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Abstract

Many well-known determinacy results calibrate determinacy strength in terms of large cardi-

nals (e.g., a measurable cardinal) or a ”large cardinal type” property (e.g., zero sharp exists).

Some of the other results are of the form that subsets of reals of a certain complexity will

satisfy a well-known property when a certain amount of determinacy holds. The standard

game tree considered in the study of determinacy involves games in which all moves are

from omega and all plays have length omega (i.e. the game tree is ω<ω and the body of

the game tree is ωω). There are also many well-known results on the game trees ω<α for

α countable (all moves from omega and all paths are of fixed length α). However, one can

easily construct a nondetermined open game on a game tree T , in which all moves are from

ω, but some paths of T have length omega while the others of length ω + 1.

Many determinacy results consider games on a fixed game tree with each path having

the same length. In this dissertation, we investigate the determinacy of games on game trees

with variable length paths. Especially, we investigate two types of such game trees, which

we named Type 1 and Type 2. The length of each path in a Type 1 tree is determined by

its first ω moves. A Type 2 tree is generalization of a Type 1 tree. In other words, a Type

1 tree is a special case of a Type 2 tree. We shall consider collections C of such game trees,
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that will be defined from particular parameters ranging over certain sets. A Tree1 collection

will be a collection of Type 1 trees. A Tree2 collection will be a collection of Type 2 trees.

Given a Tree1 (respectively, Tree2) collection C and a fixed complexity (e.g., open, Borel,

Σ1
1), we calibrate the strength of the determinacy of games with that complexity on all trees

in the collection C in terms of well-known determinacy.
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Chapter 1

Preliminaries and Introduction

The determinacy of games has been an active area of study in set theory. In this dissertation,

we will focus on two-player perfect information games on a certain type of “long trees”, all

of which have heights greater than (or equal to) ω. Our goal to this dissertation will be

the classification of certain long games. Before we start discussing games, we will review

standard definitions and well-known theorems.

In this chapter, we will review the basic concepts of games and set of notations for this

dissertation. In section 1.1, we will review some notations for a product space and sequences.

In section 1.2, we will define trees and games. In section 1.3, we will define complexities. We

will use the product topology taking each set as a discrete space. Thus defining open sets,

we will use “finiteness”. Then we will define the Borel, projective, and difference hierarchies.

In section 1.4, we will review several well-known determinacy results for games on trees ω<ω

and X<ω for any nonempty set X. Then in section 1.5, we will start the introduction to this

dissertation and introduce some new concepts and notations, particular to this dissertation.
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We will use the following notation 1.0.1 throughout the paper.

Notation 1.0.1. We use ⊣ to signify that this is the end of the statement of definition,

theorem, proposition, lemma, corollary, observation and notation. ⊣

By using notation 1.0.1, it is easier to distinguish the end of a statement. While we use

“⊣” symbol to identify the end of a theorem, we will use this “□” symbol to identify the end

of a proof.

For the material in this dissertation, the following books and publication are standard

references:

• Martin (2017 draft). Borel and Projective Games (unpublished).

http://www.math.ucla.edu/˜dam/booketc/thebook.pdf.

The main reference for this dissertation is Martin’s unpublished book. The 2017 draft

does not include Chapter 5. The cited page numbers and theorems for Chapter 5 are

from an older draft.

• Jech (2003). Descriptive Set Theory, the Third Millennium Edition, Revised and

Expanded. Springer, 2003.

• Kechris (2010). Classical Descriptive Set Theory, Graduate Texts in Mathematics: vol.

156. Springer-Verlag.

2



• Moschovakis (2009). Descriptive Set Theory, Second Edition. American Mathematical

Society.

• Neeman (2004). The Determinacy of Long Games: de Gruyter Series in Logic and Its

Applications, vol. 7 Berlin, Germany: de Gruyter GmbH, Walter.
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1.1 General notations for a product space

In this section, we will review some standard notations for sequences.

Definition 1.1.1. (Definition of countable, denumerable and uncountable sets)

A set X is finite if there is a bijection between X and some finite subset of the set of natural

numbers. A set X is denumerable if there is a bijection between X and the set of all natural

numbers. A set X is countable if it is either finite or denumerable. A set X is uncountable

if it is not countable, i.e., it is infinite and not denumerable. ⊣

Definition 1.1.2. ω is the least countable ordinal and ω1 is the least uncountable ordinal.⊣

Suppose X and Y are nonempty sets. XY is a set of functions from Y into X and thus

it is called a function space. In particular, we will consider the case that Y is an ordinal

number α. Then Xα = {f |f : α→ X }. Since the domain of each function in Xα is an

ordinal α, by letting xβ = f (β) for each β ∈ α, each function f can be identified with a

sequence of length α. Thus each element of Xα is a sequence ⟨x0, x1, ..., xβ, ...⟩ where β ∈ α

and each xβ ∈ X. Each xβ is called the β-th entry of the sequence. Hence Xα is the α

Cartesian product of X, i.e., X ×X × · · · multiplied α times. Recall {0, 1}ω = 2ω is called

the Cantor space and ωω is called the Baire space. We also use N to represent the Baire

space. We define X<α and X≤α by X<α =
∪

β<α X
β and X≤α =

∪
β≤α X

β.

Notation 1.1.3. The length of a sequence p is the domain of p and is denoted by lh(p). ⊣

Note that for any sequence p, there exists a unique ordinal α such that

p = ⟨p0, p1, ..., pi, ...⟩ , i ∈ α.
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Thus p can be identified with the function {⟨i, pi⟩ |i ∈ α}. Hence the domain of a sequence

p is the domain of the corresponding function, i.e., lh(p) = α.

Definition 1.1.4. (Definition of a concatenation)

Suppose f = ⟨f(0), f(1), ...⟩ and g = ⟨g(0), g(1), ...⟩ are sequences. Then a concatenation of

f and g, denoted by f⌢g is defined to mean ⟨f(0), f(1), ..., g(0), g(1), ...⟩. i.e., if α = dom(f)

and β = dom(g), then dom(f⌢g) = α + β and

f⌢g (γ) =


f (γ) if γ < α,

g (δ) if α ≤ γ < β, where γ = α+ δ. ⊣

Notation 1.1.5. (Definition of ↾ for a sequence)

Suppose x is a sequence of length α. Then for any β ≤ α, define x ↾ β to be the sequence

of length β such that (x ↾ β)(γ) = x(γ) for γ ∈ β, i.e., x ↾ β and x have the same γth

component for any γ ∈ β. If β > α, then we define x ↾ β to be x. ⊣

For a function f and a set A, the restriction of f to A, f ↾ A,

f ↾ A = f ↾ (A ∩ dom(f)).

Since any sequence x can be identified as a function, we can obtain x ↾ β = x ↾ (β∩dom(x)).

Since the domain of x is the length of x, if β > lh(x), then β ∩ dom(x) = β ∩ lh(x) = lh(x).

Thus we obtain x ↾ β = x as in notation 1.1.5.

x ↾ β = x ↾ (β ∩ lh(x)) = x ↾ lh(x) = x.

Definition 1.1.6. (Definition of an initial segment and an extension of a sequence)

If s = t ↾ α for some ordinal α, then we say s is an initial segment of t and t is an extension
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of s (possibly s = t). If s = t ↾ α for some ordinal α and s ̸= t, then we say s is a proper

initial segment of t and t is a proper extension of s. ⊣

Definition of a game
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1.2 Definition of a game

In this section, we will give standard definitions related to game trees. We regularly refer

to a “game tree” as a “tree”. Then we will give standard definitions related to a game on a

tree. By a “game”, we mean a “two-player perfect information game.”

1.2.1 Definitions related to a game tree

Definition 1.2.1. (Definition of a game tree)

T is a game tree if T satisfies the following 4 properties.

1. T is a set of sequences.

2. T is closed under initial segments, i.e., if t ∈ T then t ↾ α ∈ T for all α ∈ lh(t).

3. If s ∈ T and lh(s) is a limit ordinal, then there exists t ∈ T such that s ⊊ t.

(Property 3 is a convention that we need to fix to avoid confusion. This assumption implies

that there is no path of limit length which is a position. A path and a position are defined in

definition 1.2.3 below.)

When we say a “tree”, we mean a “game tree”. Note that every tree contains the empty

sequence. ⊣

Note that ωω is not a tree since it is not closed under initial segments. The typical

example of a game tree is ω<ω. If the game tree is not specified, we assume this tree.

Definition 1.2.2. (Definition of the height of a tree)
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Suppose T is a tree. The height of T , denoted by ht(T ) is defined by

ht (T ) = sup
p∈T

(lh (p)) ⊣

Definition 1.2.3. (Definition of a position, a move, a play and a path)

Suppose T is a tree. Each p ∈ T is called a position. For any p ∈ T , define

Mp = {m | p⌢⟨m⟩ ∈ T}.

Then a move at p in T is an a such that a ∈ Mp, i.e., p
⌢⟨a⟩ ∈ T . a is called a move if

there exists a position p ∈ T such that a ∈Mp. A play is a sequence x in which every proper

initial segment of x is in T and for any move a, x⌢⟨a⟩ is not in T . Each play is also called

a branch or a path through the tree T . ⊣

Note that property 3 in definition 1.2.1 affects of a definition of a play. Suppose every

proper initial segment of x is in T and no proper extension of x is in T . If the length of x

is a successor ordinal and x ∈ T , then x is a play in T . If the length of x is a limit ordinal,

then x is a play in T but x /∈ T .

Definition 1.2.4. (Definition of the body of a tree)

Suppose T is a tree. The body of a tree is the set of all plays in T and is denoted by [T ]. ⊣

If x ∈ [T ]\T , then the length of x is a limit ordinal. If x ∈ T ∩ [T ], then the length of x

is a successor ordinal.
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Figure 1.2.1: Illustration of p ∈ T and x ∈ [T ].

Definition 1.2.5. (Definition of a well-founded tree)

Suppose T is a tree. If T has no infinite branches, T is called well-founded. Otherwise, T is

called ill-founded. ⊣

Definition 1.2.6. (Definition of the rank of a well-founded tree)

Suppose T is a well-founded tree. Then [T ] ⊆ T . Define the rank of T recursively.

rankT : T → ω

p 7→


0 if p ∈ [T ] ,

sup {rankT (p⌢⟨k⟩) + 1 | p⌢⟨k⟩ ∈ T } if p ∈ T\ [T ] . ⊣

1.2.2 Definitions related to a game on a tree

Definition 1.2.7. (Definition of a two-player perfect information game G(A;T ))

Define a two-player perfect information game G(A;T ) as follows (see Figure 1.2.2 ):
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1. There are two players, usually called player I and player II.

2. Player I and player II alternatively play moves as follows: Suppose p ∈ T .

(a) If lh(p) is even (e.g., lh(p) = 0), then I plays a move a such that a ∈ Mp, i.e.,

p⌢⟨a⟩ ∈ T .

(b) If lh(p) is odd, then player II plays a move a such that a ∈Mp.

3. Each player has complete knowledge of the previous moves of the way that has been

played, i.e., when a player makes a move ap at a position p ∈ T , then the player knows

p, therefore knows all moves previous to ap.

4. A play of the game is exactly a play on the tree, i.e., f ∈ [T ].

5. f is a win for player I if and only if f ∈ A, respectively, f is a win for player II if

and only if f /∈ A. A is called the payoff set for player I. [T ]\A is called the payoff set

for player II.

We denote such a game by G(A;T ). We will also use G(A, [T ]) for the notation (sometimes

it is easier to use [T ] rather than T for notational issues with cross products). ⊣

I x0 x2 · · · xω xω+2

↘ ↗ ↘ ↗ ↘ ↗ ↘ · · · x
II x1 x3 · · · xω+1

x = ⟨x0, x1, ..., xω, xω+1, ...⟩ ∈ [T ]. stops when x ∈ [T ]

Figure 1.2.2: Illustration of a play x ∈ [T ] for lh(x) > ω.

The notation G(A;T ) is not universal. In Jech (2003, p. 627), he uses GA with fixed tree

ω<ω. In Moschovakis (2009, p. 218), he uses GX(A) for a fixed tree X<ω. In Kechris (2010,
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p. 137), he uses G(X,A) or G(A) for a fixed tree X<ω. Since we will be considering games

on different trees, we will use Martin’s notation G(A;T ) by Martin (2017 draft, p. 5). We

will sometimes use G(A; [T ]) since we can uniquely obtain T from [T ].

From now on, we will only consider two-player perfect information games.

Definition 1.2.8. (Definition of a strategy)

Suppose T is a tree. Recall Mp = {m | p⌢⟨m⟩ ∈ T} for each p ∈ T . A strategy s for player

I is a function such that

s : {p ∈ T\[T ] | lh (p) is even} →
∪
p∈T

Mp

and s(p) ∈Mp.

Similarly, a strategy s for player II is a function such that

s : {p ∈ T\[T ] | lh (p) is odd} →
∪
p∈T

Mp

and s(p) ∈Mp.

s is a strategy on the tree T if s is a strategy for player I or player II. ⊣

Definition 1.2.9. (Definition of being according to a strategy)

Suppose T is a tree and s is a strategy on T . For any f ∈ T ∪ [T ], f is according to s if and

only if for any β such that f ↾ β ∈ dom(s), f(β) = s(f ↾ β). ⊣

Note that each strategy s gives rise to the following tree Ts = T (T, s).

Notation 1.2.10. Suppose T is a tree and s is a strategy on T . Define

Ts = {p ∈ T | p is according to s}. ⊣
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Definition 1.2.11. (Definition of a winning strategy for a game G(A;T ))

Suppose T is a tree and A ⊆ [T ] is a payoff set for player I. A strategy s is a winning

strategy for player I for G(A;T ) if for any f ∈ [T ] according to s, f ∈ A, i.e., [Ts] ⊆ A.

Similarly, a strategy s is a winning strategy for player II for G(A, T ) if for any f ∈ [T ]

according to s, f /∈ A, i.e., [Ts] ⊆ [T ]\A. ⊣

I

II

I

II

I

[ ]T

I

II

I

II

I

II

0x played by I

1x played by II

0x

1x

 restricts 's movesIσ  restricts 's movesIIτ

Illustration of

a winning strategy  for Iσ

Illustration of

a winning strategy  for IIτ

[ ]\T AAAll plays in  are inσT All plays in  are inτT

Figure 1.2.3: Illustration of winning strategies.

Definition 1.2.12. (Definition of a game being determined)

Suppose T is a tree and A ⊆ [T ] is a payoff set for player I. We say the game G(A;T ) is

determined if and only if player I or player II has a winning strategy, i.e., there exists a

strategy s on T such that [Ts] ⊆ A and s is a strategy of player I, or [Ts] ⊆ [T ]\A and s is

a strategy for player II. ⊣

Notice that determinacy corresponds to the existence of a subtree Tσ or Tτ of T as

illustrated in Figure 1.2.3.
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1.3 Definition of complexities

In this section, we will review standard complexities on subsets of [T ]. We will first define

open sets in a space, from which we will define Borel hierarchy, projective hierarchy, and the

difference hierarchy on Π1
1 sets.

Notation 1.3.1. (Definition of a complexity)

In this dissertation, whenever we mention a “complexity” in chapters 2 and 3, we mean

the complexities defined in this section, i.e., Borel, projective and difference hierarchy, un-

less specified. More precisely, the definition of a complexity in this dissertation is the fol-

lowing: Suppose we have Ξ such that for each tree T , Ξ ↾ [T ] ⊆ ℘ ([T ]) is defined (e.g.,

Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Then we say Ξ is a complexity. ⊣

1.3.1 Definitions related to topologies

First, we will review the definition of topologies.

Definition 1.3.2. (Definition of a topology)

Suppose X is a set. A topology on a set X is a collection τ of subsets of X such that:

1. ∅, X ∈ τ ,

2. Any union of elements in τ is in τ ,

3. The finite intersection of elements of τ is in τ .

A set X with a topology τ , (X, τ) is called a topological space. The elements of τ are called

open sets in X. ⊣
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A basis for a topology (X, τ) is B ⊆ τ in which every open set A ∈ τ can be written as

unions of elements of B.

Definition 1.3.3. (Definition of a basis)

Suppose X is a set. A basis of a topology (X, τ) is a collection B of subsets in X such that

1. For every x ∈ X, there exists B ∈ B such that x ∈ B.

2. If there exist B1, B2 ∈ B such that x ∈ B1 ∩ B2, then there exists B3 ∈ B such that

x ∈ B3 ⊆ B1 ∩B2. ⊣

If B satisfies both of the conditions 1 and 2, then there is a unique topology on X for

which B is a basis. It is called the topology generated by B.

We will consider the product topology
∏

i∈I Xi with each Xi discrete. We will review the

product topology and the discrete topology.

Definition 1.3.4. (Definition of the product topology)

Suppose Xi are sets and τi is a topology for Xi for i ∈ I. Consider the Cartesian product∏
i∈I Xi. The basic open sets of

∏
i∈I Xi are sets of the form

∏
i∈I Ui where each Ui is an

open set in Xi and Ui ̸= Xi for finitely many i ∈ I (that is, “finiteness”). ⊣

Definition 1.3.5. (Definition of the discrete topology)

Suppose X is a set. The discrete topology on X is defined by setting every subset of X to be

an open set in X. ⊣
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1.3.2 Open sets

We will review open sets in product topology
∏

i∈I Xi with each Xi discrete. Then we will

define open sets over a tree T by using “finiteness”.

Observation 1.3.6. Suppose Xi for i ∈ I are nonempty sets with the discrete topology. Then

for every xi ∈ Xi, {xi} is an open set in Xi. Consider the product topology for
∏

i∈I Xi.

Note that every x ∈
∏

i∈I Xi is a sequence x = ⟨xi |i ∈ I ⟩ with xi ∈ Xi. The basic open sets

are of the form

O ({⟨i, xi⟩ |i ∈ E }) =

{
f ∈

∏
i∈I

Xi

∣∣∣∣∣ f ⊇ {⟨i, xi⟩ |i ∈ E }

}

for some finite E ⊆ I and some xi ∈ Xi for i ∈ I. ⊣

For a tree T , we will define open sets over T in a way similar to our definition of open

sets in the product topology, by using “finiteness”. Once we define open sets over [T ], we

can naturally define the Borel and projective sets on [T ].

Definition 1.3.7. Suppose T is a tree. Define Finite(T ) by

Finite(T ) = {q|q is finite ∧ ∃p ∈ T (q ⊆ p)}

The basic open sets in [T ] are the O(q)’s for q ∈ Finite(T ) where

O(q) = {h ∈ [T ]|h ⊇ q}. ⊣

Figure 1.3.1: Illustration of q and O(q).
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Proposition 1.3.8. Suppose T is a tree. The set of open sets defined in definition 1.3.7

form a basis for a topology on [T ]. ⊣

1.3.3 Borel hierarchy

Sets are classified in hierarchies according to the complexity. The collection of Borel sets on

a set [T ] are the smallest collection containing all open sets and closed under complements

and countable unions. We will denote the class of Borel sets over [T ] by B ↾ [T ]. Borel sets

are defined by the smallest σ-algebra containing all open sets. We will review the definitions

of algebra and σ-algebra.

Definition 1.3.9. (Definition of an algebra and σ-algebra)

An algebra of sets is a collection S of subsets of a given set S such that

1. S ∈ S,

2. if X ∈ S and Y ∈ S then X ∪ Y ∈ S,

3. if X ∈ S then S\X ∈ S.

Note that S is also closed under finite intersections. A σ-algebra is additionally closed under

countable unions (and countable intersections):

4. If Xn ∈ S for all n ∈ ω, then
∪

n∈ω Xn ∈ S. ⊣

Now, we define the Borel sets over a tree [T ]. First, we will define the restriction notation

over classes.
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Notation 1.3.10. (Moschovakis, 2009, p. 27)

Suppose X is a space and A is an arbitrary collection sets. Then define A ↾ X by

A ↾ X = {A ⊆ X |A ∈ A} .

If the space is clear from the context, we will omit it. ⊣

Definition 1.3.11. (Definition of the Borel sets over [T ])

Suppose T is a tree. A set B ⊆ [T ] is Borel if it belongs to the smallest σ-algebra of subsets

of [T ] that contains all open sets of [T ]. We will use B ↾ [T ] to represent the collection of

Borel sets over [T ]. ⊣

We will review the definition of the Borel Hierarchy. The notation of the Σ’s, Π’s and

∆’s were introduced by Addison (1959). For more details, see Moschovakis (2009, p. 48)

and Jech (2003, p. 153).

Definition 1.3.12. (Hierarchy of Borel sets for [T ])(Notation by Addison, 1959)

Suppose T is a tree. For any 1 ≤ α ∈ ω1,

Σ0
1↾[T ]= the collection of all open sets on [T ],

Π0
1↾[T ]= the collection of all closed sets on [T ],

Σ0
α↾[T ]= the collection of all sets A=

∪
n∈ωAn,where each An∈Π0

βn
↾[T ] for some βn∈α,

Π0
α↾[T ]= the collection of all complements of sets in Σ0

α↾[T ],

Π0
α↾[T ]= the collection of all sets A=

∩
n∈ωAn,where each An∈Σ0

βn
↾[T ] for some βn∈α,

∆0
α↾[T ]=Σ0

α↾[T ]∩Π0
α↾[T ].

⊣

Note that

B =
∪

α∈ω1

Σ0
α ↾ [T ] =

∪
α∈ON

Σ0
α ↾ [T ] =

∪
α∈ON

Π0
α ↾ [T ] =

∪
α∈ω1

Π0
α ↾ [T ].
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where ON represents the class of all ordinal numbers.

Proposition 1.3.13. (Martin, 2017 draft, p. 7, Lemma 1.1.1 for Xω)

Suppose each collection in Figure 1.3.2 is defined over Xω. For any α ∈ ω1, we have the

following inclusions.

Σ0
1 Σ0

2 ··· Σ0
α ···

⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆
∆0

1 ∆0
2 ∆0

3 ··· ∆0
α ∆0

α+1 ···
⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆

Π0
1 Π0

2 ··· Π0
α ···

Figure 1.3.2: Diagram of Borel hierarchy for Xω. ⊣

To show the diagram above, one needs to show Σ0
1 ↾ Xω ⊆ Σ0

2 ↾ Xω. For a countable X,

one can use separability to get this. However, for even uncountable X, Σ0
1 ↾ Xω ⊆ Σ0

2 ↾ Xω

holds as shown in Martin (2017 draft).

In Martin (2017 draft), for T = X<ω, to show Σ0
1 ↾ [T ] ⊆ Σ0

2 ↾ [T ], he uses that

On =
∪
{[Tp] |p ∈ T ∧ lh (p) = n ∧ [Tp] ⊆ A}

is clopen where

Tp = {q ∈ T |q ⊆ p ∨ p ⊆ q} .

It is routine to adjust the above argument to get Σ0
1 ↾ [T ] ⊆ Σ0

2 ↾ [T ] for game trees

of countable height. Thus, the diagram in figure 1.3.2 is true for any tree with countable

height.

In general, one must be careful whether the above diagram holds for other game trees T .

Dr. Burke communicated that Σ0
1 ↾ 2ω1 ⊈ Σ0

2 ↾ 2ω1 so that the above diagram is false when

T = 2<ω1 .
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Assume that T = 2<ω1 . Let

O = {f ∈ [T ]|∃β ∈ ω1 such that f(β) = 0}.

Then O ∈ Σ0
1 ↾ [T ]. Notice that [T ]\O = {f1} where f1 : ω1 → {0, 1} is the constant

function f(α) = 1 for any α ∈ ω1.

We show that O /∈ Σ0
2 ↾ [T ]. Suppose, for a contradiction, O ∈ Σ0

2 ↾ [T ]. Then there

exists ⟨Cn|n ∈ ω⟩ such that each Cn ∈ Π0
1 ↾ [T ] and O =

∪
n∈ω Cn. Then [T ]\O =

∩
n∈ω On

where each On is a complement of Cn. Thus each On is open. Hence each On =
∪

m∈ω B
m
n

where each Bm
n a basic open neighborhood. Then for each Bm

n , there is qmn ∈ Finite(T ) such

that Bm
n = O(qmn ) (see notations for definition 1.3.7). Hence

{f1} = [T ]\O =
∩

n∈ω
On =

∩
n∈ω

∪
m∈ω

O (qmn ).

Thus, for any n ∈ ω, there exists mn such that f1 ∈ O (qmn
n ), i.e., f1 ⊇ qmn

n . Hence each qmn
n

is a sequence of countable length such that every entry is 1. Define

π : ω → ω

n→ µi ∈ ω (f1 ∈ O (qin))
1

Then we have

f1 ∈
∩

n∈ω
O
(
qπ(n)n

)
⊆
∩

n∈ω

∪
m∈ω

O (qmn ) =
∩

n∈ω
On = [T ]\O.

Let r = sup
n∈ω

dom(q
π(n)
n ). Then r ∈ ω1 since ω1 is regular.2 Let f ∈ 2ω1 such that f ↾ r is a

sequence with every entry 1 and f(r) = 0. Then for every n ∈ ω, f ⊇ q
π(n)
n . Thus

f ∈
∩

n∈ω
O
(
qπ(n)n

)
⊆ [T ]\O = {f1}

1µ represents “the least”.
2An infinite cardinal α is regular if cofinality of α is α.
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Since f ̸= f1, this is a contradiction. Hence O /∈ Σ0
2 ↾ [T ].

1.3.4 Projective hierarchy

The collection of Borel sets of reals is closed under countable unions and intersections and

closed under complements, but it is not closed under continuous images. The image of a

Borel set by a continuous function need not be a Borel set (Jech, 2003, p. 142).

Beyond the Borel hierarchy, we have the projective hierarchy. The Σ1
1 ↾ [T ] sets are

obtained from taking projections of a closed subset of [T ] × N along the Baire space. The

Π1
1 ↾ [T ] sets are the complement of Σ1

1 ↾ [T ] sets. In general, for 1 ≤ n < ω, the Σ1
n+1 ↾

([T ]×N n) sets are obtained from taking projections ofΠ1
n ↾ ([T ]×N n+1) sets along the Baire

space. In this section, we will review basic definitions associated with projective hierarchy.

We will denote the class of projective sets over [T ] by P ↾ [T ].

Definition 1.3.14. (Definition of the projection of S along Y )(Moschovakis, 2009, p. 19)

The projection of a set S ⊆ X × Y along Y (into X) is the set

PS = {x ∈ X |∃y ∈ Y (⟨x, y⟩ ∈ S)} . ⊣

Figure 1.3.3: Illustration of a projection along Y .
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Suslin first discovered that there are Σ1
1 sets which are not Borel. Together with Lusin,

they established most of the basic properties of analytic sets (as cited in Moschovakis, 2009,

p. 2). Projective sets were introduced by Lusin in 1925 and independently by Sierpinski in

1925. (as cited in Moschovakis, 2009, p. 47). See more historic details in Moschovakis (2009,

p. 2, p. 47).

Definition 1.3.15. (Hierarchy of projective sets over [T ])(Lusin, 1925 3)

Suppose T is a tree. Define Σ1
0 ↾ [T ] = Σ0

1 ↾ [T ] and Π1
0 = Π0

1 ↾ [T ]. For each n ∈ ω and

i ∈ ω, inductively define

Σ1
n+1↾([T ]×N i)= the collection of the projections along N of the Π1

n↾([T ]×N i+1) sets,

Π1
n+1↾([T ]×N i)= the collection of complements of the Σ1

n+1↾([T ]×N i) sets,

∆1
n+1↾([T ]×N i)=Σ1

n+1↾([T ]×N i)∩Π1
n+1↾([T ]×N i).

Denote that the collection of projective sets over [T ] by P ↾ [T ]. ⊣

Thus, for example, for any A ⊆ [T ], A is Σ1
1 ↾ [T ] if and only if A is the projection of a

closed set of [T ]×N along N and the collection of projective sets P ↾ [T ] is

P ↾ [T ] =
∪

n∈ω
Σ1

n ↾ [T ] =
∪

n∈ω
Π1

n ↾ [T ].

B ↾ [T ] ⊆∆1
1 ↾ [T ] is obtained from the following well-known proposition.

Proposition 1.3.16. (Sierpinski, 1928 4)

Σ1
n ↾ [T ] and Π1

n ↾ [T ] are closed under countable unions and countable intersections. ⊣

There is a proof for the cases Σ1
1 and Π1

1 in Jech (2003, pp. 142-143). See lemma 2.3.22

and lemma 2.5.13 for proofs of proposition 1.3.16.
3as cited in Moschovakis (2009, p. 29).
4as cited in Moschovakis (2009, p. 47).
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Theorem 1.3.17. (Suslin 5)

Suppose T is a countable tree. Every Σ1
1 ↾ [T ] whose complement is also Σ1

1 ↾ [T ] is a Borel

set. Thus ∆1
1 ↾ [T ] = B ↾ [T ]. ⊣

Definition 1.3.18. (Definition of an open-separated union)(Martin, 1990; Martin, 2017

draft, p.80)

Suppose T is a tree. A ⊆ [T ] is the open separated union of {Bj ⊆ [T ]|j ∈ J} where each

Bj ⊆ [T ], if

1. A =
∪

j∈J Bj

2. there are disjoint open sets Dj, j ∈ J such that Bj ⊆ Dj for each j ∈ J ⊣

Definition 1.3.19. (Definition of a quasi-Borel set)(Martin, 1990; Martin, 2017 draft, p.80)

Suppose T is a tree. The quasi-Borel subsets of [T ] form the smallest class of subsets of [T ]

containing all open sets and closed under the operations:

1. complementation

2. countable union

3. open-separated union

We will denote the collection of quasi-Borel sets on [T ] by qB ↾ [T ]. ⊣

By closure under complementation (1) and countable union (2) of quasi-Borel sets, B ↾

[T ] ⊆ qB ↾ [T ] for any tree T .

5as cited in Jech (2003, p. 145, Theorem 11.10).
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Theorem 1.3.20. (Martin, 1990, p281 Remarks (1))

Suppose T is tree. If T is countable, the quasi-Borel subsets of [T ] are Borel subsets of [T ].

Thus qB ↾ [T ] = B ↾ [T ] for a countable tree T . ⊣

If T is uncountable, not all the quasi-Borel subsets of [T ] are Borel. For example, let

T = {⟨a⟩⌢p|p ∈ ω<ω ∧ α ∈ ω1}. For each α ∈ ω1, fix Bα ∈ (Π0
α ↾ ωω) \(Σ0

α ↾ ωω). Define

A = {⟨a⟩⌢y|y ∈ Bα}. Then A is quasi-Borel but not Borel (Martin, 2017 draft, p. 83,

Remark(a)).

Suslin’s theorem 1.3.17 generalizes:

Theorem 1.3.21. (Hansell, 1973 6)

For any tree T , ∆1
1 ↾ [T ] = qB ↾ [T ]. ⊣

This is shown in Martin (1990, p. 281, Theorem 1).

1.3.5 Difference hierarchy

The difference kernel was discussed by Hausdorff (as cited in Welch, 1996, p. 1).

Definition 1.3.22. (Definition of the difference kernel)(Hausdorff, 1944 7)

Denote the difference kernel of A⃗ = ⟨Aβ |β ∈ α⟩ by dk(A⃗) and define

dk(A⃗) = {x ∈ [T ] |µβ (x /∈ Aβ ∨ β = α) is odd} . ⊣

Definition 1.3.23. Suppose Λ is a class of subsets of [T ] and Λ is closed under countable

intersections. Suppose α ∈ ω1. Define

α-Λ ↾ [T ] =
{
A ⊆ [T ]

∣∣∣∃A⃗ = ⟨Aβ |β ∈ α⟩
(
each Aβ ∈ Λ and A = dk(A⃗)

)}
. ⊣

6as cited in Martin (1990); Martin (2017 draft, p. 84, Theorem 2.2.3).
7as cited in Welch (1996, p. 1).
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Since Λ is closed under countable intersections, without loss of generality, we can assume

each Aβ ⊇ Aγ for any β < γ. Note that

1-Λ = Λ

2-Λ = {A ⊆ [T ] |∃A0, A1 ∈ Λ(A = A0\ A1︸︷︷︸
1-Λ

)}

3-Λ = {A ⊆ [T ] |∃A0, A1, A2 ∈ Λ(A = A0\ (A1\A2)︸ ︷︷ ︸
2-Λ

)}

4-Λ = {A ⊆ [T ] |∃A0, A1, A2, A3 ∈ Λ(A = A0\ (A1\ (A2\A3))︸ ︷︷ ︸
3-Λ

)}

...

In general, for any finite n,

n-Λ = {A ⊆ [T ] |∃A0, A1, ..., An−1 ∈ Λ(A = A0\ (A1\ (A2\ (A3\ (· · · (An−2\An−1)))))︸ ︷︷ ︸
(n−1)-Λ

)}

Figure 1.3.4: Illustration of difference kernel.

Consider 2-Λ. Then

A0︸︷︷︸
Λ↾[T ]

\ A1︸︷︷︸
Λ↾[T ]

= A0︸︷︷︸
Λ↾[T ]

∩ (Xω\A1)︸ ︷︷ ︸
co-Λ↾[T ]

= (Xω\A1)︸ ︷︷ ︸
co-Λ↾[T ]

\ (Xω\A0)︸ ︷︷ ︸
co-Λ↾[T ]

.
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Thus

2-Λ ↾ [T ] = (Λ ∧ co-Λ) ↾ [T ] = 2-(co-Λ) ↾ [T ]

where the notation ∧ is defined in notation 1.5.5 on page 43. In particular,

2-Π1
1 ↾ Xω =

(
Σ1

1 ∧Π1
1

)
↾ Xω = 2-Σ1

1 ↾ Xω.

This gives us

co-2-Π1
1 ↾ Xω =

{
A ⊆ Xω

∣∣Xω\A ∈ 2-Π1
1

}
=
(
Σ1

1 ∨Π1
1

)
↾ Xω

where notation ∨ is defined in notation 1.5.5 on page 43. We also have Σ1
1 ↾ Xω ⊆ 2-Π1

1 ↾ Xω

since for any E ∈ Σ1
1 ↾ Xω,

E = Xω︸︷︷︸
Π1

1↾Xω

\ (Xω\E)︸ ︷︷ ︸
Π1

1↾Xω

∈ 2-Π1
1 ↾ Xω.

The following classes are also well-known and are presented in Martin (2017 draft). Note

that Martin (2017 draft) does not include Chapter 5. The page numbers listed below under

Chapter 5 are from an older draft.

Definition 1.3.24. (Martin, 2017 draft, p. 24, Chapter 5, p. 203)

Diff
(
Π1

1 ↾ [T ]
)
=
∪

α∈ω1

α-Π1
1 ↾ [T ] ⊣

Definition 1.3.25. (Martin, 2017 draft, p.275, Chapter 5 Section 5.4)

Define Σ0
1 (Π

1
1) to be the collection of all countable unions of Boolean combinations of sets

belonging to Π1
1 sets. ⊣

Lemma 1.3.26. (Martin, 2017 draft, p. 276, Chapter 5 Lemma 5.4.1)
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Suppose T is a tree and let A ⊆ [T ]. Then A ∈ Σ0
1 (Π

1
1) ↾ [T ] if and only if A is a countable

union of differences of Π1
1 sets. ⊣

Thus for any γ ≤ β, we have

γ −Π1
1 ↾ [T ] ⊆ β −Π1

1 ↾ [T ] ⊆ Diff
(
Π1

1 ↾ [T ]
)
⊆ Σ0

1

(
Π1

1

)
↾ [T ].

Well-known determinacy results
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1.4 Well-known determinacy results

In this section, we will list some well-known determinacy results. In section 1.4.1, we will list

some well-known determinacy results from ZFC. In section 1.4.2, we will list some well-known

determinacy results from large cardinal properties. The list of well-known determinacy

results are also on page 367 Appendix D.

Definition 1.4.1. (Axioms of Zermelo-Fraenkel (ZF) and ZFC)(Jech, 2003)

1. Axiom of Extensionality.

If X and Y have the same elements, then X = Y .

2. Axiom of Pairing.

For any a and b, there exists a set {a, b} that contains exactly a and b.

3. Axiom Schema of Separation (Comprehension).

If P is a property (with parameter p), then for any X and p, there exists a set Y =

{u ∈ X|P (u, p)} that contains all those u ∈ X that have property P .

4. Axiom of Union.

For any X, there exists a set Y =
∪

X, the union of all elements of X.

5. Axiom of Power Set.

For any X, there exists a set Y = ℘(X), the set of all subsets of X.

6. Axiom of Infinity.

There exists an infinite set.
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7. Axiom Schema of Replacement.

If a class F is a function, then for any X there exists a set Y = F (X) = {F (x)|x ∈ X}.

8. Axiom of Regularity (Foundation).

Every nonempty set has an ∈-minimal element.

9. Axiom of Choice.

Every family of nonempty sets has a choice function.

The theory with axioms 1-8 is the Zermelo-Fraenkel axiomatic set theory ZF; ZFC denotes

the theory ZF with the Axiom of choice; ZF-P denotes the theory with ZF without the Power

Set Axiom.
⊣

1.4.1 Determinacy results from ZFC

Theorem 1.4.2 through theorem 1.4.9 are theorems of ZFC.

Theorem 1.4.2. (Gale and Stewart, 1953)

Suppose T is a tree. If T is well-founded, then for any A ⊆ [T ], G(A;T ) is determined. ⊣

Theorem 1.4.3. (AC)(Gale and Stewart, 1953)(as cited in Moschovakis, 2009, p. 222,

6A.6)

There exists A ⊆ ωω such that G(A;ω<ω) is not determined. ⊣

Definition 1.4.4. (Definition of an open game)

Suppose T is a tree. Suppose A ⊆ [T ]. If A is an open set, we call G(A;T ) is called an open

game. Similarly for the other complexities. ⊣
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Notation 1.4.5. Suppose T is a tree. We denote all open games on T are determined by

Det(Σ0
1 ↾ [T ]). In this case, we say Σ0

1 determinacy on T holds. Similarly for the other

complexities. ⊣

Theorem 1.4.6. (Gale and Stewart, 1953)

Suppose T = X<ω for some nonempty X. Then Det(Σ0
1 ↾ [T ]) and Det(Π0

1 ↾ [T ]). ⊣

Theorem 1.4.7. (Wolfe, 1955)

Suppose T = X<ω for some nonempty X. Then Det(Σ0
2 ↾ [T ]). ⊣

Theorem 1.4.8. (Martin, 1975; Martin, 1990)

Suppose T = X<ω for some nonempty X. Then Det(B ↾ [T ]). ⊣

Theorem 1.4.9. (Martin, 1990)

Suppose T = X<ω for some nonempty X. Then Det(qB ↾ [T ]). ⊣

1.4.2 Determinacy results from large cardinals

An uncountable cardinal κ is a measurable cardinal if there is a κ-complete nonprincipal

ultrafilter on κ. We will review definitions of filters related to the definition of a measurable

cardinal.

Definition 1.4.10. (Definitions of a filter, a principal filter, an ultrafilter and a κ-complete

filter)

A filter on a nonempty set S is a collection F of subsets of S such that

1. S ∈ F and ∅ ≠ F ,
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2. if X ∈ F and Y ∈ F , then X ∩ Y ∈ F ,

3. if X, Y ⊆ S, X ∈ F and X ⊆ Y , then Y ∈ F .

Let X0 be a nonempty subset of S. The filter F = {X ⊆ S|X ⊇ X0} is a principal filter.

A filter U on S is an ultrafilter if for every X ⊆ S, either X ∈ U or S\X ∈ U .

If κ is a regular uncountable cardinal and F is a filter on S, then F is called κ-complete

if F is closed under intersection of less than κ sets, i.e., for any {Xα ∈ F |α ∈ γ} with γ ∈ κ,∩
α∈γ Xα ∈ F . ⊣

Definition 1.4.11. (Definition of a measurable cardinal)

An uncountable cardinal κ is measurable if there is a κ-complete nonprincipal ultrafilter U

on κ. ⊣

1.4.2.1 List of results related to the existence of measurable cardinals

The following are results obtained from the existence of a measurable cardinal.

Theorem 1.4.12. (Martin, 1970)

If there is a measurable cardinal, then Det(Π1
1 ↾ ωω). ⊣

Theorem 1.4.13. (Martin, 1970)(as cited in Martin, 2017 draft, p.187, Theorem 4.1.6)

Let T be a game tree. Assume there is a measurable cardinal larger than |T |. Then Det(Π1
1 ↾

[T ]). ⊣

Theorem 1.4.14. (Martin, 1990, p. 287, Theorem 3)

If there is a measurable cardinal, then Det(ω2-Π1
1 ↾ ωω). ⊣
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Martin proved the above result in 1970’s. In the 1980’s he proved the following general-

ization which uses quasi-Borel determinacy.

Theorem 1.4.15. (Martin, 1990, p. 292, Theorem 4)

If there is a measurable cardinal, then Det ∆((ω2 + 1)-Π1
1 ↾ ωω). ⊣

Theorem 1.4.16. (Martin, 2017 draft, p.241, Chapter 5 Theorem 5.2.32)

Let α be a countable ordinal and T = X<ω. If the class of measurable cardinals greater than

|T | has order type ≥ α, then Det ∆((ω2 · α + 1)-Π1
1 ↾ [T ]). ⊣

Martin’s student John Simms proved the following in his dissertation.

Theorem 1.4.17. (Simms 1979 8)

Let T = X<ω. If there is a measurable limit of measurable cardinals that is larger than |T |,

then Det(Σ0
1(Π

1
1) ↾ [T ]). ⊣

1.4.2.2 Projective Determinacy

In general, to obtain each level of projective determinacy Det(Π1
n+1 ↾ ωω), we will need the

existence of n Woodin cardinals. We will review the definition of an elementary embedding

and define a Woodin cardinal.

Definition 1.4.18. (Definition of an elementary embedding and a critical point)

Suppose M = (M,E) and N = (N,F ) are models of set theory. An elementary embedding

ofM into N is a function j : M → N such that for any formula φ (v1, ..., vn) of the language

of set theory and for any a1, ..., an ∈M ,

8as cited in Martin (2017 draft, p. 281, Chapter 5 Theorem 5.4.5).
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M ⊨ φ [a1, ..., an]⇔ N ⊨ φ [j (a1) , ..., j (an)]

Suppose M and N are both transitive and j : M → N is an elementary embedding. Then

an ordinal κ ∈M is the critical point if κ is the least such that j(κ) ̸= κ. ⊣

If α is an ordinal, then j(α) is an ordinal and if α < β, then j(α) < j(β) so that α ≤ j(α).

Thus we can replace j(κ) ̸= κ by j(κ) > κ. Also, for any n ∈ ω, j(n) = n and thus j(ω) = ω.

Hence κ > ω.

Theorem 1.4.19. (Jech, 2003, p. 287)

If there exists a measurable cardinal, then there exists a nontrivial elementary embedding of

the universe. Conversely, if j : V → M is a nontrivial elementary embedding, then there

exists a measurable cardinal. ⊣

Definition 1.4.20. (Definition of the cumulative hierarchy Vα of sets )

Inductively, for each ordinal α, define a set Vα by :

1. V0 = ∅;

2. Vα+1 = ℘(Vα);

3. Vλ =
∪

α<λ Vα if λ is a limit ordinal.

Define the class V =
∪

α∈ON Vα. ⊣

Definition 1.4.21. (Definition of a Woodin cardinal)

A cardinal δ is a Woodin cardinal if for all A ⊆ Vδ there are arbitrary large κ < δ such that
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for all λ < δ there exists an elementary embedding j : V →M with critical point κ such that

j(κ) > λ, Vλ ⊆M and A ∩ Vλ = j(A) ∩ Vλ. ⊣

Each level of projective determinacy Det(Π1
n+1 ↾ ωω) is obtained from the existence of a

measurable cardinal above n Woodin cardinals.

Theorem 1.4.22. (Martin and Steel, 1985)

For n ∈ ω, if there exist n Woodin cardinals with a measurable cardinal above them, then

Det(Π1
n+1 ↾ ωω). ⊣

Projective determinacy Det(P ↾ ωω) is obtained from the existence of infinitely many

Woodin cardinals.

Theorem 1.4.23. (Martin and Steel, 1985)

Suppose there are infinitely many Woodin cardinals. Then Det(P ↾ ωω). ⊣

1.4.2.3 Lightface results related to the existence of 0#

We will observe theorems of difference hierarchy of lightface version. Recall that definition

of Π1
1 is obtained from a recursive relation.

We will review the definition of 0#. The theory of 0# is provided in Jech (2003, p. 313,

chapter 18). First, we will review the definition of Gödel’s constructible universe L.

Definition 1.4.24. (Definition of the Gödel’s constructible universe L)(Martin, 2017 draft)

Gödel’s constructible universe L and hierarchy of constructible sets are defined as follows:

1. L0 = ∅
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2. Lα+1 is the collection of all subsets of Lα that are first order definable over Lα from

elements of Lα. In other words, a set x belongs to Lα+1 if and only if there is a formula

φ(v0, ..., vn) of the language of set theory and there are elements y1, ..., yn of Lα such

that

x = {y0 ∈ Lα |(Lα;∈) ⊨ φ [y0, y1..., yn]} .

3. If α is a limit ordinal, then Lα =
∪

β<α Lβ.

4. L =
∪

α∈ON Lα. ⊣

By Gödel, L is a transitive class model of ZFC (as cited in Martin, 2017 draft; Kunen,

2006). See Kunen (2006) for details.

We will review the definition of a class of indiscernibles.

Definition 1.4.25. (Definition of a class of indiscernibles)(Martin, 2017 draft)

A class U is a class of indiscernibles for a transitive class M if

1. U ⊆ ON ∩M ;

2. if α1 < · · · < αn and β1 < · · · < βn are elements of U and φ(v1, ..., vn) is a formula of

the language of set theory, then

M ⊨ φ [α1, ..., αn]↔M ⊨ φ [β1, ..., βn] ⊣

We will review the definition of 0#.

Definition 1.4.26. (Definition of 0#)(Martin, 2017 draft)

Fix some recursive bijection φ 7→ nφ from the set of formulas of the language of set theory

34



whose free variables are among v1, v2, .. to the set ω. If there is a closed unbounded subset C

of ω1 such that C is a set of indiscernibles for Lω1 , then 0# is

{
nφ(v1,...,vn) |Lω1 ⊨ φ [α1, ..., αn]

}
where α1 < · · · < αn are elements of C. In such case, we say that 0# exists. ⊣

It is well-known that if a measurable cardinal exists, then 0# exists (Martin, 2017 draft,

p. 173, Corollary 3.4.9).

1.4.2.4 List of results related to the existence of 0#

Initially, Martin proved the following lightface result of theorem 1.4.12 with a weaker hy-

pothesis than an existence of a measurable cardinal.

Theorem 1.4.27. (Martin, 1970; Martin, 2017 draft, p.2.9, Theorem 4.4.3)

If 0# exists, then Det(Π1
1 ↾ ωω). ⊣

Theorem 1.4.28. (Friedman, 1971 9)

If 0# exists, then Det(3-Π1
1 ↾ ωω). ⊣

Theorem 1.4.29. (Martin, early 1970’s 10)

If 0# exists, then Det(
∪

β∈ω2 β-Π1
1 ↾ ωω). ⊣

Theorem 1.4.30. (Martin, 1975)

Det(3-Π1
1 ↾ ωω) implies 0# exists. ⊣

9as cited in DuBose (1990, p. 504).
10as cited in DuBose (1990, p. 512).
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Theorem 1.4.31. (Harrington, 1978 11)

Det(Π1
1 ↾ ωω) implies 0# exists. ⊣

All together, we have the following.

Theorem 1.4.32. (Martin and Harrington)

Det(Π1
1 ↾ ωω) if and only if 0# exists if and only if Det(

∪
β∈ω2 β-Π1

1 ↾ ωω). ⊣

Martin commented that no direct proof of Det(Π1
1 ↾ ωω) if and only if Det(

∪
β∈ω2 β-Π1

1 ↾

ωω) is known witout going through the existence of 0# (Martin, 2017 draft, p. 253, Chapter

5 Remark (a)). One can find more details regarding to these theorems in DuBose (1990, p.

512) and Martin (2017 draft, p. 253, under Remarks after Chapter 5 theorem 5.3.10).

11as cited in DuBose (1990, p. 512); Martin (2017 draft, p. 209).
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Large cardinal properties

•P ↾ Xω∃ infinitely many Woodin cardinals ⇒ Martin-Steel [1985]

•Π1
n ↾ Xω∃ a measurable cardinal above n Woodin cardinals ⇒ Martin-Steel [1985]

∃ a measurable cardinal ⇒

•∆1
2 ↾ Xω

•Σ0
1(Π

1
1) ↾ ωω∃ a measurable limit of measurable cardinals ⇒ Simms [1979]

•∆((ω2 + 1)-Π1
1 ↾ ωω) Martin [1990]

•ω2-Π1
1 ↾ ωω Martin [1970’s]

•Π1
1 ↾ Xω Martin [1970]

•B ↾ Xω Martin [1975]

•Σ0
2 ↾ Xω Wolfe [1955]

•Σ0
1 ↾ Xω Gale and Stewart [1953]

ZFC ⇒

Figure 1.4.1: Illustration of well-known boldface determinacy results. The ”Det” before each
class is suppressed/excluded.

In the above Figure 1.4.1, A⇒ B abbreviates A implies the determinacy of B. Similarly,

A⇒


B

C

D

abbreviates A implies the determinacy of the classes listed, i.e., A implies the determinacy

of B, A implies the determinacy of C, and A implies the determinacy of D.
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1.5 Introduction to this dissertation

In this dissertation, we will focus on a certain type of “long trees”. Typically, these trees

will have height greater than ω. Our goal to this dissertation is to classify determinacy

involving certain long games. Also, we will work on determinacy comparison in a different

way as usual determinacy comparison. In section 1.5.2, we will explain the difference. The

big picture for some of the determinacy results in this dissertation is shown in Appendix A

on page 355.

1.5.1 Motivation to study long trees

As we have seen in section 1.4, games on trees ω<ω and X<ω for a nonempty X, have been

extensively studied. Every path in the trees X<ω has length ω. Next, we will consider trees

with height greater than ω.

First, let’s consider two contrasting examples about open games.

Proposition 1.5.1. ZF-P(folklore)

Suppose n ∈ ω. Then for odd n such that 1 ≤ n < ω,

Det
(
Σ0

n ↾ ωω
)
⇔ Det

(
Σ0

1 ↾ ωω+n−1
)
.

(See more details in theorem 2.4.5). ⊣

Thus in ZF, we have determinacy of open games for the tree ωω+n−1 for any odd n ∈ ω

by theorem 1.4.8.

For our contrasting example, consider A ⊆ ωω such that G (A;ω<ω) is not determined.

Such a set A exists by theorem 1.4.3. By theorem 1.4.8, this A is not Borel. Define a tree T
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as follows.

h ∈ [T ]⇔


h ∈ ωω if h ↾ ω /∈ A,

h ∈ ωω+1 if h ↾ ω ∈ A.

Then ht(T ) = ω + 1. Define B = {h ∈ [T ] |lh (h) = ω + 1}. We can see that B ∈ Σ0
1 ↾ [T ]

since

B =
∪

n∈ω
O (⟨ω, n⟩).

Suppose G (B;T ) is determined. Then there is a winning strategy s∗ for player I∗ or player

II∗ for G (B;T ). If s∗ is player I∗’s winning strategy for G (B;T ), then define s = s∗ ↾ ω<ω.

Then any play f according to s is according to s∗ and playing one more move ⟨a⟩ according

to s∗ gives us that f⌢⟨a⟩ ∈ B. Thus f ∈ A so s is a winning strategy for player I for

G (A;ω<ω). If s∗ is player II∗’s winning strategy for G (B;T ), then define s = s∗. Then any

play f according to s is according to s∗. Thus f ∈ [T ]\B. Hence f /∈ A so s is a winning

strategy for player II for G (A;ω<ω). Thus G (A;ω<ω) is determined, a contradiction. Hence

G (B;T ) is not determined.

Therefore, there is an open nondetermined game on a long tree (just one more move

is added to some plays in ω<ω). Note that above game has variable length. Thus we can

conclude that there is a long tree T such that Det(Σ0
1 ↾ [T ]) fails and such T is above. Hence

we have the following proposition.

Proposition 1.5.2. There exists a game tree T with ht(T ) = ω + 1 such that

¬Det
(
Σ0

1 ↾ [T ]
)
. ⊣

A natural project is to characterize such long T for which open determinacy holds (or

fails). The trees that we will be considering will have variable length as in example above. We
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will calibrate the determinacy strength on these trees, by trying to obtain such determinacy

that is equivalent to well-known determinacy results (as founded in section 1.4).

In this dissertation, we will define two types of trees, Type 1 trees and Type 2 trees. Type

1 trees are special case of Type 2 trees and the tree mentioned above is a special case of a

Type 1 tree. Each play in these trees possibly has variable length. We will determine which

games are determined on these long trees by comparing determinacy of games on these long

trees and determinacy of games on the usual tree X<ω. In order to talk about determinacy

of games on long trees, we will introduce some new concepts.

1.5.2 Difference from usual determinacy results

Each of determinacy results in section 1.4 refer to determinacy results on a fixed tree. Often

we consider determinacy of games on a fixed a tree T . For example, Det(Σ0
1 ↾ [T ]) refers to

any open set A ⊆ [T ], G(A;T ) is determined. Thus every game in {G (A;T ) |A ∈ Σ0
1 ↾ [T ]}

is determined for a fixed tree T .

When we compare determinacy, often we are comparing the determinacy of certain games

on a fixed game tree T1 to determinacy of certain games on a fixed game tree T2 (possibly

T1 = T2). For example, we have

Det
(
Σ0

n ↾ ωω
)
⇔ Det

(
∆0

1 ↾ ωω+n
)

for any n ∈ ω. For Det (Σ0
n ↾ ωω), we are considering the tree ω<ω and for Det (∆0

1 ↾ ωω+n),

we are considering the tree ω≤ω+n.

In this dissertation, instead of fixing one tree and considering certain games on the one

fixed tree, we will consider collections of trees, a Tree1 collection (respectively, a Tree2
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collection), corresponding to Type 1 trees (respectively, Type 2 trees). Then for each tree T

in a Tree collection and A ⊆ [T ], we have the game G(A;T ). Thus when we say “games on

a Tree collection”, we mean

∪
T∈Tree

{G (A;T ) |A ⊆ [T ]}.

Similar to how we defines open games on a fixed tree T , we will define open games on a Tree

collection. When we say “open games on a Tree collection”, we mean

∪
T∈Tree

{
G (A;T )

∣∣A ∈ Σ0
1 ↾ [T ]

}
.

As a notation, we use G for games on a Tree collection. We will denote open games on a

Tree collection by

G(Σ0
1;Tree) =

∪
T∈Tree

{
G (A;T )

∣∣A ∈ Σ0
1 ↾ [T ]

}
.

Similarly, we shall define other complexities of games on a Tree collection. With respect

to determinacy, we usually write Det(Σ0
1 ↾ [T ]) for Σ0

1 determinacy on the game tree T .

Similarly, Σ0
1 determinacy on a Tree collection will be expressed by Det G(Σ0

1;Tree). See

definition 2.2.7 and definition 3.2.10 for precise definition.

1.5.3 Notations for this dissertation

We will define notations particular to this dissertation. Some of the notations that we will

see often in this dissertation are listed in Appendix B : List of Symbols (page 359). Notations

and definitions are also listed on page 371 Appendix E.

Consider the game tree X≤ω+n. We shall identify the body of the tree [X≤ω+n] = Xω+n
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with the product Xω ×Xn. Let x = ⟨x0, x1, ...⟩ ∈ Xω and g = ⟨g0, g1, ..., gn−1⟩ ∈ Xn. Then

x⌢g = ⟨x0, x1, ..., g0, g1, ..., gn−1⟩ ∈ Xω+n.

Thus we can think X≤n as a “tail tree” and games on X≤ω+n as games on X<ω composed

with “tail games”, i.e., games on X≤n. Using the idea of a tail game, we will apply the cross

product notation with Xn being replaced by arbitrary tail games.

Notation 1.5.3. (Abuse of product notation)

Suppose T, T1, T2 are trees and satisfies the following properties.

1. every path of [T1] has length α for a fixed α,

2. for any ⟨f, g⟩ ∈ [T1]× [T2], f
⌢g ∈ [T ] and

3. for any h ∈ [T ], ⟨h ↾ α, h ↾ [α, lh(h))⟩ ∈ [T1]× [T2].

Then to simplify notation, we abuse the cross product notation and express

[T ] = [T1]× [T2].

Caution :

We will use the actual cross product in some places. Readers should identify them from

the context. ⊣

Notation 1.5.4. (Abuse of inverse image notation)

Suppose f is a function from A to B. If b ∈ B is a singleton, we suppress {} for f−1({b}),

i.e., we write f−1(b) to mean f−1({b}). ⊣
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Notation 1.5.5. Define

(Λ ∧ Ξ) ↾ [T ] = {A |∃B ∈ Λ ↾ [T ]∃C ∈ Ξ ↾ [T ] (A = B ∩ C)} .

Similarly, define

(Λ ∨ Ξ) ↾ [T ] = {A |∃B ∈ Λ ↾ [T ]∃C ∈ Ξ ↾ [T ] (A = B ∪ C)} . ⊣

Notation 1.5.6. Define

co-Λ ↾ [T ] = {A ⊆ [T ] |[T ] \A ∈ Λ} .

Define

∆(Λ) ↾ [T ] = Λ ↾ [T ] ∩ (co-Λ) ↾ [T ] . ⊣

Definition 1.5.7. f : X1 → X2 is Λ-measurable if for any open O ⊆ X2, f
−1 (O) ∈ Λ ↾ X1.⊣

Notation 1.5.8. Define Γ (Y,Λ) = {Ψ : Xω → Y |Ψ is Λ-measurable}.

Note that Σ0
1-measurable is continuous. ⊣

Observation 1.5.9. Suppose Ξ is any complexity. Then

Γ(ω,Ξ) = Γ(ω,∆(Ξ)) = Γ(ω, co-Ξ).

In particular, for any γ ∈ ω1 and n ∈ ω, Γ(ω,Σ0
γ) = Γ(ω,∆0

γ) = Γ(ω,Π0
γ) and Γ(ω,Σ1

n) =

Γ(ω,∆1
n) = Γ(ω,Π1

n). ⊣

Proof.

Show Γ(ω,Ξ) ⊆ Γ(ω,∆(Ξ)). Suppose Ψ ∈ Γ(ω,Ξ). Then Ψ is a function from Xω into ω

such that for every open set O ⊆ ω, Ψ−1(O) ∈ Ξ ↾ Xω. Fix O ∈ Σ0
1 ↾ Xω. Since we are
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using the discrete topology on ω, O =
∪

n∈O {n} and each singleton {n} is clopen. Consider

ω\O =
∪

n∈ω\O {n}. Then ω\O is open. Thus Ψ−1 (ω\O) ∈ Ξ ↾ Xω. Since Ψ−1 (ω\O) =

Xω\Ψ−1 (O), Ψ−1 (O) ∈ co-Ξ ↾ Xω. Thus Ψ−1 (O) ∈ Ξ ↾ Xω ∩ co-Ξ ↾ Xω = ∆(Ξ) ↾ Xω.

Therefore, Ψ ∈ Γ(ω,∆(Ξ)). Since Γ(ω,∆(Ξ)) ⊆ Γ(ω,Ξ), we have Γ(ω,∆(Ξ)) = Γ(ω,Ξ).

Similarly, we have Γ(ω,∆(Ξ)) = Γ(ω, co-Ξ).

Notation 1.5.10. Let FIN be the collection of nonempty finite sets and CTB be the col-

lection of nonempty countable sets. ⊣

Notation 1.5.11. Let WF be the set of nonempty well-founded trees. Let CWF ⊆ WF

be the set of nonempty well founded trees such that each move is from some countable set.

Similarly, let FWF ⊆ CWF be the set of nonempty well-founded trees such that each move

is from some finite set. ⊣
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Chapter 2

Type 1 Tree : T
Ψ,B
X,Y

In this chapter, we will consider games on a certain type of long trees, called a “Type 1

tree”.

In section 2.1, we will define a “Type 1” tree. Paths of a Type 1 tree typically will have

variable lengths. Some paths will have length ω while other paths will have length greater

than ω and less than ω + ω. The first ω-moves of each play will come from a nonempty set

X. Any move made at a position of infinite length will come from a nonempty set Y . Note

that Y could be just X. The length of each play will be determined by a function Ψ and a

subset B of Xω. B will be used to determine whether any play ends at length ω. If a play

doesn’t end at length ω, we will use the function Ψ to decide the length of the play. We will

also provide a separate characterization of Type 1 trees called (X, Y )-TEP-[ω, ω + ω) (TEP

is an abbreviation for “tail exchange property”).

In section 2.2, we will define a certain collection of Type 1 trees, called a “Tree1 collec-

tion”. Each Tree1 collection will have four parameters, a fixed nonempty set X, a collection

of nonempty sets Y , a collection of functions and a collection of subsets of Xω. Then, we will
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use standard complexities on trees (Σ0
1 ↾ [T ],Π0

1 ↾ [T ]) as in section 1.3 to define complexities

on each Tree1 collection. (Recall section 1.5.2.)

In sections 2.3 through 2.6, we will observe the determinacy strength on games on Tree1

collections. In section 2.3, by shifting, we will compare the determinacy of Σ0
α (respectively,

Σ1
n) games on a particular Tree1 collection and Π0

α (respectively, Π1
n) games on the same

Tree1 collection, for α ∈ ω1 and n ∈ ω. In sections 2.4 through 2.6, we will compare the

determinacy strength of games on a certain Tree1 collection and standard determinacy of

games on X<ω:

• In section 2.4, we will use the determinacy of a fixed complexity of games on a certain

Tree1 collection to obtain the determinacy of a certain complexity of games on X<ω.

• In section 2.5, we will obtain the determinacy of Borel and projective games on par-

ticular Tree1 collections from the determinacy of a fixed complexity of games on X<ω.

Some of these results will be converses to results in section 2.4.

• In section 2.6, we will conclude this chapter with the resulting determinacy equivalences

from the earlier determinacy results between games on X<ω and games on a Tree1

collection.

Lastly, in section 2.7, we will generalize a Type 1 tree to an α-Type 1 tree for a limit

ordinal α.

Definition of a Type 1 tree
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2.1 Definition of a Type 1 tree

In this section, we will give a definition of a Type 1 tree. We will also provide a separate

characterization of Type 1 trees called (X, Y )-TEP-[ω, ω + ω) (TEP is an abbreviation for

“tail exchange property”). Throughout this chapter, we will assume the following notation

2.1.1.

Notation 2.1.1. We will assume the following notational conventions throughout chapter

2:

• X and Y will always denote nonempty sets.

• B will always denote a subset of Xω.

• Ψ will always denote a function from Xω into ω. ⊣

Definition 2.1.2. (Definition of a Type 1 tree)

Suppose X and Y are nonempty sets. Let B be a subset of Xω and let Ψ be a function from

Xω into ω. For any h ∈ Xω × Y <ω, define [TΨ,B
X,Y ] by :

h ∈
[
TΨ,B
X,Y

]
↔


h ∈ Xω if h ↾ ω /∈ B,

h ∈ Xω × Y Ψ(h↾ω)+1 if h ↾ ω ∈ B.

A tree T is a Type 1 tree if and only if T = TΨ,B
X,Y for some nonempty sets X and Y , a

function Ψ from Xω into ω and a subset B of Xω. (Possibly X = Y and also B could be the

empty set.) ⊣

As in definition 2.1.2, fix X,Y , a function Ψ from Xω to ω and B ⊆ Xω. Then for any

h ∈ [TΨ,B
X,Y ],
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1. h = h ↾ ω ∈ Xω\B, or h ↾ ω ∈ B and h ↾ [ω, lh(h)) ∈ Y Ψ(h↾ω)+1. 1 We will call

h ↾ [ω, lh(h)), the “tail of h”. Hence the tail of h is in Y Ψ(h↾ω)+1. Thus lh(h) = ω if

and only if h ∈ Xω\B, lh(h) > ω if and only if h ∈ B.

2. If lh(h) > ω, then the length of h is determined by Ψ and h ↾ ω. The length of h is

ω+Ψ(h ↾ ω)+ 1. Thus, the length of a long play h depends on which Ψ−1(n) contains

h as an element.2

Therefore, [TΨ,B
X,Y ] =

∪
n∈ω [(B ∩Ψ−1 (n))× Y n+1]∪̇ (Xω\B). 3 In particular, whenB = ∅,

[TΨ,∅
X,Y ] = Xω and when B = Xω and Ψ is a constant function at n ∈ ω, then [TΨ,Xω

X,Y ] =

Xω × Y n+1.

h ω↾
( ) 1 movesh ωΨ + −↾

Case 1 : h Bω∉↾

h h ω= ↾

Case 2 : h Bω∈↾
h

tail of h

Figure 2.1.1: Illustration of paths h ∈ [T ] for a Type 1 tree T = TΨ,B
X,Y for B ̸= ∅.

Next, we provide an alternate description of Type 2 trees. In definition 2.1.3 below, we

will define a property “(X,Y )-TEP-[ω, ω + ω) property” for a tree T .

Definition 2.1.3. (Definition of the (X,Y )-TEP-[ω, ω + ω) property)

Suppose X and Y are nonempty sets. Let T be a tree. T satisfies (X, Y )-TEP-[ω, ω + ω)

11 is added to make sure that the plays with length ω are exactly the ones that are not in B (e.g., if
h ↾ ω ∈ B and Ψ(h ↾ ω) = 0, then lh(h) = ω + 1).

2Recall notation 1.5.4. Abuse of notation : we suppress {} for Ψ−1({n}), i.e., we write Ψ−1(n) to mean
Ψ−1({n}). Ψ−1(n) does not mean the inverse image of {0, 1, ..., n− 1} here.

3Recall notation 1.5.3: abuse of product notation. The dot “·” above the union symbol represents the
disjoint union.
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property if for all y ∈ [T ], y satisfies the following four properties:

1. y ↾ ω ∈ Xω.

2. lh (y) ∈ [ω, ω + ω).

3. If lh (y) > ω, then each move of the tail of h is from Y .

4. If lh (y) > ω, then there exists a unique n ∈ ω\ {0} such that

∀g ∈ Y n (y ↾ ω)⌢ g ∈ [T ] (tail exchange property) ⊣

TEP abbreviates the “tail exchange property”. For any nonempty sets X, Y , a function

Ψ : Xω → ω and B ⊆ Xω, TΨ,B
X,Y satisfies (X,Y )-TEP-[ω, ω + ω) property.

Observation 2.1.4. Every Type 1 tree satisfies (X, Y )-TEP-[ω, ω + ω) property. Con-

versely, for any (X, Y )-TEP-[ω, ω + ω) tree T , there exist Ψ : Xω → ω and a unique B ⊆ Xω

such that T = TΨ,B
X,Y . In fact, B = {h ↾ ω |h ∈ [T ] ∧ lh (h) > ω} and Ψ ↾ B is unique. ⊣

Definition of a Tree1 collection and a collection of games on a Tree1 collection with

complexity Ξ
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2.2 Definition of a Tree1 collection and a collection of

games on a Tree1 collection with complexity Ξ

In this section, we will first define a Tree1 collection of Type 1 trees. Then we will de-

fine games on a Tree1 collection. We will be considering a collection of trees TΨ,B
X,Y in

which Y varies over Θ, Ψ varies over Γ and B varies over Λ, while X is fixed. Thus,

each Tree1 collection will be defined from X,Θ,Γ and Λ. We will denote a Tree1 collec-

tion by Tree1 (X,Θ,Γ,Λ) constructed from some X,Θ,Γ and Λ. Throughout the rest of

this chapter, we will assume notation 2.2.1 below. Then, in definition 2.2.7, we will define

games on a Tree1 collection with complexity Ξ (e.g., Σ0
1, Σ

0
2, ...). We will also make some

observations concerning Tree1 collections and games on Tree1 collections.

Notation 2.2.1. We will assume the following notation throughout the chapter 2:

• Θ, respectively, Θi will always denote a nonempty collection of nonempty sets.

• Γ, respectively, Γi will always denote a nonempty collection of functions from Xω into

ω.

• Λ, respectively, Λi will always denote a nonempty collection of subsets of Xω. ⊣

We next define a collection of Type 1 trees constructed from X,Θ,Γ and Λ.

Definition 2.2.2. (Definition of a Tree1 collection)

Fix a nonempty set X. Let Θ ̸= ∅ be any collection of nonempty sets. Suppose Λ ̸= ∅ is any

collection of subsets of Xω and Γ ̸= ∅ is a collection of functions from Xω to ω. Define

Tree1 (X,Θ,Γ,Λ) =
{
TΨ,B
X,Y |Y ∈ Θ,Ψ ∈ Γ, B ∈ Λ

}
.

50



A collection is a Tree1 collection if and only if it is Tree1(X,Θ,Γ,Λ) for some nonempty

set X, a nonempty collection Θ of Y ’s, a nonempty collection Γ of functions from Xω into

ω and a nonempty collection Λ of subsets of Xω.

We sometimes let T1 be a Tree1 collection when we wish to suppress X,Θ,Γ and Λ, i.e.,

T1 = Tree1 (X,Θ,Γ,Λ). ⊣

For example, Tree1 (X,Θ,Γ(ω,∆0
1),Π

0
1 ↾ Xω) 4 is a collection of trees such that each tree

is constructed by a set Y ∈ Θ, a continuous function Ψ from Xω into ω and B ∈ Π0
1 ↾ Xω.

Notation 2.2.3. When dealing with singletons for any of the last three components of

Tree1 (X,Θ,Γ,Λ), we will suppress {}, i.e., if Θ is a singleton {Y }, Tree1 (X,Y,Γ,Λ) abbre-

viates Tree1 (X, {Y } ,Γ,Λ). Similarly, if Γ is a singleton {f}, Tree1 (X,Θ, f,Λ) abbreviates

Tree1 (X,Θ, {f} ,Λ)and if Λ is a singleton {B}, Tree1 (X,Θ,Γ, B) abbreviates Tree1(X,

Θ,Γ, {B}). ⊣

Observation 2.2.4. Fix a nonempty set X. Suppose Θ,Θ1,Θ2 are collections of sets;

Γ,Γ1,Γ2 are collections of functions from Xω into ω; and Λ,Λ1,Λ2 are collections of subsets

of Xω. If Θ1 ⊆ Θ2, then

Tree1 (X,Θ1,Γ,Λ) ⊆ Tree1 (X,Θ2,Γ,Λ) .

Similarly, if Γ1 ⊆ Γ2, then

Tree1 (X,Θ,Γ1,Λ) ⊆ Tree1 (X,Θ,Γ2,Λ) ,

and if Λ1 ⊆ Λ2, then

Tree1 (X,Θ,Γ,Λ1) ⊆ Tree1 (X,Θ,Γ,Λ2) .
4Recall for notation 1.5.8, Γ(ω,∆0

1) is a set of continuous functions from Xω into ω.
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Thus Tree1 is an increasing operation on last three components. ⊣

Now we will consider the set of functions Γ(ω,Ξ) for some complexity Ξ over Xω. Since

we are using the discrete topology on ω, we have Γ(ω,Ξ) = Γ(ω, co-Ξ) = Γ(ω,∆(Ξ)) by

observation 1.5.9 on page 43. Thus we have observation 2.2.5. (Recall that for example, if

Ξ is Σ0
γ, then co-Ξ is Π0

γ and ∆(Ξ) is ∆0
γ.)

Observation 2.2.5. Let Θ be a collection of sets and Λ ⊆ Xω. Suppose we have Ξ such

that Ξ ↾ Xω is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Then the following are equal.

• Tree1 (X,Θ,Γ(ω,Ξ),Λ)

• Tree1 (X,Θ,Γ(ω, co-Ξ),Λ)

• Tree1 (X,Θ,Γ(ω,∆(Ξ)),Λ) ⊣

Now, we consider games on a Tree1 collection. Corresponding to each tree T in a Tree1

collection and A ⊆ [T ], we have the game G(A;T ).

Definition 2.2.6. (Definition of “games on a Tree1 collection”)

Let Tree1 collection T1 = Tree1(X,Θ,Γ,Λ) for some X,Θ,Γ and Λ. Define “games on the

Tree1 collection T1” by ∪
T∈T1

{G (A;T ) |A ⊆ [T ]} ⊣

If Ξ is a complexity, we define Ξ games on a Tree1 collection as follows.

Definition 2.2.7. (Definition of Ξ games on a Tree1 collection)

Let Tree1 collection T1 = Tree1(X,Θ,Γ,Λ). Suppose we have Ξ such that for each T ∈
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Tree1, Ξ ↾ [T ] ⊆ ℘ ([T ]) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Define Ξ games on a Tree1

collection T1 by

G (Ξ; T1) =
∪
T∈T1

{G (A;T ) |A ∈ Ξ ↾ [T ]}.

As a notation, we will use G for a collection of games on a Tree1 collection. ⊣

For example, open games on a Tree1 collection T1 = Tree1(X,Θ,Γ,Λ) is

G(Σ0
1; T1) =

∪
T∈T1

{
G (A;T )

∣∣A ∈ Σ0
1 ↾ [T ]

}
.

Though often Ξ will be a standard classes (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n), note that G(Ξ;T ) is

defined as long as we have defined Ξ ↾ [T ] ⊆ ℘ ([T ]).

Definition 2.2.8. (Definition of Ξ determinacy on a Tree1 collection)

Let Tree1 collection T1 = Tree1(X,Θ,Γ,Λ). Suppose we have Ξ such that for each T ∈ T1,

Ξ ↾ [T ] ⊆ ℘ ([T ]) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Define Ξ determinacy on the Tree1

collection T1 by

Det G(Ξ; T1),

i.e., for any T ∈ T1 and A ∈ Ξ ↾ [T ], every game G(A;T ) is determined. ⊣

Next, we will make three observations about games on Type 1 trees.

Observation 2.2.9. Suppose X is a nonempty set, Θ is a collection of sets, Γ is a collection

of functions from Xω into ω, Λ is a collection of subsets of Xω. Let T1 = Tree1(X,Θ,Γ,Λ).

Suppose we have Ξ1,Ξ2 such that for each T ∈ T1, Ξ1 ↾ [T ] ⊆ ℘ ([T ]) and Ξ2 ↾ [T ] ⊆ ℘ ([T ])

are defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). If for any T ∈ T1, Ξ1 ↾ [T ] ⊆ Ξ2 ↾ [T ], then

G (Ξ1; T1) ⊆ G (Ξ2; T1) .
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Thus G is an increasing operation on the first component. ⊣

Since the three Tree1 collections in observation 2.2.5 are equal, we have the following

observation.

Observation 2.2.10. Let Θ be a collection of sets and Λ ⊆ Xω. Suppose we have Ξ such

that Ξ ↾ Xω ⊆ ℘ (Xω) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Suppose we have Ξ1 such that for

each T ∈ Tree1 (X,Θ,Γ(ω,Ξ),Λ), Ξ1 ↾ [T ] ⊆ ℘ ([T ]) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Then

the following are equal.

• G (Ξ1;Tree1 (X,Θ,Γ(ω,Ξ),Λ))

• G (Ξ1;Tree1 (X,Θ,Γ(ω, co-Ξ),Λ))

• G (Ξ1;Tree1 (X,Θ,Γ(ω,∆(Ξ)),Λ)) ⊣

Equivalence between Σ0
α and Π0

α determinacy on a Tree1 collection and equivalence

between Σ1
n and Π1

n determinacy on a Tree1 collection

54



2.3 Equivalence between Σ0
α and Π0

α determinacy on a

Tree1 collection and equivalence between Σ1
n and

Π1
n determinacy on a Tree1 collection

In this section, for a countable α, we will show that the determinacy of Σ0
α and Π0

α games on

certain Tree1 collections of Type 1 trees are equivalent. We will also obtain the determinacy

equivalence of Σ1
n and Π1

n games on certain Tree1 collections for a finite n. The main

theorem of this section is theorem 2.3.1.

Theorem 2.3.1. Suppose α ∈ ω1 and n ∈ ω. Then for any X and Θ,

Det G
(
Σ0

α; T1
)
⇔ Det G

(
Π0

α; T1
)

(2.1)

Det G
(
Σ1

n; T1
)
⇔ Det G

(
Π1

n; T1
)

(2.2)

for T1 = Tree1 (X,Θ,Γ(ω, C),B ↾ Xω) 5 where:

• C ∈ {Σ0
γ,Π

0
γ,∆

0
γ,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, γ ∈ ω1 and m ∈ ω.

• B ∈ {Σ0
β,Π

0
β,∆

0
β,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, β ∈ ω1 and m ∈ ω. ⊣

We will prove this theorem on page 80.

For each Type 1 tree T , we will define a corresponding “Shift tree” Sft(T ) in definition

2.3.3. Then in definition 2.3.7, we will define a function “Shift” which takes a subset of [T ]

for a Type 1 tree T to a particular subset of [Sft(T )]. In lemma 2.3.9 and lemma 2.3.15, we

will find the complexity of Shift(A) for A being Borel (respectively, a projective set) on [T ]

5Recall notation 1.5.8 for Γ(ω, C).
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for Type 1 trees in a specific Tree1 collection. For each Type 1 tree, there is a natural Shift

tree which is also a Type 1 tree. In order to define a Shift tree for each Type 1 tree T = TΨ,B
X,Y ,

we define B+ and Ψ+ from B ⊆ Xω and a function Ψ from Xω into ω which satisfy “shift”

relation. B+ corresponds to adding a “dummy” copy of X to the front of B: for any a ∈ X,

⟨a⟩⌢f ∈ B+ if and only if f ∈ B. Hence there is a “shift” relation between B and B+. Ψ+

is a function on Xω into ω and for any f ∈ Xω and for any a ∈ X, Ψ+(⟨a⟩⌢f) = Ψ(f) + 1.

Hence there is a “shift” relation between Ψ and Ψ+.

Definition 2.3.2. (Definition of B+ and Ψ+)

Fix a Type 1 tree TΨ,B
X,Y . Then B ⊆ Xω and Ψ : Xω → ω. Define

1. B+ = X ×B ⊆ Xω, 6

2. Ψ+ : Xω → ω such that Ψ+(f) = Ψ(f ↾ [1, ω)) + 1. ⊣

By using B+ and Ψ+, we will define a Shift tree as follows.

Definition 2.3.3. (Definition of a Shift tree Sft(T ))

Fix a Type 1 tree T = TΨ,B
X,Y . Define a Shift tree Sft(T ) by

Sft(T ) = TΨ+,B+

X,Y . ⊣

6Recall abuse of notation 1.5.3 on page 42.

56



h

h ↾ ωh ∈ [T ] h ↾ [ω, lh(h))

x

any x ∈ X

h ↾ ωh̃ ∈ [Sft(T )] h ↾ [ω, lh(h))y

any y ∈ Y
h̃

Figure 2.3.1: Illustration of h̃ ∈ [Sft(T )] with lh(h̃) > ω.

Observation 2.3.4. For any Type 1 tree T = TΨ,B
X,Y , B = ∅ if and only if T = Sft(T ). ⊣

Proof.

Notice that B = ∅ if and only if B+ = ∅.

(⇒) For any Type 1 tree T = TΨ,B
X,Y with B = ∅, T = X<ω = Sft(T ).

(⇐) Suppose T = Sft(T ). Show B = B+ = ∅.

First, show B = B+. Suppose B ̸= B+ for a contradiction. Then there exists f ∈ B\B+

or f ∈ B+\B. Suppose f ∈ B\B+. Pick an arbitrary h ∈ [T ] such that h ↾ ω = f . Since

h ↾ ω = f ∈ B, lh(h) > ω. By assumption, we have T = Sft(T ) so that h ∈ [Sft(T )]. Since

h ↾ ω = f /∈ B+, lh(h) = ω, a contradiction. Similarly for the case f ∈ B+\B. Therefore,

we have B = B+ and thus B = X ×B.

Show B = ∅ or B = Xω. Suppose B ̸= ∅. Since B = X × B, B = X × (X × B) =

X ×X × B. Inductively, we have that each component of elements of B is from X. Hence

B = Xω.

Show B ̸= Xω. For a contradiction, assume B = Xω. Let f̂ ∈ Xω = B = B+ be the

sequence of all 0’s. Notice that since f̂ is the sequence of all 0’s, f̂ ↾ [1, ω) = f̂ . Pick an
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arbitrary h ∈ [Sft(T )] such that h ↾ ω = f̂ . Then

lh(h) = Ψ+(h ↾ ω) + 1 = Ψ(h ↾ [1, ω)) + 2 = Ψ(f̂ ↾ [1, ω)) + 2 = Ψ(f̂) + 2.

Since T = Sft(T ), h ∈ [T ]. Thus

lh(h) = Ψ(h ↾ ω) + 1 = Ψ(f̂) + 1.

Hence, Ψ(f̂) = Ψ(f̂) + 1, a contradiction.

Therefore, B = B+ = ∅.

Notice that for each Type 1 tree T = TΨ,B
X,Y and for each h ∈ [Sft(T )], there is a unique

f ∈ [T ] such that h(i+1) = f(i) for every i ∈ lh(f) (e.g., h(1) = f(0), h(2) = f(1), ..., h(ω+

1) = f(ω), h(ω + 2) = f(ω + 1), ... for h ↾ ω ∈ B).

Proposition 2.3.5. Fix a Type 1 tree T = TΨ,B
X,Y . Then for every h ∈ [Sft(T )],

h ↾ [1, ω) ∈ [T ] if h ↾ ω /∈ B+,

h ↾ [1, ω)⌢ h ↾ [ω + 1, lh (h)) ∈ [T ] if h ↾ ω ∈ B+. ⊣

Proof.

Pick an arbitrary h ∈ [Sft(T )]. Notice that h ↾ ω ∈ B+ if and only if h ↾ [1, ω) ∈ B. Also,

Ψ+(h ↾ ω) = Ψ+(h(0)⌢h ↾ [1, ω)) = Ψ(h ↾ [1, ω)) + 1. Thus

58



h ∈ Sft [T ]↔


h ∈ Xω if h ↾ ω /∈ B+,

h ∈ Xω × Y Ψ+(h↾ω)+1 if h ↾ ω ∈ B+.

↔


h ∈ Xω if h ↾ [1, ω) /∈ B,

h ∈ Xω × Y Ψ(h↾[1,ω))+2 if h ↾ [1, ω) ∈ B.

↔


h ↾ [1, ω) ∈ Xω if h ↾ [1, ω) /∈ B,

h ↾ [1, ω)⌢ h ↾ [ω + 1, lh (h)) ∈ Xω × Y Ψ(h↾[1,ω))+1 if h ↾ [1, ω) ∈ B.

↔


h ↾ [1, ω) ∈ [T ] if h ↾ ω /∈ B+,

h ↾ [1, ω)⌢ h ↾ [ω + 1, lh (h)) ∈ [T ] if h ↾ ω ∈ B+.

Proposition 2.3.5 give us a natural erasing function e from [Sft(T )] into [T ].

Definition 2.3.6. (Definition of the erasing function e : [Sft(T )]→ [T ])

Fix a Type 1 tree T = TΨ,B
X,Y . Define the erasing function e from [Sft(T )] into [T ] by

e : [Sft (T )]→ [T ]

h 7→


h ↾ [1, ω) if h ↾ ω /∈ B+,

h ↾ [1, ω)⌢ h ↾ [ω + 1, lh (h)) if h ↾ ω ∈ B+. ⊣

Now, we define a function “Shift” which maps subsets A of [T ] for a Type 1 tree T to a

particular subset of [Sft(T )].

Definition 2.3.7. (Definition of Shift)
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Fix a Type 1 tree T = TΨ,B
X,Y . Define

Shift : ℘ ([T ])→ ℘ ([Sft (T )])

A 7→ {h ∈ [Sft (T )] | e (h) ∈ [T ] \A}. ⊣

Theorem 2.3.8. For any Type 1 tree T , the determinacy of G(Shift(A);Sft(T )) implies

the determinacy of G(A, T ). ⊣

Proof.

Pick an arbitrary Type 1 tree T = TΨ,B
X,Y . Assume G(Shift(A);Sft(T )) is determined.

Then I∗ or II∗ has a winning strategy s∗ for G(Shift(A);Sft(T )). Show that G(A;T ) is

determined.

Case I : s∗ is a I∗’s winning strategy for G(Shift(A);Sft(T )). Define a strategy s for II

for G(A;T ) as follows: Suppose a0 = s∗(∅).

For p ∈ T such that p is finite and ⟨a0⟩⌢p ∈ dom(s∗) or

p is infinite and ⟨a0⟩⌢p ↾ ω⌢⟨aω⟩⌢p ↾ [ω, lh (p)) ∈ dom(s∗) where aω = s∗
(
⟨a0⟩⌢ p ↾ ω

)
,

p ∈ dom(s) and

s (p) =


s∗ (⟨a0⟩⌢p) if p is finite,

s∗ (⟨a0⟩⌢p ↾ ω⌢⟨aω⟩⌢p ↾ [ω, lh (p))) if p is infinite.
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p ↾ ω p ↾ [ω, lh(h))

s∗

Sft(T )

II∗

I∗ a0

p0

p1

p2

· · ·

· · ·

aω

pω

pω+1

pω+2

· · ·

· · ·

p0

p1

p2

p3

· · ·

· · ·

pω

pω+1

pω+2

pω+3

· · ·

· · ·II

I

s
T

p ↾ ω p ↾ [ω, lh(h))
Figure 2.3.2: Illustration of p ∈ T , lh(p) > ω according to II’s strategy s.

Show s is a w.s. for II for G(A;T ). Pick an arbitrary x ∈ [T ] according to s.

Subcase 1 : x ↾ ω /∈ B.

Then x = x ↾ ω and s∗(∅)⌢x /∈ B+. Thus s∗(∅)⌢x ∈ [Sft(T )] and it is according to s∗. Hence

s∗(∅)⌢x ∈ Shift(A) and thus x = e(s∗(∅)⌢x) /∈ A. 7

Subcase 2 : x ↾ ω ∈ B.

Then s∗(∅)⌢x ↾ ω ∈ B+ and Ψ+(s∗(∅)⌢x ↾ ω) = Ψ(x ↾ ω) + 1 = lh(x). Let

h = s∗(∅)⌢(x ↾ ω)⌢s∗
(
s∗(∅)⌢x ↾ ω

)⌢
x ↾ [ω, lh(x)) .

Then lh(h) = lh(x) + 1, h ∈ [Sft(T )] and h is according to s∗. Thus h ∈ Shift(A). Hence

x = e(h) /∈ A. Therefore, s is a w.s. for II for G(A;T ).

Case II : s∗ is a II∗’s winning strategy for G(Shift(A);Sft(T )).

Define a strategy s for I for G(A;T ) as follows: Suppose a0 ∈ X and aω ∈ Y are arbitrary.

For p ∈ T such that p is finite and ⟨a0⟩⌢p ∈ dom(s∗) or

7Recall definition 2.3.6 for the erasing function e.
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p is infinite and ⟨a0⟩⌢p ↾ ω⌢⟨aω⟩⌢p ↾ [ω, lh (p)) ∈ dom(s∗), p ∈ dom(s) and

s (p) =


s∗ (⟨a0⟩⌢p) if p is finite,

s∗ (⟨a0⟩⌢p ↾ ω⌢⟨aω⟩⌢p ↾ [ω, lh (p))) if p is infinite.

p ↾ ω p ↾ [ω, lh(h))

s∗
Sft(T )

II∗

I∗ a0

p0

p1

p2

· · ·

· · ·

aω

pω

pω+1

pω+2

· · ·

· · ·

p0

p1

p2

p3

· · ·

· · ·

pω

pω+1

pω+2

pω+3

· · ·

· · ·II

Is

T

p ↾ ω p ↾ [ω, lh(h))
Figure 2.3.3: Illustration of p ∈ T , lh(p) > ω according to I’s strategy s.

Show s is a w.s. for I for G(A;T ). Pick an arbitrary x ∈ [T ] according to s. Let a0 ∈ X

and aω ∈ Y be arbitrary.

Subcase 1 : x ↾ ω /∈ B.

Then x = x ↾ ω and ⟨a0⟩⌢x /∈ B+. Thus ⟨a0⟩⌢x ∈ [Sft(T )] and it is according to s∗. Hence

⟨a0⟩⌢x /∈ Shift(A) and thus x = e(⟨a0⟩⌢x) ∈ A.

Subcase 2 : x ↾ ω ∈ B.

Then ⟨a0⟩⌢x ↾ ω ∈ B+ and Ψ+(⟨a0⟩⌢x ↾ ω) = Ψ(x ↾ ω) + 1 = lh(x). Let

h = ⟨a0⟩⌢(x ↾ ω)⌢⟨aω⟩⌢x ↾ [ω, lh(x)) .

Then lh(h) = lh(x) + 1, h ∈ [Sft(T )] and h is according to s∗. Thus h /∈ Shift(A). Hence

x = e(h) ∈ A. Therefore, s is a w.s. for I for G(A;T ).

By cases I and II, G(A;T ) is determined.
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We shall eventually use theorem 2.3.8, to prove theorem 2.3.1.

Theorem 2.3.1. Suppose α ∈ ω1 and n ∈ ω. Then for any X and Θ,

Det G
(
Σ0

α; T1
)
⇔ Det G

(
Π0

α; T1
)

(2.1)

Det G
(
Σ1

n; T1
)
⇔ Det G

(
Π1

n; T1
)

(2.2)

for T1 = Tree1 (X,Θ,Γ(ω, C),B ↾ Xω) 8 where:

• C ∈ {Σ0
γ,Π

0
γ,∆

0
γ,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, γ ∈ ω1 and m ∈ ω.

• B ∈ {Σ0
β,Π

0
β,∆

0
β,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, β ∈ ω1 and m ∈ ω. ⊣

For the equivalences in theorem 2.3.1, we won’t be obtaining the determinacy of a game

G(A;T ) from the same tree T (except for the case when B = ∅, recall observation 2.3.4).

We will instead use two trees T and Sft(T ) in the same Tree1 collection.

Before we prove theorem 2.3.1, we will find the complexity of Shift(A) for Borel sets A on

[T ] in lemma 2.3.9. In lemma 2.3.15, we will find the complexity of Shift(A) for projective

sets A on [T ] . In sublemma 2.3.19 and sublemma 2.3.20, we will find the complexity of

B+ for each B ∈ B where B is as in theorem 2.3.1. In sublemma 2.3.19, we will find the

complexity of B+ when B is a Borel set, and in sublemma 2.3.20, we will find the complexity

of B+ when B is a projective set. In sublemma 2.3.21, we will find the complexity of Ψ+ for

each Ψ ∈ Γ(ω, C) where C is as in theorem 2.3.1.

First, we compute the complexity of Shift(A) for Borel set A on [T ].

Lemma 2.3.9. Fix a Type 1 tree T = TΨ,B
X,Y . Then, for any α ∈ ω1:

8Recall notation 1.5.8 for Γ(ω, C).
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1. If A ∈ Π0
α ↾ [T ], then Shift(A) ∈ Σ0

α ↾ [Sft(T )].

2. If A ∈ Σ0
α ↾ [T ], then Shift(A) ∈ Π0

α ↾ [Sft(T )]. ⊣

We will prove lemma 2.3.9 by using sublemma 2.3.14 below. Given S ⊆ [T ], we define

S+ ⊆ [Sft(T )] as follows.

Definition 2.3.10. Fix a Type 1 tree T = TΨ,B
X,Y . Given S ⊆ [T ], define

S+ = {h ∈ [Sft (T )] |e (h) ∈ S } . ⊣

Observation 2.3.11. If A ⊆ [T ], then

([T ] \A)+ = {h ∈ [Sft (T )] |e (h) ∈ [T ] \A} = Shift (A) . ⊣

In definition 2.3.2, for B ⊆ Xω, we defined B+ = X × B. The following observation

shows that the + notation in definition 2.3.10 is a consistent notation with definition 2.3.2

over Xω.

Observation 2.3.12. Recall that Xω is the special case of Type 1 trees T = TΨ,B
X,Y with

B = ∅. By observation 2.3.4, T = Sft(T ) = X<ω. Thus for S ⊆ Xω,

S+ = {h ∈ Xω |e(h) ∈ S } = X × S.

Thus the definition of + that appear in definitions 2.3.2 and 2.3.10 are the same for subsets

of T = X<ω. ⊣

Sublemma 2.3.13. Fix a Type 1 tree T = TΨ,B
X,Y . For any S ⊆ [T ],

[Sft (T )] \S+ = ([T ] \S)+. ⊣
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Proof.

Fix S ⊆ [T ]. Then

([Sft (T )]) \S+ = {h ∈ [Sft (T )] |e (h) /∈ S }

= {h ∈ [Sft (T )] |e (h) ∈ [T ] \S }

= ([T ] \S)+.

Using sublemma 2.3.13, we obtain the following.

Sublemma 2.3.14. Fix a Type 1 tree T = TΨ,B
X,Y . For any α ∈ ω1\{0} and for any S ⊆ [T ]:

1. If S ∈ Σ0
α ↾ [T ], then S+ ∈ Σ0

α ↾ [Sft (T )].

2. If S ∈ Π0
α ↾ [T ], then S+ ∈ Π0

α ↾ [Sft (T )]. ⊣

Proof.

We prove both (1) and (2) simultaneously by induction on α. (2) follows from (1) and

sublemma 2.3.13. The case for S ∈ Σ0
1 ↾ [T ] is obtained from sublemma 2.3.18 below.

Base case : α = 1.

Show that if S ∈ Σ0
1 ↾ [T ], then S+ ∈ Σ0

1 ↾ [Sft (T )]. We shall obtain this as a special case

of sublemma 2.3.18 below with k = 0.

Show that if S ∈ Π0
1 ↾ [T ], then S+ ∈ Π0

1 ↾ [Sft (T )]. · · · (∗)

Suppose S ∈ Π0
1 ↾ [T ]. Then [T ] \S ∈ Σ0

1 ↾ [T ]. Since we have already shown (1) for

α = 1, we have:

([T ] \S)+ ∈ Σ0
1 ↾ [Sft (T )] .

By sublemma 2.3.13,

[Sft (T )] \S+ = ([T ] \S)+.
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Thus S+ ∈ Π0
1 ↾ [Sft (T )].

Induction step : As an induction hypothesis, assume that for any β ∈ α, if S ∈ Σ0
β ↾ [T ],

then S+ ∈ Σ0
β ↾ [Sft(T )] and if S ∈ Π0

β ↾ [T ], then S+ ∈ Π0
β ↾ [Sft(T )].

Assume S ∈ Σ0
α ↾ [T ]. Show S+ ∈ Σ0

α ↾ [Sft(T )].

Since S ∈ Σ0
α ↾ [T ], there exists ⟨An |n ∈ ω ⟩ such that each An ∈ Π0

βn
↾ [T ], βn ∈ α and

S =
∪

n∈ω An. Then by induction hypothesis, each A+
n ∈ Π0

βn
↾ [Sft(T )].

S+ = {h ∈ [Sft (T )] |e (h) ∈ S }

=

{
h ∈ [Sft (T )]

∣∣∣∣∣e (h) ∈ ∪
n∈ω

An

}

=
∪
n∈ω

{h ∈ [Sft (T )] |e (h) ∈ An}

=
∪
n∈ω

A+
n︸︷︷︸

Π0
βn

↾[Sft(T )]

∈ Σ0
α ↾ [Sft (T )] .

Show that if S ∈ Π0
α ↾ [T ], then S+ ∈ Π0

α ↾ [Sft (T )]. We repeat the same proof of (∗) on

page 65.

Suppose S ∈ Π0
α ↾ [T ]. Then [T ] \S ∈ Σ0

α ↾ [T ]. Since we have already shown (1) for the

case α, we have:

([T ] \S)+ ∈ Σ0
α ↾ [Sft (T )] .

By sublemma 2.3.13,

[Sft (T )] \S+ = ([T ] \S)+.

Thus S+ ∈ Π0
α ↾ [Sft (T )].
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Lemma 2.3.9 is obtained immediately from sublemma 2.3.14. Recall lemma 2.3.9.

Lemma 2.3.9. Fix a Type 1 tree T = TΨ,B
X,Y . Then, for any α ∈ ω1:

1. If A ∈ Π0
α ↾ [T ], then Shift(A) ∈ Σ0

α ↾ [Sft(T )].

2. If A ∈ Σ0
α ↾ [T ], then Shift(A) ∈ Π0

α ↾ [Sft(T )]. ⊣

Proof.

Suppose A ∈ Π0
α ↾ [T ]. Show Shift(A) ∈ Σ0

α ↾ [Sft(T )].

Since A ∈ Π0
α ↾ [T ], [T ]\A ∈ Σ0

α ↾ [T ]. By sublemma 2.3.14,

([T ] \A)+ ∈ Σ0
α ↾ [Sft(T )].

By observation 2.3.11,

Shift (A) = ([T ] \A)+ .

Thus Shift(A) ∈ Σ0
α ↾ [Sft(T )].

A similar proof gives a proof of (2): Simply interchange Σ0
α and Π0

α.

In lemma 2.3.9, we computed the complexity of Shift(A) for Borel sets A on [T ]. Now,

we will compute the complexity of Shift(A) for projective sets A on [T ].

Lemma 2.3.15. Fix a Type 1 tree T = TΨ,B
X,Y . Let n ∈ ω\{0}.

1. If A ∈ Π1
n ↾ [T ], then Shift(A) ∈ Σ1

n ↾ [Sft(T )].

2. If A ∈ Σ1
n ↾ [T ], then Shift(A) ∈ Π1

n ↾ [Sft(T )]. ⊣

We will prove lemma 2.3.15 using sublemma 2.3.18. We will first prove sublemma 2.3.18

below by induction on n. We will use the following notation.

We generalize definition 2.3.10 as follows.
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Definition 2.3.16. Fix a Type 1 tree T = TΨ,B
X,Y . Pick an arbitrary k ∈ ω. Recall

(ωω)k = ωω × · · · × ωω︸ ︷︷ ︸
k many

.

Given Sk ⊆ [T ]× (ωω)k, define

S+
k =

{
⟨h, g1, ..., gk⟩ ∈ [Sft (T )]× (ωω)k |⟨e (h) , g1, ..., gk⟩ ∈ Sk

}
. ⊣

In particular, similar to observation 2.3.11, if k = 0 and S0 = [T ] \A, then

([T ] \A)+ = S+
0 = {h ∈ [Sft (T )] |e (h) ∈ S0} = {h ∈ [Sft (T )] |e (h) ∈ [T ] \A} = Shift (A) .

The following is a similar result to sublemma 2.3.13. We will use the following sublemma

to prove sublemma 2.3.18 below.

Sublemma 2.3.17. Fix a Type 1 tree T = TΨ,B
X,Y . For any k ∈ ω and Sk ⊆ [T ]× (ωω)k,

(
[Sft (T )]× (ωω)k

)
\S+

k =
((
[T ]× (ωω)k

)
\Sk

)+
. ⊣

Proof.

Fix k ∈ ω and Sk ⊆ [T ]× (ωω)k. Then

(
[Sft (T )]× (ωω)k

)
\S+

k =
{
⟨h, g1, ..., gk⟩ ∈ [Sft (T )]× (ωω)k |⟨e (h) , g1, ..., gk⟩ /∈ Sk

}
=
{
⟨h, g1, ..., gk⟩ ∈ [Sft (T )]× (ωω)k

∣∣⟨e (h) , g1, ..., gk⟩ ∈ ([T ]× (ωω)k
)
\Sk

}
=
((
[T ]× (ωω)k

)
\Sk

)+
.

We will use sublemma 2.3.17 to prove sublemma 2.3.18 (2).

Sublemma 2.3.18. Fix a Type 1 tree T = TΨ,B
X,Y . For any k, n ∈ ω and for any Sk ⊆

[T ]× (ωω)k:

1. If Sk ∈ Σ1
n ↾
(
[T ]× (ωω)k

)
, then S+

k ∈ Σ1
n ↾
(
[Sft (T )]× (ωω)k

)
.
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2. If Sk ∈ Π1
n ↾
(
[T ]× (ωω)k

)
, then S+

k ∈ Π1
n ↾
(
[Sft (T )]× (ωω)k

)
. ⊣

Proof.

We prove both (1) and (2) simultaneously by induction on n. (2) follows from (1) and

sublemma 2.3.17.

Base case : n = 0. (Recall by definition 1.3.15: Σ1
0 ↾ [T ] = Σ0

1 ↾ [T ], Π1
0 = Π0

1 ↾ [T ].)

Pick an arbitrary k ∈ ω.

Show that if Sk ∈ Σ0
1 ↾
(
[T ]× (ωω)k

)
, then S+

k ∈ Σ0
1 ↾
(
[Sft (T )]× (ωω)k

)
.

Suppose Sk ∈ Σ0
1 ↾
(
[T ]× (ωω)k

)
. Pick an arbitrary ⟨h, g1, ..., gk⟩ ∈ S+

k . Then

⟨e (h) , g1, ..., gk⟩ ∈ Sk.

Since Sk ∈ Σ0
1 ↾
(
[T ]× (ωω)k

)
, there exist finite E,F1, ..., Fk such that for any ⟨x, y1, , , , .yk⟩ ∈

[T ]× (ωω)k, if x ⊇ e(h) ↾ E and for all 1 ≤ l ≤ k, yl ⊇ gl ↾ Fl then ⟨x, y1, ..., yk⟩ ∈ Sk. Define

E+ = {i+ 1 |i ∈ E }. Then E+ is finite. Pick an arbitrary ⟨ĥ, ĝ1, ..., ĝk⟩ ∈ ([Sft(T )]× (ωω)k)

such that ĥ ⊇ h ↾ E+, and for all 1 ≤ l ≤ k, ĝl ⊇ gl ↾ Fl. Then for any j ∈ E,

(e(ĥ))(j) = ĥ(j + 1) = h(j + 1) = (e(h))(j).

Thus e(ĥ) ⊇ e(h) ↾ E so that ⟨e(ĥ), ĝ1, ..., ĝk⟩ ∈ Sk. Thus ⟨ĥ, ĝ1, ..., ĝk⟩ ∈ S+
k . Hence

S+
k ∈ Σ0

1 ↾ ([Sft(T )]× (ωω)k).

Show that if Sk ∈ Π0
1 ↾
(
[T ]× (ωω)k

)
, then S+

k ∈ Π0
1 ↾
(
[Sft (T )]× (ωω)k

)
. · · · (∗)

Suppose Sk ∈ Π0
1 ↾
(
[T ]× (ωω)k

)
. Then

(
[T ]× (ωω)k

)
\Sk ∈ Σ0

1 ↾
(
[T ]× (ωω)k

)
. Since

we have already shown (1) for n = 0, we have:

((
[T ]× (ωω)k

)
\Sk

)+ ∈ Σ0
1 ↾ ([Sft (T )]× (ωω)k).
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By sublemma 2.3.17,

(
[Sft (T )]× (ωω)k

)
\S+

k =
((
[T ]× (ωω)k

)
\Sk

)+
.

Thus S+
k ∈ Π0

1 ↾
(
[Sft (T )]× (ωω)k

)
.

Induction Step :

Assume that, as an induction hypothesis, for all l ∈ ω, if Sl ∈ Σ1
n ↾

(
[T ]× (ωω)l

)
,

then S+
l ∈ Σ1

n ↾
(
[Sft (T )]× (ωω)l

)
and if Sl ∈ Π1

n ↾
(
[T ]× (ωω)l

)
, then S+

l ∈ Π1
n ↾(

[Sft (T )]× (ωω)l
)
.

Pick an arbitrary k ∈ ω. Suppose Sk ∈ Σ1
n+1 ↾

(
[T ]× (ωω)k

)
. Show S+

k ∈ Σ1
n+1 ↾(

[Sft (T )]× (ωω)k
)
.

Since Sk ∈ Σ1
n+1 ↾

(
[T ]× (ωω)k

)
, there exists Sk+1 ∈ Π1

n ↾
(
[T ]× (ωω)k+1

)
such that for

any ⟨x, y1, ..., yk⟩ ∈
(
[T ]× (ωω)k

)
, ⟨x, y1, ..., yk⟩ ∈ Sk if and only if there exists yk+1 ∈ ωω

such that ⟨x, y1, ..., yk, yk+1⟩ ∈ Sk+1.

S+
k =

{
⟨h, g1, ..., gk⟩ ∈ [Sft (T )]× (ωω)k |⟨e (h) , g1, ..., gk⟩ ∈ Sk

}
=
{
⟨h, g1, ..., gk⟩ ∈ [Sft (T )]× (ωω)k |∃gk+1 ∈ ωω (⟨e (h) , g1, ..., gk, gk+1⟩ ∈ Sk+1)

}
=
{
⟨h, g1, ..., gk⟩ ∈ [Sft (T )]× (ωω)k

∣∣∃gk+1 ∈ ωω
(
⟨h, g1, ..., gk, gk+1⟩ ∈ S+

k+1

)}
.

Since S+
k+1 ∈ Π1

n ↾
(
[Sft (T )]× (ωω)k+1

)
by induction hypothesis,

S+
k ∈ Σ1

n+1 ↾
(
[Sft (T )]× (ωω)k

)
.

Show that if Sk ∈ Π1
n+1 ↾

(
[T ]× (ωω)k

)
, then S+

k ∈ Π1
n+1 ↾

(
[Sft (T )]× (ωω)k

)
. We

repeat the same proof of (∗) on page 69.

Suppose Sk ∈ Π1
n+1 ↾

(
[T ]× (ωω)k

)
. Then

(
[T ]× (ωω)k

)
\Sk ∈ Σ1

n+1 ↾
(
[T ]× (ωω)k

)
.
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Since we have already shown (1) for the case n+ 1, we have:

((
[T ]× (ωω)k

)
\Sk

)+ ∈ Σ1
n+1 ↾ ([Sft (T )]× (ωω)k).

By sublemma 2.3.17,

(
[Sft (T )]× (ωω)k

)
\S+

k =
((
[T ]× (ωω)k

)
\Sk

)+
.

Thus S+
k ∈ Π1

n+1 ↾
(
[Sft (T )]× (ωω)k

)
.

Lemma 2.3.15 is obtained immediately from sublemma 2.3.18. Recall lemma 2.3.15.

Lemma 2.3.15. Fix a Type 1 tree T = TΨ,B
X,Y . Let n ∈ ω\{0}.

1. If A ∈ Π1
n ↾ [T ], then Shift(A) ∈ Σ1

n ↾ [Sft(T )].

2. If A ∈ Σ1
n ↾ [T ], then Shift(A) ∈ Π1

n ↾ [Sft(T )]. ⊣

We will prove lemma 2.3.15 using sublemma 2.3.18. The proof of lemma 2.3.15 is similar

to the proof of lemma 2.3.9.

Proof.

Suppose A ∈ Π1
n ↾ [T ]. Show Shift(A) ∈ Σ1

n ↾ [Sft(T )].

Since A ∈ Π1
n ↾ [T ], [T ]\A ∈ Σ1

n ↾ [T ]. By sublemma 2.3.18,

([T ] \A)+ ∈ Σ1
n ↾ [Sft(T )].

By observation 2.3.11,

Shift (A) = ([T ] \A)+ .

Thus Shift(A) ∈ Σ1
n ↾ [Sft(T )].

A similar proof gives a proof of (2): Simply interchange Σ1
n and Π1

n.
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Next, we compute the complexity of B+ = X×B for Borel set B on Xω. Recall that Xω

is a special case of Type 1 trees TΨ,B
X,Y with B = ∅. By observation 2.3.4, T = Sft(T ) = X<ω.

Sublemma 2.3.19. Suppose α ∈ ω1.

1. If B ∈ Σ0
α ↾ Xω, then B+ ∈ Σ0

α ↾ Xω.

2. If B ∈ Π0
α ↾ Xω, then B+ ∈ Π0

α ↾ Xω.

3. If B ∈∆0
α ↾ Xω, then B+ ∈∆0

α ↾ Xω.

4. If B ∈ B ↾ Xω, then B+ ∈ B ↾ Xω. ⊣

Proof.

Fix a Type 1 tree TΨ,B
X,Y with B = ∅. Then T = X<ω. We have (1) and (2) by sublemma

2.3.14. (3) and (4) easily follow from (1) and (2).

Similarly, we obtain the following using sublemma 2.3.18.

Sublemma 2.3.20. Suppose n ∈ ω.

1. If B ∈ Σ1
n ↾ Xω, then B+ ∈ Σ1

n ↾ Xω.

2. If B ∈ Π1
n ↾ Xω, then B+ ∈ Π1

n ↾ Xω.

3. If B ∈∆1
n ↾ Xω, then B+ ∈∆1

n ↾ Xω.

4. If B ∈ (Σ1
n ∧Π1

n) ↾ Xω, then B+ ∈ (Σ1
n ∧Π1

n) ↾ Xω.

5. If B ∈ P ↾ Xω, then B+ ∈ P ↾ Xω. ⊣
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Proof.

Fix a Type 1 tree TΨ,B
X,Y with B = ∅. Then T = X<ω. We have (1) and (2) by sublemma

2.3.18. Consequently, we have (3) and (5).

Show (4). Suppose B ∈ (Σ1
n∧Π1

n) ↾ Xω. Then B = B1∩B2 for some B1 ∈ Σ1
n ↾ Xω and

B2 ∈ Π1
n ↾ Xω. Thus B+

1 = X ×B1 ∈ Σ1
n ↾ Xω and B+

2 = X ×B2 ∈ Π1
n ↾ Xω by sublemma

2.3.18. Hence

B+ = X ×B = X × (B1 ∩B2) = (X ×B1) ∩ (X ×B2) = B+
1 ∩B+

2 ∈ (Σ1
n ∧Π1

n) ↾ Xω.

Finally, we compute the complexity of the function Ψ+ when Ψ is ∆0
γ-measurable and

∆1
n-measurable.

Sublemma 2.3.21. Suppose n ∈ ω and γ ∈ ω1.

1. If Ψ ∈ Γ(ω,∆0
γ), then Ψ+ ∈ Γ(ω,∆0

γ).

2. If Ψ ∈ Γ(ω,∆1
n), then Ψ+ ∈ Γ(ω,∆1

n).

3. If Ψ ∈ Γ(ω,Σ1
n ∧Π1

n), then Ψ+ ∈ Γ(ω,Σ1
n ∧Π1

n).
9 ⊣

Proof.

Show (1).

Suppose Ψ ∈ Γ(ω,∆0
γ). Then Ψ is a function from Xω into ω such that for every open set

O ⊆ ω, Ψ−1(O) ∈∆0
γ ↾ Xω. Show Ψ+ ∈ Γ(ω,∆0

γ).

9Recall definition 2.3.2 for Ψ+.
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Show Ψ+−1
(O) ∈ Σ0

γ ↾ Xω.

Fix O ∈ Σ0
1 ↾ Xω. Since O =

∪
i∈O {i} and we are using the discrete topology on ω, each

singleton {i} is clopen.

First, compute the complexity of Ψ+−1
(i) for i ∈ ω. 10

Case 1 : i = 0.

By the definition of Ψ+, Ψ+−1
(0) = ∅.

Case 2 : i ̸= 0.

Ψ+−1
(i) = X × {f ∈ Xω |Ψ(f) + 1 = i}

= X ×Ψ−1 (i− 1) .

Since Ψ ∈ Γ(ω,∆0
γ), Ψ

−1 (i− 1) ∈∆0
γ ↾ Xω. By sublemma 2.3.19, Ψ+−1

(i) ∈∆0
γ ↾ Xω.

Thus, by cases 1 and 2,

Ψ+−1
(O) = Ψ+−1

(∪
i∈O
{i}
)
=
∪

i∈O
Ψ+−1

(i) ∈ Σ0
γ ↾ Xω. (2.3)

Show Ψ+−1
(O) ∈ Π0

γ ↾ Xω. Show Xω\Ψ+−1
(O) ∈ Σ0

γ ↾ Xω.

Since ω\O =
∪

i∈ω\O {i}, ω\O ∈ Σ0
1 ↾ ω. Thus

Xω\Ψ+−1
(O) = Ψ+−1

(ω\O) ∈ Σ0
γ ↾ Xω.

Hence Ψ+−1
(O) ∈ Π0

γ ↾ Xω.

Therefore, Ψ+ ∈ Γ(ω,∆0
γ).

Show (2).

If Ψ ∈ Γ(ω,∆1
n), then Ψ−1(n−1) ∈∆1

n ↾ Xω. By sublemma 2.3.20, Ψ+−1
(i) = X×Ψ−1(i−

10Recall notation 1.5.4 Abuse of notation : we suppress {} for Ψ−1({i}), i.e., we write Ψ−1(i) to mean
Ψ−1({i}). Ψ−1(i) does not mean the inverse image of {0, 1, ..., i− 1} here.
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1) ∈∆1
n ↾ Xω. Since Σ1

n ↾ Xω is closed under countable unions by lemma 2.3.22 below (page

75), Ψ+ ∈ Γ(ω,∆1
n) (replace Σ0

γ in equation (2.3) by Σ1
n).

Show (3).

A similar proof of sublemma 2.3.20 (4) gives (3): if Ψ ∈ Γ(ω,Σ1
n∧Π1

n), then Ψ+ ∈ Γ(ω,Σ1
n∧

Π1
n).

We used the well-known closure property of projective sets in the proof of 2.3.21. Sierpin-

ski proved this in 1928 (as cited in Moschovakis, 2009, p. 47). We will prove the closure under

countable unions for Σ1
n ↾ Xω and the closure under countable intersections for Π1

n ↾ Xω.

Readers familiar with this proof may skip to theorem 2.3.1 on page 55.

Lemma 2.3.22. Let n ∈ ω.

1. Σ1
n ↾ Xω is closed under countable unions.

2. Π1
n ↾ Xω is closed under countable intersections. ⊣

We will prove lemma 2.3.22 by using sublemma 2.3.25 below. The proof of lemma 2.3.22

is on page 79. We first define the following notation.

Definition 2.3.23. Let k ∈ ω. Suppose ⟨Sk
i |i ∈ ω⟩ to be such that each Sk

i ⊆ Xω×ωω×(ωω)k.

Define

⟨Sk
i |i ∈ ω⟩− =

{
⟨f, h, g1, ..., gk⟩ ∈ Xω × ωω × (ωω)k

∣∣⟨f, h ↾ [1, ω) , g1, ..., gk⟩ ∈ Sk
h(0)

}
. ⊣

We will use the following sublemma to prove sublemma 2.3.25.

Sublemma 2.3.24. Let k ∈ ω. Suppose ⟨Sk
i |i ∈ ω⟩ to be such that each Sk

i ⊆ Xω × ωω ×

(ωω)k. Then

(
Xω × ωω × (ωω)k

)
\⟨Sk

i |i ∈ ω⟩− = ⟨
(
Xω × ωω × (ωω)k

)
\Sk

i |i ∈ ω⟩−. ⊣
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Proof.

Fix k ∈ ω and ⟨Sk
i |i ∈ ω⟩ with each Sk

i ⊆ Xω × ωω × (ωω)k.

(
Xω × ωω × (ωω)k

)
\⟨Sk

i |i ∈ ω⟩−

=
{
⟨f, h, g1, ..., gk⟩ ∈ Xω × ωω × (ωω)k

∣∣⟨f, h ↾ [1, ω) , g1, ..., gk⟩ /∈ Sk
h(0)

}
=
{
⟨f, h, g1, ..., gk⟩ ∈ Xω × ωω × (ωω)k

∣∣⟨f, h ↾ [1, ω) , g1, ..., gk⟩ ∈
(
Xω × ωω × (ωω)k

)
\Sk

h(0)

}
= ⟨
(
Xω × ωω × (ωω)k

)
\Sk

i |i ∈ ω⟩−.

Sublemma 2.3.25. Suppose n, k ∈ ω, n ≥ 1. Suppose ⟨Sk
i |i ∈ ω⟩ to be such that each

Sk
i ⊆ Xω × ωω × (ωω)k.

1. If every Sk
i ∈ Σ1

n ↾ (Xω × ωω × (ωω)k), then ⟨Sk
i |i ∈ ω⟩− ∈ Σ1

n ↾ (Xω × ωω × (ωω)k).

2. If every Sk
i ∈ Π1

n ↾ (Xω × ωω × (ωω)k), then ⟨Sk
i |i ∈ ω⟩− ∈ Π1

n ↾ (Xω × ωω × (ωω)k).⊣

Proof.

We prove both (1) and (2) simultaneously by induction on n. (2) follows from (1) and

sublemma 2.3.24.

Base Case : n = 1.

Pick an arbitrary k ∈ ω and fix ⟨Sk
i |i ∈ ω⟩.

Suppose every Sk
i ∈ Σ0

1 ↾ (Xω × ωω × (ωω)k). Show ⟨Sk
i |i ∈ ω⟩− ∈ Σ0

1 ↾ (Xω × ωω × (ωω)k).

Pick an arbitrary ⟨f, h, g1, ..., gk⟩ ∈ ⟨Sk
i |i ∈ ω⟩−. Then ⟨f, h ↾ [1, ω) , g1, ..., gk⟩ ∈ Sk

h(0).

Let h1 = h ↾ [1, ω). Since Sk
h(0) ∈ Σ0

1 ↾ (Xω × ωω × (ωω)k), there exist finite F ⊆ ω, H1 ⊆ ω

and Gi ⊆ ω, 1 ≤ i ≤ k such that for all ⟨x, y, z1, ..., zk⟩ ∈ Xω × ωω × (ωω)k, if x ⊇ f ↾ F ,

y ⊇ h1 ↾ H1 and for all 1 ≤ i ≤ k, zi ⊇ gi ↾ Gi, then ⟨x, y, z1, ..., zk⟩ ∈ Sk
h(0). Define

H = {n+ 1 |n ∈ H1} ∪ {0} .
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Suppose y ∈ ωω and y ⊇ h ↾ H. Then y (0) = h (0). Also, for any j ∈ Hi,

(y ↾ [1, ω)) (j) = y(j + 1) = h(j + 1) = (h ↾ [1, ω)) (j) = h1(j).

Thus y ↾ [1, ω) ⊇ h1 ↾ H1. Thus for all ⟨x, y, z1, ..., zk⟩ ∈ Xω × ωω × (ωω)k, if x ⊇ f ↾ F , y ⊇

h ↾ H and for all 1 ≤ i ≤ k, zi ⊇ gi ↾ Gi, then ⟨x, y ↾ [1, ω) , z1, ..., zk⟩ ∈ Sk
h(0) = Sk

y(0). Hence,

for all ⟨x, y, z1, ..., zk⟩ ∈ Xω × ωω × (ωω)k, if x ⊇ f ↾ F , y ⊇ h ↾ H and for all 1 ≤ i ≤ k,

zi ⊇ gi ↾ Gi, then ⟨x, y, z1, ..., zk⟩ ∈ ⟨Sk
i |i ∈ ω⟩−. Thus ⟨Sk

i |i ∈ ω⟩− ∈ Σ0
1 ↾ (Xω×ωω×(ωω)k).

Suppose every Sk
i ∈ Π0

1 ↾ (Xω × ωω × (ωω)k). Show ⟨Sk
i |i ∈ ω⟩− ∈ Π0

1 ↾ (Xω × ωω × (ωω)k).

· · · (∗)

Since every Sk
i ∈ Π0

1 ↾ (Xω×ωω×(ωω)k), each
(
Xω × ωω × (ωω)k

)
\Sk

i ∈ Σ0
1 ↾ (Xω×ωω×

(ωω)k). Since we have already shown (1) for n = 1, we have: ⟨
(
Xω × ωω × (ωω)k

)
\Sk

i |i ∈

ω⟩− ∈ Σ0
1 ↾ (Xω × ωω × (ωω)k). By sublemma 2.3.24,

(
Xω × ωω × (ωω)k

)
\⟨Sk

i |i ∈ ω⟩− = ⟨
(
Xω × ωω × (ωω)k

)
\Sk

i |i ∈ ω⟩−.

Thus
(
Xω × ωω × (ωω)k

)
\⟨Sk

i |i ∈ ω⟩− ∈ Σ0
1 ↾ (Xω×ωω× (ωω)k). Hence ⟨Sk

i |i ∈ ω⟩− ∈ Π0
1 ↾

(Xω × ωω × (ωω)k).

Induction Step : Assume that, as an induction hypothesis, for all l ∈ ω, if every Sl
i ∈

Σ1
n ↾ (Xω × ωω × (ωω)l), then ⟨Sl

i|i ∈ ω⟩− ∈ Σ1
n ↾ (Xω × ωω × (ωω)l) and if Sl

i ∈ Π1
n ↾

(Xω × ωω × (ωω)l), then ⟨Sl
i|i ∈ ω⟩− ∈ Π1

n ↾ (Xω × ωω × (ωω)l).

Pick an arbitrary k ∈ ω.

Suppose every Sk
i ∈ Σ1

n+1 ↾ (Xω × ωω × (ωω)k). Show ⟨Sk
i |i ∈ ω⟩− ∈ Σ1

n+1 ↾ (Xω × ωω ×

(ωω)k).

Since each Sk
i ∈ Σ1

n+1 ↾ (Xω×ωω× (ωω)k), there exists Sk+1
i ∈ Π1

n ↾ (Xω×ωω× (ωω)k+1)
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such that for any ⟨x, y, z1, ..., zk⟩ ∈ (Xω × ωω × (ωω)k), ⟨x, y, z1, ..., zk⟩ ∈ Sk
i if and only if

there exists zk+1 ∈ ωω such that ⟨x, y, z1, ..., zk, zk+1⟩ ∈ Sk+1
i .

⟨Sk
i |i ∈ ω⟩−

=
{
⟨f, h, g1, ..., gk⟩ ∈ Xω × ωω × (ωω)k

∣∣⟨f, h ↾ [1, ω) , g1, ..., gk⟩ ∈ Sk
h(0)

}
=
{
⟨f, h, g1, ..., gk⟩ ∈ Xω × ωω × (ωω)k

∣∣∣∃gk+1 ∈ ωω ⟨f, h ↾ [1, ω) , g1, ..., gk, gk+1⟩ ∈ Sk+1
h(0)

}
=
{
⟨f, h, g1, ..., gk⟩ ∈ Xω × ωω × (ωω)k

∣∣∃gk+1 ∈ ωω ⟨f, h, g1, ..., gk, gk+1⟩ ∈ ⟨Sk+1
i |i ∈ ω⟩−

}
.

Since each Sk+1
i ∈ Π1

n ↾ (Xω×ωω× (ωω)k+1), by induction hypothesis, ⟨Sk+1
i |i ∈ ω⟩− ∈ Π1

n ↾

(Xω × ωω × (ωω)k+1). Thus ⟨Sk
i |i ∈ ω⟩− ∈ Σ1

n+1 ↾ (Xω × ωω × (ωω)k).

Suppose every Sk
i ∈ Π0

n+1 ↾ (Xω × ωω × (ωω)k). Show

⟨Sk
i |i ∈ ω⟩− ∈ Π0

n+1 ↾ (Xω × ωω × (ωω)k).

We repeat the same proof of (∗) on page 77.

Since every Sk
i ∈ Π0

n+1 ↾ (Xω × ωω × (ωω)k), each

(
Xω × ωω × (ωω)k

)
\Sk

i ∈ Σ0
n+1 ↾ (Xω × ωω × (ωω)k).

Since we have already shown (1) for the case n+ 1, we have:

⟨
(
Xω × ωω × (ωω)k

)
\Sk

i |i ∈ ω⟩− ∈ Σ0
n+1 ↾ (Xω × ωω × (ωω)k).

By sublemma 2.3.24,

(
Xω × ωω × (ωω)k

)
\⟨Sk

i |i ∈ ω⟩− = ⟨
(
Xω × ωω × (ωω)k

)
\Sk

i |i ∈ ω⟩−.
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Thus
(
Xω × ωω × (ωω)k

)
\⟨Sk

i |i ∈ ω⟩− ∈ Σ0
n+1 ↾ (Xω × ωω × (ωω)k). Hence

⟨Sk
i |i ∈ ω⟩− ∈ Π0

n+1 ↾ (Xω × ωω × (ωω)k).

Using sublemma 2.3.25, we prove lemma 2.3.22. Recall lemma 2.3.22. (2) is obtained

from (1).

Lemma 2.3.22. Let n ∈ ω.

1. Σ1
n ↾ Xω is closed under countable unions.

2. Π1
n ↾ Xω is closed under countable intersections. ⊣

Proof.

Show (1). When n = 0, Σ1
0 ↾ Xω = Σ0

1 ↾ Xω. Since Σ0
1 ↾ Xω is closed under countable

unions, assume that n > 0. Show Σ1
n ↾ Xω is closed under countable unions. Let ⟨Ai|i ∈ ω⟩

be such that each Ai ∈ Σ1
n ↾ Xω. Since each Ai ∈ Σ1

n ↾ Xω, there exists Ci ∈ Π0
n−1 ↾ Xω×ωω

such that

f ∈ Ai ⇔ ∃g ∈ ωω ⟨f, g⟩ ∈ Ci.

Show
∪

i∈ω Ai ∈ Σ1
n ↾ Xω.

f ∈
∪
i∈ω

Ai ⇔ ∃i ∈ ω (f ∈ Ai)

⇔ ∃i ∈ ω∃g ∈ ωω (⟨f, g⟩ ∈ Ci)

⇔ ∃ĥ ∈ ωω(⟨f, ĥ ↾ [1, ω)⟩ ∈ Cĥ(0)) (ĥ (0) = i and ĥ ↾ [1, ω) = g)

⇔ ∃ĥ ∈ ωω(⟨f, ĥ⟩ ∈ ⟨Ci|i ∈ ω⟩−).
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Since each Ci ∈ Π0
n−1 ↾ Xω × ωω, by sublemma 2.3.25,

⟨Ci|i ∈ ω⟩− ∈ Π0
n−1 ↾ Xω × ωω.

Thus
∪

i∈ω Ai ∈ Σ1
n ↾ Xω.

Show (2). Suppose ⟨Ai|i ∈ ω⟩ be such that each Ai ∈ Π1
n ↾ Xω. Show

∩
i∈ω Ai ∈ Π1

n ↾ Xω.

Since each Ai ∈ Π1
n ↾ Xω, Xω\Ai ∈ Σ1

n ↾ Xω. Since we have already shown (1), we have:

∪
i∈ω

(Xω\Ai) ∈ Σ1
n ↾ Xω.

Since Xω\
(∩

i∈ω Ai

)
=
∪

i∈ω (X
ω\Ai), X

ω\
(∩

i∈ω Ai

)
∈ Σ1

n ↾ Xω. Thus
∩

i∈ω Ai ∈ Π1
n ↾

Xω.

Finally, by using above lemmas and sublemmas, we will prove theorem 2.3.1 on page 55.

Recall theorem 2.3.1.

Theorem 2.3.1. Suppose α ∈ ω1 and n ∈ ω. Then for any X and Θ,

Det G
(
Σ0

α; T1
)
⇔ Det G

(
Π0

α; T1
)

(2.1)

Det G
(
Σ1

n; T1
)
⇔ Det G

(
Π1

n; T1
)

(2.2)

for T1 = Tree1 (X,Θ,Γ(ω, C),B ↾ Xω) 11 where:

• C ∈ {Σ0
γ,Π

0
γ,∆

0
γ,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, γ ∈ ω1 and m ∈ ω.

• B ∈ {Σ0
β,Π

0
β,∆

0
β,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, β ∈ ω1 and m ∈ ω. ⊣

Proof of Theorem 2.3.1.

Fix T1 = Tree1 (X,Θ,Γ(ω, C),B ↾ Xω) in the theorem with fixed complexities for B and C.

Pick an arbitrary T = TΨ,B
X,Y ∈ T1. Show the equivalence (2.1).

11Recall notation 1.5.8 for Γ(ω, C).
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(⇒) Suppose A ∈ Π0
α ↾ [T ]. Since B ∈ B ↾ Xω, by sublemma 2.3.19 and sublemma 2.3.20,

B+ ∈ B ↾ Xω. Also, by sublemma 2.3.21, Ψ+ ∈ Γ(ω, C). Therefore, Sft(T ) = TΨ+,B+

X,Y ∈ T1.

By lemma 2.3.9, Shift(A) ∈ Σ0
α ↾ [Sft(T )]. Thus

G(Shift(A), Sft(T )) ∈ G
(
Σ0

α; T1
)
.

Hence G(Shift(A), Sft(T )) is determined. By theorem 2.3.8, G(A, T ) is determined.

(⇐) By switching Π0
α and Σ0

α in the above proof, we can obtain this direction.

Show the equivalence (2.2).

(⇒) Suppose A ∈ Π1
n ↾ [T ]. Since B ∈ B ↾ Xω, by sublemma 2.3.19 and sublemma 2.3.20,

B+ ∈ B ↾ Xω. Also, by sublemma 2.3.21, Ψ+ ∈ Γ(ω, C). Therefore, Sft(T ) = TΨ+,B+

X,Y ∈ T1.

By lemma 2.3.15, Shift(A) ∈ Σ1
1 ↾ [Sft(T )]. Thus

G(Shift(A), Sft(T )) ∈ G
(
Σ1

n; T1
)
.

Hence G(Shift(A), Sft(T )) is determined. By theorem 2.3.8, G(A, T ) is determined.

(⇒) Switch Π1
n ↾ [T ] and Σ1

n ↾ [T ] in the (⇒) direction of the equivalence (2.2). By

lemma 2.3.15, Shift(A) ∈ Π1
n ↾ [Sft(T )].

Using the determinacy of games on a Tree1 collection to obtain the determinacy of games

on X<ω
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2.4 Using the determinacy of games on a Tree1 collec-

tion to obtain the determinacy of games on X<ω

In this section, we will use the determinacy of games on a Tree1 collection to obtain deter-

minacy of games on X<ω.

In section 2.4.1, under ZF-P, we will focus on using ∆0
1 determinacy on a Tree1 collection

to obtain finite Borel determinacy on X<ω. We will obtain the determinacy of finite Borel

games on X<ω from the determinacy of clopen games on a particular Tree1 collection.

In section 2.4.2, we will focus on using Σ0
1 determinacy on a Tree1 collection to obtain

the determinacy of games on X<ω. In section 2.4.2.1, we will define a special open set Long

on a Type 1 tree. Long includes all plays of the tree which have length greater than ω and

excludes those of length ω. In section 2.4.2.2, we will define a special open set Max on a

Type 1 tree. Max is defined only on Type 1 trees with paths having maximum length. We

will obtain the determinacy results using Max in sections 2.4.2.3 and 2.4.2.4.

In section 2.4.3, we will obtain α+1-Π1
1 determinacy on Xω for even α ∈ ω1 using α-Π1

1

determinacy on Tree1 collection. We will again obtain the determinacy results using Max

in this section.
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2.4.1 (ZF-P) Using ∆0
1 determinacy on a Tree1 collection to obtain

finite Borel determinacy on X<ω

In this section, we will focus on obtaining in ZF-P the determinacy of finite Borel games on

X<ω from the determinacy of games on a Tree1 collection.12

First, consider the special case of Type 1 trees T = TΨ,B
X,Y with B = ∅. Since [TΨ,∅

X,Y ] = Xω,

G (Ξ;Tree1 (X,Θ,Γ, ∅)) = {G (A;X<ω) |A ∈ Ξ ↾ Xω }

for any X, Θ and Γ. Thus, we have the following observation 2.4.1.

Observation 2.4.1. For any X,Y , any function Ψ from Xω into ω and any complexity Ξ

(in which Ξ ↾ [T ] ⊆ ℘ ([T ]) is defined),

Det G (Ξ;Tree1 (X,Y,Ψ, ∅))⇒ Det (Ξ ↾ Xω) . ⊣

Ξ ↾ Xω could be any subset of Xω in observation 2.4.1.

As an example to observation 2.4.1, consider T1 = Tree1 (X, Y,Γ(ω,∆0
1),∆

0
1 ↾ Xω) for

any X and Y . Recall that Γ(ω,∆0
1) is the set of continuous functions. Since ∅ ∈ ∆0

1 ↾ Xω,

by observation 2.4.1, we have G (Σ0
1; T1) contains all open games on X<ω.

Corollary 2.4.2. Suppose α ∈ ω1 and n ∈ ω. Fix nonempty sets X and Y .

Let T1 = Tree1 (X,Y,Γ(ω,∆0
1),∆

0
1 ↾ Xω). Then

Det G
(
Σ0

α; T1
)
⇒ Det

(
Σ0

α ↾ Xω
)
.

Det G
(
Σ1

n; T1
)
⇒ Det

(
Σ1

n ↾ Xω
)
. ⊣

12The proof of Det(B ↾ Xω) in ZFC uses the power set axiom.
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Proof.

Since ∅ ∈∆0
1 ↾ Xω, we have the results by observation 2.4.1 when Ξ is Σ0

α and Σ1
n.

Observation 2.4.3. Assume that Γ contains all constant functions from Xω into ω. Then

for any X, Y and complexity Ξ (in which Ξ ↾ Xω × Y n ⊆ ℘ (Xω × Y n) is defined for all

n ∈ ω),

Det G (Ξ;Tree1 (X, Y,Γ, {∅, Xω}))⇒ Det
(∪

n∈ω
Ξ ↾ (Xω × Y n)

)
. ⊣

Proof.

FixX,Y and Ξ. AssumeDet G (Ξ;Tree1 (X,Y,Γ, {∅, Xω})). Pick an arbitrary A ∈
∪

n∈ω Ξ ↾

(Xω × Y n). Then ∃n ∈ ω such that A ∈ Ξ ↾ (Xω × Y n).

Case 1 : n = 0.

See observation 2.4.1.

Case 2 : n ̸= 0.

Let B = Xω and Ψ is the constant function at n − 1. Then Ψ ∈ Γ. Note that [TΨ,Xω

X,Y ] =

Xω × Y n. Thus G(A;X<ω × Y ≤n) = G(A;TΨ,Xω

X,Y ) ∈ G (Ξ;Tree1 (X, Y,Γ, {∅, Xω})). Hence

G(A;Xω × Y n) is determined.

Theorem 2.4.4. (ZF-P)

Suppose Γ contains all constant functions from Xω into ω and Y is denumerable. Then

Det G (∆0
1;Tree1 (X,Y,Γ, {∅, Xω})) implies Det

(∪
n∈ω Σ

0
n ↾ Xω

)
, finite Borel determinacy

on X<ω. ⊣

The proof of theorem 2.4.4 consists of the following two parts:

1. For any n ∈ ω, Det (Σ0
n ↾ Xω)⇔ Det (∆0

1 ↾ Xω × Y n).
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2. Use observation 2.4.3 with Ξ = ∆0
1.

In pages 85-104, we will prove (1) as theorem 2.4.5. Then we will prove theorem 2.4.4 on

page 104. (1) is “well-known”. Readers familiar with the proof of (1) may skip to page 104.

Under ZF-P (i.e., ZF - power set), we will see some general results about the finite Borel

games on trees with fixed length. Recall the following well-known results.

Theorem 2.4.5. ZF-P(folklore)

Suppose n ∈ ω and Y is denumerable. Then for any n ∈ ω,

Det
(
Σ0

n ↾ Xω
)
⇔ Det

(
∆0

1 ↾ Xω × Y n
)
. ⊣

Theorem 2.4.5 follows from repeated application of lemma 2.4.6 below. After proving

lemma 2.4.6, we prove theorem 2.4.5 on page 102.

Lemma 2.4.6. (Main lemma)

Suppose m, l ∈ ω and Y is denumerable.

If l is even, then

Det
(
Σ0

m ↾ Xω × Y l
)
⇔ Det

(
Π0

m−1 ↾ Xω × Y l+1
)
, (2.4)

Det
(
Σ0

1 ↾ Xω × Y l
)
⇔ Det

(
∆0

1 ↾ Xω × Y l+1
)
. (2.5)

If l is odd, then

Det
(
Π0

m ↾ Xω × Y l
)
⇔ Det

(
Σ0

m−1 ↾ Xω × Y l+1
)
, (2.6)

Det
(
Π0

1 ↾ Xω × Y l
)
⇔ Det

(
∆0

1 ↾ Xω × Y l+1
)
. (2.7)
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⊣

We will separate proof of lemma 2.4.6 by directions. First, we will prove (⇒) direction

of lemma 2.4.6 on page 93. Then we will prove (⇐) direction of lemma 2.4.6 on page 101.

For each direction, we will prove four sublemmas. None of these sublemmas use that Y is

denumerable. The proof of the equivalences (2.4) through (2.7) from sublemmas use that Y

is denumerable.

Towards the prof of (⇒) direction, we define Ashort
a . We will use sublemma 2.4.8 to show

the equivalences (2.4) and (2.5). We will use sublemma 2.4.9 to show the equivalences (2.6)

and (2.7). We will find the complexity for Ashort
a in sublemma 2.4.11 given the complexity

of A.

Definition 2.4.7. Suppose l ∈ ω. Let A ⊆ Xω × Y l+1. For each a ∈ Y , define

Ashort
a =

{
f ∈ Xω × Y l |f⌢⟨a⟩ ∈ A

}
. ⊣

Sublemma 2.4.8. Assume l ∈ ω is even.

If G(
∪

a∈Y Ashort
a ;Xω × Y l) is determined, then G(A;Xω × Y l+1) is determined. ⊣

Proof.

Suppose G(
∪

a∈Y Ashort
a ;Xω × Y l) is determined. Then I∗ or II∗ has a winning strategy s∗

for G(
∪

a∈Y Ashort
a ;Xω × Y l).

Case 1 : s∗ is a I∗’s winning strategy for G(
∪

a∈Y Ashort
a ;Xω × Y l).
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Define I’s strategy s for G(A;Xω × Y l+1) by

s (p) =


s∗ (p) if lh (p) < ω + l,

µa ∈ Y
(
p ∈ Ashort

a

)
13 if lh (p) = ω + l and p ∈

∪
a∈Y Ashort

a ,

∅ otherwise.14

x ↾ ω x ↾ [ω, ω + l − 1]

s∗

Xω × Y l

II∗

I∗ p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · · pω+l−1

pω+l−2

p ∈
∪

a∈Y Ashort
a

p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · · pω+l−1

pω+l−2 a

s gives s(p) = a such that p⌢⟨a⟩ ∈ A

II

Is

Xω × Y l+1

x

Figure 2.4.1: Illustration of x ∈ Xω × Y l+1 (l is even) according to I’s strategy s (corre-
sponding to the (⇒) direction of the equivalence (2.4) on page 85).

Show s is a winning strategy for I for G(A;Xω×Y l+1). Pick an arbitrary x ∈ Xω×Y l+1

according to s. Then x ↾ (ω+l) is according to I∗’s winning strategy s∗ forG(
∪

a∈Y Ashort
a ;Xω×

Y l) so that x ↾ (ω + l) ∈
∪

a∈Y Ashort
a . Since x is according to s, x ↾ (ω + l) ∈ Ashort

x(ω+l). Thus

x ∈ A.

Case 2 : s∗ is a II∗’s winning strategy for G(
∪

a∈Y Ashort
a ;Xω × Y l).

Define II’s strategy s for G(A;Xω × Y l+1) by s = s∗.

13µ represents “the least”. If Y is well-orderable, fix a well-ordering of Y . Otherwise, pick any a ∈ Y such
that p ∈ Ashort

a .
14This otherwise case does not occur for plays according to s.
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x ↾ ω x ↾ [ω, ω + l − 1]

s∗
Xω × Y l

II∗

I∗ p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · · pω+l−1

pω+l−2

p /∈
∪

a∈Y Ashort
a

p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · · pω+l−1

pω+l−2 a

every a gives p⌢⟨a⟩ /∈ A

II

I

s
Xω × Y l+1

x

Figure 2.4.2: Illustration of x ∈ Xω × Y l+1 (l is even) according to II’s strategy s (corre-
sponding to the (⇒) direction of the equivalence (2.4) on page 85).

Show s is a winning strategy for II for G(A;Xω × Y l+1). Pick an arbitrary x accord-

ing to s. Then x ↾ (ω + l) is according to s∗. Since s∗ is a II∗’s winning strategy for

G(
∪

a∈Y Ashort
a ;Xω×Y l), x ↾ (ω+l) /∈

∪
a∈Y Ashort

a . Thus for any a ∈ Y , (x ↾ (ω+l))⌢⟨a⟩ /∈ A,

i.e., x /∈ A.

Sublemma 2.4.9. Assume l is odd.

If G(
∩

a∈Y Ashort
a ;Xω × Y l) is determined, then G(A;Xω × Y l+1) is determined. ⊣

Proof.

Assume G(
∩

a∈Y Ashort
a ;Xω × Y l) is determined. Then I∗ or II∗ has a winning strategy s∗

for G(
∩

a∈Y Ashort
a ;Xω × Y l).

Case 1 : s∗ is a I∗’s winning strategy for G(
∩

a∈Y Ashort
a ;Xω × Y l).

Define I’s strategy s for G(A;Xω × Y l+1) by s = s∗.
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x ↾ ω x ↾ [ω, ω + l − 1]

s∗

Xω × Y l

II∗

I∗ p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · ·

pω+l−1

pω+l−2

p ∈
∩

a∈Y Ashort
a

p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · ·

pω+l−1

pω+l−2 a

every a gives p⌢⟨a⟩ ∈ A

II

Is

Xω × Y l+1

x

Figure 2.4.3: Illustration of x ∈ Xω×Y l+1 (l is odd) according to I’s strategy s (correspond-
ing to the (⇒) direction of the equivalence (2.6) on page 85).

Show s is a winning strategy for I for G(A;Xω×Y l+1). Pick an arbitrary x ∈ Xω×Y l+1

according to s. Then x ↾ (ω + l) is according to s∗. Since s∗ is a I∗’s winning strategy for

G(
∩

a∈Y Ashort
a ;Xω×Y l), x ↾ (ω+ l) ∈

∩
a∈Y Ashort

a . Thus for any a ∈ Y , x ↾ (ω + l) ∈ Ashort
a .

Thus x ↾ (ω + l) ∈ Ashort
x(ω+l). Hence x ∈ A.

Case 2 : s∗ is a II∗’s winning strategy for G(
∩

a∈Y Ashort
a ;Xω × Y l).

Define II’s strategy s for G(A;Xω × Y l+1) by

s (p) =


s∗ (p) if lh (p) < ω + l,

µa ∈ Y
(
p /∈ Ashort

a

)
15 if lh (p) = ω + l and p /∈

∩
a∈Y Ashort

a ,

∅ otherwise.16

15µ represents “the least”. If Y is well-orderable, fix a well-ordering of Y . Otherwise, pick any a ∈ Y such
that p /∈ Ashort

a .
16This otherwise case does not occur for plays according to s.
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x ↾ ω x ↾ [ω, ω + l − 1]

s∗
Xω × Y l

II∗

I∗ p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · ·

pω+l−1

pω+l−2

p /∈
∩

a∈Y Ashort
a

p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · ·

pω+l−1

pω+l−2 a

s gives a such that p⌢⟨a⟩ /∈ A

II

I

s
Xω × Y l+1

x

Figure 2.4.4: Illustration of x ∈ Xω × Y l+1 (l is odd) according to II’s strategy s (corre-
sponding to the (⇒) direction of the equivalence (2.6) on page 85).

Show s is a winning strategy for II for G(A;Xω × Y l+1). Pick an arbitrary x ac-

cording to s. Then x ↾ (ω + l) is according to s∗. Since s∗ is a II∗’s winning strat-

egy for G(
∩

a∈Y Ashort
a ;Xω × Y l), x ↾ (ω + l) /∈

∩
a∈Y Ashort

a . Since x is according to s,

x ↾ (ω + l) /∈ Ashort
x(ω+l). Hence x /∈ A. Therefore, G(A;Xω × Y l+1) is determined.

Recall that we are proving lemmas to obtain (⇒) direction of the equivalences (2.4)

through (2.7) of the main lemma (lemma 2.4.6). Note that we have sublemmas 2.4.8 and

2.4.9, what remains is to compute the complexity of (A)shorta for A ∈ Σ0
k ↾ Xω × Y l+1 and

A ∈ Π0
k ↾ Xω × Y l+1.

In sublemma 2.4.11, we will find the complexity of (A)shorta for for A ∈ Σ0
k ↾ Xω × Y l+1

and A ∈ Π0
k ↾ Xω × Y l+1, a ∈ Y . For X, Y and a ∈ Y , we first note that the function

A 7→ (A)shorta from subsets of Xω × Y l+1 to subsets of Xω × Y l preserves complementation

and unions:

Sublemma 2.4.10. Let I be an index set. Suppose l ∈ ω. For any A,Ai ⊆ Xω × Y l+1,

i ∈ I,
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1.
(
(Xω × Y l+1)\A

)short
a

=
(
Xω × Y l

)
\Ashort

a .

2.
(∪

i∈I Ai

)short
a

=
∪

i∈I (Ai)
short
a . ⊣

Proof.

Show (1).

((
Xω × Y l+1

)
\A
)short
a

=
{
f ∈ Xω × Y l

∣∣f⌢⟨a⟩ ∈
(
Xω × Y l+1

)
\A
}

=
(
Xω × Y l

)
\
{
f ∈ Xω × Y l |f⌢⟨a⟩ ∈ A

}
=
(
Xω × Y l

)
\Ashort

a .

Show (2).

(∪
i∈I

Ai

)short
a

=
{
f ∈ Xω × Y l

∣∣∣f⟨a⟩ ∈∪
i∈I

Ai

}
=
∪

i∈I

{
f ∈ Xω × Y l |f⟨a⟩ ∈ Ai

}
=
∪

i∈I
(Ai)

short
a .

By using sublemma 2.4.10, we will find the complexity of Ashort
a for A ∈ Σ0

k ↾ Xω×Y l+1,

A ∈ Π0
k ↾ Xω × Y l+1 and A ∈∆0

k ↾ Xω × Y l+1 for any a ∈ Y .

Sublemma 2.4.11. Suppose l ∈ ω. Let a ∈ Y . Assume A ⊆ Xω × Y l+1. Then for any

k ∈ ω,

1. if A ∈ Σ0
k ↾ Xω × Y l+1, then each Ashort

a ∈ Σ0
k ↾ Xω × Y l and

2. if A ∈ Π0
k ↾ Xω × Y l+1, then each Ashort

a ∈ Π0
k ↾ Xω × Y l.

Consequently, if A ∈∆0
k ↾ Xω × Y l+1, then each Ashort

a ∈∆0
k ↾ Xω × Y l. ⊣
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Proof.

We prove both (1) and (2) simultaneously by induction on k. (2) follows from (1) and

sublemma 2.4.10 (1).

Base Case : k = 1.

Show (1). Suppose A ∈ Σ0
1 ↾ Xω × Y l+1. Show Ashort

a ∈ Σ0
1 ↾ Xω × Y l. Pick an arbitrary

f ∈ Ashort
a . Then f⌢⟨a⟩ ∈ A. Since A is open, there is a finite E ⊆ ω + l such that for any

g ∈ Xω × Y l+1, if g ⊇ f⌢⟨a⟩ ↾ E, then g ∈ A. Define Ê = E\ {ω + l}. Pick an arbitrary

f̂ ∈ Xω × Y l such that f̂ ⊇ f ↾ Ê. Then f̂⌢⟨a⟩ ⊇ f⌢⟨a⟩ ↾ E so that f̂⌢⟨a⟩ ∈ A. Hence

f̂ ∈ Ashort
a . Thus Ashort

a ∈ Σ0
1 ↾ Xω × Y l.

Show (2). Suppose A ∈ Π0
1 ↾ Xω × Y l+1. Show Ashort

a ∈ Π0
1 ↾ Xω × Y l. Since A ∈

Π0
1 ↾ Xω × Y l+1, (Xω × Y l+1)\A ∈ Σ0

1 ↾ Xω × Y l+1. By above (1),
(
(Xω × Y l+1)\A

)short
a

∈

Σ0
1 ↾ Xω × Y l. By sublemma 2.4.10 (1),

(
(Xω × Y l+1)\A

)short
a

=
(
Xω × Y l

)
\Ashort

a . Thus

Ashort
a ∈ Π0

1 ↾ Xω × Y l.

Induction Step : Assume as an induction hypothesis, if A ∈ Σ0
k ↾ Xω × Y l+1, then

Ashort
a ∈ Σ0

k ↾ Xω × Y l and if A ∈ Π0
k ↾ Xω × Y l+1, then Ashort

a ∈ Π0
k ↾ Xω × Y l. Show if

A ∈ Σ0
k+1 ↾ Xω × Y l+1, then Ashort

a ∈ Σ0
k+1 ↾ Xω × Y l and if A ∈ Π0

k+1 ↾ Xω × Y l+1, then

Ashort
a ∈ Π0

k+1 ↾ Xω × Y l.

Show (1). Suppose A ∈ Σ0
k+1 ↾ Xω × Y l+1. Show Ashort

a ∈ Σ0
k+1 ↾ Xω × Y l. Since

A ∈ Σ0
k+1 ↾ Xω × Y l+1, there exists ⟨Ai |i ∈ ω ⟩ such that A =

∪
i∈ω Ai and each Ai ∈ Π0

k ↾

Xω × Y l+1. Since Ai ∈ Π0
k ↾ Xω × Y l+1, by induction hypothesis, (Ai)

short
a ∈ Π0

k ↾ Xω × Y l.

92



By sublemma 2.4.10 (2),
(∪

i∈ω Ai

)short
a

=
∪

i∈ω (Ai)
short
a . Thus, we have

Ashort
a =

(∪
i∈ω

Ai

)short
a

=
∪

i∈ω
(Ai)

short
a ∈ Σ0

k+1 ↾ Xω × Y l.

Show (2). We repeat the same proof the base case for (2). Suppose A ∈ Π0
k+1 ↾ Xω×Y l+1.

Show Ashort
a ∈ Π0

k+1 ↾ Xω × Y l. Since A ∈ Π0
k+1 ↾ Xω × Y l+1, (Xω × Y l+1)\A ∈ Σ0

k+1 ↾

Xω × Y l+1. By above (1),
(
(Xω × Y l+1)\A

)short
a

∈ Σ0
k+1 ↾ Xω × Y l. By sublemma 2.4.10

(1),
(
(Xω × Y l+1)\A

)short
a

=
(
Xω × Y l

)
\Ashort

a . Thus Ashort
a ∈ Π0

k+1 ↾ Xω × Y l.

Consequently, if A ∈∆0
k ↾ Xω × Y l+1, then each Ashort

a ∈∆0
k ↾ Xω × Y l.

Now, we prove the (⇒) direction of the main lemma (lemma 2.4.6) from the four sub-

lemmas 2.4.8, 2.4.9 2.4.10 and 2.4.11.

Proof of (⇒) direction of the main lemma (lemma 2.4.6 on page 85).

Suppose Y is denumerable. Fix m, l ∈ ω.

Suppose and l is even.

Show the (⇒) direction of the equivalence (2.4) :

Det
(
Σ0

m ↾ Xω × Y l
)
⇒ Det

(
Π0

m−1 ↾ Xω × Y l+1
)
.

Assume Det
(
Σ0

m ↾ Xω × Y l
)
. Pick an arbitrary A ∈ Π0

m−1 ↾ Xω×Y l+1. Then by sublemma

2.4.11, for all a ∈ Y , Ashort
a ∈ Π0

m−1 ↾ Xω × Y l. Since Y is denumerable,
∪

a∈Y Ashort
a ∈Σ0

m ↾

Xω×Y l. Then G(
∪

a∈Y Ashort
a ;Xω×Y l) is determined. By sublemma 2.4.8, G(A;Xω×Y l+1)

is determined.

A similar proof works for the (⇒) direction of the equivalence (2.5) :

Det
(
Σ0

1 ↾ Xω × Y l
)
⇒ Det

(
∆0

1 ↾ Xω × Y l+1
)
.
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Simply replace Σ0
m by Σ0

1 and replace Π0
m−1 by ∆0

1.

Suppose l is odd.

Show the (⇒) direction of the equivalence (2.6) :

Det
(
Π0

m ↾ Xω × Y l
)
⇒ Det

(
Σ0

m−1 ↾ Xω × Y l+1
)
.

Assume Det
(
Π0

m ↾ Xω × Y l
)
. Pick an arbitrary A ∈ Σ0

m−1 ↾ Xω×Y l+1. Then by sublemma

2.4.11, for all a ∈ Y , Ashort
a ∈ Σ0

m−1 ↾ Xω × Y l. Since Y is denumerable,
∩

a∈Y Ashort
a ∈Π0

m ↾

Xω×Y l. Then G(
∩

a∈Y Ashort
a ;Xω×Y l) is determined. By sublemma 2.4.9, G(A;Xω×Y l+1)

is determined.

A similar proof works for the (⇒) direction of the equivalence (2.7) :

Det
(
Π0

1 ↾ Xω × Y l
)
⇒ Det

(
∆0

1 ↾ Xω × Y l+1
)
.

Simply replace Π0
m by Π0

1 and replace Σ0
m−1 by ∆0

1.

Now that we have completed the proof of the (⇒) direction of the main lemma (lemma

2.4.6 on page 85), we will prove (⇐) direction of the main lemma (lemma 2.4.6) on page

101 after proving some sublemmas. Towards the proof of (⇐) direction, we will define

⟨Aa |a ∈ Y ⟩long. We will use sublemma 2.4.13 to show the remaining direction of the equiv-

alences (2.4) and (2.5). We will use sublemma 2.4.14 to show the remaining direction of the

equivalences (2.6) and (2.7). In sublemma 2.4.16, we will find complexity of ⟨Aa |a ∈ Y ⟩long

for the relevant Aa’s.
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Definition 2.4.12. Suppose l ∈ ω. Let Aa ⊆ Xω × Y l for all a ∈ Y . Define

⟨Aa |a ∈ Y ⟩long =
{
h ∈ Xω × Y l+1

∣∣h ↾ (ω + l) ∈ Ah(ω+l)

}
. ⊣

Sublemma 2.4.13. Suppose l ∈ ω is even and A =
∪

a∈Y Aa ⊆ Xω × Y l.

If G(⟨Aa |a ∈ Y ⟩long ;Xω × Y l+1) is determined, then G(A;Xω × Y l) is determined. ⊣

Proof.

Assume G(⟨Aa |a ∈ Y ⟩long ;Xω×Y l+1) is determined. Then I∗ or II∗ has a winning strategy

s∗ for G(⟨Aa |a ∈ Y ⟩long ;Xω × Y l+1).

Case 1 : s∗ is a I∗’s winning strategy for G(⟨Aa |a ∈ Y ⟩long ;Xω × Y l+1).

Define I’s strategy for G(A;Xω × Y l) by s = s∗ ↾ T where [T ] = Xω × Y l. 17

x ↾ ω x ↾ [ω, ω + l − 1]

s∗

Xω × Y l+1

II∗

I∗ p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · · pω+l−1

p ∈ ⟨Aa |a ∈ Y ⟩long

p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · · pω+l−1

pω+l

pω+l−2

x = p ↾ (ω + l) ∈ Ap(ω+l)

II

Is

Xω × Y l

x

Figure 2.4.5: Illustration of x ∈ Xω×Y l (l is even) according to I’s strategy s (corresponding
to the (⇐) direction of the equivalence (2.4) on page 85).

Show s is a winning strategy for I for G(A;Xω × Y l). Pick an arbitrary x ∈ Xω × Y l

according to s. Then x⌢s∗(x) is according to s∗ so that s∗(x) ∈ Y .

Since s∗ is a I∗’s winning strategy for G(⟨Aa |a ∈ Y ⟩long ;Xω × Y l+1),

x⌢s∗(x) ∈ ⟨Aa |a ∈ Y ⟩long. Hence x ∈ As∗(x) ⊆ A.
17s∗ ↾ T abbreviates s∗ ↾ (T ∩ dom(s∗)).
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Case 2 : s∗ is a II∗’s winning strategy for G(⟨Aa |a ∈ Y ⟩long ;Xω × Y l+1).

Define II’s strategy for G(A;Xω × Y l) by s = s∗.

x ↾ ω x ↾ [ω, ω + l − 1]

s∗
Xω × Y l+1

II∗

I∗ p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · · pω+l−1

p /∈ ⟨Aa |a ∈ Y ⟩long

pω+l

any pω+l

p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · · pω+l−1

pω+l−2

x = p ↾ (ω + l) /∈ Ap(ω+l) for every pω+l

II

I

s
Xω × Y l

x

Figure 2.4.6: Illustration of x ∈ Xω×Y l (l is even) according to II’s strategy s (corresponding
to the (⇐) direction of the equivalence (2.4) on page 85).

Show s is a winning strategy for II for G(A;Xω × Y l). Pick an arbitrary x ∈ Xω × Y l

according to s. Then for any a ∈ Y , x⌢⟨a⟩ is according to s∗. Since s∗ is a II∗’s winning

strategy for G(⟨Aa |a ∈ Y ⟩long ;Xω × Y l+1), for all a ∈ Y , x⌢⟨a⟩ /∈ ⟨Aa |a ∈ Y ⟩long. Hence

for all a ∈ Y , x /∈ Aa. Thus x /∈
∪

a∈Y Aa = A. Therefore, G(A;Xω × Y l) is determined.

Sublemma 2.4.14. Suppose l is odd and A =
∩

a∈Y Aa ⊆ Xω × Y l.

If G(⟨Aa |a ∈ Y ⟩long ;Xω × Y l+1) is determined, then G(A;Xω × Y l) is determined. ⊣

Proof.

Assume G(⟨Aa |a ∈ Y ⟩long ;Xω×Y l+1) is determined. Then I∗ or II∗ has a winning strategy

s∗ for G(⟨Aa |a ∈ Y ⟩long ;Xω × Y l+1).

Case 1 : s∗ is a I∗’s winning strategy for G(⟨Aa |a ∈ Y ⟩long ;Xω × Y l+1).

Define I’s strategy for G(A;Xω × Y l) by s = s∗.

96



x ↾ ω x ↾ [ω, ω + l − 1]

s∗

Xω × Y l+1

II∗

I∗ p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2

pω+l−2

· · ·

· · ·

pω+l−1

p ∈ ⟨Aa |a ∈ Y ⟩long

p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · ·

pω+l−1

pω+l−2

pω+l any pω+l

any a gives x = p ↾ (ω + l) ∈ Ap(ω+l) for every pω+l

II

Is

Xω × Y l

x

Figure 2.4.7: Illustration of x ∈ Xω×Y l (l is odd) according to I’s strategy s (corresponding
to the (⇐) direction of the equivalence (2.6) on page 85).

Show s is a winning strategy for I for G(A;Xω × Y l). Pick an arbitrary x ∈ Xω × Y l

according to s. Then for any a ∈ Y , x⌢⟨a⟩ is according to s∗. Since s∗ is a I∗’s winning

strategy for G(⟨Aa |a ∈ Y ⟩long ;Xω × Y l+1), for all a ∈ Y , x⌢⟨a⟩ ∈ ⟨Aa |a ∈ Y ⟩long. Hence

x ∈
∩

a∈Y Aa = A.

Case 2 : s∗ is a II∗’s winning strategy for G(⟨Aa |a ∈ Y ⟩long ;Xω × Y l+1).

Define II’s strategy for G(A;Xω × ωl) by s = s∗ ↾ T where [T ] = Xω × Y l. 18

x ↾ ω x ↾ [ω, ω + l − 1]

s∗
Xω × Y l+1

II∗

I∗ p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · · pω+l−2

pω+l−1

p /∈ ⟨Aa |a ∈ Y ⟩long

p0

p1

p2 · · ·

· · ·

pω

pω+1

pω+2 · · ·

· · ·

pω+l−1

pω+l

pω+l−2

s∗ gives pω+l

x = p ↾ (ω + l) /∈ Ap(ω+l)

II

I

s
Xω × Y l

x

Figure 2.4.8: Illustration of x ∈ Xω×Y l (l is odd) according to II’s strategy s (corresponding
to the (⇐) direction of the equivalence (2.6) on page 85).

18s∗ ↾ T abbreviates s∗ ↾ (T ∩ dom(s∗)).
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Show s is a winning strategy for II for G(A;Xω × Y l). Pick an arbitrary x ∈ Xω × Y l

according to s. Then x⌢s∗(x) is according to s∗. Since s∗ is a II∗’s winning strategy

for G(⟨Aa |a ∈ Y ⟩long ;Xω × Y l+1), x⌢s∗(x) /∈ ⟨Aa |a ∈ Y ⟩long. Hence x /∈ As∗(x). Thus

x /∈
∩

a∈Y Aa = A. Therefore, G(A;Xω × Y l) is determined.

Recall that we are proving lemmas to obtain the (⇐) direction of the equivalences (2.4)

through (2.7) of the main lemma (lemma 2.4.6) on 85. Now that we have sublemmas 2.4.13

and 2.4.14, we next compute the complexity of ⟨Aa |a ∈ Y ⟩long for relevant Aa’s.

In sublemma 2.4.16, we will find the complexity of ⟨Aa |a ∈ Y ⟩long. For X,Y , we first

note that the function ⟨Aa |a ∈ Y ⟩ 7→ ⟨Aa |a ∈ Y ⟩long from a sequence of subsets of Xω×Y l

to a subset of Xω × Y l+1 preserves complementation and unions:

Sublemma 2.4.15. Let I be an index set. Suppose l ∈ ω. Let Aa, A
i
a ⊆ Xω × Y l for all

a ∈ Y and i ∈ ω. Then

1.
⟨(

Xω × Y l+1
)
\Aa

∣∣ a ∈ Y
⟩long

=
(
Xω × Y l+1

)
\ ⟨Aa |a ∈ Y ⟩long.

2.
⟨∪

i∈I A
i
a |a ∈ Y

⟩long
=
∪

i∈I

(
⟨Ai

a |a ∈ Y ⟩long
)
. ⊣

Proof.

Show (1).

⟨(
Xω × Y l+1

)
\Aa |a ∈ Y

⟩long
=
{
h ∈ Xω × Y l+1

∣∣h ↾ (ω + l) ∈
(
Xω × Y l+1

)
\Ah(ω+l)

}
=
(
Xω × Y l+1

)
\
{
h ∈ Xω × Y l+1

∣∣h ↾ (ω + l) ∈ Ah(ω+l)

}
=
(
Xω × Y l+1

)
\ ⟨Aa |a ∈ Y ⟩long .
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Show (2).

⟨∪
i∈I

Ai
a |a ∈ Y

⟩long
=
{
h ∈ Xω × Y l+1

∣∣∣h ↾ (ω + l) ∈
∪

i∈I
Ai

h(ω+l)

}
=
∪

i∈I

{
h ∈ Xω × Y l+1

∣∣h ↾ (ω + l) ∈ Ai
h(ω+l)

}
=
∪

i∈I

(⟨
Ai

a |a ∈ Y
⟩long)

.

By using sublemma 2.4.15, we will find the complexity of ⟨Aa |a ∈ Y ⟩long for the following

cases: for all a ∈ Y , Aa ∈ Σ0
k ↾ Xω × Y l+1; for all a ∈ Y , Aa ∈ Π0

k ↾ Xω × Y l+1; and for all

a ∈ Y , Aa ∈∆0
k ↾ Xω × Y l+1.

Sublemma 2.4.16. Suppose l ∈ ω. Let Aa ⊆ Xω × Y l for all a ∈ Y . Then for any k ∈ ω:

1. If for all a ∈ Y , Aa ∈ Σ0
k ↾ Xω × Y l, then ⟨Aa |a ∈ Y ⟩long ∈ Σ0

k ↾ Xω × Y l+1.

2. If for all a ∈ Y , Aa ∈ Π0
k ↾ Xω × Y l, then ⟨Aa |a ∈ Y ⟩long ∈ Π0

k ↾ Xω × Y l+1.

Consequently, if for all a ∈ Y , Aa ∈∆0
k ↾ Xω × Y l, then ⟨Aa |a ∈ Y ⟩long ∈∆0

k ↾ Xω × Y l+1.

⊣

Proof.

We prove both (1) and (2) simultaneously by induction on k. By sublemma 2.4.15 (1), (2)

follows from (1).

Base Case : k = 1.

Show (1). Suppose for all a ∈ Y , Aa ∈ Σ0
1 ↾ Xω × Y l. Show ⟨Aa |a ∈ Y ⟩long ∈ Σ0

1 ↾

Xω × Y l+1. Pick an arbitrary h ∈ ⟨Aa |a ∈ Y ⟩long. Since h(ω+ l) ∈ Y , h ↾ (ω + l) ∈ Ah(ω+l).

Since Ah(ω+l) is open, there is a finite E ⊆ ω + l − 1 such that for any g ∈ Xω × Y l, if

g ⊇ h ↾ E, then g ∈ Ah(ω+l). Define Ê = E ∪ {ω + l}. Pick an arbitrary ĥ ∈ Xω × Y l+1
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such that ĥ ⊇ h ↾ Ê. Then ĥ ↾ (ω + l) ∈ Xω × Y l and ĥ ↾ (ω + l) ⊇ h ↾ E. Thus

ĥ ↾ (ω + l) ∈ Ah(ω+l). Since ĥ ⊇ h ↾ Ê, ĥ(ω + l) = h(ω + l). Hence ĥ ↾ (ω + l) ∈ Aĥ(ω+l).

Therefore, ĥ ∈ ⟨Aa |a ∈ Y ⟩long. Thus ⟨Aa |a ∈ Y ⟩long ∈ Σ0
1 ↾ Xω × Y l+1.

Show (2). Suppose for all a ∈ Y , Aa ∈ Π0
1 ↾ Xω × Y l. Show ⟨Aa |a ∈ Y ⟩long ∈

Π0
1 ↾ Xω × Y l+1. Since for all a ∈ Y , Aa ∈ Π0

1 ↾ Xω × Y l, (Xω × Y l)\Aa ∈ Σ0
1 ↾

Xω × Y l for all a ∈ Y . By above (1),
⟨(
Xω × Y l+1

)
\Aa |a ∈ Y

⟩long ∈ Σ0
1 ↾ Xω × Y l+1.

By sublemma 2.4.15,
⟨(
Xω × Y l+1

)
\Aa |a ∈ Y

⟩long
=
(
Xω × Y l+1

)
\ ⟨Aa |a ∈ Y ⟩long. Thus

⟨Aa |a ∈ Y ⟩long ∈ Π0
1 ↾ Xω × Y l+1.

Induction Step : As an induction hypothesis, assume for all a ∈ Y , if Aa ∈ Σ0
k ↾ Xω×Y l,

then ⟨Aa |a ∈ Y ⟩long ∈ Σ0
k ↾ Xω × Y l+1 and for all a ∈ Y , if Aa ∈ Π0

k ↾ Xω × Y l, then

⟨Aa |a ∈ Y ⟩long ∈ Π0
k ↾ Xω × Y l+1.

Show(1). Suppose for all a ∈ Y , Aa ∈ Σ0
k+1 ↾ Xω × Y l. Show ⟨Aa |a ∈ Y ⟩long ∈

Σ0
k+1 ↾ Xω × Y l+1. Since for all a ∈ Y , Aa ∈ Σ0

k+1 ↾ Xω × Y l, for each a ∈ Y , there

exists ⟨Ai
a |i ∈ ω ⟩ such that Aa =

∪
i∈ω A

i
a and each Ai

a ∈ Π0
k ↾ Xω × Y l. Since each

Ai
a ∈ Π0

k ↾ Xω × Y l, by induction hypothesis, ⟨Ai
a |a ∈ Y ⟩long ∈ Π0

k ↾ Xω × Y l+1. By

sublemma 2.4.15,
⟨∪

i∈ω A
i
a |a ∈ Y

⟩long
=
∪

i∈ω ⟨Ai
a |a ∈ Y ⟩long. Thus

⟨Aa |a ∈ Y ⟩long =
⟨∪

i∈ω
Ai

a |a ∈ Y
⟩long

=
∪

i∈ω

⟨
Ai

a |a ∈ Y
⟩long ∈ Σ0

k+1 ↾ Xω × Y l+1.

Show(2). We repeat the same proof of the base case for (2). Suppose for all a ∈

Y , Aa ∈ Π0
k+1 ↾ Xω × Y l. Show ⟨Aa |a ∈ Y ⟩long ∈ Π0

k+1 ↾ Xω × Y l+1. Since for all

a ∈ Y , Aa ∈ Π0
k+1 ↾ Xω × Y l, (Xω × Y l)\Aa ∈ Σ0

k+1 ↾ Xω × Y l for all a ∈ Y .

By above (1),
⟨(
Xω × Y l+1

)
\Aa |a ∈ Y

⟩long ∈ Σ0
k+1 ↾ Xω × Y l+1. By sublemma 2.4.15,
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⟨(
Xω × Y l+1

)
\Aa |a ∈ Y

⟩long
=
(
Xω × Y l+1

)
\ ⟨Aa |a ∈ Y ⟩long. Thus ⟨Aa |a ∈ Y ⟩long ∈ Π0

k+1 ↾

Xω × Y l+1.

Consequently, if for all a ∈ Y , Aa ∈ ∆0
k ↾ Xω × Y l, then ⟨Aa |a ∈ Y ⟩long ∈ ∆0

k ↾

Xω × Y l+1.

Now, we prove (⇐) direction of the main lemma (lemma 2.4.6) on page 85 from sublem-

mas 2.4.13, 2.4.14 2.4.15 and 2.4.16.

Proof of the (⇐) direction of the main lemma (lemma 2.4.6) on page 85.

Suppose Y is denumerable. Fix m, l ∈ ω.

Assume l is even. Show the (⇐) direction of the equivalence (2.4) :

Det
(
Σ0

m ↾ Xω × Y l
)
⇔ Det

(
Π0

m−1 ↾ Xω × Y l+1
)
.

Recall we already have (⇒) direction on page 93.

(⇐) Assume Det
(
Π0

m−1 ↾ Xω × Y l+1
)
. Pick an arbitrary A ∈ Σ0

m ↾ Xω × Y l. Since

Y is denumerable and A could be written as a denumerable union of Π0
m−1 sets, there

exists ⟨Aa |a ∈ Y ⟩ such that A =
∪

a∈Y Aa and each Aa ∈ Π0
m−1 ↾ Xω × Y l. Then by

sublemma 2.4.16, ⟨Aa |a ∈ Y ⟩long ∈ Π0
m−1 ↾ Xω×Y l+1. Thus G(⟨Aa |a ∈ Y ⟩long ;Xω×Y l+1)

is determined. By sublemma 2.4.13, G(A;Xω × Y l) is determined.

A similar proof works for the (⇐) direction of the equivalence (2.5):

Det
(
∆0

1 ↾ Xω × Y l+1
)
⇒ Det

(
Σ0

1 ↾ Xω × Y l
)
.

Simply replace Σ0
m by Σ0

1 and replace Π0
m−1 by ∆0

1.
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Suppose l is odd. Show the (⇐) direction of the equivalence (2.6) :

Det
(
Π0

m ↾ Xω × Y l
)
⇔ Det

(
Σ0

m−1 ↾ Xω × Y l+1
)
.

Recall we already have (⇒) direction on page 94.

(⇐) Assume Det
(
Σ0

m−1 ↾ Xω × Y l+1
)
. Pick an arbitrary A ∈ Π0

m ↾ Xω × Y l. Since Y

is denumerable and A could be written as a denumerable intersection of Σ0
m−1 sets, there

exists ⟨Aa |a ∈ Y ⟩ such that A =
∩

a∈Y Aa and each Aa ∈ Σ0
m−1 ↾ Xω × Y l. Then by

sublemma 2.4.16, ⟨Aa |a ∈ Y ⟩long ∈ Σ0
m−1 ↾ Xω ×Y l+1. Thus G(⟨Aa |a ∈ Y ⟩long ;Xω ×Y l+1)

is determined. By sublemma 2.4.14, G(A;Xω × Y l) is determined.

A similar proof works for the (⇐) direction of the equivalence (2.7):

Det
(
∆0

1 ↾ Xω × Y l+1
)
⇒ Det

(
Π0

1 ↾ Xω × Y l
)
.

Simply replace Π0
m by Π0

1 and replace Σ0
m−1 by ∆0

1.

By proofs in 93 and 101, we have lemma 2.4.6.

Now we will show theorem 2.4.5 by repeated application of the main lemma (lemma 2.4.6

on page 85). Recall theorem 2.4.5.

Theorem 2.4.5. ZF-P(folklore)

Suppose n ∈ ω and Y is denumerable. Then for any n ∈ ω,

Det
(
Σ0

n ↾ Xω
)
⇔ Det

(
∆0

1 ↾ Xω × Y n
)
. ⊣

Proof of theorem 2.4.5.

Pick an arbitrary n ∈ ω.
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By lemma 2.4.6 the equivalence (2.4) on page 85 with l = 0, we have

Det
(
Σ0

n ↾ Xω
)
⇔ Det

(
Π0

n−1 ↾ Xω × Y
)
.

By lemma 2.4.6 the equivalence (2.6) on page 85 with l = 1, we have

Det
(
Π0

n−1 ↾ Xω × Y
)
⇔ Det

(
Σ0

n−2 ↾ Xω × Y 2
)
.

Continue applying lemma 2.4.6 the equivalences (2.4) and (2.6) alternately.

Case 1 : n is even.

By lemma 2.4.6 the equivalence (2.4) with l = n− 2, we have

Det
(
Σ0

2 ↾ Xω × Y n−2
)
⇔ Det

(
Π0

1 ↾ Xω × Y n−1
)
.

By lemma 2.4.6 the equivalence (2.7) with l = n− 1, we have

Det
(
Π0

1 ↾ Xω × Y n−1
)
⇔ Det

(
∆0

1 ↾ Xω × Y n
)
.

Consequently, we have

Det
(
Σ0

n ↾ Xω
)
⇔ Det

(
Π0

n−1 ↾ Xω × Y
)
⇔ Det

(
Σ0

n−2 ↾ Xω × Y 2
)
⇔ · · ·

⇔ Det
(
Σ0

2 ↾ Xω × Y n−2
)
⇔ Det

(
Π0

1 ↾ Xω × Y n−1
)
⇔ Det

(
∆0

1 ↾ Xω × Y n
)
.

Case 2 : n is odd.

By lemma 2.4.6 the equivalence (2.7) with l = n− 2, we have

Det
(
Π0

2 ↾ Xω × Y n−2
)
⇔ Det

(
Σ0

1 ↾ Xω × Y n−1
)
.

By lemma 2.4.6 the equivalence (2.5) with l = n− 1, we have

Det
(
Σ0

1 ↾ Xω × Y n−1
)
⇔ Det

(
∆0

1 ↾ Xω × Y n
)
.

103



Consequently, we have

Det
(
Σ0

n ↾ Xω
)
⇔ Det

(
Π0

n−1 ↾ Xω × Y
)
⇔ Det

(
Σ0

n−2 ↾ Xω × Y 2
)
⇔

· · · ⇔ Det
(
Π0

2 ↾ Xω × Y n−2
)
⇔ Det

(
Σ0

1 ↾ Xω × Y n−1
)
⇔ Det

(
∆0

1 ↾ Xω × Y n
)
.

Finally, by using the general results for the finite Borel sets for fixed length, we will prove

the main theorem. Recall theorem 2.4.4.

Theorem 2.4.4. (ZF-P)

Suppose Γ contains all constant functions from Xω into ω and Y is denumerable. Then

Det G (∆0
1;Tree1 (X,Y,Γ, {∅, Xω})) implies Det

(∪
n∈ω Σ

0
n ↾ Xω

)
, finite Borel determinacy

on X<ω. ⊣

Proof of theorem 2.4.4.

Assume Y is denumerable and Det (∆0
1;Tree1 (X, Y,Γ, {∅, Xω})). Pick an arbitrary A ∈∪

n∈ω Σ
0
n ↾ Xω. Then there exists n ∈ ω such that A ∈ Σ0

n ↾ Xω. By theorem 2.4.5,

Det
(
Σ0

n ↾ Xω
)
⇔ Det

(
∆0

1 ↾ Xω × Y n
)
.

By observation 2.4.3, we have Det
(∪

n∈ω ∆
0
1 ↾ (Xω × Y n)

)
. Thus G(A;X<ω) is deter-

mined. Hence Det
(∪

n∈ω Σ
0
n ↾ Xω

)
.

Corollary 2.4.17.

Det G
(
∆0

1;Tree1
(
X,CTB,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
⇒ Det

(∪
n∈ω

Σ0
n ↾ Xω

)
.19 ⊣

Proof.

Since each constant functions is continuous, Γ(ω,∆0
1) contains all the constant functions

19Recall notation 1.5.10 for CTB and notation 1.5.8 for Γ(ω,∆0
1).
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from Xω into ω. Also ∅, Xω ∈∆0
1 ↾ Xω. Thus, we have the result by theorem 2.4.4.
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2.4.2 Using Σ0
1 determinacy on a Tree1 collection to obtain the

determinacy of games on X<ω

In this section, we will obtain the determinacy of games on X<ω from the determinacy of

open games on a Tree2 collection.

In section 2.4.2.1, we will define a open set Long on a Type 1 tree. Long includes all

plays of the tree which have length greater than ω and excludes those of length ω.

In section 2.4.2.2, we will define an open set Max on a Type 1 tree. Max is defined only

on Type 1 trees with paths having maximum length. We will obtain the determinacy results

using Max in sections 2.4.2.3 and 2.4.2.4.

2.4.2.1 Definition of the open set Long (B) on the body of a Type 1 tree and

using the determinacy equivalence of open games Long(A) on a Tree1

collection to obtain the determinacy of games A on Xω

In this section, we will define the open set Long on a Type 2 tree and obtain the determinacy

of games A on X<ω from the determinacy of open games Long(A) on a Tree2 collection.

For this section, it will be convenient to consider for any Type 1 tree T , the length

function lh[T ].

Definition 2.4.18. (Definition of the length function lh[T ])

lh[T ] : [T ]→ ω + ω

h 7→ lh (h) .
⊣

In this section, we will define the open set Long on a Type 1 tree. By definition of
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T = TΨ,B
X,Y , we can split the body of the tree into two pieces, the “short” piece, lh−1

[T ](ω),

which consists of paths of length ω, and the “long” piece which consists of paths of length

greater than ω. Long is the subset of the body of a Type 1 tree that consists of all plays

of length greater than ω. By using this open set, Long, we will obtain the determinacy of

games on X<ω.

Definition 2.4.19. Suppose B ⊆ Xω, Ψ is a function from Xω into ω and Y is arbitrary.

Define

Long (B) = {h ∈ [TΨ,B
X,Y ] | lh(h) > ω}. ⊣

Then Long (B) = {h ∈ [TΨ,B
X,Y ] | h ↾ ω ∈ B}. This set is the set of plays of length longer

than ω. It is easy to see that Long(B) is open in [TΨ,B
X,Y ] for any B ⊆ Xω by taking the finite

set to be {ω}: for any h ∈ Long(B), every g ∈ [TΨ,B
X,Y ] with g ⊇ h ↾ {ω} has ω ∈ dom(g) and

thus it is in Long(B). Long(B) is open in [TΨ,B
X,Y ] even if B is a collection of nondetermined

sets. Also, the complement of Long(B);

[TΨ,B
X,Y ]\Long (B) = {h ∈ [TΨ,B

X,Y ] | lh(h) = ω} = {h ∈ [TΨ,B
X,Y ] | h ↾ ω ∈ Xω\B}

is closed in [TΨ,B
X,Y ] for any B ⊆ Xω. Note that the complement of Long (B) is open in [TΨ,B

X,Y ]

if and only if B is closed in Xω. Hence Long (B) is clopen if and only if B is closed. In

general, for n ∈ ω, {h ∈ [TΨ,B
X,Y ] | lh(h) > ω + n} is open.

Theorem 2.4.20. For any X, Y , Ψ : Xω → ω, for any A ⊆ Xω,

G (A;Xω) is determined if and only if G(Long (A) ;TΨ,A
X,Y ) is determined. ⊣

Proof.
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Fix X,Y , Ψ : Xω → ω and A ⊆ Xω arbitrary. Recall

h ∈
[
TΨ,A
X,Y

]
↔


h ∈ Xω if h ↾ ω /∈ A,

h ∈ Xω × Y Ψ(h↾ω)+1 if h ↾ ω ∈ A.

(⇐) Assume G (A;Xω) is determined. Then I or II has a winning strategy s for G (A;Xω).

Define s∗ to be such that s∗ ↾ X<ω = s and play anything after that to finish the play. Show

s∗ is a winning strategy for G(Long (A) ;TΨ,A
X,Y ). Pick an arbitrary f ∈ [TΨ,A

X,Y ] according to

s∗.

Case I : s is a winning strategy for I.

Since f ↾ ω is according to s, f ↾ ω ∈ A so that lh(f) > ω. Thus f ∈ Long (A).

Case II : s is a winning strategy for II.

Since f ↾ ω is according to s, f ↾ ω /∈ A so that lh(f) = ω. Thus f /∈ Long (A). Hence

G(Long (A) ;TΨ,A
X,Y ) is determined.

(⇒) Assume G(Long(A); TΨ,A
X,Y ) is determined. Then I∗ or II∗ has a winning strategy

s∗ for G(Long (A) ;TΨ,A
X,Y ). Define s = s∗ ↾ X<ω. 20 Show s is a winning strategy. for

G (A;Xω). Pick an arbitrary f ∈ Xω according to s. Play according to s∗ after f , call it g,

until f⌢g ∈ [TΨ,A
X,Y ].

Case I : s∗ is a winning strategy for I∗.

Then f⌢g ∈ Long (A) so that g ̸= ∅, i.e., f ∈ A. Hence s is a winning strategy for I for

G (A;Xω).

Case II : s∗ is a winning strategy for II∗.

Then f⌢g /∈ Long (A) so that f⌢g ∈ Xω, i.e., g = ∅, hence f /∈ A. Hence s is a winning

20s∗ ↾ X<ω abbreviates s∗ ↾ (X<ω ∩ dom(s∗)).
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strategy for II for G (A;Xω). Thus G (A;Xω) is determined.

The following three corollaries follow from theorem 2.4.20.

Corollary 2.4.21. For any X, Y , Ψ : Xω → ω and Λ,

Det G
(
Σ0

1;Tree1 (X, Y,Ψ,Λ ↾ Xω)
)
⇒ Det (Λ ↾ Xω) . ⊣

Proof.

Pick an arbitrary A ∈ Λ ↾ Xω. Fix X,Y and Ψ : Xω → ω. Then, Long(A) ∈ Σ0
1 ↾ [TΨ,A

X,Y ].

Thus G(Long(A);TΨ,A
X,Y ) is determined. By theorem 2.4.20, G(A;X<ω) is determined.

Corollary 2.4.22. (Corollary to Corollary 2.4.21)

For any α ∈ ω1, n ∈ ω, X,Y and Ψ : Xω → ω,

Det G
(
Σ0

1;Tree1
(
X,Y,Ψ,Σ0

α ↾ Xω
))
⇒ Det

(
Σ0

α ↾ Xω
)
.

Det G
(
Σ0

1;Tree1
(
X,Y,Ψ,Σ1

n ↾ Xω
))
⇒ Det

(
Σ1

n ↾ Xω
)
. ⊣

Proof.

By corollary 2.4.21 with Λ = Σ0
α and Λ = Σ1

n.

Corollary 2.4.23. (Corollary to Corollary 2.4.21)

Suppose X is a nonempty set, Θ is an arbitrary collection of sets, Γ is any collection of

functions from Xω into ω and Λ is a collection of nondetermined sets on Xω. Then,

¬Det G
(
Σ0

1;Tree1 (X,Θ,Γ,Λ ↾ Xω)
)
. ⊣

Proof.

Assume Λ is a collection of nondetermined sets. Then ¬Det(Λ ↾ Xω). By corollary 2.4.21,
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¬Det (Σ0
1;Tree1 (X, Y,Ψ,Λ ↾ Xω)) for any Y and Ψ : Xω → ω, i.e.,

¬Det G
(
Σ0

1;Tree1 (X,Θ,Γ,Λ ↾ Xω)
)
.

In fact, G(Long(A);TΨ,A
X,Y ) is not determined for any nondetermined set A ⊆ Xω and any

X,Y and function Ψ from Xω into ω.
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2.4.2.2 Definition of the open set Max (Ψ, B) on a Type 1 tree

In this section, we will consider Type 1 trees TΨ,B
X,Y such that Ψ ↾ B is bounded below ω. We

will define the open set Max(Ψ, B) on a Type 1 tree. This open set is defined only on Type

1 trees with height bounded below ω+ω. Max consists of all plays of the maximum length.

In sections 2.4.2.3 and 2.4.2.4, we will obtain some determinacy results using Max.

Definition 2.4.24. (Definition of Max)

Suppose Ψ ↾ B is bounded below ω. Let nΨ,B
max be the maximum tail length determined from Ψ

and B. (nΨ,B
max = max(Im(Ψ ↾ B)) + 1.) If Ψ and B are clear from the context, we suppress

Ψ and B, i.e.,nmax = nΨ,B
max.

Define

Max (Ψ, B) = {h ∈ [TΨ,B
X,Y ] | lh(h) = ω + nmax} = lh−1

[TΨ,B
X,Y ]

(ω + nmax). ⊣

It is easy to see that Max (Ψ, B) is open in [TΨ,B
X,Y ]. In general, if n is not the maximal

length, {h ∈ [TΨ,B
X,Y ] | lh(h) = ω + n} may not be open.

2.4.2.3 Using the determinacy of open games Max(χA, X
ω) on a Tree1 collection

to obtain the determinacy of games A on X<ω

In this section, we will obtain the determinacy of games A on X<ω from the determinacy of

open games Max(χA, X
ω) on a Tree1 collection. Let A ⊆ Xω. We will consider the case

for the Type 1 tree TΨ,B
X,Y in which Ψ is the characteristic function χA of A and B = Xω.

By using χA, we can split the body of the tree T = T χA,Xω

X,Y into two pieces, lh−1
[T ](ω + 1) and

111



lh−1
[T ](ω + 2). Recall

χA : Xω → {0, 1}

f 7→


0 if f /∈ A,

1 if f ∈ A.

Note that

h ∈
[
T χA,Xω

X,Y

]
↔


h ∈ Xω if h ↾ ω /∈ Xω,

h ∈ Xω × Y χA(h↾ω)+1 if h ↾ ω ∈ Xω.

↔


h ∈ Xω × Y if h ↾ ω /∈ A,

h ∈ Xω × Y 2 if h ↾ ω ∈ A.

Thus ∀h ∈ [T χA,Xω

X,Y ],

lh (h) =


ω + 1 if h ↾ ω ∈ Xω\A,

ω + 2 if h ↾ ω ∈ A.

Hence, for tree T χA,Xω

X,Y , nmax = 2 and

Max (χA, X
ω) = {h ∈ [T χA,Xω

X,Y ] | lh (h) = ω + 2} = {h ∈ [T χA,Xω

X,Y ] | h ↾ ω ∈ A}. (2.8)

Theorem 2.4.25. For any A ⊆ Xω,

G (A;Xω) is determined if and only if G(Max(χA, X
ω); T χA,Xω

X,Y ) is determined. ⊣

Proof.

Pick an arbitrary A ⊆ Xω.

(⇒) Assume G(A;X<ω) is determined. Thus I or II has a winning strategy s for

G(A;X<ω). Define s∗ to be such that s∗ ↾ X<ω = s and play anything after that to finish

the play (note that there is no play of length ω in TΨ,Xω

X,Y ). Show s∗ is a winning strategy
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for G(Max (χA, X
ω) ;T χA,Xω

X,Y ). Pick an arbitrary h ∈ [T χA,Xω

X,Y ] according to s∗. Then h ↾ ω

is according to s.

Case 1 : s is a winning strategy for I for G(A;X<ω).

Then h ↾ ω ∈ A. Thus the length of h is ω + 2 so that h ∈ Max (χA, X
ω). Hence s∗ is a

winning strategy for I∗ for G(Max (χA, X
ω) ;T χA,Xω

X,Y ).

Case 2 : s is a winning strategy for II for G(A;X<ω).

Then h ↾ ω /∈ A. Thus the length of h is ω + 1 so that h /∈ Max (χA, X
ω). Hence s∗ is a

winning strategy for II∗ for G(Max (χA, X
ω) ;T χA,Xω

X,Y ).

(⇐) Assume G(Max (χA, X
ω) ;T χA,Xω

X,Y ) is determined. Thus I∗ or II∗ has a winning

strategy s∗ for G(Max (χA, X
ω) ;T χA,Xω

X,Y ). Define s = s∗ ↾ X<ω. 21 Show s is a winning

strategy for G(A;X<ω). Pick an arbitrary f ∈ Xω according to s. Then f is according to

s∗. Thus f ∈ T χA,Xω

X,Y (note that there is no play of length ω in TΨ,Xω

X,Y ). Then play g ∈ Y <ω

according to s∗ to get f⌢g ∈ [T χA,Xω

X,Y ].

Case 1 : s∗ is a winning strategy for I∗ for G(Max (χA, X
ω) ;T χA,Xω

X,Y ).

Then f⌢g ∈ Max (χA, X
ω) so by equation (2.8) on page 112, f ∈ A. Thus s is a winning

strategy for I for G(A;X<ω).

Case 2 : s∗ is a winning strategy for II∗ for G(Max (χA, X
ω) ;T χA,Xω

X,Y ).

Then f⌢g /∈ Max(χA, X
ω) so by equation (2.8) on page 112, f /∈ A. Thus s is a winning

strategy for II for G(A;X<ω). Therefore, G(A;X<ω) is determined.

Observation 2.4.26. Suppose Ξ is a complexity (in which Ξ ↾ Xω ⊆ ℘ (Xω) is defined).

21s∗ ↾ X<ω abbreviates s∗ ↾ (X<ω ∩ dom(s∗)).
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For any A ∈ Ξ ↾ Xω, the characteristic function χA on A is in Γ(ω, 2-Ξ) = Γ(ω,Ξ ∧ co-Ξ).

⊣

Proof.

Pick an arbitrary O ⊆ ω. Then O =
∪

n∈O {n}. Recall

χA : Xω → {0, 1}

f 7→


0 if f /∈ A,

1 if f ∈ A.

Case 1 : 0, 1 ∈ O.

Then χ−1
A (O) = Xω ∈∆0

1 ↾ Xω.

Case 2 : If 0, 1 /∈ O.

Then χ−1
A (O) = ∅ ∈∆0

1 ↾ Xω.

Case 3 : 0 /∈ O and 1 ∈ O.

Then χ−1
A (O) = A ∈ Ξ ↾ Xω. Since A = A ∩Xω, χ−1

A (O) ∈ Ξ ↾ Xω ∧ co-Ξ ↾ Xω.

Case 4 : 0 ∈ O and 1 /∈ O.

Then χ−1
A (O) = Xω\A ∈ co-Ξ ↾ Xω. Since Xω\A = Xω∩(Xω\A), χ−1

A (O) ∈ Ξ ↾ Xω∧co-Ξ ↾

Xω.

Thus χ−1
A (O) ∈ Ξ ↾ Xω ∧ co-Ξ ↾ Xω for any open O ⊆ X. Since Ξ ↾ Xω ∧ co-Ξ ↾ Xω =

2-Ξ ↾ Xω, χA ∈ Γ(ω, 2-Ξ).

The following corollaries are direct results from theorem 2.4.25. Determinacy of any

game A of length ω can be obtained from the determinacy of open games Max(χA, X
ω) on

a particular Tree1 collection.
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Corollary 2.4.27. For any X, Y and complexity Ξ,

Det G
(
Σ0

1;Tree1 (X, Y, {χA |A ∈ Ξ ↾ Xω } , Xω)
)
⇒ Det (Ξ ↾ Xω) .

Thus,

Det G
(
Σ0

1;Tree1 (X,Y,Γ(ω, 2-Ξ), Xω)
)
⇒ Det(Ξ ↾ Xω). ⊣

Proof.

Fix X,Y . Pick an arbitrary A ∈ Ξ ↾ Xω. Then

G(Max (χA, X
ω) ;T χA,Xω

X,Y ) ∈ G
(
Σ0

1;Tree1 (X, Y, {χA |A ∈ Ξ ↾ Xω } , Xω)
)
.

Thus G(Max(χA, X
ω); T χA,Xω

X,Y ) is determined. By theorem 2.4.25, G(A;Xω) is determined.

Hence

Det G
(
Σ0

1;Tree1 (X, Y, {χA |A ∈ Ξ ↾ Xω } , Xω)
)
⇒ Det (Ξ ↾ Xω) .

Since χA ∈ Γ(ω, 2-Ξ) by observation 2.4.26,

Det G
(
Σ0

1;Tree1 (X,Y,Γ(ω, 2-Ξ), Xω)
)
⇒ Det(Ξ ↾ Xω).

Corollary 2.4.28. (Corollary to Corollary 2.4.27)

For any α ∈ ω1 and any X, Y ,

Det G
(
Σ0

1;Tree1
(
X, Y,Γ(ω,Σ0

α ∧Π0
α), X

ω
))
⇒ Det(Σ0

α ↾ Xω).

Det G
(
Σ0

1;Tree1
(
X, Y,Γ(ω,∆0

α), X
ω
))
⇒ Det(∆0

α ↾ Xω). ⊣

Proof.

By corollary 2.4.27 with Ξ is Σ0
α and ∆0

α.
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2.4.2.4 Using the determinacy of open games Max(χA, B) on a Tree1 collection

to obtain the determinacy of games A ∩B on X<ω

In this section, we will obtain the determinacy of games A∩B on X<ω from the determinacy

of open gamesMax(χA, B) on a Tree1 collection. Let A ⊆ Xω. In section 2.4.2.3, as a special

case of Type 1 tree, we considered Type 1 trees TΨ,B
X,Y such that B = Xω and Ψ to be the

characteristic function χA of A. In this section, as a generalization of trees in section 2.4.2.3,

we will consider Type 1 trees TΨ,B
X,Y such that B is an arbitrary subset of Xω and Ψ to be

the characteristic function χA of A.

Suppose A,B ⊆ Xω. Note that

h ∈
[
T χA,B
X,Y

]
↔


h ∈ Xω if h ↾ ω /∈ B,

h ∈ Xω × Y χA(h↾ω)+1 if h ↾ ω ∈ B.

↔


h ∈ Xω if h ↾ ω /∈ B,

h ∈ Xω × Y if h ↾ ω ∈ B\A,

h ∈ Xω × Y 2 if h ↾ ω ∈ A ∩B.

Thus ∀h ∈
[
T χA,B
X,Y

]
,

lh (h) =


ω if h ↾ ω ∈ Xω\B,

ω + 1 if h ↾ ω ∈ B\A,

ω + 2 if h ↾ ω ∈ A ∩B.

Hence for the tree T χA,B
X,Y , nχA,B

max = 2 and

Max (χA, B) = {h ∈ [T χA,B
X,Y ] | lh (h) = ω + 2} = {h ∈ [T χA,B

X,Y ] | h ↾ ω ∈ A ∩B}. (2.9)

Thus, in this case, we consider the game A ∩B on Xω.
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Theorem 2.4.29. For any A,B ⊆ Xω,

G(A ∩B;Xω) is determined if and only if G(Max(χA, B);T χA,B
X,Y ) is determined. ⊣

Proof.

Pick arbitrary A,B ⊆ Xω.

(⇒) Assume G(A ∩ B;X<ω) is determined. Then I or II has a winning strategy s for

G(A ∩ B;X<ω). Define s∗ to be such that s∗ ↾ X<ω = s and play anything after that (if

needed) to finish the play. Show s∗ is a winning strategy for G(Max (χA, B) ;T χA,B
X,Y ). Pick

an arbitrary h ∈ [T χA,B
X,Y ] according to s∗. Then h ↾ ω is according to s.

Case 1 : s is a winning strategy for I for G(A ∩B;X<ω).

Then h ↾ ω ∈ A ∩ B. Thus the length of h is ω + 2 so that h ∈ Max (χA, B). Hence s∗ is a

winning strategy for I∗ for G(Max (χA, B) ;T χA,B
X,Y ).

Case 2 : s is a winning strategy for II for G(A ∩B;X<ω).

Then h ↾ ω /∈ A ∩B. Thus the length of h is ω or ω + 1 so that h /∈Max (χA, B). Hence s∗

is a winning strategy for II∗ for G(Max (χA, B) ;T χA,B
X,Y ).

(⇐) Assume G(Max (χA, B) ;T χA,B
X,Y ) is determined. Then I∗ or II∗ has a winning strat-

egy s∗ for G(Max (χA, B) ;T χA,B
X,Y ). Define s = s∗ ↾ X<ω. 22 Show s is a winning strategy

for G(A ∩ B;X<ω). Pick an arbitrary f ∈ Xω according to s. Then f is according to s∗. If

f ∈ [T χA,B
X,Y ], then let g = ∅. If f ∈ T χA,B

X,Y play g ∈ Y <ω according to s to get f⌢g ∈ [T χA,B
X,Y ].

Case 1 : s∗ is a winning strategy for I∗ for G(Max (χA, B) ;T χA,B
X,Y ).

Then f⌢g ∈Max (χA, B) so by equation (2.9) on page 116, f ∈ A∩B. Hence s is a winning

strategy for I for G(A ∩B;X<ω).

Case 2 : s∗ is a winning strategy for II∗ for G(Max (χA, B) ;T χA,B
X,Y ).

22s∗ ↾ X<ω abbreviates s∗ ↾ (X<ω ∩ dom(s∗)).
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Then f⌢g /∈Max (χA, B) so by equation (2.9) on page 116, f /∈ A∩B. Hence s is a winning

strategy for II for G(A ∩B;X<ω). Therefore, G(A ∩B;X<ω) is determined.

The following corollaries are direct results from theorem 2.4.29.

Corollary 2.4.30. Suppose Ξ1,Ξ2 are complexities. Then for any X,Y ,

Det G
(
Σ0

1;Tree1 (X, Y, {χA |A ∈ Ξ1 ↾ Xω } ,Ξ2 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (2.10)

Similarly,

Det G
(
Σ0

1;Tree1 (X, Y, {χA |A ∈ Ξ2 ↾ Xω } ,Ξ1 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (2.11)

⊣

Proof.

Fix X,Y . Pick an arbitrary A ∈ (Ξ1 ∧ Ξ2) ↾ Xω. Then there exists B ∈ Ξ1 ↾ Xω and

C ∈ Ξ2 ↾ Xω such that A = B ∩ C.

Show the implication (2.10).

Since χB ∈ {χÂ | Â ∈ Ξ1 ↾ Xω}, we consider the tree T χB ,C
X,Y . In this tree, nχB ,C

max = 2. Then

Max (χB, C) = {h ∈ [T χB ,C
X,Y ] | lh (h) = ω + 2} = {h ∈ [T χB ,C

X,Y ] | h ↾ ω ∈ B ∩ C}.

Since

G(Max(χB, C);T χB ,C
X,Y ) ∈ G

(
Σ0

1;Tree1 (X, Y, {χA |A ∈ Ξ1 ↾ Xω } ,Ξ2 ↾ Xω)
)
,

G(Max(χB, C); T χB ,C
X,Y ) is determined. By theorem 2.4.29, G(B ∩ C;X<ω) is determined.

Hence G(A;X<ω) is determined.

Show the implication (2.11).
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Since χC ∈ {χÂ | Â ∈ Π0
β ↾ Xω}, we consider the tree T χC ,B

X,Y . In this tree, nχC ,B
max = 2. Then

Max (χC , B) = {h ∈ [T χC ,B
X,Y ] | lh (h) = ω + 2} = {h ∈ [T χC ,B

X,Y ] | h ↾ ω ∈ B ∩ C}.

Since

G(Max(χC , B);T χC ,B
X,Y ) ∈ G

(
Σ0

1;Tree1 (X, Y, {χA |A ∈ Ξ2 ↾ Xω } ,Ξ1 ↾ Xω)
)
.

G(Max(χC , B);T χC ,B
X,Y ) is determined. By theorem 2.4.29, G(C ∩ B;X<ω) is determined.

Hence G(A;X<ω) is determined.

Corollary 2.4.31. (Corollary to Corollary 2.4.30)

Suppose Ξ1,Ξ2 are complexities. Then for any X,Y ,

DetG
(
Σ0

1;Tree1 (X,Y,Γ(ω,Ξ1 ∧ co-Ξ1),Ξ2 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (2.12)

Similarly,

DetG
(
Σ0

1;Tree1 (X,Y,Γ(ω,Ξ2 ∧ co-Ξ2),Ξ1 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (2.13)

⊣

Proof.

Since {χA |A ∈ Ξ1 ↾ Xω } ⊆ Γ (ω,Ξ1 ∧ co-Ξ1) by observation 2.4.26, we obtain the impli-

cation (2.12) from corollary 2.4.30 the implication (2.10). Since {χA |A ∈ Ξ2 ↾ Xω } ⊆

Γ (ω,Ξ2 ∧ co-Ξ2) by observation 2.4.26, we obtain the implication (2.13) from corollary 2.4.30

the implication (2.11).

We list some obvious special case of corollary 2.4.30. We obtain corollary 2.4.32 from

replacing Ξ1 = Σ0
α and Ξ2 = Π0

β in corollary 2.4.31. We obtain corollary 2.4.33 from
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replacing Ξ1 = Σ1
α and Ξ2 = Π1

β in corollary 2.4.31.

Corollary 2.4.32. (Corollary to Corollary 2.4.31)

Suppose α, β ∈ ω1. Then for any Y ,

Det G
(
Σ0

1;Tree1
(
X, Y,Γ

(
ω,Σ0

α ∧Π0
α

)
,Π0

β ↾ Xω
))
⇒ Det((Σ0

α ∧Π0
β) ↾ Xω).

Similarly,

Det G
(
Σ0

1;Tree1
(
X, Y,Γ

(
ω,Σ0

β ∧Π0
β

)
,Σ0

α ↾ Xω
))
⇒ Det((Σ0

α ∧Π0
β) ↾ Xω). ⊣

We get similar results for projective sets.

Corollary 2.4.33. (Corollary to Corollary 2.4.31)

Suppose n,m ∈ ω. Then for any Y ,

Det G
(
Σ0

1;Tree1
(
X, Y,Γ

(
ω,Σ1

n ∧Π1
n

)
,Π1

m ↾ Xω
))
⇒ Det((Σ1

n ∧Π1
m) ↾ Xω).

Similarly,

Det G
(
Σ0

1;Tree1
(
X,Y,Γ

(
ω,Σ1

m ∧Π1
m

)
,Σ1

n ↾ Xω
))
⇒ Det((Σ1

n ∧Π1
m) ↾ Xω). ⊣

In particular, if α = β = 1, we can get a 2-Π1
1 set.

Corollary 2.4.34. (Corollary to Corollary 2.4.33) For any Y ,

Det G
(
Σ0

1;Tree1
(
X, Y,Γ(ω, 2-Π1

1),Σ
1
1 ↾ Xω

))
⇒ Det(2-Π1

1 ↾ Xω).

Similarly,

Det G
(
Σ0

1;Tree1
(
X, Y,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω

))
⇒ Det(2-Π1

1 ↾ Xω). ⊣
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Proof.

Note that Σ1
1 ∧Π1

1 = 2-Π1
1.

Question 1. By corollary 2.4.34 on page 120, corollary 2.4.21 on page 109 and corollary

2.4.1 on page 83, all of the following imply Det(2-Π1
1 ↾ Xω):

(i) Det G (Σ0
1;Tree1 (X,Y,Γ(ω, 2-Π1

1),Σ
1
1 ↾ Xω))

(ii) Det G (Σ0
1;Tree1 (X,Y,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω))

(iii) Det G (Σ0
1;Tree1 (X, Y,Γ(ω,∆0

1), 2-Π
1
1 ↾ Xω))

(iv) Det G (2-Π1
1;Tree1 (X, Y,Γ(ω,∆0

1),∆
0
1))

What is the relation between (i), (ii), (iii) and (iv)? ⊣

Recall definition 1.3.23 on page 23. For every n ∈ ω, if A ∈ (n + 1)-Π1
1 ↾ Xω, then

A = A0\A1 = A0 ∩ Xω\A1 where A0 ∈ Π1
1 ↾ Xω and A1 ∈ n-Π1

1 ↾ Xω (hence Xω\A1 ∈

co-n-Π1
1 ↾ Xω). We obtain corollary 2.4.35 the implication (2.14) from replacing Ξ1 = Σ1

1

and Ξ2 = co-n-Π1
1 in corollary 2.4.31 the implication (2.12). We obtain corollary 2.4.35

the implication (2.14) from replacing Ξ1 = co-n-Π1
1 and Ξ2 = Σ1

1 in corollary 2.4.31 the

implication (2.13).

Corollary 2.4.35. (Corollary to Corollary 2.4.31) For any Y and n ∈ ω,

Det G
(
Σ0

1;Tree1
(
X, Y,Γ(ω, 2-Π1

1), (co-n-Π
1
1) ↾ Xω

))
⇒ Det(n+ 1-Π1

1 ↾ Xω). (2.14)

Similarly,

Det G
(
Σ0

1;Tree1
(
X,Y,Γ(ω, n-Π1

1 ∧ co-n-Π1
1),Π

1
1 ↾ Xω

))
⇒ Det

(
n+ 1-Π1

1 ↾ Xω
)
. (2.15)

⊣
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Proof.

Since{χA |A ∈ Π1
1 ↾ Xω } ⊆ Γ (ω, 2-Π1

1) and {χA |A ∈ co-n-Π1
1 ↾ Xω } ⊆

Γ (ω, n-Π1
1 ∧ co-n-Π1

1) by observation 2.4.26, we have the results by corollary 2.4.31.

Question 2. By corollary 2.4.35 on page 121, corollary 2.4.21 on page 109 and corollary

2.4.1 on page 83, all of the following imply Det(n+ 1-Π1
1 ↾ Xω):

(i) Det G (Σ0
1;Tree1 (X, Y,Γ(ω, 2-Π1

1), (co-n-Π
1
1) ↾ Xω))

(ii) Det G (Σ0
1;Tree1 (X, Y,Γ(ω, n-Π1

1 ∧ co-n-Π1
1),Π

1
1 ↾ Xω))

(iii) Det G (Σ0
1;Tree1 (X, Y,Γ(ω,∆0

1), n+ 1-Π1
1 ↾ Xω))

(iv) Det G (n+ 1-Π1
1;Tree1 (X,Y,Γ(ω,∆0

1),∆
0
1))

What is the relationship between (i), (ii), (iii) and (iv)? ⊣
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2.4.3 Using α-Π1
1 determinacy on Tree1 collection to obtain α+1-Π1

1

determinacy on Xω for even α ∈ ω1

In section 2.4.2.4, we used Max on certain Tree1 collections to obtain the determinacy

of games on X<ω. In theorem 2.4.29, we obtained the determinacy equivalence of games

G(A ∩B;X<ω) and G(Max(χA, B);T χA,B
X,Y ) for any A,B ⊆ Xω.

In this section, we will obtain α + 1-Π1
1 determinacy on Xω for even α ∈ ω1 from α-Π1

1

determinacy on Tree1 collection. Fix α ∈ ω1 and ⟨Aβ|β ≤ α⟩ where each Aβ ⊆ Xω. By

observation 2.4.38 below, dk (⟨Aβ |β ≤ α⟩) = dk (⟨Aβ |β ∈ α⟩) ∪ (
∩

β≤α Aβ). We set A = Aα

and B =
∩

β∈α Aβ so that A ∩ B =
∩

β≤α Aβ. Thus, we will consider a Type 1 tree T
χAα ,B
X,Y

with B =
∩

β∈α Aβ.

h ∈
[
T

χA,
∩

β∈α Aβ

X,Y

]
↔


h ∈ Xω if h ↾ ω /∈

∩
β∈α Aβ,

h ∈ Xω × Y χA(h↾ω)+1 if h ↾ ω ∈
∩

β∈α Aβ.

↔


h ∈ Xω if h ↾ ω /∈

∩
β∈α Aβ,

h ∈ Xω × Y if h ↾ ω ∈ (
∩

β∈α Aβ)\Aα,

h ∈ Xω × Y 2 if h ↾ ω ∈
∩

β≤α Aβ.

Thus ∀h ∈
[
T

χAα ,
∩

β∈α Aβ

X,Y

]
,

lh (h) =


ω if h ↾ ω ∈ Xω\

∩
β∈α Aβ,

ω + 1 if h ↾ ω ∈ (
∩

β∈α Aβ)\Aα,

ω + 2 if h ↾ ω ∈
∩

β≤α Aβ.
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For tree T
χAα ,

∩
β∈α Aβ

X,Y , nmax = 2.

Max
(
χAα ,

∩
β∈α

Aβ

)
=
{
h ∈

[
T

χAα ,
∩

β∈α Aβ

X,Y

]∣∣∣ lh (h) = ω + 2
}

=
{
h ∈

[
T

χAα ,
∩

β∈α Aβ

X,Y

]∣∣∣h ↾ ω ∈
∩

β≤α
Aβ

}
. (2.16)

We will obtain the determinacy equivalences of a certain game for such Type 1 tree T
χAα ,

∩
β∈α Aβ

X,Y

and a dk(⟨Aβ|β ≤ α⟩) games onX<ω. In definition 2.4.36, we will define dk<α (⟨Aβ |β ≤ α⟩) ⊆

[T
χAα ,

∩
β∈α Aβ

X,Y ]. In observation 2.4.37, we will show that dk<α (⟨Aβ |β ≤ α⟩) = dk (⟨Aβ |β ∈ α⟩).

Then in theorem 2.4.40, we will show that the determinacy equivalence of a dk (⟨Aβ |β ≤ α⟩)

game onX<ω and a dk<α (⟨Aβ |β ≤ α⟩)∪ TMax(χAα ,
∩

β∈α Aβ) game on the tree T
χAα ,

∩
β∈α Aβ

X,Y .

In particular, for even α ∈ ω and sequences ⟨Aβ |β ≤ α⟩ with each Aβ ∈ Π1
1 ↾ Xω, we

will obtain α + 1-Π1
1 games on X<ω from α-Π1

1 games on a particular Tree1 collection in

corollary 2.4.42. As a special case, when α is a limit ordinal and Aα ∈ Σ0
λ for some λ ∈ ω1,

we will obtain a similar result for α-Π1
1+Σ0

λ games on X<ω from α-Π1
1 games on a particular

Tree1 collection in corollary 2.4.44.

First, recall definition 1.3.22 on page 23.

Definition 1.3.22. (Definition of the difference kernel)(Hausdorff, 1944 23)

Denote the difference kernel of A⃗ = ⟨Aβ |β ∈ α⟩ by dk(A⃗) and define

dk(A⃗) = {x ∈ [T ] |µβ (x /∈ Aβ ∨ β = α) is odd} . ⊣

Given ⟨Aβ |β ≤ α⟩ where each Aβ ⊆ Xω, we define dk<α (⟨Aβ |β ≤ α⟩) on the tree

T
χAα ,

∩
β∈α Aβ

X,Y .

23as cited in Welch (1996, p. 1).
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Definition 2.4.36. Suppose α ∈ ω1 is even and ⟨Aβ |β ≤ α⟩ where each Aβ ⊆ Xω. Fix a

Type 1 tree T
χAα ,

∩
β∈α Aβ

X,Y . Define

dk<α (⟨Aβ |β ≤ α⟩) =
{
h ∈

[
T

χAα ,
∩

β∈α Aβ

X,Y

]∣∣∣h ↾ ω /∈
∩

β∈α
Aβ ∧ µβ(h ↾ ω /∈ Aβ) is odd

}
.⊣

Notice that if α is even, we have:

dk (⟨Aβ |β ∈ α⟩) =
{
f ∈ Xω

∣∣∣f /∈
∩

β∈α
Aβ ∧ µβ(f /∈ Aβ) is odd

}
.

Thus

dk<α (⟨Aβ |β ≤ α⟩) ↾ Xω = dk (⟨Aβ |β ∈ α⟩) .

In fact, we have the following.

Observation 2.4.37. Suppose α ∈ ω1 is even and ⟨Aβ |β ≤ α⟩ where each Aβ ⊆ Xω. Then

dk<α (⟨Aβ |β ≤ α⟩) = dk (⟨Aβ |β ∈ α⟩) ⊆ Xω. ⊣

Proof.

Notice that since α is even,

dk (⟨Aβ |β ∈ α⟩) =
{
f ∈ Xω

∣∣∣f /∈
∩

β∈α
Aβ ∧ µβ(f /∈ Aβ) is odd

}
.

Also, if h ∈ dk<α (⟨Aβ |β ≤ α⟩), then h ∈ [T
χAα ,

∩
β∈α Aβ

X,Y ] and h ↾ ω /∈
∩

β∈α Aβ so that

h = h ↾ ω. Thus
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dk<α (⟨Aβ |β ≤ α⟩) =
{
h ∈

[
T

χAα ,
∩

β∈α Aβ

X,Y

]∣∣∣h ↾ ω /∈
∩

β∈α
Aβ ∧ µβ(h ↾ ω /∈ Aβ) is odd

}
=
{
h ∈

[
T

χAα ,
∩

β∈α Aβ

X,Y

]∣∣∣h = h ↾ ω ∧ h /∈
∩

β∈α
Aβ ∧ µβ(h /∈ Aβ) is odd

}
=
{
f ∈ Xω

∣∣∣f /∈
∩

β∈α
Aβ ∧ µβ(f /∈ Aβ) is odd

}
= dk (⟨Aβ |β ∈ α⟩) .

Since α ∈ ω1 is even, dk (⟨Aβ |β ≤ α⟩) could be express as a union of dk (⟨Aβ |β ∈ α⟩)

and
∩

β≤α Aβ. Thus we have the following.

Observation 2.4.38. Suppose α ∈ ω1 is even and ⟨Aβ |β ≤ α⟩ where each Aβ ⊆ Xω. Then

dk (⟨Aβ |β ≤ α⟩) = dk (⟨Aβ |β ∈ α⟩) ∪
(∩

β≤α
Aβ

)
. ⊣

Proof.

Since α ∈ ω1 is even,

dk (⟨Aβ |β ≤ α⟩) =
{
f ∈ Xω

∣∣∣(f /∈
∩

β∈α
Aβ ∧ µβ(f /∈ Aβ) is odd

)
∨ f ∈

∩
β≤α

Aβ

}
=
{
f ∈ Xω

∣∣∣(f /∈
∩

β∈α
Aβ ∧ µβ(f /∈ Aβ) is odd

)}
∪
(∩

β≤α
Aβ

)
= dk (⟨Aβ |β ∈ α⟩) ∪

(∩
β≤α

Aβ

)
.

Proposition 2.4.39. Suppose T = TΨ,B
X,Y is a Type 1 tree. Assume the following:

1. C,D ⊆ Xω and E,F ⊆ [T ].

2. s is a strategy for X<ω.

3. s∗ is a strategy for T such that s∗ ↾ X<ω = s.

4. for any h ∈ [T ] according to s∗, h ↾ ω ∈ C if and only if h ∈ E.
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5. for any h ∈ [T ] according to s∗, h ↾ ω ∈ D if and only if h ∈ F .

Then s is a winning strategy for I for G(C ∪D;X<ω) if and only if s∗ is a winning strategy

for I∗ for G(E ∪ F ;T ). Also s is a winning strategy for II for G(C ∪D;X<ω) if and only

if s∗ is a winning strategy for II∗ for G(E ∪ F ;T ). ⊣

Proof.

Show that s is a winning strategy for I for G(C ∪ D;X<ω) if and only if s∗ is a winning

strategy for I for G(E ∪ F ;T ).

(⇒) Assume s is a winning strategy for I for G(C ∪ D;X<ω). Show s∗ is a winning

strategy for I∗ for G(E ∪ F ;T ). Pick an arbitrary h ∈ [T ] according to s∗. Then h ↾ ω is

according to s. Thus h ↾ ω ∈ C ∪D. If h ↾ ω ∈ C, then h ∈ E. If h ↾ ω ∈ D, then h ∈ F .

Thus h ∈ E ∪ F . Hence s∗ is a winning strategy for I∗ for G(E ∪ F ;T ).

(⇐) Assume s∗ is a winning strategy for I∗ for G(E∪F ;T ). Show s is a winning strategy

for I for G(C ∪D;X<ω). Pick an arbitrary f ∈ Xω according to s. Then f is according to

s∗. Play according to s∗ after f , call it g, so that f⌢g ∈ [T ] (if f ∈ [T ], then g = ∅). Then

f⌢g ∈ E ∪ F . Since f⌢g is according to s∗, if f⌢g ∈ E, then f ∈ C and if f⌢g ∈ F , then

f ∈ D. Thus f ∈ C ∪D. Hence s is a winning strategy for I for G(C ∪D;X<ω).

Show that s is a winning strategy for II for G(C ∪D;X<ω) if and only if s∗ is a winning

strategy for II∗ for G(E ∪ F ;T ).

(⇒) Assume s is a winning strategy for II for G(C ∪ D;X<ω). Show s∗ is a winning

strategy for II∗ for G(E ∪ F ;T ). Pick an arbitrary h ∈ [T ] according to s∗. Then h ↾ ω is

according to s. Thus h ↾ ω /∈ C ∪ D. Hence h ↾ ω /∈ C and h ↾ ω /∈ D. Therefore, h /∈ E
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and h /∈ F . Thus h /∈ E ∪ F . Hence s∗ is a winning strategy for II∗ for G(E ∪ F ;T ).

(⇐) Assume s∗ is a winning strategy for II∗ for G(E ∪ F ;T ). Show s is a winning

strategy for II for G(C ∪ D;X<ω). Pick an arbitrary f ∈ Xω according to s. Then f is

according to s∗. Play according to s∗ after f , call it g, so that f⌢g ∈ [T ] (if f ∈ [T ], then

g = ∅). Then f⌢g /∈ E∪F . Thus f⌢g /∈ E and f⌢g /∈ F . Since f⌢g is according to s∗, f /∈ C

and f /∈ D. Thus f /∈ C ∪D. Hence s is a winning strategy for II for G(C ∪D;X<ω).

By proposition 2.4.39, we obtain the following.

Theorem 2.4.40. Suppose α ∈ ω1 is even and ⟨Aβ |β ≤ α⟩ where each Aβ ⊆ Xω. Let

T = T
χAα ,

∩
β∈α Aβ

X,Y . Then G (dk (⟨Aβ |β ≤ α⟩) ;X<ω) is determined if and only if

G
(
dk<α (⟨Aβ |β ≤ α⟩) ∪Max

(
χAα ,

∩
β∈α

Aβ

)
;T
)

is determined. ⊣

Proof.

Use proposition 2.4.39 with:

• C = dk (⟨Aβ |β ∈ α⟩).

• D =
∩

β≤α Aβ.

• E = dk<α (⟨Aβ |β ≤ α⟩)

• F = Max
(
χAα ,

∩
β∈α Aβ

)
Then this satisfies property (1) of proposition 2.4.39. By observation 2.4.38,

dk (⟨Aβ |β ≤ α⟩) = dk (⟨Aβ |β ∈ α⟩) ∪
(∩

β≤α
Aβ

)
= C ∪D.
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By observation 2.4.37 and equation 2.16 shows that properties (4) and (5) of proposition

2.4.39 are satisfied.

Show G (dk (⟨Aβ |β ≤ α⟩) ;X<ω) is determined if and only if

G
(
dk<α (⟨Aβ |β ≤ α⟩) ∪ TMax

(
χAα ,

∩
β∈α

Aβ

)
;T
)

is determined.

(⇒) Suppose G (dk (⟨Aβ |β ≤ α⟩) ;X<ω) = G (C ∪D;X<ω) is determined. Then I or II

has a winning strategy s for G (C ∪D;X<ω). Define s∗ to be such that s∗ ↾ X<ω = s and

play anything after that. Then this satisfies properties (2) and (3) of proposition 2.4.39. By

proposition 2.4.39, If s is a winning strategy for I for G(C ∪D;X<ω), then s∗ is a winning

strategy for I∗ for G(E ∪ F ;T ). If s is a winning strategy for II for G(C ∪D;X<ω), then

s∗ is a winning strategy for II∗ for G(E ∪ F ;T ). Thus I∗ or II∗ has a winning strategy for

G(E ∪ F ;T ). Therefore, G (E ∪ F ;T ) = G(dk<α (⟨Aβ |β ≤ α⟩) ∪Max(χAα ,
∩

β∈α Aβ);T ) is

determined.

(⇐) Suppose G(dk<α (⟨Aβ |β ≤ α⟩) ∪Max(χAα ,
∩

β∈α Aβ);T ) = G (E ∪ F ;T ) is deter-

mined. Then I∗ or II∗ has a winning strategy s∗ for G (E ∪ F ;T ). Define s to be such that

s = s∗ ↾ X<ω. Then this satisfies properties (2) and (3) of proposition 2.4.39. By proposition

2.4.39, If s∗ is a winning strategy for I∗ for G(E ∪ F ;T ), then s is a winning strategy for I

for G(C ∪D;X<ω). If s∗ is a winning strategy for II∗ for G(E ∪ F ;T ), then s is a winning

strategy for II for G(C ∪D;X<ω). Thus I or II has a winning strategy for G(C ∪D;X<ω).

Therefore, G (C ∪D;X<ω) = G (dk (⟨Aβ |β ≤ α⟩) ;X<ω) is determined.

Now, let’s consider the complexity of each Aβ. Recall definition 1.3.23 on page 23.
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Definition 1.3.23. Suppose Λ is a class of subsets of [T ] and Λ is closed under countable

intersections. Suppose α ∈ ω1. Define

α-Λ ↾ [T ] =
{
A ⊆ [T ]

∣∣∣∃A⃗ = ⟨Aβ |β ∈ α⟩
(
each Aβ ∈ Λ and A = dk(A⃗)

)}
. ⊣

We will consider theorem 2.4.40 with ⟨Aβ |β ≤ α⟩ where each Aβ ∈ Π1
1 ↾ Xω. Then

dk (⟨Aβ |β ≤ α⟩) ∈ α+ 1-Π1
1 ↾ Xω where α ∈ ω1 is even.

Lemma 2.4.41. Suppose α ∈ ω1 is even. Fix ⟨Aβ |β ≤ α⟩ where each Aβ ∈ Π1
1 ↾ Xω. Then

dk<α (⟨Aβ |β ≤ α⟩) ∈ α-Π1
1 ↾
[
T

χAα ,
∩

β∈α Aβ

X,Y

]
. ⊣

Proof.

Suppose ⟨Aβ |β ≤ α⟩ where each Aβ ∈ Π1
1 ↾ Xω. Since each Aβ ∈ Π1

1 ↾ Xω, there exists

Oβ ∈ Σ0
1 ↾ Xω × ωω such that x ∈ Aβ if and only if for all y ∈ ωω ⟨x, y⟩ ∈ Oβ. For all β ∈ α,

define

Ôβ = {⟨h, y⟩ ∈ [T
χAα ,

∩
β∈α Aβ

X,Y ]× ωω | ⟨h ↾ ω, y⟩ ∈ Oβ}.

Then each Ôβ ∈ Σ0
1 ↾ [T

χAα ,
∩

β∈α Aβ

X,Y ]× ωω. Define

Âβ = {h ∈ [T
χAα ,

∩
β∈α Aβ

X,Y ]
∣∣∣ ∀y ∈ ωω ⟨h, y⟩ ∈ Ôβ}.

Then Âβ ∈ Π1
1 ↾ [T

χAα ,
∩

β∈α Aβ

X,Y ]. Also, for all x ∈ [T
χAα ,

∩
β∈α Aβ

X,Y ],

x ∈ Âβ ⇔ ∀y ∈ ωω ⟨x, y⟩ ∈ Ôβ

⇔ ∀y ∈ ωω ⟨x ↾ ω, y⟩ ∈ Oβ

⇔ x ↾ ω ∈ Aβ.
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Thus

dk<α (⟨Aβ |β ≤ α⟩) =
{
h ∈ [T

χAα ,
∩

β∈α Aβ

X,Y ]
∣∣∣ ∃β ∈ α (h ↾ ω /∈ Aβ) ∧ µβ (h ↾ ω /∈ Aβ) is odd

}
=
{
h ∈ [T

χAα ,
∩

β∈α Aβ

X,Y ]
∣∣∣ ∃β ∈ α(h /∈ Âβ) ∧ µβ(h /∈ Âβ) is odd

}
∈ α-Π1

1 ↾ [T
χAα ,

∩
β∈α Aβ

X,Y ].

Using theorem 2.4.40 and lemma 2.4.41, we have the following.

Corollary 2.4.42. Assume α ∈ ω1 is even. Then for any Y ,

Det G
(
α-Π1

1;Tree1
(
X, Y,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω

))
⇒ Det(α + 1-Π1

1 ↾ Xω). ⊣

Proof.

Fix Y . Suppose α ∈ ω1 is even A ∈ α + 1-Π1
1 ↾ Xω. Then there exists a sequence

A⃗ = ⟨Aβ |β ≤ α⟩ witness that A = dk(A⃗) ∈ α + 1-Π1
1 ↾ Xω. Then

∩
β≤α Aβ ∈ Π1

1 ↾

Xω. By observation 2.4.26, χAα ∈ Γ(ω, 2-Π1
1). Let T = T

χAα ,
∩

β∈α Aβ

X,Y . By lemma 2.4.41,

dk<α (⟨Aβ |β ≤ α⟩) ∈ α-Π1
1 ↾ [T ]. Since Max(χAα ,

∩
β∈α Aβ) ∈ Σ0

1 ↾ [T ],

dk<α (⟨Aβ |β ≤ α⟩) ∪Max
(
χAα ,

∩
β∈α

Aβ

)
∈ α-Π1

1 ↾ [T ].

Thus G(dk<α (⟨Aβ |β ≤ α⟩) ∪Max(χAα ,
∩

β∈α Aβ);T ) is determined. By theorem 2.4.40,

G(dk(A⃗);Xω) is determined, i.e., G(A;Xω) is determined.

Question 3. By corollary 2.4.1 on page 83, corollary 2.4.21 on page 109 and corollary 2.4.27

on page 114, all of the following imply Det(α + 1-Π1
1 ↾ Xω):

(i) Det G (α + 1-Π1
1;Tree1 (X, Y,Γ(ω,∆0

1),∆
0
1))

(ii) Det G (Σ0
1;Tree1 (X, Y,Γ(ω,∆0

1), α + 1-Π1
1 ↾ Xω))

(iii) Det G (Σ0
1;Tree1 (X, Y,Γ(ω, α + 1-Π1

1 ∧ co-α + 1-Π1
1), X

ω))
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Moreover, if α ∈ ω1 is even, then by corollary 2.4.42,

(iv) DetG
(
α-Π1

1;Tree1
(
X, Y,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω

))
implies Det(α + 1-Π1

1 ↾ Xω).

What is the relationship between (i), (ii), (iii) and (iv)? ⊣

One might notice that when we reduce the complexity of A, the payoff set for the player

I, we raise the complexity of the function Ψ and/or the complexity of B.

Now, suppose α ∈ ω1 is a limit ordinal.24 As a special case of α + 1-Π1
1, we will define

α-Π1
1 +Σ0

λ sets over a tree T .

Definition 2.4.43. (Definition of α-Π1
1 +Σ0

λ ↾ [T ])

Suppose α ∈ ω1 is a limit ordinal. Let λ ∈ ω1. Suppose T is a tree. Define A ∈ (α-Π1
1 +Σ0

λ) ↾

[T ] if and only if there is a sequence A⃗ = ⟨Aβ |β ≤ α⟩ witness that A = dk(A⃗) ∈ α+1-Π1
1 ↾ [T ]

and Aα ∈ Σ0
λ ↾ [T ], i.e.,

(
α-Π1

1 +Σ0
λ

)
↾ [T ] =

A ⊆ [T ]

∣∣∣∣∣∣∣∣∃A⃗ = ⟨Aβ |β ≤ α⟩

∀β ∈ α
(
Aβ ∈ Π1

1 ↾ [T ]
)
,

Aα ∈ Σ0
λ ↾ [T ] and A = dk(A⃗)


 .

⊣

We have a similar result for α-Π1
1 +Σ0

λ sets to corollary 2.4.42.

Corollary 2.4.44. Assume α ∈ ω1 is a limit ordinal and λ ∈ ω. Then for any Y ,

Det G
(
α-Π1

1;Tree1
(
X, Y,Γ(ω,Σ0

λ ∧Π0
λ),Π

1
1 ↾ Xω

))
⇒ Det(

(
α-Π1

1 +Σ0
λ

)
↾ Xω). ⊣

24Recall that limit ordinals are even.

132



Proof.

A similar proof of corollary 2.4.42 with χAα ∈ Γ(ω,Σ0
λ ∧Π0

λ) by observation 2.4.26.

Question 4. Suppose α ∈ ω1 is a limit ordinal. By corollary 2.4.1 on page 83, corollary

2.4.44, corollary 2.4.21 on page 109 and corollary 2.4.27 on page 114, all of the following

imply Det((α-Π1
1 +Σ0

λ) ↾ Xω):

(i) DetG (α-Π1
1 +Σ0

λ;Tree1 (X,Y,Γ(ω,∆0
1),∆

0
1))

(ii) Det G (α-Π1
1;Tree1 (X, Y,Γ(ω,Σ0

λ ∧Π0
λ),Π

1
1 ↾ Xω))

(iii) Det G (Σ0
1;Tree1 (X,Y,Γ(ω,∆0

1), α-Π
1
1 +Σ0

λ ↾ Xω))

(iv) Det G (Σ0
1;Tree1 (X,Y,Γ(ω, α-Π1

1 +Σ0
λ ∧ co-α-Π1

1 +Σ0
λ), X

ω))

What is the relationship between (i), (ii), (iii) and (iv)? ⊣

Through out this section, we set that α is even so that α + 1 is odd. One might ask for

the case that α is odd, i.e., the case for α + 1 even.

In this section, we generalized the idea of using A ∩ B from section 2.4.2.4 setting

A = Aα and B =
∩

β∈α Aβ so that A ∩ B =
∩

β≤α Aβ. This is because when α is even,

dk (⟨Aβ |β ≤ α⟩) = dk (⟨Aβ |β ∈ α + 1⟩) and thus we have

dk (⟨Aβ |β ≤ α⟩) = dk (⟨Aβ |β ∈ α⟩) ∪
(∩

β≤α
Aβ

)
.
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However, when α is odd, then α + 1 is even so that

dk (⟨Aβ |β ≤ α⟩) = dk (⟨Aβ |β ∈ α + 1⟩)

= {x ∈ [T ] |µβ (x /∈ Aβ ∨ β = α + 1) is odd}

= {x ∈ [T ] |∃β ∈ α + 1(x /∈ Aβ) ∧ µβ (x /∈ Aβ) is odd}

=
{
x ∈ [T ]

∣∣∣x /∈
∩

β≤α
Aβ ∧ µβ (x /∈ Aβ) is odd

}
Thus ∩

β≤α
Aβ ⊈ dk (⟨Aβ |β ≤ α⟩) .

Hence we do not obtain the same determinacy result for α is odd using the method we

described.

Getting the determinacy of the games on a Tree1 collection from the determinacy of the

games on X<ω (Reversed direction of section 2.4)
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2.5 Getting the determinacy of the games on a Tree1

collection from the determinacy of the games on

X<ω (Reversed direction of section 2.4)

In section 2.4, we obtained the determinacy of games on X<ω from the determinacy of games

on a certain Tree1 collection. In this section, we will focus on the other direction, in some

cases, results from section 2.4 leading to the determinacy equivalences. This section is the

main section in this chapter.

In section 2.5.1 through section 2.5.4, we will obtain the determinacy of games on a

certain Tree1 collection such that each tree TΨ,B
X,Y in the Tree1 collection has a countable Y ,

from the determinacy of games on X<ω.

In section 2.5.1, we will give definitions and notations. We will set up all the notations

in this section, e.g., given A ⊆ [TΨ,B
X,Y ], we will define the following notations:

• An for all n ∈ ω.

• A∅.

• An
g for all n ∈ ω and g ∈ Y n+1.

• An
p for all n ∈ ω and p ∈ Y <n+1.

We will use these notations in the later sections.

In section 2.5.2, we will obtain level by level results for the determinacy of open games

on a certain Tree1 collection from the determinacy of games on X<ω. The main theorems

in this section are theorem 2.5.18 on page 156 and theorem 2.5.20 on page 160.
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In section 2.5.3, we will obtain level by level results for the determinacy of Borel games

on a certain Tree1 collection from the determinacy of certain games on X<ω. The main

theorems in this section are theorem 2.5.29 on page 167 and theorem 2.5.30 on page 168.

In section 2.5.4, we will obtain level by level results for the determinacy of projective

games on a certain Tree1 collection from the determinacy of certain games on X<ω. The

main theorem in this section is theorem 2.5.38 on page 183.

In section 2.5.5, we will discuss the reason we focused on Y to be countable in earlier

sections 2.5.1 - 2.5.4 by using well-known results about uncountable Y = N .
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2.5.1 Getting the determinacy of games on a Tree1 collection with

countable Y from the determinacy of games on X<ω

Notation 2.5.1. (Definition of a Tree1 collection with/over countable Y )

Let T1 be a Tree1 collection. Suppose for every Type 1 tree TΨ,B
X,Y ∈ T1, Y is countable. Then

we say T1 is a “Tree1 collection with/over countable Y ”. 25 ⊣

In sections 2.5.2 through 2.5.4, we will obtain level by level results for the the determinacy

of games on a particular Tree1 collection with countable Y from the determinacy of games

on X<ω. In section 2.5.2, we will obtain the determinacy of open games on a certain Tree1

collection with countable Y from the determinacy of games on X<ω. In section 2.5.3, we

will obtain the determinacy of Borel games on a certain Tree1 collection with countable Y

from the determinacy of games on X<ω. In section 2.5.4, we will obtain the determinacy

of projective games on a certain Tree1 collection with countable Y from the determinacy of

games on X<ω. In this section, we will give definitions and prove some lemmas which we

will use throughout sections 2.5.2 through 2.5.4.

For each Type 1 tree TΨ,B
X,Y and A ⊆ [TΨ,B

X,Y ], we will find A∗ ⊆ Xω which will satisfy the

following:

f ∈ A∗ if and only if

there is a winning strategy at f in the Type 1 tree TΨ,B
X,Y for G(A;TΨ,B

X,Y ).

25Note that possibly different Y ’s for different T ’s. A Tree1 collection with/over countable Y does not
mean that Y is fixed.
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We will now describe our A∗. Recall from page 48,

[TΨ,B
X,Y ] =

∪
n∈ω

((B ∩Ψ−1(n))× Y n+1)∪̇(Xω\B).

We will split A into pairwise disjoint pieces A∅ and An for n ∈ ω. A∅ will be a subset of

Xω\B and An will be a subset of B for each n ∈ ω. Then we will define An
g for each n ∈ ω

and g ∈ Y n+1 such that if a play f in A∗ is in An
g , then f⌢g will be in A. Then, by backwards

induction, we will define An
∅ from {An

g |g ∈ Y n+1} using n+1 many unions and intersections

(countable unions and countable intersections when Y is countable). Whenever a play f of

A∗ is in An
∅ , there is a canonical strategy at f to get into A. Let A∗ =

∪
n∈ω A

n
∅ ∪ A∅. We

will show that:

• If f ∈ A∗, then I has a winning strategy at f to get into A.

• If f /∈ A∗, then II has a winning strategy at f to avoid A.

Definition 2.5.2. Suppose A ⊆ [TΨ,B
X,Y ]. For each n ∈ ω, define

An = A ∩ ((B ∩Ψ−1(n))× Y n+1),

A∅ = A ∩ (Xω\B).

Then A =
∪

n∈ω A
n∪̇A∅. ⊣

In definition 2.5.3, for each g ∈ Y n+1, we define An
g ⊆ Xω as a collection of f ∈ Xω

such that f⌢g ∈ An. In definition 2.5.4, by backwards induction, we will define for each

i < n+ 1 = lh(g), An
g↾i from {An

(g↾i)⌢⟨m⟩|m ∈ Y }.
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Definition 2.5.3. Suppose A ⊆ [TΨ,B
X,Y ]. For every n ∈ ω and g ∈ Y n+1, define

An
g = {f ∈ Xω |f⌢g ∈ An} . ⊣

Since An ⊆ (B ∩Ψ−1(n))× Y n+1, An
g ⊆ B ∩Ψ−1(n) for every g ∈ Y n+1.

Definition 2.5.4. Suppose A ⊆ [TΨ,B
X,Y ]. For all n ∈ ω and for all p ∈ Y <n+1, define

An
p

df
=


∪

m∈Y
An

p⌢⟨m⟩ if lh (p) is even,

∩
m∈Y

An
p⌢⟨m⟩ if lh (p) is odd.

⊣

Note that for all n ∈ ω and for all p ∈ Y ≤n+1, we have An
p . Definition 2.5.3 applies if

lh(p) = n+ 1.

Observation 2.5.5. Suppose A ⊆ [TΨ,B
X,Y ]. For all n ∈ ω and for all p ∈ Y ≤n+1, An

p ⊆

B ∩Ψ−1(n). ⊣

Proof.

Pick an arbitrary n ∈ ω. Suppose p ∈ Y ≤n+1. The proof is by backwards induction on the

length of p.

Base case : lh(p) = n+ 1.

Then we have An
p = {f ∈ Xω |f⌢p ∈ An} ⊆ B ∩Ψ−1(n) since An ⊆ (B ∩Ψ−1(n))× Y n+1.

Induction step : As an induction hypothesis, assume that for all p ∈ Y ≤n+1, if lh(p) =

l + 1 ≤ n + 1, then An
p ⊆ B ∩ Ψ−1(n). Suppose lh(p) = l. Show An

p ⊆ B ∩ Ψ−1(n). Pick an

arbitrary f ∈ An
p .

Case 1 : l is even. Then An
p =

∪
m∈Y

An
p⌢⟨m⟩. Then f ∈ An

p⌢⟨m⟩ for some m ∈ Y . Since

lh(p⌢⟨m⟩) = l + 1, by induction hypothesis, we have An
p⌢⟨m⟩ ⊆ B ∩ Ψ−1(n). Thus f ∈

B ∩Ψ−1(n). Since f ∈ An
p is arbitrary, An

p ⊆ B ∩Ψ−1(n).
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Case 2 : l is odd. Then An
p =

∩
m∈Y

An
p⌢⟨m⟩. Then f ∈ An

p⌢⟨m⟩ for every m ∈ Y . Since

lh(p⌢⟨m⟩) = l + 1 for every m ∈ Y , by induction hypothesis, we have An
p⌢⟨m⟩ ⊆ B ∩Ψ−1(n)

for every m ∈ Y . Thus f ∈ B ∩Ψ−1(n). Since f ∈ An
p is arbitrary, An

p ⊆ B ∩Ψ−1(n).

For each strategy s∗ on X<ω, we define the canonical strategy s on a Type 1 tree T .

First, we define the canonical strategy for player I.

Definition 2.5.6. (Definition of the canonical tail strategy s for player I)

Fix a Type 1 tree T = TΨ,B
X,Y . Let SI(X<ω) be the set of strategies for I on X<ω and let SI(T )

be the set of strategies for I on T . Define

φI : SI (X<ω)→ SI (T ) .

For each s∗ ∈ SI(X<ω), Define s = φI(s
∗) as follows: For p ∈ T\[T ] such that either p is

finite and p ∈ dom(s∗), or p is infinite and lh(p) is even,

s(p)=



s∗(p) if p finite,

µm∈Y
(
p↾ω∈AΨ(p↾ω)

p↾[ω,lh(p))⌢⟨m⟩

)
26 if p↾ω∈B and p↾ω∈AΨ(p↾ω)

p↾[ω,lh(p))=
∪

m∈Y
A

Ψ(p↾ω)
p↾[ω,lh(p))⌢⟨m⟩

,

µm(m∈Y ) otherwise,27

when Y is well-orderable. Then s is a strategy for I for T .

(We define for the case that Y is well-orderable. See footnote (26) for the case that Y is

not well-orderable.) ⊣

Lemma 2.5.7. Fix a Type 1 tree T = TΨ,B
X,Y and A ⊆ [T ]. Suppose I∗ has a winning strategy

s∗ for G(
∪

n∈ω A
n
∅ ∪ A∅;X

<ω). Then the canonical tail strategy s = φI(s
∗) is a winning

26µ represents “the least”. If Y is well-orderable, fix a well-ordering of Y . Otherwise, pick any m ∈ Y

such that p ↾ ω ∈ A
Ψ(p↾ω)

p↾[ω,lh(p))⌢⟨m⟩
.

27This otherwise case does not occur for plays of interest. If Y is not well-orderable, pick any m ∈ Y .
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strategy for I for G(A;T ). ⊣

Proof.

Pick an arbitrary h ∈ [T ] = [TΨ,B
X,Y ] according to s. Show h ∈ A. Since h ↾ ω is according to

s, h ↾ ω is according to s∗. Since s∗ is a I∗’s winning strategy for G(
∪

n∈ω A
n
∅ ∪ A∅;X

<ω),

h ↾ ω ∈
∪

n∈ω A
n
∅ ∪ A∅.

Case 1 : h ↾ ω ∈ B.

Then h ↾ ω /∈ A∅. By observation 2.5.5, h ↾ ω /∈ Al
∅ for any l ̸= Ψ(h ↾ ω). Thus h ↾ ω ∈

A
Ψ(h↾ω)
∅ . Since h is according to the canonical tail strategy s = φI(s

∗) for I, h ↾ ω ∈ A
Ψ(h↾ω)
⟨h(ω)⟩ .

Since lh(h ↾ (ω + 1)) = ω + 1, by definition, A
Ψ(h↾ω)
⟨h(ω)⟩ =

∩
m∈Y An

⟨h(ω)⟩⌢⟨m⟩. Thus for any

II’s move m ∈ Y , h ↾ ω ∈ A
Ψ(h↾ω)
⟨h(ω),m⟩. In particular, h ↾ ω ∈ A

Ψ(h↾ω)
⟨h(ω),h(ω+1)⟩. Repeat this

argument. Eventually, we get h ↾ ω ∈ A
Ψ(h↾ω)
h↾[ω,lh(h)). Since lh(h ↾ [ω, lh(h))) = Ψ(h ↾ ω) + 1,

h = (h ↾ ω)⌢h ↾ [ω, lh(h)) ∈ AΨ(h↾ω) ⊆ A.

Case 2 : h ↾ ω /∈ B.

By observation 2.5.5, h ↾ ω /∈ An
∅ for any n ∈ ω. Thus h = h ↾ ω ∈ A∅ ⊆ A.

In either case, h ∈ A. Hence the canonical tail strategy s = φI(s
∗) is a winning strategy

for I for G(A;T ).

Now, we define the canonical strategy for player II.

Definition 2.5.8. (Definition of the canonical tail strategy s for player II)

Fix a Type 1 tree T = TΨ,B
X,Y . Let SII(X<ω) be the set of strategies for II on X<ω and let

SII(T ) be the set of strategies for II on T . Define

φII : SII (X<ω)→ SII (T ) .
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For each s∗ ∈ SII(X<ω), define s = φII(s
∗) as follows: For p ∈ T\[T ] such that either p is

finite and p ∈ dom(s∗), or p is infinite and lh(p) is odd,

s(p)=



s∗(p) if p finite,

µm∈Y
(
p↾ω/∈AΨ(p↾ω)

p↾[ω,lh(p))⌢⟨m⟩

)
28 if p↾ω∈B and p↾ω/∈AΨ(p↾ω)

p↾[ω,lh(p))=
∩

m∈Y
A

Ψ(p↾ω)
p↾[ω,lh(p))⌢⟨m⟩

,

µm(m∈Y ) otherwise,29

when Y is well-orderable. Then s is a strategy for II for T .

(We define for the case that Y is well-orderable. See footnote (28) for the case that Y is

not well-orderable.) ⊣

Lemma 2.5.9. Fix a Type 1 tree T = TΨ,B
X,Y and A ⊆ [T ]. Suppose s∗ is a II∗’s winning

strategy for G(
∪

n∈ω A
n
∅ ∪A∅;X

<ω). Then the canonical tail strategy s = φII(s
∗) is a winning

strategy for II for G(A;T ). ⊣

Proof.

Pick an arbitrary h ∈ [T ] = [TΨ,B
X,Y ] according to s. Show h /∈ A. Then h ↾ ω is according to

s∗. Since s∗ is II∗’s winning strategy for G(
∪

n∈ω A
n
∅ ∪ A∅;X

<ω), h ↾ ω /∈
∪

n∈ω A
n
∅ ∪ A∅.

Case 1 : h ↾ ω ∈ B.

Since h ↾ ω /∈
∪

n∈ω A
n
∅ ∪ A∅, h ↾ ω /∈ A

Ψ(h↾ω)
∅ . By definition, A

Ψ(h↾ω)
∅ =

∪
m∈Y A

Ψ(h↾ω)
⟨m⟩ . Thus

for any I’s move m ∈ Y , h ↾ ω /∈ A
Ψ(h↾ω)
⟨m⟩ . In particular, h ↾ ω /∈ A

Ψ(h↾ω)
⟨h(ω)⟩ . By definition,

A
Ψ(h↾ω)
⟨h(ω)⟩ =

∩
m∈Y An

⟨h(ω)⟩⌢⟨m⟩. Since h is according to the canonical tail strategy s = φII(s
∗)

for II, h ↾ ω /∈ A
Ψ(h↾ω)
⟨h(ω),h(ω+1)⟩. Repeat this argument. Eventually, we get h ↾ ω /∈ A

Ψ(h↾ω)
h↾[ω,lh(h)).

Since lh(h ↾ [ω, lh(h))) = Ψ(h ↾ ω) + 1, h = (h ↾ ω)⌢h ↾ [ω, lh(h)) /∈ AΨ(h↾ω). By observation

2.5.5, h ↾ ω /∈ Al
∅ for any l ̸= Ψ(h ↾ ω). Hence h /∈

∪
n∈ω A

n∪̇A∅ = A.

28µ represents “the least”. If Y is well-orderable, fix a well-ordering of Y . Otherwise, pick any m ∈ Y

such that p ↾ ω /∈ A
Ψ(p↾ω)

p↾[ω,lh(p))⌢⟨m⟩
.

29This otherwise case does not occur for plays of interest. If Y is not well-orderable, pick any m ∈ Y .
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Case 2 : h ↾ ω /∈ B.

Since h ↾ ω /∈
∪

n∈ω A
n
∅ ∪ A∅, h = h ↾ ω /∈ A∅. By observation 2.5.5, h ↾ ω /∈ An

∅ for any

n ∈ ω. Hence h /∈
∪

n∈ω A
n∪̇A∅ = A.

In either case, h /∈ A. Hence the canonical tail strategy s = φII(s
∗) is a winning strategy

for II for G(A;T ).

Let φ = φI∪̇φII . Then φ takes strategies on X<ω to strategies on TΨ,B
X,Y . By lemmas 2.5.7

and 2.5.9, we have the following.

Theorem 2.5.10. If G(
∪

n∈ω A
n
∅ ∪ A∅;X

ω) is determined, then G(A;TΨ,B
X,Y ) is determined.

⊣

Now, we will find the complexity of An
∅ for each n ∈ ω assuming some fixed complexity

for each An
g .

Lemma 2.5.11. Suppose n,m ∈ ω, m > 1 and α ∈ ω1.

1. If for all g ∈ Y n+1, An
g ∈ Σ0

α ↾ Xω and Y is finite, then An
∅ ∈ Σ0

α ↾ Xω.

2. If for all g ∈ Y n+1, An
g ∈ Σ0

α ↾ Xω and Y is denumerable, An
∅ ∈ Σ0

α+ω ↾ Xω.

3. If for all g ∈ Y n+1, An
g ∈ Σ1

m ↾ Xω and Y is countable, then An
∅ ∈ Σ1

m ↾ Xω.

4. If for all g ∈ Y n+1, An
g ∈ Π1

m ↾ Xω and Y is countable, then An
∅ ∈ Π1

m ↾ Xω.

5. If for all g ∈ Y n+1, An
g ∈∆1

m ↾ Xω and Y is countable, then An
∅ ∈∆1

m ↾ Xω.

6. If Λ is an algebra, for all g ∈ Y n+1, An
g ∈ Λ ↾ Xω and Y is finite, then An

∅ ∈ Λ ↾ Xω.

7. If Λ is a σ-algebra, for all g ∈ Y n+1, An
g ∈ Λ ↾ Xω and Y is countable, then An

∅ ∈ Λ ↾

Xω. ⊣
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Proof.

Fix n ∈ ω. Then

An
∅ =


∪

a0∈Y

∩
a1∈Y
· · ·

∪
an∈Y

An
⟨a0,...,an⟩ if n is even,

∪
a0∈Y

∩
a1∈Y
· · ·

∩
an∈Y

An
⟨a0,...,an⟩ if n is odd.

Show (1). Suppose for all g ∈ Y n+1, An
g ∈ Σ0

α ↾ Xω and Y is finite. Prove An
p ∈ Σ0

α ↾ Xω

by backwards induction on the length of p ∈ Y ≤n+1.

Base Case : lh(p) = n+ 1.

Then p ∈ Y n+1. Thus An
p ∈ Σ0

α ↾ Xω.

Induction Step : Let k ≤ n. Assume, as an induction hypothesis, for any p ∈ Y ≤n+1 such

that lh(p) = k + 1, An
p ∈ Σ0

α ↾ Xω for some l ∈ ω. Pick an arbitrary p ∈ Y ≤n+1 such that

lh(p) = k.

Case 1 : lh(p) is even.

Then
∪

m∈Y
An

p⌢⟨m⟩ ∈ Σ0
α ↾ Xω since Σ0

α ↾ Xω is closed under finite unions.

Case 2 : lh(p) is odd.

Then
∩

m∈Y
An

p⌢⟨m⟩ ∈ Σ0
α ↾ Xω since Σ0

α ↾ Xω is closed under finite intersections.

In particular, when k = 0, An
∅ ∈ Σ0

α+ω ↾ Xω.

Show (2). Suppose for all g ∈ Y n+1, An
g ∈ Σ0

α ↾ Xω. Suppose Y is denumerable. Prove

An
p ∈ Σ0

α+l ↾ Xω for some l ∈ ω by backwards induction on the length of p ∈ Y ≤n+1.

Base Case : lh(p) = n+ 1.

An
p ∈ Σ0

α ↾ Xω.

Induction Step : Let k ≤ n. Assume for any p ∈ Y ≤n+1 such that lh(p) = k + 1,
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An
p ∈ Σ0

α+l ↾ Xω for some l ∈ ω. Pick an arbitrary p ∈ Y ≤n+1 such that lh(p) = k.

An
p =


∪

m∈Y
An

p⌢⟨m⟩ ∈ Σ0
α+l ↾ Xω if k is even,

∩
m∈Y

An
p⌢⟨m⟩ ∈ Π0

α+l+1 ↾ Xω ⊆ Σ0
α+l+2 ↾ Xω if k is odd.

Thus An
p ∈ Σ0

α+l+2 ↾ Xω.

In particular, when k = 0, An
∅ ∈ Σ0

α+ω ↾ Xω.

Show (3). Suppose each An
g ∈ Σ1

m ↾ Xω and Y is countable. Since Σ1
m is closed under

countable unions by lemma 2.3.22 and Σ1
m is closed under countable intersections by lemma

2.5.13 below, by the similar argument as (1) (replace Σ0
α to Σ1

m and finite to countable), we

have An
∅ ∈ Σ1

m ↾ Xω. Similarly for (4), the case for Π1
m and (5), the case for ∆1

m.

Show (6). Suppose Λ is an algebra, each An
g ∈ Λ ↾ Xω and Y is finite. Since Λ is closed

under finite unions and finite intersections, by the similar argument as (1) (replace Σ0
α to

Λ), we have An
∅ ∈ Λ ↾ Xω.

Show (7). Suppose Λ is a σ-algebra, each An
g ∈ Λ ↾ Xω and Y is countable. Since Λ is

closed under countable unions and countable intersections, by the similar argument as (1)

(replace Σ0
α to Λ and finite to countable), we have An

∅ ∈ Λ ↾ Xω.

Next, we will find the complexity of A∅ and An
g for each g ∈ Y n+1.

Lemma 2.5.12. Let n ∈ ω be arbitrary. Suppose Λ0 and Λ1 are complexities. Suppose

Ψ−1(n) ∈ Λ0 ↾ Xω, B ∈ Λ1 ↾ Xω and A ∈ Σ0
1 ↾ [TΨ,B

X,Y ]. Then for every g ∈ Y n+1,

An
g ∈

(
Σ0

1 ∧ Λ0 ∧ Λ1

)
↾ Xω and A∅ ∈ (Σ0

1 ∧ co-Λ1) ↾ Xω. ⊣

Proof.

Pick arbitrary n ∈ ω and g ∈ Y n+1. First, we consider An
g . Since g ∈ Y n+1, g ̸= ∅. Since
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A ∈ Σ0
1 ↾ [TΨ,B

X,Y ],

An = A ∩ ((B ∩Ψ−1(n))× Y n+1) ∈ Σ0
1 ↾ (B ∩Ψ−1(n))× Y n+1.

Thus there exist ⟨Oi |i ∈ ω ⟩ such that An =
∪

i∈ω Oi where each Oi is a basic open neighbor-

hood of (B ∩Ψ−1 (n))× Y n+1, i.e., there exists pi ∈ X<ω and qi ∈ Y n+1 such that

Oi = {h ∈ (B ∩Ψ−1 (n))× Y n+1 | h ↾ ω ⊇ pi ∧ h ↾ [ω, ω + n+ 1) = qi}.

Define G = {i ∈ ω |qi = g}. Then

An
g

df
= {f ∈ Xω |f⌢g ∈ An}

=

{
f ∈ Xω

∣∣∣∣∣f⌢g ∈
∪
i∈ω

Oi

}
=
∪
i∈ω

{f ∈ Xω |f⌢g ∈ Oi}

=
∪
i∈G

{f ∈ Xω |f⌢g ∈ Oi}

(∗)
=
∪
i∈G

{f ∈ Xω |f ⊇ pi}︸ ︷︷ ︸
Σ0

1↾Xω

∩Ψ−1 (n)︸ ︷︷ ︸
Λ0↾Xω

∩ B︸︷︷︸
Λ1↾Xω

∈
(
Σ0

1 ∧ Λ0 ∧ Λ1

)
↾ Xω.

[Proof of (∗)]

(⊆) Pick an arbitrary f̂ ∈
∪

i∈G {f ∈ Xω |f⌢g ∈ Oi}. Then ∃i ∈ G such that f̂⌢g ∈ Oi.

Thus f̂ ⊇ pi and g = qi. Since f⌢g ∈ [TΨ,B
X,Y ] and g ∈ Y n+1, f̂ ∈ Ψ−1(n) ∩ B. Hence

f̂ ∈
∪

i∈G {f ∈ Xω |f ⊇ pi} ∩Ψ−1 (n) ∩B.

(⊇) Pick an arbitrary f̂ ∈
∪

i∈G{f ∈ Xω | f ⊇ pi} ∩Ψ−1 (n)∩B. Then ∃i ∈ G such that

f̂ ⊇ pi and f̂ ∈ Ψ−1(n) ∩ B. By the tail exchange property of the tree TΨ,B
X,Y , ∀ĝ ∈ Y n+1,

f̂⌢ĝ ∈ [TΨ,B
X,Y ]. In particular, f̂⌢g ∈ [TΨ,B

X,Y ]. Since i ∈ G, qi = g. Thus f̂⌢g ∈ Oi. Hence
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f̂ ∈
∪

i∈G {f ∈ Xω |f⌢g ∈ Oi}. (∗)

Now, we consider A∅. Define J = {i ∈ ω |qi = ∅}. Then for all f ∈ Xω,

f ∈ A∅ ⇔ f ∈ A ∩ (Xω\B)︸ ︷︷ ︸
co-Λ1↾Xω

⇔ f ∈ ∃j ∈ J (f ⊇ pj)︸ ︷︷ ︸
Σ0

1↾Xω

∧ Xω\B︸ ︷︷ ︸
co-Λ1↾Xω

.

Thus A∅ ∈ (Σ0
1 ∧ co-Λ1) ↾ Xω.

By lemmas 2.5.12 and 2.5.11, we obtain the complexity of A∅ and An
g for all n ∈ ω

and g ∈ Y n+1 from the complexity of B and Ψ. In the next section, we will obtain the

determinacy of open games on Tree1 collections from the determinacy of games on X<ω by

using theorem 2.5.10 lemma 2.5.11 and lemma 2.5.12.

We used lemma 2.5.13, well-known closure property of projective sets, in the proof of

lemma 2.5.11. Sierpinski showed this property in 1928 (as cited in Moschovakis, 2009, p.

47). The following is a proof for this property. Readers familiar with this proof may skip

the rest of this section.

Lemma 2.5.13. Let n ∈ ω\{0}.

1. Σ1
n ↾ Xω is closed under countable intersections.

2. Π1
n ↾ Xω is closed under countable unions. ⊣

First, we prove sublemma 2.5.14. Given Sk ⊆ Xω × ωω × (ωω)k, we will define Sk
i± in

definition 2.5.15 by using sublemma 2.5.14. Then we will prove sublemma 2.5.17 by using

sublemma 2.5.16. We will use sublema 2.5.17 to prove lemma 2.5.13. The proof of lemma

2.5.13 is on page 154.
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Sublemma 2.5.14. 0

1. N ω is homeomorphic to N .

2. For any k ∈ ω, N k is homeomorphic to N . ⊣

Proof.

Show (1). Fix a bijection π : ω × ω
1−1−−→
onto

ω. Define

φ : N → N ω

f 7→ ⟨fn |n ∈ ω ⟩

where each fn (i) = f (π (⟨n, i⟩)).

Show φ is a homeomorphism.

1. Show φ is one to one. Suppose f, g ∈ N such that f ̸= g. Show φ(f) ̸= φ(g).

Since f ̸= g, there exists k ∈ ω such that f(k) ̸= g(k). Since π is a bijection, there

exists n, i ∈ ω such that π−1 (k) = ⟨n, i⟩. Then

fn (i) = f (π (⟨n, i⟩)) = f (k) ̸= g (k) = g (π (⟨n, i⟩)) = gn (i) .

Thus fn ̸= gn. Hence

φ (f) = ⟨fn |n ∈ ω ⟩ ̸= ⟨gn |n ∈ ω ⟩ = φ (g) .

2. Show φ is onto. Pick an arbitrary ⟨fn |n ∈ ω ⟩ ∈ N ω. Since π is a bijection, for each

k ∈ ω, there exists nk, ik ∈ ω such that π−1 (k) = ⟨nk, ik⟩. For each k ∈ ω, define

f (k) = fnk
(ik) .

Then f ∈ N . Since each fnk
(ik) = f (k) = f (π (⟨nk, ik⟩)), φ (f) = ⟨fn |n ∈ ω ⟩.
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3. Show φ is continuous. Pick an arbitrary O ∈ Σ0
1 ↾ N ω. Show φ−1 (O) ∈ Σ0

1 ↾ N . Since

O ∈ Σ0
1 ↾ N ω, O =

∪
l∈ω Ol where each

Ol =
∏

j∈ω
U l
j

and

• each U l
j ∈ Σ0

1 ↾ N .

• for each l ∈ ω, El =
{
j ∈ ω

∣∣U l
j ̸= N

}
is finite.

Pick an arbitrary f ∈ φ−1 (O). Then φ (f) = ⟨fn |n ∈ ω ⟩ ∈ O. There exists j ∈ ω such

that φ (f) = ⟨fn |n ∈ ω ⟩ ∈ Ol. For each j ∈ El, fj ∈ U l
j. Since U l

j ∈ Σ0
1 ↾ N , there

exists finite F l
j ⊆ ω such that for any gj ∈ N with gj ⊇ fj ↾ F l

j , gj ∈ U l
j. Define

Gl =
{
k
∣∣∃j ∈ El

(
π−1 (k) ∈ El × F l

j

)}
.

Since El is finite, each F l
j is finite, and π is a bijection, Gl ⊆ ω is finite. Pick an arbitrary

g ∈ N such that g ⊇ f ↾ Gl. Show g ∈ φ−1 (O). Show φ (g) = ⟨gn |n ∈ ω ⟩ ∈ Ol. Pick

arbitrary j ∈ El and i ∈ F l
j . Then π (⟨j, i⟩) ∈ Gl. Thus

gj (i) = g (π (⟨j, i⟩)) = f (π (⟨j, i⟩)) = fj (i) .

Since i ∈ F l
j is arbitrary, gj ⊇ fj ↾ F l

j . Thus gj ∈ U l
j. Since j ∈ El is arbitrary, for

each j ∈ El, gj ∈ U l
j. Thus φ (g) = ⟨gn |n ∈ ω ⟩ ∈ Ol ⊆ O. Therefore, g ∈ φ−1 (O).

4. Show φ−1 is continuous. Pick an arbitrary O ∈ Σ0
1 ↾ N . Show φ (O) ∈ Σ0

1 ↾ N ω.

Pick an arbitrary ⟨fn |n ∈ ω ⟩ ∈ φ (O). Then there exists f ∈ O such that φ (f) =

⟨fn |n ∈ ω ⟩. Since O ∈ Σ0
1 ↾ N , there exists finite G ⊆ ω such that for any g ∈ N , if

g ⊇ f ↾ G, g ∈ O. Let F = {j |∃i ∈ ω (π (⟨i, i⟩) ∈ G)}. Since G is finite, F is finite.
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For any j ∈ F , define

Uj = {h ∈ N |∀i ∈ ω if π (⟨j, i⟩) ∈ G then h (i) = fj (i)} .

Since G is finite, each Uj ∈ Σ0
1 ↾ N . Define

E =
∏

j∈ω
Hj

where

Hj =


Uj if j ∈ F,

N otherwise.

Then E ∈ Σ0
1 ↾ N ω. Show E ⊆ φ (O). Pick an arbitrary ⟨gn |n ∈ ω ⟩ ∈ E. Then for any

j ∈ F , gj ∈ Uj. Let φ (g) = ⟨gn |n ∈ ω ⟩. Show g ∈ O. Since for every j ∈ F , gj ∈ Uj,

for any j ∈ F and i ∈ ω, if π (⟨j, i⟩) ∈ G, then gj (i) = fj (i). Thus for any i, j ∈ ω, if

π (⟨i, i⟩) ∈ G, then gj (i) = fj (i). Hence for any k ∈ G, g(k) = f(k). Therefore, g ∈ O

so that E ⊆ φ (O). Hence φ (O) ∈ Σ0
1 ↾ N ω.

Consequently, by (1)-(4), φ is a homeomorphism.

Show (2).

Pick an arbitrary k ∈ ω. Fix a bijection π : k × ω
1−1−−→
onto

ω. The rest of proof is the same as

the proof of (1).

Definition 2.5.15. Let k, i ∈ ω. Suppose φ is the homeomorphism defined in 2.5.14 and

for each h ∈ ωω, φ(h) = ⟨hn |n ∈ ω ⟩. Suppose Sk ⊆ Xω × ωω × (ωω)k. Define

Sk
i± =

{
⟨f, h, g1, ..., gk⟩ ∈ Xω × ωω × (ωω)k

∣∣⟨f, hi, g1, ..., gk⟩ ∈ Sk
}
. ⊣

150



Sublemma 2.5.16. Let k, i ∈ ω. Suppose φ is the homeomorphism defined in 2.5.14 and

for each h ∈ ωω, φ(h) = ⟨hn |n ∈ ω ⟩. Suppose Sk ⊆ Xω × ωω × (ωω)k. Then

(
Xω × ωω × (ωω)k

)
\Sk

i± =
((
Xω × ωω × (ωω)k

)
\Sk

)
i±. ⊣

Proof.

Fix k ∈ ω and Sk ⊆ Xω × ωω × (ωω)k.

(
Xω × ωω × (ωω)k

)
\Sk

i±

=
(
Xω × ωω × (ωω)k

)
\
{
⟨f, h, g1, ..., gk⟩ ∈ Xω × ωω × (ωω)k

∣∣⟨f, hi, g1, ..., gk⟩ ∈ Sk
}

=
{
⟨f, h, g1, ..., gk⟩ ∈ Xω × ωω × (ωω)k

∣∣⟨f, hi, g1, ..., gk⟩ ∈
(
Xω × ωω × (ωω)k

)
\Sk

}
=
((
Xω × ωω × (ωω)k

)
\Sk

)
i±

Sublemma 2.5.17. Suppose n, k, i ∈ ω. Suppose φ is the homeomorphism defined in 2.5.14

and for each h ∈ ωω, φ(h) = ⟨hn |n ∈ ω ⟩. Suppose Sk ⊆ Xω × ωω × (ωω)k.

1. If Sk ∈ Σ1
n ↾ (Xω × ωω × (ωω)k), then Sk

i± ∈ Σ1
n ↾ (Xω × ωω × (ωω)k).

2. If Sk ∈ Π1
n ↾ (Xω × ωω × (ωω)k), then Sk

i± ∈ Π1
n ↾ (Xω × ωω × (ωω)k). ⊣

Proof.

We prove both (1) and (2) simultaneously by induction on n. (2) follows from (1) and

sublemma 2.5.16.

Base Case : n = 0.

Pick an arbitrary k ∈ ω.

Suppose Sk ∈ Σ0
1 ↾ (Xω × ωω × (ωω)k). Show Sk

i± ∈ Σ0
1 ↾ (Xω × ωω × (ωω)k).
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Pick an arbitrary ⟨f, h, g1, ..., gk⟩ ∈ Sk
±. Then ⟨f, hi, g1, ..., gk⟩ ∈ Sk. Since Sk ∈ Σ0

1 ↾

(Xω × ωω × (ωω)k), there exist finite F ⊆ ω, Hi ⊆ ω and Gi ⊆ ω, 1 ≤ i ≤ k such that

for all ⟨x, y, z1, ..., zk⟩ ∈ Xω × ωω × (ωω)k, if x ⊇ f ↾ F , y ⊇ hi ↾ Hi and for all 1 ≤ i ≤ k,

zi ⊇ gi ↾ Gi, then ⟨x, y, z1, ..., zk⟩ ∈ Sk. Define

O =
∏

j∈ω
Uj

where

Uj =


{y ∈ ωω |y ⊇ hi ↾ Hi} j = i,

N otherwise.

Then O ∈ Σ0
1 ↾ N ω. Since φ : N → N ω is continuous, φ−1 (O) ∈ Σ0

1 ↾ N . Let H = φ−1 (O).

Suppose y ∈ ωω and y ⊇ h ↾ H. Then φ (y) = ⟨yn |n ∈ ω ⟩ ∈ O so that yi ⊇ hi ↾ Hi. Thus

for all ⟨x, y, z1, ..., zk⟩ ∈ Xω × ωω × (ωω)k, if x ⊇ f ↾ F , y ⊇ h ↾ H and for all 1 ≤ i ≤ k,

zi ⊇ gi ↾ Gi, then ⟨x, yi, z1, ..., zk⟩ ∈ Sk. Hence, for all ⟨x, y, z1, ..., zk⟩ ∈ Xω × ωω × (ωω)k, if

x ⊇ f ↾ F , y ⊇ h ↾ H and for all 1 ≤ i ≤ k, zi ⊇ gi ↾ Gi, then ⟨x, y, z1, ..., zk⟩ ∈ Sk
i±. Thus

Sk
i± ∈ Σ0

1 ↾ (Xω × ωω × (ωω)k).

Suppose Sk ∈ Π0
1 ↾ (Xω × ωω × (ωω)k). Show Sk

i± ∈ Π0
1 ↾ (Xω × ωω × (ωω)k). · · · (∗)

Since Sk ∈ Π0
1 ↾ (Xω × ωω × (ωω)k),

(
Xω × ωω × (ωω)k

)
\Sk ∈ Σ0

1 ↾ (Xω × ωω × (ωω)k).

Since we have already shown (1) for n = 0, we have:

((
Xω × ωω × (ωω)k

)
\Sk

)
i± ∈ Σ0

1 ↾ (Xω × ωω × (ωω)k).

By sublemma 2.5.16,

(
Xω × ωω × (ωω)k

)
\Sk

i± =
((
Xω × ωω × (ωω)k

)
\Sk

)
i±
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Thus
(
Xω × ωω × (ωω)k

)
\Sk

i± ∈ Σ0
1 ↾ (Xω × ωω × (ωω)k). Hence

Sk
i± ∈ Π0

1 ↾ (Xω × ωω × (ωω)k).

Induction Step : Assume that, as an induction hypothesis, for all l ∈ ω, if Sl ∈ Σ1
n ↾

(Xω × ωω × (ωω)l), then Sl
i± ∈ Σ1

n ↾ (Xω × ωω × (ωω)l) and if Sl ∈ Π1
n ↾ (Xω × ωω × (ωω)l),

then Sk
i± ∈ Π1

n ↾ (Xω × ωω × (ωω)l).

Pick an arbitrary k ∈ ω.

Suppose Sk ∈ Σ1
n+1 ↾ (Xω × ωω × (ωω)k). Show Sk

i± ∈ Σ1
n+1 ↾ (Xω × ωω × (ωω)k).

Since Sk ∈ Σ1
n+1 ↾ (Xω × ωω × (ωω)k), there exists Sk+1 ∈ Π1

n ↾ (Xω × ωω × (ωω)k+1)

such that for any ⟨x, y, z1, ..., zk⟩ ∈ (Xω × ωω × (ωω)k), ⟨x, y, z1, ..., zk⟩ ∈ Sk if and only if

there exists zk+1 ∈ ωω such that ⟨x, y, z1, ..., zk, zk+1⟩ ∈ Sk+1.

Sk
i± =

{
⟨f, h, g1, ..., gk⟩ ∈ Xω × ωω × (ωω)k

∣∣⟨f, hi, g1, ..., gk⟩ ∈ Sk
}

=
{
⟨f, h, g1, ..., gk⟩ ∈ Xω × ωω × (ωω)k

∣∣∃gk+1 ∈ ωω ⟨f, hi, g1, ..., gk, gk+1⟩ ∈ Sk+1
}

=
{
⟨f, h, g1, ..., gk⟩ ∈ Xω × ωω × (ωω)k

∣∣∃gk+1 ∈ ωω ⟨f, h, g1, ..., gk, gk+1⟩ ∈ Sk+1
i±
}
.

Since each Sk+1 ∈ Π1
n ↾ (Xω × ωω × (ωω)k+1), by induction hypothesis, Sk+1

i± ∈ Π1
n ↾

(Xω × ωω × (ωω)k+1). Thus Sk
i± ∈ Σ1

n+1 ↾ (Xω × ωω × (ωω)k).

Suppose Sk ∈ Π1
n+1 ↾ (Xω × ωω × (ωω)k). Show Sk

i± ∈ Π1
n+1 ↾ (Xω × ωω × (ωω)k). We

repeat the same proof of (∗) on page 152.

Since Sk ∈ Π1
n+1 ↾ (Xω×ωω×(ωω)k),

(
Xω × ωω × (ωω)k

)
\Sk ∈ Σ1

n+1 ↾ (Xω×ωω×(ωω)k).

Since we have already shown (1) for the case n+ 1, we have:

((
Xω × ωω × (ωω)k

)
\Sk

)
i± ∈ Σ1

n+1 ↾ (Xω × ωω × (ωω)k).
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By sublemma 2.5.16,

(
Xω × ωω × (ωω)k

)
\Sk

i± =
((
Xω × ωω × (ωω)k

)
\Sk

)
i±

Thus
(
Xω × ωω × (ωω)k

)
\Sk

i± ∈ Σ1
n+1 ↾ (Xω × ωω × (ωω)k). Hence

Sk
i± ∈ Π1

n+1 ↾ (Xω × ωω × (ωω)k).

Using sublemma 2.5.16, we prove lemma 2.5.13. Recall lemma 2.5.13. (2) is obtained

from (1).

Lemma 2.5.13. Let n ∈ ω\{0}.

1. Σ1
n ↾ Xω is closed under countable intersections.

2. Π1
n ↾ Xω is closed under countable unions. ⊣

Proof.

Suppose φ is the homeomorphism defined in 2.5.14 and for each h ∈ ωω, φ(h) = ⟨hn |n ∈ ω ⟩.

Show (1). Assume that n > 0. Show Σ1
n ↾ Xω is closed under countable intersections. Let

⟨Ai|i ∈ ω⟩ be such that each Ai ∈ Σ1
n ↾ Xω. Since each Ai ∈ Σ1

n ↾ Xω, there exists

Ci ∈ Π0
n−1 ↾ Xω × ωω such that

f ∈ Ai ⇔ ∃g ∈ ωω ⟨f, g⟩ ∈ Ci.
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Show
∩

i∈ω Ai ∈ Σ1
n ↾ Xω.

f ∈
∩
i∈ω

Ai ⇔ ∀i ∈ ω (f ∈ Ai)

⇔ ∀i ∈ ω∃g ∈ ωω (⟨f, g⟩ ∈ Ci)

⇔ ∃h ∈ ωω∀i ∈ ω (⟨f, hi⟩ ∈ Ci)

⇔ ∃h ∈ ωω⟨f, h⟩ ∈
∩
i∈ω

(Ci)i±

Since each Ci ∈ Π0
n−1 ↾ Xω × ωω, by sublemma 2.5.16,

(Ci)i± ∈ Π0
n−1 ↾ Xω × ωω

so that ∩
i∈ω

(Ci)i± ∈ Π0
n−1 ↾ Xω × ωω.

Thus
∩

i∈ω Ai ∈ Σ1
n ↾ Xω.

Show (2). Suppose ⟨Ai|i ∈ ω⟩ be such that each Ai ∈ Π1
n ↾ Xω. Show

∪
i∈ω Ai ∈ Π1

n ↾ Xω.

Since each Ai ∈ Π1
n ↾ Xω, Xω\Ai ∈ Σ1

n ↾ Xω. Since we have already shown (1), we have:

∩
i∈ω

(Xω\Ai) ∈ Σ1
n ↾ Xω.

Since Xω\
(∪

i∈ω Ai

)
=
∩

i∈ω (X
ω\Ai), X

ω\
(∪

i∈ω Ai

)
∈ Σ1

n ↾ Xω. Thus
∪

i∈ω Ai ∈ Π1
n ↾

Xω.
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2.5.2 Obtaining the determinacy of open games on a Tree1 col-

lection with countable Y from the determinacy of games on

X<ω

In section 2.5.1, we defined notations and proved some lemmas. In this section, we will obtain

open determinacy on a certain Tree1 collection with countable Y from the determinacy of

games on X<ω by using theorem 2.5.10, lemma 2.5.11 and lemma 2.5.12. The main theorems

of this section are theorem 2.5.18, theorem 2.5.20 and theorem 2.5.26. In theorem 2.5.18, we

will obtain the determinacy of open games on a Tree1 collection such that each TΨ,B
X,Y in the

Tree1 collection having finite Y , a Borel function Ψ and a Borel set B from the determinacy

of Borel games on X<ω. In theorem 2.5.20, we will obtain the determinacy of open games on

a Tree1 collection such that each TΨ,B
X,Y in the Tree1 collection having countable Y , a Borel

function Ψ and a Borel set B from the determinacy of Borel games on X<ω. In theorem

2.5.26, we will obtain the determinacy of open games on a Tree1 collection such that each

TΨ,B
X,Y in the Tree1 collection having countable Y , a projective function Ψ and a projective

set B from the determinacy of projective games on X<ω.

The proofs of theorem 2.5.18, theorem 2.5.20, corollary 2.5.23, corollary 2.5.24, corollary

3.5.20 and theorem 2.5.26 are similar. First, we consider Tree1 collections over FIN . Then

we obtain results for Tree1 collections over CTB on page 160.

Theorem 2.5.18. Suppose β, γ ∈ ω1.

If β, γ > 1, then

Det(∆0
max{β,γ} ↾ Xω)⇒ Det G

(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
.30 (2.17)

30Recall notation 1.5.10 for FIN .
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If β < γ,

Det
(
∆0

γ ↾ Xω
)
⇒


Det G

(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.18)

Det G
(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
. (2.19)

If β ≥ γ,

Det
((
Σ0

β ∨Π0
β

)
↾ Xω

)
⇒


Det G

(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.20)

Det G
(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
. (2.21)

Also,

Det
(
Σ0

1 ↾ Xω
)
⇒ Det G

(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
. (2.22)

⊣

The implications (2.18) through (2.21) state that we set

T1 = Tree1
(
X,FIN,Γ(ω,∆0

γ),
(
Σ0

β ∪Π0
β

)
↾ Xω

)
,

then Det G (Σ0
1; T1) follows from

Det
(
∆0

γ ↾ Xω
)

when β < γ,

Det
((
Σ0

β ∨Π0
β

)
↾ Xω

)
when β ≥ γ.

Proof.

Show the implication (2.17). Fix β, γ ∈ ω1 greater than 1. Pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,FIN,Γ(ω,∆0

γ),∆
0
β ↾ Xω

)
.

Then Y is finite, Ψ ∈ Γ
(
ω,∆0

γ

)
and B ∈ ∆0

β ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ].

Assume Det(∆0
max{β,γ} ↾ Xω). By lemma 2.5.12, for every n ∈ ω and every g ∈ Y n+1,

each An
g ∈ ∆0

max{β,γ} ↾ Xω and A∅ ∈ ∆0
β ↾ Xω. Since Y is finite, by lemma 2.5.11, each

An
∅ ∈∆0

max{β,γ} ↾ Xω. Thus
∪

n∈ω A
n
∅ ∪A∅ ∈∆0

max{β,γ} ↾ Xω. Hence G(
∪

n∈ω A
n
∅ ∪A∅;X

ω) is

157



determined. By theorem 2.5.10, G(A;TΨ,B
X,Y ) is determined. Therefore, we have

Det G
(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
.

The proofs for the implications (2.18) through (2.22) are similar. Fix a Type 1 tree TΨ,B
X,Y

in the appropriate Tree1 collection. We only need to check the complexity of
∪

n∈ω A
n
∅ ∪A∅.

For the implication (2.18), pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
.

Then Y is finite, Ψ ∈ Γ
(
ω,∆0

γ

)
and B ∈ Σ0

β ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ]. By

lemma 2.5.12, for every n ∈ ω and every g ∈ Y n+1, each An
g ∈ ∆0

γ ↾ Xω and A∅ ∈ Π0
β ↾ Xω.

Since Y is finite, by lemma 2.5.11, each An
∅ ∈∆0

γ ↾ Xω. Thus
∪

n∈ω A
n
∅ ∪ A∅ ∈∆0

γ ↾ Xω.

For the implication (2.19), pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,FIN,Γ(ω,∆0

γ),Π
0
β ↾ Xω

)
.

Then Y is finite, Ψ ∈ Γ
(
ω,∆0

γ

)
and B ∈ Π0

β ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ]. By

lemma 2.5.12, for every n ∈ ω and every g ∈ Y n+1, each An
g ∈ ∆0

γ ↾ Xω and A∅ ∈ Σ0
β ↾ Xω.

Since Y is finite, by lemma 2.5.11, each An
∅ ∈∆0

γ ↾ Xω. Thus
∪

n∈ω A
n
∅ ∪ A∅ ∈∆0

γ ↾ Xω.

For the implication (2.20), pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
.

Then Y is finite, Ψ ∈ Γ
(
ω,∆0

γ

)
and B ∈ Σ0

β ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ].

By lemma 2.5.12, for every n ∈ ω and every g ∈ Y n+1, each An
g ∈ Σ0

β ↾ Xω and A∅ ∈

Π0
β ↾ Xω. Since Y is finite, by lemma 2.5.11, each An

∅ ∈ Σ0
β ↾ Xω. Thus

∪
n∈ω A

n
∅ ∪ A∅ ∈

(Σ0
β ∨Π0

β) ↾ Xω.
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For the implication (2.21), pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,FIN,Γ(ω,∆0

γ),Π
0
β ↾ Xω

)
.

Then Y is finite, Ψ ∈ Γ
(
ω,∆0

γ

)
and B ∈ Π0

β ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ].

By lemma 2.5.12, for every n ∈ ω and every g ∈ Y n+1, each An
g ∈ Π0

β ↾ Xω and A∅ ∈

Σ0
β ↾ Xω. Since Y is finite, by lemma 2.5.11, each An

∅ ∈ Π0
β ↾ Xω. Thus

∪
n∈ω A

n
∅ ∪ A∅ ∈

(Σ0
β ∨Π0

β) ↾ Xω.

For the implication (2.22), pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,FIN,Γ(ω,∆0

1),∆
0
1 ↾ Xω

)
.

Then Y is finite, Ψ ∈ Γ (ω,∆0
1) and B ∈ ∆0

1 ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ]. By

lemma 2.5.12, for every n ∈ ω and every g ∈ Y n+1, each An
g ∈ Σ0

1 ↾ Xω and A∅ ∈ Σ0
1 ↾ Xω.

Since Y is finite, by lemma 2.5.11, each An
∅ ∈ Σ0

1 ↾ Xω. Thus
∪

n∈ω A
n
∅ ∪ A∅ ∈ Σ0

1 ↾ Xω.

Combining corollary 2.4.32 on page 120 and theorem 2.5.18, we have the following.

Corollary 2.5.19. Suppose β, γ ∈ ω1. Then for any β ≥ γ,

1⃝ Det G
(
Σ0

1;Tree1
(
X,FIN,Γ

(
ω,Σ0

β ∧Π0
β

)
,Π0

β ↾ Xω
))

2⃝ Det G
(
Σ0

1;Tree1
(
X,FIN,Γ

(
ω,Σ0

β ∧Π0
β

)
,Σ0

β ↾ Xω
))


⇒ 3⃝ Det((Σ0
β ∧Π0

β) ↾ Xω)

⇔ 4⃝ Det
((
Σ0

β ∨Π0
β

)
↾ Xω

)
⇒


5⃝ Det G

(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
.

6⃝ Det G
(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
.

That is : 1⃝ implies 3⃝, 2⃝ implies 3⃝, 3⃝ if and only if 4⃝ and 4⃝ implies both 5⃝ and 6⃝. ⊣
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So far, we focused on getting the determinacy on Tree1 collections over FIN . Now, we

consider Tree1 collections over CTB.

Theorem 2.5.20. Suppose β, γ ∈ ω1. Then

Det(Σ0
max{β,γ}+ω ↾ Xω)⇒



Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
.31 (2.23)

Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
. (2.24)

Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. (2.25)

⊣

Proof.

Show the implication (2.23). Fix β, γ ∈ ω1 greater than 1. Pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
.

Then Y is countable, Ψ ∈ Γ
(
ω,∆0

γ

)
and B ∈ Σ0

β ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ].

Assume Det(Σ0
max{β,γ}+ω ↾ Xω). By lemma 2.5.12, for every n ∈ ω and every g ∈ Y n+1,

each An
g ∈ Σ0

max{β,γ} ↾ Xω and A∅ ∈ Π0
β ↾ Xω. Since Y is countable, by lemma 2.5.11,

each An
∅ ∈ Σ0

max{β,γ}+ω ↾ Xω. Thus
∪

n∈ω A
n
∅ ∪ A∅ ∈ Σ0

max{β,γ}+ω ↾ Xω. (If Ψ is bounded,

then there exists m ∈ ω such that
∪

n∈ω A
n
∅ ∪ A∅ ∈ Σ0

max{β,γ}+m ↾ Xω.) Hence G(
∪

n∈ω A
n
∅ ∪

A∅;X
ω) is determined. By theorem 2.5.10, G(A;TΨ,B

X,Y ) is determined. Therefore, we have

Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
.

The proofs for the implications (2.24) and (2.25) are similar. Fix a Type 1 tree TΨ,B
X,Y in

the appropriate Tree1 collection. We only need to check the complexity of
∪

n∈ω A
n
∅ ∪ A∅.

For the implication (2.24), pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,CTB,Γ(ω,∆0

γ),Π
0
β ↾ Xω

)
.

31Recall notation 1.5.10 for CTB.
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Then Y is countable, Ψ ∈ Γ
(
ω,∆0

γ

)
and B ∈ Π0

β ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ].

By lemma 2.5.12, for every n ∈ ω and every g ∈ Y n+1, each An
g ∈ Π0

max{β,γ} ↾ Xω ⊆

Σ0
max{β,γ}+1 ↾ Xω and A∅ ∈ Σ0

β ↾ Xω. Since Y is countable, by lemma 2.5.11, each An
∅ ∈

Σ0
max{β,γ}+ω ↾ Xω. Thus

∪
n∈ω A

n
∅ ∪ A∅ ∈ Σ0

max{β,γ}+ω ↾ Xω.

For the implication (2.25), pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,CTB,Γ(ω,∆0

γ),∆
0
β ↾ Xω

)
.

Then Y is countable, Ψ ∈ Γ
(
ω,∆0

γ

)
and B ∈ ∆0

β ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ].

By lemma 2.5.12, for every n ∈ ω and every g ∈ Y n+1, each An
g ∈ ∆0

max{β,γ} ↾ Xω ⊆

Σ0
max{β,γ}+1 ↾ Xω and A∅ ∈ ∆0

β ↾ Xω. Since Y is countable, by lemma 2.5.11, each An
∅ ∈

Σ0
max{β,γ}+ω ↾ Xω. Thus

∪
n∈ω A

n
∅ ∪ A∅ ∈ Σ0

max{β,γ}+ω ↾ Xω.

Combining corollary 2.4.17 on page 104 and and theorem 2.5.20, we have the following.

Corollary 2.5.21. For any finite n and m,

Det
(
Σ0

ω ↾ Xω
)

⇒ Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆0

n),Σ
0
m ↾ Xω

))
⇒ Det G

(
∆0

1;Tree1
(
X,CTB,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
⇒ Det

(∪
n∈ω

Σ0
n ↾ Xω

)
. ⊣

Question 5. Are any of the collections in corollary 2.5.21 determinacy equivalent? ⊣

Combining observation 2.4.1 on page 83 and theorem 2.5.20, we have the following.
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Corollary 2.5.22.

DetG
(
Σ0

max{β,γ}+ω;Tree1
(
X,CTB,Γ(ω,∆0

1), ∅
))

⇒ Det(Σ0
max{β,γ}+ω ↾ Xω)

⇒ DetG
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. ⊣

Corollary 2.5.23. Suppose Λ is an algebra. Then

Det(Λ ↾ Xω)⇒ Det G
(
Σ0

1;Tree1 (X,FIN,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Proof.

Pick an arbitrary Type 1 tree TΨ,B
X,Y ∈ Tree1 (X,FIN,Γ(ω,Λ),Λ ↾ Xω). Then Y is finite,

Ψ ∈ Γ(ω,Λ) and B ∈ Λ ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ]. Assume Det(Λ ↾ Xω). By

lemma 2.5.12, for all n ∈ ω and for all g ∈ Y n+1, each An
g ∈ Λ ↾ Xω and since Λ is closed

under complement, A∅ ∈ Λ ↾ Xω. Since Y is finite and Λ is closed under finite unions and

finite intersections, by lemma 2.5.11, each An
∅ ∈ Λ ↾ Xω. Thus

∪
n∈ω A

n
∅ ∪ A∅ ∈ Λ ↾ Xω.

Hence G(
∪

n∈ω A
n
∅∪A∅;X

ω) is determined. By theorem 2.5.10, G(A;TΨ,B
X,Y ) is determined.

Corollary 2.5.24. Suppose Λ is σ-algebra. Then

Det(Λ ↾ Xω)⇒ Det G
(
Σ0

1;Tree1 (X,CTB,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Proof.

Pick an arbitrary Type 1 tree TΨ,B
X,Y ∈ Tree1 (X,CTB,Γ(ω,Λ),Λ ↾ Xω). Then Y is countable,

Ψ ∈ Γ(ω,Λ) and B ∈ Λ ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ]. Assume Det(Λ ↾ Xω).

By lemma 2.5.12, for all n ∈ ω and for all g ∈ Y n+1, each An
g ∈ Λ ↾ Xω and since Λ

is closed under complement, A∅ ∈ Λ ↾ Xω. Since Y is countable and Λ is closed under
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countable unions and countable intersections, by lemma 2.5.11, each An
∅ ∈ Λ ↾ Xω. Thus∪

n∈ω A
n
∅ ∪ A∅ ∈ Λ ↾ Xω. Hence G(

∪
n∈ω A

n
∅ ∪ A∅;X

ω) is determined. By theorem 2.5.10,

G(A;TΨ,B
X,Y ) is determined.

Corollary 2.5.25.

Det(B ↾ Xω)⇒


Det G (Σ0

1;Tree1 (X,FIN,Γ(ω,B),B ↾ Xω))

Det G (Σ0
1;Tree1 (X,CTB,Γ(ω,B),B ↾ Xω)) ⊣

Proof.

Corollary 2.5.25 follows immediately from corollaries 2.5.23 and 2.5.24 since B is σ-algebra.

So far, we focused on getting the determinacy on Tree1 collections such that each Type

2 tree TΨ,B
X,Y in the Tree1 collection satisfying Y ∈ CTB, Ψ is a Borel function and B is a

Borel set. Now, we we focus on getting the determinacy on a Tree1 collection such that each

Type 2 tree TΨ,B
X,Y in the Tree1 collection satisfying Y ∈ CTB, Ψ is a projective function and

B is a projective set.

Theorem 2.5.26. Suppose m,n ∈ ω\{0}.

Det(∆1
max{n,m} ↾ Xω)⇒ Det G

(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆1

m),∆
1
n ↾ Xω

))
.32 (2.26)

If n < m,

Det
(
∆1

m ↾ Xω
)
⇒


Det G

(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆1

m),Σ
1
n ↾ Xω

))
. (2.27)

Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆1

m),Π
1
n ↾ Xω

))
. (2.28)

32Recall notation 1.5.10 for CTB.
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If n ≥ m,

Det
((
Σ1

n ∨Π1
n

)
↾ Xω

)
⇒


Det G

(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆1

m),Σ
1
n ↾ Xω

))
. (2.29)

Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆1

m),Π
1
n ↾ Xω

))
. (2.30)

⊣

The implications (2.27) through (2.30) state that we set

T1 = Tree1
(
X,CTB,Γ(ω,∆1

m),
(
Σ1

n ∪Π1
n

)
↾ Xω

)
,

then Det G (Σ0
1; T1) follows from

Det (∆1
m ↾ Xω) when n < m,

Det ((Σ1
n ∨Π1

n) ↾ Xω) when n ≥ m.

Proof.

Show the implication (2.26). Fix n,m ∈ ω1 greater than 1. Pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,CTB,Γ(ω,∆1

m),∆
1
n ↾ Xω

)
.

Then Y is countable, Ψ ∈ Γ (ω,∆1
m) and B ∈ ∆1

n ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾

[TΨ,B
X,Y ]. Assume Det(∆1

max{n,m} ↾ Xω). By lemma 2.5.12, for each i ∈ ω and g ∈ Y i+1,

Ai
g ∈ ∆1

max{n,m} ↾ Xω and A∅ ∈ ∆1
n ↾ Xω. Since Y is countable, by lemma 2.5.11, each

Ai
∅ ∈∆1

max{n,m} ↾ Xω. Thus
∪

i∈ω A
i
∅ ∪A∅ ∈∆1

max{n,m} ↾ Xω. Hence G(
∪

i∈ω A
i
∅ ∪A∅;X

ω) is

determined. By theorem 2.5.10, G(A;TΨ,B
X,Y ) is determined. Therefore, we have

Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆1

m),∆
1
n ↾ Xω

))
.

The proofs for the implications (2.27) through (2.30) are similar. Fix a Type 1 tree TΨ,B
X,Y

in the appropriate Tree1 collection. We only need to check the complexity of
∪

i∈ω A
i
∅ ∪A∅.
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For the implication (2.27), pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,CTB,Γ(ω,∆1

m),Σ
1
n ↾ Xω

)
.

Then Y is countable, Ψ ∈ Γ (ω,∆1
m) and B ∈ Σ1

n ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ].

By lemma 2.5.12, for each i ∈ ω and g ∈ Y i+1, Ai
g ∈ ∆1

m ↾ Xω and A∅ ∈ Π1
n ↾ Xω. Since Y

is countable, by lemma 2.5.11, each Ai
∅ ∈∆1

m ↾ Xω. Thus
∪

i∈ω A
i
∅ ∪ A∅ ∈∆1

m ↾ Xω.

For the implication (2.28), pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,CTB,Γ(ω,∆1

m),Π
1
n ↾ Xω

)
.

Then Y is countable, Ψ ∈ Γ (ω,∆1
m) and B ∈ Π1

n ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ].

By lemma 2.5.12, for each i ∈ ω and g ∈ Y i+1, Ai
g ∈ ∆1

m ↾ Xω and A∅ ∈ Σ1
n ↾ Xω. Since Y

is countable, by lemma 2.5.11, each Ai
∅ ∈∆1

m ↾ Xω. Thus
∪

i∈ω A
i
∅ ∪ A∅ ∈∆1

m ↾ Xω.

For the implication (2.29), pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,CTB,Γ(ω,∆1

m),Σ
1
n ↾ Xω

)
.

Then Y is countable, Ψ ∈ Γ (ω,∆1
m) and B ∈ Σ1

n ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ].

By lemma 2.5.12, for each i ∈ ω and g ∈ Y i+1, Ai
g ∈ Σ1

n ↾ Xω and A∅ ∈ Π1
n ↾ Xω. Since Y

is countable, by lemma 2.5.11, each Ai
∅ ∈ Σ1

n ↾ Xω. Thus
∪

i∈ω A
i
∅ ∪ A∅ ∈ (Σ1

n ∨Π1
n) ↾ Xω.

For the implication (2.30), pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,CTB,Γ(ω,∆1

m),Π
1
n ↾ Xω

)
.

Then Y is countable, Ψ ∈ Γ (ω,∆1
m) and B ∈ Π1

n ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Y ].

By lemma 2.5.12, for each i ∈ ω and g ∈ Y i+1, Ai
g ∈ Π1

n ↾ Xω and A∅ ∈ Σ1
n ↾ Xω. Since Y is

countable, by lemma 2.5.11, each Ai
∅ ∈ Π1

n ↾ Xω. Thus
∪

i∈ω A
i
∅∪A∅ ∈ (Σ1

n ∨Π1
n) ↾ Xω.
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Corollary 2.5.27. (Corollary to Theorem 2.5.26)

Det (2-Π1
1 ↾ Xω)⇒ Det G (Σ0

1;Tree1 (X,CTB,Γ(ω,∆1
1), (Σ

1
1 ∪Π1

1) ↾ Xω)). ⊣

By combining corollary 2.4.34 on page 120 and corollary 3.5.20, we have the following.

Corollary 2.5.28. For any nonempty X and Y ,

1⃝ Det G (Σ0
1;Tree1 (X, Y,Γ(ω, 2-Π1

1),Σ
1
1 ↾ Xω))

2⃝ Det G (Σ0
1;Tree1 (X, Y,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω))


⇒ 3⃝ Det

(
2-Π1

1 ↾ Xω
)

⇒ 4⃝ Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆1

1),
(
Σ1

1 ∪Π1
1

)
↾ Xω

))
.

That is : 1⃝ implies 3⃝, 2⃝ implies 3⃝, and 3⃝ implies 4⃝. ⊣

Question 6. With respect to corollary 2.5.28, does 4⃝ imply 1⃝ or 2⃝? ⊣
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2.5.3 Obtaining the determinacy of Borel games on a Tree1 collec-

tion with countable Y from the determinacy of Borel games

on X<ω

In section 2.5.2, we focused on obtaining the determinacy of open games on a certain Tree1

collection with countable Y from the determinacy of games on X<ω. In this section, as a

general case of open games on a Tree1 collection, we will consider games which are more

higher complexity. The main theorems in this section are theorems 2.5.29 and 2.5.30. We will

obtain level by level results for the determinacy of Borel games on a certain Tree1 collection

with countable Y from the determinacy of games on X<ω.

Theorem 2.5.29. Suppose α, β, γ ∈ ω1 and α > 1. Then

Det(Σ0
max{β,γ}+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,FIN,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. (2.31)

Moreover, if β < γ, then

Det(Σ0
γ+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.32)

If β ≥ γ, then

Det(Σ0
(β+1)+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.33)

⊣

The implications (2.32) and (2.33) states that when we set

T1 = Tree1
(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
,
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Det G (Σ0
α; T1) follows from

Det
(
Σ0

γ+α ↾ Xω
)

when β < γ,

Det
(
Σ0

(β+1)+α ↾ Xω
)

when β ≥ γ.

We will prove this theorem on page 178.

Theorem 2.5.30. Suppose α, β, γ ∈ ω1. Then

Det(Σ0
max{β,γ}+α+ω ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,CTB,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. (2.34)

Moreover, if β < γ, then

Det(Σ0
γ+α+ω ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.35)

If β ≥ γ, then

Det(Σ0
(β+1)+α+ω ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.36)

⊣

The implications (2.35) and (2.36) states that when we set

T1 = Tree1
(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
,

Det G (Σ0
α; T1) follows from

Det(Σ0
γ+α+ω ↾ Xω) when β < γ,

Det(Σ0
(β+1)+α+ω ↾ Xω) when β ≥ γ.

We will prove this theorem on page 180.

The idea of the proofs are similar as in section 2.5.2. We will use the same definition of

An, An
g and A∅ from section 2.5.1. We will find the complexity of each An

g and A∅ in lemma
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2.5.33. Then, by using lemma 2.5.11 and theorem 2.5.10, we will obtain the determinacy

results in theorems 2.5.29 and 2.5.30. To obtain the complexity of each An
g and A∅, we will

define a function Fix form Xω into [TΨ,B
X,Y ] and find the complexity of Fix in lemma 2.5.32

This Fix will be the key to find the complexity of An
g and A∅. For each g ∈ Y n+1, we will

collect all of f ∈ Xω such that f⌢g ∈ [TΨ,B
X,Y ] by using Fix. Fix will be the identity map for

any f ∈ Xω\B and if f ∈ B, then it will fix the tail.

Definition 2.5.31. (Definition of “Fix”)

For all m ∈ ω, fix am ∈ Y m+1. Define

Fix ⟨am : m ∈ ω⟩ : Xω → [TΨ,B
X,Y ]

f 7→


f if f /∈ B,

f⌢aΨ(f) otherwise.

If ⟨am : m ∈ ω⟩ is clear from the context, we will denote Fix to mean Fix ⟨am : m ∈ ω⟩. ⊣

We will compute the complexity of Fix.

Lemma 2.5.32. (Finding the complexity of Fix)

Fix a Type 1 tree T = TΨ,B
X,Y . Suppose Y is countable. For all m ∈ ω, fix am ∈ Y m+1. Suppose

α, β, γn ∈ ω1, n ∈ ω.

1. Suppose:

• B ∈∆0
β ↾ Xω,

• for all n ∈ ω, Ψ−1(n) ∈∆0
γn ↾ Xω,

then Fix ∈ Γ([T ],Σ0
max{β,sup

n∈ω
γn}).

33

33Recall notation 1.5.8 for Γ([T ],Σ0
max{β,supn∈ωγn}).
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2. Suppose:

• for all n ∈ ω, β ≥ γn,

• B ∈ Σ0
β ↾ Xω,

• for all n ∈ ω, Ψ−1(n) ∈∆0
γn ↾ Xω,

then Fix ∈ Γ([T ],Σ0
β+1).

3. Suppose:

• there exists n ∈ ω such that γn > β,

• B ∈ Σ0
β ↾ Xω,

• for all n ∈ ω, Ψ−1(n) ∈∆0
γn ↾ Xω,

then Fix ∈ Γ([T ],Σ0
supn∈ωγn

).

4. Suppose Λ is σ-algebra and:

• B ∈ Λ ↾ Xω,

• Ψ ∈ Γ(ω,Λ),

then Fix ∈ Γ([T ],Λ). ⊣

Proof.

Pick an arbitrary O ∈ Σ0
1 ↾ [T ]. Then there exists ⟨Oi |i ∈ ω ⟩ such that O =

∪
i∈ω Oi where

each Oi is a basic open neighborhood of [T ], i.e., there exists pi ∈ X<ω and qi ∈ Y <ω such

that

Oi = {h ∈ [T ] |h ↾ ω ⊇ pi ∧ h ↾ [ω, lh (h)) ⊇ qi} .
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Since each tail has finite length and Y is countable, there are countably many tails. Thus

each Oi can be written as
∪

j∈ω Ôi,j where each

Ôi,j = {h ∈ [T ] | h ↾ ω ⊇ p̂i,j = pi ∧ h ↾ [ω, lh(h)) = q̂i,j}

for some q̂i,j ∈ Y <ω. Then O =
∪

i∈ω Oi =
∪

i∈ω
∪

j∈ω Ôi,j =
∪

k∈ω Ôk where Ôk’s enumerate

Ôi,j’s, etc. Ôk = {h ∈ [T ] | h ↾ ω ⊇ p̂k ∧ h ↾ [ω, lh(h)) = q̂k}. Since

Fix−1(O) = Fix−1(
∪

k∈ω
Ôk) =

∪
k∈ω

Fix−1(Ôk),

we find the complexity of each Fix−1(Ôk).

Case 1 : q̂k = ∅.

Fix−1(Ôk) = {h ∈ Xω |h ↾ ω ⊇ p̂k }︸ ︷︷ ︸
Σ0

1↾Xω

∩ (Xω\B) .

If B ∈∆0
β ↾ Xω, Fix−1(Ôk) ∈

(
Σ0

1 ∧∆0
β

)
↾ Xω.

If B ∈ Σ0
β ↾ Xω, Fix−1(Ôk) ∈ (Σ0

1 ∧Π0
β) ↾ Xω.

If Λ is σ-algebra and B ∈ Λ ↾ Xω, then Fix−1(Ôk) ∈ Λ ↾ Xω.

Case 2 : q̂k = alk for some lk ∈ ω.

Fix−1(Ôk) = {h ∈ Xω |h ↾ ω ⊇ p̂k }︸ ︷︷ ︸
Σ0

1↾Xω

∩Ψ−1 (lk)︸ ︷︷ ︸
∆0

γlk
↾Xω

∩B.

If B ∈∆0
β ↾ Xω and Ψ−1(lk) ∈∆0

γlk
↾ Xω, then Fix−1(Ôk) ∈

(
Σ0

1 ∧∆0
max{β,γlk}

)
↾ Xω.

If B ∈ Σ0
β ↾ Xω and Ψ−1(lk) ∈∆0

γlk
↾ Xω, then Fix−1(Ôk) ∈ Σ0

max{β,γlk}
↾ Xω.

If Λ is σ-algebra, B ∈ Λ ↾ Xω and Ψ ∈ Γ(ω,Λ), Fix−1(Ôk) ∈ Λ ↾ Xω.
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Case 3 : q̂k ̸= ∅ and q̂k ̸= al for any l.

Fix−1(Ôk) = ∅.

Show (1). Suppose B ∈∆0
β ↾ Xω and for all n ∈ ω, Ψ−1(n) ∈∆0

γn ↾ Xω. Then

Fix−1(O) =
∪

k∈ω
Fix−1(Ôk)︸ ︷︷ ︸(

Σ0
1∧∆0

max{β,γlk}

)
↾Xω

∈ Σ0
max{β,sup

k∈ω
γlk}

↾ Xω ⊆ Σ0
max{β,sup

n∈ω
γn} ↾ X

ω.

Since O ∈ Σ0
1 ↾ [T ] is arbitrary, Fix is Σ0

max{β,sup
n∈ω

γn}-measurable.

Show (2). Suppose for all n ∈ ω, β ≥ γn, B ∈ Σ0
β ↾ Xω and for all n ∈ ω, Ψ−1(n) ∈∆0

γn ↾

Xω. Then Fix−1(O) ∈ Σ0
β+1 ↾ Xω. Since O ∈ Σ0

1 ↾ [T ] is arbitrary, Fix is Σ0
β+1-measurable.

Show(3). Suppose there exists n ∈ ω such that γn > β, B ∈ Σ0
β ↾ Xω and for all n ∈ ω,

Ψ−1(n) ∈∆0
γn ↾ Xω. Then Fix−1(O) ∈ Σ0

supn∈ωγn
↾ Xω. Since O ∈ Σ0

1 ↾ [T ] is arbitrary, Fix

is Σ0
supn∈ωγn

-measurable.

Show (4). Suppose Λ is σ-algebra, B ∈ Λ ↾ Xω and Ψ ∈ Γ(ω,Λ). Then Fix−1(Ôk) ∈ Λ for

any k ∈ ω and thus Fix−1(O) ∈ Λ. Since O ∈ Σ0
1 ↾ [T ] is arbitrary, Fix is Λ-measurable.

Using the complexity of Fix computed in lemma 2.5.32, we find the complexity of An
g

and A∅. In the proof of lemma 2.5.33, we use sublemma 2.5.34 on page 176.

Lemma 2.5.33. (Finding the complexity of An
g and A∅)

Fix a Type 1 tree T = TΨ,B
X,Y . Assume Y is countable. Suppose α, β ∈ ω1, α > 1, and m ∈ ω.

Assume that for all n ∈ ω, γn ∈ ω1.

1. Suppose:

• B ∈∆0
β ↾ Xω,
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• for all n ∈ ω, Ψ−1(n) ∈∆0
γn ↾ Xω,

• A ∈ Σ0
α ↾ [T ],

then A∅, A
n
g ∈ Σ0

max{β,supn∈ωγn}+α for any n ∈ ω and for any g ∈ Y n+1.

2. Suppose:

• for all n ∈ ω, β ≥ γn,

• B ∈ Σ0
β ↾ Xω,

• for all n ∈ ω, Ψ−1(n) ∈∆0
γn ↾ Xω,

• A ∈ Σ0
α ↾ [T ],

then A∅, A
n
g ∈ Σ0

(β+1)+α ↾ Xω for any n ∈ ω and for any g ∈ Y n+1.

3. Suppose:

• there is n ∈ ω such that γn > β,

• B ∈ Σ0
β ↾ Xω,

• for all n ∈ ω, Ψ−1(n) ∈∆0
γn ↾ Xω,

• A ∈ Σ0
α ↾ [T ],

then A∅, A
n
g ∈ Σ0

supn∈ωγn+α ↾ Xω for any n ∈ ω and for any g ∈ Y n+1.

4. Suppose Λ is σ-algebra, closed under Λ-substitution and:

• B ∈ Λ ↾ Xω,

• Ψ ∈ Γ(ω,Λ),
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• A ∈ Λ ↾ [T ],

then A∅, A
n
g ∈ Λ ↾ Xω for any n ∈ ω and for any g ∈ Y n+1. ⊣

Proof.

Fix n ∈ ω and g ∈ Y n+1. First, we will find the complexity of An
g . We will use Fix with

an = g. Show

An
g

df
= {f ∈ Xω |f⌢g ∈ An} = Fix−1 (A) ∩Ψ−1 (n) ∩B.

Recall An = A ∩ ((B ∩Ψ−1(n))× Y n+1). 34

(⊆) Suppose f ∈ An
g . Since g ∈ Y n+1 and f⌢g ∈ An, f ∈ Ψ−1(n)∩B and f⌢g ∈ A. Since

f ∈ B and Ψ(f) = n,

Fix(f) = f⌢aΨ(f) = f⌢an = f⌢g.

Thus Fix(f) ∈ A so that f ∈ Fix−1(A).

(⊇) Suppose f ∈ Fix−1(A) ∩Ψ−1(n) ∩B. Since f ∈ Fix−1(A) and f ∈ B,

Fix(f) = f⌢aΨ(f) = f⌢an = f⌢g ∈ A.

Since g ∈ Y n+1, f⌢g ∈ A ∩ ((B ∩Ψ−1(n))× Y n+1) = An. Hence f ∈ An
g .

First, we consider the complexity of An
g .

An
g

df
= {f ∈ Xω |f⌢g ∈ An} = Fix−1 (A) ∩Ψ−1 (n) ∩B.

Show (1) for An
g . Suppose B ∈ ∆0

β ↾ Xω, for all n ∈ ω, Ψ−1(n) ∈ ∆0
γn ↾ Xω and

A ∈ Σ0
α ↾ [T ]. Then by lemma 2.5.32, Fix is Σ0

max{β,supn∈ωγn}
-measurable. Note that since

34Recall definitions 2.5.2 through 2.5.4.
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ω1 is regular, supn∈ωγn ∈ ω1. Since A ∈ Σ0
α ↾ [T ], by sublemma 2.5.34 below,35

Fix−1 (A) ∈ Σ0
max{β,supn∈ωγn}+α ↾ Xω.

Thus An
g ∈ Σ0

max{β,supn∈ωγn}+α ↾ Xω.

Show (2) for An
g . Suppose for all n ∈ ω, β ≥ γn, B ∈ Σ0

β ↾ Xω, for all n ∈ ω,

Ψ−1(n) ∈ ∆0
γn ↾ Xω and A ∈ Σ0

α ↾ [T ]. Then by lemma 2.5.32, Fix is Σ0
β+1-measurable.

Since A ∈ Σ0
α ↾ [T ], by sublemma 2.5.34 below, Fix−1 (A) ∈ Σ0

(β+1)+α ↾ Xω. Thus An
g ∈

Σ0
(β+1)+α ↾ Xω.

Show (3) for An
g . Suppose there is n ∈ ω such that γn > β, B ∈ Σ0

β ↾ Xω for all n ∈ ω,

Ψ−1(n) ∈∆0
γn ↾ Xω and A ∈ Σ0

α ↾ [T ]. Then by lemma 2.5.32, Fix is Σ0
supn∈ωγn

-measurable.

Since A ∈ Σ0
α ↾ [T ], by sublemma 2.5.34 below, Fix−1 (A) ∈ Σ0

supn∈ωγn+α ↾ Xω. Thus

An
g ∈ Σ0

supn∈ωγn+α ↾ Xω.

Show (4) for An
g . Suppose Λ is σ-algebra, closed under Λ-substitution. Suppose Ψ ∈

Γ(ω,Λ), B ∈ Λ ↾ Xω and A ∈ Λ ↾ [T ]. Since Λ is σ-algebra, by lemma 2.5.32, Fix is

Λ-measurable. Since Λ is closed under Λ-substitution, Fix−1(A) ∈ Λ. Since Ψ ∈ Γ(ω,Λ)

and B ∈ Λ ↾ Xω, each An
g ∈ Λ ↾ Xω.

Now, we consider the complexity of A∅. Recall long(B) = {h ∈ [T ] | lh(h) > ω}. Then

long(B) ∈ Σ0
1 ↾ [T ].

([T ]\long(B))︸ ︷︷ ︸
Π0

1↾[T ]

∩ A︸︷︷︸
Σ0

α↾[T ]

∈ Σ0
α ↾ [T ] for α > 1.

A∅ = {f ∈ Xω\B |f ∈ A} = Fix−1 (([T ]\long(B)) ∩ A) .

Show (1) for A∅. Suppose B ∈ ∆0
β ↾ Xω and A ∈ Σ0

α ↾ [T ]. Then by lemma 2.5.32, Fix

35See sublemma 2.5.34 on page 176.
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is ∆0
max{β,supn∈ωγn}

-measurable. By sublemma 2.5.34 below, A∅ ∈ Σ0
max{β,supn∈ωγn}+α ↾ Xω.

Show (2) for A∅. Suppose for all n ∈ ω, β ≥ γn, B ∈ Σ0
β ↾ Xω and A ∈ Σ0

α ↾ [T ]. Then

by lemma 2.5.32, Fix is Σ0
β+1-measurable. By sublemma 2.5.34 below, A∅ ∈ Σ0

(β+1)+α ↾ Xω.

Show (3) for A∅. Suppose there is n ∈ ω such that γn > β, B ∈ Σ0
β ↾ Xω and A ∈

Σ0
α ↾ [T ]. Then by lemma 2.5.32, Fix is Σ0

supn∈ωγn
-measurable. By sublemma 2.5.34 below,

A∅ ∈ Σ0
supn∈ωγn+α ↾ Xω.

Show (4) forA∅. Suppose Λ is σ-algebra and closed under Λ-substitution, Ψ ∈ Γ(ω,Λ), B ∈

Λ ↾ Xω andA ∈ Λ ↾ [T ]. Then by lemma 2.5.32, Fix is Λ measurable and ([T ]\long(B)) ∩ A ∈

Λ ↾ [T ]. Since Λ is closed under Λ-substitution and ([T ]\long(B)) ∩ A ∈ Λ ↾ [T ], A∅ ∈ Λ ↾

Xω.

We used to the following sublemma 2.5.34 for the prove of lemma 2.5.33 to find the

complexity of An
g and A∅. We prove the following well-known property about the measurable

functions. This is listed in Moschovakis (2009, p. 43, Exercise 1G.7.).

Sublemma 2.5.34. Suppose α, γ ∈ ω1\{0}. Suppose f : X1 → X2 is Σ0
γ-measurable.

1. If P ∈ Σ0
α ↾ X2, then f−1 (P ) ∈ Σ0

γ+α ↾ X1.

2. If P ∈ Π0
α ↾ X2, then f−1 (P ) ∈ Π0

γ+α ↾ X1.

Consequently, B is closed under Borel-substitution. ⊣

Proof.

Fix γ ∈ ω1\{0}. We prove this by induction both (1) and (2) simultaneously on α .

Base Case : α = 1. Pick arbitrary Σ0
γ-measurable f : X1 → X2

Suppose P ∈ Σ0
1 ↾ X2. Then by definition of Σ0

γ-measurable, f−1 (P ) ∈ Σ0
γ ↾ X1.
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Suppose P ∈ Π0
1 ↾ X2. Show f−1 (P ) ∈ Π0

γ ↾ X1. Since P ∈ Π0
1 ↾ X2, X2\P ∈ Σ0

1 ↾ X2.

Since we have already shown (1) for α = 1, we have: f−1 (X2\P ) ∈ Σ0
γ ↾ X1. Since

f−1 (X2\P ) = X1\f−1 (P ), f−1 (P ) ∈ Π0
γ ↾ X1. · · · (∗)

Induction Step : As an induction hypothesis, assume for all Σ0
γ-measurable f : X1 → X2,

∀β ∈ α,

if P ∈ Σ0
β ↾ X2 then f−1 (P ) ∈ Σ0

γ+β ↾ X1 and if P ∈ Π0
β ↾ X2 then f−1 (P ) ∈ Π0

γ+β ↾ X1.

Suppose P ∈ Σ0
α ↾ X2. Show f−1 (P ) ∈ Σ0

γ+α ↾ X1. Since P ∈ Σ0
α ↾ Xω, there exists

⟨P i |i ∈ ω ⟩ such that each P i ∈ Π0
βi
↾ X2, βi ∈ α and P =

∪
i∈ω P

i.

f−1 (P ) = f−1(
∪

i∈ω
P i) =

∪
i∈ω

f−1(P i)︸ ︷︷ ︸
Π0

γ+βi

∈ Σ0
γ+α ↾ X1.

Suppose P ∈ Π0
α ↾ X2. Show f−1 (P ) ∈ Π0

γ+α ↾ X1. We repeat the same proof of (∗) on

page 177.

Since P ∈ Π0
α ↾ X2, X2\P ∈ Σ0

α ↾ X2. Since we have already shown (1) for the case α,

we have: f−1 (X2\P ) ∈ Σ0
γ+α ↾ X1. Since f−1 (X2\P ) = X1\f−1 (P ),

f−1 (P ) ∈ Π0
γ+α ↾ X1.

Suppose f : X1 → X2 is Borel-measurable. Then if P ∈ B ↾ X2, then f−1 (P ) ∈ B ↾ X1.

Consequently, B is closed under Borel-substitution.

We computed the complexity of each An
g and A∅ in lemma 2.5.33. Using lemma 2.5.11

and theorem 2.5.10, we obtain the determinacy results in theorems 2.5.29 and 2.5.30. First,

we consider Tree1 collections over FIN . Recall theorem 2.5.29.
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Theorem 2.5.29. Suppose α, β, γ ∈ ω1 and α > 1. Then

Det(Σ0
max{β,γ}+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,FIN,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. (2.31)

Moreover, if β < γ, then

Det(Σ0
γ+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.32)

If β ≥ γ, then

Det(Σ0
(β+1)+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.33)

⊣

Proof of theorem 2.5.29.

Fix α, β, γ ∈ ω1 such that α > 1.

Show the implication (2.31). Assume Det(Σ0
max{β,γ}+α). Pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,FIN,Γ(ω,∆0

γ),∆
0
β ↾ Xω

)
.

Then Y is finite, Ψ ∈ Γ
(
ω,∆0

γ

)
and B ∈ ∆0

β ↾ Xω. Pick an arbitrary A ∈ Σ0
α ↾ [TΨ,B

X,Y ]. By

lemma 2.5.33, for all n ∈ ω and g ∈ Y n+1, each An
g , A∅ ∈ Σ0

max{β,γ}+α ↾ Xω. Since Y is finite,

by lemma 2.5.11, each An
∅ ∈ Σ0

max{β,γ}+α ↾ Xω. Thus
∪

n∈ω A
n
∅ ∪ A∅ ∈ Σ0

max{β,γ}+α ↾ Xω.

Hence G(
∪

n∈ω A
n
∅ ∪ A∅;X

ω) is determined. By theorem 2.5.10, G(A;TΨ,B
X,Y ) is determined.

Therefore,

Det G
(
Σ0

α;Tree1
(
X,FIN,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
.

Similarly, for the implication (2.32), suppose β ≥ γ. Pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
.
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Then Y is finite, Ψ ∈ Γ
(
ω,∆0

γ

)
and B ∈ Σ0

β ↾ Xω. Pick an arbitrary A ∈ Σ0
α ↾ [TΨ,B

X,Y ]. By

lemma 2.5.33, for all n ∈ ω and g ∈ Y n+1, each An
g , A∅ ∈ Σ0

(β+1)+α ↾ Xω. By lemma

2.5.11, each An
∅ ∈ Σ0

(β+1)+α ↾ Xω and thus
∪

n∈ω A
n
∅ ∪ A∅ ∈ Σ0

(β+1)+α ↾ Xω. Hence

G(
∪

n∈ω A
n
∅ ∪ A∅;X

ω) is determined. By theorem 2.5.10, G(A;TΨ,B
X,Y ) is determined. There-

fore, Det G
(
Σ0

α;Tree1
(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
.

For the implication (2.33), suppose γ ≥ β. Pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
.

Then Y is finite, Ψ ∈ Γ
(
ω,∆0

γ

)
and B ∈ Σ0

β ↾ Xω Pick an arbitrary A ∈ Σ0
α ↾ [TΨ,B

X,Y ].

By lemma 2.5.33, for all n ∈ ω and g ∈ Y n+1, each An
g , A∅ ∈ Σ0

γ+α ↾ Xω. Then by

lemma 2.5.33, each An
∅ ∈ Σ0

γ+α ↾ Xω and thus
∪

n∈ω A
n
∅ ∪ A∅ ∈ Σ0

γ+α ↾ Xω. Hence

G(
∪

n∈ω A
n
∅ ∪ A∅;X

ω) is determined. By theorem 2.5.10, G(A;TΨ,B
X,Y ) is determined. There-

fore, Det G
(
Σ0

α;Tree1
(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
.

Now, we consider Tree1 collections over CTB. Recall theorem 2.5.30.

Theorem 2.5.30. Suppose α, β, γ ∈ ω1. Then

Det(Σ0
max{β,γ}+α+ω ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,CTB,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. (2.34)

Moreover, if β < γ, then

Det(Σ0
γ+α+ω ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.35)

If β ≥ γ, then

Det(Σ0
(β+1)+α+ω ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.36)
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⊣

Proof of Theorem 2.5.30.

Fix α, β, γ ∈ ω1.

Show the implication (2.34). Assume Det(Σ0
max{β,γ}+α+ω). Pick an arbitrary Type 1 tree

TΨ,B
X,Y ∈ Tree1

(
X,CTB,Γ(ω,∆0

γ),∆
0
β ↾ Xω

)
. Then Y is countable, Ψ ∈ Γ

(
ω,∆0

γ

)
, B ∈

∆0
β ↾ Xω. Pick an arbitrary A ∈ Σ0

α ↾ [TΨ,B
X,Y ]. By lemma 2.5.33, for all n ∈ ω and g ∈ Y n+1,

each An
g ∈ Σ0

max{β,γ}+α and A∅ ∈ Σ0
max{β,γ}+α+1 (1 is added for the case α = 1). Since Y is

countable, by lemma 2.5.11, each An
∅ ∈ Σ0

max{β,γ}+α+ω ↾ Xω. Thus

∪
n∈ω

An
∅ ∪ A∅ ∈ Σ0

max{β,γ}+α+ω ↾ Xω.

Hence G(
∪

n∈ω A
n
∅ ∪ A∅;X

ω) is determined. By theorem 2.5.10, G(A;TΨ,B
X,Y ) is determined.

Therefore, Det G
(
Σ0

α;Tree1
(
X,CTB,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
.

Similarly, show the implication (2.35). Suppose γ > β. Assume Det(Σ0
(β+1)+α+ω ↾ Xω).

Pick an arbitrary Type 1 tree TΨ,B
X,Y ∈ Tree1

(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
. Then Y is

countable, Ψ ∈ Γ
(
ω,∆0

γ

)
and B ∈ Σ0

β ↾ Xω. Pick an arbitrary A ∈ Σ0
α ↾ [TΨ,B

X,Y ]. By lemma

2.5.33, for all n ∈ ω and g ∈ Y n+1, each An
g ∈ Σ0

γ+α ↾ Xω and A∅ ∈ Σ0
γ+α+1 ↾ Xω. Since Y is

countable, by lemma 2.5.11, each An
∅ ∈ Σ0

γ+α+ω ↾ Xω and thus
∪

n∈ω A
n
∅∪A∅ ∈ Σ0

γ+α+ω ↾ Xω.

Hence G(
∪

n∈ω A
n
∅ ∪ A∅;X

ω) is determined. By theorem 2.5.10, G(A;TΨ,B
X,Y ) is determined.

Therefore, Det G
(
Σ0

α;Tree1
(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
.

Show the implication (2.36). Suppose β ≥ γ. Assume Det(Σ0
γ+α+ω ↾ Xω). Pick an

arbitrary Type 1 tree TΨ,B
X,Y ∈ Tree1

(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
. Then Y is countable,

Ψ ∈ Γ
(
ω,∆0

γ

)
and B ∈ Σ0

β ↾ Xω. Pick an arbitrary A ∈ Σ0
α ↾ [TΨ,B

X,Y ]. By lemma 2.5.33,

for all n ∈ ω and g ∈ Y n+1, each An
g ∈ Σ0

(β+1)+α ↾ Xω and A∅ ∈ Σ0
(β+1)+α+1 ↾ Xω.
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Since Y is countable, by lemma 2.5.11, each An
∅ ∈ Σ0

(β+1)+α+ω ↾ Xω and thus
∪

n∈ω A
n
∅ ∪

A∅ ∈ Σ0
(β+1)+α+ω ↾ Xω. Hence G(

∪
n∈ω A

n
∅ ∪ A∅;X

ω) is determined. By theorem 2.5.10,

G(A;TΨ,B
X,Y ) is determined. Therefore, Det G

(
Σ0

α;Tree1
(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
.

Combining corollary 2.5.21 on page 161 and theorem 2.5.30, we have the following.

Corollary 2.5.35. For any finite n,m and k,

Det
(
Σ0

ω ↾ Xω
)

⇒ Det G
(
Σ0

k;Tree1
(
X,CTB,Γ(ω,∆0

n),Σ
0
m ↾ Xω

))
⇒ Det G

(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆0

n),Σ
0
m ↾ Xω

))
⇒ Det G

(
∆0

1;Tree1
(
X,CTB,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
⇒ Det

(∪
n∈ω

Σ0
n ↾ Xω

)
. ⊣

Question 7. Are any of the collections in corollary 2.5.35 determinacy equivalent? ⊣

Corollary 2.5.36. Suppose Λ is a σ-algebra and Λ is closed under Λ-substitution. Then

Det(Λ ↾ Xω)⇒ Det G (Λ;Tree1 (X,CTB,Γ(ω,Λ),Λ ↾ Xω)) . ⊣

Proof.

Assume Det(Λ ↾ Xω). Pick an arbitrary Type 1 tree

T = TΨ,B
X,Y ∈ Tree1 (X,CTB,Γ(ω,Λ),Λ ↾ Xω) .

Then Y is countable, Ψ ∈ Γ (ω,Λ) and B ∈ Λ ↾ Xω. Pick an arbitrary A ∈ Λ ↾ [T ]. By

lemma 2.5.33, for all n ∈ ω and g ∈ Y n+1, each An
g and A∅ are in Λ ↾ Xω. Since Y is
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countable, by lemma 2.5.11, each An
∅ ∈ Λ ↾ Xω. Thus

∪
n∈ω A

n
∅ ∪ A∅ ∈ Λ ↾ Xω. Hence

G(
∪

n∈ω A
n
∅ ∪ A∅;X

ω) is determined. By theorem 2.5.10, G(A;T ) is determined. Therefore,

Det G (Λ;Tree1 (X,CTB,Γ(ω,Λ),Λ ↾ Xω)) .

Corollary 2.5.37. (Corollary to Corollary 2.5.36)

Det(B ↾ Xω)⇒ Det G (B;Tree1 (X,CTB,Γ(ω,B),B ↾ Xω)) . ⊣

Proof.

Since B is σ-algebra and closed under Borel-substitution, by corollary 2.5.36, we have the

result.
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2.5.4 Obtaining the determinacy of projective games on a Tree1

collection with countable Y from the determinacy of projec-

tive games on X<ω

In section 2.5.2, we focused on obtaining the determinacy of open games on a certain Tree1

collection with countable Y from the determinacy of games on X<ω. In section 2.5.3, we

focused on obtaining the determinacy of Borel games on a certain Tree1 collection with

countable Y from the determinacy of Borel games on X<ω. In this section, we will generalize

Borel games on a Tree1 collection to projective games on a particular Tree1 collection. We

will obtain the determinacy of projective games on a certain Tree1 collection with countable

Y from the determinacy of projective games on X<ω. The main theorem in this section is

theorem 2.5.38.

Theorem 2.5.38. Suppose m ∈ ω. Suppose T1 = Tree1 (X,CTB,Γ(ω,B),B ↾ Xω). Then

Det(Σ1
m ↾ Xω)⇒ Det G

(
Σ1

m; T1
)
.

Det(Π1
m ↾ Xω)⇒ Det G

(
Π1

m; T1
)
.

Det(∆1
m ↾ Xω)⇒ Det G

(
∆1

m; T1
)
.

Note that ∆1
1 ↾ Xω is Borel if X is countable and if X is uncountable, it is the quasi-Borel.

⊣

The idea of the proof is similar as in sections 2.5.2 and 2.5.3. We will use the same

definition of An, An
g and A∅ from section 2.5.1. We will find the complexity of each An

g and

A∅ in lemma 2.5.39 using sublemma 2.5.40 on page 185. Then, by using lemma 2.5.11 and

theorems 2.5.10, we will obtain the determinacy results in theorems 2.5.29 and 2.5.30. The
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proof of the theorem is on page 185.

Lemma 2.5.39. Fix a Type 1 tree T = TΨ,B
X,Y . Assume Y is countable. Suppose m ∈ ω,

α, β, γ ∈ ω1, Ψ ∈ Γ (ω,B) and B ∈ B ↾ Xω.

1. If A ∈ Σ1
m ↾ [T ], then for all n ∈ ω and for all g ∈ Y n+1, each An

g , A∅ ∈ Σ1
m ↾ Xω.

2. If A ∈ Π1
m ↾ [T ], then for all n ∈ ω and for all g ∈ Y n+1, each An

g , A∅ ∈ Π1
m ↾ Xω.

3. If A ∈∆1
m ↾ [T ], then for all n ∈ ω and for all g ∈ Y n+1, each An

g , A∅ ∈∆1
m ↾ Xω. ⊣

Proof.

The proof is similar to the proof of lemma 2.5.33. We will show the case for (1): A ∈ Σ1
m ↾ [T ].

The proofs are similar for cases (2): A ∈ Π1
m ↾ [T ] and (3): A ∈∆1

m ↾ [T ].

Suppose A ∈ Σ1
m ↾ [T ]. By lemma 2.5.32, Fix is Borel-measurable under Ψ ∈ Γ (ω,B)

and B ∈ B ↾ Xω. By sublemma 2.5.40 below,36 Fix−1 (A) ∈ Σ1
m ↾ Xω.

First, we consider An
g for g ∈ Y n+1.

An
g

df
= {f ∈ Xω |f⌢g ∈ An} = Fix−1 (A)︸ ︷︷ ︸

Σ1
m↾Xω

∩Ψ−1 (n)︸ ︷︷ ︸
B↾Xω

∩ B︸︷︷︸
B↾Xω

∈ Σ1
m ↾ Xω.

Now, we consider A∅. Recall long(B) = {h ∈ [T ] | lh(h) > ω}. Then long(B) ∈ Σ0
1 ↾ [T ].

([T ]\long(B))︸ ︷︷ ︸
Π0

1↾[T ]

∩ A︸︷︷︸
Σ1

m↾[T ]

∈ Σ1
m ↾ [T ].

A∅ = {f ∈ Xω\B |f ∈ A} = Fix−1 (([T ]\long(B)) ∩ A) ∈ Σ1
m ↾ Xω

by sublemma 2.5.40 below.

Similarly for the cases (2) and (3).

36See sublemma 2.5.40 on page 185.
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We computed the complexity of each An
g for n ∈ ω and g ∈ Y n+1, and A∅ in lemma

2.5.39. Using lemma 2.5.11 and theorem 2.5.10, we will obtain the determinacy results in

theorem 2.5.38. Recall theorem 2.5.38

Theorem 2.5.38. Suppose m ∈ ω. Suppose T1 = Tree1 (X,CTB,Γ(ω,B),B ↾ Xω). Then

Det(Σ1
m ↾ Xω)⇒ Det G

(
Σ1

m; T1
)
.

Det(Π1
m ↾ Xω)⇒ Det G

(
Π1

m; T1
)
.

Det(∆1
m ↾ Xω)⇒ Det G

(
∆1

m; T1
)
.

Note that ∆1
1 ↾ Xω is Borel if X is countable and if X is uncountable, it is the quasi-Borel.

⊣

Proof of Theorem 2.5.38.

We will show the case for Σ1
m. The proofs are similar for case Π1

m and ∆1
m.

Show Det(Σ1
m ↾ Xω) implies Det G (Σ1

m; T1). Assume Det(Σ1
m ↾ Xω). Pick an arbitrary

Type 1 tree T = TΨ,B
X,Y ∈ T1. Then Y ∈ CTB, Ψ ∈ Γ (ω,B) and B ∈ B ↾ Xω. Pick an

arbitrary A ∈ Σ1
m ↾ [T ]. By lemma 2.5.39, for all n ∈ ω and g ∈ Y n+1, each An

g ∈ Σ1
m ↾ Xω

and A∅ ∈ Σ1
m ↾ Xω. Since Y is countable, by lemma 2.5.11, each An

∅ ∈ Σ1
m ↾ Xω. Thus∪

n∈ω A
n
∅ ∪ A∅ ∈ Σ1

m ↾ Xω. Hence G(
∪

n∈ω A
n
∅ ∪ A∅;X

ω) is determined. By theorem 2.5.10,

G(A;T ) is determined. Therefore, Det G (Σ1
m; T1) .

Now, we will show that for each n ∈ ω, Σ1
n,Π

1
n,∆

1
n are closed under Borel-substitution.

Readers familiar with the proof of sublemma 2.5.40 may skip the rest of the section.

Sublemma 2.5.40. Suppose n ∈ ω\{0}.

Then Σ1
n,Π

1
n,∆

1
n are closed under Borel-substitutions. ⊣
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We will prove sublemma 2.5.40 on page 190. First, for each k ∈ ω and a function f from

X1 to X2, we define a function φf
k from X1× (ωω)k×ωω into X2× (ωω)k×ωω. In sublemma

2.5.43, we will show that if f is Borel-measurable, then φf
k is also Borel-measurable for

every k ∈ ω by using sublemma 2.5.42. Using sublemmas 2.5.43 and 2.5.44, we will prove

sublemma 2.5.40.

Definition 2.5.41. Suppose f : X1 → X2. Define

φf
k : X1 × (ωω)k → X2 × (ωω)k

⟨x, y1, ..., yk⟩ 7→ ⟨f (x) , y1, ..., yk⟩
⊣

Note that if k = 0, then φf
0 = f for any f : X1 → X2.

Sublemma 2.5.42. Suppose f : X1 → X2. Assume that E ⊆ X2 and for 1 ≤ j ≤ k,

F j ⊆ ωω. Then

(φf
k)

−1
(
E × F 1 × · · · × F k

)
= f−1 (E)× F 1 × · · · × F k. ⊣

Proof.

Suppose E ⊆ X2 and for 1 ≤ j ≤ k, F j ⊆ ωω.

⟨x, y1, ..., yk⟩ ∈ (φf
k)

−1
(
E × F 1 × · · · × F k

)
⇔ ⟨f (x) , y1, ..., yk⟩ = φf

k (⟨x, y1, ..., yk⟩) ∈ E × F 1 × · · · × F k

⇔ f (x) ∈ E ∧ y1 ∈ F 1 ∧ · · · ∧ yk ∈ F k

⇔ x ∈ f−1 (E) ∧ y1 ∈ F 1 ∧ · · · ∧ yk ∈ F k

⇔ ⟨x, y1, ..., yk⟩ ∈ f−1 (E)× F 1 × · · · × F k.

We prove the following sublemma using sublemma 2.5.42.

186



Sublemma 2.5.43. For any f : X1 → X2 and k ∈ ω, if f is Borel-measurable, then φf
k is

Borel-measurable. ⊣

Proof.

Suppose Borel-measurable f : X1 → X2 and k ∈ ω. Suppose Sk ∈ B ↾
(
X2 × (ωω)k

)
. Show

(φf
k)

−1 (Sk) ∈ B ↾
(
X1 × (ωω)k

)
. We prove this by induction on the complexity of Sk.

Base Case : Sk ∈ Σ0
1 ↾
(
X2 × (ωω)k

)
.

Show (φf
k)

−1 (Sk) ∈ B ↾
(
X1 × (ωω)k

)
. Since Sk ∈ Σ0

1 ↾
(
X2 × (ωω)k

)
, there exist Ei ∈ Σ0

1 ↾

X2 and F j
i ∈ Σ0

1 ↾ ωω, 1 ≤ j ≤ k and i ∈ ω such that

Sk =
∪

i∈ω

(
Ei × F 1

i × · · · × F k
i

)
.

(φf
k)

−1 (Sk) = (φf
k)

−1
(∪

i∈ω

(
Ei × F 1

i × · · · × F k
i

))
=
∪
i∈ω

(φf
k)

−1
(
Ei × F 1

i × · · · × F k
i

)
=
∪
i∈ω

(f−1 (Ei)︸ ︷︷ ︸
B↾X1

×F 1
i × · · · × F k

i )︸ ︷︷ ︸
B↾(X1×(ωω)k)

by sublemma 2.5.42

∈ B ↾ (X1 × (ωω)k).

Induction Step : Assume, as an induction hypothesis, for any β ∈ α, if Sk ∈ Σ0
β ↾(

X2 × (ωω)k
)
, then (φf

k)
−1 (Sk) ∈ B ↾

(
X1 × (ωω)k

)
and if Sk ∈ Π0

β ↾
(
X2 × (ωω)k

)
, then

(φf
k)

−1 (Sk) ∈ B ↾
(
X1 × (ωω)k

)
.

Suppose Sk ∈ Σ0
α ↾
(
X2 × (ωω)k

)
. Show (φf

k)
−1 (Sk) ∈ B ↾

(
X1 × (ωω)k

)
.

Since Sk ∈ Σ0
α ↾

(
X2 × (ωω)k

)
, there exists ⟨Ai |i ∈ ω ⟩ such that each Ai ∈ Π0

βi
↾(

X2 × (ωω)k
)
, βi ∈ α, and Sk =

∪
i∈ω Ai. By induction hypothesis, for each i ∈ ω,
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(φf
k)

−1 (Ai) ∈ B ↾
(
X1 × (ωω)k

)
. Since

(φf
k)

−1 (Sk) = (φf
k)

−1
(∪

i∈ω
Ai

)
=
∪

i∈ω
(φf

k)
−1

(Ai)

and B ↾
(
X1 × (ωω)k

)
is closed under countable union, (φf

k)
−1 (Sk) ∈ B ↾

(
X1 × (ωω)k

)
.

Suppose Sk ∈ Π0
α ↾

(
X2 × (ωω)k

)
. Show (φf

k)
−1 (Sk) ∈ B ↾

(
X1 × (ωω)k

)
. Since Sk ∈

Π0
α ↾

(
X2 × (ωω)k

)
, (X1 × (ωω)k)\Sk ∈ Σ0

α ↾
(
X2 × (ωω)k

)
. Since we have already shown

(1) for the case α, we have:

(φf
k)

−1
(
(X1 × (ωω)k)\Sk

)
∈ B ↾

(
X1 × (ωω)k

)
.

Since (X1 × (ωω)k)\(φf
k)

−1 (Sk) = (φf
k)

−1
(
(X2 × (ωω)k)\Sk

)
and B ↾

(
X1 × (ωω)k

)
is closed

under complement, (φf
k)

−1 (Sk) ∈ B ↾
(
X1 × (ωω)k

)
.

Now, we show that there is a homeomorphism between X1 × (ωω)k+1 and X1 × (ωω)k.

Sublemma 2.5.44. Let k ∈ ω be arbitrary. By sublemma 2.5.14, there exists a homeomor-

phism π from (ωω)k×ωω to (ωω)k. Suppose π is a homeomorphism from (ωω)k×ωω to (ωω)k.

Define

ρ : X1 × (ωω)k × ωω → X1 × (ωω)k

⟨x, y, z⟩ → ⟨x, π (y, z)⟩

Then ρ is a homeomorphism from X1 × (ωω)k+1 to X1 × (ωω)k. ⊣

Proof.

Since π is a bijection, ρ is a bijection.

Show ρ is continuous. Pick an arbitrary O ∈ Σ0
1 ↾

(
X1 × (ωω)k

)
. Then there exist
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Ei ∈ Σ0
1 ↾ X1 and F j

i ∈ Σ0
1 ↾ ωω, i ≤ j ≤ k for i ∈ ω such that

O =
∪

i∈ω

(
Ei × F 1

i × · · · × F k
i

)

ρ−1 (O) = ρ−1
(∪

i∈ω

(
Ei × F 1

i × · · · × F k
i

)
.
)

=
∪

i∈ω
ρ−1

(
Ei × F 1

i × · · · × F k
i

)
=
∪

i∈ω

 Ei︸︷︷︸
Σ0

1↾X1

×π−1
(
F 1
i × · · · × F k

i

)︸ ︷︷ ︸
Σ0

1↾(ωω)k×ωω


︸ ︷︷ ︸

Σ0
1↾(X1×(ωω)k×ωω)

∈ Σ0
1 ↾
(
X1 × (ωω)k × ωω

)
.

Thus ρ is continuous.

Show ρ is an open map. Pick an arbitrary E ∈ Σ0
1 ↾

(
X1 × (ωω)k × ωω

)
. Then there

exist Oi ∈ Σ0
1 ↾ X1, P

j
i ∈ Σ0

1 ↾ ωω, 1 ≤ j ≤ k and Qi ∈ Σ0
1 ↾ ωω for i ∈ ω such that

E =
∪

i∈ω

(
Oi × P 1

i × · · · × P k
i ×Qi

)
.

Since ρ is a bijection,

ρ (E) = ρ
(∪

i∈ω

(
Oi × P 1

i × · · · × P k
i ×Qi

))
=
∪

i∈ω
ρ
(
Oi × P 1

i × · · · × P k
i ×Qi

)
=
∪

i∈ω

 Oi︸︷︷︸
Σ0

1↾X1

×π
(
P 1
i × · · · × P k

i ×Qi

)︸ ︷︷ ︸
Σ0

1↾(ωω)k


∈ Σ0

1 ↾
(
X1 × (ωω)k

)
Thus ρ is an open map.

Therefore, ρ is a homeomorphism.
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Finally, we prove sublemma 2.5.40 using sublemmas 2.5.43 and 2.5.44. Recall sublemma

2.5.40.

Sublemma 2.5.40. Suppose n ∈ ω\{0}.

Then Σ1
n,Π

1
n,∆

1
n are closed under Borel-substitutions. ⊣

Proof of Sublemma 2.5.40.

Suppose f : X1 → X2 is Borel-measurable. Let k ∈ ω. Show that

1. for all P ∈ Σ1
n ↾ (X2 × (ωω)k), (φf

k)
−1 (P ) ∈ Σ1

n ↾ (X1 × (ωω)k),

2. for all P ∈ Π1
n ↾ (X2 × (ωω)k), (φf

k)
−1 (P ) ∈ Π1

n ↾ (X1 × (ωω)k),

3. for all P ∈∆1
n ↾ (X2 × (ωω)k), (φf

k)
−1 (P ) ∈∆1

n ↾ (X1 × (ωω)k),

by induction on n.

Show both (1) and (2) simultaneously. (2) follows from (1).

Base Case : n = 1 :

Pick an arbitrary k ∈ ω. Show that for all P ∈ Σ1
1 ↾ (X2 × (ωω)k), (φf

k)
−1 (P ) ∈ Σ1

1 ↾

(X1 × (ωω)k).

Pick an arbitrary P ∈ Σ1
1 ↾ (X2 × (ωω)k). Then there is a closed C ⊆ X2 × (ωω)k+1 such

that for all x ∈ X2 × (ωω)k,

x ∈ P ↔ ∃y ∈ ωω ⟨x, y⟩ ∈ C.
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Then

⟨x, y1, ..., yk⟩ ∈ (φf
k)

−1 (P )⇔ (φf
k) (⟨x, y1, ..., yk⟩) ∈ P

⇔ (⟨f (x) , y1, ..., yk⟩) ∈ P

⇔ ∃z ∈ ωω ⟨f (x) , y1, ..., yk, z⟩ ∈ C

⇔ ∃z ∈ ωω ⟨x, y1, ..., yk, z⟩ ∈ (φf
k+1)

−1 (C) .

By sublemma 2.5.43, since C ∈ Π0
1 ↾ (X2 × (ωω)k+1), (φf

k+1)
−1(C) ∈ B ↾ (X1 × (ωω)k+1).

Since B ↾ (X1 × (ωω)k+1) ⊆ Σ1
1 ↾ (X1 × (ωω)k+1), there is a closed D ⊆ X1 × (ωω)k+2 such

that for all a ∈ X1 × (ωω)k+1,

a ∈ (φf
k+1)

−1(C)↔ ∃b ∈ ωω ⟨a, b⟩ ∈ D.

By sublemma 2.5.44,

ρ : X1 × (ωω)k+1 × ωω → X1 × (ωω)k+1

⟨x, y, z⟩ → ⟨x, π (y, z)⟩

is a homeomorphism from X1 × (ωω)k+2 to X1 × (ωω)k+1. Since D ∈ Π0
1 ↾ (X1 × (ωω)k+2),

ρ(D) ∈ Π0
1 ↾ (X1 × (ωω)k+1).
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⟨x, y1, ..., yk⟩ ∈ (φf
k)

−1 (P )⇔ (φf
k) (⟨x, y1, ..., yk⟩) ∈ P

⇔ (⟨f (x) , y1, ..., yk⟩) ∈ P

⇔ ∃z ∈ ωω ⟨f (x) , y1, ..., yk, z⟩ ∈ C

⇔ ∃z ∈ ωω ⟨x, y1, ..., yk, z⟩ ∈ (φf
k+1)

−1 (C)

⇔ ∃z ∈ ωω∃w ∈ ωω ⟨x, y1, ..., yk, z, w⟩ ∈ D

⇔ ∃h ∈ ωω ⟨x, y1, ..., yk, h⟩ ∈ ρ (D) .

Therefore, (φf
k)

−1 (P ) ∈ Σ1
1 ↾ (X1 × (ωω)k).

Show if P ∈ Π1
1 ↾ (X2× (ωω)k), then (φf

k)
−1 (P ) ∈ Π1

1 ↾ (X1× (ωω)k). Suppose P ∈ Π1
1 ↾

(X2× (ωω)k). Then
(
X2 × (ωω)k

)
\P ∈ Σ1

1 ↾ (X2× (ωω)k). Since we have already shown (1)

for n = 1, we have: (φf
k)

−1
((
X2 × (ωω)k

)
\P
)
∈ Σ1

1 ↾ (X1 × (ωω)k). Since

(
X1 × (ωω)k

)
\(φf

k)
−1 (P ) = (φf

k)
−1
((
X2 × (ωω)k

)
\P
)
,

(φf
k)

−1 (P ) ∈ Π1
1 ↾ (X1 × (ωω)k).

Induction Step : As an induction hypothesis, suppose that for all l ∈ ω, if P ∈ Σ1
n ↾

(X2 × (ωω)l), then (φf
l )

−1 (P ) ∈ Σ1
n ↾ (X1 × (ωω)l) and if P ∈ Π1

n ↾ (X2 × (ωω)l), then

(φf
l )

−1 (P ) ∈ Π1
n ↾ (X1 × (ωω)l).

Pick an arbitrary k ∈ ω. Show if P ∈ Σ1
n+1 ↾ (X2 × (ωω)k), then (φf

k)
−1 (P ) ∈ Σ1

n+1 ↾

(X1×(ωω)k). Suppose P ∈ Σ1
n+1 ↾ (X2×(ωω)k). Then there exists C ∈ Π1

n ↾
(
X2 × (ωω)k+1

)
such that for all x ∈ X2 × (ωω)k,

x ∈ P ↔ ∃y ∈ ωω ⟨x, y⟩ ∈ C.
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By induction hypothesis, (φf
k+1)

−1 (C) ∈ Σ1
n ↾ (X1 × (ωω)k+1).

⟨x, y1, ..., yk⟩ ∈ (φf
k)

−1 (P )⇔ (φf
k) (⟨x, y1, ..., yk⟩) ∈ P

⇔ (⟨f (x) , y1, ..., yk⟩) ∈ P

⇔ ∃z ∈ ωω ⟨f (x) , y1, ..., yk, z⟩ ∈ C

⇔ ∃z ∈ ωω ⟨x, y1, ..., yk, z⟩ ∈ (φf
k+1)

−1 (C) .

Therefore, (φf
k)

−1 (P ) ∈ Σ1
n+1 ↾ (X1 × (ωω)k).

Show if P ∈ Π1
n+1 ↾ (X2 × (ωω)k), then (φf

k)
−1 (P ) ∈ Π1

n+1 ↾ (X1 × (ωω)k). Suppose

P ∈ Π1
n+1 ↾ (X2 × (ωω)k). Then

(
X2 × (ωω)k

)
\P ∈ Σ1

n+1 ↾ (X2 × (ωω)k). Since we have

already shown (1) for the case n+1, we have: f−1
k

((
X2 × (ωω)k

)
\P
)
∈ Σ1

n+1 ↾ (X1×(ωω)k).

Since (
X1 × (ωω)k

)
\(φf

k)
−1 (P ) = f−1

k

((
X2 × (ωω)k

)
\P
)
,

(φf
k)

−1 (P ) ∈ Π1
n+1 ↾ (X1 × (ωω)k).

Therefore, we have (1) and (2). Consequently, we have (3).

In particular, if k = 0, then φf
0 = f .

1. for all P ∈ Σ1
n ↾ X2, f

−1 (P ) ∈ Σ1
n ↾ X1,

2. for all P ∈ Π1
n ↾ X2, f

−1 (P ) ∈ Π1
n ↾ X1,

3. for all P ∈∆1
n ↾ X2, f

−1 (P ) ∈∆1
n ↾ X1.

Therefore, Σ1
n,Π

1
n,∆

1
n are closed under Borel-substitution.
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2.5.5 Well-known results about uncountable Y = N

In sections 2.5.1 through 2.5.4, we obtained the determinacy of games on a certain Tree1

collection with countable Y from the determinacy of games onX<ω. The way we obtained the

determinacy results in these sections are using the fact that each TΨ,B
X,Y in the Tree1 collection

having a countable Y . Without this restriction, we need to have the determinacy of games

on Xω with higher complexity, even just an open game on a Type 1 tree. Since B ↾ Xω,

Σ1
n ↾ Xω and Π1

n ↾ Xω are closed under countable unions and countable intersections, we

were able to conclude the results.

Consider the special case of uncountable Y where Y = N (= ωω). Suppose C0 to be

the constant function from Xω at 0. Then TC0,Xω

X,N = Xω × N . In this particular tree, it is

well-known that

Det
(
Π1

1 ↾ Xω
)
⇔ Det

(
Σ0

1 ↾ (Xω ×N )
)
.37

Hence

Det
(
Π1

1 ↾ Xω
)
⇔ Det

(
Σ0

1 ↾ [TC0,Xω

X,N ]
)
.

Since Tree1 (X,N , C0, X
ω) =

{
TC0,Xω

X,N

}
,

Det
(
Π1

1 ↾ Xω
)
⇔ G

(
Σ0

1, T ree1 (X,N , C0, X
ω)
)
.

In general,

Det
(
Σ1

n ↾ Xω
)
⇔ Det

(
Σ0

1 ↾ (Xω ×N n)
)
.

37see outline of the proof for Fraker, 2001, pp.59-62, Corollary 5.3.
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Hence for n ∈ ω and constant function Cn from Xω at n,

Det
(
Σ1

n ↾ Xω
)
⇔ Det

(
Σ0

1 ↾ [T
Cn−1,Xω

X,N ]
)
.

Since Tree1 (X,N , Cn−1, X
ω) =

{
T

Cn−1,Xω

X,N

}
,

Det
(
Σ1

n ↾ Xω
)
⇔ G

(
Σ0

1, T ree1 (X,N , Cn−1, X
ω)
)
.

Therefore, if Γ is the set of the constant functions from Xω into ω,

Det (P ↾ Xω)⇔ G
(
Σ0

1, T ree1 (X,N ,Γ, Xω)
)
.

Since

Tree1 (X,N ,Γ, Xω) ⊆ Tree1
(
X,N ,Γ(ω,∆0

1),∆
0
1

)
,

we have the following.

Observation 2.5.45.

G
(
Σ0

1, T ree1
(
X,N ,Γ(ω,∆0

1),∆
0
1

))
⇒ Det (P ↾ Xω) . ⊣

Question 8. Which class over Xω is equivalent to the determinacy of

G
(
Σ0

1, T ree1
(
X,N ,Γ(ω,∆0

1),∆
0
1

))
? ⊣

Determinacy equivalences between games on X<ω and games on Tree1 collections
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2.6 Determinacy equivalences between games on X<ω

and games on Tree1 collections

In sections 2.3 through 2.5, we observed the determinacy strength on games on Tree1 col-

lections. In section 2.3, by shifting, we compared the determinacy of Σ0
α (respectively, Σ1

n)

games on a particular Tree1 collection and Π0
α (respectively, Π1

n) games on the same Tree1

collection, for α ∈ ω1 and n ∈ ω. In section 2.4, we used the determinacy of a fixed complex-

ity of games on a certain Tree1 collection to obtain the determinacy of a certain complexity

of games on X<ω. In section 2.5, we obtained the determinacy of Borel and projective games

on particular Tree1 collections from the determinacy of a fixed complexity of games on X<ω.

In this section, we will combine results from section 2.3, section 2.4 and section 2.5.

we will conclude this chapter with the resulting determinacy equivalences from the earlier

determinacy results between games on X<ω and games on a Tree1 collection.

In section 2.6.1, we will obtain the determinacy equivalences between Borel games on

X<ω and games on particular Tree1 collections.

In section 2.6.2, we will obtain the determinacy equivalences between projective games

on X<ω and games on particular Tree1 collections.
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2.6.1 Determinacy equivalence between Borel games on X<ω and

games on Tree1 collections

In this section, we will obtain the determinacy equivalences between Borel games on X<ω

and games on particular Tree1 collections.

Theorem 2.6.1. For any nonempty Θ ⊆ FIN , the determinacy of following (2.37) through

(2.42) are all equivalent to Det (Σ0
1 ↾ Xω).

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
(2.37)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Σ0

1),∆
0
1 ↾ Xω

))
(2.38)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Π0

1),∆
0
1 ↾ Xω

))
(2.39)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
(2.40)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Σ0

1),∆
0
1 ↾ Xω

))
(2.41)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Π0

1),∆
0
1 ↾ Xω

))
(2.42)

⊣

Theorem 2.6.1 says that if we let

T 1
1 = Tree1

(
X,Θ,Γ(ω,∆0

1),∆
0
1 ↾ Xω

)
,

T 2
1 = Tree1

(
X,Θ,Γ(ω,Σ0

1),∆
0
1 ↾ Xω

)
,

T 3
1 = Tree1

(
X,Θ,Γ(ω,Π0

1),∆
0
1 ↾ Xω

)
,
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then

Det G
(
Σ0

1; T i
1

)
⇔ Det

(
Σ0

1 ↾ Xω
)
⇔ Det G

(
Π0

1; T
j
1

)
for any i = 1, 2, 3 and j = 1, 2, 3.

Proof.

Suppose ∅ ̸= Θ ⊆ FIN . We obtain Det (Σ0
1 ↾ Xω) if and only if the determinacy of (2.37)

by theorem 2.5.18 and corollary 2.4.2.

(⇒) We obtain this from theorem 2.5.18.

(⇐) We obtain this from corollary 2.4.2.

By observation 2.2.10, (2.37), (2.38) and (2.39) are the same set. Similarly, (2.40), (2.41)

and (2.42) are the same set. The determinacy of (2.37) and the determinacy of (2.40) are

equivalent by theorem 2.3.1. Consequently, the determinacy of (2.37) through (2.42) are all

equivalent to Det (Σ0
1 ↾ Xω).

Theorem 2.6.2. Suppose β, γ ∈ ω1 and β ≥ γ. Then for any nonempty Θ ⊆ FIN , the

determinacy of following (2.43) through (2.48) are all equivalent to Det
(
∆0

β ↾ Xω
)
.

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(2.43)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(2.44)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(2.45)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(2.46)
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G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(2.47)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(2.48)

⊣

Theorem 2.6.2 says that if we let

T 1
1 = Tree1

(
X,Θ,Γ(ω,∆0

γ),∆
0
β ↾ Xω

)
,

T 2
1 = Tree1

(
X,Θ,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

)
,

T 3
1 = Tree1

(
X,Θ,Γ(ω,Π0

γ),∆
0
β ↾ Xω

)
,

then

Det G
(
Σ0

1; T i
1

)
⇔ Det

(
∆0

β ↾ Xω
)
⇔ Det G

(
Π0

1; T
j
1

)
for any i = 1, 2, 3 and j = 1, 2, 3.

Proof.

Suppose ∅ ̸= Θ ⊆ FIN . We obtain Det
(
∆0

β ↾ Xω
)
if and only if the determinacy of (2.43)

by theorem 2.5.18 and corollary 2.4.21.

(⇒) This is obtained from theorem 2.5.18.

(⇐) This is obtained from corollary 2.4.21

By observation 2.2.10, (2.43), (2.44) and (2.45) are the same set. Similarly, (2.46), (2.47)

and (2.48) are the same set. The determinacy of (2.43) and the determinacy of (2.46) are

equivalent by theorem 2.3.1. Consequently, the determinacy of (2.43) through (2.48) are all

equivalent to Det
(
∆0

β ↾ Xω
)
.
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Theorem 2.6.3. Suppose β, γ ∈ ω1 and 1 ≤ β < γ. Then for any nonempty Θ ⊆ FIN , the

determinacy of following (2.49) through (2.66) are all equivalent to Det
(
∆0

γ ↾ Xω
)
.

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
(2.49)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),Σ
0
β ↾ Xω

))
(2.50)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),Σ
0
β ↾ Xω

))
(2.51)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
(2.52)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),Σ
0
β ↾ Xω

))
(2.53)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),Σ
0
β ↾ Xω

))
(2.54)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
(2.55)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),Π
0
β ↾ Xω

))
(2.56)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),Π
0
β ↾ Xω

))
(2.57)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
(2.58)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),Π
0
β ↾ Xω

))
(2.59)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),Π
0
β ↾ Xω

))
(2.60)
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G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(2.61)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(2.62)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(2.63)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(2.64)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(2.65)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(2.66)

⊣

Theorem 2.6.3 says that if we let

T ∆Σ
1 = Tree1

(
X,Θ,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
,

T ΣΣ
1 = Tree1

(
X,Θ,Γ(ω,Σ0

γ),Σ
0
β ↾ Xω

)
,

T ΠΣ
1 = Tree1

(
X,Θ,Γ(ω,Π0

γ),Σ
0
β ↾ Xω

)
,

T ∆Π
1 = Tree1

(
X,Θ,Γ(ω,∆0

γ),Π
0
β ↾ Xω

)
,

T ΣΠ
1 = Tree1

(
X,Θ,Γ(ω,Σ0

γ),Π
0
β ↾ Xω

)
,

T ΠΠ
1 = Tree1

(
X,Θ,Γ(ω,Π0

γ),Π
0
β ↾ Xω

)
,
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T ∆∆
1 = Tree1

(
X,Θ,Γ(ω,∆0

γ),∆
0
β ↾ Xω

)
,

T Σ∆
1 = Tree1

(
X,Θ,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

)
,

T Π∆
1 = Tree1

(
X,Θ,Γ(ω,Π0

γ),∆
0
β ↾ Xω

)
,

then

Det G
(
Σ0

1; T
ij
1

)
⇔ Det

(
∆0

γ ↾ Xω
)
⇔ Det G

(
Π0

1; T kl
1

)
for any i, j, k, l ∈ {∆,Σ,Π}.

Proof.

Suppose ∅ ̸= Θ ⊆ FIN . We obtain Det
(
∆0

γ ↾ Xω
)
if and only if the determinacy of (2.49)

from theorem 2.5.18 and corollary 2.4.27.

(⇒) We obtain this from theorem 2.5.18.

(⇐) We obtain this from corollary 2.4.27.

Similarly, we obtain Det
(
∆0

γ ↾ Xω
)
if and only if the determinacy of (2.55);

and Det
(
∆0

γ ↾ Xω
)
if and only if the determinacy of (2.61).

By observation 2.2.10, (2.49), (2.50) and (2.51) are the same sets. Similarly, (2.52), (2.53)

and (2.54) are the same sets. The determinacy of (2.49) and the determinacy of (2.52) are

equivalent by theorem 2.3.1. Consequently, the determinacy of (2.49) through (2.54) are all

equivalent to Det
(
∆0

γ ↾ Xω
)
.

By observation 2.2.10, (2.55), (2.56) and (2.57) are the same sets. Similarly, (2.58), (2.59)

and (2.60) are the same sets. The determinacy of (2.55) and the determinacy of (2.58) are

equivalent by theorem 2.3.1. Consequently, the determinacy of (2.55) through (2.60) are all

equivalent to Det
(
∆0

γ ↾ Xω
)
.
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By observation 2.2.10, (2.61), (2.62) and (2.63) are the same sets. Similarly, (2.64), (2.65)

and (2.66) are the same sets. The determinacy of (2.61) and the determinacy of (2.64) are

equivalent by theorem 2.3.1. Consequently, the determinacy of (2.61) through (2.66) are all

equivalent to Det
(
∆0

γ ↾ Xω
)
.

Corollary 2.6.4. Suppose Λ is an algebra. Then for any nonempty Θ ⊆ FIN ,

Det(Λ ↾ Xω)⇔ Det G
(
Σ0

1;Tree1 (X,Θ,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Proof.

(⇒) We obtain this from corollary 2.5.23.

(⇐) We obtain this from corollary 2.4.21.

Corollary 2.6.5. Suppose Λ is a σ-algebra. Then for any nonempty Θ ⊆ CTB,

Det(Λ ↾ Xω)⇔ Det G
(
Σ0

1;Tree1 (X,Θ,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Proof.

(⇒) We obtain this from corollary 2.5.24.

(⇐) We obtain this from corollary 2.4.21.

Corollary 2.6.6. For any α, β, γ ∈ ω1,

Det(B ↾ Xω)⇔ Det G (A;Tree1 (X,Θ,Γ(ω, C),B ↾ Xω))

where:

• ∅ ≠ Θ ⊆ CTB,
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•


A = B, or

A ∈ {Σ0
α,Π

0
α,∆

0
α} for α > 1, or

A ∈ {Σ0
1,Π

0
1} for α = 1,

• B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
,

• C ∈
{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
,

• at least one of A,B or C is B. ⊣

Proof.

(⇒) Corollary 2.5.37 gives

Det(B ↾ Xω)⇒ Det G (B;Tree1 (X,CTB,Γ(ω,B),B ↾ Xω)) .

Under the condition for Θ, A,B and C,

G (A;Tree1 (X,Θ,Γ(ω, C),B ↾ Xω)) ⊆ G (B;Tree1 (X,CTB,Γ(ω,B),B ↾ Xω)) .

Thus we have (⇒) direction.

(⇐) Recall that at least one of A,B or C is B.

Case 1 : A = B. By observation 2.4.1, we have

Det G (A;Tree1 (X,Θ,Γ(ω, C),B ↾ Xω))⇒ Det(B ↾ Xω).

Case 2 : B = B.

Subcase 1 : Σ0
1 ⊆ A. By corollary 2.4.21, we have the results.

Subcase 2 : A = Π0
1. By theorem 2.3.1,

Det G
(
Π0

1;Tree1(X,Θ,Γ(ω,C),B↾Xω)
)
⇔Det G

(
Σ0

1;Tree1(X,Θ,Γ(ω,C),B↾Xω)
)
.
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By subcase 1 for A = Σ0
1,

Det G
(
Σ0

1;Tree1 (X,Θ,Γ(ω, C),B ↾ Xω)
)
⇒ Det(B ↾ Xω)

Hence

Det G
(
Π0

1;Tree1 (X,Θ,Γ(ω, C),B ↾ Xω)
)
⇒ Det(B ↾ Xω).

Case 3 : C = B. By corollary 2.4.27, we have

Det G (A;Tree1 (X,Θ,Γ(ω, C),B ↾ Xω))⇒ Det(B ↾ Xω).
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2.6.2 Determinacy equivalence between projective games on X<ω

and games on Tree1 collections

In this section, we will obtain the determinacy equivalences between projective games on

X<ω and games on particular Tree1 collections.

Theorem 2.6.7. Suppose n ∈ ω\{0}, β, γ ∈ ω1.

For any nonempty Θ ⊆ CTB, B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
and C ∈

{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
, the

determinacy of following (2.67) and (2.68) are equivalent to Det(Σ1
n ↾ Xω).

G
(
Σ1

n;Tree1 (X,Θ,Γ(ω, C),B ↾ Xω)
)

(2.67)

G
(
Π1

n;Tree1 (X,Θ,Γ(ω, C),B ↾ Xω)
)

(2.68)

For any nonempty Θ ⊆ CTB, B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
and C ∈

{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
, the

determinacy of following (2.69)is equivalent to Det(∆1
n ↾ Xω).

G
(
∆1

n;Tree1 (X,Θ,Γ(ω, C),B ↾ Xω)
)

(2.69)

⊣

Proof.

We obtain

1. Det(Σ1
n ↾ Xω) if and only if the determinacy of (2.67),

2. Det(Σ1
n ↾ Xω) if and only if the determinacy of (2.68),

3. Det(∆1
n ↾ Xω) if and only if the determinacy of (2.69).
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(⇒) Let T1 = Tree1 (X,CTB,Γ(ω,B),B ↾ Xω). By theorem 2.5.38,

Det(Σ1
n ↾ Xω)⇒ Det G

(
Σ1

n; T1
)
.

Det(∆1
n ↾ Xω)⇒ Det G

(
∆1

n; T1
)
.

By theorem 2.3.1,

Det G
(
Σ1

n; T1
)
⇔ Det G

(
Π1

n; T1
)
.

Thus we have

Det(Σ1
n ↾ Xω)⇒ Det G

(
Π1

n; T1
)
.

By observation 2.2.4, for any B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
and C ∈

{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
,

Tree1 (X,Θ,Γ(ω, C),B ↾ Xω) ⊆ T1.

Thus, we have (⇒) of (1) through (3).

(⇐) By corollary 2.4.2, for any Y ∈ Θ,

Det G
(
Σ1

n;Tree1
(
X, Y,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
⇒ Det

(
Σ1

n ↾ Xω
)
.

By observation 2.2.4, for any B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
and C ∈

{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
,

Tree1
(
X, Y,Γ(ω,∆0

1),∆
0
1 ↾ Xω

)
⊆ Tree1 (X,Θ,Γ(ω, C),B ↾ Xω) .

Thus, we have (⇐) of (1) through (3).

Corollary 2.6.8. Suppose Λ is σ-algebra and closed under Λ-substitution. Then for any

nonempty Θ ⊆ CTB,

Det(Λ ↾ Xω)⇔ Det G (Λ;Tree1 (X,Θ,Γ(ω,Λ),Λ ↾ Xω)) ⊣
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Proof.

(⇒) By corollary 2.5.36,

Det(Λ ↾ Xω)⇒ Det G (Λ;Tree1 (X,CTB,Γ(ω,Λ),Λ ↾ Xω)) .

Since Tree1 (X,Θ,Γ(ω,Λ),Λ ↾ Xω) ⊆ Tree1 (X,CTB,Γ(ω,Λ),Λ ↾ Xω) for any Θ ⊆ CTB,

Det(Λ ↾ Xω)⇒ Det G (Λ;Tree1 (X,Θ,Γ(ω,Λ),Λ ↾ Xω)) .

(⇐) Since ∅ ∈ Λ ↾ Xω, by observation 2.4.1, we have the result.
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2.7 Generalization of a Type 1 tree

Instead fixing the first part as Xω, we can take Xα for any limit ordinal α. The following is

the generalization of a Type 1 tree, named an α-Type 1 tree.

Definition 2.7.1. (Definition of an α-Type 1 tree)

Suppose α is a limit ordinal. Suppose X and Y are nonempty sets. Let B be a subset of Xα

and let Ψ be a function from Xα into ω. For any h ∈ Xα × Y <ω, define [αT
Ψ,B
X,Y ] by :

h ∈
[
αT

Ψ,B
X,Y

]
↔


h ∈ Xα if h ↾ α /∈ B,

h ∈ Xα × Y Ψ(h↾α)+1 if h ↾ α ∈ B.
⊣

Thus a Type 1 tree is an ω-Type 1 tree. Notice that we can obtain the similar results for

α-Type 1 trees. Simply replace Xω by Xα (respectively, X<ω by X<α).
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Chapter 3

Type 2 Tree : T
Ψ,B
X,Tsq

In chapter 2, we introduced a “Type 1” tree and obtained the determinacy results between

games on particular Tree1 collections and games on X<ω. In this chapter, we will introduce

a “Type 2” tree and consider games on Type 2 trees. Type 2 tree will generalize Type 1

tree: all Type 1 trees are Type 2 trees.

In section 3.1, we will define a Type 2 tree. This section will be a Type 2 tree version of

section 2.1. Recall that every Type 1 tree T = TΨ,B
X,Y satisfies the following properties:

1. Every h ∈ [T ] has lh(h) ≥ ω.

2. For any h ∈ [T ], every move of h ↾ ω is from X.

3. For every h ∈ [T ], if h ↾ ω ∈ B, then lh(h) > ω and if h ↾ ω /∈ B, then lh(h) = ω.

4. For any h ∈ [T ], if lh(h) > ω, then h ↾ [ω, lh(h)) ∈ Y Ψ(h↾ω)+1 so that lh(h) = Ψ(h ↾

ω) + 1 < ω + ω.

Given an ω-sequence of nonempty trees Tsq = ⟨Tn|n ∈ ω⟩ and X,Ψ, B as before, a Type
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2 tree T = TΨ,B
X,Tsq

satisfies the following conditions: Properties 1-3 above and 4∗ below.

4∗. For any h ∈ [T ], if lh(h) > ω, then h ↾ [ω, lh(h)) ∈ [TΨ(h↾ω)].

Thus the play of the tails is different in Type 1 tree and Type 2 tree. If every path in Tn

has the same fixed length, then every path of a Type 2 tree constructed by these trees will

have the fixed length. Typically, the paths of a Type 2 tree will have variable lengths. In

observation 3.1.3, we will show that every Type 1 tree is a Type 2 tree.

There are Type 2 trees which are not Type 1 trees. These are differences between

properties 4 and 4∗.

1. We do allow the trees Tn’s on Tsq = ⟨Tn|n ∈ ω⟩ to have any height greater than 0

(including greater than ω). Recall that the height of every Type 1 tree is ≤ ω + ω, so

that there are “long” Type 2 tree which are not Type 1 trees.

2. There are Type 2 trees in which each Tn from Tsq = ⟨Tn|n ∈ ω⟩ has finite height that

are not Type 1 trees. Moves of positions in each Tn doesn’t necessarily come from a

same set. For example, [Tn] could be Y × Z for some Y ̸= Z. Moreover, for distinct

p, q ∈ Tn with lh(p) = lh(q), the set of possible moves at p and the set of possible

moves at q could be different.

3. There are Type 2 trees in which each Tn from Tsq = ⟨Tn|n ∈ ω⟩ has finite height and

every move of each Tn’s are from the same set that are not Type 1 trees. The length

of every play h with lh(h) > ω in a Type 1 tree is computed from Ψ(h ↾ ω). For a

Type 2 tree, h ↾ ω decides that the tail h ↾ [ω, lh(h)) ∈ [TΨ(h↾ω)]. If TΨ(h↾ω) has paths
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of different lengths i and j, then this Type 2 tree contains paths h1 of length ω+ i and

h2 of length ω + j such that h1 ↾ ω = h2 ↾ ω.

We will also provide a separate characterization of Type 2 trees called (X,countable tail

trees)-[ω,∞) trees.

In section 3.2, we will define a Tree2 collection and games on a Tree2 collection. This

section will be a Type 2 tree version of section 2.2.

In sections 3.3 through 3.6, we will observe the determinacy strength on games on Tree2

collections. To be consistent, we will observe the determinacy comparison in the same order

as in chapter 2. We can obtain similar results the same way as we proved in chapter 2. In

section 3.3, by shifting, we will compare the determinacy of Σ0
α games and Π0

α games on a

particular Tree2 collection and the determinacy of Σ1
n games and Π1

n games on the same

Tree2 collection, for α ∈ ω1 and n ∈ ω. This section will be a Type 2 tree version of section

2.3. In sections 3.4 through 3.6, we will compare the determinacy strength of games on a

Tree2 collection and games on X<ω:

• In section 3.4, we will use the determinacy of games on a particular Tree2 collection

to obtain the determinacy of certain games on X<ω. This section will be a Type 2 tree

version of section 2.4.

• In section 3.5, we will obtain the determinacy of Borel and projective games on certain

Tree2 collections from the determinacy of games on X<ω. Some of these results are

converses of results from section 3.4. This section will be a Type 2 tree version of

section 2.5.
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• In section 3.6, we will conclude this chapter with the resulting determinacy equivalences

from the earlier determinacy results between games on X<ω and on Tree2 collections.

This section will be a Type 2 tree version of section 2.6.

Lastly, in section 3.7, we will generalize a Type 2 tree to an α-Type 1 tree for a limit

ordinal α. This section will be a Type 2 tree version of section 2.7.
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3.1 Definition of a Type 2 tree

In this section, we will give a definition of a Type 2 tree. Throughout this chapter, we will

assume the following notation 3.1.1.

Notation 3.1.1. 1

• Tsq will always denote some ω-sequence of nonempty trees.

As in chapter 2, we will have the following notational conventions throughout chapter 3:

• X will always denote a nonempty set.

• B will always denote a subset of Xω.

• Ψ will always denote a function from Xω into ω. ⊣

A Type 2 tree is a tree with the following form.

Definition 3.1.2. (Definition of a Type 2 tree)

Suppose X is a nonempty set, Ψ is a function from Xω into ω, B is a subsets of Xω and

Tsq = ⟨Tn |n ∈ ω ⟩ where each Tn is a tree. Define [TΨ,B
X,Tsq

] by :

h ∈
[
TΨ,B
X,Tsq

]
↔


h ∈ Xω if h ↾ ω /∈ B,

h ∈ Xω ×
[
TΨ(h↾ω)

]
if h ↾ ω ∈ B.

A tree T is a Type 2 tree if and only if T = TΨ,B
X,Tsq

for some nonempty set X, a function Ψ

from Xω into ω, a subset B of Xωand some Tsq = ⟨Tn |n ∈ ω ⟩, where each Tn is a nonempty

tree. ⊣

As in definition 3.1.2, fix X, Ψ : Xω → ω, B ⊆ Xω and Tsq = ⟨Tn |n ∈ ω ⟩. [TΨ,B
X,Tsq

] is

the disjoint union of plays of the short play (length ω) and the long play (length greater
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than ω). Thus we have [TΨ,B
X,Tsq

] =
∪

n∈ω [(B ∩Ψ−1 (n))× [Tn]]∪̇ (Xω\B). 1 In particular,

[TΨ,∅
X,Ysq

] = Xω.

Then for all n ∈ ω, for all f ∈ B ∩Ψ−1 (n) and for all g ∈ [Tn],

f⌢g ∈ [TΨ,B
X,Tsq

].

Each element of Tn corresponds to a “tail” of a play. For each f ∈ B ∩ Ψ−1 (n), we can

attach any tail in Tn. This is the reason we use/abuse the cross product notation.

h ω↾

Case 1 : h Bω∉↾

h h ω= ↾
Case 2 : h Bω∈↾

( )plays from 
h

T ωΨ
 
 ↾

h

tail of h

Figure 3.1.1: Illustration of paths h ∈ [T ] for a Type 2 tree T = TΨ,B
X,Tsq

for B ̸= ∅.

Now, we observe that Type 1 trees are a special case of Type 2 trees. Suppose Y is a

nonempty set, Ψ is a function from Xω into ω and B is a subset of Xω. Define Tn = Y ≤n+1

for any n ∈ ω. Then [Tn] = Y n+1. Let Tsq = ⟨Tn |n ∈ ω ⟩. Then

1Recall notation 1.5.3 : abuse of product notation.
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h ∈
[
TΨ,B
X,Y

]
↔


h ∈ Xω if h ↾ ω /∈ B,

h ∈ Xω × Y Ψ(h↾ω)+1 if h ↾ ω ∈ B.

↔


h ∈ Xω if h ↾ ω /∈ B,

h ∈ Xω ×
[
TΨ(h↾ω)

]
if h ↾ ω ∈ B.

↔ h ∈
[
TΨ,B
X,Tsq

]
Thus [TΨ,B

X,Y ] = [TΨ,B
X,Tsq

], i.e., TΨ,B
X,Y = TΨ,B

X,Tsq
for Tsq =

⟨
Y ≤n+1 |n ∈ ω

⟩
.

Observation 3.1.3. For each Type 1 tree TΨ,B
X,Y , [T

Ψ,B
X,Y ] = [TΨ,B

X,Tsq
] where Tsq=

⟨
Y ≤n+1 |n∈ω

⟩
.

Thus any Type 1 tree is a Type 2 tree. ⊣

Note that for each Type 1 tree, for any two functions f1 and f2 in Xω such that Ψ(f1) ̸=

Ψ(f2), it is impossible to share the same tail since the length of play is depending on Ψ.

However, unlike Type 1 trees, for Type 2 trees, it is possible for two functions f1 and f2 in

Xω to be followed (in play) by the same tail, even if Ψ(f1) ̸= Ψ(f2). For example, suppose

[Tn] ∩ [Tm] ̸= ∅ for some n ̸= m. Then for all f1 ∈ B ∩Ψ−1(n) and for all f2 ∈ B ∩Ψ−1(m),

if g ∈ [Tn] ∩ [Tm] then f⌢
1 g, f

⌢
2 g ∈ [TΨ,B

X,Tsq
]. Thus, for h ∈ [TΨ,B

X,Tsq
], h ↾ [ω, lh(h)) ∈ [Tn] does

not necessarily imply Ψ(h ↾ ω) = n.

Next, we provide an alternate description of Type 2 trees. In definition 3.1.4 below, we

will give a definition of the “tail tree” T f of f .

Definition 3.1.4. (Definition of the tail tree T f of f)

Suppose T is a tree. For each f ∈ Xω, define [T f ] to be the set of tails for f , i.e., for any
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f ∈ Xω and for any g ∈ [T f ], f⌢g ∈ T . Then f ∈ Xω ∩ [T ] if and only if [T f ] = ∅. Notice

that each T f is a tree. Define T f to be the tail tree of f . ⊣

We will define “the countable tail trees property” on a tree T .

Definition 3.1.5. (Definition of the countable tail trees property)

Suppose T is a tree. Define that T has “the countable tail trees property” if and only if{[
T f
]
|f ∈ Xω

}
is countable. ⊣

Definition 3.1.6. (Definition of (X,countable tail trees)-[ω,∞))

Suppose X is a nonempty set. Define that a tree T is “(X,countable tail trees)-[ω,∞)” if [T ]

satisfies the following three properties:

1. for all y ∈ [T ], y ↾ ω ∈ Xω.

2. for all y ∈ [T ], lh (y) ≥ ω.

3. T satisfies the countable tail trees property. ⊣

Observation 3.1.7. For any X, Ψ : Xω → ω, for any nonempty B ⊆ Xω and any ω-

sequence of nonempty trees Tsq, T
Ψ,B
X,Tsq

satisfies (X,countable tail trees)-[ω,∞) . Conversely,

for any (X,countable tail trees)-[ω,∞) tree T , there exists Ψ : Xω → ω and a unique B ⊆ Xω

such that T = TΨ,B
X,Tsq

. ⊣

Proof.

(⇒) Show TΨ,B
X,Tsq

is (X,countable tail trees)-[ω,∞). Clearly, (1) and (2) holds. Show (3). By

definition of the Type 2 tree, for each f ∈ B ∩Ψ−1(n), [T f ] = [Tn]. Since Ψ maps form Xω

into ω, there are at most ω many distinct [T f ]s.
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(⇐) Suppose T is (X,countable tail trees)-[ω,∞). Let B = {f ↾ ω ∈ T | lh(f) > ω}.

Then B ⊆ Xω by (1). Since there are countable many distinct [T f ]’s, let ⟨[Tβ]|β ∈ ω⟩ be an

enumeration of nonempty [T f ]’s. Define

Ψ : Xω → ω

f 7→ n where [Tn] =
[
T f
]
.

Show [T ] = [TΨ,B
X,Tsq

].

(⊆) Pick an arbitrary h ∈ [T ].

By (1), h ↾ ω ∈ Xω. Case 1 : lh(h) = ω.

Then h ↾ ω /∈ B so that h = h ↾ ω ∈ [TΨ,B
X,Tsq

].

Case 2 : lh(h) > ω.

Then h ↾ ω ∈ B. Since h ↾ [ω, lh(ω)) ∈ [T h↾ω] = [TΨ(h↾ω)], h ∈ [TΨ,B
X,Tsq

].

(⊇) Pick an arbitrary h ∈ [TΨ,B
X,Tsq

].

Case 1 : h ↾ ω /∈ B.

Then lh(h) = ω so that h = h ↾ ω. Hence [T h↾ω] = ∅. Thus h ↾ ω ∈ T .

Case 2 : h ↾ ω ∈ B.

Then lh(h) > ω. By definition of [TΨ,B
X,Tsq

], h ↾ [ω, lh(h)) ∈ [TΨ(h↾ω)] = [T h↾ω]. Thus h ∈ [T ].

Show uniqueness. Suppose B̂ ⊆ Xω such that T = TΨ,B
X,Tsq

= T Ψ̂,B̂

X,T̂sq
for some Ψ̂ from Xω

into ω and T̂sq. Show B̂ = B. Suppose, for a contradiction, B̂ ̸= B. Then there exists h ∈ [T ]

such that h ↾ ω ∈ B̂\B or h ↾ ω ∈ B\B̂. Suppose h ↾ ω ∈ B̂\B. Since h ∈ [T ] = [TΨ,B
X,Tsq

] and

h ↾ ω /∈ B, lh(h) = ω. Since h ∈ [T ] = [T Ψ̂,B̂

X,T̂sq
] and h ↾ ω ∈ B̂, lh(h) > ω, a contradiction.

Similar for the case h ↾ ω ∈ B\B̂. Thus B̂ = B.
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3.2 Definition of a Tree2 collection and a collection of

games on a Tree2 collection with complexity Ξ

In this section, we will define a Tree2 collection of Type 2 trees. We will use Υ to be a

nonempty collection of nonempty trees2. We will be considering a collection of trees TΨ,B
X,Tsq

for which Tsq varies over Υω, Ψ varies over Γ and B varies over Λ, while X is fixed. Thus,

each Tree2 collection will be defined from X,Υ,Γ and Λ. We will denote a Tree2 collection

by Tree2 (X,Υω,Γ,Λ) constructed from some X,Υ,Γ and Λ. Throughout the rest of this

chapter, we will assume notation 3.2.1. Then, in definition 3.2.10, we will define a collection

of games on a Tree2 collection with complexity Ξ. We will use Ξ ↾ [T ] for each tree T in

Tree2 collection. We will also make some observations of Tree2 collections and collections

of games on Tree2 collections.

Notation 3.2.1. We will assume the following notation throughout chapter 3.

• Υ will always denote a nonempty collection of nonempty trees.

As in chapter 2:

• Γ, respectively, Γi will always denote nonempty collection of functions from Xω into

ω.

• Λ, respectively, Λi will always denote nonempty collection of subsets of Xω. ⊣

We next define a collection of Type 2 trees constructed by X,Υ,Γ and Λ.

2Υ (a Greek letter uppercase Upsilon) corresponds to the letter Y . The position for Y in a Type 1 tree

TΨ,B
X,Y is replaced by Tsq ∈ Υω in a Type 2 tree TΨ,B

X,Tsq
. I choose Υ just because its shape resembles the trees.
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Definition 3.2.2. (Definition of a Tree2 collection)

Fix a nonempty set X. Let Υ ̸= ∅ be any collection of nonempty trees. Suppose Λ ̸= ∅ is

any collection of subsets of Xω, Γ ̸= ∅ is a collection of functions from Xω to ω. Define

Tree2 (X,Υω,Γ,Λ) =
{
TΨ,B
X,Tsq

|Tsq ∈ Υω,Ψ ∈ Γ, B ∈ Λ
}
.

A collection is a Tree2 collection if and only if it is Tree2(X,Υω,Γ,Λ) for some nonempty

set X, a nonempty collection Υ of nonempty trees, a nonempty collection Γ of functions

from Xω into ω and a nonempty collection Λ of subsets of Xω.

We sometimes let T2 be a Tree2 collection when we wish to suppress X,Υω,Γ and Λ, i.e.,

T2 = Tree2(X,Υω,Γ,Λ). ⊣

Notation 3.2.3. If Υ is a singleton {T}, we will write Tree2 (X, {T}ω ,Γ,Λ). To avoid

confusion, we do not supress the brackets {} in {T}ω, we do not write Tree2 (X,T ω,Γ,Λ).

If we fix an ω-sequence of trees Tsq, we will write Tree2 (X,Tsq,Γ,Λ). When dealing with

the singletons for any of the last two components of Tree2 (X,Υω,Γ,Λ), we will suppress {},

i.e., if Γ is a singleton {f}, Tree2 (X,Υω, f,Λ) abbreviates Tree2 (X,Υω, {f} ,Λ) and if Λ

is a singleton {B}, Tree2 (X,Υω,Γ, B) abbreviates Tree2 (X,Υω,Γ, {B}). ⊣

Now, we will observe a relation between Tree1 and Tree2. By observation 3.1.3, each

Type 1 tree is a Type 2 tree. Thus, we have the following inclusion.

Observation 3.2.4. Suppose Y is a nonempty set and
{
Y ≤n+1 |n ∈ ω

}
⊆ Υ. Then

Tree1 (X,Y,Γ,Λ) ⊆ Tree2 (X,Υω,Γ,Λ) .
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In general, if
{
Y ≤n+1 |Y ∈ Θ, n ∈ ω

}
⊆ Υ, then

Tree1 (X,Θ,Γ,Λ) ⊆ Tree2 (X,Υω,Γ,Λ) . ⊣

Proof.

Suppose
{
Y ≤n+1 |n ∈ ω

}
⊆ Υ. Pick an arbitrary TΨ,B

X,Y ∈ Tree1 (X,Y,Γ,Λ). Then Ψ ∈ Γ

and B ∈ Λ. Define T n = Y ≤n+1 for all n ∈ ω. Let Tsq = ⟨Tn |n ∈ ω ⟩. Then Tsq ∈ Υω. By

observation 3.1.3, [TΨ,B
X,Y ] = [TΨ,B

X,Tsq
]. Thus TΨ,B

X,Y = TΨ,B
X,Tsq

∈ Tree2 (X,Υω,Γ,Λ).

Suppose
{
Y ≤n+1 |Y ∈ Θ, n ∈ ω

}
⊆ Υ. Then for any Y ∈ Θ, Tsq =

⟨
Y ≤n+1 |n ∈ ω

⟩
∈ Υω.

Thus we have

Tree1 (X,Θ,Γ,Λ) ⊆ Tree2 (X,Υω,Γ,Λ) .

We will consider the Type 2 tree in which Tsq is an ω-sequence of well-founded trees.

Recall the following notation.

Notation 1.5.11. Let WF be the set of nonempty well-founded trees. Let CWF ⊆ WF

be the set of nonempty well founded trees such that each move is from some countable set.

Similarly, let FWF ⊆ CWF be the set of nonempty well-founded trees such that each move

is from some finite set. ⊣

Observation 3.2.5. Suppose Ψ is a function from Xω into ω and B ⊆ Xω is nonempty.

Then Tsq ∈ WF ω implies TΨ,B
X,Tsq

is (X,countable tail trees)-[ω, ω + ω).

Observation 3.2.6.

Tree1 (X,FIN,Γ,Λ) ⊆ Tree2 (X,FWF ω,Γ,Λ) .

T ree1 (X,CTB,Γ,Λ) ⊆ Tree2 (X,CWF ω,Γ,Λ) . ⊣
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Proof.

For any Y ∈ FIN , each Y ≤n+1 ∈ FWF so that Tsq =
⟨
Y ≤n+1 |n ∈ ω

⟩
∈ FWF ω. Similarly,

for any Y ∈ CTB, each Y ≤n+1 ∈ CWF so that Tsq =
⟨
Y ≤n+1 |n ∈ ω

⟩
∈ CWF ω. By

observation 3.2.4, we have the results.

We have the following inclusions similar to Tree1. The following is a Tree2 version of

observation 2.2.4 on page 51.

Observation 3.2.7. Fix a nonempty set X. Suppose Υ,Υ1,Υ2 are collections of nonempty

trees; Γ,Γ1,Γ2 are collections of functions from Xω into ω; and Λ,Λ1,Λ2 are collections of

subsets of Xω. If Υ1 ⊆ Υ2, then

Tree2 (X,Υω
1 ,Γ,Λ) ⊆ Tree2 (X,Υω

2 ,Γ,Λ) .

Similarly, if Γ1 ⊆ Γ2, then

Tree2 (X,Υω,Γ1,Λ) ⊆ Tree2 (X,Υω,Γ2,Λ) ,

and if Λ1 ⊆ Λ2, then

Tree2 (X,Υω,Γ,Λ1) ⊆ Tree2 (X,Υω,Γ,Λ2) .

Thus Tree2 is an increasing operation on last three components. ⊣

The following is a Tree2 version of observation 2.2.5 on page 52.

Observation 3.2.8. Let Υ be a collection of nonempty trees and Λ ⊆ Xω. Suppose we have

Ξ such that Ξ ↾ Xω is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Then the following are equal.

• Tree2 (X,Υω,Γ(ω,Ξ),Λ)
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• Tree2 (X,Υω,Γ(ω, co-Ξ),Λ)

• Tree2 (X,Υω,Γ(ω,∆(Ξ)),Λ) ⊣

We will define a collection of games played on a Tree2 collection similar to a Tree1

collection. The following is a Tree2 version of definition 2.2.6 on page 52.

Definition 3.2.9. (Definition of “games on a Tree2 collection”)

Let Tree2 collection T2 = Tree2 (X,Υω,Γ,Λ) for some X,Υ,Γ and Λ. Define “games on the

Tree2 collection T2” by ∪
T∈T2

{G (A;T ) |A ⊆ [T ]}. ⊣

If Ξ is a complexity (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n), we define Ξ games on a Tree2 collection as

follows. The following is a Tree2 version of definition 2.2.7 on page 52.

Definition 3.2.10. (Definition of Ξ games on a Tree2 collection)

Let Tree2 collection T2 = Tree2 (X,Υω,Γ,Λ). Suppose we have Ξ such that for each T ∈

Tree2, Ξ ↾ [T ] ⊆ ℘ ([T ]) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Define Ξ games on a Tree2

collection T2 by

G (Ξ; T2) =
∪
T∈T2

{G (A;T ) |A ∈ Ξ ↾ [T ]}.

We will use G for a collection of games.
⊣

Though often Ξ will be a standard classes (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n), note that G(Ξ;T ) is

defined as long as we have defined Ξ ↾ [T ] ⊆ ℘ ([T ]). The following is a Tree2 version of

observation 2.2.8 on page 53.

Definition 3.2.11. (Definition of Ξ determinacy on a Tree2 collection)

Let Tree2 collection T2 = Tree2(X,Υω,Γ,Λ). Suppose we have Ξ such that for each T ∈
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Tree2, Ξ ↾ [T ] ⊆ ℘ ([T ]) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Define Ξ determinacy on the

Tree2 collection T2 by

Det G(Ξ; T2),

i.e., for any X, Tsq ∈ Υω,Ψ ∈ Γ, B ∈ Λ and A ∈ Ξ ↾ [TΨ,B
X,Tsq

], every game G(A;TΨ,B
X,Tsq

) is

determined. ⊣

Next, similar to Type 1 trees, we will make three observations about games on Type 2

trees. The following is a Tree2 version of observation 2.2.9 on page 53.

Observation 3.2.12. Suppose X is a nonempty set, Υ is a collection of trees, Γ is a col-

lection of functions from Xω into ω, Λ is a collection of subsets of Xω and Ξ1,Ξ2 are

complexities. Let T2 = Tree2(X,Υω,Γ,Λ). If for any T ∈ T2, Ξ1 ↾ [T ] ⊆ Ξ2 ↾ [T ], then

G (Ξ1; T2) ⊆ G (Ξ2; T2) .

Thus G is an increasing operation on the first component. ⊣

The following is a Tree2 version of observation 2.2.10 on page 54.

Observation 3.2.13. Let Υ be a collection of trees and Λ ⊆ Xω. Suppose we have Ξ such

that Ξ ↾ Xω ⊆ ℘ (Xω) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Suppose we have Ξ1 such that for

each T ∈ Tree2 (X,Υω,Γ(ω,Ξ),Λ), Ξ1 ↾ [T ] ⊆ ℘ ([T ]) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n).

Then the following are equal.

• G (Ξ1;Tree2 (X,Υω,Γ(ω,Ξ),Λ))

• G (Ξ1;Tree2 (X,Υω,Γ(ω, co-Ξ),Λ))

• G (Ξ1;Tree2 (X,Υω,Γ(ω,∆(Ξ)),Λ)) ⊣
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Equivalence between Σ0
α and Π0

α determinacy on Type 2 trees and equivalence between

Σ1
1 and Π1

1 determinacy on Type 2 trees3.3 Equivalence between Σ0
α and Π0

α determinacy on

Type 2 trees and equivalence between Σ1
1 and Π1

1

determinacy on Type 2 trees

As in section 2.3, we will obtain the determinacy equivalence of particular games on Tree2

collections. All of the results in this section is the Type 2 version of results in section 2.3.

The main theorem of this section is theorem 3.3.8, which is a Tree2 version of theorem

2.3.1 on page 55. In this theorem, we will show that the determinacy of Σ0
α and Π0

α games on

certain Tree2 collections of Type 2 trees are equivalent. We will also obtain the determinacy

equivalence ofΣ1
n andΠ1

n games on certain Tree2 collections. For each Type 2 tree T , we will

define a corresponding “Shift tree” Sft2(T ) in definition 3.3.2 (We will use the subscript 2 to

represent Type 2 trees). Sft2(T ) is similar to Sft(T ) for a Type 1 tree T , and it is slightly

modified for a Type 2 tree. In lemma 3.3.9 and lemma 3.3.10, we will find the complexity of

Shift2(A) for A being Borel (respectively, a projective set) on a Tree2 collection.

For each Type 2 tree, there is a natural Shift tree which is also a Type 2 tree. In order

to define a Shift tree for each Type 2 tree T = TΨ,B
X,Tsq

, we define Ψ+
2 and T+

sq from Ψ and Tsq

which satisfying a “shift” relation. Ψ+
2 is a function on Xω into ω and for any f ∈ Xω and

for any a ∈ X, Ψ+
2 (⟨a⟩⌢f) = Ψ(f). Thus Ψ+

2 is just ignoring the first move. Recall that Ψ+

in section 2.3.2 had an extra 1; i.e., for any a ∈ X, Ψ+(⟨a⟩⌢f) = Ψ(f) + 1. Instead, we will

define T+
n for each tree Tn in Tsq which has an extra move.

Definition 3.3.1. (Definition of Ψ+
2 and T+

sq)
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Fix a Type 2 tree TΨ,B
X,Tsq

. Then B ⊆ Xω, Ψ : Xω → ω and Tsq = ⟨Tn |n ∈ ω ⟩ is an ω-sequence

of nonempty trees. Define

1. Ψ+
2 : Xω → ω such that Ψ+

2 (f) = Ψ(f ↾ [1, ω)).

2. For each n ∈ ω, T+
n = Yn × Tn for some nonempty set Yn and T+

sq = ⟨T+
n |n ∈ ω ⟩. ⊣

Recall we have defined B+ for B ⊆ Xω as B+ = X×B ⊆ Xω by definition 2.3.2 on page

56. 3 By using B+, Ψ+ and T+
sq , we will define a Shift tree as follows.

Definition 3.3.2. (Definition of a Shift tree Sft2(T ))

Fix a Type 2 tree T = TΨ,B
X,Tsq

. Define a Shift tree Sft2(T ) by

Sft2(T ) = T
Ψ+

2 ,B+

X,T+
sq

. ⊣

h

tail of h ∈ Tn

tail of h̃ ∈ T+
n

h ↾ ωh ∈ [T ] h ↾ [ω, lh(h))

x

any x ∈ X

h ↾ ωh̃ ∈ [Sft2(T )] h ↾ [ω, lh(h))y

any y ∈ Yn

h̃

Figure 3.3.1: Illustration of h̃ ∈ [Sft2(T )] with lh(h̃) > ω.

For any Type 2 tree T = TΨ,B
X,Tsq

with B = ∅, T = X<ω = Sft2(T ).

Unlike observation 2.3.4, T = Sft2(T ) doesn’t imply B = ∅. Set X = Y = ω. Let Tn =

ωω for all n ∈ ω. Then for B = ωω and any function Ψ from ωω into ω, T = TΨ,B
ω,ω = ωω+ω.

3Recall abuse of notation 1.5.3 on page 42.
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Since B+ = ω × ωω = ωω, Sft2(T ) = T
Ψ+

2 ,B+

ω,ω = ωω+ω. Hence we have T = Sft2(T ).

Notice that for each Type 2 tree T = TΨ,B
X,Tsq

and for each h ∈ [Sft2(T )], there is a

unique f ∈ [T ] such that h(i + 1) = f(i) for every i ∈ lh(f) (e.g., h(1) = f(0), h(2) =

f(1), ..., h(ω + 1) = f(ω), h(ω + 2) = f(ω + 1), ... for h ↾ ω ∈ B).

Proposition 3.3.3. Fix a Type 2 tree T = TΨ,B
X,Tsq

. Then for every h ∈ [Sft2(T )],
h ↾ [1, ω) ∈ [T ] if h ↾ ω /∈ B+,

h ↾ [1, ω)⌢ h ↾ [ω + 1, lh (h)) ∈ [T ] if h ↾ ω ∈ B+. ⊣

Proof.

Pick an arbitrary h ∈ [Sft2(T )]. Notice that h ↾ ω ∈ B+ if and only if h ↾ [1, ω) ∈ B. Also,

Ψ+
2 (h ↾ ω) = Ψ+

2 (h(0)
⌢h ↾ [1, ω)) = Ψ(h ↾ [1, ω)). Thus

h ∈ [Sft2 (T )]↔


h ∈ Xω if h ↾ ω /∈ B+,

h ∈ Xω × T+
Ψ+(h↾ω) if h ↾ ω ∈ B+.

↔


h ∈ Xω if h ↾ [1, ω) /∈ B,

h ∈ Xω × T+
Ψ+(h↾ω) if h ↾ [1, ω) ∈ B.

↔


h ↾ [1, ω) ∈ Xω if h ↾ [1, ω) /∈ B,

h ↾ [1, ω)⌢h ↾ [ω + 1, lh (h)) ∈ Xω × TΨ(h↾[1,ω)) if h ↾ [1, ω) ∈ B.

↔


h ↾ [1, ω) ∈ [T ] if h ↾ ω /∈ B+,

h ↾ [1, ω)⌢h ↾ [ω + 1, lh (h)) ∈ [T ] if h ↾ ω ∈ B+.

Proposition 3.3.3 give us a natural erasing function e2 from [Sft2(T )] into [T ].
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Definition 3.3.4. (Definition of the erasing function e2 : [Sft2(T )]→ [T ])

Fix a Type 1 tree T = TΨ,B
X,Tsq

. Define the erasing function e from [Sft2(T )] into [T ] by

e2 : [Sft2 (T )]→ [T ]

h 7→


h ↾ [1, ω) if h ↾ ω /∈ B+,

h ↾ [1, ω)⌢ h ↾ [ω + 1, lh (h)) if h ↾ ω ∈ B+. ⊣

Now, we define a function “Shift” which maps subsets A of [T ] for a Type 2 tree T to a

particular subset of [Sft2(T )].

Definition 3.3.5. (Definition of Shift2)

Fix a Type 2 tree T = TΨ,B
X,Tsq

. Define

Shift2 : ℘ ([T ])→ ℘ ([Sft2 (T )])

A 7→ {h ∈ [Sft2 (T )] | e2 (h) ∈ [T ] \A}. ⊣

Theorem 3.3.6. For any Type 2 tree T , the determinacy of G(Shift2(A);Sft2(T )) implies

the determinacy of G(A, T ). ⊣

Proof.

Pick an arbitrary Type 12 tree T = TΨ,B
X,Tsq

. Assume G(Shift2(A);Sft2(T )) is determined.

Then I∗ or II∗ has a winning strategy s∗ for G(Shift2(A);Sft2(T )). Show that G(A;T ) is

determined.

Case I : s∗ is a I∗’s winning strategy for G(Shift2(A);Sft2(T )). Define a strategy s for

II for G(A;T ) as follows: Suppose a0 = s∗(∅).

For p ∈ T such that p is finite and ⟨a0⟩⌢p ∈ dom(s∗) or
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p is infinite and ⟨a0⟩⌢p ↾ ω⌢⟨aω⟩⌢p ↾ [ω, lh (p)) ∈ dom(s∗) where aω = s∗
(
⟨a0⟩⌢ p ↾ ω

)
,

p ∈ dom(s) and

s (p) =


s∗ (⟨a0⟩⌢p) if p is finite,

s∗ (⟨a0⟩⌢p ↾ ω⌢⟨aω⟩⌢p ↾ [ω, lh (p))) if p is infinite.

p ↾ ω p ↾ [ω, lh(h)) ∈ Tn

∈ T+
n

s∗

Sft2(T )

II∗

I∗ a0

p0

p1

p2

· · ·

· · ·

s∗ gives aω ∈ Yn

aω

pω

pω+1

pω+2

· · ·

· · ·

p0

p1

p2

p3

· · ·

· · ·

pω

pω+1

pω+2

pω+3

· · ·

· · ·II

I

s
T

p ↾ ω p ↾ [ω, lh(h)) ∈ Tn

Figure 3.3.2: Illustration of p ∈ T , lh(p) > ω according to II’s strategy s.

Show s is a winning strategy for II for G(A;T ). Pick an arbitrary x ∈ [T ] according to

s.

Subcase 1 : x ↾ ω /∈ B.

Then x = x ↾ ω and s∗(∅)⌢x /∈ B+. Thus s∗(∅)⌢x ∈ [Sft2(T )] and it is according to s∗.

Hence s∗(∅)⌢x ∈ Shift2(A) and thus x = e2(s
∗(∅)⌢x) /∈ A. 4

Subcase 2 : x ↾ ω ∈ B.

Then s∗(∅)⌢x ↾ ω ∈ B+ and Ψ+
2 (s

∗(∅)⌢x ↾ ω) = Ψ(x ↾ ω). 5 Let

n = Ψ+
2 (s

∗(∅)⌢x ↾ ω) = Ψ(x ↾ ω).
4Recall definition 3.3.4 for the erasing function e2.
5Recall definition 3.3.1 for Ψ+

2 .
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Then x ↾ [ω, lh(x) + 1) ∈ T n. Let

h = s∗(∅)⌢(x ↾ ω)⌢s∗
(
s∗(∅)⌢x ↾ ω

)⌢
x ↾ [ω, lh(x)) .

Since x is according to s, h is according to s∗. Since s∗ is a strategy for I∗ for

G(Shift2(A);Sft2(T )), s
∗ (s∗(∅)⌢x ↾ ω

)
∈ Yn. Thus

s∗
(
s∗(∅)⌢x ↾ ω

)⌢
x ↾ [ω, lh(x) + 1) ∈ Yn × Tn = T+

n .

Hence h ∈ [Sft2(T )]. Since s∗ is a winning strategy for I∗ for G(Shift2(A);Sft2(T )),

h ∈ Shift2(A). Hence x = e(h) /∈ A. Therefore, s is a winning strategy for II for G(A;T ).

Case II : s∗ is a II∗’s winning strategy for G(Shift2(A);Sft2(T )).

Define a strategy s for I for G(A;T ) as follows: Suppose a0 ∈ X and anω ∈ Yn, n ∈ ω are

arbitrary.

For p ∈ T such that p is finite and ⟨a0⟩⌢p ∈ dom(s∗) or

p is infinite and ⟨a0⟩⌢p ↾ ω⌢⟨anω⟩⌢p ↾ [ω, lh (p)) ∈ dom(s∗), p ∈ dom(s) and

s (p) =


s∗ (⟨a0⟩⌢p) if p is finite,

s∗ (⟨a0⟩⌢p ↾ ω⌢⟨anω⟩⌢p ↾ [ω, lh (p))) if p is infinite.

Note that for ⟨a0⟩⌢p ↾ ω⌢⟨anω⟩⌢p ↾ [ω, lh (p)) ∈ Sft2(T ), a
n
ω ∈ Yn and p ↾ [ω, lh (p)) ∈ Tn

where n = Ψ+
2 (⟨a0⟩⌢p ↾ ω) = Ψ(p ↾ ω).
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p ↾ ω p ↾ [ω, lh(h)) ∈ Tn

∈ T+
n

s∗
Sft2(T )

II∗

I∗

any a0 ∈ X

a0

p0

p1

p2

· · ·

· · ·

any anω ∈ Yn

anω

pω

pω+1

pω+2

· · ·

· · ·

p0

p1

p2

p3

· · ·

· · ·

pω

pω+1

pω+2

pω+3

· · ·

· · ·II

Is

T

p ↾ ω p ↾ [ω, lh(h)) ∈ Tn

Figure 3.3.3: Illustration of p ∈ T , lh(p) > ω according to I’s strategy s.

Show s is a winning strategy for I for G(A;T ). Pick an arbitrary x ∈ [T ] according to s.

Let a0 ∈ X and anω ∈ Yn, n ∈ ω be arbitrary.

Subcase 1 : x ↾ ω /∈ B.

Then x = x ↾ ω and ⟨a0⟩⌢x /∈ B+. Thus ⟨a0⟩⌢x ∈ [Sft2(T )] and it is according to s∗. Hence

⟨a0⟩⌢x /∈ Shift2(A) and thus x = e2(⟨a0⟩⌢x) ∈ A.

Subcase 2 : x ↾ ω ∈ B.

Then ⟨a0⟩⌢x ↾ ω ∈ B+ and Ψ+(⟨a0⟩⌢x ↾ ω) = Ψ(x ↾ ω). Let n = Ψ+(⟨a0⟩⌢x ↾ ω) = Ψ(x ↾ ω).

Let

h = ⟨a0⟩⌢(x ↾ ω)⌢⟨anω⟩⌢x ↾ [ω, lh(x)) .

Then ⟨anω⟩⌢x ↾ [ω, lh(x)) ∈ T+
n . Since x is according to s, h is according to s∗. Since s∗ is

a winning strategy for II∗ for G(Shift2(A);Sft2(T )), h /∈ Shift(A). Hence x = e(h) ∈ A.

Therefore, s is a winning strategy for I for G(A;T ).

By cases I and II, G(A;T ) is determined.
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Definition 3.3.7. (Definition of a “shifting tree”)

For a tree T , define a shifting tree to be Y × T for some nonempty Y . Suppose Υ is a

collection of nonempty trees. Define Υ to be closed under shifting trees if for each T ∈ Υ,

there is a shifting tree Y × T ∈ Υ for some nonempty Y . ⊣

Using theorem 3.3.6, we have the following theorem 3.3.8.

Theorem 3.3.8. Suppose n ∈ ω and α ∈ ω1. Suppose Υ is closed under shifting trees. Then

for any X,

Det G
(
Σ0

α; T2
)
⇔ Det G

(
Π0

α; T2
)

(3.1)

Det G
(
Σ1

n; T2
)
⇔ Det G

(
Π1

n; T2
)

(3.2)

for T2 = Tree2 (X,Υω,Γ(ω, C),B ↾ Xω) 6 where:

• C ∈ {Σ0
γ,Π

0
γ,∆

0
γ,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, γ ∈ ω1 and m ∈ ω.

• B ∈ {Σ0
β,Π

0
β,∆

0
β,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, β ∈ ω1 and m ∈ ω. ⊣

Similar to theorem 2.3.1, for the equivalences in theorem 3.3.8, we won’t be obtaining

the determinacy of a game G(A;T ) from the same tree T (except for the case when B = ∅).

We will instead use two trees T and Sft2(T ) in the same Tree2 collection.

We have similar results as lemmas 2.3.9 and 2.3.15: lemma 3.3.9 and lemma 3.3.10. The

similar proof as lemma 2.3.9 gives us lemma 3.3.9 and the similar proof as lemma 2.3.15

gives us lemma 3.3.10. In lemma 3.3.9, we obtain the complexity of Shift2(A) for each

6Recall notation 1.5.8 for Γ(ω, C).
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A ∈ Σ0
α ↾ [T ] and A ∈ Π0

α ↾ [T ]. In lemma 3.3.10, we obtain the complexity of Shift2(A)

for each A ∈ Σ1
1 ↾ [T ] and A ∈ Π1

1 ↾ [T ].

Lemma 3.3.9. Fix a Type 2 tree T = TΨ,B
X,Tsq

. Then, for any α ∈ ω1:

1. If A ∈ Π0
α ↾ [T ], then Shift2(A) ∈ Σ0

α ↾ [Sft2(T )].

2. If A ∈ Σ0
α ↾ [T ], then Shift2(A) ∈ Π0

α ↾ [Sft2(T )]. ⊣

Proof.

The proof is similar to lemma 2.3.9.

Lemma 3.3.10. Fix a Type 2 tree T = TΨ,B
X,Tsq

. Then for any n ∈ ω\{0}:

1. If A ∈ Π1
n ↾ [T ], then Shift2(A) ∈ Σ1

n ↾ [Sft2(T )].

2. If A ∈ Σ1
n ↾ [T ], then Shift2(A) ∈ Π1

n ↾ [Sft2(T )]. ⊣

Proof.

The proof is similar to lemma 2.3.15.

Now, we prove theorem 3.3.8 on page 232. Recall theorem 3.3.8.

Theorem 3.3.8. Suppose n ∈ ω and α ∈ ω1. Suppose Υ is closed under shifting trees. Then

for any X,

Det G
(
Σ0

α; T2
)
⇔ Det G

(
Π0

α; T2
)

(3.1)

Det G
(
Σ1

n; T2
)
⇔ Det G

(
Π1

n; T2
)

(3.2)

for T2 = Tree2 (X,Υω,Γ(ω, C),B ↾ Xω) 7 where:

7Recall notation 1.5.8 for Γ(ω, C).
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• C ∈ {Σ0
γ,Π

0
γ,∆

0
γ,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, γ ∈ ω1 and m ∈ ω.

• B ∈ {Σ0
β,Π

0
β,∆

0
β,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, β ∈ ω1 and m ∈ ω. ⊣

Proof of Theorem 3.3.8.

The proof is similar to theorem 2.3.1. Readers familiar with the proof of theorem 2.3.1 may

skip the proofs.

Pick an arbitrary nonempty set X. Suppose Υ is closed under shifting trees. Fix T2 =

Tree2 (X,Υω,Γ(ω, C),B ↾ Xω) in the theorem with fixed complexities for B and C. Pick an

arbitrary T = TΨ,B
X,Tsq

∈ T2. Let Tsq = ⟨Tn|n ∈ ω⟩. Show the equivalence (3.1).

(⇒) Pick arbitrary A ∈ Π0
α ↾ [T ]. Since Υ is closed under shifting trees, for each Tn, there

exists a nonempty set Yn such that T+
n = Yn × Tn ∈ Υ. Then T+

sq = ⟨Yn × Tn |n ∈ ω ⟩ ∈ Υω.

Since B ∈ B ↾ Xω, by sublemma 2.3.19 and sublemma 2.3.20, B+ = X ×B ∈ B ↾ Xω. Also,

by sublemma 2.3.21, Ψ+
2 ∈ Γ(ω, C). Therefore, Sft(T ) = TΨ+,B+

X,Tsq
∈ T2. Since A ∈ Π0

α ↾ [T ],

by lemma 3.3.9, Shift2(A) ∈ Σ0
α ↾ [Sft2(T )]. Thus

G(Shift2(A), Sft2(T )) ∈ G
(
Σ0

α; T2
)
.

Hence G(Shift2(A), Sft2(T )) is determined. By theorem 3.3.6, G(A, T ) is determined.

(⇐) By switching Π0
α and Σ0

α in the above proof, we can obtain this direction.

Show the equivalence (3.2).

(⇒) Suppose A ∈ Π1
n ↾ [T ]. Since B ∈ B ↾ Xω, by sublemma 2.3.19 and sublemma 2.3.20,

B+ ∈ B ↾ Xω. Also, by sublemma 2.3.21, Ψ+ ∈ Γ(ω, C). Therefore, Sft(T ) = TΨ+,B+

X,Tsq
∈ T2.

By lemma 3.3.9, Shift(A) ∈ Σ1
n ↾ [Sft(T )]. Thus

G(Shift2(A), Sft2(T )) ∈ G
(
Σ1

n; T2
)
.
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Hence G(Shift2(A), Sft2(T )) is determined. By theorem 2.3.8, G(A, T ) is determined.

(⇒) Switch Π1
n ↾ [T ] and Σ1

n ↾ [T ] in the (⇒) direction of the equivalence (3.1). By

lemma 2.3.15, Shift(A) ∈ Π1
n ↾ [Sft(T )].

(⇐) By switching Π1
n and Σ1

n in the above proof, we can obtain this direction.

The following is a corollary to theorem 2.3.1.

Corollary 3.3.11. Suppose n ∈ ω and α ∈ ω1. Let:

• T 1
2 = Tree2 (X,FWF ω,Γ(ω, C),B ↾ Xω).

• T 2
2 = Tree2 (X,CWF ω,Γ(ω, C),B ↾ Xω). 8

Then

Det G
(
Σ0

α; T 1
2

)
⇔ Det G

(
Π0

α; T 1
2

)
Det G

(
Σ0

α; T 2
2

)
⇔ Det G

(
Π0

α; T 2
2

)
Det G

(
Σ1

n; T 1
2

)
⇔ Det G

(
Π1

n; T 1
2

)
Det G

(
Σ1

n; T 2
2

)
⇔ Det G

(
Π1

n; T 2
2

)
for any C ∈ {Σ0

γ,Π
0
γ,∆

0
γ,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, γ ∈ ω1 and m ∈ ω;

and any B ∈ {Σ0
β,Π

0
β,∆

0
β,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, β ∈ ω1 and m ∈ ω. ⊣

Proof.

Since FWF and CWF are closed under shifting trees, we have the results by theorem

3.3.8.

8Recall notation 1.5.11 for FWF and CWF .
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Using the determinacy of games on a Tree2 collection to obtain the determinacy of games

on X<ω

3.4 Using the determinacy of games on a Tree2 collec-

tion to obtain the determinacy of games on X<ω

In this section, we will use the determinacy of games on a Tree2 collection to obtain the

determinacy of games on X<ω. We will obtain similar results to those in section 2.4 on page

82 for Tree2 collections except sections 3.4.1.2 and 3.4.4. These sections will be distinct as

the type of trees we will use in these sections will be Type 2 trees which are not Type 1

trees.

In section 3.4.1, under ZF-P, we will focus on using ∆0
1 determinacy on a Tree2 collection

to obtain Borel determinacy on X<ω. The results in section 3.4.1.1 are Type 2 tree version

of the results in section 2.4.1. We will obtain the determinacy of finite Borel games on X<ω

from the determinacy of clopen games on a particular Tree2 collection. In section 3.4.1.2,

we will use the determinacy of clopen games on a certain Tree2 collection to obtain the

determinacy of Borel games on X<ω. We will use the tree defined in Yost’s thesis (Yost,

n.d.).

In section 3.4.2, we will focus on using Σ0
1 determinacy on a Tree2 collection to obtain

the determinacy of games on X<ω. The results in this section are Type 2 tree version of

the results in section 2.4.2. We will obtain similar results to section 2.4.2.1 through 2.4.2.4

in sections 3.4.2.1 through 3.4.2.4. In section 3.4.2.1, we will obtain the similar results as

sections 2.4.2.1. We will define Long2, which is the Type 2 tree version of Long. In sections

3.4.2.2, 3.4.2.3 and 3.4.2.4, we will obtain the similar results as sections 2.4.2.2, 2.4.2.3 and

2.4.2.4, respectively. We will define TMax on Type 2 trees which corresponds to Max for
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Type 1 trees. TMax will be defined on Type 2 trees with Ψ bounded over B.

In section 3.4.3, we will obtain α + 1-Π1
1 determinacy on Xω for even α ∈ ω1 from the

determinacy of α-Π1
1 games on Tree2 collection. The results in this section are Type 2 tree

version of the results in section 2.4.3. We will again use TMax.

In section 3.4.4, we will obtain the determinacy of α-Π1
1, (α ∈ ω1) games on Xω from

the determinacy of open games on a Tree2 collection. We will define Tail which is a gener-

alization of TMax. Tail will be defined on any Type 2 trees. Using Tail, we will obtain the

determinacy of α-Π1
1 games on X<ω from the determinacy of open games on a certain Tree2

collection.
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3.4.1 (ZF-P) Using ∆0
1 determinacy on a Tree2 collection to obtain

Borel determinacy on X<ω

In this section, we will focus on obtaining the determinacy of Borel games on X<ω from

the determinacy of a certain Tree2 collection.9 First, in section 3.4.1.1, similar to section

2.4.1, we will obtain the determinacy of finite Borel games on X<ω is obtained from the

determinacy of open games on a particular Tree2 collection. In section 3.4.1.2, we will

obtain the determinacy of Borel games on X<ω from the determinacy of clopen games on a

certain Tree2 collection by using the tree defined in Yost’s thesis (Yost, n.d.).

3.4.1.1 (ZF-P) Using ∆0
1 determinacy on a Tree2 collection to obtain finite Borel

determinacy on X<ω

We will obtain the determinacy of finite Borel games on X<ω from the determinacy of open

games on a Tree2 collection Tree2 (X,Υω,Γ, {∅, Xω}) where Γ contains all the constant

functions from Xω into ω and Υ contains Y ≤n+1 for all n ∈ ω for some countable Y . The

results of section are similar to section 2.4.1.

Observation 3.4.1 below is the special case of a Type 2 tree withB = ∅. Since [TΨ,∅
X,Tsq

] = Xω,

G (Ξ;Tree2 (X,Υω,Γ, ∅)) = {G (A;X<ω) |A ∈ Ξ ↾ Xω } for any Υ and Γ. Thus, for example,

G (Σ0
1;Tree2 (X,Υω,Γ(ω,∆0

1),∆
0
1 ↾ Xω)) contains all open games on X<ω for any Υ since

∅ ∈∆0
1 ↾ Xω and Γ(ω,∆0

1) is the set of continuous functions from Xω into ω. The following

is a Tree2 collection version of observation 2.4.1 on page 83.

Observation 3.4.1. For any X, any ω-sequence of nonempty trees Tsq, any function f from

9The proof of Det(B ↾ Xω) in ZFC uses the power set axiom.
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Xω into ω, and any complexity Ξ (in which for any T ∈ Tree2 (X,Tsq, f, ∅), Ξ ↾ [T ] ⊆ ℘ ([T ])

is defined),

Det G (Ξ;Tree2 (X,Tsq, f, ∅))⇒ Det (Ξ ↾ Xω) . ⊣

Ξ ↾ Xω in observation 3.4.1 could be any subset of Xω.

Corollary 3.4.2. Fix nonempty X and nonempty Υ.

Let T2 = Tree2 (X,Υω,Γ(ω,∆0
1),∆

0
1 ↾ Xω). For any complexity Ξ,

Det G (Ξ; T1)⇒ Det (Ξ ↾ Xω) . ⊣

Proof.

Note ∅ ∈ ∆0
1 ↾ Xω. Since observation 3.4.1 is true for any function f from Xω into ω, by

taking f to be the continuous function, we have f ∈ Γ(ω,∆0
1). Since observation 3.4.1 is

true for any ω-sequence of nonempty trees Tsq, for any nonempty Υ, we have

Tree2 (X,Tsq, f, ∅) ⊆ Tree2
(
X,Υω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

)
= T2.

Thus, by observation 3.4.1, we have the result.

By replacing Ξ by Σ0
α and Σ1

n in corollary 3.4.2, we obtain corollary 3.4.3. The following

is a Tree2 collection version of corollary 2.4.2 on page 83.

Corollary 3.4.3. (Corollary to Corollary 3.4.2)

Suppose α ∈ ω1 and n ∈ ω. Fix nonempty X and nonempty Υ.

Let T2 = Tree2 (X,Υω,Γ(ω,∆0
1),∆

0
1 ↾ Xω). Then

Det G
(
Σ0

α; T2
)
⇒ Det

(
Σ0

α ↾ Xω
)
.

Det G
(
Σ1

n; T2
)
⇒ Det

(
Σ1

n ↾ Xω
)
. ⊣
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The following is a Tree2 collection version of observation 2.4.3 on page 84.

Observation 3.4.4. Suppose Γ contains all constant functions from Xω into ω. Suppose Y

is a nonempty set and Υ contains Y ≤n+1 for all n ∈ ω. Then for any complexity Ξ (in which

Ξ ↾ Xω × Y n ⊆ ℘ (Xω × Y n) is defined for all n ∈ ω),

Det G (Ξ;Tree2 (X,Υω,Γ, {∅, Xω}))⇒ Det
(∪

n∈ω
Ξ ↾ (Xω × Y n)

)
. ⊣

Before we prove observation 3.4.4, recall observation 3.2.4.

Observation 3.2.4. Suppose Y is a nonempty set and
{
Y ≤n+1 |n ∈ ω

}
⊆ Υ. Then

Tree1 (X,Y,Γ,Λ) ⊆ Tree2 (X,Υω,Γ,Λ) .

In general, if
{
Y ≤n+1 |Y ∈ Θ, n ∈ ω

}
⊆ Υ, then

Tree1 (X,Θ,Γ,Λ) ⊆ Tree2 (X,Υω,Γ,Λ) . ⊣

Proof of observation 3.4.4.

Since Υ contains Y ≤n+1 for all n ∈ ω, by observation 3.2.4,

Tree1 (X, Y,Γ, {∅, Xω}) ⊆ Tree2 (X,Υω,Γ, {∅, Xω}) .

Thus

G (Ξ;Tree1 (X, Y,Γ, {∅, Xω})) ⊆ G (Ξ;Tree2 (X,Υω,Γ, {∅, Xω})) .

Since Γ contains all constant functions from Xω into ω, by observation 2.4.3,

Det G (Ξ;Tree1 (X,Y,Γ, {∅, Xω}))⇒ Det
(∪

n∈ω
Ξ ↾ (Xω × Y n)

)
Thus

Det G (Ξ;Tree2 (X,Υω,Γ, {∅, Xω}))⇒ Det
(∪

n∈ω
Ξ ↾ (Xω × Y n)

)
.
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The following theorem 3.4.5 is a Tree2 version of theorem 2.4.4 on page 84. Recall

theorem 2.4.4.

Theorem 2.4.4. (ZF-P)

Suppose Γ contains all constant functions from Xω into ω and Y is denumerable. Then

Det G (∆0
1;Tree1 (X,Y,Γ, {∅, Xω})) implies Det

(∪
n∈ω Σ

0
n ↾ Xω

)
, finite Borel determinacy

on X<ω. ⊣

By theorem 2.4.4 and observation 3.2.4, we have the following theorem.

Theorem 3.4.5. (ZF-P)

Suppose Γ contains all constant functions from Xω into ω and Υ contains Y ≤n+1 for all ∈ ω

for some countable Y . Then

Det G
(
∆0

1;Tree2 (X,Υω,Γ, {∅, Xω})
)
⇒ Det

(∪
n∈ω

Σ0
n ↾ Xω

)
. ⊣

By using theorem 3.4.5, we can obtain corollary 3.4.6. The following is a Tree2 collection

version of corollary 2.4.17 on page 104.

Corollary 3.4.6.

Det G
(
∆0

1;Tree2
(
X,CWF ω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
⇒ Det

(∪
n∈ω

Σ0
n ↾ Xω

)
. ⊣

Proof.

Since each constant functions is continuous, Γ(ω,∆0
1) contains all the constant functions

from Xω into ω. Also ∅, Xω ∈ ∆0
1 ↾ Xω and CWF contains Y ≤n+1 for all n ∈ ω for all

countable Y . Thus, we have the result by theorem 2.4.4 and and observation 3.2.4.
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3.4.1.2 (ZF-P) Using ∆0
1 determinacy on a Tree2 collection to obtain Borel

determinacy on X<ω

In section 3.4.1.1, we obtained finite Borel determinacy on X<ω from the determinacy of

clopen games on a particular Tree2 collection. In this section, we will obtain Borel determi-

nacy on X<ω from the determinacy of clopen games on a particular Tree2 collection.

Corollary 3.4.7. Suppose Γ is a nonempty collection of functions from Xω into ω. Then

Det G
(
∆0

1;Tree2 (X,CWF ω,Γ, Xω)
)
⇒ Det(B ↾ Xω). ⊣

This result follows from a result in Yost’s thesis (Yost, n.d.) In Yost (n.d.), for each

α ∈ ω1, Yost defines a tree Tα
g.t (which I shall call a Yost tree). We give a definition of Tα

g.t.

in appendix C.6 on page 365.

For each limit ordinal α ∈ ω1, the Yost tree Tα
g.t. is constructed by the following manner:

1. Fix a decomposition of α.

2. Each play in Tα
g.t. is a finite sequence from ω.

3. The length of a play is determined by certain moves for player I. These moves to

calculate the length of each play depends on the decomposition of α.

Yost proves the following theorem in Yost (n.d.) (it might be open instead of clopen).

Theorem 3.4.8. (Yost, n.d.) For each limit ordinal α ∈ ω1,

Det
(
∆0

1 ↾ (Xω × [Tα
g.t.])

)
⇔ Det

(
Σ0

α ↾ Xω
)
.

Thus

Det

( ∪
α∈ω1

∆0
1 ↾ (Xω × [Tα

g.t.])

)
⇔ Det (B ↾ Xω) . ⊣
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In the next lemma, we show that Xω ×
[
Tα
g.t.

]
is in fact a Type 2 tree.

Lemma 3.4.9. For each limit ordinal α ∈ ω1, X
ω ×

[
Tα
g.t.

]
is a Type 2 tree. ⊣

Proof.

Pick an arbitrary function Ψ from Xω into ω. Let Tsq = ⟨Tn |n ∈ ω ⟩ be such that for every

n ∈ ω, Tn = Tα
g.t.. Show

Xω ×
[
Tα
g.t.

]
= [TΨ,Xω

X,Tsq
].

f ∈ Xω ×
[
Tα
g.t.

]
⇔ f ∈ Xω ×

[
TΨ(f)

]
⇔ f ∈ [TΨ,Xω

X,Tsq
].

so that Xω ×
[
Tα
g.t.

]
= [TΨ,Xω

X,Tsq
]. Therefore, Xω ×

[
Tα
g.t.

]
is a Type 2 tree.

There are multiple ways to prove lemma 3.4.9. We could use Ψ to be a constant function

at 0 and Tsq = ⟨Tn |n ∈ ω ⟩ to be such that T0 = Tα
g.t. and Tn could be any tree for n > 0

instead. We can use on any function Ψ from Xω into ω if we set Tsq to be in the proof of

lemma 3.4.9.

Using theorem 3.4.8 and lemma 3.4.9, we obtain corollary 3.4.10.

Corollary 3.4.10. Suppose Ψ is any function from Xω into ω and
{
Tα
g.t. |α ∈ ω1

}
⊆ Υ.

Det G
(
∆0

1;Tree2 (X,Υω,Ψ, Xω)
)
⇒ Det(B ↾ Xω). ⊣

Proof.

Assume Det G (∆0
1;Tree2 (X,Υω,Ψ, Xω)). Pick arbitrary A ∈ B ↾ Xω. Then A ∈ Σ0

α ↾ Xω

for some limit ordinal α ∈ ω1. By theorem 3.4.8,

Det
(
∆0

1 ↾ (Xω × [Tα
g.t.])

)
⇔ Det

(
Σ0

α ↾ Xω
)
.
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By lemma 3.4.9, Xω ×
[
Tα
g.t.

]
= [TΨ,Xω

X,Tsq
] where Tsq = ⟨Tn |n ∈ ω ⟩ and for every n ∈ ω,

Tn = Tα
g.t.. Thus Tsq ∈

{
Tα
g.t. |α ∈ ω1

}ω
= Υω. Since

G
(
∆0

1, T
Ψ,Xω

X,Tsq

)
∈ G

(
∆0

1;Tree2 (X,Υω,Ψ, Xω)
)
,

∆0
1 ↾ [TΨ,Xω

X,Tsq
] is determined. Since

Det
(
∆0

1 ↾ [TΨ,Xω

X,Tsq
]
)
⇔ Det

(
Σ0

α ↾ Xω
)
,

Σ0
α ↾ Xω is determined. Since α ∈ ω1 is arbitrary, we have

Det G
(
∆0

1;Tree2 (X,Υω,Ψ, Xω)
)
⇒ Det(B ↾ Xω).

By corollary 3.4.10, we obtain corollary 2.4.32. Recall corollary 3.4.7.

Corollary 3.4.7. Suppose Γ is a nonempty collection of functions from Xω into ω. Then

Det G
(
∆0

1;Tree2 (X,CWF ω,Γ, Xω)
)
⇒ Det(B ↾ Xω). ⊣

Proof of Corollary 3.4.7.

Fix a collection Γ of functions from Xω into ω. Notice that for any α ∈ ω1, T
α
g.t. ∈ CWF .

Thus
{
Tα
g.t. |α ∈ ω1

}
⊆ CWF . By corollary 3.4.10, for any Ψ ∈ Γ,

Det G
(
∆0

1;Tree2 (X,CWF ω,Ψ, Xω)
)
⇒ Det(B ↾ Xω).

Since for any Ψ ∈ Γ,

Tree2 (X,CWF ω,Ψ, Xω) ⊆ Tree2
(
X,CWF ω,Γ,∆0

1 ↾ Xω
)
,

Det G
(
∆0

1;Tree2
(
X,CWF ω,Γ,∆0

1 ↾ Xω
))
⇒ Det(B ↾ Xω).
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3.4.2 Using Σ0
1 determinacy on a Tree2 collection to obtain the

determinacy of games on X<ω

In this section, we will obtain the determinacy of games on X<ω from the determinacy of

open games on a Tree2 collection. We will obtain similar results to sections 2.4.2: We will

obtain similar results to sections 2.4.2.1 through 2.4.2.4 in sections 3.4.2.1 through 3.4.2.4,

respectively.

In section 3.4.2.1, we will define Long2, which is the Type 2 tree version of Long.

In section 3.4.2.2, We will define TMax on Type 2 trees which corresponds to Max for

Type 1 trees. In sections 3.4.2.3 and 3.4.2.4, we will consider TMax on two special cases of

Type 2 trees.

3.4.2.1 Definition of the open set Long2 (B) on a Type 2 tree and using the

determinacy of open games Long2(A) on a Tree2 collection to obtain the

determinacy of games A on Xω

In this section, we will define the open set Long2 on the body of a Type 2 tree and obtain the

determinacy of games A on X<ω from the determinacy of open games Long2(A) on a Tree2

collection. We will obtain the similar results as section 2.4.2.1. Long2 will be the Type 2

tree version of Long. The only difference will be that Long is defined on the body of Type

1 trees and Long2 is defined the body of on Type 2 trees. Recall by observation 3.1.3, every

Type 1 tree is a Type 2 tree. Long2 will be a generalization of Long.

The following definition is a Type 2 tree version of definition 2.4.19 on page 107.

Definition 3.4.11. Suppose B ⊆ Xω, Ψ is a function from Xω into ω and Tsq is an ω-
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sequence of nonempty trees. Define

Long2 (B) = {h ∈ [TΨ,B
X,Tsq

] | lh(h) > ω}. ⊣

Then Long2 (B) = {h ∈ [TΨ,B
X,Tsq

] | h ↾ ω ∈ B}. It is easy to see that Long2(B) is open.

We also have a Type 2 tree version of theorem 2.4.20 on 107.

Theorem 3.4.12. For any ω-sequence Tsq of nonempty trees, Ψ : Xω → ω, for any A ⊆ Xω,

G (A;Xω) is determined if and only if G(Long2 (A) ;T
Ψ,A
X,Tsq

) is determined . ⊣

The proof of this theorem is similar to the proof of theorem 2.4.20. Simply replace a

Type 1 tree TΨ,A
X,Tsq

by a Type 2 tree TΨ,A
X,Tsq

.

The following is a Tree2 collection version of corollary 2.4.21 on page 109.

Corollary 3.4.13. For any nonempty collection Υ of nonempty trees, Ψ : Xω → ω and Λ,

Det G
(
Σ0

1;Tree2 (X,Υω,Ψ,Λ ↾ Xω)
)
⇒ Det (Λ ↾ Xω) . ⊣

Proof.

Pick an arbitrary A ∈ Λ ↾ Xω. Then, for any Tsq ∈ Υω, Long2(A) ∈ Σ0
1 ↾ [TΨ,A

X,Tsq
]. Thus

G(Long2(A);T
Ψ,A
X,Tsq

) is determined. By theorem 3.4.12, G(A;X<ω) is determined.

The following is a Tree2 collection version of corollary 2.4.22 on page 109.

Corollary 3.4.14. For any α ∈ ω1, Υ and Ψ : Xω → ω,

Det G
(
Σ0

1;Tree2
(
X,Υω,Ψ,Σ0

α ↾ Xω
))
⇒ Det

(
Σ0

α ↾ Xω
)
. ⊣

Proof.

By corollary 3.4.13 with Λ = Σ0
α.
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The following is a Tree2 collection version of corollary 2.4.23 on page 109.

Corollary 3.4.15. Suppose Υ is an arbitrary nonempty collection of nonempty trees, Γ is

any collection of functions from Xω into ω and Λ is a collection of nondetermined sets.

Then,

¬Det G
(
Σ0

1;Tree2 (X,Υω,Γ,Λ ↾ Xω)
)
. ⊣

Proof.

Assume Λ is a collection of nondetermined sets. Then ¬Det(Λ ↾ Xω). By corollary 3.4.13,

¬Det (Σ0
1;Tree2 (X,Υω,Ψ,Λ ↾ Xω)) for any Υ and Ψ : Xω → ω, i.e.,

¬Det G
(
Σ0

1;Tree2 (X,Υω,Γ,Λ ↾ Xω)
)
.

In fact, G(Long2(A);T
Ψ,A
X,Tsq

) is not determined for any nondetermined set A and any Tsq and

function Ψ from Xω into ω.

Corollaries 3.4.13, 3.4.14 and 3.4.15 state that the respective relation holds for every

Υ. Since by observation 3.1.3, every Type 1 tree TΨ,B
X,Y is a Type 2 tree TΨ,B

X,Tsq
where

Tsq = ⟨Y ≤n+1|n ∈ ω⟩, by letting Υ ⊇ {Y ≤n+1|n ∈ ω}, we see that these corollaries are

generalization of corollaries 2.4.21, 2.4.22 and 2.4.23, respectively.
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3.4.2.2 Definition of the open set TMax (Ψ, B) on a Type 2 tree

In this section, we will consider Type 2 trees TΨ,B
X,Tsq

such that Ψ ↾ B is bounded below ω.

We will define TMax(Ψ, B) on appropriate Type 2 trees which corresponds to Max(Ψ, B)

defined on appropriate Type 1 trees in section 2.4.2.2. In sections 3.4.2.3 and 3.4.2.4, we will

obtain some determinacy results using Max. First, recall definition 2.4.24 on page 111.

Definition 2.4.24. (Definition of Max)

Suppose Ψ ↾ B is bounded below ω. Let nΨ,B
max be the maximum tail length determined from Ψ

and B. (nΨ,B
max = max(Im(Ψ ↾ B)) + 1.) If Ψ and B are clear from the context, we suppress

Ψ and B, i.e.,nmax = nΨ,B
max.

Define

Max (Ψ, B) = {h ∈ [TΨ,B
X,Y ] | lh(h) = ω + nmax} = lh−1

[TΨ,B
X,Y ]

(ω + nmax). ⊣

Let’s consider the set Max for a Type 2 tree. Suppose we define a Type 2 tree version of

Max the same way as we defined Max on a Type 1 tree. Even when Ψ ↾ B will be bounded

below ω, the tail lengths in [TΨ,B
X,Tsq

] may not be bounded. Notice that unlike Type 1 trees,

the maximum length is not determined by Ψ and B. It is determined by the definition of

each tree Tn in Tsq = ⟨Tn|n ∈ ω⟩. Therefore, we modify this definition as follows. Same as

Max, TMax will be defined on Type 2 trees with Ψ bounded over B.

Definition 3.4.16. Suppose Ψ ↾ B is bounded below ω and let Ψmax ∈ ω be the maximum

value of Ψ over B. Define

TMax (Ψ, B) = {h ∈ [TΨ,B
X,Tsq

] | h ↾ [ω, lh(h)) ∈ [TΨmax ]}. ⊣

Recall that h ∈ TMax(Ψ, B) doesn’t necessary imply Ψ(h ↾ ω) = Ψmax. See comment
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below observation 3.1.3 on page 216.

Now, we observe the relationship between Max(Ψ, B) and TMax(Ψ, B). Recall by obser-

vation 3.1.3 on page 216, every Type 1 tree is a Type 2 tree.

Observation 3.1.3. For each Type 1 tree TΨ,B
X,Y , [T

Ψ,B
X,Y ] = [TΨ,B

X,Tsq
] where Tsq=

⟨
Y ≤n+1 |n∈ω

⟩
.

Thus any Type 1 tree is a Type 2 tree. ⊣

Fix a Type 1 tree T = TΨ,B
X,Y . Set Tn = Y ≤n+1 for each n ∈ ω and Tsq = ⟨Tn|n ∈ ω⟩. Then

T = TΨ,B
X,Y = TΨ,B

X,Tsq
. Suppose Ψ ↾ B is bounded below ω. Then Max(Ψ, B) and TMax(Ψ, B)

are both defined on T . Note that nmax = Ψmax + 1. Thus

Max (Ψ, B) =
{
h ∈

[
TΨ,B
X,Y

]
|lh (h) = ω + nmax

}
=
{
h ∈

[
TΨ,B
X,Y

]
|h ↾ [ω, lh(h)) ∈ Y nmax

}
=
{
h ∈

[
TΨ,B
X,Tsq

] ∣∣h ↾ [ω, lh(h)) ∈ Y Ψmax+1
}

=
{
h ∈

[
TΨ,B
X,Tsq

]
|h ↾ [ω, lh(h)) ∈ [TΨmax ]

}
= TMax (Ψ, B) .

Hence TMax(Ψ, B) is a Type 2 version of Max(Ψ, B).

Recall that Max(Ψ, B) is open on Type 1 trees TΨ,B
X,Y for Ψ bounded over B (see page

111). For an arbitrary ω-sequence of trees Tsq, TMax may not be open. We will restrict the

trees Tn as follows.

For each finite set of nonempty trees Υ and an enumeration ⟨Tn |n ≤ N ⟩ of Υ, we will

define the two properties, “the N maximal tree property”, which will be defined in definition
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3.4.17 and “the N disjoint tree property”, which will be defined in definition 3.4.19.

In order to satisfy the N maximal tree property, we require that TN is a well-founded tree.

It is possible for Tn, n ̸= N , to be ill-founded. We also require that there is no path in Tn

for n < N such that its proper initial segment is in Tn. Thus it is possible for [Tn]∩ [TN ] ̸= ∅

but there is no g ∈ [TN ] ∩ Tn\[Tn] for every n < N .

Definition 3.4.17. (Definition of the N maximal tree property)

Fix N ∈ ω. Suppose Υ is a set of nonempty trees of size N + 1 satisfying that: there is an

enumeration ⟨Tn |n ≤ N ⟩ of Υ such that

1. TN is well-founded.

2. For each n < N and for every gn ∈ [Tn], gn does not properly extend g for every

g ∈ [TN ].

Then we say Υ satisfies the N maximal tree property. We also say ⟨Tn |n ≤ N ⟩ has the

N maximal tree property. We say Tsq = ⟨Tn |n ∈ ω ⟩ has the N maximal tree property if

⟨Tn |n ≤ N ⟩ satisfies the N maximal tree property. ⊣

In proposition 3.4.21 below, we will show that for Ψ from Xω into ω such that Ψ ↾ B

is bounded below ω and Tsq satisfying Ψmax maximal tree property, TMax(Ψ, B) is open in

the Type 2 tree [TΨ,B
X,Tsq

]. Recall that for ⟨Tn |n ≤ N ⟩ to satisfy N maximal tree property, we

required TN being a well-founded tree. One may wish to get rid of this restriction. We will

define “N disjoint tree property” below in definition 3.4.19. For ⟨Tn |n ≤ N ⟩ to satisfy this

property, none of the trees are required to be well-founded. Instead, we will restrict the set

of the possible first moves of TN to be disjoint from the set of possible first moves of Tn for
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n < N . First, we will define a notation corresponds to the set of each possible move at a

position p in Tn. A similar definition was given in definition 1.2.3 on page 8 for a fixed tree

T .

Notation 3.4.18. Suppose for each n ∈ ω, Tn is a tree. For each n ∈ ω and for any p ∈ Tn,

define

Mn
p = {m |p⌢⟨m⟩ ∈ Tn} . ⊣

In particular, if p = ∅, then Mn
∅ is the possible initial moves of Tn. Now, we define “N

disjoint tree property” for a set of trees Υ and an enumeration ⟨Tn |n ≤ N ⟩ of Υ.

Definition 3.4.19. (Definition of the N disjoint tree property)

Fix N ∈ ω. Suppose Υ is a set of nonempty trees of size N + 1 satisfying that: there is an

enumeration ⟨Tn |n ≤ N ⟩ of Υ such that

for every n < N , Mn
∅ ∩MN

∅ = ∅.

Then we say Υ satisfies the N disjoint tree property. We also say ⟨Tn |n ≤ N ⟩ has the

N disjoint tree property. We say Tsq = ⟨Tn |n ∈ ω ⟩ has the N disjoint tree property if

⟨Tn |n ≤ N ⟩ satisfies the N disjoint tree property. If Tsq = ⟨Tn |n ∈ ω ⟩ satisfies that each

Mn
∅ is pairwise disjoint, then we say Tsq has the disjoint tree property. ⊣

Note that the set ⟨Tn |n ≤ N ⟩ to satisfy N disjoint tree property, for n,m < N with

n ̸= m, Mn
∅ and Mm

∅ need not to be disjoint. Also, if Tsq = ⟨Tn |n ∈ ω ⟩ satisfies the disjoint

tree property, then each Mn
∅ is pairwise disjoint so that each Tn is pairwise disjoint. Thus,

we have the following.

251



Observation 3.4.20. Fix a Type 2 tree T = TΨ,B
X,Tsq

. Suppose Tsq = ⟨Tn|n ∈ ω⟩ satisfies the

disjoint tree property. Then each (Xω × [Tn]) ∩ [T ] is pairwise disjoint. ⊣

Proposition 3.4.21. Fix a Type 2 tree TΨ,B
X,Tsq

. If Ψ ↾ B is bounded below ω and Tsq =

⟨Tn |n ∈ ω ⟩ satisfies the Ψmax maximal tree property or a Ψmax disjoint tree property, then

TMax (Ψ, B) is open in [TΨ,B
X,Tsq

]. ⊣

Proof.

Pick an arbitrary h ∈ TMax (Ψ, B). Then h ↾ [ω, lh(h)) ∈ [TΨmax ].

Case 1 : Tsq satisfies the Ψmax maximal tree property.

Then for every n < Ψmax and for every g ∈ [Tn], g ⊉ h ↾ [ω, lh(h)). Let E = [ω, lh(h)).

By property (1) of definition 3.4.17, h ↾ [ω, lh(h)) is finite. Thus E is finite. Pick an

arbitrary ĥ such that ĥ ⊇ h ↾ E. Then ĥ ↾ [ω, lh(h)) = h ↾ [ω, lh(h)). Thus lh(ĥ) ≥ lh(h).

Show lh(ĥ) = lh(h). Suppose, for a contradiction, lh(ĥ) > lh(h). Then by property (2) in

definition 3.4.17, ĥ ↾ [ω, lh(ĥ)) /∈ [Tn] for every n ≤ Ψmax. By the definition of TΨ,B
X,Tsq

and

the fact that Ψ ↾ B is bounded below ω, ĥ ↾ [ω, lh(ĥ)) ∈ [Tn] for n ≤ Ψmax, a contradiction.

Thus lh(ĥ) = lh(h) and thus ĥ ↾ [ω, lh(ĥ)) ∈ [TΨmax ]. Therefore, ĥ ∈ TMax (Ψ, B). (Note

that ĥ ↾ [ω, lh(ĥ)) ∈ [TΨmax ] does not guarantee that ĥ ∈ (B ∩ Ψ−1(Ψmax)) × [TΨmax ]. It is

possible that ĥ ↾ [ω, lh(ĥ)) ∈ [TΨmax ] ∩ [Tn] for some n < Ψmax.)

Case 2 : Tsq satisfies the Ψmax disjoint tree property.

Let F = {ω}. Then F is finite. Pick an arbitrary ĥ ∈ [TΨ,B
X,Tsq

] such that ĥ ⊇ h ↾ F . Then

ĥ(ω) = h(ω). Since h(ω) ∈ MΨmax

∅ , ĥ(ω) ∈ MΨmax

∅ . Thus ĥ ↾ [ω, lh(ĥ)) ∈ [TΨmax ]. Hence

ĥ ∈ TMax (Ψ, B). (In this case, we have ĥ ∈ (B ∩ Ψ−1(Ψmax))× [TΨmax ]. Note that for each

n ∈ Ψmax, M
n
∅ ∩MΨmax

∅ = ∅. Thus ĥ(ω) /∈Mn
∅ for any n ∈ Ψmax. Hence ĥ ↾ [ω, lh(ĥ)) /∈ [Tn]
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for any n ∈ Ψmax.)

Therefore, TMax (Ψ, B) is open in [TΨ,B
X,Tsq

].

By proposition 3.4.21, the maximal tail tree property is enough to make TMax(Ψ, B)

open in [TΨ,B
X,Tsq

]. However, for a Type 2 tree TΨ,B
X,Tsq

with Tsq satisfying the maximal tail

tree property, h ∈ TMax(Ψ, B) doesn’t necessary imply Ψ(h ↾ ω) = Ψmax (it is possible that

[TΨmax ]∩ [Tn] ̸= ∅ for some n < Ψmax). We will slightly restrict the maximal tail tree property

to satisfy the condition [TΨmax ] ∩ [Tn] = ∅ for every n < Ψmax.

Definition 3.4.22. (Definition of the modified N maximal tree property)

Fix N ∈ ω. Suppose Υ is a set of nonempty trees of size N + 1 satisfying that: there is an

enumeration ⟨Tn |n ≤ N ⟩ of Υ such that

1. TN is well-founded.

2. for each n < N and for every gn ∈ [Tn], gn does not extend g for every g ∈ [TN ] (This

gives us [TN ] ∩ [Tn] = ∅ for every n < N .)

Then we say Υ satisfies the modified N maximal tree property. We also say ⟨Tn |n ≤ N ⟩

satisfies the modified N maximal tree property. We say Tsq = ⟨Tn |n ∈ ω ⟩ has the modified

N maximal tree property if ⟨Tn |n ≤ N ⟩ satisfies the N maximal tree property. ⊣

By the property (2) of definition 3.4.22, if ⟨Tn |n ≤ N ⟩ satisfies the modified N maximal

property, then we have:

if g ∈ [TN ], then g /∈ Tn ∪ [Tn] for every n < N .

Thus, we have the following.
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Observation 3.4.23. Fix a Type 2 tree T = TΨ,B
X,Tsq

. Suppose Ψ ↾ B is bounded below

ω. Suppose Tsq = ⟨Tn|n ∈ ω⟩ satisfies a the modified Ψmax maximal tree property. Then

(Xω × [TΨmax ]) ∩ [T ] is disjoint from each (Xω × [Tn]) ∩ [T ]. ⊣

A similar proof of proposition 3.4.21 gives us that if Ψ ↾ B is bounded below ω and Tsq

satisfy the modified Ψmax maximal tree property, TMax(Ψ, B) is open in [TΨ,B
X,Tsq

].

In sections 3.4.2.3 and 3.4.2.4, we will be looking at Type 2 trees TΨ,B
X,Tsq

such that Tsq =

⟨Tn|n ∈ ω⟩ satisfying the modified 1 maximal tree property or the 1 disjoint tree property.

To prepare for these sections, we will observe the following special case.

Observation 3.4.24. Suppose Tsq = ⟨Tn|n ∈ ω⟩ satisfies the modified 1 maximal tree prop-

erty or the 1 disjoint tree property. Then

[T0] ∩ [T1] = ∅. ⊣

3.4.2.3 Using the determinacy of open games TMax (χA, X
ω) on a Tree2 collection

to obtain the determinacy of games A on X<ω

In this section, we will obtain the determinacy of games A on X<ω from the determinacy

of open games TMax (χA, X
ω) on a Tree2 collection. We will obtain the similar results as

section 2.4.2.3. Let A ⊆ Xω. As a special case of Type 2 tree, we will consider Type 2 trees

TΨ,B
X,Tsq

such that B = Xω and Ψ to be the characteristic function χA of A. Recall

χA : Xω → {0, 1}

f 7→


0 if f /∈ A,

1 if f ∈ A.
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Then

h ∈
[
T χA,Xω

X,Tsq

]
↔


h ∈ Xω if h ↾ ω /∈ Xω,

h ∈ Xω × [TχA(h↾ω)] if h ↾ ω ∈ Xω.

↔


h ∈ Xω × [T0] if h ↾ ω /∈ A,

h ∈ Xω × [T1] if h ↾ ω ∈ A.

Note that it is possible that [T0] ∩ [T1] ̸= ∅ (T0 could be equal to T1). h ∈ [T χA,Xω

X,Tsq
] such

that h ↾ [ω, lh(h)) ∈ [T0] ∩ [T1] does not mean h ↾ ω /∈ A and h ↾ ω ∈ A. Recall that for

Type 2 trees TΨ,B
X,Tsq

with h ∈ [TΨ,B
X,Tsq

], h ↾ [ω, lh(h)) ∈ [Tn] does not imply Ψ(h ↾ ω) = n (see

comment under observation 3.1.3 on page 216).

Observation 3.4.25. Let A ⊆ Xω and χA be the characteristic function of A. Suppose Tsq

satisfies the modified 1 maximal tree property or the 1 disjoint tail tree property. Then

TMax (χA, X
ω) =

{
h ∈ [T χA,Xω

X,Tsq
] |h ↾ ω ∈ A

}
. ⊣

Proof.

Suppose Tsq = ⟨Tn |n ≤ N ⟩ satisfies the modified 1 maximal tree property or the 1 disjoint

tail tree property. Since (χA)max = 1, 10 by definition 3.4.16,

TMax (χA, X
ω) = {h ∈ [T χA,Xω

X,Tsq
] |h ↾ [ω, lh(h)) ∈ [T1]}.

Show {
h ∈ [T χA,Xω

X,Tsq
] |h ↾ [ω, lh(h)) ∈ [T1]

}
=
{
h ∈ [T χA,Xω

X,Tsq
] |h ↾ ω ∈ A

}
.

(⊆) Pick an arbitrary h ∈ {h ∈ [T χA,Xω

X,Tsq
] |h ↾ [ω, lh(h)) ∈ [T1]}. Then h ↾ [ω, lh(h)) ∈ [T1].

Show h ↾ ω ∈ A. Suppose, for a contradiction, h ↾ ω /∈ A. Then χA(h ↾ ω) = 0. Thus

10Recall definition 3.4.16 for Ψmax.
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h ↾ [ω, lh(h)) ∈ [T0]. Hence h ↾ [ω, lh(h)) ∈ [T0] ∩ [T1]. Since Tsq satisfies the modified 1

maximal tree property or the 1 disjoint tail tree property, by observation 3.4.24, [T0]∩[T1] = ∅.

This is a contradiction. Thus h ∈ {h ∈ [T χA,Xω

X,Tsq
] |h ↾ ω ∈ A}.

(⊇) Pick an arbitrary h ∈ {h ∈ [T χA,Xω

X,Tsq
] |h ↾ ω ∈ A}. Then χA(h ↾ ω) = 1. Thus

h ↾ [ω, lh(h)) ∈ [T1] by definition of [T χA,Xω

X,Tsq
]. Hence h ∈ {h ∈ [T χA,Xω

X,Tsq
] |h ↾ [ω, lh(h)) ∈ [T1]}.

The following is a Type 2 tree version of theorem 2.4.25 on page 112.

Theorem 3.4.26. Suppose T χA,Xω

X,Tsq
is a Type 2 tree such that Tsq satisfying the modified

1 maximal tail tree property or the 1 disjoint tail tree property. Then for any A ⊆ Xω,

G (A;Xω) is determined if and only if G(TMax (χA, X
ω) ;T χA,Xω

X,Tsq
) is determined. ⊣

Proof.

Pick an arbitrary A ⊆ Xω.

(⇒) Assume G(A;X<ω) is determined. Thus I or II has a winning strategy s for

G(A;X<ω). Define s∗ to be such that s∗ ↾ X<ω = s and play anything after that to finish

the play. Show s∗ is a winning strategy for G(TMax (χA, X
ω) ; T χA,Xω

X,Tsq
). Pick an arbitrary

h ∈ [T χA,Xω

X,Tsq
] according to s∗.

Case 1 : s is a winning strategy for I for G(A;X<ω).

Then h ↾ ω ∈ A. Since Tsq satisfying the modified 1 maximal tail tree property or the 1

disjoint tail tree property, by observation 3.4.25, h ∈ TMax (χA, X
ω). Hence s∗ is a winning

strategy for I∗ for G(Max (χA, X
ω) ;T χA,Xω

X,Tsq
).

Case 2 : s is a winning strategy for II for G(A;X<ω).

Then h ↾ ω /∈ A. Since Tsq satisfying the modified 1 maximal tail tree property or the 1
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disjoint tail tree property, by observation 3.4.25, h /∈ TMax (χA, X
ω). Hence s∗ is a winning

strategy for II∗ for G(Max (χA, X
ω) ;T χA,Xω

X,Tsq
).

(⇐) Assume G(TMax (χA, X
ω) ; T χA,Xω

X,Tsq
) is determined. Thus I∗ or II∗ has a winning

strategy s∗ for G(TMax (χA, X
ω) ; T χA,Xω

X,Tsq
). Define s = s∗ ↾ X<ω. Show s is a winning

strategy for G(A;X<ω). Pick an arbitrary f ∈ Xω according to s. Then f is according to

s∗. Note that f ∈ T χA,Xω

X,Tsq
since there is no path of length ω in T χA,Xω

X,Tsq
. Play g according to

s∗ after f to get f⌢g ∈ [T χA,Xω

X,Tsq
].

Case 1 : s∗ is a winning strategy for I∗ for G(TMax (χA, X
ω) ;T χA,Xω

X,Tsq
).

Then f⌢g ∈ TMax (χA, X
ω). Since Tsq satisfying the modified 1 maximal tail tree property or

the 1 disjoint tail tree property, by observation 3.4.25, f ∈ A. Hence s is a winning strategy

for I for G(A;X<ω).

Case 2 : s∗ is a winning strategy for II∗ for G(TMax (χA, X
ω) ;T χA,Xω

X,Tsq
).

Then f⌢g /∈ TMax (χA, X
ω). Since Tsq satisfying the modified 1 maximal tail tree property or

the 1 disjoint tail tree property, by observation 3.4.25, f /∈ A. Hence s is a winning strategy

for II for G(A;X<ω). Therefore, G(A;X<ω) is determined.

By theorem 3.4.26, the determinacy of any game A of length ω can be obtained from

the determinacy of open games TMax (χA, X
ω) of a Type 2 tree.11 The following corollaries

3.4.27 and 3.4.28 are direct results from theorem 3.4.26.

The following is a Tree2 collection version of corollary 2.4.27 on page 114.

Corollary 3.4.27. Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 1

11In particular, if A is a nondetermined game of length ω, then our result gives a corresponding nondeter-
mined game on a Type 2 tree.
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disjoint tree property. Then for any complexity Ξ and for any Υ ⊇ {T0, T1},

Det G
(
Σ0

1;Tree2 (X,Υω, {χA |A ∈ Ξ ↾ Xω } , Xω)
)
⇒ Det (Ξ ↾ Xω) .

Thus,

Det G
(
Σ0

1;Tree2 (X,Υω,Γ(ω, 2-Ξ), Xω)
)
⇒ Det(Ξ ↾ Xω). ⊣

Proof.

Pick an arbitrary A ∈ Ξ ↾ Xω. Since {T0, T1} satisfies the modified 1 maximal tree property

or the 1 disjoint tree property, ⟨T0, T1⟩ or ⟨T1, T0⟩ satisfies the modified 1 maximal tree

property or the 1 disjoint tree property. Without loss of generality, assume ⟨T0, T1⟩ satisfies

the modified 1 maximal tree property or the 1 disjoint tree property. Define Tsq = ⟨T̂n |n ∈ ω ⟩

to be such that T̂0 = T0, T̂1 = T1 and for any n > 1, T̂n ∈ Υ to be arbitrary. Then Tsq satisfies

the modified 1 maximal tree property or the 1 disjoint tree property. Since (χA)max = 1, by

proposition 3.4.21, TMax (χA, X
ω) is open in [T χA,Xω

X,Tsq
]. Thus

G(TMax (χA, X
ω) ;T χA,Xω

X,Tsq
) ∈ G(Σ0

1;Tree2 (X,Υω, {χA |A ∈ Ξ ↾ Xω } , Xω)).

Hence G(TMax (χA, X
ω) ;T χA,Xω

X,Tsq
) is determined. By theorem 3.4.26, G(A;Xω) is determined.

Therefore, if {T0, T1} satisfies the modified 1 maximal tree property or the 1 disjoint tree

property, then for any Υ ⊇ {T0, T1},

Det G
(
Σ0

1;Tree2 (X,Υω, {χA |A ∈ Ξ ↾ Xω } , Xω)
)
⇒ Det (Ξ ↾ Xω) .

Since χA ∈ Γ(ω, 2-Ξ) by observation 2.4.26,

Det G
(
Σ0

1;Tree2 (X,Υω,Γ(ω, 2-Ξ), Xω)
)
⇒ Det(Ξ ↾ Xω).

The following is a Tree2 collection version of corollary 2.4.28 on page 115.
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Corollary 3.4.28. (Corollary to Corollary 3.4.27)

Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 1 disjoint tree property.

Then for any Υ ⊇ {T0, T1},

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ(ω,Σ0

α ∧Π0
α), X

ω
))
⇒ Det(Σ0

α ↾ Xω).

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ(ω,∆0

α), X
ω
))
⇒ Det(∆0

α ↾ Xω). ⊣

Proof.

By corollary 3.4.14 with Ξ is Σ0
α and ∆0

α.

Corollaries 3.4.27 and 3.4.28 state that the respective relation holds for every Υ ⊇ {T0, T1}

where {T0, T1} satisfying the modified 1 maximal tree property or the 1 disjoint tree property.

Notice that ⟨Y ≤1, Y ≤2⟩ satisfies the modified 1 maximal tree property. Let Tsq = ⟨Tn|n ∈ ω⟩

be such that T0 = Y ≤1, T1 = Y ≤2 and for any n > 1, Tn ∈ Υ to be arbitrary. Then

for A ⊆ Xω, a Type 1 tree T χA,Xω

X,Y is a Type 2 tree T χA,Xω

X,Tsq
. Therefore, by letting Υ to

be arbitrary such that Υ ⊇ {Y ≤1, Y ≤2}, we see that these corollaries are generalization of

corollaries 2.4.27, and 2.4.28, respectively.

3.4.2.4 Using the determinacy of open games TMax (χA, B) on a Tree2 collection

to obtain the determinacy of games A ∩B on X<ω

In this section, we will obtain the determinacy of games A∩B on X<ω from the determinacy

of open games TMax (χA, B) on a Tree2 collection. We will obtain similar results as section

2.4.2.4. Let A ⊆ Xω. In section 3.4.2.3, as a special case of Type 2 tree, we considered Type

2 trees TΨ,B
X,Tsq

such that B = Xω and Ψ to be the characteristic function χA of A. In this
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section, as a generalization of trees in section 3.4.2.3, we will consider Type 2 trees TΨ,B
X,Tsq

such that B is an arbitrary subset of Xω and Ψ to be the characteristic function χA of A.

Suppose A,B ⊆ Xω. Then

h ∈
[
T χA,B
X,Tsq

]
↔


h ∈ Xω if h ↾ ω /∈ B,

h ∈ Xω × TχA(h↾ω) if h ↾ ω ∈ B.

↔


h ∈ Xω if h ↾ ω /∈ B,

h ∈ Xω × [T0] if h ↾ ω ∈ B\A,

h ∈ Xω × [T1] if h ↾ ω ∈ A ∩B.

Note that it is possible that [T0] ∩ [T1] ̸= ∅ (T0 could be equal to T1). h ∈ [T χA,B
X,Tsq

] such

that h ↾ [ω, lh(h)) ∈ [T0] ∩ [T1] does not mean h ↾ ω ∈ B\A and h ↾ ω ∈ A ∩ B. Recall that

for Type 2 trees TΨ,B
X,Tsq

with h ∈ [TΨ,B
X,Tsq

], h ↾ [ω, lh(h)) ∈ [Tn] does not imply Ψ(h ↾ ω) = n

(see comment under observation 3.1.3 on page 216).

A similar proof of observation 3.4.25 gives us the following.

Observation 3.4.29. Let A,B ⊆ Xω and χA be the characteristic function of A. Suppose

Tsq satisfies the modified 1 maximal tree property or the 1 disjoint tail tree property. Then

TMax (χA, B) =
{
h ∈ [T χA,B

X,Tsq
] | h ↾ ω ∈ A ∩B

}
. ⊣

The following theorem is a Type 2 tree version of theorem 2.4.29 on page 116.

Theorem 3.4.30. Suppose T χA,B
X,Tsq

is a Type 2 tree such that Tsq satisfying the modified 1

maximal tail tree property or the 2 disjoint tail tree property. Then for all A,B ⊆ Xω,

G(A ∩B;Xω) is determined if and only if G(TMax (χA, B) ; T χA,B
X,Tsq

) is determined. ⊣

Proof.
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Pick arbitrary A,B ⊆ Xω.

(⇒) Assume G(A ∩ B;X<ω) is determined. Then I or II has a winning strategy s for

G(A ∩ B;X<ω). Define s∗ to be such that s∗ ↾ X<ω = s and play anything after that (if

necessary) to finish the play. Show s∗ is a winning strategy for G(TMax (χA, B) ; T χA,B
X,Tsq

).

Pick an arbitrary h ∈ [T χA,B
X,Tsq

] according to s∗.

Case 1 : s is a winning strategy for I for G(A ∩B;X<ω).

Then h ↾ ω ∈ A ∩ B. Since Tsq satisfying the modified 1 maximal tail tree property or the

1 disjoint tail tree property, by observation 3.4.29, h ∈ TMax (χA, B). Hence s∗ is a winning

strategy for I∗ for G(Max (χA, B) ;T χA,B
X,Tsq

).

Case 2 : s is a winning strategy for II for G(A ∩B;X<ω).

Then h ↾ ω /∈ A ∩ B. Since Tsq satisfying the modified 1 maximal tail tree property or the

1 disjoint tail tree property, by observation 3.4.29, h /∈ TMax (χA, B). Hence s∗ is a winning

strategy for II∗ for G(Max (χA, B) ;T χA,B
X,Tsq

).

(⇐) Assume G(TMax (χA, B) ; T χA,B
X,Tsq

) is determined. Then I∗ or II∗ has a winning

strategy s∗ for G(TMax (χA, B) ; T χA,B
X,Tsq

). Define s = s∗ ↾ X<ω. Show s is a winning strategy

for G(A ∩ B;X<ω). Pick an arbitrary f ∈ Xω according to s. Then f is according to s∗.

If f ∈ [T χA,B
X,Tsq

] then let g = ∅. If f ∈ T χA,B
X,Tsq

, play g according to s∗ to get g such that

f⌢g ∈ [T χA,B
X,Tsq

].

Case 1 : s∗ is a winning strategy for I∗ for G(TMax (χA, B) ; T χA,B
X,Tsq

).

Then f⌢g ∈ TMax (χA, B). Since Tsq satisfying the modified 1 maximal tail tree property or

the 1 disjoint tail tree property, by observation 3.4.25, f ∈ A ∩ B. Hence s is a winning

strategy for I for G(A ∩B;X<ω).

Case 2 : s∗ is a winning strategy for II∗ for G(TMax (χA, B) ; T χA,B
X,Tsq

).
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Then f⌢g /∈ TMax (χA, B). Since Tsq satisfying the modified 1 maximal tail tree property or

the 1 disjoint tail tree property, by observation 3.4.25, f /∈ A. Hence s is a winning strategy

for II for G(A ∩B;X<ω). Therefore, G(A ∩B;X<ω) is determined.

The following is a Tree2 collection version of 2.4.30 on page 118.

Corollary 3.4.31. Suppose α, β ∈ ω1 and Ξ1,Ξ2 are complexities. Suppose {T0, T1} satisfies

the modified 1 maximal tree property or the 1 disjoint tree property. Then for any Υ ⊇

{T0, T1},

Det G
(
Σ0

1;Tree2 (X,Υω, {χA |A ∈ Ξ1 ↾ Xω } ,Ξ2 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (3.3)

Similarly,

Det G
(
Σ0

1;Tree2 (X,Υω, {χA |A ∈ Ξ2 ↾ Xω } ,Ξ1 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (3.4)

⊣

Proof.

Pick an arbitrary A ∈ (Ξ1 ∧ Ξ2) ↾ Xω. Then there exists B ∈ Ξ1 ↾ Xω and C ∈ Ξ2 ↾ Xω

such that A = B ∩ C.

Show the implication (3.3).

Since χB ∈ {χÂ | Â ∈ Ξ1 ↾ Xω}, we consider the tree T χB ,C
X,Tsq

. Since {T0, T1} satisfies the mod-

ified 1 maximal tree property or the 1 disjoint tree property, ⟨T0, T1⟩ or ⟨T1, T0⟩ satisfies the

modified 1 maximal tree property or the 1 disjoint tree property. Without loss of generality,

assume ⟨T0, T1⟩ satisfies the modified 1 maximal tree property or the 1 disjoint tree property.

Define Tsq = ⟨T̂n |n ∈ ω ⟩ to be such that T̂0 = T0, T̂1 = T1 and for any n > 1, T̂n ∈ Υ to

262



be arbitrary. Then Tsq satisfies the modified 1 maximal tree property or the 1 disjoint tree

property. By observation 3.4.29,

Max (χB, C) = {h ∈ [T χB ,C
X,Tsq

] | h ↾ ω ∈ B ∩ C}.

Since

G(Max(χB, C);T χB ,C
X,Tsq

) ∈ G
(
Σ0

1;Tree2 (X,Υω, {χA |A ∈ Ξ1 ↾ Xω } ,Ξ2 ↾ Xω)
)
,

G(Max(χB, C);T χB ,C
X,Tsq

) is determined. By theorem 3.4.30, G(B ∩ C;X<ω) is determined.

Hence G(A;X<ω) is determined.

Show the implication (3.4).

Since χC ∈ {χÂ | Â ∈ Π0
β ↾ Xω}, we consider the tree T χC ,B

X,Tsq
where Tsq is defined above.

Then Tsq satisfies the modified 1 maximal tree property or the 1 disjoint tree property. By

observation 3.4.29,

Max (χC , B) = {h ∈ [T χC ,B
X,Tsq

] | h ↾ ω ∈ B ∩ C}.

Since

G(Max(χC , B);T χC ,B
X,Tsq

) ∈ G
(
Σ0

1;Tree2 (X,Υω, {χA |A ∈ Ξ2 ↾ Xω } ,Ξ1 ↾ Xω)
)
.

G(Max(χC , B);T χC ,B
X,Tsq

) is determined. By theorem 3.4.30, G(C ∩ B;X<ω) is determined.

Hence G(A;X<ω) is determined.

The following is a Tree2 collection version of corollary 2.4.31 on page 119.

Corollary 3.4.32. (Corollary to Corollary 3.4.31)

Suppose Ξ1,Ξ2 are complexities. Suppose {T0, T1} satisfies the modified 1 maximal tree prop-

263



erty or the 1 disjoint tree property. Then for any Υ ⊇ {T0, T1},

DetG
(
Σ0

1;Tree2 (X,Υω,Γ(ω,Ξ1 ∧ co-Ξ1),Ξ2 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (3.5)

Similarly,

DetG
(
Σ0

1;Tree2 (X,Υω,Γ(ω,Ξ2 ∧ co-Ξ2),Ξ1 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (3.6)

⊣

Proof.

Since {χA |A ∈ Ξ1 ↾ Xω } ⊆ Γ (ω,Ξ1 ∧ co-Ξ1) by observation 2.4.26, we obtain the implication

(3.5) from corollary 3.4.31 the implication (3.3). Since {χA |A ∈ Ξ2 ↾ Xω } ⊆ Γ (ω,Ξ2 ∧ co-Ξ2)

by observation 2.4.26, we obtain the implication (3.6) from corollary 3.4.31 the implication

(3.4).

We list some obvious special case of corollary 3.4.32. We obtain corollary 3.4.33 from

replacing Ξ1 = Σ0
α and Ξ2 = Π0

β in corollary 3.4.32. This is a Tree2 collection version of

corollary 2.4.32 on page 120. We also obtain corollary 3.4.34 from replacing Ξ1 = Σ1
α and

Ξ2 = Π1
β in corollary 3.4.32. This is a Tree2 collection version of corollary 2.4.33 on page

120.

Corollary 3.4.33. (Corollary to Corollary 3.4.32)

Suppose α, β ∈ ω1. Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 2

disjoint tree property. Then for any Υ ⊇ {T0, T1},

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ

(
ω,Σ0

α ∧Π0
α

)
,Π0

β ↾ Xω
))
⇒ Det((Σ0

α ∧Π0
β) ↾ Xω).
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Similarly,

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ

(
ω,Σ0

β ∧Π0
β

)
,Σ0

α ↾ Xω
))
⇒ Det((Σ0

α ∧Π0
β) ↾ Xω). ⊣

Proof.

Since {χA |A ∈ Σ0
α ↾ Xω } ⊆ Γ (ω,Σ0

α ∧Π0
α) and

{
χA

∣∣A ∈ Π0
β ↾ Xω

}
⊆ Γ(ω,Σ0

β ∧Π0
β) by

observation 2.4.26, we have the results by corollary 3.4.32.

Corollary 3.4.34. (Corollary to Corollary 3.4.32)

Suppose n,m ∈ ω. Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 2

disjoint tree property. Then for any Υ ⊇ {T0, T1},

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ

(
ω,Σ1

n ∧Π1
n

)
,Π1

m ↾ Xω
))
⇒ Det((Σ1

n ∧Π1
m) ↾ Xω).

Similarly,

DetG
(
Σ0

1;Tree2
(
X,Υω,Γ

(
ω,Σ1

m ∧Π1
m

)
,Σ1

n ↾ Xω
))
⇒ Det((Σ1

n ∧Π1
m) ↾ Xω). ⊣

Proof.

Since {χA |A ∈ Σ1
n ↾ Xω } ⊆ Γ (ω,Σ1

n ∧Π1
n) and {χA |A ∈ Π1

m ↾ Xω } ⊆ Γ(ω,Σ1
m ∧Π1

m) by

observation 2.4.26, we have the results by corollary 3.4.32.

In particular, intersection of Σ1
1 and Π1

1 sets are 2-Π1
1. Thus, the following is a special

case of corollary 3.4.34 and this is a Tree2 collection version of corollary 2.4.34 on page 120.

Corollary 3.4.35. (Corollary to Corollary 3.4.34)

Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 1 disjoint tree property.

Then for any Υ ⊇ {T0, T1},

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ(ω, 2-Π1

1),Σ
1
1 ↾ Xω

))
⇒ Det(2-Π1

1 ↾ Xω).
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Similarly,

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω

))
⇒ Det(2-Π1

1 ↾ Xω). ⊣

Proof.

Note that Σ1
1 ∧Π1

1 = 2-Π1
1.

The following is a Tree2 collection version of question 1 on page 121.

Question 9. Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 1 disjoint

tree property and Υ ⊇ {T0, T1}. By corollary 3.4.35 on page 265, corollary 3.4.13 on page

246 and corollary 3.4.1 on page 238, all of the following imply Det(2-Π1
1 ↾ Xω):

(i) Det G (Σ0
1;Tree2 (X,Υω,Γ(ω, 2-Π1

1),Σ
1
1 ↾ Xω))

(ii) Det G (Σ0
1;Tree2 (X,Υω,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω))

(iii) Det G (Σ0
1;Tree2 (X,Υω,Γ(ω,∆0

1), 2-Π
1
1 ↾ Xω))

(iv) Det G (2-Π1
1;Tree2 (X,Υω,Γ(ω,∆0

1),∆
0
1))

What is the relationship between (i), (ii), (iii) and (iv)? ⊣

Let’s consider (n+ 1)-Π1
1 ↾ Xω sets for finite n. Recall definition 1.3.23 on page 23. For

every n ∈ ω, if A ∈ (n+1)-Π1
1 ↾ Xω, then A = A0\A1 = A0∩Xω\A1 where A0 ∈ Π1

1 ↾ Xω and

A1 ∈ n-Π1
1 ↾ Xω (hence Xω\A1 ∈ co-n-Π1

1 ↾ Xω). Thus we can express A as an intersection

of a Π1
1 ↾ Xω set and a co-n-Π1

1 ↾ Xω set. We obtain corollary 3.4.36 the implication (3.7)

by replacing Ξ1 = Σ1
1 and Ξ2 = co-n-Π1

1 in corollary 3.4.32 the implication (3.5). We obtain

corollary 3.4.36 the implication (3.8) by replacing Ξ1 = co-n-Π1
1 and Ξ2 = Σ1

1 in corollary

3.4.32 the implication (3.6). This is also a Tree2 collection version of corollary 2.4.35 on

page 121.
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Corollary 3.4.36. (Corollary to Corollary 3.4.32)

Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 1 disjoint tree property.

Then for any Υ ⊇ {T0, T1} and for any n ∈ ω,

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ(ω, 2-Π1

1), (co-n-Π
1
1) ↾ Xω

))
⇒ Det(n+ 1-Π1

1 ↾ Xω). (3.7)

Similarly,

DetG
(
Σ0

1;Tree2
(
X,Υω,Γ(ω, n-Π1

1 ∧ co-n-Π1
1),Π

1
1 ↾ Xω

))
⇒ Det

(
n+ 1-Π1

1 ↾ Xω
)
. (3.8)⊣

Proof.

Since{χA |A ∈ Π1
1 ↾ Xω } ⊆ Γ (ω, 2-Π1

1) and {χA |A ∈ co-n-Π1
1 ↾ Xω } ⊆

Γ (ω, n-Π1
1 ∧ co-n-Π1

1) by observation 2.4.26, we have the results by corollary 3.4.36.
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3.4.3 Using α-Π1
1 determinacy on Tree2 collection to obtain α+1-Π1

1

determinacy on X<ω for even α ∈ ω1

In this section, we will obtain similar results for Type 2 trees as section 2.4.3. The only

difference is the trees are Type 2 trees instead of Type 1 trees.

In section 3.4.2.4, we used TMax on certain Tree2 collections to obtain the determinacy

of games on X<ω. In theorem 3.4.30, we obtained the determinacy equivalence of games

G(A ∩B;X<ω) and G(TMax (χA, B) ;T χA,B
X,Tsq

) for any A,B ⊆ Xω and Tsq satisfying a certain

condition.

In this section, we will obtain α + 1-Π1
1 determinacy on Xω for even α ∈ ω1 from α-Π1

1

determinacy on Tree2 collection. Fix α ∈ ω1 and ⟨Aβ|β ≤ α⟩ where each Aβ ⊆ Xω. Recall

that by observation 2.4.38, dk (⟨Aβ |β ≤ α⟩) = dk (⟨Aβ |β ∈ α⟩)∪(
∩

β≤α Aβ). We set A = Aα

and B =
∩

β∈α Aβ so that A ∩ B =
∩

β≤α Aβ. Thus, we will consider a Type 2 tree T
χAα ,B
X,Tsq

with B =
∩

β∈α Aβ and Tsq satisfying a certain condition.

h ∈
[
T

χAα ,
∩

β∈α Aβ

X,Tsq

]
↔


h ∈ Xω if h ↾ ω /∈

∩
β∈α Aβ,

h ∈ Xω × [TχA(h↾ω)] if h ↾ ω ∈
∩

β∈α Aβ.

↔


h ∈ Xω if h ↾ ω /∈

∩
β∈α Aβ,

h ∈ Xω × [T0] if h ↾ ω ∈ (
∩

β∈α Aβ)\Aα,

h ∈ Xω × [T1] if h ↾ ω ∈
∩

β≤α Aβ.

We will obtain the determinacy equivalence of a certain game for such Type 2 tree T
χAα ,

∩
β∈α Aβ

X,Tsq

and a dk (⟨Aβ |β ≤ α⟩) game onX<ω. In definition 3.4.37, we will define dk2
<α (⟨Aβ |β ≤ α⟩) ⊆

[T
χAα ,

∩
β∈α Aβ

X,Tsq
] (we will use the “superscript 2” to represent that this set is defined on Type 2
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trees). This is a Type 2 tree version of dk2
<α (⟨Aβ |β ≤ α⟩) ⊆ [T

χAα ,
∩

β∈α Aβ

X,Y ] which we defined

in definition 2.4.36 on page 125. In theorem 3.4.41, we will show that the determinacy equiv-

alence of a dk (⟨Aβ |β ≤ α⟩) game on X<ω and a dk<α (⟨Aβ |β ≤ α⟩) ∪ TMax(χAα ,
∩

β∈α Aβ)

game on the tree T
χAα ,

∩
β∈α Aβ

X,Tsq
.

In particular, for even α ∈ ω and sequences ⟨Aβ |β ≤ α⟩ with each Aβ ∈ Π1
1 ↾ Xω, we

will obtain α + 1-Π1
1 games on X<ω from α-Π1

1 games on a particular Tree2 collection in

corollary 3.4.43. As a special case, when α is a limit ordinal and Aα ∈ Σ0
λ for some λ ∈ ω1,

we will obtain a similar result for α-Π1
1+Σ0

λ games on X<ω from α-Π1
1 games on a particular

Tree2 collection in corollary 3.4.44.

First, recall definition 1.3.22 on page 23.

Definition 1.3.22. (Definition of the difference kernel)(Hausdorff, 1944 12)

Denote the difference kernel of A⃗ = ⟨Aβ |β ∈ α⟩ by dk(A⃗) and define

dk(A⃗) = {x ∈ [T ] |µβ (x /∈ Aβ ∨ β = α) is odd} . ⊣

Given ⟨Aβ |β ≤ α⟩ where each Aβ ⊆ Xω, we define dk<α (⟨Aβ |β ≤ α⟩) on the tree

T
χAα ,

∩
β∈α Aβ

X,Tsq
.

The following is a Type 2 tree version of definition 2.4.36 on page 125.

Definition 3.4.37. Suppose α ∈ ω1 is even and ⟨Aβ |β ≤ α⟩ where each Aβ ⊆ Xω. Define

dk2
<α (⟨Aβ |β ≤ α⟩) =

{
h ∈

[
T

χAα ,
∩

β∈α Aβ

X,Tsq

]∣∣∣h ↾ ω /∈
∩

β∈α
Aβ ∧ µβ(h ↾ ω /∈ Aβ) is odd

}
.

12as cited in Welch (1996, p. 1).
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⊣

Notice that if α is even,

dk (⟨Aβ |β ∈ α⟩) =
{
f ∈ Xω

∣∣∣f /∈
∩

β∈α
Aβ ∧ µβ(f /∈ Aβ) is odd

}
.

Thus

dk2
<α (⟨Aβ |β ≤ α⟩) ↾ Xω = dk (⟨Aβ |β ∈ α⟩) .

In fact, we have the following. This is a Type 2 tree version of observation 2.4.37.

Observation 3.4.38. Suppose α ∈ ω1 is even and ⟨Aβ |β ≤ α⟩ where each Aβ ⊆ Xω. Then

dk2
<α (⟨Aβ |β ≤ α⟩) = dk (⟨Aβ |β ∈ α⟩) ⊆ Xω. ⊣

Proof.

A similar proof to observation 2.4.37 gives observation 3.4.38. Simply replace a Type 1 tree

T
χAα ,

∩
β∈α Aβ

X,Y by a Type 2 tree T
χAα ,

∩
β∈α Aβ

X,Tsq
.

The following is a special case of observation 3.4.29 for B =
∩

β∈α Aβ.

Corollary 3.4.39. (Corollary to Observation 3.4.29)

Suppose α ∈ ω1 is even, ⟨Aβ |β ≤ α⟩ where each Aβ ⊆ Xω and χAα to be the characteristic

function of Aα. Suppose Tsq satisfies the modified 1 maximal tree property or the 1 disjoint

tail tree property. Then

TMax

(
χAα ,

∩
β∈α

Aβ

)
=
{
h ∈ [T

χAα ,
∩

β∈α Aβ

X,Tsq
]
∣∣∣ h ↾ ω ∈

∩
β≤α

Aβ

}
. ⊣

Since α ∈ ω1 is even, dk (⟨Aβ |β ≤ α⟩) could be express as a union of dk (⟨Aβ |β ∈ α⟩)

and (
∩

β≤α Aβ). Recall 2.4.38.
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Observation 2.4.38. Suppose α ∈ ω1 is even and ⟨Aβ |β ≤ α⟩ where each Aβ ⊆ Xω. Then

dk (⟨Aβ |β ≤ α⟩) = dk (⟨Aβ |β ∈ α⟩) ∪
(∩

β≤α
Aβ

)
. ⊣

The following is a Type 2 tree version of proposition 2.4.39 on page 126.

Proposition 3.4.40. Suppose T = TΨ,B
X,Tsq

is a Type 2 tree. Assume the following:

1. C,D ⊆ Xω and E,F ⊆ [T ].

2. s is a strategy for X<ω.

3. s∗ is a strategy for T such that s∗ ↾ X<ω = s.

4. for any h ∈ [T ] according to s∗, h ↾ ω ∈ C if and only if h ∈ E.

5. for any h ∈ [T ] according to s∗, h ↾ ω ∈ D if and only if h ∈ F .

Then s is a winning strategy for I for G(C ∪D;X<ω) if and only if s∗ is a winning strategy

for I∗ for G(E ∪ F ;T ). Also s is a winning strategy for II for G(C ∪D;X<ω) if and only

if s∗ is a winning strategy for II∗ for G(E ∪ F ;T ). ⊣

Proof.

A similar proof of proposition 2.4.39 gives proposition 3.4.40. Simply replace a Type 1 tree

TΨ,B
X,Y by a Type 2 tree TΨ,B

X,Tsq
.

By proposition 3.4.40, we obtain the following. This is a Type 2 tree version of theorem

2.4.40 on page 128.
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Theorem 3.4.41. Suppose α ∈ ω1 is even and ⟨Aβ |β ≤ α⟩ where each Aβ ⊆ Xω. Let

T = T
χAα ,

∩
β∈α Aβ

X,Tsq
. Then G (dk (⟨Aβ |β ≤ α⟩) ;X<ω) is determined if and only if

G
(
dk2

<α (⟨Aβ |β ≤ α⟩) ∪ TMax

(
χAα ,

∩
β∈α

Aβ

)
;T
)

is determined. ⊣

Proof.

Use proposition 3.4.40 with:

• C = dk (⟨Aβ |β ∈ α⟩).

• D =
∩

β≤α Aβ.

• E = dk2
<α (⟨Aβ |β ≤ α⟩)

• F = TMax

(
χAα ,

∩
β∈α Aβ

)
The rest of the proof is similar to the proof of theorem 2.4.40.

Now, let’s consider the complexity of each Aβ. Recall definition 1.3.23 on page 23.

Definition 1.3.23. Suppose Λ is a class of subsets of [T ] and Λ is closed under countable

intersections. Suppose α ∈ ω1. Define

α-Λ ↾ [T ] =
{
A ⊆ [T ]

∣∣∣∃A⃗ = ⟨Aβ |β ∈ α⟩
(
each Aβ ∈ Λ and A = dk(A⃗)

)}
. ⊣

We will consider theorem 3.4.41 with ⟨Aβ |β ≤ α⟩ where each Aβ ∈ Π1
1 ↾ Xω. Then

dk (⟨Aβ |β ≤ α⟩) ∈ α+ 1-Π1
1 ↾ Xω where α ∈ ω1 is even.

Lemma 3.4.42. Suppose α ∈ ω1 is even. Fix ⟨Aβ |β ≤ α⟩ where each Aβ ∈ Π1
1 ↾ Xω. Then

dk2
<α (⟨Aβ |β ≤ α⟩) ∈ α-Π1

1 ↾
[
T

χAα ,
∩

β∈α Aβ

X,Tsq

]
. ⊣
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Proof.

A similar to lemma 2.4.41 gives lemma 3.4.42. Simply replace a Type 1 tree T
χAα ,

∩
β∈α Aβ

X,Y by

a Type 2 tree T
χAα ,

∩
β∈α Aβ

X,Tsq
.

Using theorem 3.4.41 and lemma 3.4.42, we have the following.

Corollary 3.4.43. Assume α ∈ ω1 is even. Suppose {T0, T1} satisfies the modified 1 maximal

tree property or the 1 disjoint tree property. Then for any Υ ⊇ {T0, T1},

Det G
(
α-Π1

1;Tree2
(
X,Υω,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω

))
⇒ Det(α + 1-Π1

1 ↾ Xω). ⊣

Proof.

Suppose α ∈ ω1 is even and A ∈ α+ 1-Π1
1 ↾ Xω. Then there exists a sequence A⃗ =

⟨Aβ |β ≤ α⟩ witness that A = dk(A⃗) ∈ α + 1-Π1
1 ↾ Xω. Since {T0, T1} satisfies the modified

1 maximal tree property or the 1 disjoint tree property, ⟨T0, T1⟩ or ⟨T1, T0⟩ satisfies the

modified 1 maximal tree property or the 1 disjoint tree property. Without loss of generality,

assume ⟨T0, T1⟩ satisfies the modified 1 maximal tree property or the 1 disjoint tree property.

Define Tsq = ⟨T̂n |n ∈ ω ⟩ to be such that T̂0 = T0, T̂1 = T1 and for any n > 1, T̂n ∈ Υ to

be arbitrary. Then Tsq satisfies the modified 1 maximal tree property or the 1 disjoint tree

property. Let T = T
χAα ,

∩
β∈α Aβ

X,Tsq
. We have

∩
β≤α Aβ ∈ Π1

1 ↾ Xω. By observation 2.4.26,

χAα ∈ Γ(ω, 2-Π1
1). By lemma 3.4.42, dk<α (⟨Aβ |β ≤ α⟩) ∈ α-Π1

1 ↾ [T ]. By proposition

3.4.21, TMax(χAα ,
∩

β∈α Aβ) ∈ Σ0
1 ↾ [T ]. Hence

dk<α (⟨Aβ |β ≤ α⟩) ∪ TMax

(
χAα ,

∩
β∈α

Aβ

)
∈ α-Π1

1 ↾ [T ].

Thus G(dk<α (⟨Aβ |β ≤ α⟩) ∪ TMax(χAα ,
∩

β∈α Aβ);T ) is determined. By theorem 3.4.41,

G(dk(A⃗);X<ω) is determined, i.e., G(A;X<ω) is determined.
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Question 10. Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 1 dis-

joint tree property. Assume that Υ ⊇ {T0, T1}. By corollary 3.4.2 on page 239, corollary

3.4.13 on page 246 and corollary 3.4.27 on page 257, all of the following imply Det(α + 1-Π1
1 ↾

Xω):

(i) Det G (α+ 1-Π1
1;Tree1 (X,Υω,Γ(ω,∆0

1),∆
0
1))

(ii) Det G (Σ0
1;Tree1 (X,Υω,Γ(ω,∆0

1), α + 1-Π1
1 ↾ Xω))

(iii) Det G (Σ0
1;Tree1 (X,Υω,Γ(ω, α + 1-Π1

1 ∧ co-α + 1-Π1
1), X

ω))

Moreover, if α ∈ ω1 is even, then by corollary 3.4.43,

(iv) Det G
(
α-Π1

1;Tree1
(
X,Υω,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω

))
implies Det(α + 1-Π1

1 ↾ Xω).

What is the relationship between (i), (ii), (iii) and (iv)? ⊣

Suppose α ∈ ω1 is a limit ordinal. As a special case of α + 1-Π1
1, we will define α-Π

1
1 +Σ0

λ

sets over a tree T .

Recall definition 2.4.43 on page 132.

Definition 2.4.43. (Definition of α-Π1
1 +Σ0

λ ↾ [T ])

Suppose α ∈ ω1 is a limit ordinal. Let λ ∈ ω1. Suppose T is a tree. Define A ∈ (α-Π1
1 +Σ0

λ) ↾

[T ] if and only if there is a sequence A⃗ = ⟨Aβ |β ≤ α⟩ witness that A = dk(A⃗) ∈ α+1-Π1
1 ↾ [T ]

and Aα ∈ Σ0
λ ↾ [T ], i.e.,

(
α-Π1

1 +Σ0
λ

)
↾ [T ] =

A ⊆ [T ]

∣∣∣∣∣∣∣∣∃A⃗ = ⟨Aβ |β ≤ α⟩

∀β ∈ α
(
Aβ ∈ Π1

1 ↾ [T ]
)
,

Aα ∈ Σ0
λ ↾ [T ] and A = dk(A⃗)


 .

⊣
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We have a similar result for α-Π1
1 +Σ0

λ sets to corollary 3.4.43.

Corollary 3.4.44. Assume α ∈ ω1 is a limit ordinal and λ ∈ ω. Suppose {T0, T1} satisfies

the modified 1 maximal tree property or the 1 disjoint tree property. Then for any Υ ⊇

{T0, T1},

Det G
(
α-Π1

1;Tree2
(
X,Υω,Γ(ω,Σ0

λ ∧Π0
λ),Π

1
1 ↾ Xω

))
⇒ Det(

(
α-Π1

1 +Σ0
λ

)
↾ Xω). ⊣

Proof.

Similar proof for corollary 3.4.43 with χAα ∈ Γ(ω,Σ0
λ ∧Π0

λ) by observation 2.4.26.

Question 11. Assume α ∈ ω1 is a limit ordinal and λ ∈ ω. Suppose {T0, T1} satisfies

the modified 1 maximal tree property or the 1 disjoint tree property. Assume Υ ⊇ {T0, T1}.

By corollary 3.4.2 on page 239, corollary 3.4.44, corollary 3.4.13 on page 246 and corollary

3.4.27 on page 257, all of the following imply Det((α-Π1
1 +Σ0

λ) ↾ Xω):

(i) DetG (α-Π1
1 +Σ0

λ;Tree1 (X,Y,Γ(ω,∆0
1),∆

0
1))

(ii) Det G (α-Π1
1;Tree1 (X, Y,Γ(ω,Σ0

λ ∧Π0
λ),Π

1
1 ↾ Xω))

(iii) Det G (Σ0
1;Tree1 (X,Y,Γ(ω,∆0

1), α-Π
1
1 +Σ0

λ ↾ Xω))

(iv) Det G (Σ0
1;Tree1 (X,Y,Γ(ω, α-Π1

1 +Σ0
λ ∧ co-α-Π1

1 +Σ0
λ), X

ω))

What is the relationship between (i), (ii), (iii) and (iv)? ⊣

As we discussed on page 133, through out this section, we set that α is even so that α+1

is odd. In this section, we obtained the determinacy of α+1-Π1
1 games on X<ω from the

determinacy of α-Π1
1 games on a particular Tree2 collection for even α ∈ ω1.

In the next section 3.4.4, we will obtain the determinacy of α-Π1
1 games on X<ω from

the determinacy of open games on some Tree2 collections for α ∈ ω1 for any countable α.
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3.4.4 Using the determinacy of open games on a Tree2 collection

to obtain the determinacy of α-Π1
1 games on X<ω

In this section, we will focus on obtaining the determinacy of α-Π1
1 games on X<ω from the

determinacy of open games on some Tree2 collections for α ∈ ω1 for any countable α. In

sections 3.4.2.2, 3.4.2.3, 3.4.2.4 and 3.4.3, we obtained the determinacy results using TMax.

In corollary 3.4.36 of section 3.4.2.4 , we obtained the determinacy of n + 1-Π1
1 games on

X<ω from the determinacy of open games on a particular Tree2 collection for all n ∈ ω. In

section 3.4.3, we obtained the determinacy of α+1-Π1
1 games on X<ω from the determinacy

of α-Π1
1 games on a particular Tree2 collection for even α ∈ ω1. There are two things to

notice here:

• We only obtained the determinacy results for even α (so that α+1 is odd).

• We obtained the determinacy of α+1-Π1
1 games using the determinacy of α-Π1

1 games

a particular Tree2 collection, not open games on a Tree2 collection.

In this section, we will obtain the determinacy of α-Π1
1 games on X<ω from the deter-

minacy of open games on a certain Tree2 collection for any α ∈ ω1. We will define Tail.

Recall that TMax(Ψ, B) was defined on a Type 2 tree TΨ,B
X,Tsq

with Ψ having the maximum

value Ψmax. Tail(Ψ, n, B) will be the generalization of TMax(Ψ, B) for any function Ψ from

Xω into ω. For any h ∈ Tail(Ψ, n, B), the tail of h will be in [Tn] (the converse may be

false).

Definition 3.4.45. For any n ∈ ω, define

Tail (Ψ, n, B) =
(
B ∩Ψ−1 (n)

)
× [Tn]. ⊣
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Recall that for a Type 2 tree TΨ,B
X,Tsq

, [TΨ,B
X,Tsq

] =
∪

n∈ω ((B ∩Ψ−1 (n))× [Tn])∪ (Xω\B). 13

Thus using Tail (Ψ, n, B), we can express the body of a Type 2 tree TΨ,B
X,Tsq

as following.

[TΨ,B
X,Tsq

] =
∪

n∈ω

((
B ∩Ψ−1 (n)

)
× [Tn]

)
∪ (Xω\B)

=
∪

n∈ω
Tail (Ψ, n, B) ∪ (Xω\B) .

Note that if Ψ has a maximum value Ψmax,

TMax (Ψ, B) = {h ∈ [TΨ,B
X,Tsq

] | h ↾ [ω, lh(h)) ∈ [TΨmax ]}

=
(
B ∩Ψ−1 (Ψmax)

)
× [TΨmax ]

= Tail (Ψ,Ψmax, B) .

A similar comment to the comment on page 216, Tail(Ψ, n, B) is not the collection of

h ∈ [TΨ,B
X,Tsq

] such that h ↾ [ω, lh(h)) ∈ [Tn]. Recall that if [Tn] ∩ [Tm] ̸= ∅ for n ̸= m,

there exists h ∈ [TΨ,B
X,Tsq

] such that h ↾ [ω, lh(h)) ∈ [Tn] but h /∈ Tail(Ψ, n, B) (for the case

h ↾ ω ∈ B with Ψ(h ↾ ω) = m).

Proposition 3.4.46. Fix a Type 2 tree T = TΨ,B
X,Tsq

. Suppose T satisfies at least one of the

following conditions:

1. B ∈ Σ0
1 ↾ Xω and Ψ is a continuous function from Xω into ω.

2. Tsq = ⟨Tn |n ∈ ω ⟩ satisfies the disjoint tree property.14

Then for any n ∈ ω, Tail (Ψ, n, B) ∈ Σ0
1 ↾ [T ]. ⊣

Proof.

Pick an arbitrary n ∈ ω. Pick an arbitrary h ∈ Tail (Ψ, n, B). Then h ↾ ω ∈ B ∩Ψ−1 (n).
13Recall page 215.
14Recall definition 3.4.19 on page 251.
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Case 1 : Suppose T satisfies condition (1).

Since Ψ is a continuous function, Ψ−1(n) ∈ ∆0
1 ↾ Xω. Since B ∈ Σ0

1 ↾ Xω, B ∩Ψ−1 (n) ∈

Σ0
1 ↾ Xω. Since B ∩Ψ−1 (n) ∈ Σ0

1 ↾ Xω, there exists a finite E ⊆ ω such that for any

f ∈ Xω if f ⊇ h ↾ E, then f ∈ B ∩ Ψ−1 (n). Thus for any ĥ ∈ [T ], if ĥ ⊇ h ↾ E, then

ĥ ∈ (B ∩Ψ−1 (n))× [Tn] = Tail (Ψ, n, B).

Case 2 : Suppose T satisfies condition (2).

Since Tsq = ⟨Tn |n ∈ ω ⟩ satisfies the disjoint tree property, each Mn
∅ is pairwise disjoint.

Let F = {ω}. Then F is finite. Pick an arbitrary ĥ ∈ [T ] such that ĥ ⊇ h ↾ F . Then

ĥ(ω) = h(ω). Since h(ω) ∈ Mn
∅ , ĥ(ω) ∈ Mn

∅ . Thus ĥ ↾ [ω, lh(ĥ)) ∈ [Tn]. Note that for each

m ∈ ω such that m ̸= n, we have Mn
∅ ∩Mm

∅ = ∅. Thus ĥ(ω) /∈ Mm
∅ for any m ∈ ω with

m ̸= n. Thus ĥ ↾ [ω, lh(ĥ)) /∈ [Tm] for any m ∈ ω with m ̸= n. Hence h ↾ ω /∈ Ψ−1(m) for

any m ∈ ω with m ̸= n. Thus ĥ ∈ (B ∩Ψ−1 (n))× [Tn] = Tail (Ψ, n, B).

Therefore, for T satisfying conditions (1) or (2), we have Tail (Ψ, n, B) ∈ Σ0
1 ↾ [T ].

Next, we define functions leastα and Ψα for each countable α.

Definition 3.4.47. (Definition of leastα and Ψα)

Suppose A⃗ = ⟨Aβ |β ∈ α⟩ is a sequence of sets. Define

leastα : Xω → α + 1

f 7→


µβ (f /∈ Aβ) if f /∈

∩
β∈α Aβ,

α otherwise.

Then define

Ψα : Xω → ω

f 7→ n where leastα (f) = γ + n, γ = 0 or γ is a limit ordinal. ⊣
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In particular, suppose ⟨Aβ |β ∈ α⟩ is a sequence of Π1
1 ↾ Xω sets. We calculate the

complexity of Ψα.

Lemma 3.4.48. Let α ∈ ω1 be even. Suppose ⟨Aβ |β ∈ α⟩ is a sequence of Π1
1 ↾ Xω sets.

Then Ψα ∈ Γ (ω,Σ0
1 (Π

1
1)).

15 ⊣

Proof.

Pick an arbitrary O ∈ Σ0
1 ↾ ω. Then O =

∪
n∈O {n}. First, let’s find the complexity of each

Ψ−1
α (n). Fix n ∈ ω.

Case 1 : α = γ̂ + n for some limit ordinal γ̂ or α = n.

Ψ−1
α (n) =

 ∪
γ=0 or γ∈α limit

((
∩

m∈γ+n
Am)︸ ︷︷ ︸

Π1
1↾Xω

\ Aγ+n︸ ︷︷ ︸
Π1

1↾Xω

)

 ∪∩β∈α
Aβ︸ ︷︷ ︸

Π1
1↾Xω

∈ Σ0
1

(
Π1

1

)
↾ Xω.

Case 2 : α ̸= γ̂ + n for any limit ordinal γ̂ and α ̸= n.

Ψ−1
α (n) =

 ∪
γ=0 or γ∈α limit

((
∩

m∈γ+n
Am)︸ ︷︷ ︸

Π1
1↾Xω

\ Aγ+n︸ ︷︷ ︸
Π1

1↾Xω

)

 ∈ Σ0
1

(
Π1

1

)
↾ Xω.

Thus

Ψ−1
α (O) = Ψ−1

α

(∪
n∈O
{n}

)
=
∪

n∈O
Ψ−1

α (n) ∈ Σ0
1

(
Π1

1

)
↾ Xω.

By taking union of Tail(Ψα, n,X
ω) for all odd n, we have the following determinacy

equivalence.

Theorem 3.4.49. Suppose α ∈ ω1. Fix Tsq = ⟨Tn |n ∈ ω ⟩. Let T = TΨα,Xω

X,Tsq
. Let A⃗ =

⟨Aβ |β ∈ α⟩. G(
∪

odd n Tail (Ψα, n,X
ω);T ) is determined if and only if G(dk(A⃗);Xω) is

determined. ⊣

15Recall definition 1.3.25 on page 25 for Σ0
1

(
Π1

1

)
.
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Proof.

(⇒) Suppose G(
∪

odd n Tail (Ψα, n,X
ω);T ) is determined. Then I∗ or II∗ has a winning

strategy s∗ for G(
∪

odd n Tail (Ψα, n,X
ω);T ). Define s = s∗ ↾ X<ω. Pick an arbitrary f

according to s. Then f ∈ Xω according to s∗. Since there is no path of length ω in T , f ∈ T .

Play according to s∗ after f , call it g, so that f⌢g ∈ [T ].

Case 1 : s∗ is a winning strategy for I∗ for G(
∪

odd n Tail (Ψα, n,X
ω);T ).

Show s∗ is a winning strategy for I for G(dk(A⃗);Xω). Since f⌢g is according to s∗, f⌢g ∈∪
odd n Tail (Ψα, n,X

ω). Since Tail (Ψα, n,X
ω) = (Xω ∩Ψ−1

α (n))× [Tn] by definition, there

exists a unique odd m ∈ ω such that f⌢g ∈ Tail (Ψα,m,Xω) = Ψ−1
α (m) × [Tm]. Hence

f ∈ Ψ−1
α (m). Thus leastα(f) = γ +m for some limit ordinal γ ∈ α or γ = 0.

Subcase 1 : α is even.

Then leastα(f) = γ +m ̸= α since m is odd. Thus f /∈
∩

β∈α Aβ. Hence γ +m is the least

β such that f /∈ Aβ. Since m is odd, f ∈ dk(A⃗).

Subcase 2 : α is odd.

Subsubcase a : leastα(f) = γ +m ̸= α.

Then f /∈
∩

β∈α Aβ. Hence γ+m is the least β such that f /∈ Aβ. Since m is odd, f ∈ dk(A⃗).

Subsubcase b : leastα(f) = γ +m = α.

Then f ∈
∩

β∈α Aβ, or f /∈
∩

β∈α Aβ and γ+m is the least β such that f /∈ Aβ. Since m and

α are odd, f ∈ dk(A⃗).

Case 2 : s∗ is a winning strategy for II∗ for G(
∪

odd n Tail (Ψα, n,X
ω);T ).

Show s∗ is a winning strategy for II for G(dk(A⃗);Xω). Since f⌢g is according to s∗, f⌢g /∈∪
odd n Tail (Ψα, n,X

ω). Thus for all odd n ∈ ω, f⌢g /∈ Tail (Ψα, n,X
ω) = Ψ−1

α (n) × [Tn].

Hence f /∈ Ψ−1
α (n) for all odd n. Since Ψα is a function, there exists a unique even m such

280



that f ∈ Ψ−1
α (m). Thus leastα(f) = γ +m for some limit ordinal γ ∈ α or γ = 0.

Subcase 1 : α is even.

Subsubcase a : leastα(f) = γ +m ̸= α.

Then f /∈
∩

β∈α Aβ. Hence γ+m is the least β such that f /∈ Aβ. Since m is even, f /∈ dk(A⃗).

Subsubcase b : leastα(f) = γ +m = α.

Then f ∈
∩

β∈α Aβ, or f /∈
∩

β∈α Aβ and γ+m is the least β such that f /∈ Aβ. Since m and

α are even, f /∈ dk(A⃗).

Subcase 2 : α is odd.

Then leastα(f) = γ +m ̸= α since m is even. Thus f /∈
∩

β∈α Aβ. Hence γ +m is the least

β such that f /∈ Aβ. Since m is even, f ∈ dk(A⃗).

Hence G(dk(A⃗);Xω) is determined.

(⇐) Suppose G(dk(A⃗);Xω) is determined. Then I or II has a winning strategy s for

G(dk(A⃗);Xω). Define a strategy s∗ in T to be such that s∗ ↾ Xω = s and play anything after

that. Show s∗ is a winning strategy for G(
∪

odd n Tail (Ψα, n,X
ω);T ). Pick an arbitrary

h ∈ [T ] according to s∗. Then h ↾ ω is according to s.

Case 1 : s is a winning strategy for I for G(dk(A⃗);Xω).

Then h ↾ ω ∈ dk(A⃗).

Subcase 1 : α is even.

Then h ↾ ω /∈
∩

β∈α Aβ and the least β such that h ↾ ω /∈ Aβ is odd. Thus leastα(h ↾ ω) is

odd so that Ψα(h ↾ ω) = m for some odd m ∈ ω.

h ∈
(
Xω ∩Ψ−1

α (m)
)
× [Tm] = Tail (Ψα,m,Xω) .
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Since m is odd, h ∈
∪

odd n Tail (Ψα, n,X
ω).

Subcase 2 : α is odd.

Then f ∈
∩

β∈α Aβ, or h ↾ ω /∈
∩

β∈αAβ and the least β such that h ↾ ω /∈ Aβ is odd.

If f ∈
∩

β∈α Aβ, then leastα(h ↾ ω) = α. If h ↾ ω /∈
∩

β∈α Aβ and the least β such that

h ↾ ω /∈ Aβ is odd, then by definition, leastα(h ↾ ω) = β. In either case, m = Ψα(h ↾ ω) is

odd. Thus

h ∈
(
Xω ∩Ψ−1

α (m)
)
× [Tm] = Tail (Ψα,m,Xω) .

Since m is odd, h ∈
∪

odd n Tail (Ψα, n,X
ω).

Case 2 : s is a winning strategy for II for G(dk(A⃗);Xω).

Then h ↾ ω /∈ dk(A⃗).

Subcase 1 : α is even.

Then f ∈
∩

β∈α Aβ, or h ↾ ω /∈
∩

β∈αAβ and the least β such that h ↾ ω /∈ Aβ is even.

If f ∈
∩

β∈α Aβ, then leastα(h ↾ ω) = α. If h ↾ ω /∈
∩

β∈α Aβ and the least β such that

h ↾ ω /∈ Aβ is even, then by definition, leastα(h ↾ ω) = β. In either case, leastα(h ↾ ω) is

even. Thus Ψα(h ↾ ω) = m for some even m ∈ ω. Thus

h ∈
(
Xω ∩Ψ−1

α (m)
)
× [Tm] = Tail (Ψα,m,Xω) .

Since m is even, h /∈
∪

odd n Tail (Ψα, n,X
ω).

Subcase 2 : α is odd.

Then h ↾ ω /∈
∩

β∈α Aβ and the least β such that h ↾ ω /∈ Aβ is even. Thus leastα(h ↾ ω) is

even so that Ψα(h ↾ ω) = m for some even m ∈ ω. Thus

h ∈
(
Xω ∩Ψ−1

α (m)
)
× [Tm] = Tail (Ψα,m,Xω) .
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Since m is even, h /∈
∪

odd n Tail (Ψα, n,X
ω).

We obtain the following corollary from theorem 3.4.49.

Corollary 3.4.50. Suppose α ∈ ω1. Suppose Tsq satisfies the disjoint tree property. Then

Det G
(
Σ0

1;Tree2
(
X,Tsq,Γ(ω,Σ

0
1

(
Π1

1

)
), Xω

))
⇒ Det(α-Π1

1 ↾ Xω). ⊣

Proof.

Pick an arbitrary A ∈ α-Π1
1 ↾ Xω. Then there exists A⃗ = ⟨Aβ |β ∈ α⟩ witness that A =

dk(A⃗) ∈ α-Π1
1 ↾ Xω. By lemma 3.4.48, Ψα ∈ Γ (ω,Σ0

1 (Π
1
1)). Let T = TΨα,Xω

X,Tsq
. Then T ∈

Tree2(X,Tsq,Γ(ω,Σ
0
1 (Π

1
1)), X

ω). Since Tsq satisfies the disjoint tree property, by proposition

3.4.46,
∪

odd n∈ω Tail (Ψα, n,X
ω) ∈ Σ0

1 ↾ [T ]. Thus

G
(∪

odd n
Tail(Ψα, n,X

ω);T
)
∈ G

(
Σ0

1;Tree2
(
X,Tsq,Γ

(
ω,Σ0

1

(
Π1

1

))
, Xω

))
.

Hence G(
∪

odd n Tail (Ψα, n,X
ω);T ) is determined. By theorem 3.4.49, G(dk(A⃗);Xω) is

determined.

In particular, FWF ω contains Tsq which satisfies the disjoint tree property.

Corollary 3.4.51. Suppose α ∈ ω1.

Det G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

1

(
Π1

1

)
), Xω

))
⇒ Det(α-Π1

1 ↾ Xω). ⊣

Proof.

{∅, ⟨n⟩} ∈ FWF . Take Tn = {∅, ⟨n⟩} for all n ∈ ω. Then Tsq = ⟨Tn|n ∈ ω⟩ satisfies the

disjoint tree property. Since Tsq ∈ WFW ω, by observation 3.2.7, we have

Tree2
(
X,Tsq,Γ(ω,Σ

0
1

(
Π1

1

)
), Xω

)
⊆ Tree2

(
X,FWF ω,Γ(ω,Σ0

1

(
Π1

1

)
), Xω

)
.
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Recall notation 3.2.3. We use the fact that {Tsq} ⊆ FWF ω. Thus we have the result by

corollary 3.4.50.

Recall that in section 3.4.2.3, we obtained corollary 3.4.27:

Corollary 3.4.27. Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 1

disjoint tree property. Then for any complexity Ξ and for any Υ ⊇ {T0, T1},

Det G
(
Σ0

1;Tree2 (X,Υω, {χA |A ∈ Ξ ↾ Xω } , Xω)
)
⇒ Det (Ξ ↾ Xω) .

Thus,

Det G
(
Σ0

1;Tree2 (X,Υω,Γ(ω, 2-Ξ), Xω)
)
⇒ Det(Ξ ↾ Xω). ⊣

In particular, if we take Ξ to be α-Π1
1 for α ∈ ω, we have

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ(ω, α-Π1

1 ∧ co-α-Π1
1), X

ω
))
⇒ Det(α-Π1

1 ↾ Xω).

Question 12. Fix Tsq satisfying the disjoint tree property. Then both of

Det G
(
Σ0

1;Tree2
(
X,Tsq,Γ(ω,Σ

0
1

(
Π1

1

)
), Xω

))
Det G

(
Σ0

1;Tree2
(
X,Tsq,Γ(ω, α-Π

1
1 ∧ co-α-Π1

1), X
ω
))

implies Det(α-Π1
1 ↾ Xω). What is the relationship between Σ0

1 (Π
1
1) ↾ Xω and (α-Π1

1 ∧ co-α-Π1
1) ↾

Xω? More precisely, for some α,

(
α-Π1

1 ∧ co-α-Π1
1

)
↾ Xω ⊊ Σ0

1

(
Π1

1

)
↾ Xω or

(
α-Π1

1 ∧ co-α-Π1
1

)
↾ Xω = Σ0

1

(
Π1

1

)
↾ Xω ? ⊣

Getting the determinacy of games on a Tree2 collection from the determinacy of games

on X<ω (Reversed direction of section 3.4)
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3.5 Getting the determinacy of games on a Tree2 col-

lection from the determinacy of games on X<ω (Re-

versed direction of section 3.4)

In section 3.4, we obtained the determinacy of games on X<ω from the determinacy of games

on a certain Tree2 collection. In this section, we will focus on the other direction, in some

cases, results from section 3.4, leading to the determinacy equivalences. This section will be

the Type 2 tree version of section 2.5.

Throughout this section, we will use the same notation An and An
g we defined on definition

2.5.2 even if it is defined over a Type 2 tree. (Recall that in section 3.4, we defined notation

with “superscript 2” to represent that the set is defined on a Type 2 tree. We will avoid

using “superscript 2” to simplify the notation.)

In section 3.5.1 through section 3.5.3, we will obtain level by level results for the deter-

minacy of games on a certain Tree2 collection with FWF and CWF from the determinacy

of games on X<ω (recall notation 1.5.11 of FWF and CWF below). Recall notation 1.5.11

on page 44.

Notation 1.5.11. Let WF be the set of nonempty well-founded trees. Let CWF ⊆ WF

be the set of nonempty well founded trees such that each move is from some countable set.

Similarly, let FWF ⊆ CWF be the set of nonempty well-founded trees such that each move

is from some finite set. ⊣

In section 3.5.1, we will give definitions and notations for Type 2 trees which are similar

to the one in section 2.5.1 for Type 1 trees. We will set up all the notations in this section;
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e.g., suppose Tsq = ⟨Tn |n ∈ ω ⟩ ∈ WF ω. Given A ⊆ [TΨ,B
X,Tsq

], we will define the following

notations:

• An for all n ∈ ω.

• A∅.

• An
g for all n ∈ ω and g ∈ [Tn].

• An
p for all n ∈ ω and p ∈ Tn.

We will use these notations in the later sections.

In section 3.5.2, we will consider open games on a certain Tree2 collection and in section

3.5.3, we will consider Borel games on a certain Tree2 collection. In section 3.5.4, we will

consider projective games on a certain Tree2 collection. The proofs for these sections are

similar to the one in section 2.5.2, 2.5.3 and 2.5.4 respectively. The key to this direction is

that we will take any Tsq = ⟨Tn|n ∈ ω⟩ with each Tn being well-founded and each move is

from a finite or a countable set.

The way we obtained the determinacy results in sections 3.5.1 through 3.5.4 are using

the fact that each TΨ,B
X,Tsq

in the Tree2 collection having Tsq = ⟨Tn|n ∈ ω⟩ ∈ CWF ω, i.e.,

1. each Tn is well-founded,

2. for every position p ∈ Tn\[Tn], the set of moves at p is countable.

In section 3.5.5, we will observe examples of open games on particular Tree2 collections. In

section 3.5.5.1, we will observe particular examples of the case for a Tree2 collection does

not satisfy the condition (1). In section 3.5.5.2, we will observe particular examples of the
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case for a Tree2 collection does not satisfy the condition (2). This section corresponds to

section 2.5.4 on page 183 for Type 1 trees.
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3.5.1 Getting the determinacy of games on a Tree2 collection with

FWF and CWF from the determinacy of games on X<ω

Notation 3.5.1. (Definition of Tree2 collection with/over FWF and CWF )

Let T2 be a Tree2 collection. Suppose for every Type 2 tree TΨ,B
X,Tsq

∈ T2, Tsq ∈ FWF ω.

Then we say T2 is a “Tree2 collection with/over FWF”. Similarly, if for every Type 2 tree

TΨ,B
X,Tsq

∈ T2, Tsq ∈ CWF ω, then we say T2 is a “Tree2 collection with/over CWF”. ⊣

In sections 3.5.2 through 3.5.4, we will obtain level by level results for the determinacy of

games on a certain Tree2 collection with FWF and CWF from the determinacy of games

on X<ω. In section 3.5.2, we will obtain the determinacy of open games on a certain Tree2

collection with FWF and CWF from the determinacy of games on X<ω. In section 3.5.3,

we will obtain the determinacy of Borel games on a certain Tree2 collection with FWF

and CWF from the determinacy of games on X<ω. In section 3.5.4, we will obtain the

determinacy of projective games on a certain Tree2 collection with FWF and CWF from

the determinacy of games on X<ω. In this section, we will give definitions and some lemmas

which we will use throughout sections 3.5.2 through 3.5.4.

In this section, we will discuss results similar to section 2.5.1 by replacing all Y ≤n to [Tn].

We will modify the notation in section 2.5.1 for Type 2 trees. The difference between Type

1 trees and Type 2 trees will appear in lemma 2.5.11 and lemma 3.5.11 for the countable tail

trees.

For each Type 2 tree TΨ,B
X,Tsq

and A ⊆ [TΨ,B
X,Tsq

], we will find A∗ ⊆ Xω which will satisfy the

following:
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f ∈ A∗ if and only if

there is a winning strategy at f in the Type 2 tree TΨ,B
X,Tsq

for G(A;TΨ,B
X,Tsq

).

We will describe our A∗. Recall from page 215,

[TΨ,B
X,Tsq

] =
∪

n∈ω
((B ∩Ψ−1(n))× [Tn])∪̇(Xω\B).

We will split A into pairwise disjoint pieces A∅ and An for n ∈ ω. A∅ will be a subset of

Xω\B and An will be a subset of B for each n ∈ ω. Then we will define An
g for each n ∈ ω

and g ∈ [Tn] such that if a play f is in An
g , then f⌢g will be in A. Then, by backwards

induction, we will define An
∅ from {An

g |g ∈ [Tn]} using unions and intersections. (For the

cases that we are interested, it will be the countable unions and intersections.) Whenever a

play f of A∗ is in An
∅ , there is a canonical strategy at f to get into A. Let A∗ =

∪
n∈ω A

n
∅ ∪A∅.

We will show that:

• if f ∈ A∗, then I has a winning strategy at f to get into A.

• if f /∈ A∗, then II has a winning strategy at f to avoid A.

The following is a Type 2 tree version of definition 2.5.2 on page 138.

Definition 3.5.2. Suppose A ⊆ [TΨ,B
X,Tsq

]. For each n ∈ ω, define

An = A ∩ ((B ∩Ψ−1(n))× [Tn]),

A∅ = A ∩ (Xω\B).

Then A =
∪

n∈ω A
n∪̇A∅. ⊣

In definition 3.5.3, we will define An
g ⊆ Xω as a collection of f ∈ Xω such that f⌢g ∈ An.

The following is a Type 2 tree version of definition 2.5.3 on page 138.
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Definition 3.5.3. Suppose A ⊆ [TΨ,B
X,Tsq

] and assume A∅, A
n for all n ∈ ω defined in definition

3.5.2. For every n ∈ ω and g ∈ [Tn], define

An
g = {f ∈ Xω |f⌢g ∈ An} . ⊣

Since An ⊆ (B ∩Ψ−1(n))× [Tn], A
n
g ⊆ B ∩Ψ−1(n) for every g ∈ [Tn].

Recall notation 3.4.18.

Notation 3.4.18. Suppose for each n ∈ ω, Tn is a tree. For each n ∈ ω and for any p ∈ Tn,

define

Mn
p = {m |p⌢⟨m⟩ ∈ Tn} . ⊣

Suppose Tsq = ⟨Tn |n ∈ ω ⟩ ∈ WF ω. Then each Tn is a nonempty well-founded tree.

In definition 3.5.4, by backwards induction, we will define for each i ∈ lh(g), An
g↾i from

{An
(g↾i)⌢⟨m⟩|m ∈Mn

g↾i}. The following is a Type 2 tree version of definition 2.5.4 on page 139.

Definition 3.5.4. Let Tsq = ⟨Tn |n ∈ ω ⟩ ∈ WF ω. Suppose A ⊆ [TΨ,B
X,Tsq

]. Define

An
p

df
=


∪

m∈Mn
p

An
p⌢⟨m⟩ if lh (p) is even,

∩
m∈Mn

p

An
p⌢⟨m⟩ if lh (p) is odd.

Since Tn is well-founded, each An
p is well-defined. ⊣

Note that for all p ∈ Tn, we have An
p . Definition 3.5.3 applies if p ∈ [Tn].

The following is a Type 2 tree version of observation 2.5.5 on page 139.

Observation 3.5.5. Suppose A ⊆ [TΨ,B
X,Tsq

] and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ WF ω. Then for all

n ∈ ω and for all p ∈ Tn,

An
p ⊆ B ∩Ψ−1(n). ⊣
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Proof.

Suppose Tsq = ⟨Tn |n ∈ ω ⟩ ∈ WF ω. Then for all n ∈ ω, Tn ∩ [Tn] ̸= ∅. Fix n ∈ ω. Let

p ∈ Tn. We prove this by backwards induction on the length of p.

Base case : p ∈ [Tn].

Then we have An
p = {f ∈ Xω |f⌢p ∈ An} ⊆ B ∩Ψ−1(n) since An ⊆ (B ∩Ψ−1(n))× [Tn].

Induction step : As an induction hypothesis, assume that for all p ∈ Tn, if lh(p) = l+ 1,

then An
p ⊆ B∩Ψ−1(n). Suppose lh(p) = l. Show An

p ⊆ B∩Ψ−1(n). Pick an arbitrary f ∈ An
p .

Case 1 : l is even. Then An
p =

∪
m∈Mn

p

An
p⌢⟨m⟩. Then f ∈ An

p⌢⟨m⟩ for some m ∈ Mn
p .

Since lh(p⌢⟨m⟩) = l + 1, by induction hypothesis, we have An
p⌢⟨m⟩ ⊆ B ∩ Ψ−1(n). Thus

f ∈ B ∩Ψ−1(n). Since f ∈ An
p is arbitrary, An

p ⊆ B ∩Ψ−1(n).

Case 2 : l is odd. Then An
p =

∩
m∈Mn

p

An
p⌢⟨m⟩. Then f ∈ An

p⌢⟨m⟩ for every m ∈ Mn
p . Since

lh(p⌢⟨m⟩) = l+1 for every m ∈Mn
p , by induction hypothesis, we have An

p⌢⟨m⟩ ⊆ B∩Ψ−1(n)

for every m ∈Mn
p . Thus f ∈ B ∩Ψ−1(n). Since f ∈ An

p is arbitrary, An
p ⊆ B ∩Ψ−1(n).

For each strategy s∗ on X<ω we define the canonical strategy s on a Type 2 tree T . First,

we define the canonical strategy for player I. This is a Type 2 tree version of definition 2.5.6

on page 140.

Definition 3.5.6. (Definition of the canonical tail strategy s for player I)

Fix a Type 2 tree T = TΨ,B
X,Tsq

. Let SI(X<ω) be the set of strategies for I on X<ω and let

S2
I (T ) be the set of strategies for I on T (we use the “superscript 2” to represent a Type 2

tree). Define

φ2
I : SI (X<ω)→ S2

I (T ) .

For each s∗ ∈ SI(X<ω), Define s = φ2
I(s

∗) as follows: For p ∈ T\[T ] such that either p is
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finite and p ∈ dom(s∗), or p is infinite and lh(p) is even,

s(p)=



s∗(p) if p finite,

µm∈MΨ(p↾ω)
p

(
p↾ω∈AΨ(p↾ω)

p↾[ω,lh(p))⌢⟨m⟩

)
16

if p↾ω∈B and

p↾ω∈AΨ(p↾ω)
p↾[ω,lh(p))=

∪
m∈MΨ(p↾ω)

p

A
Ψ(p↾ω)
p↾[ω,lh(p))⌢⟨m⟩

,

µm(m∈MΨ(p↾ω)
p ) otherwise,17

when M
Ψ(p↾ω)
p is well-orderable. Then s is a strategy for I for T .

(We define for the case that M
Ψ(p↾ω)
p is well-orderable. See footnote (16) for the case that

M
Ψ(p↾ω)
p is not well-orderable.) ⊣

The following is a Type 2 tree version of lemma 2.5.7 on page 140.

Lemma 3.5.7. Fix a Type 2 tree T = TΨ,B
X,Tsq

and A ⊆ [T ]. Suppose I∗ has a winning

strategy s∗ for G(
∪

n∈ω A
n
∅ ∪ A∅;X

<ω). Then the canonical tail strategy s = φ2
I(s

∗) is a

winning strategy for I for G(A;T ). ⊣

Proof.

Pick an arbitrary h ∈ [T ] = [TΨ,B
X,Tsq

] according to s. Show h ∈ A. Since h ↾ ω is according

to s, h ↾ ω is according to s∗. Since s∗ is a I∗’s winning strategy for G(
∪

n∈ω A
n
∅ ∪A∅;X

<ω),

h ↾ ω ∈
∪

n∈ω A
n
∅ ∪ A∅.

Case 1 : h ↾ ω ∈ B.

16µ represents “the least”. If M
Ψ(p↾ω)
p is well-orderable, fix a well-ordering of M

Ψ(p↾ω)
p . Otherwise, pick

any m ∈M
Ψ(p↾ω)
p such that p ↾ ω ∈ A

Ψ(p↾ω)

p↾[ω,lh(p))⌢⟨m⟩
.

17This otherwise case does not occur for plays of interest. If M
Ψ(p↾ω)
p is not well-orderable, pick any

m ∈M
Ψ(p↾ω)
p .
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Then h ↾ ω /∈ A∅. By observation 3.5.5, h ↾ ω /∈ Al
∅ for any l ̸= Ψ(h ↾ ω). Thus h ↾ ω ∈

A
Ψ(h↾ω)
∅ . Since h is according to the canonical tail strategy s = φ2

I(s
∗) for I, h ↾ ω ∈ A

Ψ(h↾ω)
⟨h(ω)⟩ .

Since lh(h ↾ (ω + 1)) = ω + 1, by definition, A
Ψ(h↾ω)
⟨h(ω)⟩ =

∩
m∈MΨ(h↾ω)

⟨h(ω)⟩
An

⟨h(ω)⟩⌢⟨m⟩. Thus for any

II’s move m ∈ M
Ψ(h↾ω)
⟨h(ω)⟩ , h ↾ ω ∈ A

Ψ(h↾ω)
⟨h(ω),m⟩. In particular, h ↾ ω ∈ A

Ψ(h↾ω)
⟨h(ω),h(ω+1)⟩. Repeat

this argument. Eventually, we get h ↾ ω ∈ A
Ψ(h↾ω)
h↾[ω,lh(h)). Thus h = (h ↾ ω)⌢h ↾ [ω, lh(h)) ∈

AΨ(h↾ω) ⊆ A.

Case 2 : h ↾ ω /∈ B.

By observation 3.5.5, h ↾ ω /∈ An
∅ for any n ∈ ω. Thus h = h ↾ ω ∈ A∅ ⊆ A.

In either case, h ∈ A. Hence the canonical tail strategy s = φI(s
∗) is a winning strategy

for I for G(A;T ).

Now, we define the canonical strategy for player II. The following is a Type 2 tree

version of definition 2.5.8 on page 141.

Definition 3.5.8. (Definition of the canonical tail strategy s for player II)

Fix a Type 2 tree T = TΨ,B
X,Tsq

. Let SII(X<ω) be the set of strategies for II on X<ω and let

S2
II(T ) be the set of strategies for II on T . Define

φ2
II : SII (X<ω)→ S2

II (T ) .

For each s∗ ∈ SII(X<ω), define s = φ2
II(s

∗) as follows: For p ∈ T\[T ] such that either p is
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finite and p ∈ dom(s∗), or p is infinite and lh(p) is odd,

s(p)=



s∗(p) if p finite,

µm∈MΨ(p↾ω)
p

(
p↾ω /∈AΨ(p↾ω)

p↾[ω,lh(p))⌢⟨m⟩

)
18

if p↾ω∈B and

p↾ω /∈AΨ(p↾ω)
p↾[ω,lh(p))=

∩
m∈MΨ(p↾ω)

p

A
Ψ(p↾ω)
p↾[ω,lh(p))⌢⟨m⟩

,

µm(m∈MΨ(p↾ω)
p ) otherwise,19

when M
Ψ(p↾ω)
p is well-orderable. Then s is a strategy for II for T .

(We define for the case that M
Ψ(p↾ω)
p is well-orderable. See footnote (18) for the case that

M
Ψ(p↾ω)
p is not well-orderable.) ⊣

The following is a Type 2 tree version of lemma 2.5.9.

Lemma 3.5.9. Fix a Type 1 tree T = TΨ,B
X,Tsq

and A ⊆ [T ]. Suppose s∗ is a II∗’s winning

strategy for G(
∪

n∈ω A
n
∅ ∪A∅;X

<ω). Then the canonical tail strategy s = φ2
II(s

∗) is a winning

strategy for II for G(A;T ). ⊣

Proof.

Pick an arbitrary h ∈ [T ] = [TΨ,B
X,Tsq

] according to s. Show h /∈ A. Then h ↾ ω is according to

s∗. Since s∗ is a II∗’s winning strategy for G(
∪

n∈ω A
n
∅ ∪ A∅;X

<ω), h ↾ ω /∈
∪

n∈ω A
n
∅ ∪ A∅.

Case 1 : h ↾ ω ∈ B.

Since h ↾ ω /∈
∪

n∈ω A
n
∅ ∪ A∅, h ↾ ω /∈ A

Ψ(h↾ω)
∅ . By definition, A

Ψ(h↾ω)
∅ =

∪
m∈MΨ(p↾ω)

∅
A

Ψ(h↾ω)
⟨m⟩ .

Thus for any I’s move m ∈ M
Ψ(p↾ω)
∅ , h ↾ ω /∈ A

Ψ(h↾ω)
⟨m⟩ . In particular, h ↾ ω /∈ A

Ψ(h↾ω)
⟨h(ω)⟩ .

18µ represents “the least”. If M
Ψ(p↾ω)
p is well-orderable, fix a well-ordering of Y . Otherwise, pick any

m ∈M
Ψ(p↾ω)
p such that p ↾ ω /∈ A

Ψ(p↾ω)

p↾[ω,lh(p))⌢⟨m⟩
.

19This otherwise case does not occur for plays of interest. If M
Ψ(p↾ω)
p is not well-orderable, pick any

m ∈M
Ψ(p↾ω)
p .
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By definition, A
Ψ(h↾ω)
⟨h(ω)⟩ =

∩
m∈MΨ(p↾ω)

⟨h(ω)⟩
An

⟨h(ω)⟩⌢⟨m⟩. Since h is according to the canonical tail

strategy s = φ2
II(s

∗) for II, h ↾ ω /∈ A
Ψ(h↾ω)
⟨h(ω),h(ω+1)⟩. Repeat this argument. Eventually, we

get h ↾ ω /∈ A
Ψ(h↾ω)
h↾[ω,lh(h)). Thus h = (h ↾ ω)⌢h ↾ [ω, lh(h)) /∈ AΨ(h↾ω). By observation 3.5.5,

h ↾ ω /∈ Al
∅ for any l ̸= Ψ(h ↾ ω). Hence h /∈

∪
n∈ω A

n∪̇A∅ = A.

Case 2 : h ↾ ω /∈ B.

Since h ↾ ω /∈
∪

n∈ω A
n
∅ ∪ A∅, h = h ↾ ω /∈ A∅. By observation 3.5.5, h ↾ ω /∈ An

∅ for any

n ∈ ω. Hence h /∈
∪

n∈ω A
n∪̇A∅ = A.

In either case, h /∈ A. Hence the canonical tail strategy s = φ2
II(s

∗) is a winning strategy

for II for G(A;T ).

Let φ2 = φ2
I∪̇φ2

II . Then φ2 takes strategies on X<ω to strategies on TΨ,B
X,Tsq

. By lemmas

3.5.7 and 3.5.9, we have the following. The following is a Type 2 tree version of theorem

2.5.10 on page 143.

Theorem 3.5.10. If G(
∪

n∈ω A
n
∅ ∪ A∅;X

ω) is determined, then G(A;TΨ,B
X,Tsq

) is determined.

⊣

The following is a Type 2 tree version of lemma 2.5.11 on page 143.

Lemma 3.5.11. Suppose n,m ∈ ω, m > 1 and α ∈ ω1.

1. If for all g ∈ [Tn], A
n
g ∈ Σ0

α ↾ Xω and Tn ∈ FWF , then An
∅ ∈ Σ0

α ↾ Xω.

2. If for all g ∈ [Tn], A
n
g ∈ Σ0

α ↾ Xω and Tn ∈ CWF , then An
∅ ∈ B ↾ Xω.

3. If for all g ∈ [Tn], A
n
g ∈ Σ1

m ↾ Xω and Tn ∈ CWF , then An
∅ ∈ Σ1

m ↾ Xω.

4. If for all g ∈ [Tn], A
n
g ∈ Π1

m ↾ Xω and Tn ∈ CWF , then An
∅ ∈ Π1

m ↾ Xω.
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5. If for all g ∈ [Tn], A
n
g ∈∆1

m ↾ Xω and Tn ∈ CWF , then An
∅ ∈∆1

m ↾ Xω.

6. If Λ is an algebra, for all g ∈ [Tn], A
n
g ∈ Λ ↾ Xω and Tn ∈ FWF , then An

∅ ∈ Λ ↾ Xω.

7. If Λ is a σ-algebra, for all g ∈ [Tn], A
n
g ∈ Λ ↾ Xω and Tn ∈ CWF , then An

∅ ∈ Λ ↾ Xω.

⊣

Proof.

Fix n ∈ ω. Notice that FWF ⊆ WF and CWF ⊆ WF so that for all (1)-(7), Tn is well-

founded. Thus for each n ∈ ω, there is a rank function of Tn defined in definition 1.2.6 on

page 9.

Definition 1.2.6. (Definition of the rank of a well-founded tree)

Suppose T is a well-founded tree. Then [T ] ⊆ T . Define the rank of T recursively.

rankT : T → ω

p 7→


0 if p ∈ [T ] ,

sup {rankT (p⌢⟨k⟩) + 1 | p⌢⟨k⟩ ∈ T } if p ∈ T\ [T ] . ⊣

Recall definition 3.5.4.

Definition 3.5.4. Let Tsq = ⟨Tn |n ∈ ω ⟩ ∈ WF ω. Suppose A ⊆ [TΨ,B
X,Tsq

]. Define

An
p

df
=


∪

m∈Mn
p

An
p⌢⟨m⟩ if lh (p) is even,

∩
m∈Mn

p

An
p⌢⟨m⟩ if lh (p) is odd.

Since Tn is well-founded, each An
p is well-defined. ⊣

Fix n ∈ ω. Show (1). Assume all g ∈ [Tn], A
n
g ∈ Σ0

α ↾ Xω.
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Show that for any p ∈ Tn, A
n
p ∈ Σ0

α ↾ Xω by backwards induction on the rank of Tn.

Base Case : rank (p) = 0.

Then p ∈ [Tn]. Thus A
n
p ∈ Σ0

α ↾ Xω.

Induction Step : Assume, as an induction hypothesis, ∀q ∈ Tn, if rank (q) < rank (p)

then An
q ∈ Σ0

α ↾ Xω.

Show that An
p ∈ Σ0

α ↾ Xω. Note that ∀k ∈ Mn
p , rank (p

⌢⟨k⟩) < rank (p). Thus, by

induction hypothesis, ∀k ∈ Mn
p , A

n
p⌢⟨k⟩ ∈ Σ0

α ↾ Xω. Since Tn ∈ FWF , for each p ∈ Tn, M
n
p

is finite.

Case 1 : lh (p) is even.

Then An
p =

∪
k∈Mn

p
An

p⌢⟨k⟩ ∈ Σ0
α ↾ Xω since Σ0

α ↾ Xω is closed under finite unions.

Case 2 : lh (p) is odd.

Then An
p =

∩
k∈Mn

p
An

p⌢⟨k⟩ ∈ Σ0
α ↾ Xω since Σ0

α ↾ Xω is closed under finite intersections.

In particular, when k = 0, An
∅ ∈ Σ0

α ↾ Xω.

Show (2). Assume all g ∈ [Tn], A
n
g ∈ Σ0

α ↾ Xω. Since Tn ∈ CWF , for each p ∈ Tn, M
n
p is

countable. By the similar argument as above (replace Σ0
α to B and finite to countable), we

have An
∅ ∈ B ↾ Xω.

Show (3). Assume all g ∈ [Tn], A
n
g ∈ Σ1

m ↾ Xω. Since Tn ∈ CWF , for each p ∈ Tn, M
n
p

is countable. Since Σ1
m ↾ Xω is closed under countable unions and countable intersections,

by the similar argument as above (replace Σ0
α to Σ1

m and finite to countable), we have

An
∅ ∈ Σ1

m ↾ Xω. Similarly for (4), the case for Π1
m and (5), the case for ∆1

m.

Show (6). Suppose Λ is an algebra and each An
g ∈ Λ ↾ Xω. Since Tn ∈ FWF , for each

p ∈ Tn, M
n
p is finite. Since Λ is closed under countable unions and countable intersections,

by the similar argument as above (replace Σ0
α to Λ), we have An

∅ ∈ Λ ↾ Xω.
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Show (7). Suppose Λ is a σ-algebra and each An
g ∈ Λ ↾ Xω. Since Tn ∈ CWF , for

each p ∈ Tn, M
n
p is countable. Since Λ is closed under countable unions and countable

intersections, by the similar argument as above (replace Σ0
α to Λ and finite to countable),

we have An
∅ ∈ Λ ↾ Xω.

Next, we will find the complexity of A∅ and An
g for each g ∈ Tn. This is a Type 2 tree

version of lemma 2.5.12. The proof is similar to the proof of lemma 2.5.12.

Lemma 3.5.12. Suppose Λ0 and Λ1 are complexities. Let Ψ ∈ Γ (ω,Λ0) , B ∈ Λ1 ↾ Xω,

Tsq = ⟨Tn |n ∈ ω ⟩ ∈ CWF ω and A ∈ Σ0
1 ↾ [TΨ,B

X,Tsq]. Then for every n ∈ ω and g ∈ [Tn],

An
g ∈ (Σ0

1 ∧ Λ0 ∧ Λ1) ↾ Xω and A∅ ∈ (Σ0
1 ∧ co-Λ1) ↾ Xω. ⊣

Proof.

Pick arbitrary n ∈ ω and g ∈ [Tn]. Then g ̸= ∅. Since A ∈ Σ0
1 ↾ [TΨ,B

X,Tsq
],

An = A ∩ ((B ∩Ψ−1(n))× [Tn]) ∈ Σ0
1 ↾ (B ∩Ψ−1(n))× [Tn].

Thus there exists ⟨Oi |i ∈ ω ⟩ such that An =
∪

i∈ω Oi where each Oi is a basic open neigh-

borhood of (B ∩Ψ−1 (n))× [Tn], i.e., there exists pi ∈ X<ω and qi ∈ [Tn] such that

Oi = {h ∈ (B ∩Ψ−1 (n))× [Tn] | h ↾ ω ⊇ pi ∧ h ↾ [ω, lh (h)) ⊇ qi}.

Since each Tn ∈ CWF , each tail has finite length and for each p ∈ Tn, E
n
p is countable.

Thus there are countably many tails. Hence each Oi can be written as
∪

j∈ω Ôi,j where

each Ôi,j = {h ∈ (B ∩ Ψ−1 (n)) × [Tn] | h ↾ ω ⊇ p̂i,j = pi ∧ h ↾ [ω, lh(h)) = q̂i,j} for some

q̂i,j ∈ [Tn]. Then O =
∪

i∈ω Oi =
∪

i∈ω
∪

j∈ω Ôi,j =
∪

k∈ω Ôk where Ôk’s enumerate Ôi,j’s, etc.

Ôk = {h ∈ (B ∩Ψ−1 (n))× [Tn] | h ↾ ω ⊇ p̂k ∧ h ↾ [ω, lh(h)) = q̂k}. Note that Ôk may not be
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open.

Define G = {k ∈ ω |q̂k = g}.

Then

An
g

df
= {f ∈ Xω |f⌢g ∈ An}

=

{
f ∈ Xω

∣∣∣∣∣f⌢g ∈
∪
k∈ω

Ôk

}
=
∪
k∈ω

{
f ∈ Xω

∣∣∣f⌢g ∈ Ôk

}
=
∪
k∈G

{
f ∈ Xω

∣∣∣f⌢g ∈ Ôk

}
=
∪
k∈G

{f ∈ Xω |f ⊇ p̂k }︸ ︷︷ ︸
Σ0

1↾Xω

∩Ψ−1 (n)︸ ︷︷ ︸
Λ0↾Xω

∩ B︸︷︷︸
Λ1↾Xω

∈
(
Σ0

1 ∧ Λ0 ∧ Λ1

)
↾ Xω

Now, we consider A∅. Define J = {k ∈ ω |q̂k = ∅}. Then for all f ∈ Xω,

f ∈ A∅ ⇔ f ∈ (Xω\B)︸ ︷︷ ︸
co-Λ1↾Xω

∩A⇔ f ∈ Xω\B︸ ︷︷ ︸
co-Λ1↾Xω

∧∃k ∈ J (f ⊇ p̂k)︸ ︷︷ ︸
Σ0

1↾Xω

.

Thus A∅ ∈ (Σ0
1 ∧ co-Λ1) ↾ Xω.

By lemmas 3.5.12 and 3.5.11, we obtain the complexity of A∅ and An
g for all n ∈ ω and

g ∈ [Tn] from the complexity of B and Ψ. In the next section, we will obtain the determinacy

of open games on Tree2 collections from the determinacy of games on X<ω by using theorem

3.5.10 lemma 3.5.11 and lemma 3.5.12.
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3.5.2 Obtaining the open determinacy on Tree2 collection with

FWF and CWF from the determinacy of games on X<ω

In section 3.5.1, we defined notations and prove some lemmas. In this section, we will obtain

open determinacy on a certain Tree2 collection with FWF and CWF from the determinacy

of games on X<ω by using theorem 3.5.10, lemma 3.5.11 and lemma 3.5.12. The proof of

this section is similar to the one in section 2.5.2. The difference between Type 1 trees and

Type 2 trees will appear in proofs of lemma 2.5.12 and lemma 3.5.12 under the discussion

about the basic open neighborhood.

The main theorems of this section are theorem 3.5.13 and theorem 3.5.15. The following

is a Tree2 version of theorem 2.5.18 on page 156.

Theorem 3.5.13. Suppose β, γ ∈ ω1. If β, γ > 1, then

Det(∆0
max{β,γ} ↾ Xω)⇒ Det G

(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. (3.9)

If β < γ,

Det
(
∆0

γ ↾ Xω
)
⇒


Det G

(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
(3.10)

Det G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
(3.11)

If β ≥ γ,

Det
((
Σ0

β ∨Π0
β

)
↾ Xω

)
⇒


Det G

(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
(3.12)

Det G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
(3.13)

Also,

Det
(
Σ0

1 ↾ Xω
)
⇒ Det G

(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
. (3.14)

⊣

300



The implications (3.10) through (3.13) state that we set

T2 = Tree2
(
X,FWF ω,Γ(ω,∆0

γ),
(
Σ0

β ∪Π0
β

)
↾ Xω

)
,

then Det G (Σ0
1; T2) follows from

Det
(
∆0

γ ↾ Xω
)

when β < γ,

Det
((
Σ0

β ∨Π0
β

)
↾ Xω

)
when β ≥ γ.

Proof.

Show the implication (3.9). Fix β, γ ∈ ω1 greater than 1. Pick an arbitrary Type 2 tree

TΨ,B
X,Tsq

∈ Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

)
.

Then Ψ ∈ Γ
(
ω,∆0

γ

)
, B ∈ ∆0

β ↾ Xω and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ FWF ω. Pick an arbitrary

A ∈ Σ0
1 ↾ [TΨ,B

X,Tsq
]. AssumeDet(∆0

max{β,γ} ↾ Xω). By lemma 3.5.12, for all n ∈ ω and g ∈ [Tn],

each An
g ∈ ∆0

max{β,γ} ↾ Xω and A∅ ∈ ∆0
β ↾ Xω. Since for any p ∈ Tn each Mn

p is finite, each

An
∅ ∈∆0

max{β,γ} ↾ Xω. Thus
∪

n∈ω A
n
∅ ∪A∅ ∈∆0

max{β,γ} ↾ Xω. Hence G(
∪

n∈ω A
n
∅ ∪A∅;X

ω) is

determined. By theorem 3.5.10, G(A;TΨ,B
X,Tsq

) is determined. Therefore,

Det G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
.

The proofs for the implications (3.10) through (3.14) are similar. Fix a Type 2 tree TΨ,B
X,Tsq

in the appropriate Tree2 collection. We only need to check the complexity of
∪

n∈ω A
n
∅ ∪A∅.

For the implication (3.10), pick an arbitrary Type 2 tree

TΨ,B
X,Tsq

∈ Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
.

Then Ψ ∈ Γ
(
ω,∆0

γ

)
, B ∈ Σ0

β ↾ Xω and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ FWF ω. Pick an arbitrary

A ∈ Σ0
1 ↾ [TΨ,B

X,Tsq
]. By lemma 3.5.12, for all n ∈ ω and g ∈ [Tn], each An

g ∈ ∆0
γ ↾ Xω
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and A∅ ∈ Π0
β ↾ Xω. Since for any p ∈ Tn each Mn

p is finite, each An
∅ ∈ ∆0

γ ↾ Xω. Thus∪
n∈ω A

n
∅ ∪ A∅ ∈∆0

γ ↾ Xω.

For the implication (3.11), pick an arbitrary Type 2 tree

TΨ,B
X,Tsq

∈ Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Π
0
β ↾ Xω

)
.

Then Ψ ∈ Γ
(
ω,∆0

γ

)
, B ∈ Π0

β ↾ Xω and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ FWF ω. Pick an arbitrary

A ∈ Σ0
1 ↾ [TΨ,B

X,Tsq
]. By lemma 3.5.12, for all n ∈ ω and g ∈ [Tn], each An

g ∈ ∆0
γ ↾ Xω

and A∅ ∈ Σ0
β ↾ Xω. Since for any p ∈ Tn each Mn

p is finite, each An
∅ ∈ ∆0

γ ↾ Xω. Thus∪
n∈ω A

n
∅ ∪ A∅ ∈∆0

γ ↾ Xω.

For the implication (3.12), pick an arbitrary Type 2 tree

TΨ,B
X,Tsq

∈ Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
.

Then Ψ ∈ Γ
(
ω,∆0

γ

)
, B ∈ Σ0

β ↾ Xω and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ FWF ω. Pick an arbitrary

A ∈ Σ0
1 ↾ [TΨ,B

X,Tsq
]. By lemma 3.5.12, for all n ∈ ω and g ∈ [Tn], each An

g ∈ Σ0
β ↾ Xω

and A∅ ∈ Π0
β ↾ Xω. Since for any p ∈ Tn each Mn

p is finite, each An
∅ ∈ Σ0

β ↾ Xω. Thus∪
n∈ω A

n
∅ ∪ A∅ ∈ (Σ0

β ∨Π0
β) ↾ Xω.

For the implication (3.13), pick an arbitrary Type 2 tree

TΨ,B
X,Tsq

∈ Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Π
0
β ↾ Xω

)
.

Then Ψ ∈ Γ
(
ω,∆0

γ

)
, B ∈ Π0

β ↾ Xω and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ FWF ω. Pick an arbitrary

A ∈ Σ0
1 ↾ [TΨ,B

X,Tsq
]. By lemma 3.5.12, for all n ∈ ω and g ∈ [Tn], each An

g ∈ Π0
β ↾ Xω

and A∅ ∈ Σ0
β ↾ Xω. Since for any p ∈ Tn each Mn

p is finite, each An
∅ ∈ Π0

β ↾ Xω. Thus∪
n∈ω A

n
∅ ∪ A∅ ∈ (Σ0

β ∨Π0
β) ↾ Xω.
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For the implication (3.14), pick an arbitrary Type 2 tree

TΨ,B
X,Tsq

∈ Tree2
(
X,FWF ω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

)
. Then Ψ ∈ Γ (ω,∆0

1) , B ∈ ∆0
1 ↾ Xω and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ FWF ω. Pick an arbitrary

A ∈ Σ0
1 ↾ [TΨ,B

X,Tsq
]. By lemma 3.5.12, for all n ∈ ω and g ∈ [Tn],for all n ∈ ω and g ∈ [Tn],

each An
g ∈ Σ0

1 ↾ Xω and A∅ ∈ Σ0
1 ↾ Xω. Since for any p ∈ Tn each Mn

p is finite, each

An
∅ ∈ Σ0

1 ↾ Xω. Thus
∪

n∈ω A
n
∅ ∪ A∅ ∈ Σ0

1 ↾ Xω.

Combining corollary 3.4.33 on page 264 and theorem 3.5.13, we have the following. The

following is a Tree2 version of corollary 2.5.19 on page 159.

Corollary 3.5.14. Suppose β, γ ∈ ω1. Then for any β ≥ γ,

1⃝ Det G
(
Σ0

1;Tree2
(
X,FWF ω,Γ

(
ω,Σ0

β ∧Π0
β

)
,Π0

β ↾ Xω
))

2⃝ Det G
(
Σ0

1;Tree2
(
X,FWF ω,Γ

(
ω,Σ0

β ∧Π0
β

)
,Σ0

β ↾ Xω
))


⇒ 3⃝ Det((Σ0
β ∧Π0

β) ↾ Xω)

⇔ 4⃝ Det
((
Σ0

β ∨Π0
β

)
↾ Xω

)
⇒


5⃝ Det G

(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
.

6⃝ Det G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
.

That is : 1⃝ implies 3⃝, 2⃝ implies 3⃝, 3⃝ if and only if 4⃝ and 4⃝ implies both 5⃝ and 6⃝. ⊣

So far, we focused on getting the determinacy on Tree2 collections such that each Type

2 tree TΨ,B
X,Tsq

in the Tree2 collection satisfying Tsq ∈ FWF ω. Now, we consider Tree2

collections over CWF . The following is a Tree2 version of theorem 2.5.20 on page 160.
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Theorem 3.5.15. Suppose β, λ ∈ ω1. Then

Det (B ↾ Xω)⇒ Det G(Σ0
1;Tree2(X,CWF ω,Γ

(
ω,∆0

γ

)
,Σ0

β ↾ Xω)). ⊣

Proof.

Fix β, γ ∈ ω1. Assume Det(B ↾ Xω). Pick arbitrary Type 2 tree

TΨ,B
X,Tsq

∈ Tree2(X,CWF ω,Γ
(
ω,∆0

γ

)
,Σ0

β ↾ Xω).

Then Ψ ∈ Γ
(
ω,∆0

γ

)
, B ∈ Σ0

β ↾ Xω and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ CWF ω. Pick an arbitrary

A ∈ Σ0
1 ↾ [TΨ,B

X,Tsq
]. By Lemma 3.5.12, for all n ∈ ω and g ∈ [Tn], A

n
g ∈ Σ0

max{β,γ} ↾ Xω

and A∅ ∈ Σ0
1 ∧Π0

β ↾ Xω. Since Tsq ∈ CWF ω, each An
∅ ∈ B ↾ Xω by lemma 3.5.11. Thus∪

n∈ω A
n
∅ ∪ A∅ ∈ B ↾ Xω. Hence G(

∪
n∈ω A

n
∅ ∪ A∅;X

ω) is determined. By theorem 3.5.10,

G(A;TΨ,B
X,Y ) is determined. Therefore,

Det
(
Σ0

1;Tree2
(
X,CWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
.

Since β and γ are arbitrary, we have the following. The following is a Tree2 version of

corollary 2.5.25 on page 163.

Corollary 3.5.16. (Corollary to Theorem 3.5.15)

Det (B ↾ Xω)⇒ Det
(
Σ0

1;Tree2 (X,CWF ω,Γ(ω,B),B ↾ Xω)
)
. ⊣

The following is a Tree2 version of corollary 2.5.23 on page 162.

Corollary 3.5.17. Suppose Λ an algebra. Then

Det(Λ ↾ Xω)⇒ Det G
(
Σ0

1;Tree2 (X,FWF ω,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Proof.

Pick arbitrary Type 2 tree TΨ,B
X,Tsq

∈ Tree2 (X,FWF ω,Γ(ω,Λ),Λ ↾ Xω) . Then Ψ ∈ Γ(ω,Λ),
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B ∈ Λ ↾ Xω and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ FWF ω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Tsq
]. By

lemma 3.5.12, for all n ∈ ω and for all g ∈ [Tn], each An
g ∈ Λ ↾ Xω and since Λ is closed

under complement, A∅ ∈ Λ ↾ Xω. Since Λ is closed under finite unions and intersections,

each An
∅ ∈ Λ ↾ Xω. Thus

∪
n∈ω A

n
∅∪A∅ ∈ Λ ↾ Xω. Hence G(

∪
n∈ω A

n
∅∪A∅;X

ω) is determined.

By theorem 3.5.10, G(A;TΨ,B
X,Tsq

) is determined.

The following is a Tree2 version of corollary 2.5.24 on page 162.

Corollary 3.5.18. Suppose Λ is σ-algebra. Then

Det(Λ ↾ Xω)⇒ Det G
(
Σ0

1;Tree2 (X,CWF ω,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Proof.

Pick arbitrary TΨ,B
X,Tsq

∈ Tree2 (X,CWF ω,Γ(ω,Λ),Λ ↾ Xω). Then Ψ ∈ Γ(ω,Λ), B ∈ Λ ↾ Xω

and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ CWF ω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Tsq
]. By lemma 3.5.12,

for all n ∈ ω and for all g ∈ [Tn], each An
g ∈ Λ ↾ Xω and A∅ ∈ Λ ↾ Xω. Since Λ is a

σ-algebra, each An
∅ ∈ Λ ↾ Xω. Thus

∪
n∈ω A

n
∅ ∪ A∅ ∈ Λ ↾ Xω. Hence G(

∪
n∈ω A

n
∅ ∪ A∅;X

ω)

is determined. By theorem 3.5.10, G(A;TΨ,B
X,Tsq

) is determined.

So far, we focused on getting the determinacy on Tree2 collections such that each Type

2 tree TΨ,B
X,Tsq

in the Tree2 collection satisfying Tsq ∈ CWF ω, Ψ is a Borel function and B is

a Borel set. Now, we we focus on getting the determinacy on a Tree2 collection such that

each Type 2 tree TΨ,B
X,Tsq

in the Tree2 collection satisfying Tsq ∈ CWF ω, Ψ is a projective

function and B is a projective set. The following is a Tree2 version of theorem 2.5.26 on

page 163.
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Theorem 3.5.19. Suppose m,n ∈ ω\{0}.

Det(∆1
max{n,m} ↾ Xω)⇒ Det G

(
Σ0

1;Tree2
(
X,CWF ω,Γ(ω,∆1

m),∆
1
n ↾ Xω

))
. (3.15)

If n < m,

Det
(
∆1

m ↾ Xω
)
⇒


Det G

(
Σ0

1;Tree2
(
X,CWF ω,Γ(ω,∆1

m),Σ
1
n ↾ Xω

))
. (3.16)

Det G
(
Σ0

1;Tree2
(
X,CWF ω,Γ(ω,∆1

m),Π
1
n ↾ Xω

))
. (3.17)

If n ≥ m,

Det
((
Σ1

n ∨Π1
n

)
↾ Xω

)
⇒


Det G

(
Σ0

1;Tree2
(
X,CWF ω,Γ(ω,∆1

m),Σ
1
n ↾ Xω

))
. (3.18)

Det G
(
Σ0

1;Tree2
(
X,CWF ω,Γ(ω,∆1

m),Π
1
n ↾ Xω

))
. (3.19)

⊣

The implications (3.16) through (3.19) state that we set

T2 = Tree2
(
X,CWF ω,Γ(ω,∆1

m),
(
Σ1

n ∪Π1
n

)
↾ Xω

)
,

then Det G (Σ0
1; T2) follows from

Det (∆1
m ↾ Xω) when n < m,

Det ((Σ1
n ∨Π1

n) ↾ Xω) when n ≥ m.

Proof.

Show the implication (3.15). Fix n,m ∈ ω1 greater than 1. Pick an arbitrary Type 2 tree

TΨ,B
X,Tsq

∈ Tree2
(
X,CWF ω,Γ(ω,∆1

m),∆
1
n ↾ Xω

)
.

Then Tsq ∈ CWF ω, Ψ ∈ Γ (ω,∆1
m) and B ∈ ∆1

n ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾ [TΨ,B

X,Tsq
].

Assume Det(∆1
max{n,m} ↾ Xω). Since Tsq ∈ CWF ω, by lemma 3.5.12, for each i ∈ ω and

g ∈ [Ti], A
i
g ∈∆1

max{n,m} ↾ Xω and A∅ ∈∆1
n ↾ Xω. Since Tsq ∈ CWF ω, by lemma 3.5.11, each

Ai
∅ ∈∆1

max{n,m} ↾ Xω. Thus
∪

i∈ω A
i
∅ ∪A∅ ∈∆1

max{n,m} ↾ Xω. Hence G(
∪

i∈ω A
i
∅ ∪A∅;X

ω) is
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determined. By theorem 3.5.10, G(A;TΨ,B
X,Tsq

) is determined. Therefore, we have

Det G
(
Σ0

1;Tree2
(
X,CWF ω,Γ(ω,∆1

m),∆
1
n ↾ Xω

))
.

The proofs for the implications (3.16) through (3.19) are similar. Fix a Type 1 tree TΨ,B
X,Tsq

in the appropriate Tree2 collection. We only need to check the complexity of
∪

i∈ω A
i
∅ ∪A∅.

For the implication (3.16), pick an arbitrary Type 2 tree

TΨ,B
X,Tsq

∈ Tree2
(
X,CWF ω,Γ(ω,∆1

m),Σ
1
n ↾ Xω

)
.

Then Tsq ∈ CWF ω, Ψ ∈ Γ (ω,∆1
m) and B ∈ Σ1

n ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾

[TΨ,B
X,Tsq

]. Since Tsq ∈ CWF ω, by lemma 3.5.12, for each i ∈ ω and g ∈ [Ti], A
i
g ∈ ∆1

m ↾ Xω

and A∅ ∈ Π1
n ↾ Xω. Since Tsq ∈ CWF ω, by lemma 3.5.11, each Ai

∅ ∈ ∆1
m ↾ Xω. Thus∪

i∈ω A
i
∅ ∪ A∅ ∈∆1

m ↾ Xω.

For the implication (3.17), pick an arbitrary Type 2 tree

TΨ,B
X,Tsq

∈ Tree2
(
X,CWF ω,Γ(ω,∆1

m),Π
1
n ↾ Xω

)
.

Then Tsq ∈ CWF ω, Ψ ∈ Γ (ω,∆1
m) and B ∈ Π1

n ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾

[TΨ,B
X,Tsq

]. Since Tsq ∈ CWF ω, by lemma 3.5.12, for each i ∈ ω and g ∈ [Ti], A
i
g ∈ ∆1

m ↾ Xω

and A∅ ∈ Σ1
n ↾ Xω. Since Tsq ∈ CWF ω, by lemma 3.5.11, each Ai

∅ ∈ ∆1
m ↾ Xω. Thus∪

i∈ω A
i
∅ ∪ A∅ ∈∆1

m ↾ Xω.

For the implication (3.18), pick an arbitrary Type 2 tree

TΨ,B
X,Tsq

∈ Tree2
(
X,CWF ω,Γ(ω,∆1

m),Σ
1
n ↾ Xω

)
.

Then Tsq ∈ CWF ω, Ψ ∈ Γ (ω,∆1
m) and B ∈ Σ1

n ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾

[TΨ,B
X,Tsq

]. Since Tsq ∈ CWF ω, by lemma 3.5.12, for each i ∈ ω and g ∈ [Ti], A
i
g ∈ Σ1

n ↾ Xω
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and A∅ ∈ Π1
n ↾ Xω. Since Tsq ∈ CWF ω, by lemma 3.5.11, each Ai

∅ ∈ Σ1
n ↾ Xω. Thus∪

i∈ω A
i
∅ ∪ A∅ ∈ (Σ1

n ∨Π1
n) ↾ Xω.

For the implication (3.19), pick an arbitrary Type 2 tree

TΨ,B
X,Tsq

∈ Tree2
(
X,CWF ω,Γ(ω,∆1

m),Π
1
n ↾ Xω

)
.

Then Tsq ∈ CWF ω, Ψ ∈ Γ (ω,∆1
m) and B ∈ Π1

n ↾ Xω. Pick an arbitrary A ∈ Σ0
1 ↾

[TΨ,B
X,Tsq

]. Since Tsq ∈ CWF ω, by lemma 3.5.12, for each i ∈ ω and g ∈ [Ti], A
i
g ∈ Π1

n ↾ Xω

and A∅ ∈ Σ1
n ↾ Xω. Since Tsq ∈ CWF ω, by lemma 3.5.11, each Ai

∅ ∈ Π1
n ↾ Xω. Thus∪

i∈ω A
i
∅ ∪ A∅ ∈ (Σ1

n ∨Π1
n) ↾ Xω.

The following is a Tree2 version of corollary 3.5.20 on page 308.

Corollary 3.5.20. (Corollary to Theorem 3.5.19)

Det (2-Π1
1 ↾ Xω)⇒ Det G (Σ0

1;Tree2 (X,CWF ω,Γ(ω,∆1
1), (Σ

1
1 ∪Π1

1) ↾ Xω)). ⊣

By combining corollary 3.4.35 on page 265 and corollary 3.5.20, we have the following.

The following is a Tree2 version of corollary 2.5.28 on page 166.

Corollary 3.5.21. Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 1

disjoint tree property. Then for any Υ ⊇ {T0, T1},

1⃝ Det G (Σ0
1;Tree2 (X,Υω,Γ(ω, 2-Π1

1),Σ
1
1 ↾ Xω))

2⃝ Det G (Σ0
1;Tree2 (X,Υω,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω))


⇒ 3⃝ Det

(
2-Π1

1 ↾ Xω
)

⇒ 4⃝ Det G
(
Σ0

1;Tree1
(
X,CWF ω,Γ(ω,∆1

1),
(
Σ1

1 ∪Π1
1

)
↾ Xω

))
.

That is : 1⃝ implies 3⃝, 2⃝ implies 3⃝, and 3⃝ implies 4⃝. ⊣
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Question 13. With respect to corollary 3.5.21, does 4⃝ imply 1⃝ or 2⃝? ⊣
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3.5.3 Obtaining the determinacy of Borel games on a Tree2 col-

lection with FWF and CWF from the determinacy of Borel

games on X<ω

In section 3.5.2, we focused on obtaining the determinacy of open games on a certain Tree2

collection with FWF and CWF from the determinacy of games on X<ω. In this section, as

a general case of open games on a Tree2 collection, we will consider games which are more

higher complexity. The idea is similar as in section 2.5.3. The difference between Type 1

trees and Type 2 trees will appear in lemma 2.5.32 and lemma 3.5.25 under the discussion

about the basic open neighborhood.

The main theorems in this section are theorems 3.5.22 and 3.5.23. We will obtain level

by level results for the determinacy of Borel games on a Tree2 collection with FWF and

CWF from the determinacy of games on X<ω.

The following is a Tree2 version of theorem 2.5.29 on page 167.

Theorem 3.5.22. Suppose α, β, γ ∈ ω1 and α > 1. Then

Det(Σ0
max{β,γ}+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. (3.20)

Moreover, if β < γ, then

Det(Σ0
γ+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (3.21)

If β ≥ γ, then

Det(Σ0
(β+1)+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (3.22)

⊣
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The implications (3.21) and (3.22) states that when we set

T2 = Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
,

Det G (Σ0
α; T2) follows from

Det
(
Σ0

γ+α ↾ Xω
)

when β < γ,

Det
(
Σ0

(β+1)+α ↾ Xω
)

when β ≥ γ.

We will prove this theorem on page 319.

The following is a Tree2 version of theorem 2.5.30 on page 168.

Theorem 3.5.23. Suppose α, β, γ ∈ ω1. Then

Det(B ↾ Xω)⇒ Det G
(
Σ0

α;Tree2
(
X,CWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. ⊣

We will prove this theorem on page 320.

The idea of the proofs are similar as in section 3.5.2. We will use the same definition of

An, A
n
g and A∅ from section 3.5.1. We will find the complexity of each An

g and A∅ in lemma

3.5.26. Then, by using lemma 3.5.11 and theorem 3.5.10, we will obtain the determinacy

results in theorems 3.5.22 and 3.5.23. To obtain the complexity of each An
g and A∅, we will

define a function Fix from Xω into [TΨ,B
X,Tsq

] and find the complexity of Fix in lemma 3.5.25.

This Fix will be the key to find the complexity of An
g and A∅. For each g ∈ [Tn], we will

collect all of f ∈ Xω such that f⌢g ∈ [TΨ,B
X,Tsq

] by using Fix. Fix will be the identity map for

any f ∈ Xω\B and if f ∈ B, then it will fix the tail.

The following is a Type 2 tree version of definition 2.5.31 on page 169.

Definition 3.5.24. (Definition of “Fix2”)
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For all m ∈ ω, fix am ∈ [Tm]. Define

Fix2 ⟨am : m ∈ ω⟩ : Xω → [TΨ,B
X,Tsq

]

f 7→


f if f /∈ B,

f⌢aΨ(f) otherwise.

If ⟨am : m ∈ ω⟩ is clear from the context, we will denote Fix2 to mean Fix2 ⟨am : m ∈ ω⟩. ⊣

We will compute the complexity of Fix2. The following is a Type 2 tree version of lemma

2.5.32 on page 169.

Lemma 3.5.25. (Finding the complexity of Fix2)

Fix a Type 2 tree T = TΨ,B
X,Tsq

such that Tsq = ⟨Tn |n ∈ ω ⟩ ∈ CWF ω. For all m ∈ ω, fix

am ∈ [Tm]. Suppose α, β ∈ ω1, for all n ∈ ω, γn ∈ ω1

1. Suppose:

• B ∈∆0
β ↾ Xω,

• for all n ∈ ω, Ψ−1(n) ∈∆0
γn ↾ Xω,

then Fix2 ∈ Γ([T ],∆0
max{β,supn∈ωγn}

). 20

2. Suppose:

• for all n ∈ ω, β ≥ γn,

• B ∈ Σ0
β ↾ Xω,

• for all n ∈ ω, Ψ−1(n) ∈∆0
γn,

then Fix2 ∈ Γ([TΨ,B
X,Tsq

],Σ0
β+1).

20Recall notation 1.5.8 for Γ([T ],Σ0
max{β,supn∈ωγn}).
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3. Suppose:

• there exists n ∈ ω such that γn > β,

• B ∈ Σ0
β ↾ Xω,

• for all n ∈ ω, Ψ−1(n) ∈∆0
γn,

then Fix2 ∈ Γ([TΨ,B
X,Tsq

],Σ0
supn∈ωγn

).

4. Suppose Λ is σ-algebra and:

• B ∈ Λ ↾ Xω,

• Ψ ∈ Γ(ω,Λ),

then Fix2 ∈ Γ([TΨ,B
X,Tsq

],Λ).
⊣

Proof.

Pick an arbitrary O ∈ Σ0
1 ↾ [TΨ,B

X,Tsq
]. Then there exists ⟨Oi |i ∈ ω ⟩ such that O =

∪
i∈ω Oi

where each Oi is a basic open neighborhood of [TΨ,B
X,Tsq

], i.e., there exists pi ∈ X<ω and

qi ∈ [Tn] for some n ∈ ω or qi = ∅ such that

Oi =
{
h ∈ [TΨ,B

X,Tsq
] |h ↾ ω ⊇ pi ∧ h ↾ [ω, lh (h)) ⊇ qi

}
.

Since Tsq = ⟨Tn |n ∈ ω ⟩ ∈ CWF ω, for every n ∈ ω, each p ∈ [Tn] has finite length and for

each p ∈ Tn, M
n
p is countable, there are countably many tails. Thus each Oi can be written

as
∪

j∈ω Ôi,j where each

Ôi,j = {h ∈ [TΨ,B
X,Tsq

] | h ↾ ω ⊇ p̂i,j = pi ∧ h ↾ [ω, lh(h)) = q̂i,j}

for some q̂i,j ∈ Y <ω. Then O =
∪

i∈ω Oi =
∪

i∈ω
∪

j∈ω Ôi,j =
∪

k∈ω Ôk where Ôk’s enumerate

Ôi,j’s, etc. Ôk = {h ∈ [TΨ,B
X,Tsq

] | h ↾ ω ⊇ p̂k ∧ h ↾ [ω, lh(h)) = q̂k}.
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Case 1 : q̂k = ∅.

Fix−1
2 (Ôk) = {h ∈ Xω |h ↾ ω ⊇ p̂k }︸ ︷︷ ︸

Σ0
1↾Xω

∩ (Xω\B) .

If B ∈∆0
β ↾ Xω, Fix−1

2 (Ôk) ∈
(
Σ0

1 ∧∆0
β

)
↾ Xω.

If B ∈ Σ0
β ↾ Xω, Fix−1

2 (Ôk) ∈ (Σ0
1 ∧Π0

β) ↾ Xω.

Case 2 : q̂k = alk for some lk ∈ ω.

Fix−1
2 (Ôk) = {h ∈ Xω |h ↾ ω ⊇ p̂k }︸ ︷︷ ︸

Σ0
1↾Xω

∩Ψ−1 (lk)︸ ︷︷ ︸
∆0

γlk
↾Xω

∩ B︸︷︷︸
∆0

β↾Xω or Σ0
β↾Xω

.

If B ∈∆0
β ↾ Xω and Ψ−1(lk) ∈∆0

γlk
, Fix−1

2 (Ôk) ∈
(
Σ0

1 ∧∆0
max{β,γlk}

)
↾ Xω.

If B ∈ Σ0
β ↾ Xω and Ψ−1(lk) ∈∆0

γlk
, Fix−1

2 (Ôk) ∈ Σ0
max{β,γlk}

↾ Xω.

If Λ is σ-algebra, B ∈ Λ ↾ Xω and Ψ ∈ Γ(ω,Λ), then Fix−1(Ôk) ∈ Λ ↾ Xω.

Case 3 : q̂k ̸= ∅ and q̂k ̸= al for any l.

Fix−1
2 (Ôk) = ∅.

Show (1). Suppose B ∈∆0
β ↾ Xω and for all n ∈ ω, Ψ−1(n) ∈∆0

γn . Then

Fix−1
2 (O) =

∪
k∈ω

Fix−1
2 (Ôk)︸ ︷︷ ︸(

Σ0
1∧∆0

max{β,γlk}

)
↾Xω

∈ Σ0
max{β,sup

k∈ω
γlk}

↾ Xω ⊆ Σ0
max{β,sup

n∈ω
γn} ↾ X

ω.

Since O ∈ Σ0
1 ↾ [T ] is arbitrary, Fix2 is Σ0

max{β,sup
n∈ω

γn}-measurable.

Show (2). Suppose for all n ∈ ω, β ≥ γn, B ∈ Σ0
β ↾ Xω and for all n ∈ ω, Ψ−1(n) ∈∆0

γn .

Then Fix−1
2 (O) ∈ Σ0

β+1 ↾ Xω. Since O ∈ Σ0
1 ↾ [T ] is arbitrary, Fix2 is Σ0

β+1-measurable.

Show(3). Suppose there exists n ∈ ω such that γn > β, B ∈ Σ0
β ↾ Xω and for all n ∈ ω,

Ψ−1(n) ∈ ∆0
γn . Then Fix−1

2 (O) ∈ Σ0
supn∈ωγn

↾ Xω. Since O ∈ Σ0
1 ↾ [T ] is arbitrary, Fix2 is
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Σ0
supn∈ωγn

-measurable.

Show (4). Suppose Λ is σ-algebra, B ∈ Λ ↾ Xω and Ψ ∈ Γ(ω,Λ). Then Fix−1
2 (Ôk) ∈ Λ

for any k ∈ ω and thus Fix−1
2 (O) ∈ Λ. Since O ∈ Σ0

1 ↾ [T ] is arbitrary, Fix2 is Λ-

measurable.

Using the complexity of Fix2 computed in lemma 3.5.25, we find the complexity of An
g

and A∅. In the proof of 3.5.26, we use sublemma 2.5.34 on page 176. The following is a Type

2 tree version of lemma 2.5.33 on page 172.

Lemma 3.5.26. (Finding the complexity of An
g and A∅)

Fix a Type 2 tree T = TΨ,B
X,Y such that Tsq = ⟨Tn |n ∈ ω ⟩ ∈ CWF ω. Suppose α, β ∈ ω1,

α > 1, for all n ∈ ω, γn ∈ ω1.

1. Suppose:

• B ∈∆0
β ↾ Xω,

• for all n ∈ ω, Ψ−1(n) ∈∆0
γn ↾ Xω,

• A ∈ Σ0
α ↾ [T ],

then A∅, A
n
g ∈ Σ0

max{β,supn∈ωγn}+α for any n ∈ ω and for any g ∈ [Tn].

2. Suppose:

• for all n ∈ ω, β ≥ γn,

• B ∈ Σ0
β ↾ Xω,

• for all n ∈ ω, Ψ−1(n) ∈∆0
γn ↾ Xω,

• A ∈ Σ0
α ↾ [T ],
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then A∅, A
n
g ∈ Σ0

(β+1)+α ↾ Xω for any n ∈ ω and for any g ∈ [Tn].

3. Suppose:

• there exists n ∈ ω such that γn > β,

• B ∈ Σ0
β ↾ Xω,

• for all n ∈ ω, Ψ−1(n) ∈∆0
γn ↾ Xω,

• A ∈ Σ0
α ↾ [T ],

then A∅, A
n
g ∈ Σ0

supn∈ωγn+α ↾ Xω for any n ∈ ω and for any g ∈ [Tn].

4. Suppose Λ is σ-algebra, closed under Λ-substitution and:

• B ∈ Λ ↾ Xω,

• Ψ ∈ Γ(ω,Λ),

• A ∈ Λ ↾ [T ],

then A∅, A
n
g ∈ Λ ↾ Xω for any n ∈ ω and for any g ∈ [Tn].

⊣

Proof.

Fix n ∈ ω and g ∈ [Tn]. First, we will find the complexity of An
g . We will use Fix2 with

an = g. Show

An
g

df
= {f ∈ Xω |f⌢g ∈ An} = Fix−1

2 (A) ∩Ψ−1 (n) ∩B.

Recall An = A ∩ ((B ∩Ψ−1(n))× [Tn]).

(⊆) Suppose f ∈ An
g . Since g ∈ [Tn] and f⌢g ∈ An, f ∈ Ψ−1(n) ∩ B and f⌢g ∈ A.

Since f ∈ B and Ψ(f) = n, Fix2(f) = f⌢aΨ(f) = f⌢an = f⌢g. Thus Fix2(f) ∈ A so that

f ∈ Fix−1
2 (A).
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(⊇) Suppose f ∈ Fix−1
2 (A) ∩ Ψ−1(n) ∩ B. Since f ∈ Fix−1

2 (A) and f ∈ B, Fix2(f) =

f⌢aΨ(f) = f⌢an = f⌢g ∈ A. Since g ∈ [Tn], f
⌢g ∈ A ∩ ((B ∩ Ψ−1(n)) × [Tn] = An. Hence

f ∈ An
g .

First, we will consider the complexity of An
g .

An
g

df
= {f ∈ Xω |f⌢g ∈ An} = Fix−1

2 (A) ∩Ψ−1 (n)︸ ︷︷ ︸
∆0

γn
↾Xω

∩ B︸︷︷︸
∆0

β↾Xω or Σ0
β↾Xω

.

Show (1) for An
g . Suppose B ∈ ∆0

β ↾ Xω, for all n ∈ ω, Ψ−1(n) ∈ ∆0
γn ↾ Xω and

A ∈ Σ0
α ↾ [T ]. Then by lemma 3.5.25, Fix2 is Σ0

max{β,supn∈ωγn}
-measurable. Note that since

ω1 is regular, supn∈ωγn ∈ ω1. Since A ∈ Σ0
α ↾ [T ], by sublemma 2.5.34,

Fix−1
2 (A) ∈ Σ0

max{β,supn∈ωγn}+α ↾ Xω.

Thus An
g ∈ Σ0

max{β,supn∈ωγn}+α ↾ Xω.

Show (2) for An
g . Suppose for all n ∈ ω, β ≥ γn, B ∈ Σ0

β ↾ Xω, for all n ∈ ω, Ψ−1(n) ∈

∆0
γn ↾ Xω and A ∈ Σ0

α ↾ [T ]. Then by lemma 3.5.25, Fix2 is Σ0
β+1-measurable. Since

A ∈ Σ0
α ↾ [T ], by sublemma 2.5.34, Fix−1

2 (A) ∈ Σ0
(β+1)+α ↾ Xω. Thus An

g ∈ Σ0
(β+1)+α ↾ Xω.

Show (3) for An
g . Suppose there is n ∈ ω such that γn > β, B ∈ Σ0

β ↾ Xω for all

n ∈ ω, Ψ−1(n) ∈ ∆0
γn ↾ Xω and A ∈ Σ0

α ↾ [T ]. Then by lemma 3.5.25, Fix2 is Σ0
supn∈ωγn

-

measurable. Since A ∈ Σ0
α ↾ [T ], by sublemma 2.5.34, Fix−1

2 (A) ∈ Σ0
supn∈ωγn+α ↾ Xω. Thus

An
g ∈ Σ0

supn∈ωγn+α ↾ Xω.

Show (4) for An
g . Suppose Λ is σ-algebra, closed under Λ-substitution. Suppose Ψ ∈

Γ(ω,Λ), B ∈ Λ ↾ Xω and A ∈ Λ ↾ [T ]. Since Λ is σ-algebra, by lemma 3.5.25, Fix2 is

Λ-measurable. Since Λ is closed under Λ-substitution, Fix−1
2 (A) ∈ Λ. Since Ψ ∈ Γ(ω,Λ)

and B ∈ Λ ↾ Xω, each An
g ∈ Λ ↾ Xω.

317



Now, we consider the complexity of A∅. Recall long2(B) = {h ∈ [T ] | lh(h) > ω}. Then

long2(B) ∈ Σ0
1 ↾ [T ].

([T ]\long2(B))︸ ︷︷ ︸
Π0

1↾[T ]

∩ A︸︷︷︸
Σ0

α↾[T ]

∈ Σ0
α ↾ [T ] for α > 1.

A∅ = {f ∈ Xω\B |f ∈ A} = Fix−1
2 (([T ]\long2(B)) ∩ A) .

Show (1) for A∅. Suppose B ∈∆0
β ↾ Xω and A ∈ Σ0

α ↾ [T ]. Then by lemma 3.5.25, Fix2

is ∆0
max{β,supn∈ωγn}

-measurable. By sublemma 2.5.34, A∅ ∈ Σ0
max{β,supn∈ωγn}+α ↾ Xω.

Show (2) for A∅. Suppose for all n ∈ ω, β ≥ γn, B ∈ Σ0
β ↾ Xω and A ∈ Σ0

α ↾ [T ]. Then

by lemma 3.5.25, Fix2 is Σ0
β+1-measurable. By sublemma 2.5.34, A∅ ∈ Σ0

(β+1)+α ↾ Xω.

Show (3) for A∅. Suppose there is n ∈ ω such that γn > β, B ∈ Σ0
β ↾ Xω and A ∈

Σ0
α ↾ [T ]. Then by lemma 3.5.25, Fix2 is Σ0

supn∈ωγn
-measurable. By sublemma 2.5.34,

A∅ ∈ Σ0
supn∈ωγn+α ↾ Xω.

Show (4) forA∅. Suppose Λ is σ-algebra and closed under Λ-substitution, Ψ ∈ Γ(ω,Λ), B ∈

Λ ↾ Xω andA ∈ Λ ↾ [T ]. Then by lemma 3.5.25, Fix2 is Λ measurable and ([T ]\long(B)) ∩ A ∈

Λ ↾ [T ]. Since Λ is closed under Λ-substitution and ([T ]\long(B)) ∩ A ∈ Λ ↾ [T ], A∅ ∈ Λ ↾

Xω.

We computed the complexity of each An
g and A∅ in lemma 3.5.26. Using lemma 3.5.11

and theorem 3.5.10, we obtain the determinacy results in theorems 3.5.22 and 3.5.23. First,

we consider Tree2 collections over FWF . Recall theorem 3.5.22.

Theorem 3.5.22. Suppose α, β, γ ∈ ω1 and α > 1. Then

Det(Σ0
max{β,γ}+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. (3.20)
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Moreover, if β < γ, then

Det(Σ0
γ+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (3.21)

If β ≥ γ, then

Det(Σ0
(β+1)+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (3.22)

⊣

Proof of Theorem 3.5.22.

Fix α, β, γ ∈ ω1 such that α > 1.

Show the implication (3.20). Assume Det(Σ0
max{β,γ}+α ↾ Xω). Pick an arbitrary Type 2

tree

TΨ,B
X,Tsq

∈ Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

)
.

Then Ψ ∈ Γ
(
ω,∆0

γ

)
, B ∈ ∆0

β ↾ Xω and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ FWF ω. Pick an arbitrary

A ∈ Σ0
α ↾ [TΨ,B

X,Tsq
]. By lemma 3.5.26, since FWF ⊆ CWF , for each n ∈ ω and g ∈ [Tn],

An
g , A∅ ∈ Σ0

max{β,γ}+α ↾ Xω. Since Tsq = ⟨Tn |n ∈ ω ⟩ ∈ FWF ω, for each n ∈ ω and for each

p ∈ Tn, M
n
p is finite. By lemma 3.5.11, each An

∅ ∈ Σ0
max{β,γ}+α ↾ Xω. Thus

∪
n∈ω

An
∅ ∪ A∅ ∈ Σ0

max{β,γ}+α ↾ Xω.

Hence G(
∪

n∈ω A
n
∅ ∪ A∅;X

ω) is determined. By theorem 3.5.10, G(A;TΨ,B
X,Tsq

) is determined.

Therefore, Det G
(
Σ0

α;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
.

Similarly, for the implication (3.21), suppose β ≥ γ. Pick an arbitrary Type 2 tree

TΨ,B
X,Tsq

∈ Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
.
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Then Ψ ∈ Γ
(
ω,∆0

γ

)
, B ∈ Σ0

β ↾ Xω and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ FWF ω. By lemma 3.5.26,

for each n ∈ ω and g ∈ [Tn], A
n
g , A∅ ∈ Σ0

(β+1)+α ↾ Xω. Since Tsq = ⟨Tn |n ∈ ω ⟩ ∈ FWF ω,

by lemma 3.5.11, each An
∅ ∈ Σ0

(β+1)+α ↾ Xω. Thus
∪

n∈ω A
n
∅ ∪ A∅ ∈ Σ0

(β+1)+α ↾ Xω. Hence

G(
∪

n∈ω A
n
∅ ∪ A∅;X

ω) is determined. By theorem 3.5.10, G(A;TΨ,B
X,Tsq

) is determined. There-

fore, Det G
(
Σ0

α;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
.

For the implication (3.22), suppose γ ≥ β. Pick an arbitrary Type 2 tree

TΨ,B
X,Tsq

∈ Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
.

Then Ψ ∈ Γ
(
ω,∆0

γ

)
, B ∈ Σ0

β ↾ Xω and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ FWF ω. By lemma 3.5.26,

for each n ∈ ω and g ∈ [Tn], A
n
g , A∅ ∈ Σ0

γ+α ↾ Xω. Since Tsq = ⟨Tn |n ∈ ω ⟩ ∈ FWF ω,

by lemma 3.5.11, each An
∅ ∈ Σ0

γ+α ↾ Xω. Thus
∪

n∈ω A
n
∅ ∪ A∅ ∈ Σ0

γ+α ↾ Xω. Hence

G(
∪

n∈ω A
n
∅ ∪ A∅;X

ω) is determined. By theorem 3.5.10, G(A;TΨ,B
X,Tsq

) is determined. There-

fore, Det G
(
Σ0

α;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
.

Now, we consider Tree2 collections over CWF . Recall theorem 3.5.23.

Theorem 3.5.23. Suppose α, β, γ ∈ ω1. Then

Det(B ↾ Xω)⇒ Det G
(
Σ0

α;Tree2
(
X,CWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. ⊣

Proof of Theorem 3.5.23.

Fix α, β, γ ∈ ω1. Assume Det(B ↾ Xω). Pick arbitrary Ψ ∈ Γ
(
ω,∆0

γ

)
, B ∈∆0

β ↾ Xω, Tsq =

⟨Tn |n ∈ ω ⟩ ∈ CWF ω and A ∈ Σ0
α ↾ [TΨ,B

X,Tsq
]. By lemma 3.5.26, for all n ∈ ω and g ∈ [Tn],

each An
g ∈ Σ0

max{β,γ}+α and A∅ ∈ Σ0
max{β,γ}+α+1 (plus 1 when α = 1). Since for each n ∈ ω and

for each p ∈ Tn, M
n
p is countable, by lemma 3.5.11, each An

∅ ∈ B ↾ Xω. Thus
∪

n∈ω A
n
∅ ∪A∅ ∈

B ↾ Xω. Hence G(
∪

n∈ω A
n
∅ ∪ A∅;X

ω) is determined. By theorem 3.5.10, G(A;TΨ,B
X,Tsq

) is
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determined. Therefore, Det G
(
Σ0

α;Tree2
(
X,CWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
.

The following is a Tree2 version of corollary 2.5.36 on page 181.

Corollary 3.5.27. Suppose Λ is a σ-algebra and Λ is closed under Λ-substitution. Then

Det(Λ ↾ Xω)⇒ DetG (Λ;Tree2 (X,CWF ω,Γ(ω,Λ),Λ ↾ Xω)) . ⊣

Proof.

Assume Det(Λ ↾ Xω). Pick an arbitrary Type 2 tree

T = TΨ,B
X,Tsq

∈ Tree2 (X,CWF ω,Γ(ω,Λ),Λ ↾ Xω) .

Then Ψ ∈ Γ (ω,Λ) , B ∈ Λ ↾ Xω and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ CWF ω. Pick an arbitrary

A ∈ Λ ↾ [T ]. By lemma 3.5.26, for all n ∈ ω and g ∈ [Tn], eachAn
g andA∅ are in Λ ↾ Xω. Since

for each n ∈ ω and for each p ∈ Tn, M
n
p is countable, by lemma 3.5.11, each An

∅ ∈ Λ ↾ Xω.

Thus
∪

n∈ω A
n
∅∪A∅ ∈ Λ ↾ Xω. Hence G(

∪
n∈ω A

n
∅∪A∅;X

ω) is determined. By theorem 3.5.10,

G(A;T ) is determined. Therefore, DetG (Λ;Tree2 (X,CWF ω,Γ(ω,Λ),Λ ↾ Xω)) .

The following is a Tree2 version of corollary 2.5.37 on page 182.

Corollary 3.5.28. (Corollary to Corollary 3.5.27)

Det(B ↾ Xω)⇒ Det G (B;Tree2 (X,CWF ω,Γ(ω,B),B ↾ Xω)) . ⊣

Proof.

Since B is σ-algebra and closed under Borel-substitution, by corollary 3.5.27, we have the

result.
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3.5.4 Obtaining the determinacy of projective games on a Tree2

collection with CWF from the determinacy of projective

games on X<ω

In section 3.5.2, we focused on obtaining the determinacy of open games on a certain Tree2

collection with CWF from the determinacy of games on X<ω. In section 3.5.3, we focused

on obtaining the determinacy of Borel games on a certain Tree2 collection with CWF from

the determinacy of Borel games on X<ω. In this section, we will generalize Borel games

on a Tree2 collection to projective games on a particular Tree2 collection. We will obtain

the determinacy of projective games on a certain Tree2 collection with CWF from the

determinacy of projective games on X<ω. The idea is similar as in section 2.5.4. The main

theorem in this section is theorem 3.5.29.

The following is a Tree2 version of theorem 2.5.38 on page 183.

Theorem 3.5.29. Suppose m ∈ ω. Let T2 = Tree2 (X,CWF ω,Γ(ω,B),B ↾ Xω). Then

Det(Σ1
m ↾ Xω)⇒ Det G

(
Σ1

m; T2
)
.

Det(Π1
m ↾ Xω)⇒ Det G

(
Π1

m; T2
)
.

Det(∆1
m ↾ Xω)⇒ Det G

(
∆1

m; T2
)
.

Note that ∆1
1 ↾ Xω is Borel if X is countable and if X is uncountable, it is the quasi-Borel.

⊣

The idea of the proof is similar as in sections 3.5.2 and 3.5.3. We will use the same

definition of An, An
g and A∅ from section 3.5.1. We will find the complexity of each An

g and

A∅ in lemma 3.5.30 using sublemma 2.5.40 on page 185. Then, by using lemma 3.5.11 and
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theorem 3.5.10, we will obtain the determinacy results in theorem 3.5.29. The proof of the

theorem is on page 324.

The following is a Type 2 tree version of lemma 2.5.39 on page 184.

Lemma 3.5.30. Fix a Type 2 tree T = TΨ,B
X,Tsq

such that Tsq = ⟨Tn|n ∈ ω⟩ ∈ CWF ω. Suppose

m ∈ ω, α, β, γ ∈ ω1, Ψ ∈ Γ (ω,B), B ∈ B ↾ Xω.

1. If A ∈ Σ1
m ↾ [T ], then for any n ∈ ω and for any g ∈ [Tn], each An

g , A∅ ∈ Σ1
m ↾ Xω.

2. If A ∈ Π1
m ↾ [T ], then for any n ∈ ω and for any g ∈ [Tn], each An

g , A∅ ∈ Π1
m ↾ Xω.

3. If A ∈∆1
m ↾ [T ], then for any n ∈ ω and for any g ∈ [Tn], each An

g , A∅ ∈∆1
m ↾ Xω.

⊣

Proof.

The proof is similar to the proof of lemma 3.5.26. We will show the case for (1): A ∈ Σ1
m ↾ [T ].

The proofs are similar for cases (2): A ∈ Π1
m ↾ [T ] and (3): A ∈∆1

m ↾ [T ].

Suppose A ∈ Σ1
m ↾ [T ]. By lemma 3.5.25, Fix2 is Borel-measurable under Ψ ∈ Γ (ω,B)

and B ∈ B ↾ Xω. By sublemma 2.5.40, Fix−1
2 (A) ∈ Σ1

m ↾ Xω. Then

An
g

df
= {f ∈ Xω |f⌢g ∈ An} = Fix−1

2 (A)︸ ︷︷ ︸
Σ1

m↾Xω

∩Ψ−1 (n)︸ ︷︷ ︸
B↾Xω

∩ B︸︷︷︸
B↾Xω

∈ Σ1
m ↾ Xω.

Now, consider A∅. Recall Long2(B) = {h ∈ [T ] | lh(h) > ω}. Then Long2(B) ∈ Σ0
1 ↾ [T ].

([T ]\Long2(B))︸ ︷︷ ︸
Π0

1↾[T ]

∩ A︸︷︷︸
Σ1

m↾[T ]

∈ Σ1
m ↾ [T ].

Thus

A∅ = {f ∈ Xω\B |f ∈ A} = Fix−1
2 (([T ]\Long2(B)) ∩ A) ∈ Σ1

m ↾ Xω
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by sublemma 2.5.40.

Similarly, for the cases (2) and (3).

We computed the complexity of each An
g for all n ∈ ω and g ∈ [Tn], and A∅ in lemma

3.5.30. Using lemma 3.5.11 and theorem 3.5.10, we obtain the determinacy results in theorem

3.5.29. Recall theorem 3.5.29.

Theorem 3.5.29. Suppose m ∈ ω. Let T2 = Tree2 (X,CWF ω,Γ(ω,B),B ↾ Xω). Then

Det(Σ1
m ↾ Xω)⇒ Det G

(
Σ1

m; T2
)
.

Det(Π1
m ↾ Xω)⇒ Det G

(
Π1

m; T2
)
.

Det(∆1
m ↾ Xω)⇒ Det G

(
∆1

m; T2
)
.

Note that ∆1
1 ↾ Xω is Borel if X is countable and if X is uncountable, it is the quasi-Borel.

⊣

Proof of Theorem 3.5.29.

We will show the case for Σ1
m. The proofs are similar for cases Π1

m and ∆1
m.

Show Det(Σ1
m ↾ Xω) implies Det G (Σ1

m; T2). Assume Det(Σ1
m ↾ Xω). Pick an arbitrary

T = TΨ,B
X,Tsq

∈ T2. Then Ψ ∈ Γ (ω,B), B ∈ B ↾ Xω and Tsq = ⟨Tn |n ∈ ω ⟩ ∈ CWF ω. Pick an

arbitrary A ∈ Σ1
m ↾ [T ]. By lemma 3.5.30, for all n ∈ ω and g ∈ [Tn], each An

g ∈ Σ1
m ↾ Xω

and A∅ ∈ Σ1
m ↾ Xω. Since for each n ∈ ω, for each p ∈ Tn, M

n
p is countable, by lemma

3.5.11, each An
∅ ∈ Σ1

m ↾ Xω. Thus
∪

n∈ω A
n
∅ ∪ A∅ ∈ Σ1

m ↾ Xω. Hence G(
∪

n∈ω A
n
∅ ∪ A∅;X

ω)

is determined. By theorem 3.5.10, G(A;T ) is determined. Therefore, Det G (Σ1
m; T2) .
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3.5.5 Comment about a Type 2 tree TΨ,B
X,Tsq

for Tsq with not well-

founded trees or moves over an uncountable set

In sections 3.5.1 through 3.5.4, we obtained the determinacy of games on a certain Tree2

collection with CWF from the determinacy of games on X<ω. The way we obtained the

determinacy results in these sections are using the fact that each TΨ,B
X,Tsq

in the Tree2 collection

having Tsq = ⟨Tn|n ∈ ω⟩ ∈ CWF ω, i.e.,

1. each Tn is well-founded,

2. for every position p ∈ Tn\[Tn], the set of moves at p is countable.

Without these restrictions, we need to have the determinacy of games on Xω with higher

complexity, even just an open game on a Type 2 tree.

In section 3.5.5.1, we will observe particular examples of the case for a Tree2 collection

does not satisfy the condition (1). In section 3.5.5.2, we will observe particular examples of

the case for a Tree2 collection does not satisfy the condition (2).

3.5.5.1 Without the well-foundedness, each move is from a countable set

Let’s consider the case Tsq = ⟨Tn|n ∈ ω⟩ with some Tn being ill-founded. Suppose TΨ,B
X,Tsq

has

Tsq = ⟨Tn|n ∈ ω⟩ such that

• Tsq contains trees that are not well-founded,

• for every n ∈ ω, Tn has height ≤ ω,

• for every position p ∈ Tn\[Tn], the set of moves at p is countable.
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If Tn contains plays with finite length, add arbitrary moves after that to create a modified

tree Tmod
n with all plays having length ω. If all of the plays in Tn have length ω, then define

Tmod
n = Tn. Define T

mod
sq = ⟨Tmod

n |n ∈ ω⟩. Then each open set in [TΨ,B
X,Tsq

] has a corresponding

open set in [TΨ,B
X,Tmod

sq
] (the converse is false). Thus

Det
(
Σ0

1 ↾ [TΨ,B
X,Tmod

sq
]
)
⇒ Det

(
Σ0

1 ↾ [TΨ,B
X,Tsq

]
)
.

As a special case, suppose TΨ,Xω

X,Tsq
where Tsq = ⟨Tn|n ∈ ω⟩, each Tn ⊆ ω<ω and there is

n ∈ ω such that Tn contains a play with length ω. Take Tmod
n = ω<ω for every n ∈ ω. Then

[TΨ,Xω

X,Tmod
sq

] = Xω × ωω. It is well-known that

Det
(
Σ1

1 ↾ Xω
)
⇔ Det

(
Σ0

1 ↾ (Xω ×N )
)
.21

Hence

Det
(
Σ1

1 ↾ Xω
)
⇔ Det

(
Σ0

1 ↾ [TΨ,Xω

X,Tmod
sq

]
)
.

Thus

Det
(
Σ1

1 ↾ Xω
)
⇒ Det

(
Σ0

1 ↾ [TΨ,Xω

X,Tsq
]
)
.

In general, suppose TΨ,Xω

X,Tsq
where Tsq = ⟨Tn|n ∈ ω⟩, each Tn ⊆ ω<ω·k for some k ∈ ω.

Take Tmod
n = ω<ω·k. Then [TΨ,Xω

X,Tmod
sq

] = Xω × ωω·k = Xω ×N k. Since

Det
(
Σ1

k ↾ Xω
)
⇔ Det

(
Σ0

1 ↾ (Xω ×N k)
)
,

Det
(
Σ1

k ↾ Xω
)
⇔ Det

(
Σ0

1 ↾ [TΨ,Xω

X,Tmod
sq

]
)
.

21see outline of the proof for Fraker, 2001, pp.59-62, Corollary 5.3.
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Thus

Det
(
Σ1

k ↾ Xω
)
⇒ Det

(
Σ0

1 ↾ [TΨ,Xω

X,Tsq
]
)
.

Therefore, we have the following. Suppose Υ = {T
∣∣∣T is a tree and T ⊆ ω<ω·k }. Then for

any nonempty collection Γ of functions from Xω into ω,

Det
(
Σ1

k ↾ Xω
)
⇒ G

(
Σ0

1, T ree2 (X,Υω,Γ, Xω)
)
.

In particular, if Υ = {T
∣∣∣T is a tree and T ⊆ ω<ω2 }, then we have the following.

Observation 3.5.31. Suppose Υ = {T
∣∣∣T is a tree and T ⊆ ω<ω2 }. Then for any nonempty

collection Γ of functions from Xω into ω,

Det (P ↾ Xω)⇒ G
(
Σ0

1, T ree2 (X,Υω,Γ, Xω)
)
. ⊣

3.5.5.2 Moves over an uncountable set, each Tn is well-founded

As we mentioned in section 2.5.5, if we have p ∈ Tn such that the set of moves at p is uncount-

able, we will need a higher determinacy on games of Xω, just to get an open determinacy of

simple Type 2 trees.

Suppose TΨ,B
X,Tsq

has Tsq = ⟨Tn|n ∈ ω⟩ such that

• every Tn is well-founded,

• there exists a position p ∈ Tn\[Tn] such that the set of moves at p is uncountable.

Consider the special such case; every Tn = N≤1, the tree of height 1 and each move is

f ∈ N . Then each [Tn] = N . Thus for any Ψ from Xω into ω, [TΨ,Xω

X,Tsq
] = Xω ×N . Since we

have

Det
(
Σ1

1 ↾ Xω
)
⇔ Det

(
Σ0

1 ↾ (Xω ×N )
)
,
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Det
(
Σ1

1 ↾ Xω
)
⇔ Det

(
Σ0

1 ↾
[
TΨ,Xω

X,Tsq

])
.

Suppose Tsq have every Tn = N≤k for some k ∈ ω. Then each [Tn] = N k. Thus for any

Ψ from Xω into ω, [TΨ,Xω

X,Tsq
] = Xω ×N k. Since we have

Det
(
Σ1

k ↾ Xω
)
⇔ Det

(
Σ0

1 ↾ (Xω ×N k)
)
,

Det
(
Σ1

k ↾ Xω
)
⇔ Det

(
Σ0

1 ↾
[
TΨ,Xω

X,Tsq

])
.

Fix k ∈ ω. Let’s take Tsq to be each Tn = N≤i for some i ≤ k. Then each [Tn] = N i.

Create Tmod
n = N k by extending each play if i < k. Define Tmod

sq = ⟨Tmod
n |n ∈ ω⟩. Then for

any Ψ from Xω into ω, [TΨ,Xω

X,Tmod
sq

] = Xω ×N k. Since we have

Det
(
Σ1

k ↾ Xω
)
⇔ Det

(
Σ0

1 ↾ (Xω ×N k)
)
,

Det
(
Σ1

k ↾ Xω
)
⇔ Det

(
Σ0

1 ↾
[
TΨ,Xω

X,Tmod
sq

])
.

Since

Det
(
Σ0

1 ↾ [TΨ,B
X,Tmod

sq
]
)
⇒ Det

(
Σ0

1 ↾ [TΨ,B
X,Tsq

]
)
,

we have

Det
(
Σ1

k ↾ Xω
)
⇒ Det

(
Σ0

1 ↾
[
TΨ,Xω

X,Tsq

])
.

Let Υ =
{
N≤i |i ≤ k

}
. Then for any nonempty collection Γ of functions from Xω into ω,

Det
(
Σ1

k ↾ Xω
)
⇒ G

(
Σ0

1, T ree2 (X,Υω,Γ, Xω)
)
.

In particular, if Υ =
{
N≤i |i ∈ ω

}
, we have the following.

Observation 3.5.32. Suppose Υ =
{
N≤i |i ∈ ω

}
. Then for any nonempty collection Γ of
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functions from Xω into ω, we have

Det (P ↾ Xω)⇒ G
(
Σ0

1, T ree2 (X,Υω,Γ, Xω)
)
. ⊣

Determinacy equivalence between games on X<ω and games on Tree2 collections
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3.6 Determinacy equivalence between games on X<ω

and games on Tree2 collections

In sections 3.3 through 3.5, we observed the determinacy strength on games on Tree1 col-

lections. In section 3.3, by shifting, we compared the determinacy of Σ0
α (respectively, Σ1

n)

games on a particular Tree2 collection and Π0
α (respectively, Π1

n) games on the same Tree2

collection, for α ∈ ω1 and n ∈ ω. In section 3.4, we used the determinacy of a fixed complex-

ity of games on a certain Tree2 collection to obtain the determinacy of a certain complexity

of games on X<ω. In section 3.5, we obtained the determinacy of Borel and projective games

on particular Tree2 collections from the determinacy of a fixed complexity of games on X<ω.

In this section, we will combine results from section 3.3, section 3.4 and section 3.5.

Although results from section 2.4 and section 3.4 are slightly different, since results from

section 3.5 are similar to the results in section 2.5, we will have the similar results as section

2.6. The only difference is corollary 3.6.6. It is slightly different from corollary 2.6.6.

In section 3.6.1, we will obtain the determinacy equivalences between Borel games on

X<ω and games on particular Tree2 collections.

In section 3.6.2, we will obtain the determinacy equivalences between projective games

on X<ω and games on particular Tree2 collections.
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3.6.1 Determinacy equivalence between Borel games on X<ω and

games on Tree2 collections

In this section, we will obtain the determinacy equivalences between Borel games on X<ω

and games on particular Tree1 collections. We will obtain the similar results as section 2.6.

Corollary 3.6.6 is slightly different from corollary 2.6.6.

The following is a Tree2 version of theorem 2.6.1 on page 197.

Theorem 3.6.1. The determinacy of following (3.23) through (3.28) are all equivalent to

Det (Σ0
1 ↾ Xω).

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
(3.23)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

1),∆
0
1 ↾ Xω

))
(3.24)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

1),∆
0
1 ↾ Xω

))
(3.25)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
(3.26)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

1),∆
0
1 ↾ Xω

))
(3.27)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

1),∆
0
1 ↾ Xω

))
(3.28)

⊣
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Theorem 3.6.3 says that if we let

T 1
1 = Tree2

(
X,FWF ω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

)
,

T 2
1 = Tree2

(
X,FWF ω,Γ(ω,Σ0

1),∆
0
1 ↾ Xω

)
,

T 3
1 = Tree2

(
X,FWF ω,Γ(ω,Π0

1),∆
0
1 ↾ Xω

)
,

then

Det G
(
Σ0

1; T i
2

)
⇔ Det

(
Σ0

1 ↾ Xω
)
⇔ Det G

(
Π0

1; T
j
2

)
for any i = 1, 2, 3 and j = 1, 2, 3.

Proof.

We obtain Det (Σ0
1 ↾ Xω) if and only if the determinacy of (3.23) by theorem 3.5.13 and

corollary 3.4.14.

(⇒) We obtain this from theorem 3.5.13.

(⇐) We obtain this from corollary 3.4.3.

By observation 3.2.13, (3.23), (3.24) and (3.25) are the same set. Similarly, (3.26), (3.27)

and (3.28) are the same set. The determinacy of (3.23) and the determinacy of (3.26) are

equivalent by theorem 3.3.8. Consequently, the determinacy of (3.23) through (3.28) are all

equivalent to Det (Σ0
1 ↾ Xω).

The following is a Tree2 version of theorem 2.6.2 on page 198.

Theorem 3.6.2. Suppose β, γ ∈ ω1 and β ≥ γ. Then the following (3.29) through (3.34)

are all equivalent to Det
(
∆0

β ↾ Xω
)
.

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(3.29)
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G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(3.30)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(3.31)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(3.32)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(3.33)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(3.34)

⊣

Theorem 3.6.2 says that if we let

T 1
2 = Tree2

(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

)
,

T 2
2 = Tree2

(
X,FWF ω,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

)
,

T 3
2 = Tree2

(
X,FWF ω,Γ(ω,Π0

γ),∆
0
β ↾ Xω

)
,

then

Det G
(
Σ0

1; T i
2

)
⇔ Det

(
∆0

β ↾ Xω
)
⇔ Det G

(
Π0

1; T
j
2

)
for any i = 1, 2, 3 and j = 1, 2, 3.

Proof.

We obtain Det
(
∆0

β ↾ Xω
)
if and only if the determinacy of (3.29) by theorem 3.5.13 and

corollary 3.4.13.

(⇒) This is obtained from theorem 3.5.13.

(⇐) This is obtained from corollary 3.4.13.
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By observation 3.2.13, (3.29), (3.30) and (3.31) are the same sets. Similarly, (3.32), (3.33)

and (3.34) are the same sets. The determinacy of (3.29) and the determinacy of (3.32) are

equivalent by theorem 3.3.8.

The following is a Tree2 version of theorem 2.6.3 on page 199.

Theorem 3.6.3. Suppose β, γ ∈ ω1 and 1 ≤ β < γ. Then the determinacy of following

(3.35) through (3.52) are all equivalent to Det
(
∆0

γ ↾ Xω
)
.

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
(3.35)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),Σ
0
β ↾ Xω

))
(3.36)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),Σ
0
β ↾ Xω

))
(3.37)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
(3.38)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),Σ
0
β ↾ Xω

))
(3.39)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),Σ
0
β ↾ Xω

))
(3.40)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
(3.41)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),Π
0
β ↾ Xω

))
(3.42)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),Π
0
β ↾ Xω

))
(3.43)
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G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
(3.44)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),Π
0
β ↾ Xω

))
(3.45)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),Π
0
β ↾ Xω

))
(3.46)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(3.47)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(3.48)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(3.49)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(3.50)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(3.51)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(3.52)

⊣

Theorem 3.6.3 says that if we let

T ∆Σ
2 = Tree2

(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

)
,

T ΣΣ
2 = Tree2

(
X,FWF ω,Γ(ω,Σ0

γ),Σ
0
β ↾ Xω

)
,

T ΠΣ
2 = Tree2

(
X,FWF ω,Γ(ω,Π0

γ),Σ
0
β ↾ Xω

)
,
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T ∆Π
2 = Tree2

(
X,FWF ω,Γ(ω,∆0

γ),Π
0
β ↾ Xω

)
,

T ΣΠ
2 = Tree2

(
X,FWF ω,Γ(ω,Σ0

γ),Π
0
β ↾ Xω

)
,

T ΠΠ
2 = Tree2

(
X,FWF ω,Γ(ω,Π0

γ),Π
0
β ↾ Xω

)
,

T ∆∆
2 = Tree2

(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

)
,

T Σ∆
2 = Tree2

(
X,FWF ω,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

)
,

T Π∆
2 = Tree2

(
X,FWF ω,Γ(ω,Π0

γ),∆
0
β ↾ Xω

)
,

then

Det G
(
Σ0

1; T
ij
2

)
⇔ Det

(
∆0

γ ↾ Xω
)
⇔ Det G

(
Π0

1; T kl
2

)
for any i, j, k, l ∈ {∆,Σ,Π}.

Proof.

We obtain Det
(
∆0

γ ↾ Xω
)
if and only if the determinacy of (3.35) from theorem 3.5.13 and

corollary 3.4.14.

(⇒) We obtain this from theorem 3.5.13.

(⇐) We obtain this from corollary 3.4.14.

Similarly, we obtain Det
(
∆0

γ ↾ Xω
)
if and only if the determinacy of 3.41;

and Det
(
∆0

γ ↾ Xω
)
if and only if the determinacy of 3.47.

By observation 3.2.13, (3.35), (3.36) and (3.37) are the same set. Similarly, (3.38), (3.39)

and (3.40) are the same set. The determinacy of (3.35) and the determinacy of (3.38) are

equivalent by theorem 3.3.8. Consequently, the determinacy of (3.35) through (3.40) are all

equivalent to Det
(
∆0

γ ↾ Xω
)
.

By observation 3.2.13, (3.41), (3.42) and (3.43) are the same set. Similarly, (3.44), (3.45)
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and (3.46) are the same set. The determinacy of (3.41) and the determinacy of (3.44) are

equivalent by theorem 3.3.8. Consequently, the determinacy of (3.41) through (3.46) are all

equivalent to Det
(
∆0

γ ↾ Xω
)
.

By observation 3.2.13, (3.47), (3.48) and (3.49) are the same set. Similarly, (3.50), (3.51)

and (3.52) are the same set. The determinacy of (3.47) and the determinacy of (3.50) are

equivalent by theorem 3.3.8. Consequently, the determinacy of (3.47) through (3.52) are all

equivalent to Det
(
∆0

γ ↾ Xω
)
.

The following is a Tree2 version of corollary 2.6.4 on page 203.

Corollary 3.6.4. Suppose Λ is an algebra. Then for any nonempty Υ ⊆ FWF ,

Det(Λ ↾ Xω)⇔ Det G
(
Σ0

1;Tree2 (X,Υω,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Proof.

(⇒) We obtain this from corollary 3.5.17.

(⇐) We obtain this from corollary 3.4.13.

The following is a Tree2 version of corollary 2.6.5 on page 203.

Corollary 3.6.5. Suppose Λ is σ-algebra. Then for any nonempty Υ ⊆ CWF ,

Det(Λ ↾ Xω)⇔ Det G
(
Σ0

1;Tree2 (X,Υω,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Proof.

(⇒) We obtain this from corollary 3.5.18.

(⇐) We obtain this from corollary 3.4.13.
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The following corollary is slightly different from corollary 2.6.6. Since we have theorem

3.4.7, we can obtain the determinacy equivalence between Borel games over X<ω and ∆0
1

games on certain Tree2 collections. The following is a Tree2 version of corollary 2.6.6 on

page 203.

Corollary 3.6.6. For any α, β, γ ∈ ω1,

Det(B ↾ Xω)⇔ Det G (A1;Tree2 (X,Υω,Γ(ω, C),B ↾ Xω))

where:

• Υ ⊆ CWF is closed under shifting trees22 and

1. if
{
Tα
g.t. |α ∈ ω1

}
⊆ Υ, then A ∈ {Σ0

α,Π
0
α,∆

0
α,B},23

2. if
{
Tα
g.t. |α ∈ ω1

}
⊈ Υ, then

A = B, or

A ∈ {Σ0
α,Π

0
α,∆

0
α} for α > 1, or

A ∈ {Σ0
1,Π

0
1} for α = 1,

• B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
,

• C ∈
{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
,

• at least one of A,B or C is B if
{
Tα
g.t. |α ∈ ω1

}
⊈ Υ. ⊣

Proof.

Fix A,B and C as above. Let T2 = Tree2 (X,Υω,Γ(ω, C),B ↾ Xω).

22Recall definition 3.3.7 on page 231 for the closure property under shifting trees.
23Recall Yost tree Tα

g.t. for section 3.4.1.2 on page 242.
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(⇒) Corollary 3.6.5 gives

Det(B ↾ Xω)⇒ Det G (B;Tree2 (X,CWF ω,Γ(ω,B),B ↾ Xω)) .

Under the condition for A,B and C,

G (A; T2) ⊆ G (B;Tree2 (X,CWF ω,Γ(ω,B),B ↾ Xω)) .

Thus we have

Det(B ↾ Xω)⇒ G (A; T2) .

(⇐) Case 1 :
{
Tα
g.t. |α ∈ ω1

}
⊆ Υ.

By corollary 3.4.10, for any Ψ ∈ Γ(ω, C),

Det G
(
∆0

1;Tree2 (X,Υω,Ψ, Xω)
)
⇒ Det(B ↾ Xω).

Since

G
(
∆0

1;Tree2 (X,Υω,Ψ, Xω)
)
⊆ G (A; T2) ,

Det G (A; T2)⇒ Det(B ↾ Xω).

Case 2 :
{
Tα
g.t. |α ∈ ω1

}
⊈ Υ.

Then at least one of A,B or C is B.

Subcase 1 : A = B. We obtain

Det G (A; T2)⇒ Det(B ↾ Xω).

from observation 3.4.1.

Subcase 2 : B = B.
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If A1 ̸= Π0
1, by the choice of A, we have Σ0

1 ↾ T2 ⊆ A1 ↾ T2, we obtain

Det G (A; T2)⇒ Det(B ↾ Xω).

from corollary 3.4.13.

If A1 = Π0
1, since Υ is closed under shifting trees, by theorem 3.3.8,

Det G
(
Π0

1; T2
)
⇔ Det G

(
Σ0

1; T2
)
.

By corollary 3.4.13,

DetG
(
Σ0

1; T2
)
⇒ Det(B ↾ Xω).

Thus we have

Det G
(
Π0

1; T2
)
⇒ Det(B ↾ Xω).

Subcase 3 : C = B. We obtain

Det G (A; T2)⇒ Det(B ↾ Xω).

from observation 3.4.1 from corollary 3.4.14.

Since FWF is closed under shifting trees and
{
Tα
g.t. |α ∈ ω1

}
⊈ FWF , we obtain the

following from corollary 3.6.6.

Corollary 3.6.7. (Corollary to Corollary 3.6.6)

For any α, β, γ ∈ ω1,

Det(B ↾ Xω)⇔ Det G (A;Tree2 (X,FWF ω,Γ(ω, C),B ↾ Xω))

where:
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•


A = B, or

A ∈ {Σ0
α,Π

0
α,∆

0
α} for α > 1, or

A ∈ {Σ0
1,Π

0
1} for α = 1,

• B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
,

• C ∈
{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
,

• at least one of A,B or C is B. ⊣

Since CWF is closed under shifting trees and
{
Tα
g.t. |α ∈ ω1

}
⊆ CWF , we obtain the

following from corollary 3.6.6.

Corollary 3.6.8. (Corollary to Corollary 3.6.6)

For any α, β, γ ∈ ω1,

Det(B ↾ Xω)⇔ Det G (A;Tree2 (X,CWF ω,Γ(ω, C),B ↾ Xω))

where:

• A ∈ {Σ0
α,Π

0
α,∆

0
α,B},

• B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
,

• C ∈
{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
. ⊣
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3.6.2 Determinacy equivalence between projective games on X<ω

and games on Tree2 collections

In this section, we will obtain the determinacy equivalences between projective games on

X<ω and games on particular Tree2 collections.

The following is a Tree2 version of theorem 2.6.7 on page 206.

Theorem 3.6.9. Suppose n ∈ ω\{0}, β, γ ∈ ω1.

For any nonempty Υ ⊆ CWF such that Υ is closed under shifting trees,

B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
and C ∈

{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
, the determinacy of following (3.53) and

(3.54) are equivalent to Det(Σ1
n ↾ Xω).

G
(
Σ1

n;Tree2 (X,Υω,Γ(ω, C),B ↾ Xω)
)

(3.53)

G
(
Π1

n;Tree2 (X,Υω,Γ(ω, C),B ↾ Xω)
)

(3.54)

For any nonempty Υ ⊆ CWF such that Υ is closed under shifting trees,

B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
and C ∈

{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
, the determinacy of following (3.55) is

equivalent to Det(∆1
n ↾ Xω).

G
(
∆1

n;Tree2 (X,Υω,Γ(ω, C),B ↾ Xω)
)

(3.55)

⊣

Proof.

We obtain

1. Det(Σ1
n ↾ Xω) if and only if the determinacy of (3.53),
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2. Det(Σ1
n ↾ Xω) if and only if the determinacy of (3.54),

3. Det(∆1
n ↾ Xω) if and only if the determinacy of (3.55).

(⇒) Let T2 = Tree2 (X,Υω,Γ(ω,B),B ↾ Xω). By theorem 3.5.29,

Det(Σ1
n ↾ Xω)⇒ Det G

(
Σ1

n; T2
)
.

Det(∆1
n ↾ Xω)⇒ Det G

(
∆1

n; T2
)
.

By theorem 3.3.8, since Υ is closed under shifting trees,

Det G
(
Σ1

n; T2
)
⇔ Det G

(
Π1

n; T2
)
.

Thus we have

Det(Σ1
n ↾ Xω)⇒ Det G

(
Π1

n; T2
)
.

By observation 3.2.7, for any B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
and C ∈

{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
,

Tree2 (X,Υω,Γ(ω, C),B ↾ Xω) ⊆ T2.

Thus, we have (⇒) of (1) through (3).

(⇐) By corollary 3.4.2,

Det G
(
Σ1

n;Tree2
(
X,Υω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
⇒ Det

(
Σ1

n ↾ Xω
)
.

By observation 3.2.7, for any B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
and C ∈

{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
,

Tree2
(
X,Υω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

)
⊆ Tree2 (X,Υω,Γ(ω, C),B ↾ Xω) .

Thus, we have (⇐) of (1) through (3).

343



The following is a Tree2 version of corollary 2.6.8 on page 207.

Corollary 3.6.10. Suppose Λ is σ-algebra and closed under Λ-substitution. Then for any

nonempty Υ ⊆ CWF ,

Det(Λ ↾ Xω)⇔ DetG (Λ;Tree2 (X,Υω,Γ(ω,Λ),Λ ↾ Xω)) . ⊣

Proof.

(⇒) By corollary 3.5.27,

Det(Λ ↾ Xω)⇒ Det G (Λ;Tree2 (X,CWF ω,Γ(ω,Λ),Λ ↾ Xω)) .

Since G (Λ;Tree2 (X,Υω,Γ(ω,Λ),Λ ↾ Xω)) ⊆ G (Λ;Tree2 (X,CWF ω,Γ(ω,Λ),Λ ↾ Xω)), for

any Υ ⊆ CWF ,

Det(Λ ↾ Xω)⇒ Det G (Λ;Tree2 (X,Υω,Γ(ω,Λ),Λ ↾ Xω)) .

(⇐) Since ∅ ∈ Λ ↾ Xω, by observation 3.4.1, we have the result.
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3.7 Generalization of a Type 2 tree

As in section 2.7.1, we can generalize Type 2 trees into α-Type 2 trees. Instead fixing the

first part as Xω, we can take Xω for any limit ordinal α. The following is the generalization

of a Type 2 tree, named an α-Type 2 tree.

Definition 3.7.1. (Definition of an α-Type 1 tree)

Suppose α is a limit ordinal. Suppose X is a nonempty set, Ψ is a function from Xα into

ω, B is a subsets of Xα and Tsq = ⟨Tn |n ∈ ω ⟩ where each Tn is a tree. Define [αT
Ψ,B
X,Tsq

] by :

h ∈
[
αT

Ψ,B
X,Tsq

]
↔


h ∈ Xα if h ↾ α /∈ B,

h ∈ Xα ×
[
TΨ(h↾α)

]
if h ↾ α ∈ B.

⊣

Thus a Type 2 tree is an ω-Type 2 tree. Notice that we can obtain the similar results for

α-Type 2 trees.
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Chapter 4

Definitions of Type 3, Type 4, Type 5

trees and future questions

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam

nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper,

felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede.

Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in

sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique

neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo.

Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent

lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet

ipsum. Nunc quis urna dictum turpis accumsan semper.

In this dissertation, we only consider Type 1 and Type 2 trees. In chapter 2, we defined

a Type 1 tree and Tree1 collections, collections of Type 1 trees. We also observed the

determinacy strength of games on Tree1 collections by comparing the determinacy of games

346



on X<ω. In chapter 3, we defined a Type 2 tree and Tree2 collections, collections of Type 2

trees. We also observed the determinacy strength of games on Tree2 collections by comparing

the determinacy of games on X<ω.

In this section, we will define a Type 3, Type 4 and Type 5 trees. In section 4.1, as a

generalization of a Type 2 tree, we will define a Type 3 tree. Type 3 trees are defined only

when the tree satisfies a certain property In section 4.2, we modify a Type 3 tree and define

a Type 4 tree. Unlike Type 3 trees, Type 4 trees are always defied. In section 4.3, we define

a Type 5 tree. For Type 3, Type 4 and Type 5 trees, we don’t have determinacy results. We

shall leave this to readers as future questions.
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4.1 Definition of a Type 3 tree

In this section, as a generalization of a Type 2 tree, we will define a Type 3 tree. In a Type

2 tree, we used Ψ to decide the tail tree. For a Type 3 tree, we will fix a continuous function

Φ from Xω into ωω. Φ maps the first omega moves f into a sequence g in ωω. Then each

component of g will create a tree T π
g by using a bijection π from ω into ω<ω. π takes g(i)

into a finite sequence hi ∈ ω<ω. Thus T π
g = {hi|i ∈ ω}. If T π

g is a well-founded tree, we

define a Type 3 tree. Otherwise, Type 3 is undefined. Note that we includes empty trees

here. In theorem 4.2.1, we will observe that some of Type 2 trees are Type 3 trees.

Definition 4.1.1. Fix a continuous function Φ from Xω into ωω. Fix a bijection π from ω

into ω<ω. For each f ∈ Xω, define

T π
Φ(f) = {π (Φ (f) (n))|n ∈ ω} .

⊣

Then T π
Φ(f) ⊆ ω<ω.

Definition 4.1.2. (Definition of a Type 3 tree)

Fix a continuous function Φ from Xω into ωω. Fix a bijection π from ω into ω<ω. If for all

f ∈ Xω, every T π
Φ(f) is a well-founded tree, then we define a Type 3 tree TΦ,π by

[
TΦ,π
3

]
=
∪

f∈Xω

(
{f} ×

[
T π
Φ(f)

])
.

⊣

Theorem 4.1.3. Let Υ =
{
ω≤n |n ∈ ω

}
. Then every Type 2 tree in

Tree2(X,Υω,Γ(ω,∆0
1),Π

0
1 ↾ Xω)

is a Type 3 tree. ⊣
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Proof.

Pick an arbitrary Type 2 tree TΨ,B
X,Tsq

∈ Tree2(X,Υω,Γ(ω,∆0
1),Π

0
1 ↾ Xω). Pick an arbitrary

bijection π from ω into ω<ω. Since π is a bijection, π−1(∅) ∈ ω. Define s∅ ∈ ωω to be the

sequence with every component π−1(∅). Then

T π
s∅

= {π (s∅ (m)) |m ∈ ω} =
{
π
(
π−1 (∅)

)}
= {∅} .

We will define a continuous function Φ from Xω into ωω. Since Tsq = ⟨Tn|n ∈ ω⟩ ∈ Υω, each

Tn is well-founded. We decompose each Tn to find the set of natural numbers Nn such that

Tn = {π(i)|i ∈ Nn}. Since π is a bijection, each Nn is uniquely defined from Tn. Since |Tn|

is countable and π is a bijection, Nn is countable. Thus we can order Nn as an ω-sequence.

Fix such a sequence sn ∈ ωω for each Tn. Then we have

T π
sn = {π (sn (m)) |m ∈ ω} = {π (i) |i ∈ Nn} = Tn.

Define

Φ : Xω −→ ωω

f 7→


sΨ(f) if f ∈ B,

s∅ if f /∈ B.

Recall that Ψ is a function from Xω into ω fixed by TΨ,B
X,Tsq

. Thus there are ω many sΨ(f)’s.

Show Φ is a continuous function. Pick an arbitrary O ∈ Σ0
1 ↾ ωω. Then there exists

⟨pi|i ∈ ω⟩ such that each pi ∈ ω<ω and O =
∪
i∈ω

Oi where each Oi = {h ∈ ωω |h ⊇ pi}. Let

Mpi = {m ∈ ω |sm ⊇ pi} for each i ∈ ω. Then
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Φ−1 (Oi) = Φ−1 {h ∈ ωω |h ⊇ pi} =



∪
m∈Mpi

Ψ−1 (m)︸ ︷︷ ︸
∆0

1↾Xω

if pi ⊈ s∅,

∪
m∈Mpi

Ψ−1 (m)︸ ︷︷ ︸
∆0

1↾Xω

∪ (Xω\B)︸ ︷︷ ︸
Σ0

1↾Xω

if pi ⊆ s∅.

Hence Φ−1 (Oi) ∈ Σ0
1 ↾ Xω and thus Φ−1 (O) ∈ Σ0

1 ↾ Xω . Therefore Φ is a continuous

function.

Under this Φ, we have

[
TΦ,π
3

]
=
∪

f∈Xω

(
{f} ×

[
T π
Φ(f)

])
=
∪
n∈ω

(
Ψ−1 (n)× [T π

sn ]
)
∪
(
(Xω\B)× [T π

s∅
]
)

=
∪
n∈ω

(
Ψ−1 (n)× [Tn]

)
∪ (Xω\B)

=
[
TΨ,B
X,T sq

]
.

Notice that if we raise the complexity of B’s, we need to raise the complexity of Φ’s.

Question 14. What is the relation between Type 2 trees and Type 3 trees? ⊣
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4.2 Definition of a Type 4 tree

In section 4.1, we define a Type 3 tree. In this section, we will modify the definition of a

Type 3 tree to define a Type 4 tree. Unlike Type 3 trees, Type 4 trees are always defined.

First, recall definition 4.1.1.

Definition 4.1.1. Fix a continuous function Φ from Xω into ωω. Fix a bijection π from ω

into ω<ω. For each f ∈ Xω, define

T π
Φ(f) = {π (Φ (f) (n))|n ∈ ω} .

⊣

Definition 4.2.1. (Definition of a Type 4 tree)

Suppose Φ is a continuous function from Xω into ωω and π is a bijection from ω to ω<ω.

Define

h ∈
[
TΦ,π
4

]
df⇔


h ∈ Xω ×

[
T π
Φ(h↾ω)

]
if T π

Φ(h↾ω) is well-founded,

h ∈ Xω otherwise.
⊣

It is easy to see that every Type 3 tree is a Type 4 tree.
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4.3 Definition of a Type 5 tree

In section 4.1, we defined a Type 3 tree. In section 4.2, we defined a Type 4 tree by modifying

the definition of a Type 3 tree. In this section, we will define a Type 5 tree. This tree is

different from Type 3 and Type 4 trees. Type 5 trees are generalization of Type 2 trees for

countable X.

Definition 4.3.1. (Definition of a Type 5 tree)

Assume X is countable. Suppose ⟨Tα |α ∈ 2ω ⟩ to be such that each Tα is well-founded (Tα

could be the empty tree). Suppose ⟨fα |α ∈ 2ω ⟩ is an enumeration of Xω. Define a Type 5

tree T
⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩ by [

T
⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩

]
=
∪
α∈2ω

({fα} × [Tα]). ⊣

Observation 4.3.2. Every Type 2 tree TΨ,B
X,Tsq

with countable X is a Type 5 tree. ⊣

Proof.

Pick an arbitrary Type 2 tree TΨ,B
X,Tsq

with countable X. Suppose ⟨fα |α ∈ 2ω ⟩ is an enumer-

ation of Xω. For each α ∈ 2ω, define

Tα =


{∅} if fα /∈ B,

TΨ(fα) if fα ∈ B.
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Then

h ∈
[
TΨ,B
X,Tsq

]
↔


h ∈ Xω if h ↾ ω /∈ B,

h ∈ Xω ×
[
TΨ(h↾ω)

]
if h ↾ ω ∈ B.

↔ ∃α ∈ 2ω such that h ↾ ω = fα and


h ∈ {fα} × {∅} if h ↾ ω /∈ B,

h ∈ {fα} ×
[
TΨ(fα)

]
if h ↾ ω ∈ B.

↔ h ∈
∪
α∈2ω

({fα} × [Tα])

↔ h ∈
[
T

⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩

]
.

Thus TΨ,B
X,Tsq

= T
⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩ .

Observation 4.3.3. There is a Type 5 tree with countable X which is not a Type 2 tree. ⊣

Proof.

Fix a countableX. LetWF (ω) be the set of all well-founded trees on ω. Show |WF (ω)| = 2ω.

Show |WF (ω)| ≤ 2ω.

|WF (ω)| ≤ |℘ (ω<ω)| = |℘ (ω)| = 2ω.

Show |WF (ω)| ≥ 2ω.

∀α ∈ 2ω, define [Tα] = {⟨n, α (n)⟩ |n ∈ ω}. Then each Tα ∈ WF (ω) and for all α, β ∈ 2ω

such that α ̸= β, Tα ̸= Tβ so that there are 2ω many distinct Tαs.

Thus we have

|WF (ω)| = 2ω.

Hence there are 2ω many distinct well-founded trees on ω. Let ⟨Tα |α ∈ 2ω ⟩ be an enumer-
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ation of WF (ω) excluding the empty tree. Consider a Type 5 tree T
⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩ . Show that

T
⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩ is not a Type 2 tree.

Suppose, for a contradiction, there exists a Type 2 tree TΨ,B
X,Tsq

such that TΨ,B
X,Tsq

=

T
⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩ . Let Tsq = ⟨T n|n ∈ ω⟩. Fix α ∈ 2ω such that for all n ∈ ω, Tα ̸= T n.

Case 1 : fα /∈ B.

Then fα ∈ [TΨ,B
X,T sq ]\

[
T

⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩

]
since every Tα is not the empty tree. Thus TΨ,B

X,Tsq
̸=

T
⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩ .

Case 2 : fα ∈ B.

By the definition of T
⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩ , for all g ∈ ω<ω,

fα
⌢g ∈

[
T

⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩

]
⇔ g ∈ [Tα].

Since for all n ∈ ω, Tα ̸= T n,

(
[Tα] \

[
TΨ(fα)

])
∪
([
TΨ(fα)

]
\ [Tα]

)
̸= ∅.

Assume ĝ ∈
(
[Tα] \

[
TΨ(fα)

])
. Then fα

⌢g ∈
[
T

⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩

]
\
[
TΨ,B
X,T sq

]
. This is a contradiction.

Hence ĝ ∈
([
TΨ(fα)

]
\ [Tα]

)
. Then fα

⌢g ∈
[
TΨ,B
X,T sq

]
\
[
T

⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩

]
This is a contradiction.

Therefore, TΨ,B
X,Tsq

̸= T
⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩ .

Hence T
⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩ is not a Type 2 tree.

The following is a question throughout this chapter.

Question 15. What are the determinacy strength of games on Type 3, Type 4 and type 5

trees? ⊣
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Appendix A

Big picture

In this section, we draw a picture of some of the determinacy results proved in this disser-

tation. The symbols →, ← and ↔ are used to compare the determinacy strength of each

collection. For example,

A↔


B

C

D

illustrates that det(A)↔ det(B), det(A)↔ det(C) and det(A)↔ det(D). Similarly,

B

C

D


↔ A

illustrates that det(A) ↔ det(B), det(A) ↔ det(C) and det(A) ↔ det(D). The symbols

shown in Figure A.0.1 is listed on pages 357 and 358.
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Type 1 Type 2

•G
(
Σ0

1, T N1
1

)
•P ↾ Xω

(12)

•∆1
n+1 ↾ XωG(Σ0

1, T Cn+1
1 )G(Π0

1, T Cn+1
1 ) G(Σ0

1, T Cn+1
2 ) G(Π0

1, T Cn+1
2 )

(g) (a)(1) (11)

•Σ1
n ↾ Xω

G(Σ0
1, T

N ,Cn−1

1 )

(f)

(a)
G(Σ1

n, T CB
1 ) G(Π1

n, T CB
1 )

G(Σ1
n, T

CγB
1 ) G(Π1

n, T
CγB
1 )

G(Σ1
n, T

CBβ
1 ) G(Π1

n, T
CBβ
1 )

G(Σ1
n, T

Cγβ
1 ) G(Π1

n, T
Cγβ
1 )

(10)

(9)

(1)
G(Σ1

n, T CB
1 )G(Π1

n, T CB
1 )

G(Σ1
n, T

CγB
1 )G(Π1

n, T
CγB
1 )

G(Σ1
n, T

CBβ
1 )G(Π1

n, T
CBβ
1 )

G(Σ1
n, T

Cγβ
1 )G(Π1

n, T
Cγβ
1 )

•B ↾ Xω (e)

(a)

G(B, T CB
2 )

G(B, T CγB
2 )

G(B, T CBβ
2 )

G(B, T Cγβ
2 )

G(Σ0
α, T CB

2 ) G(Π0
α, T CB

2 )

G(Σ0
α, T

CγB
2 ) G(Π0

α, T
CγB
2 )

G(Σ0
α, T

CBβ
2 ) G(Π0

α, T
CBβ
2 )

G(Σ0
α, T

Cγβ
2 ) G(Π0

α, T
Cγβ
2 )

G(∆0
1, T C1

2 )

(8)

(1)

G(B, T CB
1 )

G(B, T CγB
1 )

G(B, T CBβ
1 )

G(B, T Cγβ
1 )

G(Σ0
α, T CB

1 )G(Π0
α, T CB

1 )

G(Σ0
α, T

CγB
1 )G(Π0

α, T
CγB
1 )

G(Σ0
α, T

CBβ
1 )G(Π0

α, T
CBβ
1 )

(7)

(6)

(5)

(1)
•Σ0

ω ↾ Xω

•G(Σ0
n, T

Cij
1 )•G(Π0

n, T
Cij
1 )

•G(Σ0
1, T

Cij
1 )•G(Π0

1, T
Cij
1 )

•G
(
∆0

1, T C1
1

)
•
∪

n∈ω
Σ0

n ↾ Xω

•∆0
2 ↾ Xω

(4)

(3)

G
(
Σ0

1, T F2S1
1

)
G
(
Π0

1, T F2S1
1

)
G
(
Σ0

1, T F2P1
1

)
G
(
Π0

1, T F2P1
1

)
G
(
Σ0

1, T F2D1
1

)
G
(
Π0

1, T F2D1
1

)
G
(
Σ0

1, T F22
1

)
G
(
Π0

1, T F22
1

)
G
(
Σ0

1, T F12
1

)
G
(
Π0

1, T F12
1

)

(a)

(d)

(c)

G
(
Σ0

1, T F2S1
2

)
G
(
Π0

1, T F2S1
2

)
G
(
Σ0

1, T F2P1
2

)
G
(
Π0

1, T F2P1
2

)
G
(
Σ0

1, T F2D1
2

)
G
(
Π0

1, T F2D1
2

)
G
(
Σ0

1, T F22
2

)
G
(
Π0

1, T F22
2

)
G
(
Σ0

1, T F12
2

)
G
(
Π0

1, T F12
2

)

(1)

•Σ0
1 ↾ Xω•G

(
Σ0

1, T F1
1

)
•G

(
Π0

1, T F1
1

)
•G
(
Π0

1, T FWF1
2

)
•G

(
Σ0

1, T FWF1
2

)(1) (2) (a)(b)

n, i, j ∈ ω, α, β, γ ∈ ω1, Symbols are listed on the next page.

(1) theorem 2.3.1, (2) theorem 2.6.1, (3) theorem 2.6.2, (4) theorem 2.6.3, (5) corollary 2.4.17,

(6) theorem 2.5.20, (7) theorem 2.5.30, (8) corollary 2.6.6, (9) theorem 2.6.7,

(10) comment above observation 2.5.45, (11) corollary 2.6.5, (12) observation 2.5.45,

(a) corollary 3.3.11, (b) theorem 3.6.3, (c) theorem 3.6.2, (d) theorem 3.6.3, (e) corollary 3.6.8,

(f) theorem 3.6.9, (g) corollary 3.6.5.

Figure A.0.1: Illustration of the determinacy equivalences between well-known results and
some of the results in this dissertation.
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Symbols shown in the Figure A.0.1 under Type 1:

T F1
1 = Tree1

(
X,FIN,Γ(ω,∆0

1),∆
0
1 ↾ Xω

)
T F22
1 = Tree1

(
X,FIN,Γ(ω,∆0

2),∆
0
2 ↾ Xω

)
T F12
1 = Tree1

(
X,FIN,Γ(ω,∆0

1),∆
0
2 ↾ Xω

)
T F2D1
1 = Tree1

(
X,FIN,Γ(ω,∆0

2),∆
0
1 ↾ Xω

)
T F2S1
1 = Tree1

(
X,FIN,Γ(ω,∆0

2),Σ
0
1 ↾ Xω

)
T F2P1
1 = Tree1

(
X,FIN,Γ(ω,∆0

2),Π
0
1 ↾ Xω

)
T C1
1 = Tree1

(
X,CTB,Γ(ω,∆0

1),∆
0
1 ↾ Xω

)
T Cij
1 = Tree1

(
X,CTB,Γ(ω,∆0

i ),Σ
0
j ↾ Xω

)
T CBβ
1 = Tree1

(
X,CTB,Γ(ω,B),Σ0

β ↾ Xω
)

T CγB
1 = Tree1

(
X,CTB,Γ(ω,∆0

γ),B ↾ Xω
)

T Cγβ
1 = Tree1

(
X,CTB,Γ(ω,∆0

α),Σ
0
β ↾ Xω

)
T CB
1 = Tree1 (X,CTB,Γ(ω,B),B ↾ Xω)

T N ,Cn−1

1 = Tree1 (X,N , Cn−1, X
ω)

T N1
1 = Tree1

(
X,N ,Γ(ω,∆0

1),∆
0
1 ↾ Xω

)
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Symbols shown in the Figure A.0.1 under Type 2:

T F1
2 = Tree2

(
X,FWF ω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

)
T F22
2 = Tree2

(
X,FWF ω,Γ(ω,∆0

2),∆
0
2 ↾ Xω

)
T F12
2 = Tree2

(
X,FWF ω,Γ(ω,∆0

1),∆
0
2 ↾ Xω

)
T F2D1
2 = Tree2

(
X,FWF ω,Γ(ω,∆0

2),∆
0
1 ↾ Xω

)
T F2S1
2 = Tree2

(
X,FWF ω,Γ(ω,∆0

2),Σ
0
1 ↾ Xω

)
T F2P1
2 = Tree2

(
X,FWF ω,Γ(ω,∆0

2),Π
0
1 ↾ Xω

)
T C1
2 = Tree2

(
X,CWF ω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

)
T Cij
2 = Tree2

(
X,CWF ω,Γ(ω,∆0

i ),Σ
0
j ↾ Xω

)
T CBβ
2 = Tree2

(
X,CWF ω,Γ(ω,B),Σ0

β ↾ Xω
)

T CγB
2 = Tree2

(
X,CWF ω,Γ(ω,∆0

γ),B ↾ Xω
)

T Cγβ
2 = Tree2

(
X,CWF ω,Γ(ω,∆0

α),Σ
0
β ↾ Xω

)
T CB
2 = Tree2 (X,CWF ω,Γ(ω,B),B ↾ Xω)

T Cn+1
2 = Tree2

(
X,CWF ω,Γ(ω,∆1

n+1),∆
1
n+1 ↾ Xω

)
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Appendix B

List of Symbols

The following symbols are specific to this dissertation.

B.1 Letters with special meanings

FIN : the collection of nonempty finite sets . . . . . . . . . . . . . . . . . . . 44

CTB : the collection of nonempty countable sets . . . . . . . . . . . . . . . . . 44

WF : the set of nonempty well-founded trees . . . . . . . . . . . . . . . . . . . 44

FWF : the set of nonempty well-founded trees with each move is from some finite set · · 44

CWF : the set of nonempty well founded trees with each move is from some countable

set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

X : a nonempty set . . . . . . . . . . . . . . . . . . . . . . . . . . . 47, 214

Y : a nonempty set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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B : a subset of Xω . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47, 214

Ψ : a function from Xω into ω . . . . . . . . . . . . . . . . . . . . . . . 47, 214

Tsq : an ω-sequence of nonempty trees . . . . . . . . . . . . . . . . . . . . . 214

Θ : a nonempty collection of nonempty sets . . . . . . . . . . . . . . . . . . . 50

Γ : a nonempty collection of functions from Xω into ω . . . . . . . . . . . . . 50, 219

Λ : a nonempty collection of subsets of Xω . . . . . . . . . . . . . . . . . 50, 219

Υ : a nonempty collection of nonempty trees . . . . . . . . . . . . . . . . . . . 219

Ξ : complexity, e.g.,Σ0
1,Σ

0
2, ... . . . . . . . . . . . . . . . . . . . . . . . 52, 223

B.2 Symbols related to Type 1 and Type 2 trees

B.2.1 Symbols related to Type 1 trees

TΨ,B
X,Y : a Type 1 tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Tree1(X,Θ,Γ,Λ) : a Tree1 collection, a collection of Type 1 trees . . . . . . . . . 50

G(Ξ, T1) : Ξ games on a Tree1 collection T1 = Tree1(X,Θ,Γ,Λ) . . . . . . . . . . 52

Det G(Ξ, T1) : Ξ determinacy on a Tree1 collection T1 = Tree1(X,Θ,Γ,Λ) . . . . . 53
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B.2.2 Symbols related to Type 2 trees

TΨ,B
X,Tsq

: a Type 2 tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Tree2 (X,Υω,Γ,Λ) : a Tree2 collection, a collection of Type 2 trees . . . . . . . . . 220

G(Ξ, T2) : Ξ games on a Tree2 collection T2 = Tree2(X,Υω,Γ,Λ) . . . . . . . . . 223

Det G(Ξ, T2) : Ξ determinacy on a Tree2 collection T2 = Tree2(X,Υω,Γ,Λ) . . . . . 223

B.3 Other notations

(Λ ∧ Ξ) ↾ [T ] = {A |∃B ∈ Λ ↾ [T ] ∃C ∈ Ξ ↾ [T ] (A = B ∩ C)} . . . . . . . . . . . 43

(Λ ∨ Ξ) ↾ [T ] = {A |∃B ∈ Λ ↾ [T ] ∃C ∈ Ξ ↾ [T ] (A = B ∪ C)} . . . . . . . . . . . 43

co-Λ ↾ [T ] = {A ⊆ [T ] |[T ] \A ∈ Λ} . . . . . . . . . . . . . . . . . . . . . . . 43

∆ (Λ) ↾ [T ] = Λ ↾ [T ] ∩ (co-Λ) ↾ [T ] . . . . . . . . . . . . . . . . . . . . . . . 43

Γ (Y,Λ) = {Ψ : Xω → Y | Ψ is Λ-measurable} . . . . . . . . . . . . . . . . . . 43
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Appendix C

Definition of Trees

In this dissertation, we only consider Type 1 and Type 2 trees. For Type 3, Type 4 and

Type 5 trees, we don’t have results. We will list those trees. See more details in chapter 4.

C.1 Type 1 tree : TΨ,B
X,Y

Definition 2.1.2. (Definition of a Type 1 tree)

Suppose X and Y are nonempty sets. Let B be a subset of Xω and let Ψ be a function from

Xω into ω. For any h ∈ Xω × Y <ω, define [TΨ,B
X,Y ] by :

h ∈
[
TΨ,B
X,Y

]
↔


h ∈ Xω if h ↾ ω /∈ B,

h ∈ Xω × Y Ψ(h↾ω)+1 if h ↾ ω ∈ B.

A tree T is a Type 1 tree if and only if T = TΨ,B
X,Y for some nonempty sets X and Y , a

function Ψ from Xω into ω and a subset B of Xω. (Possibly X = Y and also B could be the

empty set.) ⊣
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Definition 2.7.1. (Definition of an α-Type 1 tree)

Suppose α is a limit ordinal. Suppose X and Y are nonempty sets. Let B be a subset of Xα

and let Ψ be a function from Xα into ω. For any h ∈ Xα × Y <ω, define [αT
Ψ,B
X,Y ] by :

h ∈
[
αT

Ψ,B
X,Y

]
↔


h ∈ Xα if h ↾ α /∈ B,

h ∈ Xα × Y Ψ(h↾α)+1 if h ↾ α ∈ B.
⊣

C.2 Type 2 tree : TΨ,B
X,Tsq

Definition 3.1.2. (Definition of a Type 2 tree)

Suppose X is a nonempty set, Ψ is a function from Xω into ω, B is a subsets of Xω and

Tsq = ⟨Tn |n ∈ ω ⟩ where each Tn is a tree. Define [TΨ,B
X,Tsq

] by :

h ∈
[
TΨ,B
X,Tsq

]
↔


h ∈ Xω if h ↾ ω /∈ B,

h ∈ Xω ×
[
TΨ(h↾ω)

]
if h ↾ ω ∈ B.

A tree T is a Type 2 tree if and only if T = TΨ,B
X,Tsq

for some nonempty set X, a function Ψ

from Xω into ω, a subset B of Xωand some Tsq = ⟨Tn |n ∈ ω ⟩, where each Tn is a nonempty

tree. ⊣

Definition 3.7.1. (Definition of an α-Type 1 tree)

Suppose α is a limit ordinal. Suppose X is a nonempty set, Ψ is a function from Xα into

ω, B is a subsets of Xα and Tsq = ⟨Tn |n ∈ ω ⟩ where each Tn is a tree. Define [αT
Ψ,B
X,Tsq

] by :

h ∈
[
αT

Ψ,B
X,Tsq

]
↔


h ∈ Xα if h ↾ α /∈ B,

h ∈ Xα ×
[
TΨ(h↾α)

]
if h ↾ α ∈ B.
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⊣

C.3 Type 3 tree : TΦ,π
3

Definition 4.1.2. (Definition of a Type 3 tree)

Fix a continuous function Φ from Xω into ωω. Fix a bijection π from ω into ω<ω. If for all

f ∈ Xω, every T π
Φ(f) is a well-founded tree, then we define a Type 3 tree TΦ,π by

[
TΦ,π
3

]
=
∪

f∈Xω

(
{f} ×

[
T π
Φ(f)

])
.

⊣

C.4 Type 4 tree : TΦ,π
4

Definition 4.2.1. (Definition of a Type 4 tree)

Suppose Φ is a continuous function from Xω into ωω and π is a bijection from ω to ω<ω.

Define

h ∈
[
TΦ,π
4

]
df⇔


h ∈ Xω ×

[
T π
Φ(h↾ω)

]
if T π

Φ(h↾ω) is well-founded,

h ∈ Xω otherwise.
⊣

C.5 Type 5 tree : T
⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩

Definition 4.3.1. (Definition of a Type 5 tree)

Assume X is countable. Suppose ⟨Tα |α ∈ 2ω ⟩ to be such that each Tα is well-founded (Tα

could be the empty tree). Suppose ⟨fα |α ∈ 2ω ⟩ is an enumeration of Xω. Define a Type 5
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tree T
⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩ by [

T
⟨fα|α∈2ω ⟩
⟨Tα|α∈2ω ⟩

]
=
∪
α∈2ω

({fα} × [Tα]). ⊣

C.6 Yost tree T α
g.t.

Definition C.6.1. (Definition of a Yost tree Tα
g.t)(See more details in Yost, n.d.)

For each limit ordinal α ∈ ω1, the Yost tree Tα
g.t. is constructed by the following manner:

1. Fix a limit ordinal α ∈ ω1 and fix an α’s decomposition as below.

2. Each play in Tα
g.t. is finite and moves from ω (a finite sequence from ω).

3. The length of a play is determined by a certain player I’s move depending on the

decomposition.

Fix a decomposition of α as follows and construct an ordinal α decomposition tree Hα.

1. Fix ⟨αn1 + 2n1 + 1 |n1 ∈ ω ⟩ such that

• supn1∈ω (αn1 + 2n1 + 1) = α,

• each αn1 is a limit ordinal.

2. Repeat this for each αn1 i.e.,

fix ⟨αn1,n2 + 2n2 + 1 |n2 ∈ ω ⟩ such that

• supn2∈ω (αn1,n2 + 2n2 + 1) = αn1,

• each αn1,n2 is a limit ordinal.

3. Repeat this for each αn1,n2 , ... until we get down to αn1,n2,...,nl−1
= ω for some l− 1 ∈ ω.
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Then define αn1,n2,...,nl
= 0 for each nl ∈ ω We have supnl∈ω

(
ααn1,n2,...,nl

+ 2nl + 1
)
= ω.

Define the ordinal α decomposition tree Hα to be such that [Hα] consists of such sequences

⟨n1, n2, ..., nl⟩. We define the Yost tree g ∈ [Tα
g.t.] if and only if

1. each move of g is from ω,

2. there is a sequence ⟨n1, n2, ..., nl⟩ ∈ [Hα] such that

• g(0) = n1,

• g

(
j∑

i=1

(2nj + 2)

)
= nj+1,

• lh(g) =
l∑

i=1

(2nj + 2). ⊣
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Appendix D

Well-known Determinacy Results

D.1 Determinacy results from ZFC

Theorem 1.4.2. (Gale and Stewart, 1953)

Suppose T is a tree. If T is well-founded, then for any A ⊆ [T ], G(A;T ) is determined. ⊣

Theorem 1.4.3. (AC)(Gale and Stewart, 1953)(as cited in Moschovakis, 2009, p. 222,

6A.6)

There exists A ⊆ ωω such that G(A;ω<ω) is not determined. ⊣

Theorem 1.4.6. (Gale and Stewart, 1953)

Suppose T = X<ω for some nonempty X. Then Det(Σ0
1 ↾ [T ]) and Det(Π0

1 ↾ [T ]). ⊣

Theorem 1.4.7. (Wolfe, 1955)

Suppose T = X<ω for some nonempty X. Then Det(Σ0
2 ↾ [T ]). ⊣

Theorem 1.4.8. (Martin, 1975; Martin, 1990)

Suppose T = X<ω for some nonempty X. Then Det(B ↾ [T ]). ⊣
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Theorem 1.4.9. (Martin, 1990)

Suppose T = X<ω for some nonempty X. Then Det(qB ↾ [T ]). ⊣

D.2 Results related to the existence of measurable car-

dinals

Theorem 1.4.12. (Martin, 1970)

If there is a measurable cardinal, then Det(Π1
1 ↾ ωω). ⊣

Theorem 1.4.13. (Martin, 1970)(as cited in Martin, 2017 draft, p.187, Theorem 4.1.6)

Let T be a game tree. Assume there is a measurable cardinal larger than |T |. Then Det(Π1
1 ↾

[T ]). ⊣

Theorem 1.4.14. (Martin, 1990, p. 287, Theorem 3)

If there is a measurable cardinal, then Det(ω2-Π1
1 ↾ ωω). ⊣

Theorem 1.4.15. (Martin, 1990, p. 292, Theorem 4)

If there is a measurable cardinal, then Det ∆((ω2 + 1)-Π1
1 ↾ ωω). ⊣

Theorem 1.4.16. (Martin, 2017 draft, p.241, Chapter 5 Theorem 5.2.32)

Let α be a countable ordinal and T = X<ω. If the class of measurable cardinals greater than

|T | has order type ≥ α, then Det ∆((ω2 · α + 1)-Π1
1 ↾ [T ]). ⊣

Theorem 1.4.17. (Simms 1979 1)

Let T = X<ω. If there is a measurable limit of measurable cardinals that is larger than |T |,

then Det(Σ0
1(Π

1
1) ↾ [T ]). ⊣

1as cited in Martin (2017 draft, p. 281, Chapter 5 Theorem 5.4.5).
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D.3 Projective determinacy

Theorem 1.4.22. (Martin and Steel, 1985)

For n ∈ ω, if there exist n Woodin cardinals with a measurable cardinal above them, then

Det(Π1
n+1 ↾ ωω). ⊣

Theorem 1.4.23. (Martin and Steel, 1985)

Suppose there are infinitely many Woodin cardinals. Then Det(P ↾ ωω). ⊣

D.4 Lightface results related to the existence of 0#

Theorem 1.4.27. (Martin, 1970; Martin, 2017 draft, p.2.9, Theorem 4.4.3)

If 0# exists, then Det(Π1
1 ↾ ωω). ⊣

Theorem 1.4.28. (Friedman, 1971 2)

If 0# exists, then Det(3-Π1
1 ↾ ωω). ⊣

Theorem 1.4.29. (Martin, early 1970’s 3)

If 0# exists, then Det(
∪

β∈ω2 β-Π1
1 ↾ ωω). ⊣

Theorem 1.4.30. (Martin, 1975)

Det(3-Π1
1 ↾ ωω) implies 0# exists. ⊣

Theorem 1.4.31. (Harrington, 1978 4)

Det(Π1
1 ↾ ωω) implies 0# exists. ⊣

2as cited in DuBose (1990, p. 504).
3as cited in DuBose (1990, p. 512).
4as cited in DuBose (1990, p. 512); Martin (2017 draft, p. 209).
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Theorem 1.4.32. (Martin and Harrington)

Det(Π1
1 ↾ ωω) if and only if 0# exists if and only if Det(

∪
β∈ω2 β-Π1

1 ↾ ωω). ⊣
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Appendix E

Definitions and Notations

The following are lists of definitions and notations specific to this dissertation.

E.1 Chapter 1

Notation 1.3.1. (Definition of a complexity)

In this dissertation, whenever we mention a “complexity” in chapters 2 and 3, we mean

the complexities defined in this section, i.e., Borel, projective and difference hierarchy, un-

less specified. More precisely, the definition of a complexity in this dissertation is the fol-

lowing: Suppose we have Ξ such that for each tree T , Ξ ↾ [T ] ⊆ ℘ ([T ]) is defined (e.g.,

Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Then we say Ξ is a complexity. ⊣

Notation 1.5.3. (Abuse of product notation)

Suppose T, T1, T2 are trees and satisfies the following properties.

1. every path of [T1] has length α for a fixed α,

2. for any ⟨f, g⟩ ∈ [T1]× [T2], f
⌢g ∈ [T ] and
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3. for any h ∈ [T ], ⟨h ↾ α, h ↾ [α, lh(h))⟩ ∈ [T1]× [T2].

Then to simplify notation, we abuse the cross product notation and express

[T ] = [T1]× [T2].

Caution :

We will use the actual cross product in some places. Readers should identify them from

the context. ⊣

Notation 1.5.4. (Abuse of inverse image notation)

Suppose f is a function from A to B. If b ∈ B is a singleton, we suppress {} for f−1({b}),

i.e., we write f−1(b) to mean f−1({b}). ⊣
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E.2 Chapter 2

Definition 2.1.2. (Definition of a Type 1 tree)

Suppose X and Y are nonempty sets. Let B be a subset of Xω and let Ψ be a function from

Xω into ω. For any h ∈ Xω × Y <ω, define [TΨ,B
X,Y ] by :

h ∈
[
TΨ,B
X,Y

]
↔


h ∈ Xω if h ↾ ω /∈ B,

h ∈ Xω × Y Ψ(h↾ω)+1 if h ↾ ω ∈ B.

A tree T is a Type 1 tree if and only if T = TΨ,B
X,Y for some nonempty sets X and Y , a

function Ψ from Xω into ω and a subset B of Xω. (Possibly X = Y and also B could be the

empty set.) ⊣

Definition 2.1.3. (Definition of the (X,Y )-TEP-[ω, ω + ω) property)

Suppose X and Y are nonempty sets. Let T be a tree. T satisfies (X, Y )-TEP-[ω, ω + ω)

property if for all y ∈ [T ], y satisfies the following four properties:

1. y ↾ ω ∈ Xω.

2. lh (y) ∈ [ω, ω + ω).

3. If lh (y) > ω, then each move of the tail of h is from Y .

4. If lh (y) > ω, then there exists a unique n ∈ ω\ {0} such that

∀g ∈ Y n (y ↾ ω)⌢ g ∈ [T ] (tail exchange property) ⊣

Definition 2.2.2. (Definition of a Tree1 collection)

Fix a nonempty set X. Let Θ ̸= ∅ be any collection of nonempty sets. Suppose Λ ̸= ∅ is any
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collection of subsets of Xω and Γ ̸= ∅ is a collection of functions from Xω to ω. Define

Tree1 (X,Θ,Γ,Λ) =
{
TΨ,B
X,Y |Y ∈ Θ,Ψ ∈ Γ, B ∈ Λ

}
.

A collection is a Tree1 collection if and only if it is Tree1(X,Θ,Γ,Λ) for some nonempty

set X, a nonempty collection Θ of Y ’s, a nonempty collection Γ of functions from Xω into

ω and a nonempty collection Λ of subsets of Xω.

We sometimes let T1 be a Tree1 collection when we wish to suppress X,Θ,Γ and Λ, i.e.,

T1 = Tree1 (X,Θ,Γ,Λ). ⊣

Notation 2.2.3. When dealing with singletons for any of the last three components of

Tree1 (X,Θ,Γ,Λ), we will suppress {}, i.e., if Θ is a singleton {Y }, Tree1 (X,Y,Γ,Λ) abbre-

viates Tree1 (X, {Y } ,Γ,Λ). Similarly, if Γ is a singleton {f}, Tree1 (X,Θ, f,Λ) abbreviates

Tree1 (X,Θ, {f} ,Λ)and if Λ is a singleton {B}, Tree1 (X,Θ,Γ, B) abbreviates Tree1(X,

Θ,Γ, {B}). ⊣

Definition 2.2.6. (Definition of “games on a Tree1 collection”)

Let Tree1 collection T1 = Tree1(X,Θ,Γ,Λ) for some X,Θ,Γ and Λ. Define “games on the

Tree1 collection T1” by ∪
T∈T1

{G (A;T ) |A ⊆ [T ]} ⊣

Definition 2.2.7. (Definition of Ξ games on a Tree1 collection)

Let Tree1 collection T1 = Tree1(X,Θ,Γ,Λ). Suppose we have Ξ such that for each T ∈

Tree1, Ξ ↾ [T ] ⊆ ℘ ([T ]) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Define Ξ games on a Tree1

collection T1 by

G (Ξ; T1) =
∪
T∈T1

{G (A;T ) |A ∈ Ξ ↾ [T ]}.
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As a notation, we will use G for a collection of games on a Tree1 collection. ⊣

Definition 2.2.8. (Definition of Ξ determinacy on a Tree1 collection)

Let Tree1 collection T1 = Tree1(X,Θ,Γ,Λ). Suppose we have Ξ such that for each T ∈ T1,

Ξ ↾ [T ] ⊆ ℘ ([T ]) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Define Ξ determinacy on the Tree1

collection T1 by

Det G(Ξ; T1),

i.e., for any T ∈ T1 and A ∈ Ξ ↾ [T ], every game G(A;T ) is determined. ⊣

Definition 2.3.2. (Definition of B+ and Ψ+)

Fix a Type 1 tree TΨ,B
X,Y . Then B ⊆ Xω and Ψ : Xω → ω. Define

1. B+ = X ×B ⊆ Xω, 1

2. Ψ+ : Xω → ω such that Ψ+(f) = Ψ(f ↾ [1, ω)) + 1. ⊣

Definition 2.3.3. (Definition of a Shift tree Sft(T ))

Fix a Type 1 tree T = TΨ,B
X,Y . Define a Shift tree Sft(T ) by

Sft(T ) = TΨ+,B+

X,Y . ⊣

Proposition 2.3.5. Fix a Type 1 tree T = TΨ,B
X,Y . Then for every h ∈ [Sft(T )],

h ↾ [1, ω) ∈ [T ] if h ↾ ω /∈ B+,

h ↾ [1, ω)⌢ h ↾ [ω + 1, lh (h)) ∈ [T ] if h ↾ ω ∈ B+. ⊣

1Recall abuse of notation 1.5.3 on page 42.
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Definition 2.3.6. (Definition of the erasing function e : [Sft(T )]→ [T ])

Fix a Type 1 tree T = TΨ,B
X,Y . Define the erasing function e from [Sft(T )] into [T ] by

e : [Sft (T )]→ [T ]

h 7→


h ↾ [1, ω) if h ↾ ω /∈ B+,

h ↾ [1, ω)⌢ h ↾ [ω + 1, lh (h)) if h ↾ ω ∈ B+. ⊣

Definition 2.3.7. (Definition of Shift)

Fix a Type 1 tree T = TΨ,B
X,Y . Define

Shift : ℘ ([T ])→ ℘ ([Sft (T )])

A 7→ {h ∈ [Sft (T )] | e (h) ∈ [T ] \A}. ⊣

Definition 2.3.10. Fix a Type 1 tree T = TΨ,B
X,Y . Given S ⊆ [T ], define

S+ = {h ∈ [Sft (T )] |e (h) ∈ S } . ⊣

Definition 2.3.16. Fix a Type 1 tree T = TΨ,B
X,Y . Pick an arbitrary k ∈ ω. Recall

(ωω)k = ωω × · · · × ωω︸ ︷︷ ︸
k many

.

Given Sk ⊆ [T ]× (ωω)k, define

S+
k =

{
⟨h, g1, ..., gk⟩ ∈ [Sft (T )]× (ωω)k |⟨e (h) , g1, ..., gk⟩ ∈ Sk

}
. ⊣

Definition 2.3.23. Let k ∈ ω. Suppose ⟨Sk
i |i ∈ ω⟩ to be such that each Sk

i ⊆ Xω×ωω×(ωω)k.

Define

⟨Sk
i |i ∈ ω⟩− =

{
⟨f, h, g1, ..., gk⟩ ∈ Xω × ωω × (ωω)k

∣∣⟨f, h ↾ [1, ω) , g1, ..., gk⟩ ∈ Sk
h(0)

}
. ⊣
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Definition 2.4.7. Suppose l ∈ ω. Let A ⊆ Xω × Y l+1. For each a ∈ Y , define

Ashort
a =

{
f ∈ Xω × Y l |f⌢⟨a⟩ ∈ A

}
. ⊣

Definition 2.4.12. Suppose l ∈ ω. Let Aa ⊆ Xω × Y l for all a ∈ Y . Define

⟨Aa |a ∈ Y ⟩long =
{
h ∈ Xω × Y l+1

∣∣h ↾ (ω + l) ∈ Ah(ω+l)

}
. ⊣

Definition 2.4.18. (Definition of the length function lh[T ])

lh[T ] : [T ]→ ω + ω

h 7→ lh (h) .
⊣

Definition 2.4.19. Suppose B ⊆ Xω, Ψ is a function from Xω into ω and Y is arbitrary.

Define

Long (B) = {h ∈ [TΨ,B
X,Y ] | lh(h) > ω}. ⊣

Definition 2.4.24. (Definition of Max)

Suppose Ψ ↾ B is bounded below ω. Let nΨ,B
max be the maximum tail length determined from Ψ

and B. (nΨ,B
max = max(Im(Ψ ↾ B)) + 1.) If Ψ and B are clear from the context, we suppress

Ψ and B, i.e.,nmax = nΨ,B
max.

Define

Max (Ψ, B) = {h ∈ [TΨ,B
X,Y ] | lh(h) = ω + nmax} = lh−1

[TΨ,B
X,Y ]

(ω + nmax). ⊣

Definition 2.4.36. Suppose α ∈ ω1 is even and ⟨Aβ |β ≤ α⟩ where each Aβ ⊆ Xω. Fix a

Type 1 tree T
χAα ,

∩
β∈α Aβ

X,Y . Define

dk<α (⟨Aβ |β ≤ α⟩) =
{
h ∈

[
T

χAα ,
∩

β∈α Aβ

X,Y

]∣∣∣h ↾ ω /∈
∩

β∈α
Aβ ∧ µβ(h ↾ ω /∈ Aβ) is odd

}
.⊣
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Definition 2.5.2. Suppose A ⊆ [TΨ,B
X,Y ]. For each n ∈ ω, define

An = A ∩ ((B ∩Ψ−1(n))× Y n+1),

A∅ = A ∩ (Xω\B).

Then A =
∪

n∈ω A
n∪̇A∅. ⊣

Definition 2.5.3. Suppose A ⊆ [TΨ,B
X,Y ]. For every n ∈ ω and g ∈ Y n+1, define

An
g = {f ∈ Xω |f⌢g ∈ An} . ⊣

Observation 2.5.5. Suppose A ⊆ [TΨ,B
X,Y ]. For all n ∈ ω and for all p ∈ Y ≤n+1, An

p ⊆

B ∩Ψ−1(n). ⊣

Definition 2.5.31. (Definition of “Fix”)

For all m ∈ ω, fix am ∈ Y m+1. Define

Fix ⟨am : m ∈ ω⟩ : Xω → [TΨ,B
X,Y ]

f 7→


f if f /∈ B,

f⌢aΨ(f) otherwise.

If ⟨am : m ∈ ω⟩ is clear from the context, we will denote Fix to mean Fix ⟨am : m ∈ ω⟩. ⊣

Sublemma 2.5.42. Suppose f : X1 → X2. Assume that E ⊆ X2 and for 1 ≤ j ≤ k,

F j ⊆ ωω. Then

(φf
k)

−1
(
E × F 1 × · · · × F k

)
= f−1 (E)× F 1 × · · · × F k. ⊣
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E.3 Chapter 3

Definition 3.1.2. (Definition of a Type 2 tree)

Suppose X is a nonempty set, Ψ is a function from Xω into ω, B is a subsets of Xω and

Tsq = ⟨Tn |n ∈ ω ⟩ where each Tn is a tree. Define [TΨ,B
X,Tsq

] by :

h ∈
[
TΨ,B
X,Tsq

]
↔


h ∈ Xω if h ↾ ω /∈ B,

h ∈ Xω ×
[
TΨ(h↾ω)

]
if h ↾ ω ∈ B.

A tree T is a Type 2 tree if and only if T = TΨ,B
X,Tsq

for some nonempty set X, a function Ψ

from Xω into ω, a subset B of Xωand some Tsq = ⟨Tn |n ∈ ω ⟩, where each Tn is a nonempty

tree. ⊣

Definition 3.1.4. (Definition of the tail tree T f of f)

Suppose T is a tree. For each f ∈ Xω, define [T f ] to be the set of tails for f , i.e., for any

f ∈ Xω and for any g ∈ [T f ], f⌢g ∈ T . Then f ∈ Xω ∩ [T ] if and only if [T f ] = ∅. Notice

that each T f is a tree. Define T f to be the tail tree of f . ⊣

Definition 3.1.5. (Definition of the countable tail trees property)

Suppose T is a tree. Define that T has “the countable tail trees property” if and only if{[
T f
]
|f ∈ Xω

}
is countable. ⊣

Definition 3.1.6. (Definition of (X,countable tail trees)-[ω,∞))

Suppose X is a nonempty set. Define that a tree T is “(X,countable tail trees)-[ω,∞)” if [T ]

satisfies the following three properties:

1. for all y ∈ [T ], y ↾ ω ∈ Xω.

2. for all y ∈ [T ], lh (y) ≥ ω.
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3. T satisfies the countable tail trees property. ⊣

Definition 3.2.2. (Definition of a Tree2 collection)

Fix a nonempty set X. Let Υ ̸= ∅ be any collection of nonempty trees. Suppose Λ ̸= ∅ is

any collection of subsets of Xω, Γ ̸= ∅ is a collection of functions from Xω to ω. Define

Tree2 (X,Υω,Γ,Λ) =
{
TΨ,B
X,Tsq

|Tsq ∈ Υω,Ψ ∈ Γ, B ∈ Λ
}
.

A collection is a Tree2 collection if and only if it is Tree2(X,Υω,Γ,Λ) for some nonempty

set X, a nonempty collection Υ of nonempty trees, a nonempty collection Γ of functions

from Xω into ω and a nonempty collection Λ of subsets of Xω.

We sometimes let T2 be a Tree2 collection when we wish to suppress X,Υω,Γ and Λ, i.e.,

T2 = Tree2(X,Υω,Γ,Λ). ⊣

Notation 3.2.3. If Υ is a singleton {T}, we will write Tree2 (X, {T}ω ,Γ,Λ). To avoid

confusion, we do not supress the brackets {} in {T}ω, we do not write Tree2 (X,T ω,Γ,Λ).

If we fix an ω-sequence of trees Tsq, we will write Tree2 (X,Tsq,Γ,Λ). When dealing with

the singletons for any of the last two components of Tree2 (X,Υω,Γ,Λ), we will suppress {},

i.e., if Γ is a singleton {f}, Tree2 (X,Υω, f,Λ) abbreviates Tree2 (X,Υω, {f} ,Λ) and if Λ

is a singleton {B}, Tree2 (X,Υω,Γ, B) abbreviates Tree2 (X,Υω,Γ, {B}). ⊣

Definition 3.2.9. (Definition of “games on a Tree2 collection”)

Let Tree2 collection T2 = Tree2 (X,Υω,Γ,Λ) for some X,Υ,Γ and Λ. Define “games on the

Tree2 collection T2” by ∪
T∈T2

{G (A;T ) |A ⊆ [T ]}. ⊣
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Definition 3.2.10. (Definition of Ξ games on a Tree2 collection)

Let Tree2 collection T2 = Tree2 (X,Υω,Γ,Λ). Suppose we have Ξ such that for each T ∈

Tree2, Ξ ↾ [T ] ⊆ ℘ ([T ]) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Define Ξ games on a Tree2

collection T2 by

G (Ξ; T2) =
∪
T∈T2

{G (A;T ) |A ∈ Ξ ↾ [T ]}.

We will use G for a collection of games.
⊣

Definition 3.2.11. (Definition of Ξ determinacy on a Tree2 collection)

Let Tree2 collection T2 = Tree2(X,Υω,Γ,Λ). Suppose we have Ξ such that for each T ∈

Tree2, Ξ ↾ [T ] ⊆ ℘ ([T ]) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Define Ξ determinacy on the

Tree2 collection T2 by

Det G(Ξ; T2),

i.e., for any X, Tsq ∈ Υω,Ψ ∈ Γ, B ∈ Λ and A ∈ Ξ ↾ [TΨ,B
X,Tsq

], every game G(A;TΨ,B
X,Tsq

) is

determined. ⊣

Definition 3.3.1. (Definition of Ψ+
2 and T+

sq)

Fix a Type 2 tree TΨ,B
X,Tsq

. Then B ⊆ Xω, Ψ : Xω → ω and Tsq = ⟨Tn |n ∈ ω ⟩ is an ω-sequence

of nonempty trees. Define

1. Ψ+
2 : Xω → ω such that Ψ+

2 (f) = Ψ(f ↾ [1, ω)).

2. For each n ∈ ω, T+
n = Yn × Tn for some nonempty set Yn and T+

sq = ⟨T+
n |n ∈ ω ⟩. ⊣

Definition 3.3.2. (Definition of a Shift tree Sft2(T ))

Fix a Type 2 tree T = TΨ,B
X,Tsq

. Define a Shift tree Sft2(T ) by

Sft2(T ) = T
Ψ+

2 ,B+

X,T+
sq

. ⊣
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Definition 3.3.4. (Definition of the erasing function e2 : [Sft2(T )]→ [T ])

Fix a Type 1 tree T = TΨ,B
X,Tsq

. Define the erasing function e from [Sft2(T )] into [T ] by

e2 : [Sft2 (T )]→ [T ]

h 7→


h ↾ [1, ω) if h ↾ ω /∈ B+,

h ↾ [1, ω)⌢ h ↾ [ω + 1, lh (h)) if h ↾ ω ∈ B+. ⊣

Definition 3.3.5. (Definition of Shift2)

Fix a Type 2 tree T = TΨ,B
X,Tsq

. Define

Shift2 : ℘ ([T ])→ ℘ ([Sft2 (T )])

A 7→ {h ∈ [Sft2 (T )] | e2 (h) ∈ [T ] \A}. ⊣

Definition 3.3.7. (Definition of a “shifting tree”)

For a tree T , define a shifting tree to be Y × T for some nonempty Y . Suppose Υ is a

collection of nonempty trees. Define Υ to be closed under shifting trees if for each T ∈ Υ,

there is a shifting tree Y × T ∈ Υ for some nonempty Y . ⊣

Definition 3.4.11. Suppose B ⊆ Xω, Ψ is a function from Xω into ω and Tsq is an ω-

sequence of nonempty trees. Define

Long2 (B) = {h ∈ [TΨ,B
X,Tsq

] | lh(h) > ω}. ⊣

Definition 3.4.16. Suppose Ψ ↾ B is bounded below ω and let Ψmax ∈ ω be the maximum

value of Ψ over B. Define

TMax (Ψ, B) = {h ∈ [TΨ,B
X,Tsq

] | h ↾ [ω, lh(h)) ∈ [TΨmax ]}. ⊣
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Definition 3.4.17. (Definition of the N maximal tree property)

Fix N ∈ ω. Suppose Υ is a set of nonempty trees of size N + 1 satisfying that: there is an

enumeration ⟨Tn |n ≤ N ⟩ of Υ such that

1. TN is well-founded.

2. For each n < N and for every gn ∈ [Tn], gn does not properly extend g for every

g ∈ [TN ].

Then we say Υ satisfies the N maximal tree property. We also say ⟨Tn |n ≤ N ⟩ has the

N maximal tree property. We say Tsq = ⟨Tn |n ∈ ω ⟩ has the N maximal tree property if

⟨Tn |n ≤ N ⟩ satisfies the N maximal tree property. ⊣

Notation 3.4.18. Suppose for each n ∈ ω, Tn is a tree. For each n ∈ ω and for any p ∈ Tn,

define

Mn
p = {m |p⌢⟨m⟩ ∈ Tn} . ⊣

Definition 3.4.19. (Definition of the N disjoint tree property)

Fix N ∈ ω. Suppose Υ is a set of nonempty trees of size N + 1 satisfying that: there is an

enumeration ⟨Tn |n ≤ N ⟩ of Υ such that

for every n < N , Mn
∅ ∩MN

∅ = ∅.

Then we say Υ satisfies the N disjoint tree property. We also say ⟨Tn |n ≤ N ⟩ has the

N disjoint tree property. We say Tsq = ⟨Tn |n ∈ ω ⟩ has the N disjoint tree property if

⟨Tn |n ≤ N ⟩ satisfies the N disjoint tree property. If Tsq = ⟨Tn |n ∈ ω ⟩ satisfies that each

Mn
∅ is pairwise disjoint, then we say Tsq has the disjoint tree property. ⊣
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Definition 3.4.22. (Definition of the modified N maximal tree property)

Fix N ∈ ω. Suppose Υ is a set of nonempty trees of size N + 1 satisfying that: there is an

enumeration ⟨Tn |n ≤ N ⟩ of Υ such that

1. TN is well-founded.

2. for each n < N and for every gn ∈ [Tn], gn does not extend g for every g ∈ [TN ] (This

gives us [TN ] ∩ [Tn] = ∅ for every n < N .)

Then we say Υ satisfies the modified N maximal tree property. We also say ⟨Tn |n ≤ N ⟩

satisfies the modified N maximal tree property. We say Tsq = ⟨Tn |n ∈ ω ⟩ has the modified

N maximal tree property if ⟨Tn |n ≤ N ⟩ satisfies the N maximal tree property. ⊣

Definition 3.4.37. Suppose α ∈ ω1 is even and ⟨Aβ |β ≤ α⟩ where each Aβ ⊆ Xω. Define

dk2
<α (⟨Aβ |β ≤ α⟩) =

{
h ∈

[
T

χAα ,
∩

β∈α Aβ

X,Tsq

]∣∣∣h ↾ ω /∈
∩

β∈α
Aβ ∧ µβ(h ↾ ω /∈ Aβ) is odd

}
.⊣

Definition 3.4.45. For any n ∈ ω, define

Tail (Ψ, n, B) =
(
B ∩Ψ−1 (n)

)
× [Tn]. ⊣

Definition 3.4.47. (Definition of leastα and Ψα)

Suppose A⃗ = ⟨Aβ |β ∈ α⟩ is a sequence of sets. Define

leastα : Xω → α + 1

f 7→


µβ (f /∈ Aβ) if f /∈

∩
β∈α Aβ,

α otherwise.

Then define

Ψα : Xω → ω

f 7→ n where leastα (f) = γ + n, γ = 0 or γ is a limit ordinal. ⊣
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Definition 3.5.2. Suppose A ⊆ [TΨ,B
X,Tsq

]. For each n ∈ ω, define

An = A ∩ ((B ∩Ψ−1(n))× [Tn]),

A∅ = A ∩ (Xω\B).

Then A =
∪

n∈ω A
n∪̇A∅. ⊣

Definition 3.5.3. Suppose A ⊆ [TΨ,B
X,Tsq

] and assume A∅, A
n for all n ∈ ω defined in definition

3.5.2. For every n ∈ ω and g ∈ [Tn], define

An
g = {f ∈ Xω |f⌢g ∈ An} . ⊣

Definition 3.5.4. Let Tsq = ⟨Tn |n ∈ ω ⟩ ∈ WF ω. Suppose A ⊆ [TΨ,B
X,Tsq

]. Define

An
p

df
=


∪

m∈Mn
p

An
p⌢⟨m⟩ if lh (p) is even,

∩
m∈Mn

p

An
p⌢⟨m⟩ if lh (p) is odd.

Since Tn is well-founded, each An
p is well-defined. ⊣

Definition 3.5.24. (Definition of “Fix2”)

For all m ∈ ω, fix am ∈ [Tm]. Define

Fix2 ⟨am : m ∈ ω⟩ : Xω → [TΨ,B
X,Tsq

]

f 7→


f if f /∈ B,

f⌢aΨ(f) otherwise.

If ⟨am : m ∈ ω⟩ is clear from the context, we will denote Fix2 to mean Fix2 ⟨am : m ∈ ω⟩. ⊣
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Appendix F

Determinacy Results

In this section, we will list all the determinacy results in this dissertation involving games

on Tree1 collections and Tree2 collections.

F.1 Chapter 2

(2.2) Definition of a Tree1 collection and a collection of games on a

Tree1 collection with complexity Ξ

Observation 2.2.9. Suppose X is a nonempty set, Θ is a collection of sets, Γ is a collection

of functions from Xω into ω, Λ is a collection of subsets of Xω. Let T1 = Tree1(X,Θ,Γ,Λ).

Suppose we have Ξ1,Ξ2 such that for each T ∈ T1, Ξ1 ↾ [T ] ⊆ ℘ ([T ]) and Ξ2 ↾ [T ] ⊆ ℘ ([T ])

are defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). If for any T ∈ T1, Ξ1 ↾ [T ] ⊆ Ξ2 ↾ [T ], then

G (Ξ1; T1) ⊆ G (Ξ2; T1) .

Thus G is an increasing operation on the first component. ⊣
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Observation 2.2.10. Let Θ be a collection of sets and Λ ⊆ Xω. Suppose we have Ξ such

that Ξ ↾ Xω ⊆ ℘ (Xω) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Suppose we have Ξ1 such that for

each T ∈ Tree1 (X,Θ,Γ(ω,Ξ),Λ), Ξ1 ↾ [T ] ⊆ ℘ ([T ]) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Then

the following are equal.

• G (Ξ1;Tree1 (X,Θ,Γ(ω,Ξ),Λ))

• G (Ξ1;Tree1 (X,Θ,Γ(ω, co-Ξ),Λ))

• G (Ξ1;Tree1 (X,Θ,Γ(ω,∆(Ξ)),Λ)) ⊣

(2.3) Equivalence between Σ0
α and Π0

α determinacy on a Tree1 col-

lection and equivalence between Σ1
n and Π1

n determinacy on a Tree1

collection

Theorem 2.3.1. Suppose α ∈ ω1 and n ∈ ω. Then for any X and Θ,

Det G
(
Σ0

α; T1
)
⇔ Det G

(
Π0

α; T1
)

(2.1)

Det G
(
Σ1

n; T1
)
⇔ Det G

(
Π1

n; T1
)

(2.2)

for T1 = Tree1 (X,Θ,Γ(ω, C),B ↾ Xω) 1 where:

• C ∈ {Σ0
γ,Π

0
γ,∆

0
γ,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, γ ∈ ω1 and m ∈ ω.

• B ∈ {Σ0
β,Π

0
β,∆

0
β,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, β ∈ ω1 and m ∈ ω. ⊣

1Recall notation 1.5.8 for Γ(ω, C).
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(2.4) Using the determinacy of games on a Tree1 collection to obtain

the determinacy of games on X<ω

Observation 2.4.1. For any X,Y , any function Ψ from Xω into ω and any complexity Ξ

(in which Ξ ↾ [T ] ⊆ ℘ ([T ]) is defined),

Det G (Ξ;Tree1 (X,Y,Ψ, ∅))⇒ Det (Ξ ↾ Xω) . ⊣

Corollary 2.4.2. Suppose α ∈ ω1 and n ∈ ω. Fix nonempty sets X and Y .

Let T1 = Tree1 (X,Y,Γ(ω,∆0
1),∆

0
1 ↾ Xω). Then

Det G
(
Σ0

α; T1
)
⇒ Det

(
Σ0

α ↾ Xω
)
.

Det G
(
Σ1

n; T1
)
⇒ Det

(
Σ1

n ↾ Xω
)
. ⊣

Observation 2.4.3. Assume that Γ contains all constant functions from Xω into ω. Then

for any X, Y and complexity Ξ (in which Ξ ↾ Xω × Y n ⊆ ℘ (Xω × Y n) is defined for all

n ∈ ω),

Det G (Ξ;Tree1 (X, Y,Γ, {∅, Xω}))⇒ Det
(∪

n∈ω
Ξ ↾ (Xω × Y n)

)
. ⊣

Theorem 2.4.4. (ZF-P)

Suppose Γ contains all constant functions from Xω into ω and Y is denumerable. Then

Det G (∆0
1;Tree1 (X,Y,Γ, {∅, Xω})) implies Det

(∪
n∈ω Σ

0
n ↾ Xω

)
, finite Borel determinacy

on X<ω. ⊣

Corollary 2.4.17.

Det G
(
∆0

1;Tree1
(
X,CTB,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
⇒ Det

(∪
n∈ω

Σ0
n ↾ Xω

)
.2 ⊣

2Recall notation 1.5.10 for CTB and notation 1.5.8 for Γ(ω,∆0
1).
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Corollary 2.4.21. For any X, Y , Ψ : Xω → ω and Λ,

Det G
(
Σ0

1;Tree1 (X, Y,Ψ,Λ ↾ Xω)
)
⇒ Det (Λ ↾ Xω) . ⊣

Corollary 2.4.22. (Corollary to Corollary 2.4.21)

For any α ∈ ω1, n ∈ ω, X,Y and Ψ : Xω → ω,

Det G
(
Σ0

1;Tree1
(
X,Y,Ψ,Σ0

α ↾ Xω
))
⇒ Det

(
Σ0

α ↾ Xω
)
.

Det G
(
Σ0

1;Tree1
(
X,Y,Ψ,Σ1

n ↾ Xω
))
⇒ Det

(
Σ1

n ↾ Xω
)
. ⊣

Corollary 2.4.23. (Corollary to Corollary 2.4.21)

Suppose X is a nonempty set, Θ is an arbitrary collection of sets, Γ is any collection of

functions from Xω into ω and Λ is a collection of nondetermined sets on Xω. Then,

¬Det G
(
Σ0

1;Tree1 (X,Θ,Γ,Λ ↾ Xω)
)
. ⊣

Corollary 2.4.27. For any X, Y and complexity Ξ,

Det G
(
Σ0

1;Tree1 (X, Y, {χA |A ∈ Ξ ↾ Xω } , Xω)
)
⇒ Det (Ξ ↾ Xω) .

Thus,

Det G
(
Σ0

1;Tree1 (X,Y,Γ(ω, 2-Ξ), Xω)
)
⇒ Det(Ξ ↾ Xω). ⊣

Corollary 2.4.28. (Corollary to Corollary 2.4.27)

For any α ∈ ω1 and any X, Y ,

Det G
(
Σ0

1;Tree1
(
X, Y,Γ(ω,Σ0

α ∧Π0
α), X

ω
))
⇒ Det(Σ0

α ↾ Xω).

Det G
(
Σ0

1;Tree1
(
X, Y,Γ(ω,∆0

α), X
ω
))
⇒ Det(∆0

α ↾ Xω). ⊣
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Corollary 2.4.30. Suppose Ξ1,Ξ2 are complexities. Then for any X,Y ,

Det G
(
Σ0

1;Tree1 (X, Y, {χA |A ∈ Ξ1 ↾ Xω } ,Ξ2 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (2.10)

Similarly,

Det G
(
Σ0

1;Tree1 (X, Y, {χA |A ∈ Ξ2 ↾ Xω } ,Ξ1 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (2.11)

⊣

Corollary 2.4.31. (Corollary to Corollary 2.4.30)

Suppose Ξ1,Ξ2 are complexities. Then for any X,Y ,

DetG
(
Σ0

1;Tree1 (X,Y,Γ(ω,Ξ1 ∧ co-Ξ1),Ξ2 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (2.12)

Similarly,

DetG
(
Σ0

1;Tree1 (X,Y,Γ(ω,Ξ2 ∧ co-Ξ2),Ξ1 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (2.13)

⊣

Corollary 2.4.32. (Corollary to Corollary 2.4.31)

Suppose α, β ∈ ω1. Then for any Y ,

Det G
(
Σ0

1;Tree1
(
X, Y,Γ

(
ω,Σ0

α ∧Π0
α

)
,Π0

β ↾ Xω
))
⇒ Det((Σ0

α ∧Π0
β) ↾ Xω).

Similarly,

Det G
(
Σ0

1;Tree1
(
X, Y,Γ

(
ω,Σ0

β ∧Π0
β

)
,Σ0

α ↾ Xω
))
⇒ Det((Σ0

α ∧Π0
β) ↾ Xω). ⊣

Corollary 2.4.33. (Corollary to Corollary 2.4.31)
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Suppose n,m ∈ ω. Then for any Y ,

Det G
(
Σ0

1;Tree1
(
X, Y,Γ

(
ω,Σ1

n ∧Π1
n

)
,Π1

m ↾ Xω
))
⇒ Det((Σ1

n ∧Π1
m) ↾ Xω).

Similarly,

Det G
(
Σ0

1;Tree1
(
X,Y,Γ

(
ω,Σ1

m ∧Π1
m

)
,Σ1

n ↾ Xω
))
⇒ Det((Σ1

n ∧Π1
m) ↾ Xω). ⊣

Corollary 2.4.34. (Corollary to Corollary 2.4.33) For any Y ,

Det G
(
Σ0

1;Tree1
(
X, Y,Γ(ω, 2-Π1

1),Σ
1
1 ↾ Xω

))
⇒ Det(2-Π1

1 ↾ Xω).

Similarly,

Det G
(
Σ0

1;Tree1
(
X, Y,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω

))
⇒ Det(2-Π1

1 ↾ Xω). ⊣

Corollary 2.4.35. (Corollary to Corollary 2.4.31) For any Y and n ∈ ω,

Det G
(
Σ0

1;Tree1
(
X, Y,Γ(ω, 2-Π1

1), (co-n-Π
1
1) ↾ Xω

))
⇒ Det(n+ 1-Π1

1 ↾ Xω). (2.14)

Similarly,

Det G
(
Σ0

1;Tree1
(
X,Y,Γ(ω, n-Π1

1 ∧ co-n-Π1
1),Π

1
1 ↾ Xω

))
⇒ Det

(
n+ 1-Π1

1 ↾ Xω
)
. (2.15)

⊣

Corollary 2.4.42. Assume α ∈ ω1 is even. Then for any Y ,

Det G
(
α-Π1

1;Tree1
(
X, Y,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω

))
⇒ Det(α + 1-Π1

1 ↾ Xω). ⊣

Corollary 2.4.44. Assume α ∈ ω1 is a limit ordinal and λ ∈ ω. Then for any Y ,

Det G
(
α-Π1

1;Tree1
(
X, Y,Γ(ω,Σ0

λ ∧Π0
λ),Π

1
1 ↾ Xω

))
⇒ Det(

(
α-Π1

1 +Σ0
λ

)
↾ Xω). ⊣
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(2.5) Getting the determinacy of the games on a Tree1 collection

from the determinacy of the games on X<ω (Reversed direction of

section 2.4)

Theorem 2.5.18. Suppose β, γ ∈ ω1.

If β, γ > 1, then

Det(∆0
max{β,γ} ↾ Xω)⇒ Det G

(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
.3 (2.17)

If β < γ,

Det
(
∆0

γ ↾ Xω
)
⇒


Det G

(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.18)

Det G
(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
. (2.19)

If β ≥ γ,

Det
((
Σ0

β ∨Π0
β

)
↾ Xω

)
⇒


Det G

(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.20)

Det G
(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
. (2.21)

Also,

Det
(
Σ0

1 ↾ Xω
)
⇒ Det G

(
Σ0

1;Tree1
(
X,FIN,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
. (2.22)

⊣

Theorem 2.5.20. Suppose β, γ ∈ ω1. Then

Det(Σ0
max{β,γ}+ω ↾ Xω)⇒



Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
.4(2.23)

Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
. (2.24)

Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. (2.25)

⊣

3Recall notation 1.5.10 for FIN .
4Recall notation 1.5.10 for CTB.
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Corollary 2.5.21. For any finite n and m,

Det
(
Σ0

ω ↾ Xω
)

⇒ Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆0

n),Σ
0
m ↾ Xω

))
⇒ Det G

(
∆0

1;Tree1
(
X,CTB,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
⇒ Det

(∪
n∈ω

Σ0
n ↾ Xω

)
. ⊣

Corollary 2.5.22.

DetG
(
Σ0

max{β,γ}+ω;Tree1
(
X,CTB,Γ(ω,∆0

1), ∅
))

⇒ Det(Σ0
max{β,γ}+ω ↾ Xω)

⇒ DetG
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. ⊣

Corollary 2.5.23. Suppose Λ is an algebra. Then

Det(Λ ↾ Xω)⇒ Det G
(
Σ0

1;Tree1 (X,FIN,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Corollary 2.5.24. Suppose Λ is σ-algebra. Then

Det(Λ ↾ Xω)⇒ Det G
(
Σ0

1;Tree1 (X,CTB,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Corollary 2.5.25.

Det(B ↾ Xω)⇒


Det G (Σ0

1;Tree1 (X,FIN,Γ(ω,B),B ↾ Xω))

Det G (Σ0
1;Tree1 (X,CTB,Γ(ω,B),B ↾ Xω)) ⊣

Theorem 2.5.26. Suppose m,n ∈ ω\{0}.

Det(∆1
max{n,m} ↾ Xω)⇒ Det G

(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆1

m),∆
1
n ↾ Xω

))
.5 (2.26)

5Recall notation 1.5.10 for CTB.
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If n < m,

Det
(
∆1

m ↾ Xω
)
⇒


Det G

(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆1

m),Σ
1
n ↾ Xω

))
. (2.27)

Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆1

m),Π
1
n ↾ Xω

))
. (2.28)

If n ≥ m,

Det
((
Σ1

n ∨Π1
n

)
↾ Xω

)
⇒


Det G

(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆1

m),Σ
1
n ↾ Xω

))
.(2.29)

Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆1

m),Π
1
n ↾ Xω

))
.(2.30)

⊣

Corollary 2.5.27. (Corollary to Theorem 2.5.26)

Det (2-Π1
1 ↾ Xω)⇒ Det G (Σ0

1;Tree1 (X,CTB,Γ(ω,∆1
1), (Σ

1
1 ∪Π1

1) ↾ Xω)). ⊣

Corollary 2.5.28. For any nonempty X and Y ,

1⃝ Det G (Σ0
1;Tree1 (X, Y,Γ(ω, 2-Π1

1),Σ
1
1 ↾ Xω))

2⃝ Det G (Σ0
1;Tree1 (X, Y,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω))


⇒ 3⃝ Det

(
2-Π1

1 ↾ Xω
)

⇒ 4⃝ Det G
(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆1

1),
(
Σ1

1 ∪Π1
1

)
↾ Xω

))
.

That is : 1⃝ implies 3⃝, 2⃝ implies 3⃝, and 3⃝ implies 4⃝. ⊣

Theorem 2.5.29. Suppose α, β, γ ∈ ω1 and α > 1. Then

Det(Σ0
max{β,γ}+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,FIN,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. (2.31)

Moreover, if β < γ, then

Det(Σ0
γ+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.32)

If β ≥ γ, then

Det(Σ0
(β+1)+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,FIN,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.33)
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⊣

Theorem 2.5.30. Suppose α, β, γ ∈ ω1. Then

Det(Σ0
max{β,γ}+α+ω ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,CTB,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. (2.34)

Moreover, if β < γ, then

Det(Σ0
γ+α+ω ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.35)

If β ≥ γ, then

Det(Σ0
(β+1)+α+ω ↾ Xω)⇒ Det G

(
Σ0

α;Tree1
(
X,CTB,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (2.36)

⊣

Corollary 2.5.35. For any finite n,m and k,

Det
(
Σ0

ω ↾ Xω
)

⇒ Det G
(
Σ0

k;Tree1
(
X,CTB,Γ(ω,∆0

n),Σ
0
m ↾ Xω

))
⇒ Det G

(
Σ0

1;Tree1
(
X,CTB,Γ(ω,∆0

n),Σ
0
m ↾ Xω

))
⇒ Det G

(
∆0

1;Tree1
(
X,CTB,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
⇒ Det

(∪
n∈ω

Σ0
n ↾ Xω

)
. ⊣

Corollary 2.5.36. Suppose Λ is a σ-algebra and Λ is closed under Λ-substitution. Then

Det(Λ ↾ Xω)⇒ Det G (Λ;Tree1 (X,CTB,Γ(ω,Λ),Λ ↾ Xω)) . ⊣

Corollary 2.5.37. (Corollary to Corollary 2.5.36)

Det(B ↾ Xω)⇒ Det G (B;Tree1 (X,CTB,Γ(ω,B),B ↾ Xω)) . ⊣
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Theorem 2.5.38. Suppose m ∈ ω. Suppose T1 = Tree1 (X,CTB,Γ(ω,B),B ↾ Xω). Then

Det(Σ1
m ↾ Xω)⇒ Det G

(
Σ1

m; T1
)
.

Det(Π1
m ↾ Xω)⇒ Det G

(
Π1

m; T1
)
.

Det(∆1
m ↾ Xω)⇒ Det G

(
∆1

m; T1
)
.

Note that ∆1
1 ↾ Xω is Borel if X is countable and if X is uncountable, it is the quasi-Borel.

⊣

Observation 2.5.45.

G
(
Σ0

1, T ree1
(
X,N ,Γ(ω,∆0

1),∆
0
1

))
⇒ Det (P ↾ Xω) . ⊣

(2.6) Determinacy equivalences between games on X<ω and games

on Tree1 collections

Theorem 2.6.1. For any nonempty Θ ⊆ FIN , the determinacy of following (2.37) through

(2.42) are all equivalent to Det (Σ0
1 ↾ Xω).

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
(2.37)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Σ0

1),∆
0
1 ↾ Xω

))
(2.38)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Π0

1),∆
0
1 ↾ Xω

))
(2.39)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
(2.40)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Σ0

1),∆
0
1 ↾ Xω

))
(2.41)
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G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Π0

1),∆
0
1 ↾ Xω

))
(2.42)

⊣

Theorem 2.6.2. Suppose β, γ ∈ ω1 and β ≥ γ. Then for any nonempty Θ ⊆ FIN , the

determinacy of following (2.43) through (2.48) are all equivalent to Det
(
∆0

β ↾ Xω
)
.

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(2.43)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(2.44)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(2.45)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(2.46)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(2.47)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(2.48)

⊣

Theorem 2.6.3. Suppose β, γ ∈ ω1 and 1 ≤ β < γ. Then for any nonempty Θ ⊆ FIN , the

determinacy of following (2.49) through (2.66) are all equivalent to Det
(
∆0

γ ↾ Xω
)
.

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
(2.49)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),Σ
0
β ↾ Xω

))
(2.50)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),Σ
0
β ↾ Xω

))
(2.51)
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G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
(2.52)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),Σ
0
β ↾ Xω

))
(2.53)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),Σ
0
β ↾ Xω

))
(2.54)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
(2.55)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),Π
0
β ↾ Xω

))
(2.56)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),Π
0
β ↾ Xω

))
(2.57)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
(2.58)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),Π
0
β ↾ Xω

))
(2.59)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),Π
0
β ↾ Xω

))
(2.60)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(2.61)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(2.62)

G
(
Σ0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(2.63)
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G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(2.64)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(2.65)

G
(
Π0

1;Tree1
(
X,Θ,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(2.66)

⊣

Corollary 2.6.4. Suppose Λ is an algebra. Then for any nonempty Θ ⊆ FIN ,

Det(Λ ↾ Xω)⇔ Det G
(
Σ0

1;Tree1 (X,Θ,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Corollary 2.6.5. Suppose Λ is a σ-algebra. Then for any nonempty Θ ⊆ CTB,

Det(Λ ↾ Xω)⇔ Det G
(
Σ0

1;Tree1 (X,Θ,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Corollary 2.6.6. For any α, β, γ ∈ ω1,

Det(B ↾ Xω)⇔ Det G (A;Tree1 (X,Θ,Γ(ω, C),B ↾ Xω))

where:

• ∅ ≠ Θ ⊆ CTB,

•


A = B, or

A ∈ {Σ0
α,Π

0
α,∆

0
α} for α > 1, or

A ∈ {Σ0
1,Π

0
1} for α = 1,

• B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
,

• C ∈
{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
,
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• at least one of A,B or C is B. ⊣

Theorem 2.6.7. Suppose n ∈ ω\{0}, β, γ ∈ ω1.

For any nonempty Θ ⊆ CTB, B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
and C ∈

{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
, the

determinacy of following (2.67) and (2.68) are equivalent to Det(Σ1
n ↾ Xω).

G
(
Σ1

n;Tree1 (X,Θ,Γ(ω, C),B ↾ Xω)
)

(2.67)

G
(
Π1

n;Tree1 (X,Θ,Γ(ω, C),B ↾ Xω)
)

(2.68)

For any nonempty Θ ⊆ CTB, B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
and C ∈

{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
, the

determinacy of following (2.69)is equivalent to Det(∆1
n ↾ Xω).

G
(
∆1

n;Tree1 (X,Θ,Γ(ω, C),B ↾ Xω)
)

(2.69)

⊣

Corollary 2.6.8. Suppose Λ is σ-algebra and closed under Λ-substitution. Then for any

nonempty Θ ⊆ CTB,

Det(Λ ↾ Xω)⇔ Det G (Λ;Tree1 (X,Θ,Γ(ω,Λ),Λ ↾ Xω)) ⊣
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F.2 Chapter 3

(3.2) Definition of a Tree2 collection and a collection of games on a

Tree2 collection with complexity Ξ

Observation 3.2.12. Suppose X is a nonempty set, Υ is a collection of trees, Γ is a col-

lection of functions from Xω into ω, Λ is a collection of subsets of Xω and Ξ1,Ξ2 are

complexities. Let T2 = Tree2(X,Υω,Γ,Λ). If for any T ∈ T2, Ξ1 ↾ [T ] ⊆ Ξ2 ↾ [T ], then

G (Ξ1; T2) ⊆ G (Ξ2; T2) .

Thus G is an increasing operation on the first component. ⊣

Observation 3.2.13. Let Υ be a collection of trees and Λ ⊆ Xω. Suppose we have Ξ such

that Ξ ↾ Xω ⊆ ℘ (Xω) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n). Suppose we have Ξ1 such that for

each T ∈ Tree2 (X,Υω,Γ(ω,Ξ),Λ), Ξ1 ↾ [T ] ⊆ ℘ ([T ]) is defined (e.g., Σ0
α,Π

0
α,Σ

1
n,Π

1
n).

Then the following are equal.

• G (Ξ1;Tree2 (X,Υω,Γ(ω,Ξ),Λ))

• G (Ξ1;Tree2 (X,Υω,Γ(ω, co-Ξ),Λ))

• G (Ξ1;Tree2 (X,Υω,Γ(ω,∆(Ξ)),Λ)) ⊣
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(3.3) Equivalence between Σ0
α and Π0

α determinacy on Type 2 trees

and equivalence between Σ1
1 and Π1

1 determinacy on Type 2 trees

Theorem 3.3.8. Suppose n ∈ ω and α ∈ ω1. Suppose Υ is closed under shifting trees. Then

for any X,

Det G
(
Σ0

α; T2
)
⇔ Det G

(
Π0

α; T2
)

(3.1)

Det G
(
Σ1

n; T2
)
⇔ Det G

(
Π1

n; T2
)

(3.2)

for T2 = Tree2 (X,Υω,Γ(ω, C),B ↾ Xω) 6 where:

• C ∈ {Σ0
γ,Π

0
γ,∆

0
γ,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, γ ∈ ω1 and m ∈ ω.

• B ∈ {Σ0
β,Π

0
β,∆

0
β,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, β ∈ ω1 and m ∈ ω. ⊣

Corollary 3.3.11. Suppose n ∈ ω and α ∈ ω1. Let:

• T 1
2 = Tree2 (X,FWF ω,Γ(ω, C),B ↾ Xω).

• T 2
2 = Tree2 (X,CWF ω,Γ(ω, C),B ↾ Xω). 7

Then

Det G
(
Σ0

α; T 1
2

)
⇔ Det G

(
Π0

α; T 1
2

)
Det G

(
Σ0

α; T 2
2

)
⇔ Det G

(
Π0

α; T 2
2

)
Det G

(
Σ1

n; T 1
2

)
⇔ Det G

(
Π1

n; T 1
2

)
Det G

(
Σ1

n; T 2
2

)
⇔ Det G

(
Π1

n; T 2
2

)
6Recall notation 1.5.8 for Γ(ω, C).
7Recall notation 1.5.11 for FWF and CWF .
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for any C ∈ {Σ0
γ,Π

0
γ,∆

0
γ,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, γ ∈ ω1 and m ∈ ω;

and any B ∈ {Σ0
β,Π

0
β,∆

0
β,B,Σ1

m,Π
1
m,∆

1
m,Σ

1
m ∧Π1

m,P}, β ∈ ω1 and m ∈ ω. ⊣

(3.4) Using the determinacy of games on a Tree2 collection to obtain

the determinacy of games on X<ω

Observation 3.4.1. For any X, any ω-sequence of nonempty trees Tsq, any function f from

Xω into ω, and any complexity Ξ (in which for any T ∈ Tree2 (X,Tsq, f, ∅), Ξ ↾ [T ] ⊆ ℘ ([T ])

is defined),

Det G (Ξ;Tree2 (X,Tsq, f, ∅))⇒ Det (Ξ ↾ Xω) . ⊣

Corollary 3.4.2. Fix nonempty X and nonempty Υ.

Let T2 = Tree2 (X,Υω,Γ(ω,∆0
1),∆

0
1 ↾ Xω). For any complexity Ξ,

Det G (Ξ; T1)⇒ Det (Ξ ↾ Xω) . ⊣

Corollary 3.4.3. (Corollary to Corollary 3.4.2)

Suppose α ∈ ω1 and n ∈ ω. Fix nonempty X and nonempty Υ.

Let T2 = Tree2 (X,Υω,Γ(ω,∆0
1),∆

0
1 ↾ Xω). Then

Det G
(
Σ0

α; T2
)
⇒ Det

(
Σ0

α ↾ Xω
)
.

Det G
(
Σ1

n; T2
)
⇒ Det

(
Σ1

n ↾ Xω
)
. ⊣

Observation 3.4.4. Suppose Γ contains all constant functions from Xω into ω. Suppose Y

is a nonempty set and Υ contains Y ≤n+1 for all n ∈ ω. Then for any complexity Ξ (in which
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Ξ ↾ Xω × Y n ⊆ ℘ (Xω × Y n) is defined for all n ∈ ω),

Det G (Ξ;Tree2 (X,Υω,Γ, {∅, Xω}))⇒ Det
(∪

n∈ω
Ξ ↾ (Xω × Y n)

)
. ⊣

Theorem 3.4.5. (ZF-P)

Suppose Γ contains all constant functions from Xω into ω and Υ contains Y ≤n+1 for all ∈ ω

for some countable Y . Then

Det G
(
∆0

1;Tree2 (X,Υω,Γ, {∅, Xω})
)
⇒ Det

(∪
n∈ω

Σ0
n ↾ Xω

)
. ⊣

Corollary 3.4.6.

Det G
(
∆0

1;Tree2
(
X,CWF ω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
⇒ Det

(∪
n∈ω

Σ0
n ↾ Xω

)
. ⊣

Corollary 3.4.7. Suppose Γ is a nonempty collection of functions from Xω into ω. Then

Det G
(
∆0

1;Tree2 (X,CWF ω,Γ, Xω)
)
⇒ Det(B ↾ Xω). ⊣

Corollary 3.4.10. Suppose Ψ is any function from Xω into ω and
{
Tα
g.t. |α ∈ ω1

}
⊆ Υ.

Det G
(
∆0

1;Tree2 (X,Υω,Ψ, Xω)
)
⇒ Det(B ↾ Xω). ⊣

Theorem 3.4.12. For any ω-sequence Tsq of nonempty trees, Ψ : Xω → ω, for any A ⊆ Xω,

G (A;Xω) is determined if and only if G(Long2 (A) ;T
Ψ,A
X,Tsq

) is determined . ⊣

Corollary 3.4.13. For any nonempty collection Υ of nonempty trees, Ψ : Xω → ω and Λ,

Det G
(
Σ0

1;Tree2 (X,Υω,Ψ,Λ ↾ Xω)
)
⇒ Det (Λ ↾ Xω) . ⊣

Corollary 3.4.14. For any α ∈ ω1, Υ and Ψ : Xω → ω,

Det G
(
Σ0

1;Tree2
(
X,Υω,Ψ,Σ0

α ↾ Xω
))
⇒ Det

(
Σ0

α ↾ Xω
)
. ⊣
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Corollary 3.4.15. Suppose Υ is an arbitrary nonempty collection of nonempty trees, Γ is

any collection of functions from Xω into ω and Λ is a collection of nondetermined sets.

Then,

¬Det G
(
Σ0

1;Tree2 (X,Υω,Γ,Λ ↾ Xω)
)
. ⊣

Corollary 3.4.27. Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 1

disjoint tree property. Then for any complexity Ξ and for any Υ ⊇ {T0, T1},

Det G
(
Σ0

1;Tree2 (X,Υω, {χA |A ∈ Ξ ↾ Xω } , Xω)
)
⇒ Det (Ξ ↾ Xω) .

Thus,

Det G
(
Σ0

1;Tree2 (X,Υω,Γ(ω, 2-Ξ), Xω)
)
⇒ Det(Ξ ↾ Xω). ⊣

Corollary 3.4.28. (Corollary to Corollary 3.4.27)

Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 1 disjoint tree property.

Then for any Υ ⊇ {T0, T1},

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ(ω,Σ0

α ∧Π0
α), X

ω
))
⇒ Det(Σ0

α ↾ Xω).

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ(ω,∆0

α), X
ω
))
⇒ Det(∆0

α ↾ Xω). ⊣

Corollary 3.4.31. Suppose α, β ∈ ω1 and Ξ1,Ξ2 are complexities. Suppose {T0, T1} satisfies

the modified 1 maximal tree property or the 1 disjoint tree property. Then for any Υ ⊇

{T0, T1},

Det G
(
Σ0

1;Tree2 (X,Υω, {χA |A ∈ Ξ1 ↾ Xω } ,Ξ2 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (3.3)
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Similarly,

Det G
(
Σ0

1;Tree2 (X,Υω, {χA |A ∈ Ξ2 ↾ Xω } ,Ξ1 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (3.4)

⊣

Corollary 3.4.32. (Corollary to Corollary 3.4.31)

Suppose Ξ1,Ξ2 are complexities. Suppose {T0, T1} satisfies the modified 1 maximal tree prop-

erty or the 1 disjoint tree property. Then for any Υ ⊇ {T0, T1},

DetG
(
Σ0

1;Tree2 (X,Υω,Γ(ω,Ξ1 ∧ co-Ξ1),Ξ2 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (3.5)

Similarly,

DetG
(
Σ0

1;Tree2 (X,Υω,Γ(ω,Ξ2 ∧ co-Ξ2),Ξ1 ↾ Xω)
)
⇒ Det((Ξ1 ∧ Ξ2) ↾ Xω). (3.6)

⊣

Corollary 3.4.33. (Corollary to Corollary 3.4.32)

Suppose α, β ∈ ω1. Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 2

disjoint tree property. Then for any Υ ⊇ {T0, T1},

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ

(
ω,Σ0

α ∧Π0
α

)
,Π0

β ↾ Xω
))
⇒ Det((Σ0

α ∧Π0
β) ↾ Xω).

Similarly,

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ

(
ω,Σ0

β ∧Π0
β

)
,Σ0

α ↾ Xω
))
⇒ Det((Σ0

α ∧Π0
β) ↾ Xω). ⊣

Corollary 3.4.34. (Corollary to Corollary 3.4.32)

Suppose n,m ∈ ω. Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 2
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disjoint tree property. Then for any Υ ⊇ {T0, T1},

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ

(
ω,Σ1

n ∧Π1
n

)
,Π1

m ↾ Xω
))
⇒ Det((Σ1

n ∧Π1
m) ↾ Xω).

Similarly,

DetG
(
Σ0

1;Tree2
(
X,Υω,Γ

(
ω,Σ1

m ∧Π1
m

)
,Σ1

n ↾ Xω
))
⇒ Det((Σ1

n ∧Π1
m) ↾ Xω). ⊣

Corollary 3.4.35. (Corollary to Corollary 3.4.34)

Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 1 disjoint tree property.

Then for any Υ ⊇ {T0, T1},

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ(ω, 2-Π1

1),Σ
1
1 ↾ Xω

))
⇒ Det(2-Π1

1 ↾ Xω).

Similarly,

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω

))
⇒ Det(2-Π1

1 ↾ Xω). ⊣

Corollary 3.4.36. (Corollary to Corollary 3.4.32)

Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 1 disjoint tree property.

Then for any Υ ⊇ {T0, T1} and for any n ∈ ω,

Det G
(
Σ0

1;Tree2
(
X,Υω,Γ(ω, 2-Π1

1), (co-n-Π
1
1) ↾ Xω

))
⇒ Det(n+ 1-Π1

1 ↾ Xω). (3.7)

Similarly,

DetG
(
Σ0

1;Tree2
(
X,Υω,Γ(ω, n-Π1

1 ∧ co-n-Π1
1),Π

1
1 ↾ Xω

))
⇒ Det

(
n+ 1-Π1

1 ↾ Xω
)
. (3.8)⊣

Corollary 3.4.43. Assume α ∈ ω1 is even. Suppose {T0, T1} satisfies the modified 1 maximal

tree property or the 1 disjoint tree property. Then for any Υ ⊇ {T0, T1},

Det G
(
α-Π1

1;Tree2
(
X,Υω,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω

))
⇒ Det(α + 1-Π1

1 ↾ Xω). ⊣
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Corollary 3.4.44. Assume α ∈ ω1 is a limit ordinal and λ ∈ ω. Suppose {T0, T1} satisfies

the modified 1 maximal tree property or the 1 disjoint tree property. Then for any Υ ⊇

{T0, T1},

Det G
(
α-Π1

1;Tree2
(
X,Υω,Γ(ω,Σ0

λ ∧Π0
λ),Π

1
1 ↾ Xω

))
⇒ Det(

(
α-Π1

1 +Σ0
λ

)
↾ Xω). ⊣

Corollary 3.4.50. Suppose α ∈ ω1. Suppose Tsq satisfies the disjoint tree property. Then

Det G
(
Σ0

1;Tree2
(
X,Tsq,Γ(ω,Σ

0
1

(
Π1

1

)
), Xω

))
⇒ Det(α-Π1

1 ↾ Xω). ⊣

Corollary 3.4.51. Suppose α ∈ ω1.

Det G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

1

(
Π1

1

)
), Xω

))
⇒ Det(α-Π1

1 ↾ Xω). ⊣

(3.5) Getting the determinacy of games on a Tree2 collection from

the determinacy of games on X<ω (Reversed direction of section

3.4)

Theorem 3.5.13. Suppose β, γ ∈ ω1. If β, γ > 1, then

Det(∆0
max{β,γ} ↾ Xω)⇒ Det G

(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. (3.9)

If β < γ,

Det
(
∆0

γ ↾ Xω
)
⇒


Det G

(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
(3.10)

Det G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
(3.11)

If β ≥ γ,

Det
((
Σ0

β ∨Π0
β

)
↾ Xω

)
⇒


Det G

(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
(3.12)

Det G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
(3.13)
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Also,

Det
(
Σ0

1 ↾ Xω
)
⇒ Det G

(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
. (3.14)

⊣

Corollary 3.5.14. Suppose β, γ ∈ ω1. Then for any β ≥ γ,

1⃝ Det G
(
Σ0

1;Tree2
(
X,FWF ω,Γ

(
ω,Σ0

β ∧Π0
β

)
,Π0

β ↾ Xω
))

2⃝ Det G
(
Σ0

1;Tree2
(
X,FWF ω,Γ

(
ω,Σ0

β ∧Π0
β

)
,Σ0

β ↾ Xω
))


⇒ 3⃝ Det((Σ0
β ∧Π0

β) ↾ Xω)

⇔ 4⃝ Det
((
Σ0

β ∨Π0
β

)
↾ Xω

)
⇒


5⃝ Det G

(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
.

6⃝ Det G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
.

That is : 1⃝ implies 3⃝, 2⃝ implies 3⃝, 3⃝ if and only if 4⃝ and 4⃝ implies both 5⃝ and 6⃝. ⊣

Theorem 3.5.15. Suppose β, λ ∈ ω1. Then

Det (B ↾ Xω)⇒ Det G(Σ0
1;Tree2(X,CWF ω,Γ

(
ω,∆0

γ

)
,Σ0

β ↾ Xω)). ⊣

Corollary 3.5.16. (Corollary to Theorem 3.5.15)

Det (B ↾ Xω)⇒ Det
(
Σ0

1;Tree2 (X,CWF ω,Γ(ω,B),B ↾ Xω)
)
. ⊣

Corollary 3.5.17. Suppose Λ an algebra. Then

Det(Λ ↾ Xω)⇒ Det G
(
Σ0

1;Tree2 (X,FWF ω,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Corollary 3.5.18. Suppose Λ is σ-algebra. Then

Det(Λ ↾ Xω)⇒ Det G
(
Σ0

1;Tree2 (X,CWF ω,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣
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Theorem 3.5.19. Suppose m,n ∈ ω\{0}.

Det(∆1
max{n,m} ↾ Xω)⇒ Det G

(
Σ0

1;Tree2
(
X,CWF ω,Γ(ω,∆1

m),∆
1
n ↾ Xω

))
. (3.15)

If n < m,

Det
(
∆1

m ↾ Xω
)
⇒


Det G

(
Σ0

1;Tree2
(
X,CWF ω,Γ(ω,∆1

m),Σ
1
n ↾ Xω

))
. (3.16)

Det G
(
Σ0

1;Tree2
(
X,CWF ω,Γ(ω,∆1

m),Π
1
n ↾ Xω

))
. (3.17)

If n ≥ m,

Det
((
Σ1

n ∨Π1
n

)
↾ Xω

)
⇒


Det G

(
Σ0

1;Tree2
(
X,CWF ω,Γ(ω,∆1

m),Σ
1
n ↾ Xω

))
.(3.18)

Det G
(
Σ0

1;Tree2
(
X,CWF ω,Γ(ω,∆1

m),Π
1
n ↾ Xω

))
.(3.19)

⊣

Corollary 3.5.20. (Corollary to Theorem 3.5.19)

Det (2-Π1
1 ↾ Xω)⇒ Det G (Σ0

1;Tree2 (X,CWF ω,Γ(ω,∆1
1), (Σ

1
1 ∪Π1

1) ↾ Xω)). ⊣

Corollary 3.5.21. Suppose {T0, T1} satisfies the modified 1 maximal tree property or the 1

disjoint tree property. Then for any Υ ⊇ {T0, T1},

1⃝ Det G (Σ0
1;Tree2 (X,Υω,Γ(ω, 2-Π1

1),Σ
1
1 ↾ Xω))

2⃝ Det G (Σ0
1;Tree2 (X,Υω,Γ(ω, 2-Π1

1),Π
1
1 ↾ Xω))


⇒ 3⃝ Det

(
2-Π1

1 ↾ Xω
)

⇒ 4⃝ Det G
(
Σ0

1;Tree1
(
X,CWF ω,Γ(ω,∆1

1),
(
Σ1

1 ∪Π1
1

)
↾ Xω

))
.

That is : 1⃝ implies 3⃝, 2⃝ implies 3⃝, and 3⃝ implies 4⃝. ⊣

Theorem 3.5.22. Suppose α, β, γ ∈ ω1 and α > 1. Then

Det(Σ0
max{β,γ}+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. (3.20)
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Moreover, if β < γ, then

Det(Σ0
γ+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (3.21)

If β ≥ γ, then

Det(Σ0
(β+1)+α ↾ Xω)⇒ Det G

(
Σ0

α;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
. (3.22)

⊣

Theorem 3.5.23. Suppose α, β, γ ∈ ω1. Then

Det(B ↾ Xω)⇒ Det G
(
Σ0

α;Tree2
(
X,CWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
. ⊣

Corollary 3.5.27. Suppose Λ is a σ-algebra and Λ is closed under Λ-substitution. Then

Det(Λ ↾ Xω)⇒ DetG (Λ;Tree2 (X,CWF ω,Γ(ω,Λ),Λ ↾ Xω)) . ⊣

Corollary 3.5.28. (Corollary to Corollary 3.5.27)

Det(B ↾ Xω)⇒ Det G (B;Tree2 (X,CWF ω,Γ(ω,B),B ↾ Xω)) . ⊣

Theorem 3.5.29. Suppose m ∈ ω. Let T2 = Tree2 (X,CWF ω,Γ(ω,B),B ↾ Xω). Then

Det(Σ1
m ↾ Xω)⇒ Det G

(
Σ1

m; T2
)
.

Det(Π1
m ↾ Xω)⇒ Det G

(
Π1

m; T2
)
.

Det(∆1
m ↾ Xω)⇒ Det G

(
∆1

m; T2
)
.

Note that ∆1
1 ↾ Xω is Borel if X is countable and if X is uncountable, it is the quasi-Borel.

⊣
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Observation 3.5.31. Suppose Υ = {T
∣∣∣T is a tree and T ⊆ ω<ω2 }. Then for any nonempty

collection Γ of functions from Xω into ω,

Det (P ↾ Xω)⇒ G
(
Σ0

1, T ree2 (X,Υω,Γ, Xω)
)
. ⊣

Observation 3.5.32. Suppose Υ =
{
N≤i |i ∈ ω

}
. Then for any nonempty collection Γ of

functions from Xω into ω, we have

Det (P ↾ Xω)⇒ G
(
Σ0

1, T ree2 (X,Υω,Γ, Xω)
)
. ⊣

(3.6) Determinacy equivalence between games on X<ω and games

on Tree2 collections

Theorem 3.6.1. The determinacy of following (3.23) through (3.28) are all equivalent to

Det (Σ0
1 ↾ Xω).

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
(3.23)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

1),∆
0
1 ↾ Xω

))
(3.24)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

1),∆
0
1 ↾ Xω

))
(3.25)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

1),∆
0
1 ↾ Xω

))
(3.26)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

1),∆
0
1 ↾ Xω

))
(3.27)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

1),∆
0
1 ↾ Xω

))
(3.28)

⊣
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Theorem 3.6.2. Suppose β, γ ∈ ω1 and β ≥ γ. Then the following (3.29) through (3.34)

are all equivalent to Det
(
∆0

β ↾ Xω
)
.

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(3.29)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(3.30)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(3.31)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(3.32)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(3.33)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(3.34)

⊣

Theorem 3.6.3. Suppose β, γ ∈ ω1 and 1 ≤ β < γ. Then the determinacy of following

(3.35) through (3.52) are all equivalent to Det
(
∆0

γ ↾ Xω
)
.

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
(3.35)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),Σ
0
β ↾ Xω

))
(3.36)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),Σ
0
β ↾ Xω

))
(3.37)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Σ
0
β ↾ Xω

))
(3.38)
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G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),Σ
0
β ↾ Xω

))
(3.39)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),Σ
0
β ↾ Xω

))
(3.40)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
(3.41)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),Π
0
β ↾ Xω

))
(3.42)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),Π
0
β ↾ Xω

))
(3.43)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),Π
0
β ↾ Xω

))
(3.44)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),Π
0
β ↾ Xω

))
(3.45)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),Π
0
β ↾ Xω

))
(3.46)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(3.47)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(3.48)

G
(
Σ0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(3.49)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,∆0

γ),∆
0
β ↾ Xω

))
(3.50)

G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Σ0

γ),∆
0
β ↾ Xω

))
(3.51)
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G
(
Π0

1;Tree2
(
X,FWF ω,Γ(ω,Π0

γ),∆
0
β ↾ Xω

))
(3.52)

⊣

Corollary 3.6.4. Suppose Λ is an algebra. Then for any nonempty Υ ⊆ FWF ,

Det(Λ ↾ Xω)⇔ Det G
(
Σ0

1;Tree2 (X,Υω,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Corollary 3.6.5. Suppose Λ is σ-algebra. Then for any nonempty Υ ⊆ CWF ,

Det(Λ ↾ Xω)⇔ Det G
(
Σ0

1;Tree2 (X,Υω,Γ(ω,Λ),Λ ↾ Xω)
)
. ⊣

Corollary 3.6.6. For any α, β, γ ∈ ω1,

Det(B ↾ Xω)⇔ Det G (A1;Tree2 (X,Υω,Γ(ω, C),B ↾ Xω))

where:

• Υ ⊆ CWF is closed under shifting trees8 and

1. if
{
Tα
g.t. |α ∈ ω1

}
⊆ Υ, then A ∈ {Σ0

α,Π
0
α,∆

0
α,B},9

2. if
{
Tα
g.t. |α ∈ ω1

}
⊈ Υ, then

A = B, or

A ∈ {Σ0
α,Π

0
α,∆

0
α} for α > 1, or

A ∈ {Σ0
1,Π

0
1} for α = 1,

• B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
,

• C ∈
{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
,

8Recall definition 3.3.7 on page 231 for the closure property under shifting trees.
9Recall Yost tree Tα

g.t. for section 3.4.1.2 on page 242.

415



• at least one of A,B or C is B if
{
Tα
g.t. |α ∈ ω1

}
⊈ Υ. ⊣

Corollary 3.6.7. (Corollary to Corollary 3.6.6)

For any α, β, γ ∈ ω1,

Det(B ↾ Xω)⇔ Det G (A;Tree2 (X,FWF ω,Γ(ω, C),B ↾ Xω))

where:

•


A = B, or

A ∈ {Σ0
α,Π

0
α,∆

0
α} for α > 1, or

A ∈ {Σ0
1,Π

0
1} for α = 1,

• B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
,

• C ∈
{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
,

• at least one of A,B or C is B. ⊣

Corollary 3.6.8. (Corollary to Corollary 3.6.6)

For any α, β, γ ∈ ω1,

Det(B ↾ Xω)⇔ Det G (A;Tree2 (X,CWF ω,Γ(ω, C),B ↾ Xω))

where:

• A ∈ {Σ0
α,Π

0
α,∆

0
α,B},

• B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
,

• C ∈
{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
. ⊣
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Theorem 3.6.9. Suppose n ∈ ω\{0}, β, γ ∈ ω1.

For any nonempty Υ ⊆ CWF such that Υ is closed under shifting trees,

B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
and C ∈

{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
, the determinacy of following (3.53) and

(3.54) are equivalent to Det(Σ1
n ↾ Xω).

G
(
Σ1

n;Tree2 (X,Υω,Γ(ω, C),B ↾ Xω)
)

(3.53)

G
(
Π1

n;Tree2 (X,Υω,Γ(ω, C),B ↾ Xω)
)

(3.54)

For any nonempty Υ ⊆ CWF such that Υ is closed under shifting trees,

B ∈
{
Σ0

β,Π
0
β,∆

0
β,B

}
and C ∈

{
Σ0

γ,Π
0
γ,∆

0
γ,B

}
, the determinacy of following (3.55) is

equivalent to Det(∆1
n ↾ Xω).

G
(
∆1

n;Tree2 (X,Υω,Γ(ω, C),B ↾ Xω)
)

(3.55)

⊣

Corollary 3.6.10. Suppose Λ is σ-algebra and closed under Λ-substitution. Then for any

nonempty Υ ⊆ CWF ,

Det(Λ ↾ Xω)⇔ DetG (Λ;Tree2 (X,Υω,Γ(ω,Λ),Λ ↾ Xω)) . ⊣
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