T, € CWF, then Aj € A | X*.

Proof.
Fix n € w. Notice that FWF C WF and CWF C WF so that for all (1)-(7), T,, is well-
founded. Thus for each n € w, there is a rank function of 7}, defined in definition 1.2.6 on

page 9.

Definition 1.2.6. (Definition of the rank of a well-founded tree)

Suppose T is a well-founded tree. Then [T| CT. Define the rank of T recursively.

rankr T — w

. 0 ifpell],
p

sup {rankr (p~(k)) + 1| p~(k) € T} ifpeT\[T]. 4
Recall definition 3.5.4.

Definition 3.5.4. Let Ty, = (T,,|n € w) € WF“. Suppose A C [T;’ﬁq]. Define

U ALy LR (p) is even,

AZ g meMp
N ALy LR (p) is odd.
meMp
Since T, is well-founded, each A} is well-defined. -

Fix n € w. Show (1). Assume all g € [T,], A7 € 30 [ X*.
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Show that for any p € T,,, A} € 30 I X“ by backwards induction on the rank of T,.
Base Case : rank (p) = 0.
Then p € [T,]. Thus A7 € 39 | X*.

Induction Step : Assume, as an induction hypothesis, Vq € T, if rank (q) < rank (p)
then A? € X9 | X¥.

Show that A7 € X7 [ X“. Note that Vk € M}, rank (p~(k)) < rank (p). Thus, by
induction hypothesis, Vk € M}, AZ“(M e X0 | X¥. Since T,, € FWF, for each p € T,,, M}
is finite.

Case 1 : lh(p) is even.

Then A} = [, My Al € 39 1 X% since X2 | X¢ is closed under finite unions.

(k)

Case 2 : [h(p) is odd.
Then A} = ;¢ My Al ny € 30 1 X¥ since XY | X“ is closed under finite intersections.

In particular, when k = 0, A} € 39 | X“.

Show (2). Assume all g € [T,], A € 30 1 X“. Since T,, € CWF, for each p € T, My is
countable. By the similar argument as above (replace ¥ to B and finite to countable), we
have Aj € B [ X*.

Show (3). Assume all g € [T], Ay € 311 X¥. Since T,, € CWF, for each p € Ty, My
is countable. Since X! | X* is closed under countable unions and countable intersections,
by the similar argument as above (replace X° to X! and finite to countable), we have
Ap € 3, | X“. Similarly for (4), the case for II}, and (5), the case for Al .

Show (6). Suppose A is an algebra and each Ay € A [ X%, Since T,, € FWF, for each
p € T, M} is finite. Since A is closed under countable unions and countable intersections,

by the similar argument as above (replace 3° to A), we have Ay e AT X%
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Show (7). Suppose A is a o-algebra and each A} € A [ X“. Since T,, € CWF, for
each p € T,,, M} is countable. Since A is closed under countable unions and countable

intersections, by the similar argument as above (replace X2 to A and finite to countable),

we have Aj € A [ X*. O

Next, we will find the complexity of Ay and A} for each g € T),. This is a Type 2 tree

version of lemma 2.5.12. The proof is similar to the proof of lemma 2.5.12.

Lemma 3.5.12. Suppose Ag and Ay are complexities. Let U € T'(w,Ag),B € Ay | X¥,

Ty ={(T,In€w)e CWF* and A € X9 | [T)\I(’”fsq]. Then for everyn € w and g € [T,,],
Ar e (B)AAgAAY) | XY and Ay € (39 A co-Ay) | X©. .

Proof.

Pick arbitrary n € w and g € [T;,]. Then g # (. Since A € X9 | [T;’;ﬁq],
A= AN ((BAY(0) x [T,]) € S0 1 (BN W~ (n)) x [T,]

Thus there exists (O; |i € w) such that A™ = J,.,, O; where each O; is a basic open neigh-

borhood of (BN ¥~ (n)) x [T], i.e., there exists p; € X<% and ¢; € [T,] such that
O;={he(BNU ' (n)x[T]|hlw2p Ah| [w,lh(h) D g}

Since each T,, € CWF, each tail has finite length and for each p € T,,, £ is countable.

Thus there are countably many tails. Hence each O; can be written as icw OZ] where
each OA” ={he (BNY )X [T,]|hlw2p,j=pAh] [wlh(h)) = G,} for some
Gij € [T]. Then O = J,c,, Oi = U, Uj@J 0” = Upew Oy, where O,’s enumerate Om-’s, etc.

Or={h e (BNU(n)x[Th]|h|wDppAh|[wlh(h)) =G} Notethat O, may not be
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open.
Define G = {k € w|jx = g}

Then

ndf w ~ n
A ={feX¥|fge A"}

—{feXW

ZU{feX“

I g€ U O
kew

}
Ig€0}
)

kcw
:U{fEXw fAQEOAk

keG
= J{fexelfop}n¥(n)n B
keG TR Mixe

~~

201Xw

€ (ZEYAAAA) T XY

Now, we consider Ay. Define J = {k € w|gy = 0}. Then for all f € X*,

fedpe feXN\BNAs fe X\BAJkeJ(f2Dpx)-
&v—/ \,-/ A" "

e

co-A1 [ X% co-A1 [ X ¥ 2(1) [ Xw

Thus 4y € (X Aco-Ay) | X¥.

]

By lemmas 3.5.12 and 3.5.11, we obtain the complexity of Ay and A} for all n € w and

g € [T,,] from the complexity of B and W. In the next section, we will obtain the determinacy

of open games on T'rees collections from the determinacy of games on X <“ by using theorem

3.5.10 lemma 3.5.11 and lemma 3.5.12.
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3.5.2 Obtaining the open determinacy on Trees; collection with

FWF and CWF from the determinacy of games on X <%

In section 3.5.1, we defined notations and prove some lemmas. In this section, we will obtain
open determinacy on a certain Trees collection with FW F and CW F' from the determinacy
of games on X<“ by using theorem 3.5.10, lemma 3.5.11 and lemma 3.5.12. The proof of
this section is similar to the one in section 2.5.2. The difference between Type 1 trees and
Type 2 trees will appear in proofs of lemma 2.5.12 and lemma 3.5.12 under the discussion
about the basic open neighborhood.

The main theorems of this section are theorem 3.5.13 and theorem 3.5.15. The following

is a T'reey version of theorem 2.5.18 on page 156.
Theorem 3.5.13. Suppose 3,7 € wy. If 5,7 > 1, then
Det(A.xipn | X) = Det G (V; Treey (X, FWF?, I(w, AY), Aj | X)) . (3.9)

If B <,
Det G (X9 Treey (X, FWF* T'(w, AY), 5% | X)) (3.10)
Det (A) | X¥) =
Det G (X9; Treey (X, FWF“ I'(w, AY),II} | X¥)) (3.11)
If 8>+,

Det G (X9 Treey (X, FWF* I'(w, AY), 55 | X¥)) (3.12)
Det (5 VII) | X¥) =
Det G (X9; Treey (X, FWF* T'(w, AY),II; | X¥)) (3.13)

Also,

Det (X9 | X¥) = Det G (2V; Tree; (X, FWF,T'(w, A)), A} | X¥)) . (3.14)
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The implications (3.10) through (3.13) state that we set
Ty = Treey (X, FWF? T(w, AY), (23 UTI}) | X¥),

then Det G (X9;75) follows from

Det (A9 | X*) when 8 < 7,
Det (2% VII}) | X“) when § > 7.
Proof.

Show the implication (3.9). Fix 3,7 € w; greater than 1. Pick an arbitrary Type 2 tree
Ty, € Treey (X, FWF¥,T(w, A)), Aj | X¥).

Then ¥ € T'(w,A?), B e A) | X¥ and Ty = (T, [n € w) € FWF*. Pick an arbitrary

Aex?) [T)‘?”iq]. Assume Det(A] s v [ X¥). By lemma 3.5.12, foralln € wand g € [T,],

each A} € A?nax{ﬁﬁ} | X¥ and Ag € A} | X“. Since for any p € T,, each M" is finite, each

Ap e A? I X“. Thus |J

max{3,v} Ag U A@ e AY r X“. Hence G(U

new new

determined. By theorem 3.5.10, G(A; T)\I(/,’fs q) is determined. Therefore,
Det G (X0; Treey (X, FWF“ I'(w, AJ), A | X¥)).

The proofs for the implications (3.10) through (3.14) are similar. Fix a Type 2 tree T)‘l(j”i ,

in the appropriate Treey collection. We only need to check the complexity of | J

new

ASUA@.

For the implication (3.10), pick an arbitrary Type 2 tree
Ty, € Trees (X, FWF I'(w, AY), 55 | X¥).

Then ¥ € ' (w,AY), B € % | X* and Ty, = (T,,|n € w) € FWF¥. Pick an arbitrary

A€ X0 | [Ty, ] By lemma 3.5.12, for all n € w and g € [T,], each A7 € A | X¥
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and Ay € H% [ X*. Since for any p € T,, each M} is finite, each A} € A?Y I X“. Thus
Unew A U Ag € Ag I X%,

For the implication (3.11), pick an arbitrary Type 2 tree
Tyy, € Treey (X, FWF* T(w, AY), IT} | X*).

Then ¥ € I’ (w,AY), B € I} | X¥ and Ty, = (T, [n € w) € FWF*. Pick an arbitrary
Ae XV [Ti’;ﬁq]. By lemma 3.5.12, for all n € w and g € [T,], each A7 € A) | X¥
and Ay € X% | X“. Since for any p € T, each M) is finite, each Aj € AJ [ X*. Thus
Uneo AL U Ag € A0 | X*.

For the implication (3.12), pick an arbitrary Type 2 tree
Ty, € Treey (X, FWF* T'(w, A)), 55 | X¥).

Then ¥ € I' (w,AY), B € X} | X* and Ty = (T, |n € w) € FWF“. Pick an arbitrary
Ae XV [T)‘l{’,’fsq]. By lemma 3.5.12, for all n € w and g € [T}], each A7 € Xj [ X¥
and Ay € H% [ X*. Since for any p € T, each M is finite, each Aj € E% I X¢. Thus
Unew A5 U Ap € (E% \/H%) I Xv.

For the implication (3.13), pick an arbitrary Type 2 tree
Tyr, € Treey (X, FWF* T(w, A)), II) | X*).

Then ¥ € I'(w,AY), B € II§ | X¥ and Ty, = (T,,|n € w) € FWF“. Pick an arbitrary
A€ X | [Tyy,] By lemma 3.5.12, for all n € w and g € [T,], cach A7 € I | X¥
and Ag € XY | X“. Since for any p € T, each M} is finite, each A} € II} [ X*. Thus

Unew A U Ag € (E% \% H%) [ X%,
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For the implication (3.14), pick an arbitrary Type 2 tree
TYr, € Treey (X, FWF¥ T(w, AY), Af | X¥)

. Then ¥ € T'(w,AY), B e A} | X¥ and Ty, = (T),|n € w) € FWF%. Pick an arbitrary
AexV ) [T;’iq]. By lemma 3.5.12, for all n € w and g € [T;,].for all n € w and g € [T,,],
each A7 € X9 | X¥ and Ay € XY | X¥. Since for any p € T, each M is finite, each

Ar e 29 ) X, Thus [, ., Ar U Ay € 29 | X¥. 0

Combining corollary 3.4.33 on page 264 and theorem 3.5.13, we have the following. The

following is a T'rees version of corollary 2.5.19 on page 159.

Corollary 3.5.14. Suppose 3,7 € wy. Then for any 8 > 7,
@ Det G (2; Treey (X, FWF*T (w, X4 AILY) I3 | X¥))
@ Det G (29; Treey (X, FWF*T (w, X4 AIIY) X9 | X¥))
= @ Det((Z)AILY) | X¥)
& @ Det (23 VILG) | X¥)
N ® Det G (2; Treey (X, FWF* T'(w, AY), X5 | X¥)).
© Det G (E?;Treeg (X, FWF“ T'(w, Ag),l_[% i X“’)) )

That is : Q) implies 3), @) implies @), @) if and only if @ and @ implies both &) and ).

So far, we focused on getting the determinacy on Trees collections such that each Type
2 tree T)\?ﬁ . in the Treey collection satisfying T,, € FWF“. Now, we consider Treey

collections over CW F'. The following is a T'reey version of theorem 2.5.20 on page 160.
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Theorem 3.5.15. Suppose B, \ € wy. Then

Det (B | X¥) = Det G(X7; Treey(X,CWFT (w, AY) , 35 | X¥)). =

Proof.

Fix 3,7 € w;. Assume Det(B | X*). Pick arbitrary Type 2 tree
TED € Trees X, WP T (o, A1) 38 X%)

Then ¥ € I' (w,AY), B € X} | X¥ and Ty = (T |n € w) € CWF“. Pick an arbitrary
Aexy) [T)‘?:ﬁq]. By Lemma 3.5.12, for all n € w and g € [T}, Ay € 50 oy [ X
and Ay € X) ATI} | X“. Since Ty, € CWF¥, each A} € B | X* by lemma 3.5.11. Thus

Unew A5 U Ap € B T X¥. Hence G(U,c, Af U Ap; X*) is determined. By theorem 3.5.10,

new

G(A; ng:f ) is determined. Therefore,

Det (27; Treey (X,CWF T'(w, AY), 35 | X¥)). O
Since [ and v are arbitrary, we have the following. The following is a Tree, version of
corollary 2.5.25 on page 163.

Corollary 3.5.16. (Corollary to Theorem 3.5.15)

Det (B | X¥) = Det (£); Trees (X,CWF”,I'(w,B),B | X¥)). -
The following is a T'reey version of corollary 2.5.23 on page 162.

Corollary 3.5.17. Suppose A an algebra. Then

Det(A | X¥) = Det G (2; Trees (X, FWF, T(w,A),A | X¥)). =
Proof.
Pick arbitrary Type 2 tree T;’iq € Trees (X, FWF“ I'(w,A),A [ X¥). Then ¥ € I'(w, A),
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BeA| X¥Yand Ty, = (T, |n € w) € FWF“. Pick an arbitrary A € XV | [T;’ﬁq]. By
lemma 3.5.12, for all n € w and for all g € [T}], each A} € A [ X* and since A is closed
under complement, Ay € A | X“. Since A is closed under finite unions and intersections,
each Aj € A [ X¥. Thus |J,o, AfUAp € A [ X¥. Hence G(U,,c, Aj UAp; X) is determined.

By theorem 3.5.10, G(A; T)‘I(j”T]iq) is determined. O
The following is a Treey version of corollary 2.5.24 on page 162.
Corollary 3.5.18. Suppose A is o-algebra. Then
Det(A | X¥) = Det G (Z; Trees (X, CWF*, T(w,A),A | X¥)). =

Proof.

Pick arbitrary Ty7 € Trees (X,CWF¥ T'(w,A),A | X¥). Then ¥ € T'(w,A), B € A | X¥
and Ty, = (T,,|n € w) € CWFEF“. Pick an arbitrary A € 39 | [T;’iq]. By lemma 3.5.12,
for all n € w and for all g € [T,], each A} € A | X¥ and Ay € A | X¥. Since A is a

o-algebra, each Ay € A [ X¥. Thus (J,., Aj U Ag € A | X*. Hence G(U, o, Af U Ag; X¥)

new

is determined. By theorem 3.5.10, G(A4; T)‘I(’,’TB; ,) is determined. O

So far, we focused on getting the determinacy on T'rees; collections such that each Type
2 tree T;’ﬁ , n the Treey collection satistying Ty, € CW F“, ¥ is a Borel function and B is
a Borel set. Now, we we focus on getting the determinacy on a T'rees; collection such that
each Type 2 tree T;’:ﬁ , in the T'reey collection satisfying Ty, € CWF¥, ¥ is a projective
function and B is a projective set. The following is a Trees version of theorem 2.5.26 on

page 163.
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Theorem 3.5.19. Suppose m,n € w\{0}.

Det(A} | X¥) = Det G (X); Trees (X,CWF*,T'(w,A},), A}, | X¥)).  (3.15)

max{n,m}

If n <m,

Det G (X9 Trees (X,CWF*, T(w,A}), 2} | X¥)). (3.16)
Det (A, | X¥) =
Det G (XV; Trees (X, CWF*,T(w,A}), I}, | X¥)). (3.17)

Ifn>m,

Det G (X0; Tree; (X,CWF,T(w,A},), X, | X¥)). (3.18)
Det ((%, VIL,) | X¥) =
Det G (X0; Trees (X, CWF*, T'(w,A},), I}, | X¥)). (3.19)

The implications (3.16) through (3.19) state that we set
To = Trees (X,CWF“.T(w,A}), (), UILL) | X¥),

then Det G (X9;75) follows from
Det (AL | X¥) when n < m,
Det (2L VIIY) | X*) when n > m.
Proof.

Show the implication (3.15). Fix n,m € w; greater than 1. Pick an arbitrary Type 2 tree
Tyr, € Treey (X,CWF¥ T(w,AL), A} | X¥).

Then T, € CWF¥, W € T (w, A},) and B € A}, | X*. Pick an arbitrary A € 39 | [TY7 ].

Assume Det(Al I X). Since Ty, € CWF¥, by lemma 3.5.12, for each i € w and

max{n,m}
g€l A € Arlnax{n,m} | X“and Ay € A} | X“. Since Ty, € CW F“, by lemma 3.5.11, each
Aj e Arlnax{n’m} [ X9, Thus o, AjU A4y € Arlnax{n’m} | X“. Hence G(U,e, Aj U Ag; X¥) is
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determined. By theorem 3.5.10, G(A; T )\?fs q) is determined. Therefore, we have
Det G (X0; Trees (X,CWF“,T'(w,A}), A} | X¥)).

The proofs for the implications (3.16) through (3.19) are similar. Fix a Type 1 tree T)‘I(’”ﬁ ,

in the appropriate Tree, collection. We only need to check the complexity of [ J A% U Ag.

1EW

For the implication (3.16), pick an arbitrary Type 2 tree
Tyry, € Treey (X,CWF¥ T(w,AL), Z) | X¥).

Then T,, € CWF“, ¥ € T'(w,Al) and B € ¥} | X“. Pick an arbitrary A € X9 |
[T)‘g’iq]. Since Ty, € CWF¥, by lemma 3.5.12, for each i € w and g € [T}], A, € A}, [ X¥
and Ay € II), | X“. Since T,, € CWF¥, by lemma 3.5.11, each Ay € A, [ X“. Thus
Uicw AjU Ag € A} | X¥.

For the implication (3.17), pick an arbitrary Type 2 tree
Tyr, € Treey (X,CWF¥ T(w, AL), T} | X¥).

Then T,, € CWF* V¥ € T'(w,Al) and B € II} | X¥. Pick an arbitrary A € 39 |
[T;ﬁq]. Since Ty, € CWF*, by lemma 3.5.12, for each i € w and g € [T}], A} € A}, | X¥
and Ay € 3} | X¥. Since Ty, € CWF“, by lemma 3.5.11, each Aé) € Al 1 X“  Thus
Uicw A§ U Ag € AL T X,

For the implication (3.18), pick an arbitrary Type 2 tree
Ty, € Trees (X,CWF¥ T'(w, A}), 5} [ X¥).

Then Ty, € CWF¥, ¥ € T'(w,A}) and B € X, | X“. Pick an arbitrary A € 39 |

[T)‘l(j”iq]. Since Ty, € CWF¥, by lemma 3.5.12, for each i € w and g € T3], A, € X} [ X¥
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and Ay € II} | X“. Since Ty, € CWF“, by lemma 3.5.11, each A% € X! | X¥. Thus
Uie, 4§ U Ap € (B} VILL) [ X¥.

For the implication (3.19), pick an arbitrary Type 2 tree
Tyy. € Treey (X,CWF¥ T(w,A)) II, | X¥).

Then T,, € CWF* V¥ € I'(w,Al) and B € II} | X“. Pick an arbitrary A € 39 |
[T;’ﬁq]. Since Ty, € CWF“, by lemma 3.5.12, for each i € w and g € [T}], A} € II,, [ X¥
and Ay € 3, | X¥. Since Ty, € CWFE¥, by lemma 3.5.11, each Aj € II} | X*. Thus
Uicw AjU 4p € (2], VIL) | X¥. O

The following is a T'rees version of corollary 3.5.20 on page 308.

Corollary 3.5.20. (Corollary to Theorem 3.5.19)

Det (2-I1] | X¥) = Det G (X9;Treey (X,CWF“ T'(w, A}), (X1 UIL}) | X¥)). =

By combining corollary 3.4.35 on page 265 and corollary 3.5.20, we have the following.

The following is a T'rees version of corollary 2.5.28 on page 166.

Corollary 3.5.21. Suppose {Ty,T1} satisfies the modified 1 mazximal tree property or the 1
disjoint tree property. Then for any Y D {1y, T1},
@D Det G (X0;Treey (X, Y% T'(w, 2-I11), X1 | X¥))
®@ Det G (X0;Treey (X, 1%, T'(w, 2-I1}), I1} | X¥))
= @ Det (2-I1] | X*)
= @ Det G (XV; Tree; (X,CWF* T(w,A}), (2] UIL}) | X¥)).

That is : Q) implies 3), ) implies 3), and @) implies @). -
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Question 13. With respect to corollary 3.5.21, does (&) imply Q) or @7
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3.5.3 Obtaining the determinacy of Borel games on a T'ree; col-
lection with FWF and CWF from the determinacy of Borel
games on X%

In section 3.5.2, we focused on obtaining the determinacy of open games on a certain Trees
collection with FW F' and CW F' from the determinacy of games on X <“. In this section, as
a general case of open games on a T'ree, collection, we will consider games which are more
higher complexity. The idea is similar as in section 2.5.3. The difference between Type 1
trees and Type 2 trees will appear in lemma 2.5.32 and lemma 3.5.25 under the discussion
about the basic open neighborhood.

The main theorems in this section are theorems 3.5.22 and 3.5.23. We will obtain level
by level results for the determinacy of Borel games on a Trees collection with F'W F' and
CWF from the determinacy of games on X <v.

The following is a T'rees version of theorem 2.5.29 on page 167.

Theorem 3.5.22. Suppose «, 3,7 € wy; and o > 1. Then

Det(2Y | X¥) = Det G (29; Trees (X, FWF* T(w, AY), A% | X¥)).  (3.20)

max{f,y}+a

Moreover, if B < v, then

Det(X0,,, | X¥) = Det G (29; Treey (X, FWF* T(w, A}), 25 | X¥)). (3.21)

If B >, then
Det(Xg1y40 | X¥) = Det G (30; Treey (X, FWF*,T'(w, A?), X5 | X¥)). (3.22)
_|
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The implications (3.21) and (3.22) states that when we set
Tz = Treey (X, FWF® T'(w,AY), 35 | X¥),

Det G (2°;73) follows from

Det (39, 1 X¥) when 8 < 7,
Det (2?5+1>+a rxw) when 8 > 7.

We will prove this theorem on page 319.

The following is a Treey version of theorem 2.5.30 on page 168.
Theorem 3.5.23. Suppose a, 3,y € wi. Then
Det(B | X¥) = Det G (30; Trees (X,CWF“, I(w,A?), A} | X¥)). -

We will prove this theorem on page 320.

The idea of the proofs are similar as in section 3.5.2. We will use the same definition of
Ap, Ay and Ay from section 3.5.1. We will find the complexity of each Ay and Ay in lemma
3.5.26. Then, by using lemma 3.5.11 and theorem 3.5.10, we will obtain the determinacy
results in theorems 3.5.22 and 3.5.23. To obtain the complexity of each A} and Ay, we will
define a function Fiz from X into [T° )\I(lff ,] and find the complexity of Fiz in lemma 3.5.25.
This Fiz will be the key to find the complexity of A} and Ay. For each g € [T;,], we will
collect all of f € X“ such that f~¢g € [ngf q] by using Fix. Fixz will be the identity map for
any f € X“\B and if f € B, then it will fix the tail.

The following is a Type 2 tree version of definition 2.5.31 on page 169.

Definition 3.5.24. (Definition of “Fixs”)
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For allm € w, fix a,, € [T,,]. Define

Fizy{a, :mew): XY — [T)\I(/,’qu]

f if [ ¢ B,

f=
[ ayy otherwise.

If {ay, : m € w) is clear from the context, we will denote Fixy to mean Fixg (ay, : m € w).

We will compute the complexity of Fixs. The following is a Type 2 tree version of lemma

2.5.32 on page 169.

Lemma 3.5.25. (Finding the complezity of Fixs)
Fix a Type 2 tree T' = Tg;ﬁq such that Ty, = (T, |n € w) € CWF“. For allm € w, fir

A € [T]. Suppose a, B € wy, for alln € w, v, € wy
1. Suppose:

e Be AY| XY,

o forallnew, ¥H(n) e AY | X¥,

then Fizy € T([T), A2 ). 20

> S max{f,sup, ¢, Yn}

2. Suppose:

o forallnew, B> v,
° BEE%[X“’,

o foralln € w, \I/_l(n) € ASH,

. v.B
then Fizvy € T([Txr, ], 2511)-
20Recall notation 1.5.8 for T'([T], X

max{S,5up,, ¢, Vn} )-
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3. Suppose:

e there exists n € w such that ~, > [,
e Be E% I X“,

o foralln € w, ¥=1(n) e ASH,

then Fizy € T[Ty, ], 50 ).

SUPpewYn

4. Suppose A is o-algebra and:

e Be A X¥,
o Vel (wA),
then Fixy € F([ngﬁq], A).
Proof.
Pick an arbitrary O € X9 | [T)\?fq] Then there exists (O; |i € w) such that O = J,, O;
where each O; is a basic open neighborhood of [T)\?g q], i.e., there exists p; € X< and

¢; € [T,] for some n € w or ¢; = () such that
Oi={heTf | IhTw2pinh o lh(k) g},

Since Ty, = (T, |n € w) € CWF¥, for every n € w, each p € [T,] has finite length and for
each p € T;,, M} is countable, there are countably many tails. Thus each O; can be written

as Ujeu O;; where each
Oy ={h € [TX7, ) A 1w 2 pig=pi AT [w,Ih(R) = dis}

for some ¢;; € Y<*. Then O = ., Oi = U;c, U OA” = Upew Oy, where Oy’s enumerate

JEW

Oyj's, ete. O ={h € [Txf. ]| h [ w 2 pr Ah | [w,lh(h)) = G}
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Case 1: ¢, = 0.

Fiz; (Oy) = {h € X“|h | w D pr } N (X\B).

201 Xw

If Be AY | X¥, Fizy ' (O)) € (S0 A AY) | X,

If Be XY | X¢, Fizy'(Or) € (B¢ ATIY) | X,

Case 2 : gy = a,, for some [}, € w.

Fiz; (Or) = {h € X¥[h T w D pe} NI (1) N B
E?TX&J Agl [ X w A% [ X% or E% [ Xw
k

If B A% | X¥and UL(1)) € AS, , Fiag'(0) € <29 A Agmx{mk}> P X,

w

0
max{8n, } | X

If A is o-algebra, B € A [ X and ¥ € D(w, A), then Fiz~1(O,) € A | X*.

If BeXh [ X< and U7'(l) € A Fiz;'(Op) € 2

Case 3 : ¢y # () and g # a; for any [.
sz;l(ék) = (.

Show (1). Suppose B € Aj | X and for all n € w, ¥~'(n) € AJ . Then

R o . 1A 0 w 0 w
Fiy (0) =], Fir;'(0r) € Dtz ) [ X S Diasasup oy [ X7
0 0 w
<z:1 AAmax{B,nk }) IX

Since O € XY | [T)] is arbitrary, Fixy is 39 measurable.

max{ﬁ,ilelg wm}
Show (2). Suppose for all n € w, f > y,, B € 33 [ X* and for alln € w, ¥~'(n) € AJ .
Then Fiz;'(0) € B4, | X*. Since O € XY | [T] is arbitrary, Fiz, is £%_,-measurable.
Show(3). Suppose there exists n € w such that v, > 3, B € E% I X¢ and for all n € w,
U~'(n) € AY . Then Fiz;'(0) € E‘S’upnem | X“. Since O € XY | [T] is arbitrary, Fiz, is
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0
Yigup, o,y -Measurable.

Show (4). Suppose A is o-algebra, B € A | X“ and ¥ € I'(w,A). Then Fix;l(ék) €A
for any k € w and thus Fiz;'(0) € A. Since O € X9 | [T] is arbitrary, Fiz, is A-

measurable. O

Using the complexity of Fixy computed in lemma 3.5.25, we find the complexity of A}
and Ap. In the proof of 3.5.26, we use sublemma 2.5.34 on page 176. The following is a Type

2 tree version of lemma 2.5.33 on page 172.

Lemma 3.5.26. (Finding the complexity of Ay and Ap)
Fiz a Type 2 tree T = T)‘I(j”f such that Ty, = (T, |n € w) € CWEF¥“. Suppose o, € wy,

a>1, foralln € w, v, € wy.
1. Suppose:

e Be AY| XY,

o foralln €w, V1(n) e Agn I X,

e« eS|,
then Ag, A} € Egnax{ﬁ,sup o} a for any n € w and for any g € [T,].

2. Suppose:

o foralln e w, B>,
e Be 2% I X“,
o foralln cw, ¥7'(n) e AY | X¥,

QAGng[T],
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then Ay, A} € E[(),B+1)+a I X% for any n € w and for any g € [T,].

3. Suppose:
e there exists n € w such that ~, > [,
e Be 2% I X“,

o foralln cw, ¥7'(n) € AY | X¥,

e Ac Eg I[T7,
then Ay, Ay € Egupnewﬁa I X for any n € w and for any g € [T,)].

4. Suppose A\ is o-algebra, closed under A-substitution and:

o« B Al XY,
o Uecl'(wA),

e Ac A [T],

then Ap, Ay € A | X¥ for anyn € w and for any g € [T,].
Proof.
Fix n € w and g € [T,,]. First, we will find the complexity of Ay. We will use Firy with
a, = g. Show

Ardyf e X¥|fge A"} = Fizy (A)n U~ (n) N B.

Recall A" = AN ((BN¥~1(n)) x [T,]).

(C) Suppose f € A?. Since g € [T,] and f~g € A", f € ¥"'(n) N B and f°g € A
Since f € B and V(f) = n, Fizy(f) = frawy) = fra, = fg. Thus Fizy(f) € A so that
f € Fizy*(A).
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(D) Suppose f € Fizy' (A)N ¥~ (n)N B. Since f € Fiz;'(A) and f € B, Fizy(f) =
frawy = fra, = frg € A. Since g € [T,], frg e AN (BN U~ (n)) x [T,,] = A". Hence
[ €Ay

First, we will consider the complexity of Aj.

nd W n - _
Al={feX“|frge A"} = Fizy;" (A)N¥ " (n)N B

S 0 w 0 w
Agn[xw AB(X or Eﬂ[X

Show (1) for A7. Suppose B € A} [ X¥, for all n € w, ¥~'(n) € A) | X* and

A € X0 | [T]. Then by lemma 3.5.25, Fizy is X2 measurable. Note that since

max{/ﬁvsuanw’YH}_
wy is regular, sup, Y, € wi. Since A € X2 | [T], by sublemma 2.5.34,

Firy' (A) € 20 P X

max{3,sup, ¢, Yn}+o
0
Thus AZ € Emax{ﬁ,supnemn}Jra [ X«.

Show (2) for A7. Suppose for all n € w, f > v,, B € X} [ X¥, foralln € w, ¥~'(n) €

AY | X and A € XY | [T]. Then by lemma 3.5.25, Fizy is X3, -measurable. Since

A€ X0 |[T], by sublemma 2.5.34, Fiz," (A) € X9

(311)1a | X¢. Thus A7 € 0 P X,

B+ +a

Show (3) for Aj. Suppose there is n € w such that v, > 3, B € E% [ X% for all

new ¥ln)eA) | X¥and A€ X)) [ [T]. Then by lemma 3.5.25, Fiiz, is %)

SUPpewYn
measurable. Since A € 30, | [T}, by sublemma 2.5.34, Fizy' (A) € 20, ., [ X*. Thus
Ap €X0,  nra | XY

Show (4) for Aj. Suppose A is o-algebra, closed under A-substitution. Suppose ¥ €
Iw,A),Be€ A X¥and A € A | [T]. Since A is o-algebra, by lemma 3.5.25, Flizy is
A-measurable. Since A is closed under A-substitution, Fiz;'(A) € A. Since ¥ € I'(w, A)

and B € A [ X¥, each A} € A | X“.
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Now, we consider the complexity of Ay. Recall longs(B) = {h € [T]| lh(h) > w}. Then

long>(B) € X4 [ [T].

([T\long2(B)) N \//1_/ € X0 1 [T] for a > 1.

g (1] ZallT]

Ag={f € X“\B|f € A} = Fizy" ([T]\longx(B)) N A).

Show (1) for Ay. Suppose B € Aj [ X and A € 33, | [T]. Then by lemma 3.5.25, Fix,

is AV

max{B,sup,e.,Yn}

0 w
measurable. By sublemma 2.5.34, Ay € Emax{ﬁ,supn@d’yn}Jra I X,
Show (2) for Ag. Suppose for all n € w, f > 7,, B € X} | X¥ and A € X), | [T]. Then
by lemma 3.5.25, Flizs is E%H-measurable. By sublemma 2.5.34, Ay € E?ﬂ+1)+a I X%,

Show (3) for Ag. Suppose there is n € w such that v, > 3, B € 2% I X and A €

¥o I [T]. Then by lemma 3.5.25, Fizy is 23, _

o _-measurable. By sublemma 2.5.34,

WY
Ay € EguPnEw'Yn-i-Oé [ X

Show (4) for Ag. Suppose A is o-algebra and closed under A-substitution, ¥ € I'(w, A), B €
Al X“and A € A | [T]. Then by lemma 3.5.25, Flizs is A measurable and ([T]\long(B)) N A €
A [ [T]. Since A is closed under A-substitution and ([T|\long(B))NA € A [ [T], Ag € A |

X¥. [l

We computed the complexity of each A} and Ay in lemma 3.5.26. Using lemma 3.5.11
and theorem 3.5.10, we obtain the determinacy results in theorems 3.5.22 and 3.5.23. First,

we consider T'reey collections over FFW F. Recall theorem 3.5.22.
Theorem 3.5.22. Suppose «, 3,7 € wy and o > 1. Then

Det(XY | X¥) = Det G (29; Trees (X, FWF* T'(w, AY), A} | X¥)).  (3.20)

max{3,7}+a
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Moreover, if B < =, then

Det(X0,, | X¥) = Det G (29; Treey (X, FWF T(w, A)), 55 | X¥)). (3.21)

If B > v, then
Det(Xlg11) 10 | X¥) = Det G (2); Treey (X, FWF, T(w, A), X5 | X¥)). (3.22)
_|

Proof of Theorem 3.5.22.
Fix a, 3,7 € wy such that a > 1.
Show the implication (3.20). Assume Det(X? I X¥). Pick an arbitrary Type 2

max{f,y}+a

tree

Ty, € Treey (X, FWF¥ T(w, A)), A} | X¥).

Then ¥ € I'(w,AY),B € A} | X¥ and Ty, = (T, |n € w) € FWF¥. Pick an arbitrary

Aex [T)\?fq] By lemma 3.5.26, since FWF C CWF, for each n € w and g € [T,,],

Ay, Ap € Eglax{ﬁﬁpra I X“. Since Ty, = (T, |n € w) € FWF*, for each n € w and for each
p € T,,, M} is finite. By lemma 3.5.11, each Ay € E?rlax{ﬁ,'y}+a I X¥. Thus

n 0 w
Unew AFU Ay € B0 cis11a | X2

Hence G(, ¢, Aj U Ap; X¢) is determined. By theorem 3.5.10, G(4; ngﬁq) is determined.

necw
Therefore, Det G (29; Treey (X, FWF*, T'(w, AY), A% | X¥)).

Similarly, for the implication (3.21), suppose 5 > 7. Pick an arbitrary Type 2 tree

Ty, € Treey (X, FWF¥ T (w, A)), 55 | X¥).
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Then ¥ € T (w,Ag), BeX}| XYand Ty = (T |n € w) € FWF“. By lemma 3.5.26,

for each n € w and g € [T,,], Ay, Ag € E( X*“. Since Ty, = (T In e w) € FWFY,

B+1)+a r

by lemma 3.5.11, each Aj € X! X%, Hence

(5+1)4+a | X“. Thus U

A UA@eEBH)Mr

new

G(Upew Af U Ag; X¥) is determined. By theorem 3.5.10, G(A; T XT " ) is determined. There-
fore, Det G (22; Treey (X, FWF“,I'(w, AY), %% | X¥)).

For the implication (3.22), suppose vy > 3. Pick an arbitrary Type 2 tree
Tyr, € Treey (X, FWF¥ T (w, A)), 55 | X¥).

Then ¥ € I' (w,A%), B€ X% | X* and T,, = (T, |n € w) € FWF¥. By lemma 3.5.26,
Y B q

for each n € w and g € [T;,], A7, Ap € XJ,, | X¥. Since Tyy = (T |n € w) € FWF¥,

Yt

by lemma 3.5.11, each Aj € XY

yHa

[ X Thus U, Aj U 4p € 39, [ X“. Hence

new Yt

G(Upew Af U Ap; X¥) is determined. By theorem 3.5.10, G(A; T)‘Igﬁq) is determined. There-

fore, Det G (X2; Trees (X, FWF*,I'(w, AY), X I X¥)). O
Now, we consider Trees collections over CW F'. Recall theorem 3.5.23.
Theorem 3.5.23. Suppose a, 3,y € wi. Then
Det(B | X¥) = Det G (Eg;Treeg (X, CWF* TI'w, Ag), A% [X“’)) . .

Proof of Theorem 3.5.23.
Fix a, 3,7 € wy. Assume Det(B | X). Pick arbitrary ¥ € T' (w, AY) , B e A | X, T, =
(ThIn€w) € CWF“ and A € 30 [[T\PB] By lemma 3.5.26, for all n € w and g € [T,],

each A7 € X9 and Ay € X0 plus 1 when o = 1). Since for each n € w and

max{8,7y}+« max{8,y}+a+1 (

for each p € T,,, M) is countable, by lemma 3.5.11, each Aj € B [ X*. Thus | J,,, AfUAp €

new

B | X“. Hence G(,¢, Aj U Ap; X¥) is determined. By theorem 3.5.10, G(A;T;’gq) is

new
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determined. Therefore, Det G (Zg;Treeg (X, CWF“ ' w, Ag), A% [X“’)). O
The following is a T'reey version of corollary 2.5.36 on page 181.
Corollary 3.5.27. Suppose A is a o-algebra and A is closed under A-substitution. Then
Det(A | X¥) = DetG (A;Trees (X, CWF* T'(w,A),A | X¥)). .

Proof.

Assume Det(A [ X¥). Pick an arbitrary Type 2 tree
T =Ty, € Treey (X,CWF T(w,A),A | X¥).

Then U € I'(w,A), B € A | X¥ and Ty, = (I,|n € w) € CWF¥. Pick an arbitrary
A€ AT [T]. Bylemma3.5.26, for alln € wand g € [T,,], each A} and Ap arein A | X“. Since
for each n € w and for each p € T,, M} is countable, by lemma 3.5.11, each Aj € A | X*.

Thus [ J,,e, AjUAp € A [ X, Hence G(, ¢, Aj UAp; X¥) is determined. By theorem 3.5.10,

new

G(A;T) is determined. Therefore, DetG (A; Trees (X, CWF¥ T'(w,A),A | X¥)). O
The following is a T'rees version of corollary 2.5.37 on page 182.

Corollary 3.5.28. (Corollary to Corollary 3.5.27)

Det(B | X¥) = Det G (B;Treey (X,CWF* I'(w,B),B [ X¥)). 4

Proof.
Since B is o-algebra and closed under Borel-substitution, by corollary 3.5.27, we have the

result. O
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3.5.4 Obtaining the determinacy of projective games on a T'rees
collection with CWF from the determinacy of projective
games on X%

In section 3.5.2, we focused on obtaining the determinacy of open games on a certain Trees
collection with CW F' from the determinacy of games on X <“. In section 3.5.3, we focused
on obtaining the determinacy of Borel games on a certain Trees collection with CW F' from
the determinacy of Borel games on X<“. In this section, we will generalize Borel games
on a T'reey collection to projective games on a particular T'reey collection. We will obtain
the determinacy of projective games on a certain Trees collection with CWF' from the
determinacy of projective games on X <¢. The idea is similar as in section 2.5.4. The main
theorem in this section is theorem 3.5.29.

The following is a T'rees version of theorem 2.5.38 on page 183.

Theorem 3.5.29. Suppose m € w. Let Ty = Treey (X, CWF* I'(w,B),B [ X¥). Then
Det(2,, | X¥) = Det G (2,,;7T3) -
Det(II,, | X¥) = Det G (IL}; T5) .
Det(A,, | X¥) = Det G (A,,;T3) .

Note that Al | X¥ is Borel if X is countable and if X is uncountable, it is the quasi-Borel.

_|

The idea of the proof is similar as in sections 3.5.2 and 3.5.3. We will use the same
definition of A", A} and Ay from section 3.5.1. We will find the complexity of each A7 and

Ay in lemma 3.5.30 using sublemma 2.5.40 on page 185. Then, by using lemma 3.5.11 and
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theorem 3.5.10, we will obtain the determinacy results in theorem 3.5.29. The proof of the
theorem is on page 324.

The following is a Type 2 tree version of lemma 2.5.39 on page 184.

Lemma 3.5.30. Fiz a Type 2 tree T = T)\I(I”fsq such that Ty, = (T,|n € w) € CWEF*“. Suppose

me w, Oéaﬂa’YEWb Ve F(W,B), BeB er
1. If Ae XL 1[T], then for any n € w and for any g € [T})], each Ap, Ag € Lo Xxe.
2. If A€ I} | [T], then for any n € w and for any g € [T,,], each Ay, Ap € Il xv.

3. If Ae Al | [T], then for any n € w and for any g € [T,], each Ay, Ay € Al ) Xw,

Proof.
The proof is similar to the proof of lemma 3.5.26. We will show the case for (1): A € X! | [T].
The proofs are similar for cases (2): A € IT}, | [T] and (3): A € AL | [T].

Suppose A € X1 | [T]. By lemma 3.5.25, Fiz, is Borel-measurable under ¥ € T' (w, B)
and B € B | X“. By sublemma 2.5.40, Fiz;' (A) € £ | X¥. Then

AL {fex |fge A} = Piy' (A)N¥" ()N B € =, | X¥.
—2 ~—

=1 pxw B X« BiXxw

Now, consider Ay. Recall Longy(B) = {h € [T|| Ih(h) > w}. Then Longy(B) € 3? | [T].

([T]\Long2(B))N \1/4/ exl 1[T).

(. J/
-~

g (7] 111

Thus

Ap={f € X*\B|f € A} = Fiz;' (([T]\Longs(B)) N A) € £L | X
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by sublemma 2.5.40.

Similarly, for the cases (2) and (3). O

We computed the complexity of each A} for all n € w and g € [T,], and Ay in lemma
3.5.30. Using lemma 3.5.11 and theorem 3.5.10, we obtain the determinacy results in theorem

3.5.29. Recall theorem 3.5.29.

Theorem 3.5.29. Suppose m € w. Let Ty = Trees (X, CWF* I'(w,B),B [ X¥). Then
Det(%,, | X¥) = Det G (2, T) -
Det(IT}, | X*) = Det G (I1,,; T) -
Det(A,, | X¥) = Det G (A,,;T3) .

Note that Ai | X% is Borel if X is countable and if X is uncountable, it is the quasi-Borel.

%

Proof of Theorem 3.5.29.
We will show the case for X! . The proofs are similar for cases IT} and Al .

Show Det(X! | X“) implies Det G (2} ;75). Assume Det(Z} | X¥). Pick an arbitrary
T = Tgﬁq €Ty Then Vel (w,B),BeB [ X¥and Ty, = (T),|n € w) € CWF“. Pick an
arbitrary A € X, [ [T]. By lemma 3.5.30, for all n € w and g € [T;,], each A} € X} | X
and Ay € X! | X“. Since for each n € w, for each p € Ty, M is countable, by lemma
3.5.11, each Aj € X [ X*. Thus J,, A5 U Ap € X}, [ X¥. Hence G(U, o, Aj U Ag; X¥)

new new

is determined. By theorem 3.5.10, G(A;T) is determined. Therefore, Det G (2} ;7). O
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3.5.5 Comment about a Type 2 tree T;g’fsq for 7T,, with not well-
founded trees or moves over an uncountable set

In sections 3.5.1 through 3.5.4, we obtained the determinacy of games on a certain Trees
collection with CW F' from the determinacy of games on X<¢“. The way we obtained the

determinacy results in these sections are using the fact that each T)‘I(j ’fs ,in the T'rees collection

having Ty, = (T|n € w) € CWF¥, ie.,
1. each T, is well-founded,
2. for every position p € T,,\[T,], the set of moves at p is countable.

Without these restrictions, we need to have the determinacy of games on X“ with higher
complexity, even just an open game on a Type 2 tree.

In section 3.5.5.1, we will observe particular examples of the case for a Treey collection
does not satisfy the condition (1). In section 3.5.5.2, we will observe particular examples of
the case for a T'rees collection does not satisfy the condition (2).

3.5.5.1 Without the well-foundedness, each move is from a countable set

Let’s consider the case Ty, = (T,,|n € w) with some T;, being ill-founded. Suppose T' _;?C,Ej , has

Ty, = (Th|n € w) such that
e T, contains trees that are not well-founded,
e for every n € w, T, has height < w,

e for every position p € T,\[T,,], the set of moves at p is countable.
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If T}, contains plays with finite length, add arbitrary moves after that to create a modified
tree T with all plays having length w. If all of the plays in T, have length w, then define
Ty = T,,. Define 70 = (T"*%|n € w). Then each open set in [T;f ,] has a corresponding

open set in [T;’ ’fmod] (the converse is false). Thus
»4Lsq

Det (2‘; B ]) = Det (E? r[T;ﬁq])‘

d
X, Tme

As a special case, suppose T)‘I(’%i: where Ty, = (T,|n € w), each T,, C w<* and there is
n € w such that T, contains a play with length w. Take T = w<“ for every n € w. Then

[T)‘fé;o 4 = XY x w®. Tt is well-known that

Det (37 | X¥) & Det (29 ] (X¥ x N)) 2!

Hence

Det (S} | X¥) « Det (29 TV ]).

X, Tmod

Thus

Det (S} | X*) = Det (2? r[ﬁ;ﬁj]) .

In general, suppose T)\?ﬁ: where Ty, = (T,|n € w), each T,, C w=<“* for some k € w.

Take T4 = w<“*. Then [T .q] = X x w* = X* x N'*. Since
»tsq

Det (2} ] X¥) & Det (29 1 (X¥ x N'M))

Det (3L | X*) < Det (z? H X ]).

X, Trod

21see outline of the proof for Fraker, 2001, pp.59-62, Corollary 5.3.
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Thus

Det (S} 1 X*) = Det (41 [T%75)]).

Therefore, we have the following. Suppose T = {T ‘T is a tree and T C w<«* }. Then for

any nonempty collection I' of functions from X% into w,
Det (%), | X¥) = G (X, Trees (X, T, T, X¥)) .

In particular, if T = {T ‘T is a tree and T C w<’ }, then we have the following.

Observation 3.5.31. Suppose T = {T ’T is a tree and T C w<+ }. Then for any nonempty

collection I' of functions from X* into w,

Det (P | X¥) = G (2], Tree, (X, Y, T, X¥)). -

3.5.5.2 Moves over an uncountable set, each T,, is well-founded

As we mentioned in section 2.5.5, if we have p € T,, such that the set of moves at p is uncount-
able, we will need a higher determinacy on games of X“, just to get an open determinacy of
simple Type 2 trees.

Suppose T;ﬁq has Ty, = (T,|n € w) such that

e every T, is well-founded,

e there exists a position p € T,,\[T;] such that the set of moves at p is uncountable.

Consider the special such case; every T, = N'=!, the tree of height 1 and each move is
f € N. Then each [T,,] = N. Thus for any ¥ from X* into w, [T;gﬁ:] = X“ x N. Since we
have
Det (2] | X¥) < Det (2] | (X¥ x N)),
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Det (1 1 X*) & Det (1 [T877]).
Suppose Ty, have every T,, = N'=* for some k € w. Then each [T;,] = N*. Thus for any
U from X“ into w, [T;I(/;f:] = X*“ x N'*. Since we have
Det (2} | X¥) & Det (29 | (X“ x %)),
Det (S| X¥) < Det (2? i [T%"”])
Fix k € w. Let’s take Ty, to be each T, = N'= for some ¢ < k. Then each [T,,] = N".

Create T = N'* by extending each play if i < k. Define 770 = (T7"*|n € w). Then for
any ¥ from X% into w, [T;";(:od] = X“ x N*. Since we have

Det (2} | X¥) < Det (29 | (X¥ x N7)),

Det (S} 1 X*) « Det (201 [T ).
Since

Det (B9 1 [T 7)) = Det (S0 1TX7 ).

we have

Det (4 1 X*) = Det (201|147 ]).
Let T = {N S <k } Then for any nonempty collection I' of functions from X* into w,

Det (), | X¥) = G (29, Trees (X, T, T, X¥)) .
In particular, if T = {NSi li € w }, we have the following.

Observation 3.5.32. Suppose T = {NSi li € w}. Then for any nonempty collection I" of
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functions from X“ into w, we have

Det (P | X¥) = G (2], Tree, (X, Y, T, X¥)).
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3.6 Determinacy equivalence between games on X =¥

and games on T'ree, collections

In sections 3.3 through 3.5, we observed the determinacy strength on games on Tree; col-
lections. In section 3.3, by shifting, we compared the determinacy of X (respectively, X.)
games on a particular Tree, collection and TIY (respectively, IT!) games on the same Tree,
collection, for o € w; and n € w. In section 3.4, we used the determinacy of a fixed complex-
ity of games on a certain Trees collection to obtain the determinacy of a certain complexity
of games on X <“. In section 3.5, we obtained the determinacy of Borel and projective games
on particular Tree, collections from the determinacy of a fixed complexity of games on X <.

In this section, we will combine results from section 3.3, section 3.4 and section 3.5.
Although results from section 2.4 and section 3.4 are slightly different, since results from
section 3.5 are similar to the results in section 2.5, we will have the similar results as section
2.6. The only difference is corollary 3.6.6. It is slightly different from corollary 2.6.6.

In section 3.6.1, we will obtain the determinacy equivalences between Borel games on
X <% and games on particular Treey collections.

In section 3.6.2, we will obtain the determinacy equivalences between projective games

on X<“ and games on particular T'rees collections.
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3.6.1 Determinacy equivalence between Borel games on X<“ and

games on 1'rees; collections

In this section, we will obtain the determinacy equivalences between Borel games on X <¥

and games on particular Tree; collections. We will obtain the similar results as section 2.6.

Corollary 3.6.6 is slightly different from corollary 2.6.6.

The following is a T'reey version of theorem 2.6.1 on page 197.

Theorem 3.6.1. The determinacy of following (3.23) through (3.28) are all equivalent to

Det (39 | X).

G (Z%;Trees (X, FWF?,I'(w, A}), A} | X¥))
G (2);Tree, (X, FWF? I(w, X)), A} | X¥))

G (0: Treey (X, FWF,T(w,II%), A? | X¥))

G (II); Trees (X, FWF“, T'(w, AY), A | X¥))
G (IIY; Treey (X, FWF*, T'(w, 27), A} | X¥))

G (T9; Treey (X, FWF* T (w, I19), AY | X¥))
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Theorem 3.6.3 says that if we let
T = Trees (X, FWF“ T'(w,A}), A} | X¥),
T = Treey (X, FWF“ T'(w,%}), A | X¥),
T = Trees (X, FWF*, T'(w,II7), A} | X¥),
then

Det G (£ 77) & Det (29 | X¥) & Det G (TI3; T35 )
forany : =1,2,3 and j = 1,2, 3.

Proof.
We obtain Det (3¢ | X¢) if and only if the determinacy of (3.23) by theorem 3.5.13 and
corollary 3.4.14.

(=) We obtain this from theorem 3.5.13.

(<) We obtain this from corollary 3.4.3.

By observation 3.2.13, (3.23), (3.24) and (3.25) are the same set. Similarly, (3.26), (3.27)
and (3.28) are the same set. The determinacy of (3.23) and the determinacy of (3.26) are
equivalent by theorem 3.3.8. Consequently, the determinacy of (3.23) through (3.28) are all

equivalent to Det (X{ | X¥). O
The following is a T'reey version of theorem 2.6.2 on page 198.

Theorem 3.6.2. Suppose f,v € wy and B > 7. Then the following (3.29) through (3.534)

are all equivalent to Det (A% i X“’).

G (X0 Treey (X, FWF* T'(w, A)), A} | X)) (3.29)
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G (X0 Trees (X, FWF* T'(w, %), A} | X)) (3.30)

G (0 Treey (X, FWF* T'(w,II0), A} | X¥)) (3.31)
G (I1Y; Treey (X, FWF* T'(w, AY), A} | X¥)) (3.32)
G (I1Y; Treey (X, FWF*, D(w, X9), A} | X¥)) (3.33)
G (I1Y; Treey (X, FWF*,I'(w,II), A} | X¥)) (3.34)

_|

Theorem 3.6.2 says that if we let
T, = Treey (X, FWF® T'(w,AY), A | X¥),
TS =Trees (X, FWF“ I'(w,X9), A} | X¥),
T, = Treey (X, FWF*,T'(w,I19), A} | X¥),
then

Det G (29;T;) < Det (A} | X¥) < Det G (II}; T3
forany : =1,2,3 and j = 1,2, 3.

Proof.
We obtain Det (A% | X¥) if and only if the determinacy of (3.29) by theorem 3.5.13 and
corollary 3.4.13.

(=) This is obtained from theorem 3.5.13.

(<) This is obtained from corollary 3.4.13.
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By observation 3.2.13, (3.29), (3.30) and (3.31) are the same sets. Similarly, (3.32), (3.33)

and (3.34) are the same sets. The determinacy of (3.29) and the determinacy of (3.32) are

equivalent by theorem 3.3.8.

The following is a T'rees version of theorem 2.6.3 on page 199.

]

Theorem 3.6.3. Suppose 5,7 € wy and 1 < B < . Then the determinacy of following

(3.85) through (3.52) are all equivalent to Det (AY | X*).
G (X0 Trees (X, FWF* T'(w, AY), 55 | X))
G (2};Treey (X, FWF* T'(w,%0),%% | X))

G (S9: Tree, (X, FWF*, D(w,11), =5 | X*))

G (T1%; Tree, (X, FWF*, T(w, AY), 5 | X¥))
G (I1}; Treey (X, FWVF? T (. 29). 5 [ X*))

G (T09; Trees (X, FWF*, T(w, TI%), 55 | X*))

G (X0 Treey (X, FWF* T'(w, AY),II3 | X¥))
G (X0 Treey (X, FWF“ I'(w,%0), 115 | X))

G (29: Trees (X, FWF*,T(w, TI%), T15 | X*))
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G (T19: Treey (X, FWF®,T(w, A9),TI} | X*))
G (I03; Treey (X, FIWF, T(w, 59), 11 | X¥))

G (IT}: Trees (X, FW P, D(e, TI), TT5 | X*))

G (3% Trees (X, FWF¥, D(w, A?), Al | X*))
G (S Tree, (X, FWF*,T(w, 59), A% | X¥))

g (2(1); Trees (X, FWF< T (w, Hg)’ A% f Xw))

G (I13; Treey (X, FWF,T'(w,AY), A} | X¥))
G (I1Y; Treey (X, FWF“,I'(w,X9), A} | X¥))

G (I0): Treey (X, FWF*,T(w,I19), A} | X*))

Theorem 3.6.3 says that if we let

TA® = Trees (X, FWF*, T(w, A), 5% [ X¥),

TE® = Treey (X, FWF*, T(w, 50), 5 | X¥),

T = Treey (X, FWF,T(w,112), % | X*).,
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TAT = Tyee, (X, FWF, T(w, A%), TI} | X¥),
T2 = Tree, (X, FWF* T'(w, 22)’ H% I Xw) ’

T = Trees (X, FWF*,T(w, T19), 11§ | X*),

TAR =Treey (X, FWF“ I(w,AY), A} | X¥),

T8 = Treey (X, FWF“,T'(w, %9), A} | X¥),

T4 =Treey (X, FWF* I(w,I19), A} | X¥),
then

Det G (21;7;7)  Det (A7 | X¥) < Det G (I} 73")
for any i, j,k,l € {A, %, II}.

Proof.
We obtain Det (Ag I X“’) if and only if the determinacy of (3.35) from theorem 3.5.13 and
corollary 3.4.14.

(=) We obtain this from theorem 3.5.13.

(<) We obtain this from corollary 3.4.14.

Similarly, we obtain Det (Ag I X “’) if and only if the determinacy of 3.41;
and Det (AY | X) if and only if the determinacy of 3.47.

By observation 3.2.13, (3.35), (3.36) and (3.37) are the same set. Similarly, (3.38), (3.39)
and (3.40) are the same set. The determinacy of (3.35) and the determinacy of (3.38) are
equivalent by theorem 3.3.8. Consequently, the determinacy of (3.35) through (3.40) are all
equivalent to Det (AY | X*).

By observation 3.2.13, (3.41), (3.42) and (3.43) are the same set. Similarly, (3.44), (3.45)
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and (3.46) are the same set. The determinacy of (3.41) and the determinacy of (3.44) are
equivalent by theorem 3.3.8. Consequently, the determinacy of (3.41) through (3.46) are all
equivalent to Det (A | X*).

By observation 3.2.13, (3.47), (3.48) and (3.49) are the same set. Similarly, (3.50), (3.51)
and (3.52) are the same set. The determinacy of (3.47) and the determinacy of (3.50) are
equivalent by theorem 3.3.8. Consequently, the determinacy of (3.47) through (3.52) are all

equivalent to Det (A9 | X+). O
The following is a T'reey version of corollary 2.6.4 on page 203.
Corollary 3.6.4. Suppose A is an algebra. Then for any nonempty ¥ C FWF,
Det(A | X¥) < Det G (E9; Trees (X, T, T(w, A),A | X¥)). .

Proof.
(=) We obtain this from corollary 3.5.17.

(<) We obtain this from corollary 3.4.13. O
The following is a T'rees version of corollary 2.6.5 on page 203.
Corollary 3.6.5. Suppose A is o-algebra. Then for any nonempty ¥ C CWF,
Det(A | X¥) < Det G (E9; Trees (X, T, T(w, A),A | X¥)). -

Proof.
(=) We obtain this from corollary 3.5.18.

(<) We obtain this from corollary 3.4.13. O
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The following corollary is slightly different from corollary 2.6.6. Since we have theorem
3.4.7, we can obtain the determinacy equivalence between Borel games over X<* and AY
games on certain Treey collections. The following is a Treey version of corollary 2.6.6 on

page 203.
Corollary 3.6.6. For any o, 3,7 € wy,

Det(B | X¥) < Det G (Ay;Treey (X, Y%, T'(w,C), B | X¥))
where:

e Y C CWF is closed under shifting trees*? and

1if {T% la €ew } C T, then A € {3,115, A), B},

2. if {To o €w } €T, then

¢

A=B, or

Ae {20 11° A% fora>1, or

\ A e {30 110} for o =1,
o Be {¥%,119,AY B},
o Ce{x0,1I9,A) B},
e at least one of A, B or C is B if {T2, la€w } € T. -

Proof.

Fix A, B and C as above. Let Ty = Trees (X, Y%, ['(w,C), B | X¥).

22Recall definition 3.3.7 on page 231 for the closure property under shifting trees.
*3Recall Yost tree Ty", for section 3.4.1.2 on page 242.
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(=) Corollary 3.6.5 gives

Det(B | X¥) = Det G (B;Trees (X,CWF“ T'(w,B),B | X¥)).

Under the condition for A, B and C,
G(A;T3) CG(B;Trees (X,CWF“ T'(w,B),B | X¥)).

Thus we have

Det(B | X¥) = G (A; Ts).

) Case 1: {T? [« €w } CT.

By corollary 3.4.10, for any ¥ € I'(w, C),
Det G (AY; Trees (X, T, ¥, X¥)) = Det(B | X¥).

Since

G (A); Trees (X, 19,0, X*)) CG (A T),
Det G (A;T2) = Det(B | X¥).

Case 2: {T% lacw } 7.
Then at least one of A, B or C is B.

Subcase 1 : A = B. We obtain
Det G (A;T2) = Det(B | X¥).

from observation 3.4.1.

Subcase 2 : B = B.
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If A; # IIY, by the choice of A, we have 39 | T3 C A; | T, we obtain
Det G (A;Tz) = Det(B | X*).

from corollary 3.4.13.

If Ay = TI1Y, since T is closed under shifting trees, by theorem 3.3.8,
Det G (H?;'B) < Det G (E?;’B) )

By corollary 3.4.13,

DetG (£1;T3) = Det(B | X¥).

Thus we have

Det G (I1{; T5) = Det(B | X*).
Subcase 3 : C = B. We obtain
Det G (A;Tz) = Det(B | X*).
from observation 3.4.1 from corollary 3.4.14. O

Since FWF' is closed under shifting trees and {Tg".‘t. la € wl} ¢ FWF, we obtain the

following from corollary 3.6.6.

Corollary 3.6.7. (Corollary to Corollary 3.6.6)

For any o, 8,7 € wy,
Det(B | X¥) < Det G (A; Treey (X, FWF“ T'(w,C),B | X¥))

where:
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A=B, or

® 3 Ac {0 TII°, A%} fora>1, or

A e {30 119} for a =1,
\

B e {x0,119, A%, B},

Ce {01 A% B},

at least one of A, B or C is B. =

Since CW F' is closed under shifting trees and {T;‘t. la €wy } € CWF, we obtain the

following from corollary 3.6.6.

Corollary 3.6.8. (Corollary to Corollary 3.6.6)

For any o, 5,7 € wy,
Det(B | X¥) < Det G (A;Treey (X, CWF* I'(w,C),B | X¥))
where:
o Ac {30 112, AY B},
e Be {EO,H%,A%,B},

e Ce {30,110, A% B, .
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3.6.2 Determinacy equivalence between projective games on X%
and games on T'ree, collections

In this section, we will obtain the determinacy equivalences between projective games on
X <% and games on particular Treey collections.

The following is a T'rees version of theorem 2.6.7 on page 206.

Theorem 3.6.9. Suppose n € w\{0}, 3,7 € w;.
For any nonempty T C CWF' such that Y s closed under shifting trees,
B e {X},11%, A% B} and C € {E?Y,Hg,Ag,B}, the determinacy of following (3.53) and

(3.54) are equivalent to Det(X! [ X*).
G (=) Trees (X, Y9, T'(w,C), B | X¥)) (3.53)

G (IT,; Trees (X, T, T'(w,C), B | X¥)) (3.54)

For any nonempty T C CWF' such that Y is closed under shifting trees,
B e {4,113, A% B} and C € {39,113, AY, B}, the determinacy of following (8.55) is

equivalent to Det(Al | X+).

G (A;Trees (X, Y, I(w,C),B | X¥)) (3.55)

Proof.

We obtain

1. Det(X! | X¥) if and only if the determinacy of (3.53),
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2. Det(X] | X¥) if and only if the determinacy of (3.54),

3. Det(Al | X¥) if and only if the determinacy of (3.55).

(=) Let To = Trees (X, Y, I'(w,B),B [ X*). By theorem 3.5.29,
Det(Z), | X¥) = Det G (2 T2) -

Det(A), | X¥) = Det G (A};T3) .

By theorem 3.3.8, since T is closed under shifting trees,
Det G (2);Tz) < Det G (I1; T5) .

Thus we have

Det(X,), | X¥) = Det G (IT; T3) -
By observation 3.2.7, for any B € {EO,H%, A%,B} and C € {Eg,l’[g, Ag,B},
Treey (X, Y% I'(w,C),B | X¥) C Ts.

Thus, we have (=) of (1) through (3).

(<) By corollary 3.4.2,
Det G (2,;Trees (X, T, T'(w, AY), A} | X¥)) = Det (2, | X¥).
By observation 3.2.7, for any B € {39, 13, A B} and C € {X9,1I9, AY, B},
Trees (X, T (w, A%, A | X“) C Trees (X, Y¥ T'(w,C),B | X¥).

Thus, we have (<) of (1) through (3).
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The following is a T'reey version of corollary 2.6.8 on page 207.

Corollary 3.6.10. Suppose A is o-algebra and closed under A-substitution. Then for any

nonempty ¥ C CWF,

Det(A | X¥) < DetG (A;Treey (X, Y, I'(w,A), A | X¥)). -

Proof.

(=) By corollary 3.5.27,

Det(A | X¥) = Det G (A;Treey (X,CWF* T'(w,A),A | X)).

Since G (A; Trees (X, T¥ T'(w, A),A | X¥)) C G (A;Trees (X,CWF¥ T'(w,A),A | X¥)), for

any T C CWF,

Det(A | X¥) = Det G (\;Trees (X, T, I'(w,A),A | X¥)).

(<) Since B € A [ X¥, by observation 3.4.1, we have the result. O
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3.7 (Generalization of a Type 2 tree

As in section 2.7.1, we can generalize Type 2 trees into a-Type 2 trees. Instead fixing the
first part as X, we can take X* for any limit ordinal «. The following is the generalization

of a Type 2 tree, named an a-Type 2 tree.

Definition 3.7.1. (Definition of an «-Type 1 tree)
Suppose « is a limit ordinal. Suppose X is a nonempty set, V is a function from X< into

w, B is a subsets of X* and Ty = (T, |n € w) where each T, is a tree. Define [aT;’iq] by :

he Xe ifhladB,
he 7| ©
he X*x [T\I/(h[a)} th fO./GB.

Thus a Type 2 tree is an w-Type 2 tree. Notice that we can obtain the similar results for

a-Type 2 trees.
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Chapter 4

Definitions of Type 3, Type 4, Type 5

trees and future questions

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam
nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper,
felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede.
Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in
sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique
neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo.
Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent
lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet
ipsum. Nunc quis urna dictum turpis accumsan semper.

In this dissertation, we only consider Type 1 and Type 2 trees. In chapter 2, we defined
a Type 1 tree and T'ree; collections, collections of Type 1 trees. We also observed the

determinacy strength of games on T'ree; collections by comparing the determinacy of games
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on X <. In chapter 3, we defined a Type 2 tree and Tree, collections, collections of Type 2
trees. We also observed the determinacy strength of games on T'rees collections by comparing
the determinacy of games on X <%,

In this section, we will define a Type 3, Type 4 and Type 5 trees. In section 4.1, as a
generalization of a Type 2 tree, we will define a Type 3 tree. Type 3 trees are defined only
when the tree satisfies a certain property In section 4.2, we modify a Type 3 tree and define
a Type 4 tree. Unlike Type 3 trees, Type 4 trees are always defied. In section 4.3, we define
a Type 5 tree. For Type 3, Type 4 and Type 5 trees, we don’t have determinacy results. We

shall leave this to readers as future questions.
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4.1 Definition of a Type 3 tree

In this section, as a generalization of a Type 2 tree, we will define a Type 3 tree. In a Type
2 tree, we used ¥ to decide the tail tree. For a Type 3 tree, we will fix a continuous function
® from X¥ into w*. ® maps the first omega moves f into a sequence g in w*. Then each
component of g will create a tree T by using a bijection 7 from w into w<*. 7 takes g(i)
into a finite sequence h; € w=*. Thus Ty = {hy|i € w}. If T) is a well-founded tree, we
define a Type 3 tree. Otherwise, Type 3 is undefined. Note that we includes empty trees

here. In theorem 4.2.1, we will observe that some of Type 2 trees are Type 3 trees.

Definition 4.1.1. Fiz a continuous function ® from X* into w*. Fix a bijection © from w

into w<¥. For each f € X¥, define

a(r) = A7 (®(f) (n)n € w}.

Then 77, C w<*.

(f)
Definition 4.1.2. (Definition of a Type 3 tree)
Fix a continuous function ® from X% into w®. Fix a bijection 7 from w into w<*. If for all

f e XY, every Tg(f) is a well-founded tree, then we define a Type 3 tree T®™ by

[Tf’”] = | W x[15,).

fexe -
Theorem 4.1.3. Let T = {wS” In € w}. Then every Type 2 tree in
Trees( X, T T'(w, AY), IIY | X¥)

15 a Type 3 tree. 4
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Proof.
Pick an arbitrary Type 2 tree T)\I(j”iq € Trees(X, Y%, I'(w, A}), ITY | X¥). Pick an arbitrary
bijection 7 from w into w<¥. Since 7 is a bijection, 771()) € w. Define sy € w* to be the

sequence with every component 7= *(f)). Then

T, =A{r (so(m)) Im € w} = {m (=7 (0)) } = {0}

We will define a continuous function ® from X into w”. Since Ty, = (T,|n € w) € T¥, each
T,, is well-founded. We decompose each T,, to find the set of natural numbers N,, such that
T, = {m(i)|i € N,,}. Since 7 is a bijection, each N,, is uniquely defined from 7;,. Since |T,,|
is countable and 7 is a bijection, N,, is countable. Thus we can order N, as an w-sequence.

Fix such a sequence s" € w* for each T,,. Then we have

T% = {x(s" (m)) |m € w} = {r (i) ]|i € N, } = Ty,

Define
b XY —> ¥
sYU) if f e B,
f—
Sp iffgéB.

Recall that W is a function from X* into w fixed by T)\g’iq. Thus there are w many s¥()’s.

w

Show @ is a continuous function. Pick an arbitrary O € 3¢ | w”. Then there exists

(pi]i € w) such that each p; € w<¥ and O = |J O; where each O; = {h € w*|h D p; }. Let
€W

M, ={m e wls™ D p,;} for each i € w. Then
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(
U \Il_l (m) if Di ,zq S0,
meM,, ="
-1 -1 w = AdXw
O (0)=d  {hew|hDp}= !
U ¥ (m)uX\B) if pi € so.
meMp,
L &pi AlXw B0 1xw

Hence @71 (0;) € ¢ | X¥ and thus 71 (0) € X% | X% . Therefore ® is a continuous
function.

Under this ®, we have

Notice that if we raise the complexity of B’s, we need to raise the complexity of ®’s.

Question 14. What is the relation between Type 2 trees and Type 3 trees? 4
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4.2 Definition of a Type 4 tree

In section 4.1, we define a Type 3 tree. In this section, we will modify the definition of a
Type 3 tree to define a Type 4 tree. Unlike Type 3 trees, Type 4 trees are always defined.

First, recall definition 4.1.1.

Definition 4.1.1. Fiz a continuous function ® from X*“ into w*. Fix a bijection ® from w

into w<¥. For each f € X“, define

Ty = {m (@ (f) (n))[n € w}.

Definition 4.2.1. (Definition of a Type 4 tree)
Suppose ® is a continuous function from X into w* and 7 is a bijection from w to w<Y.

Define

he [Tfﬂr] &£ h e X“ x [Tg(hm} if Tg (18 well-founded,
h e X“ otherwise.

It is easy to see that every Type 3 tree is a Type 4 tree.
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4.3 Definition of a Type 5 tree

In section 4.1, we defined a Type 3 tree. In section 4.2, we defined a Type 4 tree by modifying
the definition of a Type 3 tree. In this section, we will define a Type 5 tree. This tree is
different from Type 3 and Type 4 trees. Type 5 trees are generalization of Type 2 trees for

countable X.

Definition 4.3.1. (Definition of a Type 5 tree)
Assume X is countable. Suppose (T, |a € 2¥) to be such that each T, is well-founded (T,

could be the empty tree). Suppose (fo|o € 2¥) is an enumeration of X“. Define a Type 5

(falac2)
tree T(Ta|aezw> by
fola€2¥
i) = U et x [T). .
ae2w
Observation 4.3.2. Every Type 2 tree T)\I;ﬁq with countable X s a Type 5 tree. -
Proof.

Pick an arbitrary Type 2 tree T)\?ﬁ , With countable X. Suppose (f, | € 2¥) is an enumer-

ation of X*“. For each o € 2¥; define

{0} if fo ¢ B,

T\I;(fa) if fa € B.
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Then

he X ifhlwée B,
ne |17 |«
h e X¥ x [jh“hmn} if h rCU € B.

h e {fa} x {0} ifhlwé B,
<> Jda € 2 such that h [ w = f, and

h e {fa} x [Tuy,)] ifhweB.

ehe | {fa) (1)

ag2w

oS he [T<fa\a€2‘“>] _

(To|ae2w)

U B folag2w
Thus Ty, = T<<Ta “a@w;. O

Observation 4.3.3. There is a Type 5 tree with countable X which is not a Type 2 tree.

Proof.
Fix a countable X. Let W F'(w) be the set of all well-founded trees on w. Show |W F(w)| = 2¥.

Show |WF(w)| < 2¢.

(WEW)| < lp @™ = |p ()] =2

Show |W F(w)| > 2.

Va € 2¢, define [T,] = {(n,a(n)) In € w}. Then each T, € WF(w) and for all a, 5 € 2¢
such that o # 3, T,, # T so that there are 2 many distinct 7gs.

Thus we have

W F(w)| = 2¢.

Hence there are 2* many distinct well-founded trees on w. Let (T, | € 2¥) be an enumer-
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ation of W F(w) excluding the empty tree. Consider a Type 5 tree T g:“gg: >> Show that

T<fa|a€2w>

(Talac2e ) is not a Type 2 tree.

Suppose, for a contradiction, there exists a Type 2 tree T)\g’i \ such that T)\I(j”z]?s , =

Tg:"gg:;. Let Ty, = (T"|n € w). Fix o € 2¢ such that for all n € w, T, # T™.

Case 1: f, ¢ B.
Then f, € [T)‘I(’ﬁq]\ [ngzg;: ;} since every T, is not the empty tree. Thus T)\I(’”ﬁ . 7
(fala€2v)
(Talag2w) -
Case 2 : f, € B.

(fa|ac2e

By the definition of T<Ta|a€2w>> , for all g € w<v,

forge |THRED) & g€ 1)
Since for all n € w, T, # 1",

(TN [T U ([T (T]) # 0.

Assume g € ([T,]\ [TYU=)]). Then f, g € [Tg:‘lzg:;] \ [T;’ﬁq]. This is a contradiction.
Hence g € ([T"V~)]\[T.]). Then f,"g € [T)‘I(I,’qj?sq} \ [T<f“‘a€2w>] This is a contradiction.

(Ta|a€2+)

Therefore, T)\?’fs , ngﬂzg;: >> )

Hence T gz"gg;: >> is not a Type 2 tree. m

The following is a question throughout this chapter.

Question 15. What are the determinacy strength of games on Type 3, Type 4 and type 5

trees? —
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Appendix A

Big picture

In this section, we draw a picture of some of the determinacy results proved in this disser-
tation. The symbols —, <— and <+ are used to compare the determinacy strength of each

collection. For example,

illustrates that det(A) <> det(B), det(A) <> det(C') and det(A) <> det(D). Similarly,

\

B

C A

D

Vs

illustrates that det(A) <> det(B), det(A) <> det(C) and det(A) <> det(D). The symbols

shown in Figure A.0.1 is listed on pages 357 and 358.
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Type 1 Type 2

oG (=, 7M) (12)

0 Cn+1 (1) 0 Cn+1 (11) 1 w (g) 0 Cn+1 (a) 0 Cn+1
g(Hh,Tl ) < g(2177—1 )% AnJrer Hg(z:177—2 ) < g(H177—2 )
(1) 9(2(1)77-1'/\/’0”71) (a)
g(Itl, TCB) <> G(=L, TOP) (9 G(=L, TCP) | <= gk, TCP)
G, TE0) | <7 G i) | 0N gt | ool ] 95 TEM) <> (G, TE07)
g, 7770 | <= gz, TP gL, 770 <= gml, 1P
gL, 777" | <= g(=L, ) gL T <= gml, )
G(B,TP) G(B,TFP)

g(B,777") g(B, 75 7")
¢(B, 777 ¢B, 7,777
C~B (8) (e) B
@ BTy eBIX<—— 6B, T,
GIY, TCP) | <= | G(=9, T,¢P) G329, 7FP) | <= g, T8
¢, 77F) | <= (29, T7P) G(x%, 7,77) <= g, 7,77)
G, TP | <= g(=0, T,EPP) Gz, PP <= gm0, 7,777
G(x0, T <= gml, T
- (1) B (7 28} I X* g(A(l)vlTQq)
G(IT,, TiV) 0 <= 2G(2), T7) & =
G(IY, V) 8 <= ¢G(29, )
Y AO,TC1
PR 0, ke
necw
1 a
g(Hi)’TFQSl) & g(z(f’TFZSl) g(z?’TFZS'l) & g( 7‘2F2S1)
g(HO TF2P1) % Q(E?,TFZIH) (4) (d) (2177~F2P1) H g( 07~2F2P1)
g( OTFZDl) % Q(E?,TFZDl) w/ 2(1),TF2D1) H g( OTFZDl)
G (9, T7F22) | <> | G (S0, T22) / \ G (S0, 72) | <> G (I, T%2)
g(H(l)’leFlQ) % g(EO TF12 Z(IJ’TFH) H g(H(1)77—2F12)
1 b a
g(H?,ﬂFl)"&‘ g (2(1)77—F1) : 20 er ( ) Q(E(IJ,EFWFl)“ & “g (H(1)77—2FWF1)

n,i,j €w, a,B,y €wi, Symbols are listed on the next page.

(1) theorem 2.3.1, (2) theorem 2.6.1, (3) theorem 2.6.2, (4) theorem 2.6.3, (5) corollary 2.4.17,
(6) theorem 2.5.20, (7) theorem 2.5.30, (8) corollary 2.6.6, (9) theorem 2.6.7,

(10) comment above observation 2.5.45, (11) corollary 2.6.5, (12) observation 2.5.45,

(a) corollary 3.3.11, (b) theorem 3.6.3, (c) theorem 3.6.2, (d) theorem 3.6.3, (e) corollary 3.6.8,
(f) theorem 3.6.9, (g) corollary 3.6.5.

Figure A.0.1: Tllustration of the determinacy equivalences between well-known results and
some of the results in this dissertation.
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Symbols shown in the Figure A.0.1 under Type 1:

T = Tree, (X, FIN,T(w, A?), A? | X¥)
T2 = Tree, (X, FIN,T(w, AY), AY | X¥)
12 = Tree, (X, FIN,T(w, AY), AY | X¥)

TP = Treey (X, FIN,T(w, AY), A} | X¥)
7—1F2SI = Tree; (X’ FIN,T'(w, Ag), 2(1) wa)
TF2PY = Tree, (X, FIN,T(w, AY),TI0 | X*)

TE' = Tree, (X, CTB,T(w, AY), A | X¥)

Tlcij =Tree; (X, CTB,T(w, A?)’ 2?’ | Xw)
T.EPP = Tree, (X,CTB,T(w,B), 5 | X*)
7~1€'yB _ TT’€€1 (X, OTB, F(W, Ag), B r Xw)
TCWﬁ = Tree; X; CTB7F W, AO ’20 r X*

) a B
TCE = Tree, (X,CTB,T(w,B), B | X*)

7’1'/\/’70"*1 = Treel (X,N, Cn—lan)

7~1N1 = Tree; (X,N,F(W;A?)vA? er)
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Symbols shown in the Figure A.0.1 under Type 2:

T = Treey (X, FWF*,T(w, A), A | X¥)
TE2 = Treey (X, FWF,D(w, AS), AY | X¥)
T2 = Treey (X, FWF*,T'(w, AY), A | X¥)

TP = Treey (X, FWF¥,T(w, AY), A9 | X*)
T2 = Tree, (X, FWF T(w, A), 29 | X*)
TP = Tree, (X, FWF*,T(w, AY),II7 | Xw)

Tt = Tree, (X, CWEF“ T(w, A}), A [Xw>
TEY = Tree, (X,CWF“ T(w,A}), X7 | X¥)
TP = Tree, (X, CWF¥,T(w, B), =% | X¥)
TP = Tree, (X, CWF*,T(w,A%),B | X¥)
7'207’3 = Treey (X, CWF* T(w,A?), 2% er)
TCE = Treey (X, CWF® I'(w,B),B | X¥)

7-20n+1 = Tree, (X, CWF‘*” F(w7 A,lﬁ_l)a A}ﬁ.l f X"")
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Appendix B

List of Symbols

The following symbols are specific to this dissertation.

B.1 Letters with special meanings

FIN : the collection of nonempty finitesets . . . . . . . . . . . . . . . ... . 4
CTB : the collection of nonempty countablesets . . . . . . . . . . . ... ... 4
WF' : the set of nonempty well-founded trees . . . . . . . . . . . . . . . . . .. 44

FWF : the set of nonempty well-founded trees with each move is from some finite set - - 44

CWF : the set of nonempty well founded trees with each move is from some countable

] O 2
X :anonemptyset . . . . . . . . .. L Lo AT 214
Y i anonempty set . . . . . . . L L L L Lo Lo LAY
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B:

v

Ty :

O :

(11

a subset of X% .

a function from X% into w .

an w-sequence of nonempty trees

a nonempty collection of nonempty sets .

: a nonempty collection of functions from X“ into w .

: a nonempty collection of subsets of X*

: anonempty collection of nonempty trees .

. complexity, e.g., X9, 39, ... .

47,214

47, 214

214

50

50, 219

50, 219

. 219

52, 223

B.2 Symbols related to Type 1 and Type 2 trees

B.2.1 Symbols related to Type 1 trees

T)\?”f : aType 1 tree

Tree (X,0,IA) :

G(Z,7T1) : = games on a Tree; collection T; = Tree; (X, 0, A)

Det G(Z,7T1) : = determinacy on a Tree; collection T; = Tree; (X, 0, A)
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47

50

52
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B.2.2 Symbols related to Type 2 trees

T)\I{/}ﬁq caType2tree . . . L Lo oL L L L L L 214
Trees (X, Y ', A) : aTrees collection, a collection of Type 2 trees . . . . . . . . . 220
G(Z,72) : = games on a Treey collection To = Treeo( X, Y, I'VA) . . . . . . . .. 223
Det G(Z,7T;) : E determinacy on a T'rees collection Ty = Trees( X, Y¥, I'VA) . . . . . 223

B.3 Other notations

(AAE)[[T) ={A3BEA[[T)AC €S [T)(A=BNC)} . . . . . . . . . .. 13
(AVE)[[T] ={A3BEA[[T)AC €S [ [T](A=BUC)} . . . . . . . . . .. 13
oM [T ={AC[TTINAEA}Y . . . . . 43
AN T =A TN (coN) [[T] . - oo 43
T(Y,A) ={U:X¥ =Y |Uis A-measurable} . . . . . . . . . . . . . . . ... 43
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Appendix C

Definition of Trees

In this dissertation, we only consider Type 1 and Type 2 trees. For Type 3, Type 4 and

Type 5 trees, we don’t have results. We will list those trees. See more details in chapter 4.

C.1 Type 1 tree: T)‘?’f

Definition 2.1.2. (Definition of a Type 1 tree)

Suppose X and 'Y are nonempty sets. Let B be a subset of X“ and let ¥ be a function from
X into w. For any h € X x Y<¥, define [T)\I(Jf] by :

h e Xv ifh|wé¢ B,

he i)
he X¥x YYhaOtl ifh 1w e B.

A tree T is a Type 1 tree if and only if T = ng;{f for some nonempty sets X and Y, a
function U from X* into w and a subset B of X“. (Possibly X =Y and also B could be the

empty set.) =
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Definition 2.7.1. (Definition of an «-Type 1 tree)
Suppose « is a limit ordinal. Suppose X andY are nonempty sets. Let B be a subset of X

and let W be a function from X into w. For any h € X* X Y<¥ define [QT;’;?] by :

he Xxe ifh[adB,

heX*xYYhrlatl yfp 1o e B.

C.2 Type 2 tree : T)‘?’ﬁq

Definition 3.1.2. (Definition of a Type 2 tree)
Suppose X is a nonempty set, ¥ is a function from X“ into w, B is a subsets of X* and

Tsy = (T}, In € w) where each T), is a tree. Define [T)\I(/”f;] by :

v B h e X¥ ifh lwé B,
e |17 |«

he X% x [T\p(h[w)} ’th [(JJ € B.
A tree T is a Type 2 tree if and only if T = T)\I(/”iq for some nonempty set X, a function ¥

from X¥ into w, a subset B of X“and some Ts, = (T, |n € w), where each T,, is a nonempty

tree. =

Definition 3.7.1. (Definition of an a-Type 1 tree)

Suppose « is a limit ordinal. Suppose X is a nonempty set, ¥ is a function from X into

w, B is a subsets of X* and Ty, = (T, |n € w) where each T), is a tree. Define [QT§7’£q] by :

heXx® ifh|a¢B,
he lTir] ’
h € X*x [Tyna)] ifh|a€B.
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C.3 Type 3 tree : Tf’”

Definition 4.1.2. (Definition of a Type 3 tree)
Fiz a continuous function ® from X% into w*. Fiz a bijection w from w into w<*. If for all

f e X¥, every Tg(f) is a well-founded tree, then we define a Type 3 tree T®™ by

[Tf’”] = |J (5 = [T5,).

fexw -

C.4 Type 4 tree: T,

Definition 4.2.1. (Definition of a Type 4 tree)
Suppose @ is a continuous function from X¢ into w¥ and 7 is a bijection from w to w<Y.

Define

he [Tfﬂr] & h e X¥ x [Tg(h(w)} if Tg(hm) is well-founded,
h e X% otherwise.

o|ae2v
C.5 Type 5 tree : Tga\'a;w))

Definition 4.3.1. (Definition of a Type 5 tree)
Assume X is countable. Suppose (T, |a € 2¥) to be such that each T, is well-founded (T,

could be the empty tree). Suppose (fo | € 2¥) is an enumeration of X“. Define a Type 5
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o|ae2v
tree Tga'la;w; by

TR = U el < L), ]

age2w

C.6 Yost tree T3,

Definition C.6.1. (Definition of a Yost tree Tg,)(See more details in Yost, n.d.)

[0

For each limit ordinal o € wy, the Yost tree T, is constructed by the following manner:

g

1. Fix a limit ordinal o € wy and fix an a’s decomposition as below.
2. Each play in Ty, is finite and moves from w (a finite sequence from w).

3. The length of a play is determined by a certain player I’s move depending on the

decomposition.

Fix a decomposition of o as follows and construct an ordinal o decomposition tree H,,.
1. Fiz (o, +2n1 + 1|ny € w) such that

® sup,, c, (o, +2n1 +1) = a,

o cach o, 1s a limit ordinal.

2. Repeat this for each o, i.e.,

fix (g gy + 209 + 1|0y € w) such that

o Supngew (an1,n2 + 2“2 + 1) - Oén17

o cach oy, n, 15 a limit ordinal.

3. Repeat this for each cu,, n,, ... until we get down to cuyy py,..m, , = w for somel—1¢€ w.

1—
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.......... - —|—2nl—|—1) = W.

Define the ordinal o decomposition tree H, to be such that [H,| consists of such sequences

(n1,m2,...,m). We define the Yost tree g € [T, ] if and only if
1. each move of g is from w,

2. there is a sequence (ny,na,...,ny) € [Hy| such that

i 9(0) = N1,

°g (ZJ: (2n; + 2)) = Njt1,

i=1
l
o lh(g) =) (2n; +2). -

i=1
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Appendix D

Well-known Determinacy Results

D.1 Determinacy results from ZFC

Theorem 1.4.2. (Gale and Stewart, 1953)

Suppose T is a tree. If T is well-founded, then for any A C [T], G(A;T) is determined.

Theorem 1.4.3. (AC)(Gale and Stewart, 1953)(as cited in Moschovakis, 2009, p. 222,
6A.6)

There exists A C w* such that G(A;w<¥) is not determined. -

Theorem 1.4.6. (Gale and Stewart, 1953)

Suppose T = X< for some nonempty X. Then Det(XY | [T]) and Det(I1Y | [T}). -

Theorem 1.4.7. (Wolfe, 1955)

Suppose T = X< for some nonempty X. Then Det(X5 | [T]). -

Theorem 1.4.8. (Martin, 1975; Martin, 1990)
Suppose T'= X< for some nonempty X. Then Det(B | [T]). =
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Theorem 1.4.9. (Martin, 1990)

Suppose T'= X< for some nonempty X. Then Det(qB | [T]). -

D.2 Results related to the existence of measurable car-

dinals

Theorem 1.4.12. (Martin, 1970)

If there is a measurable cardinal, then Det(II7 | w®). —

Theorem 1.4.13. (Martin, 1970)(as cited in Martin, 2017 draft, p.187, Theorem 4.1.6)
Let T be a game tree. Assume there is a measurable cardinal larger than |T|. Then Det(IT} |
7). a
Theorem 1.4.14. (Martin, 1990, p. 287, Theorem 3)

If there is a measurable cardinal, then Det(w*II} | w*). -

Theorem 1.4.15. (Martin, 1990, p. 292, Theorem 4)

If there is a measurable cardinal, then Det A((w? + 1)-T1] | w*). =

Theorem 1.4.16. (Martin, 2017 draft, p.241, Chapter 5 Theorem 5.2.532)
Let e be a countable ordinal and T = X <¥. If the class of measurable cardinals greater than

|T| has order type > «, then Det A((w? - o+ 1)-I1} | [T]). =

Theorem 1.4.17. (Simms 1979 ')
Let T = X<%. If there is a measurable limit of measurable cardinals that is larger than |T|,

then Det(X9(I1}) | [T]). -

las cited in Martin (2017 draft, p. 281, Chapter 5 Theorem 5.4.5).
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D.3 Projective determinacy

Theorem 1.4.22. (Martin and Steel, 1985)
Forn € w, if there exist n Woodin cardinals with a measurable cardinal above them, then

Det(I1},

i1 T w?). —|

Theorem 1.4.23. (Martin and Steel, 1985)

Suppose there are infinitely many Woodin cardinals. Then Det(P | w®). -

D.4 Lightface results related to the existence of 07

Theorem 1.4.27. (Martin, 1970; Martin, 2017 draft, p.2.9, Theorem 4.4.3)

If 0% exists, then Det(I1} | w®). =

Theorem 1.4.28. (Friedman, 1971 ?)

If 0% emists, then Det(3-I1} | w*). =

Theorem 1.4.29. (Martin, early 1970’s 3)

If 0% exists, then Det(Use,e BT [ w®). =

Theorem 1.4.30. (Martin, 1975)

Det(3-11} | w®) implies 0% exists. =

Theorem 1.4.31. (Harrington, 1978 )

Det(I1] | w®) implies 0% exists. =

Zas cited in DuBose (1990, p. 504).
3as cited in DuBose (1990, p. 512).
4as cited in DuBose (1990, p. 512); Martin (2017 draft, p. 209).
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Theorem 1.4.32. (Martin and Harrington)

Det(IT} | w¥) if and only if 0% exists if and only if Det(Use,2 B-111 | w®).
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Appendix E

Definitions and Notations

The following are lists of definitions and notations specific to this dissertation.

E.1 Chapter 1

Notation 1.3.1. (Definition of a complezity)

In this dissertation, whenever we mention a “complexity” in chapters 2 and 3, we mean
the complexities defined in this section, i.e., Borel, projective and difference hierarchy, un-
less specified. More precisely, the definition of a complexity in this dissertation is the fol-
lowing: Suppose we have = such that for each tree T, = | [T] C o ([T]) is defined (e.g.,
30 M0 3L TIL ). Then we say = is a complexity. -
Notation 1.5.3. (Abuse of product notation)

Suppose T, Ty, Ty are trees and satisfies the following properties.
1. every path of [T1] has length « for a fized a,

2. for any (f,g) € [I\] x [T2], f~g € [T] and
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3. for any h € [T], (h | a, h | [, lh(R))) € [T1] x [T3].

Then to simplify notation, we abuse the cross product notation and express

[T] =[] x [T2].

Caution :
We will use the actual cross product in some places. Readers should identify them from

the context. -

Notation 1.5.4. (Abuse of inverse image notation)
Suppose f is a function from A to B. If b € B is a singleton, we suppress {} for f~1({b}),

i.e., we write f~1(b) to mean f~1({b}). =
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E.2 Chapter 2

Definition 2.1.2. (Definition of a Type 1 tree)
Suppose X and 'Y are nonempty sets. Let B be a subset of X“ and let ¥ be a function from

XY into w. For any h € X¥ x Y<¥, define [T)\I(/f] by :

he XY if h | wé¢ B,
he i)
he XY x YYratl ifph 1w e B.

A tree T is a Type 1 tree if and only if T = T)\I(’:{f for some nonempty sets X and Y, a
function ¥ from X* into w and a subset B of X“. (Possibly X =Y and also B could be the

empty set.) =

Definition 2.1.3. (Definition of the (X,Y)-TEP-[w,w + w) property)
Suppose X and Y are nonempty sets. Let T be a tree. T satisfies (X,Y)-TEP-|w,w + w)

property if for all y € [T, y satisfies the following four properties:
1. ylwe X¥.
2. lh(y) € w,w+w).
3. If lh (y) > w, then each move of the tail of h is from Y.
4. If lh (y) > w, then there ezists a unique n € w\ {0} such that

VgeY" (ylw) gelT] (tail exchange property) 4

Definition 2.2.2. (Definition of a Treey collection)

Fiz a nonempty set X. Let © # 0 be any collection of nonempty sets. Suppose A # 0 is any
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collection of subsets of X¥ and T" # () is a collection of functions from X% to w. Define
Tree, (X,0,T,A) = {T;E;f Y €0,0el,Be A} .

A collection is a Treey collection if and only if it is Tree; (X, 0,1, A) for some nonempty
set X, a nonempty collection © of Y’s, a nonempty collection I' of functions from X% into
w and a nonempty collection A of subsets of X“.

We sometimes let Ty be a Treey collection when we wish to suppress X,0,1" and A, i.e.,

Ti =Tree; (X,0,T,A). .

Notation 2.2.3. When dealing with singletons for any of the last three components of
Treey (X,0,T,A), we will suppress {}, i.e., if © is a singleton {Y'}, Treey (X,Y,T',A) abbre-
viates Treey (X, {Y'},I,A). Similarly, if I is a singleton {f}, Tree, (X, 0, f,A) abbreviates
Tree; (X,0,{f}.,N)and if A is a singleton {B}, Tree; (X,0,1', B) abbreviates Tree (X,

o.T,{B}). §

Definition 2.2.6. (Definition of “games on a T'reey collection”)
Let Treey collection T; = Tree; (X, 0,1, A) for some X,0,T" and A. Define “games on the
Treey collection T1” by

U en)acT] .

TeT

Definition 2.2.7. (Definition of = games on a Tree; collection)

Let Treey collection T = Tree (X,0,I,A). Suppose we have = such that for each T €
Treey, 2 | [T] C p([T)]) is defined (e.g., X2, TI°, 8L TI! ). Define = games on a Tree,
collection Ty by

GET) = J{GUT)AcE T T]}

TeT
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As a notation, we will use G for a collection of games on a Tree; collection. -

Definition 2.2.8. (Definition of = determinacy on a Tree; collection)

Let Treey collection Ty = Tree (X, 0, A). Suppose we have Z such that for each T € T,
E [T C (1)) is defined (e.g., 2, T2, BL TIL ). Define = determinacy on the Tree
collection Ty by

Det G(Z;Th),
i.e., forany T € Ty and A € Z | [T], every game G(A;T') is determined. =

Definition 2.3.2. (Definition of B™ and ¥*)

Fiz a Type 1 tree T;?:g. Then B C X% and ¥V : X¥ — w. Define
1. Bf=XxBCXv,!
2. Ut XY - w such that U (f) =V (f | [1,w)) + 1. .

Definition 2.3.3. (Definition of a Shift tree Sft(T))

Fiz a Type 1 tree T = T)\?”f. Define a Shift tree S ft(T) by
SFHT) = Tx " R
Proposition 2.3.5. Fiz a Type 1 tree T = T;’f. Then for every h € [Sft(T)],

hilw)el[T] ifhlwé¢ BT,

hi[Lw) hllw+1,Ih(h)€[T] ifh|we B g

'Recall abuse of notation 1.5.3 on page 42.
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Definition 2.3.6. (Definition of the erasing function e : [Sft(T)] — [T])

Fiz a Type 1 tree T = T)\I(j,’g. Define the erasing function e from [Sft(T)] into [T] by

e: [Sft(T)] — [T]
AL w) ifh | wé B*,

hi[Lw) h|lw+1,1h(h)) ifh|we B*. g

Definition 2.3.7. (Definition of Shift)

Fix a Type 1 tree T’ = T;’g. Define

Shift: o([T]) = e ([Sft(T)])

A= {he[Sft(D)]|e(h)e[T]\A}. 4

Definition 2.3.10. Fiz a Type 1 tree T = T;I(’,’f. Given S C [T, define
ST ={he[Sft(T)|le(h)e S}. -
Definition 2.3.16. Fiz a Type 1 tree T = T)\Ig,’g. Pick an arbitrary k € w. Recall
(W) =W x - x W,
k many

Given Sy C [T] x (w*)*, define

S = {(h, g1,y gi) € [SFE(T)] % (V¥ (e (h) g1, gi) € Sk} .

Definition 2.3.23. Let k € w. Suppose (SF|i € w) to be such that each SF C X xw® x (w*)*.

Define

(Sfli€w)™ = {(fih g1, gr) € X X x (W) |(f,h ] [1,w), 91, 98) € Sy } -
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Definition 2.4.7. Suppose | € w. Let A C X x Y'*'. For each a €Y, define
At = {fe X“ xY'|f(a) € A}. -
Definition 2.4.12. Suppose | € w. Let A, C X¥ x Y! for alla € Y. Define
(Agla e V) ={h e X x Y™ |h | (w+1) € Ay } - =

Definition 2.4.18. (Definition of the length function lhir)

lh[T] : [T] — Wt w
h—lh(h).
Definition 2.4.19. Suppose B C X*“, ¥ s a function from X% into w and Y 1is arbitrary.

Define

Long (B) = {h € [TE]| th(h) > w). .

Definition 2.4.24. (Definition of Max)

Suppose W | B is bounded below w. Let nY:B be the mazimum tail length determined from ¥

max

and B. (%8 = max(Im(¥ | B))+1.) If ¥ and B are clear from the context, we suppress

max

v,B

max”

U and B, i.e.Npaxy =N

Define
Maz (¥, B) = {h € [TEE] [ 1h() = &+ nuac) = Il 0+ ). 1
’ XY
Definition 2.4.36. Suppose o € wy is even and (Ag|B < a) where each Ag C X¥. Fix a

A
Type 1 tree T;j;?‘nﬂe“ ?. Define

dko ((A3|B < a)) = {h c [TXA”‘ Noea ﬂ} ( hiwé (), AsAubhlwg Ag) is odd} .4
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Definition 2.5.2. Suppose A C [T)‘?f] For each n € w, define
A= AN ((BNU¥1(n)) x Y™,
Ay = AN (XY\B).

Then A=, . A"UA;. =

new

Definition 2.5.3. Suppose A C [T)‘?f] For everyn € w and g € Y™, define
Ay ={feX”|[frgeA}. .

Observation 2.5.5. Suppose A C [ngf} For all n € w and for all p € Y="*1, A% C

BNy t(n). .

Definition 2.5.31. (Definition of “Fix”)
For allm € w, fix a,, € Y™, Define

Fiz{a,:mew): XY — [T)\I(J)lj]

f if | ¢ B,
f—

[ ayy otherwise.

If {(ay, : m € w) is clear from the context, we will denote Fix to mean Fix (G, :m € w). -

Sublemma 2.5.42. Suppose f : X1 — X5. Assume that E C X5 and for 1 < j < k,

Fi Cw¥. Then

((pi)fl(Exle...XFk):ffl(E)XFlX”'XFk. 4
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E.3 Chapter 3

Definition 3.1.2. (Definition of a Type 2 tree)
Suppose X is a nonempty set, ¥ is a function from X“ into w, B is a subsets of X* and

Tsy = (T, In € w) where each T), is a tree. Define [Tg;ﬁq] by :

B h e X¥ ifh lwé¢ B,
he [TX;TSJ o

he X% x [T\p(h[w)} ’th [(JJ € B.
A tree T is a Type 2 tree if and only if T = Ti’iq for some nonempty set X, a function ¥

from X% into w, a subset B of X“and some Ty, = (T, |n € w), where each T,, is a nonempty

tree. =

Definition 3.1.4. (Definition of the tail tree T of f)
Suppose T is a tree. For each f € X%, define [T7] to be the set of tails for f, i.e., for any
f € X¥ and for any g € [TY], f~g € T. Then f € XN |[T) if and only if [T'] = 0. Notice

that each TS is a tree. Define T7 to be the tail tree of f. -

Definition 3.1.5. (Definition of the countable tail trees property)
Suppose T' is a tree. Define that T has “the countable tail trees property” if and only if

{[T7]|f € X*} is countable. -

Definition 3.1.6. (Definition of (X,countable tail trees)-[w, o0))
Suppose X is a nonempty set. Define that a tree T is “(X,countable tail trees)-[w, 00)” if [T]]

satisfies the following three properties:
1. forallye[T],y|we X¥.

2. forally € [T], Ih(y) > w.
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3. T satisfies the countable tail trees property. -

Definition 3.2.2. (Definition of a Treey collection)
Fiz a nonempty set X. Let T # () be any collection of nonempty trees. Suppose A # 0 is

any collection of subsets of X“, T' # () is a collection of functions from X* to w. Define
Trees (X, T%,T, A) = {Tg;fsq T, € T*, U eT,B e A}.

A collection is a Treey collection if and only if it is Trees( X, Y, I, A) for some nonempty
set X, a monempty collection Y of nonempty trees, a nonempty collection I" of functions
from X% into w and a nonempty collection A of subsets of X“.

We sometimes let Ty be a Treey collection when we wish to suppress X, T, " and A, i.e.,

To = Treey( X, T, T, A). =

Notation 3.2.3. If T is a singleton {T}, we will write Treey (X,{T}",I',A). To avoid
confusion, we do not supress the brackets {} in {T'}*, we do not write Trees (X, T, ', A).
If we fiz an w-sequence of trees Ts,, we will write Trees (X, Tsy, ', A). When dealing with
the singletons for any of the last two components of Trees (X, Y, T, A), we will suppress {},
i.e., if I is a singleton {f}, Trees (X, YT, f, ) abbreviates Trees (X, Y, {f},A) and if A

is a singleton {B}, Treey (X, Y“ T, B) abbreviates Treey (X, YT, T, {B}). =

Definition 3.2.9. (Definition of “games on a Treey collection”)
Let Trees collection To = Trees (X, YT, T, A) for some X, Y,I" and A. Define “games on the

Treey collection T3” by

U (G AC (T} .

TeT2
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Definition 3.2.10. (Definition of = games on a T'reey collection)

Let Treey collection Ty = Treey (X, Y, I', A). Suppose we have = such that for each T €
Treey, = | [T] C o ([T)]) is defined (e.g., 2, TI°, XL TI ). Define = games on a Tree,
collection Ty by

G(ET) = J{GAT)AcETT]})

TeT2

We will use G for a collection of games.

Definition 3.2.11. (Definition of = determinacy on a Trees collection)
Let Treey collection Ty = Trees(X, Y, I',A). Suppose we have = such that for each T €
Treey, Z | [T] C o ([T)]) is defined (e.g., X2, TI°, XL TIL ). Define = determinacy on the

Treey collection To by

Det G(Z;7T7),

i.e., forany X, Ty, € T¥, W eI, Be Aand A€ = | [T;’gq], every game G(A;T;’fsq) is
determined. -
Definition 3.3.1. (Definition of W3 and T}

Fix a Type 2 tree T;ﬁq. Then B C X%, W : X¥ - w and Ty, = (T), |n € w) is an w-sequence

of nonempty trees. Define
1. U X% — w such that U5 (f) =U(f | [1,w)).

2. For eachn € w, T,F =Y, x T, for some nonempty set Y, and T = (T,} |n € w). B

Definition 3.3.2. (Definition of a Shift tree S fto(T))

Fiz a Type 2 tree T = T)\gﬁq. Define a Shift tree S ft(T) by

Sfto(T) = TV E" -

TUX T,
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Definition 3.3.4. (Definition of the erasing function ey : [S fto(T)] — [T])
Fiz a Type 1 tree T = T)?,’TB;q. Define the erasing function e from [S fto(T)] into [T] by
ey [Sfta(T)] — [T
hiLw) ifhlwg BY,

h —
h1[L,w) h|[w+1,lh(h)) ifh|we B". 4

Definition 3.3.5. (Definition of Shifts)
Fix a Type 2 tree T' = T;ﬁq. Define
Shifty = o ([T]) = o ([Sft2(T)])

A= {he[Sfta(T)]| ea(h) € [T]\A}. 4

Definition 3.3.7. (Definition of a “shifting tree”)
For a tree T, define a shifting tree to be Y x T for some nonempty Y. Suppose T is a
collection of nonempty trees. Define Y to be closed under shifting trees if for each T € T,

there is a shifting tree Y x T € T for some nonempty Y . -

Definition 3.4.11. Suppose B C X“, VU is a function from X* into w and Ty, is an w-

sequence of nonempty trees. Define
Longy (B) = {h € [T’ ]| h(h) > w}. .

Definition 3.4.16. Suppose ¥ | B is bounded below w and let V. € w be the mazimum

value of ¥ over B. Define

Tarar (¥, B) = {h € [Ty7, )| h | [w,lh(R)) € [Tw,,]}- &
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Definition 3.4.17. (Definition of the N maximal tree property)
Fiz N € w. Suppose T is a set of nonempty trees of size N + 1 satisfying that: there is an

enumeration (T,,|n < N) of T such that
1. Ty is well-founded.

2. For each n < N and for every g, € [T,|, g. does not properly extend g for every

g € [Tn].

Then we say Y satisfies the N mazimal tree property. We also say (T, |n < N) has the
N mazimal tree property. We say Ty, = (I, |n € w) has the N mazimal tree property if

(T, In < N) satisfies the N mazimal tree property. -

Notation 3.4.18. Suppose for eachn € w, T), is a tree. For eachn € w and for any p € T,
define

My =A{m|p~(m) € T, }. =

Definition 3.4.19. (Definition of the N disjoint tree property)
Fix N € w. Suppose T is a set of nonempty trees of size N + 1 satisfying that: there is an

enumeration (T,,|n < N) of T such that
Jor everyn < N, My N Mév = 0.

Then we say Y satisfies the N disjoint tree property. We also say (T, |n < N) has the
N disjoint tree property. We say Ty, = (I, |n € w) has the N disjoint tree property if
(T, |n < N) satisfies the N disjoint tree property. If T, = (T, |n € w) satisfies that each

My 1is pairwise disjoint, then we say Ty, has the disjoint tree property. -
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Definition 3.4.22. (Definition of the modified N mazimal tree property)
Fiz N € w. Suppose T is a set of nonempty trees of size N + 1 satisfying that: there is an

enumeration (T,,|n < N) of T such that
1. Ty is well-founded.
2. for each n < N and for every g, € [T,], g, does not extend g for every g € [Tx] (This
gwes us [Ty] N [T,] = O for everyn < N.)

Then we say T satisfies the modified N mazimal tree property. We also say (T,,|n < N)
satisfies the modified N mazimal tree property. We say Ty, = (T,, |n € w) has the modified

N mazimal tree property if (T,, In < N) satisfies the N mazximal tree property. .

Definition 3.4.37. Suppose o € wy is even and (Ag |8 < a) where each Ag C X*“. Define

dk’ia ((Aﬁ |ﬁ < a>) — {h c [T;%;HBEQAB} h|w ¢ mBEOz Ag /\/Lﬁ(h Iw ¢ Aﬁ) 18 Odd} .

Definition 3.4.45. For any n € w, define

Tail (V,n,B) = (BNU~' (n)) x [T,]. .

Definition 3.4.47. (Definition of least, and V)

Suppose A = (Az|B € ) is a sequence of sets. Define

least,: X“ = a+1
uB(f ¢ Ag) if [ ¢ Mpea Ass
f=
@ otherwise.
Then define
v,: XY —>w
f = n where least,, (f) =~v+mn, v=0 or~ is a limit ordinal. —|
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Definition 3.5.2. Suppose A C [T)‘?ﬁq]. For each n € w, define
A" =AN((BNY(n)) x [T,]),
Ay = AN (X®\B).

Then A=, . A"UA;. =

new

Definition 3.5.3. Suppose A C [T)‘g’ﬁq] and assume Ag, A" for alln € w defined in definition

3.5.2. For everyn € w and g € [T,], define
Ay ={feX¥|frge A"}. .
Definition 3.5.4. Let Ty, = (T}, |n € w) € WF“. Suppose A C [T)\?fq] Define

U ALy LR (p) is even,

Ag ﬁ meMp
N ALy LR (p) is odd.
meMp
Since T, is well-founded, each A} is well-defined. -

Definition 3.5.24. (Definition of “Fixy”)

For allm € w, fix a,, € [T,,]. Define

Fizg (ay, :m € w): XY — [T)\?,’Jiq]
f if f ¢ B,
=

[ ayy otherwise.

If {a, : m € w) is clear from the context, we will denote Fixy to mean Fixs (ay, : m € w).
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Appendix F

Determinacy Results

In this section, we will list all the determinacy results in this dissertation involving games

on T'ree; collections and T'reey collections.

F.1 Chapter 2

(2.2) Definition of a Tree; collection and a collection of games on a
Tree; collection with complexity =

Observation 2.2.9. Suppose X is a nonempty set, © is a collection of sets, I" is a collection
of functions from X“ into w, A is a collection of subsets of X¥. Let Ty = Tree;(X,0,I, A).
Suppose we have =1, =y such that for each T € Ty, Z1 | [T] C o ([T]) and Z2 | [T] C o ([T])

are defined (e.g., X0, T2, LTI ). If for any T € Ty, =, | [T] C 2y | [T], then
G(ELT) CG(ERT).

Thus G is an increasing operation on the first component. -
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Observation 2.2.10. Let © be a collection of sets and A C X*. Suppose we have = such
that = | X% C p(X%) is defined (e.g., X2, T1°, B! TI! ). Suppose we have =, such that for
eachT € Tree; (X,0,T(w,=),A), 2, | [T] C p([T]) is defined (e.g., X0, 12, 3L T1L). Then

the following are equal.
oy (Ela Treeq (Xa @7 F(wa E)) A))
e G(=;Tree; (X,0,T(w, co-2),A))

o G(21;Tree; (X,0,T(w, A(Z)),A)) B

(2.3) Equivalence between X! and II determinacy on a Tree; col-
lection and equivalence between X! and II! determinacy on a Tree;
collection

Theorem 2.3.1. Suppose a € wy; and n € w. Then for any X and O,
Det G (22;T1) < Det G (I1; T1) (2.1)
Det G (2,;T1) < Det G (I1,;; T7) (2.2)
for T = Tree; (X,0,T(w,C),B | X¥) ! where:
e Cc {Eg,l‘[g, Ag,B, LI AL SUATLL P}, v €w and m € w.

e Be{XII}, A}, B, X II) A} S ATLL P}, B €w andm € w. -

'Recall notation 1.5.8 for I'(w,C).
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(2.4) Using the determinacy of games on a T'ree; collection to obtain
the determinacy of games on X<“

Observation 2.4.1. For any X,Y, any function ¥ from X% into w and any complexity =

(in which Z | [T] C o ([T]) is defined),
Det G (Z;Tree; (X,Y,V,0)) = Det (Z | X¥). .

Corollary 2.4.2. Suppose o € wy and n € w. Fiz nonempty sets X and Y .

Let Ti = Treey (X, Y, T(w, A?), AY | X¥). Then

Det G (22;T1) = Det (0, | X¥).

a

Det G (=);T1) = Det (3, | X¥). .

Observation 2.4.3. Assume that I' contains all constant functions from X*“ into w. Then
for any XY and complezity = (in which = | X¥ x Y™ C o (XY xY™) is defined for all
new),

Det G (;Treey (X, Y,T, {0, X*})) = Det (U = (XY x Y")) . 4

new

Theorem 2.4.4. (ZF-P)
Suppose I' contains all constant functions from X% into w and Y s denumerable. Then

Det G (AY; Treey (X,Y, T, {0, X*})) implies Det (|, ., 0 | X*), finite Borel determinacy

new

on X<¥. .
Corollary 2.4.17.

Det G (AY; Tree, (X,CTB,T(w, AY), A | X*)) = Det (U = [X“) 2 =
2Recall notation 1.5.10 for CT B and notation 1.5.8 for I'(w, AY).
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Corollary 2.4.21. For any X,Y, ¥ : X¥ — w and A,
Det G (X0; Tree; (X,Y, U, A | X¥)) = Det (A ] X¥). -

Corollary 2.4.22. (Corollary to Corollary 2.4.21)

Foranyacecw,new, XY and ¥ : X¥ — w,
Det G (2];Tree; (X,Y, U, %) | X¥)) = Det (27, [ X¥) .
Det G (X9; Tree; (X,Y, ¥, %, | X¥)) = Det (2, | X¥). 4

Corollary 2.4.23. (Corollary to Corollary 2.4.21)
Suppose X is a nonempty set, © is an arbitrary collection of sets, I' is any collection of

functions from X into w and A is a collection of nondetermined sets on X*. Then,
—Det G (XV; Tree; (X,0,I,A | X)) . .
Corollary 2.4.27. For any X,Y and complexity =,
Det G (20 Tree; (X,Y, {xa]A€E ] X¥},X¥)) = Det (2] X¥).

Thus,

Det G (X9; Tree; (X,Y,D(w, 2-E), X¥)) = Det(Z | X¥). -

Corollary 2.4.28. (Corollary to Corollary 2.4.27)

For any a € wy and any X,Y,
Det G (X9; Tree; (X,Y,T'(w, 2 ATID), X¥)) = Det(X) | X¥).

Det G (X9; Tree; (X,Y,T(w,A2), X*)) = Det(A) | X¥). -
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Corollary 2.4.30. Suppose =Z1,Z5 are complexities. Then for any X,Y,
Det G (X0;Tree; (X,Y,{xalA €1 | X¥} 55 | X¥)) = Det((Z1 AZp) | X¥).  (2.10)
Similarly,

Det G (X0;Tree; (X,Y, {xa|A€Z | X} 21 | X¥)) = Det((E; ASp) | X¥).  (2.11)

Corollary 2.4.31. (Corollary to Corollary 2.4.30)

Suppose =1, =9 are complexities. Then for any X,Y,
DetG (X9; Tree; (X,Y,D(w, 21 A co-E1),Zs | X¥)) = Det((E1 AZs) [ X¥). (2.12)
Simalarly,

DetG (39; Tree; (X,Y,D(w, 25 A co-E), 21 | X¥)) = Det((E21 AZ,) [ X¥). (2.13)

_|
Corollary 2.4.32. (Corollary to Corollary 2.4.31)
Suppose o, B € wy. Then for any Y,
Det G (20;Tree; (X, Y, T (w, X0 ATIY) II5 | X¥)) = Det((30 AITY) [ X¥).
Similarly,
Det G (2;Tree; (X,Y,T (w, ZZAII3), 20 | X)) = Det((3g AIIR) | X¥). a

Corollary 2.4.33. (Corollary to Corollary 2.4.31)
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Suppose n,m € w. Then for any Y,
Det G (X0; Tree; (X,Y,T (w, ), AILY) LI, | X¥)) = Det((Z, AILL) | X¥).
Similarly,
Det G (X0;Tree; (X,Y, T (w, 3, AILL) S, | X)) = Det((S), AILL) T X¥).
Corollary 2.4.34. (Corollary to Corollary 2.4.33) For any Y,
Det G (29;Tree; (X,Y,I(w,2-I1}), X} | X)) = Det(2-I1; | X¥).
Similarly,
Det G (X9; Tree; (X,Y,T'(w,2-IT}), I} | X¥)) = Det(2-II} | X¥). 2
Corollary 2.4.35. (Corollary to Corollary 2.4.31) For any Y and n € w,
Det G (X9; Tree; (X,Y,T(w,2-I1}), (co-n-1I7) | X)) = Det(n+ 1-II} | X¥).  (2.14)
Similarly,

Det G (X9; Tree; (X,Y,T'(w,n-IT} A co-n-IL}), I} | X¥)) = Det (n + 1-IT; | X*). (2.15)

Corollary 2.4.42. Assume a € wy is even. Then for any Y,
Det G (a-Iy; Tree; (X,Y,T(w,2-IT}), I} | X¥)) = Det(a + 1-II} | X¥). =
Corollary 2.4.44. Assume a € wy is a limit ordinal and \ € w. Then for any Y,

Det G (a-ILj; Tree; (X,Y,T(w, E§ AIL), II; | X¥)) = Det((o-IT} + X%) | X¥).
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(2.5) Getting the determinacy of the games on a Tree; collection
from the determinacy of the games on X< (Reversed direction of
section 2.4)

Theorem 2.5.18. Suppose 3,7 € w;.

If B,v > 1, then
Det(AﬂlaX{ﬁﬁ} | X¥) = Det G (Z?;Treel (X, FIN,T'(w, Ag), A% [X“’)) 3 (2.17)

If g <n,
Det G (E?;T?‘eel (X, FIN,T'(w, Ag), E% [ X“)) . (2.18)
Det (AY | X¥) =
Det G (X9 Tree; (X, FIN,I(w, A2), 115 | X¥)).  (2.19)
If B>,

Det G (X9 Treey (X, FIN,I'(w,AY), X5 | X¥)) . (2.20)
Det (25 VIIR) | X¥) =
Det G (X9 Treey (X, FIN,I(w, AY), I} | X¥)) . (2.21)

Also,

Det (X} | X¥) = Det G (X1; Tree; (X, FIN,I'(w, AY), A} | X¥)). (2.22)

Theorem 2.5.20. Suppose 3,7 € wy. Then
( Det G (X9; Tree; (X,CTB,I'(w,AY), X5 | X¥)).4(2.23)

Det(E),isyiw | X°) = § Det G (2Y;Treey (X,CTB,T(w, AY), I | X)) . (2.24)

| Det G (29 Treey (X,CTB,T(w, AY), A | X¥)) . (2.25)
_|

3Recall notation 1.5.10 for FIN.
4Recall notation 1.5.10 for CTB.
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Corollary 2.5.21. For any finite n and m,
Det (2 1 X¥)
= Det G (£; Tree, (X,CTB,I(w, A}), ), [ X¥))
= Det G (Al;Tree, (X,CTB,T(w, AY), A} | X¥))
= Det (Unew =00 Xw) :

Corollary 2.5.22.

DetG (59,510 Treer (X, CTB, T (w, AY), 1))

= Det(zglax{ﬂﬁ}—l—w f Xw)

= DetG (X7; Tree; (X,CTB,N(w,A?), X5 | X¥)).
Corollary 2.5.23. Suppose A is an algebra. Then

Det(A | X¥) = Det G (E9; Treey (X, FIN,T'(w,A), A | X¥)) .

Corollary 2.5.24. Suppose A is o-algebra. Then
Det(A | X¥) = Det G (2; Treey (X,CTB,T(w,A),A | X¥)).

Corollary 2.5.25.

Det G (X9;Tree, (X, FIN,T(w,B),B | X¥))
Det(B | X¥) =

Det G (XY;Tree, (X,CTB,T'(w,B),B | X¥))

Theorem 2.5.26. Suppose m,n € w\{0}.

Det(A} | X¥) = Det G (X); Tree; (X,CTB,T(w,A},), A, | X¥)).°

max{n,m}

5Recall notation 1.5.10 for CTB.
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Ifn <m,

Det G (X0;Tree; (X,CTB,T(w,A},), =) | X¥)).

Det (A;, | X¥) =

Det G (S;Tree; (X,CTB,I'(w,A}), 1L | X¥)).

If n>m,

(2.27)

(2.28)

Det G (2;Tree; (X,CTB,I'(w,AL), = | X¥)).(2.29)

Det (S VILL) [ X¥) =

Det G (XV; Tree; (X,CTB,T(w,A}),II, | X¥)) .(2.30)

Corollary 2.5.27. (Corollary to Theorem 2.5.26)
Det (2-I11 | X¥) = Det G (X0;Tree, (X,CTB,T'(w,Al), (Z1UTIL]) | Xv)).
Corollary 2.5.28. For any nonempty X and Y,
@D Det G (X0;Tree; (X,Y,T'(w,2-I11), 1 | X¥))
@ Det G (X0;Tree; (X,Y,T'(w, 2-I1}), I} | X¥))
~ @ Det (211} | X¥)
= @ Det G (2Y; Tree; (X,CTB,T(w, Ay), (S} UIL}) [ X¥)) .
That is : @) implies 3), @) implies 3), and @) implies @).

Theorem 2.5.29. Suppose o, 3,7 € wy and o > 1. Then

Det(X? | X¥) = Det G (29;Tree; (X, FIN,I'(w,AY), A} | X¥)).

max{B,7}+a

Moreover, if B < v, then

Det(X?°

yHa

| X¥) = Det G (22; Tree; (X, F[N,F(w,Ag), E% I X“)).
If B > 7, then

Det(X5,1y10 | X¥) = Det G (0; Treey (X, FIN,T(w, AY), 55 | X¥)).
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(2.31)

(2.32)

(2.33)



Theorem 2.5.30. Suppose o, 3,7 € wy. Then

Det(E),tsyratw | X©) = Det G (X0; Treey (X,CTB,I(w, AY), Aj | X))

Moreover, if B < vy, then
Det(2) ., | X¥) = Det G (59 Tree; (X,CTB,T'(w, AY), =5 | X¥)).
If B > v, then

Det(E5 1) arw | X¥) = Det G (E2; Tree, (X, CTB,T(w, A%), 25 | X¥)).

Corollary 2.5.35. For any finite n,m and k,

Det () 1 X*)
= Det G (X); Tree; (X,CTB,T(w,A)), X0, | X¥))
= Det G (XV; Tree; (X,CTB,T(w,AY), X0 | X¥))

= Det G (AY; Tree; (X,CTB,T(w,A}), A} | X¥))

:Det(U 3 [X“).

(2.34)

(2.35)

(2.36)

Corollary 2.5.36. Suppose A is a o-algebra and A is closed under A-substitution. Then

Det(A | X¥) = Det G (A;Treey (X,CTB,T'(w,A),A | X¥)).

Corollary 2.5.37. (Corollary to Corollary 2.5.36)

Det(B | X¥) = Det G(B;Tree, (X,CTB,I'(w,B),B | X¥)).
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Theorem 2.5.38. Suppose m € w. Suppose Ty = Tree; (X,CTB,I'(w,B),B | X¥). Then
Det(%), | X¥) = Det G (£,,;Th) -
Det(I1}, | X*¥) = Det G (IL},; T7) .
Det(A,, | X¥) = Det G (A,,;T1) .

Note that Al | X% is Borel if X is countable and if X is uncountable, it is the quasi-Borel.

_|
Observation 2.5.45.

G (2], Treey (X,N,I'(w, A}), AY)) = Det (P | X¥). -

(2.6) Determinacy equivalences between games on X <“ and games
on Tree; collections

Theorem 2.6.1. For any nonempty © C FIN, the determinacy of following (2.37) through

(2.42) are all equivalent to Det (X9 | X¥).

g (Eg;Treel (X,@, ['w, A(l)), A(l) [X“’)) (2.37)
G (20 Tree; (X,0,T(w, X7), A} | X¥)) (2.38)
G (29;Tree; (X,0,T(w,I19), A | X¥)) (2.39)
G (I1}; Tree; (X,0,0(w, AY), AT | X¥)) (2.40)
G (I}; Tree; (X,0,0(w, X7), Al | X¥)) (2.41)
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G (I1); Tree; (X,0,0(w,I17), A | X¥)) (2.42)

Theorem 2.6.2. Suppose 3,7 € wy and > . Then for any nonempty © C FIN, the

determinacy of following (2.43) through (2.48) are all equivalent to Det (A% I X“).

G (X0 Tree; (X,0,0(w, AT), A | X¥)) (2.43)
G (2);Tree; (X,0,0(w, X9), AY | X¥)) (2.44)
G (XV;Treey (X,0,0(w, 1), AY | X¥)) (2.45)
G (I1}; Tree; (X,0,T(w, AY), A | X¥)) (2.46)
G (IIY; Tree; (X,0,T(w, X9), A} | X¥)) (2.47)
G (I13; Tree; (X,0,0(w, II9), AG | X¥)) (2.48)

5

Theorem 2.6.3. Suppose 3,7 € wy and 1 < 8 <. Then for any nonempty © C FIN, the

determinacy of following (2.49) through (2.66) are all equivalent to Det (A?Y | X¥).

g (2(1); Tree; (X, 0, w, Ag), Eg [X“’)) (2.49)
G (=Y Treey (X,0,0(w, X9), 25 | X¥)) (2.50)
G (20; Tree; (X,0,T(w, 1)), 2 | X¥)) (2.51)
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G (II}; Tree; (X,0,T(w, AY), X5 | X¥))
G (IY; Tree; (X, 0,1 (w, 23), 291 X))

G (I1Y; Treey (X,0,T(w, I3), 5 | X¥))

g (E?;Treel (X, 0, N w, Ag),l‘[g [X“’))
G (XV; Treey (X,0,0(w,X9), 113 | X¥))

G (XV; Tree; (X,0,0(w,IL)), 11} | X¥))

G (I13; Tree; (X,0,T(w, AY),II; | X¥))
G (I1}; Treey (X, 0,T(w, X9), 113 | X¥))

G (I1Y; Tree; (X,0,0(w, I19), 113 | X¥))

G (X0 Tree; (X,0,0(w, A), A | X¥))
G (X0 Tree; (X,0,0(w, %), A% | X¥))

G (20 Tree; (X,0,0(w,IL), A} | X¥))
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(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)



G (IY; Tree;, (X,0,T(w,A)), A% | X¥)) (2.64)

g (H?;Treel (X, 0, Nw, Zg), A% [X“’)) (2.65)
G (I1Y; Tree; (X,0,0(w, I19), A | X¥)) (2.66)
_|

Corollary 2.6.4. Suppose A is an algebra. Then for any nonempty © C FIN,
Det(A | X¥) < Det G (20;Tree; (X,0,0(w,A),A | X¥)). .
Corollary 2.6.5. Suppose A is a o-algebra. Then for any nonempty © C C'TB,
Det(A | X¥) & Det G (2);Treey (X,0,0(w,A),A | X)) . -
Corollary 2.6.6. For any o, 3,7 € wy,
Det(B | X¥) < Det G (A;Tree; (X,0,T'(w,C),B | X))

where:

) +60CCTB,
(

A=B, or

® § A {0 TII°, A%} fora>1, or

A e {39 119} fora=1,
\

B e {£9,113, AY, B},

Ce {019 A% B},
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e at least one of A, B or C is B. N

Theorem 2.6.7. Suppose n € w\{0}, 8,7 € w;.
For any nonempty © C CTB, B € {EO,H%,A%,B} and C € {Eg,l‘[g,Ag,B}, the

determinacy of following (2.67) and (2.68) are equivalent to Det(X} | X¢).
G () Tree; (X,0,0(w,C), B | X¥)) (2.67)
G (I1; Treey (X,0,0(w,C), B | X)) (2.68)

For any nonempty © C CTB, B € {9,113, A%, B} and C € {39,113, A" B}, the

determinacy of following (2.69)is equivalent to Det(AL | X*).

G(A);Tree; (X,0,T(w,C),B | X¥)) (2.69)

Corollary 2.6.8. Suppose A is o-algebra and closed under A-substitution. Then for any

nonempty © C CTB,

Det(A | X¥) < Det G (A;Tree; (X,0,1(w,A),A | X¥)) -
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F.2 Chapter 3

(3.2) Definition of a Tree; collection and a collection of games on a

Trees collection with complexity =

Observation 3.2.12. Suppose X is a nonempty set, T is a collection of trees, I is a col-
lection of functions from X% into w, A is a collection of subsets of X“ and =i,Z5 are

complexities. Let Ty = Trees( X, Y T, A). If for any T € To, Z1 | [T] C Zg | [T], then
G(ELT) CG(ExT2).
Thus G is an increasing operation on the first component. .

Observation 3.2.13. Let T be a collection of trees and A C X*“. Suppose we have = such
that = | X¥ C o (XY) is defined (e.g., 3° TI0 3L 11! ). Suppose we have =, such that for

each T € Treey (X, T¥ I'(w,=2),A), 21 | [T] C 9 ([T)) is defined (e.g., X2, 112, 3L TI} ).

«

Then the following are equal.
o G(Z;;Treey (X, T4, (w,E),A))
o G(Z1;Trees (X, 1%, I'(w, co-E), A))

o G(E1;Treey (X, 1%, I'(w, A(E)),A)) n
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(3.3) Equivalence between XY and I1? determinacy on Type 2 trees
and equivalence between X! and I} determinacy on Type 2 trees

Theorem 3.3.8. Supposen € w and o € wy. Suppose T is closed under shifting trees. Then
for any X,

Det G (X2;7T3) < Det G (I1; T3) (3.1)
Det G (2,;Tz) < Det G (11; T5) (3.2)
for Ty = Treey (X, Y9, T(w,C), B | X¥) ¢ where:
o Cc{X),II),A),B, X, 11, A, 3 AILL P}, v €w and m € w.
e Be {EO,H%,A%,B,E}H,H#L,A%,E}” ATIL P}, BE€w and m € w. -
Corollary 3.3.11. Suppose n € w and o € wy. Let:
o T} =Treey (X, FWF“ T'(w,C),B | X%).
o T2 =Treey (X,CWF“ T'(w,C),B | X%). T

Then

Det G (22;7,') < Det G (II); T3')
Det G (23;7'22) & Det G (Hg;?’f)
Det G (2,;T;') & Det G (I1; T3

Det G (Ei,TQQ) < Det G (H}L,TQQ)

6Recall notation 1.5.8 for I'(w,C).
"Recall notation 1.5.11 for FWF and CWF.
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for any C € {9,110, AY, B, X} | II, , A}, X AL P}, v € wy and m € w;

and any B € {9,113, AY, B, X, 11 AL S0 AT Py, B €w and m € w. -

(3.4) Using the determinacy of games on a T'ree; collection to obtain
the determinacy of games on X <%

Observation 3.4.1. For any X, any w-sequence of nonempty trees Ts,, any function f from
XY into w, and any complexity E (in which for any T € Trees (X, Tsg, f,0), 1 [T] C ¢ ([T])
is defined),

Det G (Z;Trees (X, Ty, f,0)) = Det (= ] X¥). -
Corollary 3.4.2. Fix nonempty X and nonempty Y.
Let Ty = Trees (X, Y%, T'(w, AY), AY | X¥). For any complexity =,
Det G (2;T1) = Det (2] X¥). .

Corollary 3.4.3. (Corollary to Corollary 3.4.2)
Suppose o € wy and n € w. Fix nonempty X and nonempty Y.

Let Ty = Trees (X, Y% T'(w, AY), AY | X¥). Then
Det G (22;Tz) = Det (X0, | X¥).
Det G (=);T) = Det (X, | X¥). 1

Observation 3.4.4. Suppose I' contains all constant functions from X into w. Suppose Y

is a nonempty set and Y contains Y=" for alln € w. Then for any complexity = (in which
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ETXYXY"Cp(XYxY™) is defined for alln € w),
Det G (Z; Trees (X,1%,T, {0, X“})) = Det (U _E(Xx Y")) . 4
Theorem 3.4.5. (ZF-P)

Suppose I' contains all constant functions from X% into w and YT contains Y <" for all € w

for some countable Y. Then

Det G (A% Treey (X, 1%, T, {0, X*})) = Det (U = [X“). .

Corollary 3.4.6.

Det G (A; Tree, (X, CWF” T(w, AY), A? | X*)) = Det (U = [XW>. -

Corollary 3.4.7. Suppose I is a nonempty collection of functions from X% into w. Then
Det G (AY; Tree; (X,CWF“,I', X¥)) = Det(B | X¥). -
Corollary 3.4.10. Suppose V¥ is any function from X* into w and {Tgoft‘ la € wl} CT.
Det G (AY; Tree; (X, Y%, ¥, X¥)) = Det(B | X¥). .
Theorem 3.4.12. For any w-sequence Ty, of nonempty trees, ¥ : X“ — w, for any A C X*,
G (A; X¥) is determined if and only if G(Longs (A) ;T)\I(l”éq) is determined . =
Corollary 3.4.13. For any nonempty collection T of nonempty trees, ¥ : X¥ — w and A,

Det G (X9; Trees (X, T, ¥, A | X¥)) = Det (A | X¥). =

Corollary 3.4.14. For any a € wy, T and ¥ : X¥ — w,

Det G (2(1);T7”€€2 (X, v, % [X“’)) = Det (Eg fX”) ) .
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Corollary 3.4.15. Suppose Y is an arbitrary nonempty collection of nonempty trees, I' is
any collection of functions from X% into w and A is a collection of nondetermined sets.
Then,

—Det G (XV; Trees (X, T, T,A | X¥)). -

Corollary 3.4.27. Suppose {Ty,T1} satisfies the modified 1 mazximal tree property or the 1

disjoint tree property. Then for any complexity = and for any Y D {1y, T1 },
Det G (X0;Trees (X, Y, {xa|A€E | X¥},X¥)) = Det (Z | X¥).
Thus,

Det G (X9; Trees (X, T, T'(w,2-2), X¥)) = Det(Z | X¥). -

Corollary 3.4.28. (Corollary to Corollary 3.4.27)
Suppose {Ty, 11} satisfies the modified 1 mazximal tree property or the 1 disjoint tree property.

Then for any Y D {Ty, T1 },
Det G (X9; Trees (X, T, T'(w, X0 AILY), X¥)) = Det(Z0 | X¥).
Det G (X0 Trees (X, T, T'(w, A2), X¥)) = Det(AY | X¥). -
Corollary 3.4.31. Suppose o, f € wy and Z1,Zy are complexities. Suppose {To, T1} satisfies

the modified 1 mazximal tree property or the 1 disjoint tree property. Then for any T D

{T07T1}7

Det G (39; Trees (X, T {xalA € Z1 | X“},55 | X¥)) = Det((21AZ,) | X¥).  (3.3)
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Similarly,

Det G (X0; Trees (X, T, {xa|A € Z5 | X¥},Z1 | X¥)) = Det((E1 AZs) | X¥).  (3.4)

Corollary 3.4.32. (Corollary to Corollary 3.4.31)
Suppose =1, Zy are complexities. Suppose {1y, T1} satisfies the modified 1 maximal tree prop-

erty or the 1 disjoint tree property. Then for any Y 2O {Ty, T1},
DetG (X0; Trees (X, T, T(w,Z1 A co-E1),Es | X)) = Det((E1 AEs) | X¥). (3.5)
Simalarly,

DetG (X9; Trees (X, T, T(w,Za A co-E),E; | X)) = Det((E1 AZs) | X¥). (3.6)

Corollary 3.4.33. (Corollary to Corollary 3.4.32)
Suppose a, f € wy. Suppose {Ty, T1} satisfies the modified 1 maximal tree property or the 2

disjoint tree property. Then for any Y O {1y, 11},

Det G (9 Treey (X, Y, T (w, X0 AIL) II3 | X¥)) = Det((30, AILY) | X¥).
Similarly,

Det G (2;Trees (X, T, T (w, B3 AILY) X0 | X¥)) = Det((E2 AILY) | X¥). .

Corollary 3.4.34. (Corollary to Corollary 3.4.32)

Suppose n,m € w. Suppose {Ty,T1} satisfies the modified 1 mazximal tree property or the 2
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disjoint tree property. Then for any Y D {Ty, T1},
Det G (X9; Trees (X, T, T (w, X, AIL) II}, | X¥)) = Det((), AILL) | X¥).
Similarly,

DetG (S0: Trees (X, 1,1 (w0, 54 ATLL) L | X9)) = Det((SUATLL) [ X9).

Corollary 3.4.35. (Corollary to Corollary 3.4.34)
Suppose {Ty, 11} satisfies the modified 1 mazimal tree property or the 1 disjoint tree property.

Then for any Y D {Ty, T1 },
Det G (X0; Trees (X, T, T'(w, 2-IT}), X1 | X¥)) = Det(2-II] | X*).
Similarly,

Det G (2Y; Trees (X, T, I'(w, 2-IT}), I} | X¥)) = Det(2-IT; | X*). -

Corollary 3.4.36. (Corollary to Corollary 3.4.32)
Suppose {Ty, T1} satisfies the modified 1 mazximal tree property or the 1 disjoint tree property.

Then for any Y D {Ty,T1} and for any n € w,
Det G (X9; Trees (X, Y%, T(w, 2-I1}), (co-n-II}) | X¥)) = Det(n+ 1-II} | X¥).  (3.7)
Similarly,

DetG (X0; Trees (X, Y%, T'(w, n-II} A co-n-I1}), II; | X¥)) = Det (n+ 1-II} | X¥). (3.8)
Corollary 3.4.43. Assume a € wy is even. Suppose {Ty, T1} satisfies the modified 1 mazimal
tree property or the 1 disjoint tree property. Then for any T 2 {Ty, T1},

Det G (a-Iy; Trees (X, 19, T'(w, 2-I1}), I} | X)) = Det(a + 1-IT} | X¥). -
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Corollary 3.4.44. Assume o € wy is a limit ordinal and A € w. Suppose {Ty, T1} satisfies

the modified 1 mazximal tree property or the 1 disjoint tree property. Then for any T D

{T07T1}7

Det G (a-ILy; Tree; (X, T, T(w, 23 ATIR), I} | X¥)) = Det((a-II; + X3) | X¥).

Corollary 3.4.50. Suppose o € wy. Suppose Ty, satisfies the disjoint tree property. Then

Det G (2;Trees (X, Ty, I'(w, 2 (I1})), X¥)) = Det(a-II} | X*). -

Corollary 3.4.51. Suppose o € wy.

Det G (X9; Tree; (X, FWF*,T'(w, %] (I1})), X*)) = Det(a-II; | X¥). -

(3.5) Getting the determinacy of games on a Tree; collection from
the determinacy of games on X<“ (Reversed direction of section
3.4)

Theorem 3.5.13. Suppose B,v € wy. If B,y > 1, then
Det(A sy | X¥) = Det G (BV; Treey (X, FWFY, D(w,AY), A} | X)) . (3.9)

If B <n,

Det G (X0; Treey (X, FWF“ I'(w,A?), X5 | X¥))  (3.10)
Det (A) | X¥) =

Det G (XY Trees (X, FWF* T(w, AY), I3 | X¥))  (3.11)

If 8 >,
Det G (X0 Trees (X, FWF* T(w, AY), 25 | X¥))(3.12)

Det ((33 VILg) | X¥) =

Det G (29 Trees (X, FWF* T'(w, AY),II3 | X*))(3.13)
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Also,

Det (X9 | X¥) = Det G (XV; Trees (X, FWF*,T'(w, A), A} | X¥)) . (3.14)

Corollary 3.5.14. Suppose 3,7 € wy. Then for any 5 > 7,

@ Det G (29; Treey (X, FWF*T (w, X% ATI})  II5 | X))

@ Det G (2; Treey (X, FWF*T (w, X4 AIIY) X9 | X¥))
= @ Det((S9ATIY) | X*)
& @ Det (X3 VIL) | X¥)

N ® Det G (X;Treey (X, FWF? T'(w, AY), X5 | X¥)).

© Det G (29; Treey (X, FWF? T'(w, AY), II% | X¥)).

That is : Q) implies @), @) implies @), @) if and only if @ and @) implies both &) and ©).
Theorem 3.5.15. Suppose 5, \ € wy. Then
Det (B | X¥) = Det G(2Y; Treey(X,CWFT (w, AY) , 35 | X¥)). %

Corollary 3.5.16. (Corollary to Theorem 3.5.15)

Det (B | X¥) = Det (X; Treey (X,CWF* I'(w,B),B | X¥)). 5
Corollary 3.5.17. Suppose A an algebra. Then

Det(A | X¥) = Det G (2; Trees (X, FWF*, T(w,A),A | X¥)). —|
Corollary 3.5.18. Suppose A is o-algebra. Then

Det(A | X¥) = Det G (2; Trees (X, CWF*, T(w,A),A | X¥)). -
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Theorem 3.5.19. Suppose m,n € w\{0}.

Det(A} | X¥) = Det G (X); Trees (X,CWF*,T'(w,A},), A}, | X¥)).  (3.15)

max{n,m}

If n <m,

Det G (X0; Tree; (X,CWF*,T(w,A}), X, | X¥)). (3.16)
Det (A,, | X¥) =
Det G (X0; Trees (X,CWF*, T(w,A}),IL, [ X¥)). (3.17)

Ifn>m,

Det G (X0; Trees (X,CWF“,T'(w,A},), =) | X)) (3.18)
Det (%, VIL)) | X¥) =
Det G (X0; Trees (X, CWF“,T'(w,A},),II, | X¥))(3.19)

_|

Corollary 3.5.20. (Corollary to Theorem 3.5.19)

Det (2-I17 | X¥) = Det G (X9;Treey (X,CWF“ T'(w, A}), (X1 UIL}) | X¥)). =
Corollary 3.5.21. Suppose {Ty,T1} satisfies the modified 1 mazximal tree property or the 1
disjoint tree property. Then for any Y D {Ty, T1},
@D Det G (X0;Treey (X, Y% T'(w, 2-I1}), X1 | X¥))
® Det G (X0;Trees (X, Y% T'(w, 2-I11), I1! | X¥))
= (3 Det (2-I1} | X*)
= @ Det G (2V; Tree; (X,CWF* T(w,A}), (Z1UII}) | X¥)).
That is : Q) implies 3), @) implies 3), and @) implies ). -

Theorem 3.5.22. Suppose «, 3,7 € wy and o > 1. Then

Det(20, 5140 | X¥) = Det G (E2; Trees (X, FWF*, T(w, A%), A | X¥)).  (3.20)
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Moreover, if B < =, then

Det(X0,, | X¥) = Det G (29; Treey (X, FWF T(w, A)), 55 | X¥)). (3.21)

If B > v, then
Det(Xlg11) 10 | X¥) = Det G (2); Treey (X, FWF, T(w, A), X5 | X¥)). (3.22)
_|

Theorem 3.5.23. Suppose a, 3,y € wi. Then

Det(B | X¥) = Det G (X0; Trees (X,CWF“ D(w,A?), A% | X¥)). .

Corollary 3.5.27. Suppose A is a o-algebra and A is closed under A-substitution. Then
Det(A | X¥) = DetG (A;Trees (X,CWEF“ T'(w,A),A | X¥)). —|

Corollary 3.5.28. (Corollary to Corollary 3.5.27)

Det(B | X¥) = Det G (B;Treey (X,CWF“ T'(w,B),B | X¥)). -

Theorem 3.5.29. Suppose m € w. Let Ty = Treey (X, CWF* I'(w,B),B [ X¥). Then
Det(Z} | X¥) = Det G (Ein;ﬁ) :
Det(II,, | X¥) = Det G (IL}; T5) .
Det(A}, | X¥) = Det G (A};T>) .

Note that A} | X% is Borel if X is countable and if X is uncountable, it is the quasi-Borel.

_|
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Observation 3.5.31. Suppose T = {T ’T is a tree and T C w<v’ +. Then for any nonempty

collection I' of functions from X* into w,
Det (P | X¥) = G (), Tree, (X, Y, ', X¥)). -

Observation 3.5.32. Suppose T = {./\/'Si li € w}. Then for any nonempty collection I' of

functions from X“ into w, we have

Det (P | X¥) = G (), Tree, (X, Y, T, X¥)). -

3.6) Determinacy equivalence between games on X% and games
( y eq g g
on T'reey collections

Theorem 3.6.1. The determinacy of following (3.23) through (3.28) are all equivalent to

Det (39 | X).

G (=) Trees (X, FWF“,I'(w, A}), A} | X¥)) (3.23)
G (2);Tree; (X, FWF? I'(w,X), A} | X¥)) (3.24)
G (29 Trees (X, FWFY,I'(w,I17), A | X¥)) (3.25)
G (II); Trees (X, FWF“, T'(w, AY), A} | X¥)) (3.26)
G (IIY; Trees (X, FWF*,T(w, X9), A | X¥)) (3.27)
G (I1Y; Tree; (X, FWF*,T'(w,I17), A} | X¥)) (3.28)

N
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Theorem 3.6.2. Suppose B,y € wy and > . Then the following (3.29) through (3.54)

are all equivalent to Det (A% I X“).

G (X0 Trees (X, FWF* T'(w, AY), A} | X)) (3.29)
G (X0 Trees (X, FWF* T'(w,X7), A} | X)) (3.30)
G (XY Treey (X, FWF* T'(w,II), A} | X¥)) (3.31)
G (I1}; Treey (X, FWF“,T'(w, AY), A} | X¥)) (3.32)
G (IIY; Treey (X, FWF*,I'(w,X9), A} | X¥)) (3.33)
G (I1Y; Treey (X, FWF*,I'(w,II0), A} | X¥)) (3.34)

_|

Theorem 3.6.3. Suppose 5,7 € wy and 1 < B < . Then the determinacy of following

(3.85) through (3.52) are all equivalent to Det (AY | X*).

G (XV; Treey (X, FWF“, I'(w,AY), 25 | X¥)) (3.35)
G (=% Trees (X, FWF,I'(w, Eg), % 1 X)) (3.36)
G (X0 Trees (X, FWF*,T(w,II), X5 | X*)) (3.37)
G (IIY; Treey (X, FWF“ I'(w,AY), X5 | X¥)) (3.38)
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G (TI); Treey (X, FWF¥,T(w,£2), 20 | X*))

G (T09; Trees (X, FWF*, T(w, TI%), =5 | X*))

G (S4; Tree, (X, FWF,T(w, AY), T1§ | X*))
g (2(1)3T?”e€2 (X7 FWFW’F(“)? 23)’1_[% er))

G (20: Trees (X, FWF?,T(w, TI%), 115 | X¥))

G (I1Y: Tree, (X, FWF,Dw, A%, I1} | X*))
G (I03; Treey (X, FIWF¥, T(w, 59), 11 | X¥))

g (H(1)§T7“e€2 (X, FWFwaF(W7H2)’Hg er))

G (X0 Trees (X, FWF* T'(w, A)), A} | X¥))
G (20 Trees (X, FWF* T'(w, %), A} | X))

G (S, Tree, (X, FWF*,T(w, 1), AY | X*))

G (I13; Trees (X, FWF,T'(w,AY), A} | X¥))

g (H?;Tre@ (X, FWEF*, F(w’ Eg)’ A% f Xw))
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(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)



G (I1Y; Treey (X, FWF*,I'(w,II)), A} | X¥)) (3.52)

4
Corollary 3.6.4. Suppose A is an algebra. Then for any nonempty Y C FWF,

Det(A | X¥) < Det G (E; Trees (X, Y%, T(w, A),A | X¥)). -
Corollary 3.6.5. Suppose A is o-algebra. Then for any nonempty T C CWF,

Det(A | X¥) & Det G (2; Trees (X, T, T(w, A),A | X¥)). -

Corollary 3.6.6. For any o, 3,7 € wy,
Det(B | X¥) < Det G (Ay;Treey (X, Y%, I'(w,C), B | X¥))
where:

o Y C CWF is closed under shifting trees® and

1af {T% o €w } C T, then A e {X9, 119, AY, B}

2. if {Tgoft. la€w } €T, then

/

A=B, or

Ae {30112, A% fora>1, or

A e {0,119} fora=1,
\

o Be {x%. 19, AY B},

e Ce {0,119, A, B},

8Recall definition 3.3.7 on page 231 for the closure property under shifting trees.
Recall Yost tree T, for section 3.4.1.2 on page 242.
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e at least one of A, B orC is B if {T2, |a € wi } €T

Corollary 3.6.7. (Corollary to Corollary 3.6.6)

For any o, 5,7 € wy,
Det(B [ X¥) < Det G (A;Treey (X, FWEF“ I'(w,C),B | X¥))

where:

;

A=B, or

¢y A {0112, A%} fora>1, or

A e {30 119} fora=1,
\

Be {29,109, AY, B},

Ce {019 A% B},

at least one of A, B or C is B.

Corollary 3.6.8. (Corollary to Corollary 3.6.6)

For any o, 3,7 € wy,
Det(B | X¥) < Det G (A;Treey (X,CWF* T'(w,C),B | X¥))
where:
o Ac {3 112, A? B},
e Be {ZO,H%,A%,B},

e Cc{x0,11 A, B}.
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Theorem 3.6.9. Suppose n € w\{0}, 3,7 € w;.
For any nonempty T C CWF such that Y is closed under shifting trees,
B e {EO,H%,Ag,B} and C € {Eg,ﬂg,Ag,B}, the determinacy of following (3.53) and

(3.54) are equivalent to Det(X! | X*).
G (Z);Trees (X, Y%, T'(w,C), B | X¥)) (3.53)

G (IT},; Trees (X, T, T'(w,C), B | X¥)) (3.54)

For any nonempty T C CWF such that Y s closed under shifting trees,
B e {9,113, AY B} and C € {X9,II3, AY, B}, the determinacy of following (3.55) is

equivalent to Det(Al | X¥).

G (A);Trees (X, Y, I(w,C),B | X¥)) (3.55)

Corollary 3.6.10. Suppose A is o-algebra and closed under A-substitution. Then for any

nonempty ¥ C CWEF,

Det(A | X¥) < DetG (A; Trees (X, Y%, T'(w, A),A | X¥)). -
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