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ABSTRACT 
 

STATISTICAL ANALYSIS OF FATALITIES DUE TO VEHICLE 

ACCIDENTS IN LAS VEGAS, NV 

 

by 

 

Annabelle Marie Mathis 

 

Dr. Chih-Hsiang Ho, Examination Committee Chair 

Professor of Mathematical Sciences 

University of Nevada, Las Vegas 

 

       The goal of this thesis is to investigate factors that affect the odds of having a fatality 

in a vehicle collision. We will be looking at characteristics of the driver that caused the 

accident (age, gender, behavior, actions, influences, and seat belt worn), the 

characteristics of the vehicle the driver drove (type of vehicle, and air bag deployment), 

the characteristics of the environment in which the accident occurred (weather, road 

condition, lighting, time of day, the day of the week, and month of the year), the 

characteristics of the crash (direction of accident and how many vehicles were involved), 

and the characteristics of the zip code the accident happened (population,  median of 

income per household, and percentage of zipcode that has less than a high school 

education, a high school education, a two-year degree, a four year degree and a post 

graduate degree). All of these variables might affect the odds of having a fatality. 

Modeling will involve the use of multiple logistic regression. We will be addressing the 
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following areas: data management, model fitting, best subset selection, model 

diagnostics, and model validation. 

By identifying the best factors, the selected final model might be a helpful tool in 

formulating cost-effective safety measures for legislation. Additionally, this model and its 

findings could potentially be used to develop new social programs that would pinpoint 

the exact areas that are in need of safety programs, which might save lives in the long 

term. 
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Chapter 1 

1.1 Introduction 

     “Every twelve minutes, someone dies in a car crash on U.S. roads,” reads the first line 

on a flier from the National Center for Injury Prevention and Control. A motor vehicle 

collision occurs when a road vehicle collides with another object, be it a vehicle, 

pedestrian, animal, road debris, geographical obstacle or architectural obstacle. These 

collisions can result in injury, property damage, and/or death.  In the United States, the 

definition of road-traffic fatality that is used by the Fatality Analysis Reporting System 

(FARS), which is run by the NHTSA, is “a fatality in the state of Nevada is defined as 

any person that dies within 30 days due to a vehicle accident that occurred on a United 

States public road and the vehicle had an engine.” (NHTSA, Fatality Analysis Reporting 

System, 2010). For 2009, according to FARS, in the United States, there were 30,797 

fatal motor vehicle crashes with a total of 33,808 fatalities (FARS, 2010). For Nevada, 

the corresponding figure in 2009 was 223 fatal crashes with 243 deaths occurring from 

those crashes. (NHTSA, Fatality Analysis Reporting System, 2010).  Several studies have 

explored the factors that might influence fatal accidents such as these. In one study, it 

was suggested that there was an association between driver, crash and vehicle 

characteristics
 
to driver fatalities (Bedard, Guyatt, Stones, & Hirdes, 2002).  In another 

study, driver distractions were reported to have been involved in 16 percent of all fatal 

crashes in 2008 according to data from the Fatality Analysis Reporting System (Ascone 

& Lindsey, 2009). What are these characteristics and distractions that these studies refer 

to?  How could these death tolls be brought down? Could prevention policies be used to 

help reduce motor-vehicle related injuries or fatalities? 
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     In this thesis, we will discuss fatalities due to motor-vehicle collisions. First, we will 

discuss the variables that other literature talks about. There are several variables to 

consider when looking at fatalities of any sort.  Most of these variables can be broadly 

placed in the following categories: environment of the deceased individual and 

characteristics of the deceased individual. However, if that environment is a vehicle 

collision then we might want to narrow these categories down a bit more precisely. For 

example, about 37.5% of all nationwide fatalities in vehicle-related incidents in 2006 

involved alcohol (AlcoholAlert, 2010). In a study involving all collisions (not exclusively 

collisions involving fatalities), it was found that 57% of crashes were due solely to driver 

factors, 27% to combined roadway and driver factors, 6% to combined vehicle and driver 

factors, 3% solely to roadway factors, 3% to combined roadway, driver, and vehicle 

factors, 2% solely to vehicle factors and 1% to combined roadway and vehicle factors 

(Lum & Reagan, 1995). In theory, it seems that there are many variables to look at. 

1.1.1 Driver Characteristics 

     There are several driver characteristics that could affect the odds of a fatality 

occurring. Several of these are age, gender, distractions and actions. Age is a major 

contributor to many vehicle collisions. A study, which used multivariate logistic 

regression, revealed that the odds ratio (OR) of a fatal injury increased with age (Bedard, 

Guyatt, Stones, & Hirdes, 2002). Gender also seems to be a characteristic that has 

significance. In the same research study, the majority of fatalities were among male 

drivers younger than 30 years, which was at 26.6 percent, versus females of the same age 

range, at a 5.6 percent (Bedard, Guyatt, Stones, & Hirdes, 2002).  
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     Driving is a very complex task, which involves various cognitive, physical, sensory, 

and psychomotor skills working together. Distractions are defined as any secondary 

activity that competes for the driver‟s attention while driving. These distractions have the 

potential to worsen driving performance and have serious consequences for road safety.  

According to the NHTSA, it is estimated that 25 percent of police-reported crashes are 

caused by driver inattention (NHTSA, Fatality Analysis Reporting System, 2010). 

According to one study, more experienced drivers are often capable of dividing their 

attention between driving tasks and non-driving tasks without any serious consequences 

(Young & Regan, 2007). Another study that supports this found that 16 percent of all 

under-20 year old drivers involved in fatal crashes were reported to have been distracted 

while driving (Ascone & Lindsey, 2009).  

     Actions that the driver did before the accident are also important to consider.  Actions 

could involve but are not limited to; changing lanes, following another vehicle 

improperly, obscured vision, drug usage or fatigue. According to a research article, 65% 

of reported unsafe car driver acts were because of the improper actions of the driver 

(Kostyniuk & Zakrajsek, 2002). Another action that other research have discussed was 

whether the driver wearing a seat belt. In a research paper from 1989, the researchers 

stated that seat belts should be discounted 12% of the time to reflect actual usage since 

not wearing a seatbelt has legal consequences in some US jurisdictions (Streff & 

Wagenaar, 1989).  

1.1.2 Vehicle Characteristics 

     There are many vehicle characteristics for a researcher to examine. The main ones for 

this research paper are: the type of vehicle and whether it had airbag deployment. The 
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type of vehicle is a classic characteristic to look at, because some vehicles are rated as 

safer than others. According to one research article, it was reported that a large van had a 

9.34 total occupant fatality rate per 100,000 registered vehicles. It would seem by this 

that a compact car would be more dangerous to be in an accident with than in a van 

(Subramanian, 2006). Airbag deployment is also an important inquiry topic among 

researchers. One study revealed that the “airbags did not appear to have a protective 

effect on drivers younger than forty years old and may have been detrimental to drivers 

older than 60 years old” (Bedard, Guyatt, Stones, & Hirdes, 2002).  This means that 

airbags, according to this study, are best used for people from forty to sixty years of age.  

1.1.3 Environmental Characteristics 

     There are several types of environmental issues to look at when relating fatalities to 

vehicle collisions. These could include weather, road condition, lighting, time of day, day 

of week, and season or quarter of the year of the accident. When describing weather, it 

could include heavy rain, hail, snowstorms, high winds, blowing sand, fog, and other 

atmospheric effects. Weather effects often influence the driver in multiple ways; 

visibility, the ability to control the vehicle, and even the ability to hear.   Thus, there is a 

higher possibility of an accident during these times, which means a higher chance for a 

fatality to occur.  

     In a study, it was found that about 34% of serious crashes had contributing factors 

related to the roadway or its environment (Lum & Reagan, 1995). Road conditions like 

construction, ice, potholes and wetness can also cause more accidents to occur because it 

is harder to steer the vehicle if the driver is not familiar with the situation, or is not 

driving safely.  
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     The lighting and time of day are also things to consider when dealing with fatalities in 

vehicle collisions. In a study, it was found that the per mile fatal crash rate of 16-year-old 

male drivers is four times greater at night (9pm to 6am) than during the day (Williams, 

1985).   If we look at day of the week, it would appear that the weekends (Friday through 

Sunday) continue to have a higher fatality rate than the weekdays (Monday through 

Thursday) (Cerrelli, 1996). Also, when looking at months of the year February and 

March tend to have fewer fatalities than the end of the year; with July 3
rd

-4
th

 and 

December 23
rd

-24
th

 having one of the highest fatality rates (NHTSA, Trend and Pattern 

Analysis of Highway Crash Fatalities by Month and Day, 2005).  

1.1.4 Crash Characteristics 

     There are two crash characteristics to consider: these include direction of accident and 

how many vehicles were involved. The directions of an accident are head on, side impact, 

angle and rear-end impact. In one study they found that 65% of all crashes involved front 

impacts, which represented the largest source of fatalities.  Right-sided impacts were 

found to be the next most frequent with an occurrence of 17.5% (Bedard, Guyatt, Stones, 

& Hirdes, 2002). Multiple vehicle collisions are an issue heard across the world.  They 

happen more frequently, but they are not the most deadly.  In 2006, single vehicle 

collisions were 2.8 times as likely to result in a fatality as multiple-vehicle collisions 

(Hunter, 2006) 

1.1.5 Zip Code Characteristics 

     Some studies have reported that areas with higher population densities might have 

more accidents due to congestion. In this study, we will look at whether or not the 

population of a zip code has a significant effect on the odds of a fatality. We will also be 
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looking at the median household income of that zip code to see if that has any 

significance on the odds of a fatality in a vehicle collision. Lastly, we will look at the 

percent of the zip code that has one of the following: less than a high school education, a 

high school diploma, two-year degree, four-year degree, or higher than a four year degree 

and its effect if any on the odds of a fatality. 

1.2 The Data 

     Three data sets were compiled for use in our analysis. First, the crash information and 

fatalities for five consecutive years was provided by Kim Stalling, a transportation 

analyst from the Nevada Department of Transportation. Next, the zip codes were located 

by using Google Maps, from the information on the intersecting streets in the first set of 

data.  Lastly, the zip code data for median income, zip population, and education levels 

was found using the website http://realestate.aol.com.  Each set is described below. 

1.2.1 Crash Information 

     Let us define a few of the terms used throughout this thesis. A responsible driver is 

defined as the person who caused the accident to occur. They are the individuals that will 

normally pay for any property damage and medical bills of all the involved parties. Each 

accident that occurred had a primary responsible driver; the secondary responsible drivers 

were not accounted for in this data set.  Distractions, as earlier stated, are defined as any 

secondary activity that competes for the driver‟s attention while handling a vehicle. 

These distractions can range from drinking to falling asleep to illness.  A fatality in the 

state of Nevada is defined as any person that dies within 30 days due to a vehicle accident 

that occurred on a United States public road and the vehicle had an engine.  

http://realestate.aol.com/
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     The crash information was obtained for the years 2008-2009 from the Nevada 

Department of Transportation. We will only be looking at the 2009 data to create the 

model. The 2008 data will be used as the test data set during the validation step of this 

thesis. The predictor variables that were available for each vehicle collision included 

gender of the responsible driver, age of the responsible driver, distractions of the 

responsible driver, seatbelt usage of the responsible driver, vehicle type of the responsible 

driver, airbag deployment, weather, road condition, lighting, time of day, day of week, 

season or quarter of the year of the accident, direction of impact, number of vehicles 

involved, and the intersection of the vehicle collision. The response variable is also inside 

the crash data; it is whether or not there was a fatality in the accident. More information 

on the crash data will be provided in Chapter 2. 

1.2.2 Zip Code Information 

     The zip code information was found by using the intersecting streets that was provided 

by the crash information and entering this information into Google Maps.  There were 77 

unique zip codes of Las Vegas, Nevada. Some of these zip codes are unincorporated, so 

they may not have any population and may not be represented in our data. The zip codes 

were then linked up to the crash information using Microsoft SQL server software.  After 

the zip codes were located, we used AOL Real Estate to locate the population of each zip 

code, the median household income as reported, and the percent of each type of education 

in each population. 

     Each of these categories and variables will be discussed further in the following 

chapters. In the next chapter, we will discuss treatment of the data, methodology, results, 

validation and discussion, limitations and conclusion.  
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Chapter 2: 

Developing and Analyzing the Data 

     In this Chapter we will analyze a multitude of explanatory variables. To do this we 

will discuss the data in general, the response variable, the explanatory variables, and the 

univariate logistic regression.  We will also review our choice of variables selected for 

the logistic regression and why each was categorized in such a way. 

2.1 Database of Raw Data 

     Before we get into the data, we will discuss how the data was collected and archived. 

Firstly, the bulk of the data came from Nevada Department of Transportation.  They gain 

this information from two possible sources; reports made by police officers at the scene 

of the collision and hospitals who file reports for fatalities that occurred because of a 

traffic accident. One of the inputs that have to be written into the reports is the two streets 

that intersect and that are closest to the accident. Because Las Vegas is a growing 

community and is a combination of several different townships, towns, and cities, these 

intersections often have several different names and in some cases, perpendicular streets 

do not actually cross. All of this data was imported into the database software package 

Microsoft SQL Server. This software is used to create and edit large databases, and to 

perform queries involving these databases. Since the data that was initially given covered 

over 200,000 accidents, using SQL was the best method to collect, organize, and parse 

the data to get what was needed. The 200,000 pieces of data involved all Clark County 

collisions over a five year period. Our interest consisted of the 2009 data which contained 

35,000 pieces of data. 
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     The second part of the data are the relevant zip codes for the accidents imported into 

MSSQL. The USPS website, http://usps.com, provided the majority of the zip code data 

for the traffic intersections contained in the accident data, though in some cases the 

intersections could not be found.  In these situations, another geolocating website Google 

Maps had to be used.  Using Microsoft SQL Server, the unique intersections were 

extracted from the accident data into a separate table.  These intersections were then fed 

into the aforementioned geolocating website to determine their zip code.  The resulting 

lists of databases were then joined with the accident data to create a full list of accidents 

with the zip code they occurred in. These zip codes were important since part of this 

thesis involves the zip code data. Unfortunately, not all of the 29,000 were able to be 

located; only a sample of 18,580 cross streets were found to be useful using two separate 

programs and many hours of manually entering the streets into Google Maps.  

     The third part of the data is the zip code information involving population and median 

of household income. This demographic information was found using a website called 

http://realestate.aol.com.  This website stated that there were 77 different zip codes in Las 

Vegas, Nevada. The 77 zip codes found did not include zip codes for Henderson or North 

Las Vegas; however, these 77 zip codes did include unincorporated zip codes that were 

not in use as of 2009. For the purpose of this thesis, we will only be using the forty-five 

zip codes defined for the year 2009 in Las Vegas, Nevada. 

     The traffic data was imported into SQL Server, then, using a custom program to 

geocode the addresses with the geolocating services mentioned above, we created data 

relationships between the demographics and traffic accidents using the latitude and 

http://usps.com/
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longitude that were acquired from the geocoding process.  The next step was to look at 

which variables should be the response and predictor variables.  

     The majority of the data that was provided from the Nevada Department of 

Transportation was categorical. Categorical data is a form of discrete data that describes 

some characteristic or attribute. In most of the data, the variables describe several 

attributes ranging from which intersections the accidents happened in, to whether there 

was a fatality or not. The raw data had to be reconstructed into actual categorical groups 

that made more sense for the type of research that was going to occur in this thesis. Using 

SQL, a filtered view of the data was created which interpreted the word variables 

provided from Nevada Department of Transportation into numeric variables which more 

easily would be used in the next step of the process. In the following sections, each 

variable will be explained in detail, and whether it was modified, and if so, how and why. 

2.2 Variable Definitions 

     Before we can begin the actual fitting of a model, we need to understand what types of 

independent variables we have.  We have independent variables that are dichotomous, 

such as gender, whether it occurred at dusk, etc. Dichotomous means that there are two 

categories, which we used SQL to define as 0 or 1. There are some polychotomous 

independent variables as well, which means that there were more than two categories 

being described, such as with the predictor Time of Year. We also have ordinal data; 

meaning that there is a natural order between the categories, such as with age. Finally, we 

have continuous independent variables where the observations fall anywhere in a 

continuum, such as the percent of a zip code with a two year degree. The reason we need 

to understand each type of explanatory variable we are using is that when it comes to 
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placing them into the software, there are adjustments that need to be made for the model, 

as well as for a goodness of fit test, which will be discussed further in later chapters. 

These are important to understand once we get to the interpretation of the results of the 

fitted final model, which will be discussed in Chapter 5. 

2.3 Dummy Variables 

     The polychotomous predictors having more than two categories will need to be 

separated into dummy variables to be best represented in the model. We let B be an n x k 

dummy variable matrix, where Bij = 1 if case i falls in class j and zero otherwise. The 

coding is determined by a contrast matrix C (see Table 2.1) which has the dimensions k x 

(k-1).  The contribution of the factor to the model matrix X is then given by BC 

(Faraway, 2006).  Consider the quarter of the month predictor variable, which is a 4-level 

factor. The contrast matrix C that describes this coding, where columns represent the 

dummy variables and the rows represent the levels, is: 

  

This treats level one (1
st
 quarter of month) as the standard level to which all other levels 

are compared.  Each parameter for the dummy variable then represents the difference 

between the given level and the first level. In our software, the default choice is called 

treatment coding, which is what is explained above (Faraway, 2006).  

Table 2.1 Dummy Variables for Contrast Matrix for a 4 -

Level Factor 

 
2 3 4 

1 0 0 0 

2 1 0 0 

3 0 1 0 

4 0 0 1 
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2.4 Univariate Statistics 

2.4.1 The Simple Logistic Model 

     Let us begin by discussing the distribution of the response variable. The response 

variable is binary, taking on the values of 1 and 0 with probabilities of   = P(Y=1) and   

1-  = P(Y=0), thus Y ~ Bernoulli( ). If Yi is the response and Xi is the predictor of the 

ith case, the logistic regression model I given by 

 

Maximum Likelihood Estimation of    and    

     We know that the response variable follows a Bernoulli distribution. The probability 

distribution is as follows: 

 

Since the   ‟s are independent, their joint probability function is: 

 

Now, we take the natural log of both sides of the equation; which is called the log-

likelihood.  

 

  ~Bernoulli π  , 

                                                             π =
eβo+β1Xi

 +eβo+β1Xi
.                                                 (2.4) 

                        f     =  π  
Yi 1 − π  

 −Yi  where   = 0,1; i = 1,… , n.                      (2.5) 

g   , … ,  n =   π  
Yi 1 − π  

 −Yin
 = =    

πi

 −πi
 
Yi

 1 − π   
n
 = .               (2.6) 

ln g   , … ,  n = ln    
πi

 −πi
 
Yin

 =  1 − π                                         (2.7) 

=     ln  
πi

 −πi
  n

 = +  ln 1 − π  
n
 = .                                                  (2.8) 
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It was stated earlier that   =
e o+ 1Xi

 +e o+ 1Xi
 , so it follows that ln  

 i

 − i
 =   +     .  We 

can now substitute this information into our log-likelihood function, to get: 

 

where     ,     replaces     , … ,     to showcase that we are now viewing this function 

as the likelihood function of the parameters to be estimated, given the sample 

observations.  To find the maximum likelihood estimates, we will need to differentiate 

with respect to    and   .   These differentiations are given: 

 

where   =  [  ]. Now we set these equations to 0 to get: 

 

Which are than solved to get estimates of    and   .  At this point a computer-intensive 

numerical search procedure is used to find the actual maximum likelihood estimates b0 

and b1 of    and    respectively.  For more information on this procedure please refer to 

pages 105-106 of McCulloch, Searle and Neuhaus (2008).  After these values are 

computed, we substitute these values into the response function 
e o+ 1Xi

 +e o+ 1Xi
 to obtain the 

fitted response function; which is denoted as: 

  β ,β   =  [   β + β    ]
n
 = −  ln 1 + eβo+β1Xi n

 =                (2.9) 

=  [   β + β    
n
 = − ln 1 + eβo+β1Xi ].                               (2.10) 

dl

dβo
=     −

eβo+β1Xi

 +eβo+β1Xi
 n

 = =  [  − π ]
n
 =                         (2.11) 

dl

dβ1
=       −

Xie
βo+β1Xi

 +eβo+β1Xi
 n

 = =    [  − π ]
n
 =                  (2.12) 

   =  
 

 +eβo+β1Xi

n
 = 

n
 =  ,                                     (2.13)    

     =  
xi

 +eβo+β1Xi

n
 = 

n
 = ,                                  (2.14)        
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                                                            ̂ =
e o+ 1Xi

 +e o+ 1Xi
 .                                                 (2.15) 

Once the fitted logistic response function has been obtained, we examine the 

appropriateness of the fitted response function and make predictions and inferences about 

it. In the following section we will look at several univariate logistic regressions for the 

continuous explanatory variables that will be used in this thesis.  

2.4.2 Deviance Test 

If the provided Y is really a binomial and that the ni are relatively large, the deviance test 

is approximately a chi-squared distribution with n-s degrees of freedom if the model is 

correct (Faraway, 2006). Thus we can use the deviance test to examine whether the 

model is an adequate fit. Deviance is explained by the difference between the observed 

values (Y) and the expected values ( ̂). The greater this difference is the poorer the fit is. 

The desire is to have a small deviance. As we add more variables to the equation the 

deviance should get smaller, indicating an improvement in the fit. The deviance test 

statistic can be found by:   

  =   for  he  o el wi hou   he   ri  le −   for  he  o el wi h  he   ri  le . 

If the test statistic is smaller than the critical region, we would conclude the null 

hypothesis; which states that the addition of the variable is a good fit. If the test statistic is 

larger than the critical region, we would conclude the alternative hypothesis.  

2.4.3 Hypothesis Testing 

          Hypothesis testing produces a decision about any observed difference; either the 

difference is “statistically significant” or it is “not statistically significant.”  In this 

chapter we will talk about testing a single   , using the Wald test. This tests a single 
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regression parameter to see if it is equal to zero, positive or negative. The following is the 

hypothesis statement we will be using in the next section: 

0 :  0

:  0
k

a k

H

H








 

The test statistic is:                    The decision rule for this test is: If |  |    1 −   2 , we 

would reject the null hypothesis at level of significance   (Kutner, Nachtsheim, & Neter, 

2004).  

2.4.4 The Continuous Explanatory Variables 

     There are five explanatory variables that could be used to find the final model for this 

thesis.  These variables are: percentage of zip code population that had less than a high 

school education, only high school education, two-year degree, four year degree, and 

graduate or doctorate degree. We found the estimates for each of the univariate logistic 

regressions using R software (R Development Core Team, 2010). Table 2.2, shows both 

estimates and whether or not    was significant. 

 

Table 2.2 Continuous Explanatory Variables  

Explanatory 

Variable 
𝒃𝒐 𝒃𝟏 

𝒃𝟏 was 

significant 

% less than High 

School 
-4.18396 -0.05966 Yes 

% only High 

School 
-6.28697 0.06316 Yes 

% 2-Year Degree -6.42435 0.32967 Yes 

% 4-Year Degree -5.83468 0.09451 Yes 

% Graduate or 

Doctorate 
-5.33388 0.07067 Yes 

 

𝒵 =
𝑏𝑘

𝑠𝑒 𝑏𝑘 
. 
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As an example, when we look at one of the printouts, we see: 

 

The Wald Stat = 
−       

        
= −3 629  The critical region is 1.645, so the absolute value of 

the test statistic is larger than the critical region; which means that the variable x51 is 

significant, and does not equal zero. Therefore it should be in the model. If we look at its 

95% confidence interval: -0.05966 1 96  0 01644; it does not include the “no effect” 

value. Also, the confidence interval is fairly narrow, which means that we have a large 

sample and a very precise estimate for the true effects.  

     After looking at the rest of the continuous predictor variables, it was evident that each 

was significant and made for a better model. Thus each will be added to the model 

discussed in Chapter 3.  In Chapter 3, we will discuss what a multiple logistic regression 

model is, the full model for the data, model selection and whether the model is a good fit.   

2.4.5 The Dichotomous Explanatory Variables 

     There are forty-two explanatory variables that are referred to as dichotomous.  These 

variables‟ results can be found in Appendix A, Section 2 and they are defined in 

Table 2.3: Printout of Less Than High School Education  

glm(formula = y ~ x51, family = binomial(link = "logit")) 

Deviance Residuals: 

Min       1Q        Median       3Q       Max 

-0.1566  -0.1301  -0.1152  -0.1006   3.4143 

 

Coefficients: 

             Estimate     Std. Error    z value       Pr(>|z|) 

(Intercept)   -4.18396        0.22047     -18.977      < 2e-16 *** 

  x51           -0.05966       0.01644      -3.629      0.000284 *** 

--- 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 1529.4  on 18579  degrees of freedom 

Residual deviance: 1515.4  on 18578  degrees of freedom 

AIC: 1519.4 

Number of Fisher Scoring iterations: 8 
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Appendix D. We performed a univariate logistic regression and the variables that were 

found to be  not significant were: Wet Weather, Cloudy Weather, Road Construction, 

Road Obstruction, Road Environment, Inappropriate Lane Change, Going the Wrong 

Way, Passing Other Vehicle, Disregarded Road Signs, Failed to Yield, Hit and Run, 

Obstructed Visibility, and Median Income. The remaining dichotomous explanatory 

variables will be used in the main effects model explained in Chapter 3. In Appendix A, 

Section 2, we have listed the coefficient value, the Wald test, the p-value, the odds-ratio, 

the 95% confidence interval and the 95% odds ratio confidence interval of each 

dichotomous explanatory variable.     

2.4.6 The Polychotomous Explanatory Variables 

       There are five explanatory variables that are referred to as polychotomous 

explanatory variables. These variables‟ results can be found in Appendix A, Section 3 

and they are defined in Appendix D. We performed a univariate logistic model and the 

variables that were found to be not significant were: Age, Quarter of the Year and Zip 

Code Population. The two variables that were found to be significant were: The Quarter 

of the Month and Vehicle Type.  

     Once we had constructed the models, we then did a deviance test on each.  We will 

look at the printout for Age, perform a deviance test on it and state the results, the 

remaining polychotomous results can be found in Appendix B. The variable Age‟s 

printout is found in Table 2.4.  
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Table 2.4: Printout of Age 

Call: 

glm(formula = y ~ factor(x2), family = binomial(link = "logit")) 

Deviance Residuals: 

Min       1Q   Median       3Q      Max 

-0.1667  -0.1298  -0.1098  -0.1098   3.2069 

 

Coefficients: 

Estimate Std. Error z value Pr(>|z|) 

(Intercept)  -4.7732     0.1514 -31.529   <2e-16 *** 

factor(x2)1  -0.3358     0.2030  -1.654    0.098 . 

factor(x2)2  -0.3632     0.2661  -1.365    0.172 

factor(x2)3   0.5035     0.3869   1.301    0.193 

--- 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

 

(Dispersion parameter for binomial family taken to be 1) 

 

Null deviance: 1529.4  on 18579  degrees of freedom 

Residual deviance: 1523.0  on 18576  degrees of freedom 

AIC: 1531 
 

Number of Fisher Scoring iterations: 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

The deviance for the full model is 1523 and the deviance for the null model is 1529.4.  

The hypothesis for this test is: the null hypothesis states that the model is a good fit and 

the alternative hypothesis states that the model is not a good fit. Therefore the deviance 

test statistic is 6.4, with a p-value of 0.09369079.  The critical region is 11.07.  The 

conclusion is that the logistic model is not a good fit with this variable in it.  

     The significant polychotomous explanatory variables will be used in the main effects 

model explained in Chapter 3. In Appendix A, Section 3, we have listed the coefficient 

value, the Wald test, the p-value, the odds-ratio, the 95% confidence interval and the 95% 

odds ratio confidence interval of each polychotomous explanatory variable.     

     In Chapter 3, we will discuss the methodology in which we took to construct a final 

model. All the variables that were found to be significant in this chapter will be used in 

the main effects model. 
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Chapter 3 

Methodology 

     In this Chapter we will be looking at the generalized linear model and the use of a 

specific type of generalized linear model; multiple logistic regression. We will be 

applying this model to the transportation data and briefly discussing the modeling process 

from the full model to the final model selection.  

3.1 Overview of the Generalized Linear Model 

     In constructing a generalized linear model, there are three decisions that need to be 

made. These are: 

1. What is the distribution of the data? 

2. What function of the mean will be modeled as linear in the predictors? 

3. What will be the predictors? 

     In the case of a generalized linear model, y is assumed to consist of independent 

measurements from a distribution with density from the exponential family (McCulloch, 

Searle, & Neuhaus, 2008). The mean of    and the linear form of the predictors need to 

be connected by some function g; we call this function a link function. The decision on 

which predictors to use and possibly how to transform them, needs to be considered 

before and during the development of the final model. 

     Let us talk theory, in the discussion of a generalized linear model; we will use the 

following matrices to simplify formulas: 
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Under the General Linear Model (GLM) the mean of y is a linear function of the 

predictor variables, X, and the to-be estimated model parameters  , so that  [ ] =     or 

in other words:  [  ] =   =   +      , 
 
 = . Now, the Generalized Linear Model 

provides a way to estimate a monotonic function, g, of the mean response as a linear 

function of the values of the predictor variables, X. This can be written as    [  ] =

g    = g   +      , 
 
 =  =   ; where g     is called the link function. The variance 

of Y may be a function of the mean response  :   r   =      , where   represents a 

constant (McCullagh and Nelder, 1998).  In the linear model the   =    ; however in the 

generalized linear model   = g−     . 

3.2 Overview of the Logistic Regression 

     Logistic regression is useful when the outcome is binary, meaning zero or one, with 

one being a success. A researcher may wish to study the relationship between whether 

there was a fatality to the age, gender, etc. of the responsible driver. The logistic 

regression is a specialized case of the generalized linear model. To use the logistic 

regression, we use the binomial family; which uses the logit link function defined: 

g p = logi  p = log
 

 − 
  and variance function defined by:    r   =  p 1 − p , 

where p is the probability of success and  = 1 .  

                                

                                          (3.1) 
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3.3 Fitting a Model 

     When fitting a model, we utilized the method of maximum likelihood to estimate the 

parameters of the multiple logistic response function:      =    =
ex  Xi

   

 +ex  Xi
   

; where X 

variables are known constants (Kutner, Nachtsheim, & Neter, 2004).  This method yields 

values for the vector of unknown parameters  , which maximizes the probability of 

obtaining the observed set of data.  The log-likelihood function for simple logistic 

regression, which was described in Chapter 2, can extend directly into the multiple 

logistic regression: ln     =       
   n

 = −  ln[1 + e p   
   ]n

 = . We will be using 

the R software to find the values of estimates of parameters that maximizes ln     .  

These maximum likelihood estimates of   will be denoted as b: 

0

1

1

1

px

p

b

b
b

b 

 
 
 
 
 
  

.                                                                 (3.2) 

The fitted logistic response function and values can be expressed as follows:   

 ̂ =
ex  Xi

   

 +ex  Xi
   

= [1 + e p −  
   ]−                                         (3.3) 

 where   
  =    +     , +  +   −   , − .        

3.3.1 Likelihood Ratio Test 

     Once we have the full model defined, then we have to select which independent 

variables should be kept in the model.  There are a few ways to decide on this, the 

methods used in this thesis will be first based on the results of the contingency tables in 

Chapter 2 and then a step-wise method. The results from the univariate logistic regression 

explained in Chapter 2, will be used as the second model.  This second model will need 
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to be tested to see if the variables that were dropped to create it, should be dropped. This 

is done by a method called Likelihood Ratio Test. We begin with the full logistic model 

with response function 

 = [1 + e p −     ]
− ,                                           (3.4)  

where 

  =   ,   , ,   − , 

    =   +     +  +   −   − .                                   (3.5) 

The reduced logistic model has the response function: 

 = [1 + e p −     ]−                                                (3.6) 

where 

  =   ,   , ,   − , 

    =   +     +  +   −   − .                                     (3.7) 

where q <  p. 

     Now, we find the maximum likelihood estimates for the both models and evaluate 

their likelihood functions as explained earlier. Let it be known that p and q are the 

parameters for the two models.  

The hypothesis that will be tested is: 

H0:   =   + =  =   − = 0 

Ha: not all of the    in H0 equal zero. 

As with all hypothesis testing, we need a test statistic for the likelihood ratio test, which 

is denoted as G
2
 (Kutner, Nachtsheim, & Neter, 2004). 

   = −2ln  
    

    
 = −2[ln      − ln      ]                              (3.8) 
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     Large-sample theory states that when n is large, G
2
 is distributed approximately as 

  − 
  when H0 in the hypothesis holds. The degrees of freedom correspond to dfR-dfF = 

(n-q)-(n-p)=p-q.  The appropriate decision rule is: 

If G
2
    − , − 

 , reject H0 and conclude that the full model is valid. 

Once we know if the insignificant variables found in Chapter 2 can be removed, we can 

begin the step-wise model selection. 

3.3.2 Stepwise Model Selection 

      When the pool of potential X variables contain more than 30 variables, use of a “best” 

subsets algorithm may not be feasible.  Instead, we can use an automatic search 

procedure which will develop the “best” subset of X variables. This automatic search 

procedure is known as a stepwise procedure, a useful and effective data analysis tool. 

Any stepwise procedure for selection or deletion of variables from a model is based on a 

statistical algorithm that checks for the “importance” of variables, and either includes or 

excludes them on the basis of a fixed decision rule.  Two other criterion are AICp, and 

SBCp. The stepwise regression procedure is a combination of backward elimination and 

forward selection.  

     The backward elimination procedure begins with a model that contains all possible 

independent variables and identifies the X with the largest p-value. If the maximum p-

value is greater than a predetermined limit (such as .05) then it is dropped from the 

model. The model is refit without this variable and the procedure repeats.  This continues 

until model has the lowest AIC possible. The stepwise procedure eliminates predictors in 

the pursuit of getting a lower AIC.  If after removing a predictor the AIC goes up, this 

may mean that the variable should not be removed.   



24 
 

     The forward selection procedure adds variables to the model one at a time. At each 

step, each variable that is not already in the model is tested for inclusion in the 

model. The most significant of these variables is added to the model, so long as it's P-

value is below some pre-set level.  

     The Akaike Information Criterion (AIC) is another method to help with the variable 

selection process.  

AICp = -2LL + 2p,                                                  (3.9) 

where LL is the maximum log-likelihood and p is the number of parameters in the model, 

including the constant.  The second term is sometimes referred to as the penalty term, and 

adjusts to the size and complexity of the model. When the number of parameters increase, 

the first term becomes smaller.  This is due to the fact that the more parameters there are, 

the more the chance of what is observed can happen.  So, to adjust for this bias, AIC adds 

the term 2p to -2LL as a penalty for increasing the number of parameters (Hilbe, 2009).  

A small value of AICp means that the model is a better fit; however, this does not mean 

that the model is a good fit or a perfect model.  

     The Schwartz‟ Bayesian criterion (SBCp) is a third method to help with the selection 

process.  

SBCp = -2LL+plog(n),                                      (3.10) 

where LL is the maximum likelihood of the model, p is the number of parameters in the 

model, and n is the number of observations in the data set. The second term is the penalty 

term and does the same as the AICp‟s penalty term. When the number of parameters and 

data increase the -2LL decreases.  The smaller the SBCp the better the model is for the 

selection process. 
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3.3.3 Goodness of Fit Test 

     Once this new model is selected, we want to be able to do a Goodness of Fit Test. This 

can be done using several methods, some of these are the Pearson Chi-Square, Deviance 

and Hosmer-Lemeshow. The first two tests require sufficient replication with the 

subpopulations for the tests to be valid for a goodness of fit. In other words, these two are 

only appropriate when there are repeated observations and when the number of replicates 

at each X is sufficiently large (Kutner, Nachtsheim, & Neter, 2004).  

Hosmer and Lemeshow Test 

     The likelihood ratio statistic mentioned earlier is an appropriate test for comparing 

two models to each other.  If instead of just a full model and a reduced model, we use a 

saturated larger model where there are as many parameters as there are cases and the 

fitted values  ̂ =
  

n 
⁄ , then the statistic becomes: 

 = 2 {  log
 i

 ̂i
+ ( n −    log

 ni− i 

 ni− ̂i 
)}n

 = ,                       (3.11) 

where  ̂  are the fitted values from the smaller model (Faraway,2006). Now, since the 

saturated model fits as well as any model can fit, the deviance D measures how close the 

smaller model comes to perfection. If Y is binomial and the    are relatively large, the 

deviance is approximately chi-squared with n-s degrees of freedom. Let us look at an 

example from the data for this thesis: the predictor variable Gender: 

 

Table 3.1 Predictor Variable: Gender  

Gender Fatalities 
No 

fatalities 

0 36 7178 

1 92 11074 
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Notice, how ni = 36 when the gender is a female and there was a fatality. The thirty-six 

means that it is a repeated observation.  In this situation we are allowed to use the first 

two tests, since there is repetition or ni > 1.  If we setup a model for this situation, we find 

the following information: 

 

     So, we find that the deviance is 1519.7 with degrees of freedom of 18378 and the null 

deviance is 1526.7 with degrees of freedom equal to 18379.  When we complete the 

deviance test we get a p-value of 1, which would make us think that the model fits well. 

When we compare the Null model to that of the full model, we receive a p-value of 

0.008, which caused us to conclude that the addition of gender is statistically significant, 

so we would reject the smaller model (Null).  

     However, for the predictor, Wrong Way, 

 

Printout 3.1: Univariate Model Involving Gender  

 

Table 3.2 Predictor Variable: Wrong Way 

Wrong Way Fatalities 
No 

Fatalities 
Total 

0 127 18181 18308 

1 1 71 72 

Total 128 18252 18380 
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notice how in the cell (Wrong Way=1, Fatalities) the ni = 1, this means there is no 

repetition of the observation of this event occurring in the 2009 data. When n  1 where 

  = 0 or 1, the response is binary, and the deviance reduces to (Faraway, 2006) 

 = −2 { ̂ log  
 ̂i

 − ̂i
 + log 1 −  ̂  }

n
 = .                            (3.12) 

For a deviance test to measure fit, it has to be able to compare the  ̂  to the data   ; 

however in this equation there is no data, so this deviance statistic no longer follows a 

chi-squared distribution,  and it is no longer a good fit test (Faraway, 2006). 

     Continuous predictors will cause the data to be too sparse, which means that the 

covariates are too small, as can be seen with the predictor for Less than a High School 

education; so we cannot use the first two mentioned methods for a goodness of fit test, 

instead we would use the Hosmer-Lemeshow test.  

     The Hosmer-Lemeshow is used when either there are few or no replicated data sets 

(Hosmer & Lemeshow, 2000).  This test is only for binary response models. The 

following is the Hosmer-Lemeshow statistic: 

  =  
   −   ̂  

 

   ̂   − ̂  
 
 = ,                                                (3.13) 

where    = the total frequency of subjects in the gth group,   = the total frequency of 

event outcomes in the gth group,  ̂  is the average estimated probability of an event 

outcome for the gth group and   = the approximate chi-square with G-2 degrees of 

freedom, where G is the number of groups data is split into (Hosmer & Lemeshow, 

2000). The smaller values of    (and larger p-values) indicates a good fit of the model 

(Hosmer & Lemeshow, 2000).  
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     This procedure consists of grouping the data into classes with similar fitted values  ̂ , 

with approximately the same number of cases in each group (Kutner, Nachtsheim, & 

Neter, 2004).  The number of groups largely depends on the datasets, ten groups are 

recommended by Hosmer and Lemeshow for large datasets; which is what we have in 

this thesis.    

ROC Curve 

     Another way to see if this model is a good fit, is by using the Receiver Operating 

Characteristic curve (ROC curve).  The ROC curve is a plot of the true positive rate 

against the false positive rate for the different possible cutoffs of a diagnostic test; in 

other words it depicts the performance and performance trade-off of a classification 

model.   

  

Table 3.3 shows the results for a diagnostic test.  Each cell has an importance to help find 

several things, some of these include true positive rate, true negative rate, and false 

positive rate. The true positive rate is also known as sensitivity and it is found by 
  

  +  
. 

The true negative rate is known as specificity and is found by 
  

  +  
. The false positive 

rate is found by one minus specificity. These are used as the x and y axis of the ROC 

Table 3.3 Diagnostic Test Results  

Diagnostic Test 

Result 

Mortality Status   

Fatality  No Fatality Total 

Fatality True Positive (TP) False Positive (FP) 
All test positive 

(T+) 

No Fatality False Negative (FN) True Negative (TN) 
All test negative (T-

) 

Total Total Fatalities (D+) Total No Fatalities (D-) Total Sample Size 
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curve. They are also used to discover the cutoff points during the prediction phase spoken 

about in Chapter 5. In order to understand the strength of using this curve we need to 

understand how it is created and what it may look like. Figure 3.1 represents the ROC 

curve regions that will be discussed in this section. 

 

     Some of the regions of interest are identified in Figure 3.1.  The diagonal line from 

(0,0) to (1,1), known as the random performance line, is the case when there are as many 

false positive responses as true positive responses. This line has an area under the curve 

(AUC) of 0.5.  If the ROC = 0.5, there is no discrimination, which means it does not 

showcase a good fit, or the likelihood for some event to occur is based on the flip of a fair 

coin. If the AUC is between .7 and .9, then this is considered good discrimination and we 

can confirm a model is well-fit (Hosmer & Lemeshow, 2000). The area under the curve is 

a useful summary measure of the model‟s predictive power. Now, to the left bottom of 

Figure 3.1: Outline of an ROC curve 
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the random performance line we have the conservative performance region; this is where 

few false positive errors occur. To the right top of the line, we have the liberal 

performance region; which is where a substantial number of false positive errors occur. 

The point in the top left corner denotes a perfect classification, which has 100% true 

positive rate and 0% false positive rate. In Chapter 5 we will discuss how the ROC curve 

can help with cutoff points for prediction error rates.  

3.4 Model Selection for Data 

     Hosmer and Lemeshow suggest that any variable not selected in the original 

multivariable model be added back into the model.  This is helpful because it will identify 

variables that, by themselves, are not significantly related to the outcome but make an 

important contribution in the presence of other variables (Hosmer & Lemeshow, 2000). 

This model is known as the preliminary main effects model. Finally, we can begin to look 

for our final model.  Let us begin by fitting the full model with all variables added in.  

The full printout of this model can be found in Appendix G, Section 1. 

 

Table 3.4: Preliminary Main Effects Model  
Coefficient Estimate Std.Error zvalue Pr(>|z|) Signif 

(Intercept) -19.05 529.51 -0.04 0.97 
 

x1 0.15 0.22 0.68 0.49 
 

factor(x2)1 -0.42 0.22 -1.91 0.06 . 

factor(x2)2 -0.21 0.29 -0.71 0.48 
 

factor(x2)3 1.10 0.42 2.61 0.01 ** 

x3 0.77 0.26 3.02 0.00 ** 

x4 1.41 0.34 4.16 0.00 *** 

x5 -1.47 0.63 -2.34 0.02 * 

x6 1.19 0.59 2.02 0.04 * 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
x52 0.08 0.03 2.63 0.01 ** 

x53 0.15 0.19 0.78 0.43 
 

x54 0.15 0.08 1.93 0.05 . 

x55 -0.06 0.08 -0.76 0.45 
 

x56 -0.97 0.30 -3.29 0.00 ** 

Appendix D has the full description of each variable in this model. 
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Appendix D has the full description of each variable in this model. After using the 

software package R (R Development Core Team, 2010), we were able to find the log-

likelihood for the model, which was found to be -559.0268 with 62 degrees of freedom. 

After looking at the preliminary main effects model, we saw that the variables that were 

not significant during the univariate logistic regression were also not significant in this 

model.   

     Next, we found the model that represented the findings discussed in the univariate 

logistic regression portion of Chapter 2 was formed. This model is called the main effects 

model. The full printout of this model can be found in Appendix G, Section 2.  

 

3.4.1 Comparing Log-likelihood Test  

     This reduced model had a log-likelihood of -575.8864 with degrees of freedom of 40. 

Now, we can use the likelihood ratio test to see if the variables removed are in fact equal 

to zero, thus not adding sufficient information to the model. The results are as follows: 

  = −2[−575 8864 −   −559 0268 ] =  33 71929 

Table 3.5: Main Effects Model  

Coefficients Estimate Std.Error zvalue Pr(>|z|) Signif 

(Intercept) -17.58 341.03 -0.05 0.96   

x1 0.15 0.22 0.69 0.49   

x3 0.71 0.25 2.88 0.00 ** 

x4 1.36 0.32 4.19 0.00 *** 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
x53 0.07 0.17 0.40 0.69   

x54 0.13 0.07 1.81 0.07 . 

x55 -0.06 0.07 -0.90 0.37   

x56 -0.79 0.27 -2.92 0.00 ** 

Appendix D has the full description of each variable in this model. 
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For  =  05, we have    
 =  33 92.  Since G

2
 =  33 72   33 92, we conclude that  age 

(x2), wet weather (x7), cloudy weather (x9), road construction (x15) , road obstruction 

(x16),  road environment (x17), quarter of the year (x20), inappropriate lane (x26), 

driving the wrong way (x30), passing other vehicle (x31), backing up (x32), disregarding 

road signs (x33), not yielding (x35), hit and run (x39), obstructed visibility (x42), median 

income (x48), and zip code population (x49) should be dropped from this model. The p-

value of this test was 0.052. 

    Now, we can use the backward elimination process to discover the subset of predictors 

that would be best in the model. The software R (R Development Core Team, 2010), 

generated the following model: 

 

Table 3.6: BE of Main Effects Model  

Coefficients Estimate Std.Error zvalue Pr(>|z|) Signif Coefficients Estimate Std.Error zvalue Pr(>|z|) Signif 

(Intercept) -7.05 1.01 -7.01 0.00 *** x37 0.60 0.36 1.67 0.10 . 

x3 0.87 0.23 3.80 0.00 *** x40 2.29 0.76 3.00 0.00 ** 

x4 1.36 0.32 4.22 0.00 *** x43 1.74 0.48 3.65 0.00 *** 

x5 -1.34 0.61 -2.18 0.03 * factor(x44)1 0.95 0.76 1.25 0.21   

x6 1.03 0.56 1.82 0.07 . factor(x44)2 0.84 0.73 1.16 0.25   

x10 1.05 0.45 2.33 0.02 * factor(x44)3 3.48 0.75 4.63 0.00 *** 

x13 0.87 0.50 1.75 0.08 . factor(x44)4 1.27 0.74 1.71 0.09 . 

x14 1.43 0.44 3.25 0.00 ** factor(x44)5 1.73 0.93 1.85 0.06 . 

x18 -0.76 0.26 -2.90 0.00 ** x46 0.81 0.23 3.49 0.00 *** 

x22 -1.92 0.76 -2.53 0.01 * x47 -0.63 0.23 -2.74 0.01 ** 

x23 -0.41 0.26 -1.59 0.11   x52 0.09 0.03 3.61 0.00 *** 

x24 -1.51 0.38 -3.95 0.00 *** x54 0.09 0.03 3.37 0.00 *** 

x27 -1.01 0.29 -3.48 0.00 *** x56 -0.76 0.26 -2.92 0.00 ** 

x34 -1.78 0.74 -2.40 0.02 *             

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 1529.4  on 18579  degrees of freedom 

Residual deviance: 1162.0  on 18553  degrees of freedom 

AIC: 1216 

Number of Fisher Scoring iterations: 10 

Appendix D has the full description of each variable in this model. 
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     We will test this new model to see if this model is better than the previous one.  We 

will use the log-likelihood test once again to check this. The log-likelihood for this model 

is -581.0053 with 27 degrees of freedom.   

  = −2  [−581 0053 −  −575 8864 ] = 10 24 

   For  =  05, we have    ,    
 = 22 36.  Since our test statistic is 10 24  22 36, we 

do not reject the null hypothesis, and conclude that the predictors that were dropped 

should have been dropped. The p-value for this test is approximately 0.6743813.   

     This model still shows a few predictors that are not significant, so we decided to 

continue with the removal of each variable that was not significant, starting with the 

highest p-value. After this process was finished, we acquired a model with all significant 

predictor variables; we will call this model AS. The following printout showcases this 

model.  

 

Table 3.7:  AS Model 
Coefficients Estimate Std.Error zvalue Pr(>|z|) Signif Coefficients Estimate Std.Error zvalue Pr(>|z|) Signif 

(Intercept) -5.26 0.67 -7.84 0.00 *** x27 -1.22 0.28 -4.30 0.00 *** 

x3 0.89 0.22 3.97 0.00 *** x34 -1.62 0.74 -2.19 0.03 * 

x4 1.34 0.32 4.23 0.00 *** x40 1.91 0.75 2.56 0.01 * 

x5 -1.22 0.60 -2.03 0.04 * x43 1.59 0.47 3.41 0.00 *** 

x10 0.92 0.43 2.12 0.03 * x46 0.50 0.22 2.24 0.03 * 

x14 1.32 0.43 3.05 0.00 ** x47 -0.93 0.22 -4.23 0.00 *** 

x18 -0.77 0.24 -3.19 0.00 ** x52 0.09 0.02 3.92 0.00 *** 

x22 -2.33 0.76 -3.09 0.00 ** x54 0.11 0.03 3.90 0.00 *** 

x23 -0.59 0.25 -2.33 0.02 * x56 -0.95 0.25 -3.87 0.00 *** 

x24 -1.82 0.38 -4.83 0.00 ***             

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 1529.4  on 18579  degrees of freedom 

Residual deviance: 1244.3  on 18561  degrees of freedom 

AIC: 1282.3 

Number of Fisher Scoring iterations: 10 

Appendix D has the full description of each variable in this model. 
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     Since this model is based off the BE of Main Effects model, we will check the log-

likelihood test to see if the removed predictors should have been indeed removed.  The 

log-likelihood of this model is -622.1736 with 19 degrees of freedom. 

  = −2  [−622 1736 −  −581 0053 ] = 82 34 

     For  =  05, we have   ,    
 = 15 51.  Since our test statistic is 82 34  15 51, we 

conclude that we would reject the null hypothesis.  Therefore, at least one of the predictor 

variables should not have been removed from the model.  Even though all the variables 

are significant, it does not make it a model that should occur.  The p-value for this test is 

1.654232 * 10
-14

. 

     The following table showcases the preliminary main effects model (PME), a backward 

elimination on the preliminary main effects model (BEPME), the main effects model 

(ME), the backward elimination of the main effects model (BEME), and a model with all 

significant predictor variables (AS). Each model had its AICp, SBCp, log-likelihood and 

number of parameters recorded.  This helped to select the final model.  

 

After examining each model type, it would seem that the two backward elimination 

models have the lowest of both criteria.  Although, BEPME may have the lowest AIC it 

is only a few points away from the BEME model; whereas the SBC of the BEME seems 

Table 3.8: Comparison of Models  

Model  AICp SBCp Log-Lik 
# of 

Parameters 

PME 1242.05 1737.33 -559.027 62 

BEPME 1205.1 1463.48 -569.548 33 

ME 1229.77 1535.14 -575.886 39 

BEME 1216.01 1427.42 -581.005 27 

AS 1282.35 1431.11 -622.174 19 
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quite a bit smaller than the BEPME. In Chapter 2, we discovered several predictors that 

were not significant, since the BEPME still incorporates some of these non-significant 

predictors; we want to use the BEME. Let it be stated that although all the predictors in 

the fifth model are significant, it‟s AIC and SBC are quite large.  Its AIC is even larger 

than the PME model‟s; this is a good indicator that it would not be an ideal model to 

choose.  Thus it does not seem like a good fit for the final model. The printout for the 

BEPME model can be found in Appendix G, section 3. 

3.4.2 Goodness of Fit Test and ROC Curve 

     Now, we can test the BEPME model to see if it is a good fit.  The test statistic would 

be calculated as follows: 

  =
 1888 − 1887 60  

1887 60
+

 0 − 0 398  

0 398
+  +

 1768 − 1775 18  

1775 18
+

 90 − 82 82  

82 82
= 4 895 

For  =  05, we have   ,    
 = 15 507   Since   = 4 895  15 507, we do not reject 

H0, and conclude that the logistic response function is appropriate.  The p-value was 

0.769.  Therefore, the Table 3.6 is the final model.  To see all the above values for the H-

L test please see Appendix F.  

     If we look at the ROC curve, we get Figure 3.2, which has an AUC = .891.  This 

means that the model is well fit.  We will talk more about this figure and how it relates to 

predictions in Chapter 5, Section 3. 
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     We wanted to see how the other models fared for the goodness of fit test and ROC 

curve‟s AUC.  The results are found in the Table 3.9. 

 

     We can see that the AS model had the lowest area under the ROC curve than any of 

the other models that were fit. Also, it had the highest chi-squared value of all the 

models. Even though this does not mean that the AS model is not a good model, it does 

show some possible issues with the model and why we chose the BEPME model over it.  

Figure 3.2: Receiver Operating Characteristic (ROC) Curve of 

Final Model 

 

Table 3.9: Goodness of Fit & ROC 

Models 

HL Test ROC 

Chi-squared df p-value AUC 

Distance for 

Optimal Cutoff 

Point 

PME 6.7998 8 0.558 0.91 0.26933 

BEPME 5.295 8 0.726 0.905 0.3413 

ME 5.384 8 0.716 0.889 0.2961 

BEME 4.895 8 0.769 0.891 0.2794 

AS 8.79 8 0.36 0.853 0.4012 
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3.5 Results 

     In Chapter 2 and Chapter 3, a classical regression approach to fit the generalized linear 

model, logistic regression, was used. The subset selection procedures discovered the best 

predictors of fatalities due to vehicle collisions given that a collision occurred. We are 

primarily interested in knowing if these best predictors will give accurate results for the 

odds of having a fatality in Las Vegas due to a vehicle collision.  

3.6 Final Model Selection 

     Using a logistic regression model, we found that drinking (x3), drugs (x4), inattention 

(x5), ailment (x6), dark (x10), dawn (x13), dusk (x14), roadway (x18), sideswipe (x22), 

angle (x23), rear (x24), improper turning (x27), followed too closely (x34), ran off the 

road (x37), driverless (x40), over evaluation (x43), factor of vehicle type (x44), factor of 

airbag deployment (x46), seatbelt usage (x47), high school diploma only (x52), four-year 

degree (x54), and total vehicles involved in accident (x56) were regressed on the whether 

there was a fatality due to a vehicle collision. The results are shown above in Table 3.6.   

     In Chapter 4, we will be discussing if there are any influential cases amongst the data 

and how this affects the model.  We will also interpret the final results and talk about 

what each predictor means to the model.   
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Chapter 4 

Model Diagnostics 

     In Chapter 3, we discussed a final model, Table 3.6. In this chapter, we will be using a 

number of different diagnostic procedures to check the adequacy of the model in Table 

3.6. As with the standard linear model, it is important to check the adequacy of the 

assumptions that support the GLM. 

4.1 Leverage 

     First, we will look at leverage. Leverage points are observations that are discrepant or 

distant from the other values of the x variable. They may or may not also be outliers. 

Leverage is the potential for an observation to affect the fit of the model.  Leverages hi 

are given by the diagonal of the hat matrix, H, given in (4.1) and represent the potential 

of the point to influence the fit. The hi is a function of only the X values, so hi measures 

the role of the X values in determining how important Yi is in affecting the fitted value  ̂  

(Kutner, Nachtsheim, & Neter, 2004).  The GLM model, which is what we are using in 

this thesis, uses weights, W, to fit the model. Leverage is based on the function of X and 

the response through the weights W (Faraway, 2006).  We form a matrix W = diag(w) 

and the hat matrix is: 

 =    ⁄        −      ⁄                                     (4.1) 

Now, we extract the diagonals of H to get the actual leverages of hi.  A large value of this 

hi indicates that the fit may be sensitive to the response in some case i. As a rule of 

thumb, if hi is greater than two or three times that of p/n, the observation may be of 

concern. 
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     Before we look for any influential observations, we will graph the coefficients of the 

final model found in Chapter 3, to compare it to any models without these possible 

influential observations.  

 

     To be able to see if BEME model has any leverage or influential cases, we will look at 

the half-normal plot of these estimated effects. Along the y-axis of this plot, we have the 

ordered absolute value of either the leverage or influence. Along the x-axis, we have the 

theoretical order statistic medians from a half-normal distribution. The outputs are a rank 

of a list of factors and interactions from the most important to the least important. Thus 

the half-norm probability plot is a graphical tool that uses these ordered estimates to help 

assess which factors are important and which are not.  

     So, first we decided to graph the leverages in a half-normal plot to see whether there 

seemed to be any outlying cases.  

 

Figure 4.1: Plot of the Coefficients of the BEME 
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As we can see case 1706 seems to be the farthest out so it may have some leverage.  

Therefore, we looked at this particular case; the following values were given for each of 

the variables. 

 
Looking at this printout, we see that none of the variables look out of place; however, it is 

harder to see something with binary data. Therefore we decided to check the leverage 

value against 2*p/n; where p is the number of parameters in the model and n is the 

number of observations. 

2 (
27

18580
) = 0 002906 

When we look at the leverage for this observation, we found it to be 0.1829278; which is 

larger than the rule of thumb.  This means that the observation may be of some concern. 

Figure 4.2: Half-Normal Quartiles Based off Leverage  

 

Table 4.1: Case Number 1706 

Variable y x3 x4 x5 x6 x10 x13 x14 x18 x22 x23 x24 

Data 0 0 0 0 1 0 0 0 0 0 0 0 

Variable x27 x34 x37 x40 x43 x44 x46 x47 x52 x54 x56  

Data 0 0 0 1 0 1 0 1 20.59 7.95 0  

Appendix D has the full description of each variable in this model. 
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Therefore, it is good practice to remove this case from the model and refit it. What we are 

looking for is a possible significant change in the coefficients of the model.  

 

     There does not seem to be a sign change or a significant change in any of the 

coefficients, so it is not believed that this observation has much leverage to make a 

substantial difference on the fit of the model; however, we could look at a graph of this 

model‟s coefficients and then compare it to the original in Figure 4.1.  

Table 4.2: Model without Case Number 1706  

Coefficients Estimate Std.Error zvalue Pr(>|z|) Coefficients Estimate Std.Error zvalue Pr(>|z|) 

(Intercept) -7.05 1.00 -7.01 0.00 x37 0.60 0.36 1.65 0.10 

x3 0.87 0.23 3.80 0.00 x40 2.48 0.78 3.17 0.00 

x4 1.35 0.32 4.20 0.00 x43 1.75 0.48 3.65 0.00 

x5 -1.36 0.62 -2.21 0.03 factor(x44)1 0.97 0.76 1.28 0.20 

x6 1.12 0.56 2.00 0.05 factor(x44)2 0.85 0.73 1.17 0.24 

x10 1.05 0.45 2.33 0.02 factor(x44)3 3.49 0.75 4.64 0.00 

x13 0.86 0.50 1.72 0.09 factor(x44)4 1.27 0.74 1.72 0.09 

x14 1.43 0.44 3.24 0.00 factor(x44)5 1.74 0.93 1.86 0.06 

x18 -0.77 0.26 -2.92 0.00 x46 0.81 0.23 3.49 0.00 

x22 -1.93 0.76 -2.54 0.01 x47 -0.62 0.23 -2.68 0.01 

x23 -0.42 0.26 -1.63 0.10 x52 0.09 0.03 3.61 0.00 

x24 -1.52 0.38 -3.99 0.00 x54 0.09 0.03 3.34 0.00 

x27 -1.00 0.29 -3.48 0.00 x56 -0.76 0.26 -2.93 0.00 

x34 -1.78 0.74 -2.40 0.02           

Appendix D has the full description of each variable in this model. 
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When looking at the coefficients for the model without this case, it does not appear that 

this is much difference; however, when we look at a graph that plots the difference 

between the new coefficients and the original, we see that parameters x6 and x40 do have 

a huge leap in them.   

 

Figure 4.3: Plot of Coefficients of BEME without Case # 1706  

 

Figure 4.4: Differences of Coefficients Between Case With and 

Without 1706 
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     This may show that we should have some concern of this case number, that it might 

have some leverage. So we need to examine why these two variables are affected so 

much. The predictor x6 has a 1 in it for a fatality due to ailment. This is one of only four 

fatalities for this predictor; which could be causing the problem.  A very similar story can 

be said about x40, which has a 1 for fatalities due to driverless vehicle.  It is only one of 

three fatalities for this predictor.  We should not remove this case number, because it 

could be misleading if we did remove it. Due to its potential in the models loss of the 

number of fatalities, it is scientifically best to keep it.  

4.2 Influence 

     Leverage only measures the potential to affect the fit of the model, whereas measures 

of influence more directly assess the effect of each case on the fit (Faraway, 2006). An 

influential observation is one which has a relatively large effect on inferences based on 

the model and removing them would markedly change the statistical analysis. These may 

or may not be outliers. Outliers are observations that pull the linear regression line in one 

direction or another. These are typically relatively extreme values of the y variable. One 

way to find influential cases is by finding the Cook‟s distance. This measures the 

standardized change in the linear predictor when the ith case is deleted. The formula for 

this is: 

  =
  i
  ii

   − ii 
 ,                                                         (4.2) 

where r i

 is the square of the Pearson‟s residual, h   is the leverage factor, and p is the 

number of parameters. Now, in order for this value to be classified to have a high 

influence is if Di is greater than 1 (Hosmer & Lemeshow, 2000). 
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     In order to see if there are any influential observations, we graphed a half-normal 

quartile graph based on Cook‟s distance.  The following graph shows case number 7214 

as the most influential. 

 

We decided to look at this particular data observation and this is what we found: 

 

 
By looking at this observation, the only one that seems off is x13, Dawn, and this could 

be due to this predictor having 1 fatality out of five fatalities for Dawn. However, we 

should keep this in mind as we look at the graphs and printouts of the model without this 

observation. 

Now, we will find the Cook‟s distance for this case: 

     =
              

     −       
= 0 0326. 

Figure 4.5: Half-Normal Quartile based on of Cook‟s Distance  

 

Table 4.3: Case Number: 7214 

Variable y x3 x4 x5 x6 x10 x13 x14 x18 x22 x23 x24 

Data 1 0 1 0 0 0 1 0 1 0 0 0 

Variable x27 x34 x37 x40 x43 x44 x46 x47 x52 x54 x56  

Data 0 0 0 0 0 0 0 1 21.35 9.43 0  

Appendix D has the full description of each variable in this model. 
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D7214 is not greater than one, so it may not be influential; however, to further investigate 

we removed this case from the model and refit the model to see if the coefficients were 

changed dramatically. 

 

It does not appear as though any of the coefficients changed a large amount once this case 

was removed. So to see an image of the new model‟s coefficients we can graph them.  If 

we look at x13, it was not changed dramatically. 

Table 4.4: Model without Case Number 7214  

Coefficients Estimate Std.Error zvalue Pr(>|z|) Coefficients Estimate Std.Error zvalue Pr(>|z|) 

(Intercept) -7.74 1.23 -6.29 0.00 x37 0.63 0.36 1.74 0.08 

x3 0.90 0.23 3.93 0.00 x40 2.35 0.77 3.05 0.00 

x4 1.26 0.33 3.79 0.00 x43 1.76 0.48 3.68 0.00 

x5 -1.32 0.61 -2.15 0.03 factor(x44)1 1.63 1.04 1.58 0.11 

x6 1.05 0.56 1.86 0.06 factor(x44)2 1.52 1.01 1.50 0.13 

x10 1.05 0.45 2.32 0.02 factor(x44)3 4.16 1.03 4.03 0.00 

x13 0.62 0.55 1.13 0.26 factor(x44)4 1.96 1.02 1.91 0.06 

x14 1.42 0.44 3.24 0.00 factor(x44)5 2.43 1.17 2.08 0.04 

x18 -0.79 0.27 -2.99 0.00 x46 0.84 0.23 3.62 0.00 

x22 -1.88 0.76 -2.48 0.01 x47 -0.66 0.23 -2.85 0.00 

x23 -0.38 0.26 -1.44 0.15 x52 0.09 0.03 3.61 0.00 

x24 -1.48 0.38 -3.86 0.00 x54 0.09 0.03 3.36 0.00 

x27 -1.01 0.29 -3.48 0.00 x56 -0.75 0.26 -2.87 0.00 

x34 -1.79 0.74 -2.41 0.02           

Appendix D has the full description of each variable in this model. 
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If we look at the graph of this new model compared to the original and we see many 

variables that have changed, the predictor with the most significant change is factor(x44), 

this is the type of vehicle predictor.  It seems that the removal affected the coefficient 

positively.  

 

Figure 4.6: Plot of Coefficients of BEME without Case # 7216  

 

Figure 4.7: Differences of Coefficients between Case without 7216 and 

With. 
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     This may mean it is influential; however, after checking the Cook‟s distance, it is not 

over one, therefore it does not seem to be statistically influential.  

4.3 Multicollinearity 

     In multiple regression analysis, we want to check the nature and significance of the 

relations between predictor variables and the response variables.  Multicollinearity helps 

us to understand is predictor variables are related among themselves. If two predictor 

variables are highly correlated, they both convey essentially the same information. If both 

of these predictors are included into the model, neither may contribute significantly to the 

model and corresponding coefficients would be hard to estimate.  This could cause some 

serious issues in determining the validity of whether some variables are influential or not. 

     If we add or delete a predictor variable that is highly correlated with another predictor 

variable, it could change the regression coefficients. This could cause a problem when 

interpreting the results or the model. Having multicollinearity could cause the estimated 

standard deviation of the regression coefficients to be larger, which could lead to the 

estimated regression coefficients to not be significant in the model. These are just some 

of the issues if we have pairwise multicollinearity in the model.  

     To help assess the multicollinearity, we could create a correlation matrix or a variance 

inflation factor (VIF). A correlation matrix showcases all the correlations between each 

variable and also correlations between each predictor variable and the response variable. 

A correlation matrix may reveal large pairwise collinearities. A VIF measures how much 

the variance of the estimated regression coefficients are inflated as compared to when the 

predictor variables are not linearly related. When used in the diagnostic methods, if a VIF 
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is larger than 10, then it is typically an indication that multicollinearity may be 

influencing the least squares estimates (Kutner, Nachtsheim, & Neter, 2004). 

     With the BE of CSAB model, the correlation matrix revealed a moderate pairwise 

correlation between x24 and x23 with a correlation of -0.79, the whole matrix can be 

found in Appendix H . When the VIF was calculated for each of the predictors, there was 

no VIF greater than 10, thus not showcasing a multicollinearity issue in this model.  The 

list of VIFs are shown below: 

  

     In conclusion, the diagnostic portion of this thesis shows some leverage, but after 

checking the data for possible data-entry errors, examining the physical case number and 

excluding the point from the model, it was not found to significantly alter the model.  

However, to exclude the outlier would be dangerous to the model; scientifically it gives 

important information about the successes for the logistic regression.  We also discovered 

that there was one pairwise correlation; however after looking at the VIF it was not seen 

as extreme or existing for multicollinearity.  Therefore, this model is ready for the 

interpretation and prediction steps that will occur in Chapter 5.  

 

 

 

 

 

 

Table 4.5: Variance Inflation Factors  

Variable x3 x4 x5 x6 x10 x13 x14 x18 x22 x23 x24 x27 x34 

VIF 1.11 1.02 1.07 1.05 1.02 1.01 1.00 1.40 2.54 6.85 7.84 1.31 1.31 

Variable x37 x40 x43 factor(x44)1 factor(x44)2 factor(x44)3 factor(x44)4 factor(x44)5 x46 x47 x52 x54 x56 

VIF 1.16 1.01 1.03 3.19 4.64 1.26 3.38 1.23 1.06 1.06 1.01 1.01 1.50 

Appendix D has the full description of each variable in this model. 
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Chapter 5 

Results 

5.1 Inference 

 

     Statistical inference is the process of drawing conclusions from data that are subject to 

random variation, for example, observational errors or sampling errors (Upton & Cook, 

2008).  One way inferences occur in statistics is through confidence intervals (CI). 

Confidence intervals usually are used to indicate the reliability of an estimate. 

     In our data, it might interest us to look at the confidence intervals around our 

parameters.  These were calculated using R software and are shown in table 5.2, but 

could have been done using the following formula for each coefficient: 

   1 96 e    , i = 0,1, … , p                                          (5.1) 

Let‟s calculate the confidence interval around the predictor variable: Ran off Road.  This 

is shown below: 

0 6018330  1 96  0 1194533 =   −0 13, 1 29  

This confidence interval means that we are 95% confident that the true coefficient is in 

that interval.  To be able to interpret this result, we would want to learn more about odds 

ratio. 

5.2 Interpretation 

     The interpretation of the results that we gained in both the parameters and the 

confidence intervals are left to this section of Chapter 5. Although we could discuss the 

log odds of some event occurring, it is easier to discuss the odds of an event. In logistic 

regression, the odds of an event, and the log odds of an event occurring are given below: 

o   = o =
 

 − 
                                                   (5.2) 
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Figure 5.1: Relationships 

Probabilities versus Odds Ratio of the 

Coefficients 

 

Log-Odds versus Odds Ratio of the Coefficients 

 

and 

log − o   =   = loge o =                                            (5.3) 

where   is the probability of the event, given by  =
eX  

 +eX  
.  The log-odds is estimated 

using x‟b. The transformation between probability and odds ratio is a monotonic 

transformation, meaning the odds ratio increase as the probability increases.  Probability 

ranges from 0 to 1; whereas the odds ratio ranges from 0 and positive infinity.  The 

transformation from the odds ratio to log odds is the log transformation. This 

transformation is again a monotonic transformation. That is, the greater the odds ratio, the 

greater the log of odds.  In Figure 5.1, we can see these relationships involving our data. 

     Let us look at this relationship in our own data. When we look at the predictor variable 

Run off Road,    = 0.601833. The interpretation of this is that per 1 unit increase in x37 



51 
 

with all other variables held fixed, the log-odds of success increases by 0.61. Now, we 

transform this into the odds ratio, which is found by   ̂ = e p 0 601833 =  1 83.  

Thus the odds of having a fatality are increased by 83%, if someone is run off the road.  

Now, if we follow the formula 5.3, we find that the estimated probability is 0.646 or 

64.6%. Therefore, the chance of having a fatality will increase by 64.6% if someone is 

run off the road. In Table 5.1, the log-odds, odds ratio, and probability are listed for each 

parameter.   

 

     In Section 5.1, we discussed confidence intervals of a logistic regression; however, the 

interpretation is a bit more difficult to discuss without first talking about the odds ratio in 

relation to log-odds. We stated that the odds ratio was calculated by first finding the 

estimate of the parameter and then taking the exponential of it. This is, also, true for the 

odds ratio of a confidence interval centered on that parameter. We would want to take the 

Table 5.1: The Log-Odds and Odds Ratio 

Coefficients Log-Odds Odds Ratio Coefficients Log-Odds Odds Ratio 

x3 0.87 2.38 x37 0.60 1.83 

x4 1.36 3.89 x40 2.29 9.86 

x5 -1.34 0.26 x43 1.74 5.71 

x6 1.03 2.79 factor(x44)1 0.95 2.58 

x10 1.05 2.86 factor(x44)2 0.84 2.32 

x13 0.87 2.39 factor(x44)3 3.48 32.45 

x14 1.43 4.18 factor(x44)4 1.27 3.56 

x18 -0.76 0.47 factor(x44)5 1.73 5.62 

x22 -1.92 0.15 x46 0.81 2.24 

x23 -0.41 0.66 x47 -0.63 0.53 

x24 -1.51 0.22 x52 0.09 1.10 

x27 -1.01 0.37 x54 0.09 1.10 

x34 -1.78 0.17 x56 -0.76 0.47 
*Appendix D has the full description of each variable in this model. 

*CIs for the odds-ratios are located in Table 5.2 
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exponential of the confidence interval that we just found.  We will use the example from 

the beginning of Section 5.2 that dealt with running off the road. First we found the 

parameter, then the CI around this parameter, now we will take the exponential of this.  

This will look like the following: 

e p 0 6018330  1 96  0 1194533 =  0 876, 3 64  

The corresponding 95% confidence limits for the odds ratio are 0.88 and 3.64. In Table 

5.2, all the log-odds and odds ratio confidence intervals listed.  

 

5.3 Prediction of a New Observation 

     Multiple logistic regression is frequently used for making predictions for new 

observations. In the model for this thesis, we wanted to be able to predict whether a 

fatality will occur given the responsible driver‟s distractions, vehicle type, seatbelt usage, 

airbag deployment, time of day, type of weather, type of lighting, roadway structure, 

angle of accident, and reason for accident. Forecasting a binary outcome for given levels 

Table 5.2: The Confidence Intervals of Log-Odds and Odds Ratio 

  
Log-Odds 95% 

CI 

Odds Ratio 

95% CI 
  

Log-Odds 

 95% CI 

Odds Ratio  

95% CI 

Coefficient 2.50% 97.50% 2.50% 97.50% Coefficient 2.50% 97.50% 2.50% 97.50% 

x3 0.41 1.31 1.51 3.70 x37 -0.13 1.29 0.88 3.64 

x4 0.69 1.96 1.99 7.08 x40 0.63 3.70 1.88 40.26 

x5 -2.78 -0.29 0.06 0.75 x43 0.73 2.62 2.08 13.80 

x6 -0.24 2.02 0.79 7.57 factor(x44)1 -0.33 2.80 0.72 16.44 

x10 0.08 1.87 1.09 6.47 factor(x44)2 -0.34 2.66 0.71 14.33 

x13 -0.23 1.75 0.79 5.75 factor(x44)3 2.22 5.33 9.24 206.07 

x14 0.46 2.21 1.58 9.15 factor(x44)4 0.04 3.10 1.04 22.30 

x18 -1.29 -0.26 0.28 0.77 factor(x44)5 -0.11 3.78 0.89 43.97 

x22 -3.77 -0.64 0.02 0.53 x46 0.34 1.25 1.41 3.50 

x23 -0.92 0.10 0.40 1.11 x47 -1.07 -0.17 0.34 0.85 

x24 -2.27 -0.77 0.10 0.46 x52 0.04 0.14 1.04 1.14 

x27 -1.61 -0.47 0.20 0.63 x54 0.04 0.15 1.04 1.16 

x34 -3.61 -0.55 0.03 0.58 x56 -1.26 -0.24 0.28 0.78 

Appendix D has the full description of each variable in this model. 
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Xh of the X variables is simple in the sense that the outcome 1 will be predicted if the 

estimated value of  ̂  is large or 0 if this value is small. The cutoff that has the lowest 

proportion of incorrect predictions is the one to use.  

     Let us begin by stating that there were 18580 accidents in our sample of 2009, of those 

128 had at least one fatality within 30 days after the collision. If we take 128/18580, we 

get approximately .007.  This proportion can be used as the starting point in search for the 

best cutoff in the prediction rule. So, the following is our first rule: 

Predict 1 if  ̂   007; predict 0 if  ̂   007. 

If we use this cutoff, then we noticed that for  ̂ = 0 014 (case 1) the prediction rule 

would predict that the person would have a fatality, but the observation shows no fatality 

occurred.  So, it is predicted incorrectly.  However, for  ̂ = 0 002 the prediction would 

be correct, because it would say there is no fatality, and the observation had none. See 

Appendix E for more of the  ̂  and their observed values of y. Table 5.3a provides a 

summary of the number of correct and incorrect classifications based on the stated 

prediction rule. Of the 18452 collisions that were not fatal, 3200 would be incorrectly 

predicted to have had a fatality, or an error of 17.3%.  Of the 128 collisions with a 

fatality, 29 would be incorrectly predicted to not have a fatality, or 22.7%. Altogether, 

29+3200=3229 of the 18580 predictions would be incorrect, so the prediction error rate 

for this rule is approximately 17.38%.   

     These analyses were made for other cutoff points. Let us say we know nothing about 

our data, normally we would choose a prediction rule like the following:  

Predict 1 if  ̂   5; predict 0 if  ̂   5. 
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We performed this and the information can be found in Table 5.3b. The prediction error 

for this rule is (123+4)/18580 = .007 or 0.7%.  Some worry is that the true positive may 

be too small and therefore the original rule might want to be followed.  

 

     Back in Chapter 3, during the goodness of fit test, the ROC curve was introduced. One 

way that this curve can be used is to find the optimal cutoff. Recall that the line from the 

center of the random performance line diagonally to the top left is balance between the 

conservative and liberal classification model. Therefore, it may make sense to find a 

cutoff close to this line, since it best represents the balance between too many false 

positives and too few false positives. So, it was decided to look at the two rules in Table 

5.3 to see which might be the better rule for prediction and which is closest to the optimal 

cutoff points.  The calculations for the two prediction rules can be found in Table 5.4a 

and b. 

Table 5.3: Summary for Rules  

True 

Classification 

(a) Rule .007 (b) Rule .5 (c) Rule 0.00698 

�̂� = 0 �̂� = 1 Total �̂� = 0 �̂� = 1 Total �̂� = 0 �̂� = 1 Total 

Y = 0 15252 3200 18452 18448 4 18452 15244 3208 18452 

Y = 1 29 99 128 123 5 128 28 100 128 

Total 15281 3299 18580 18571 9 18580 15272 3308 18580 
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When we graphed these two points onto the ROC curve, we noticed that Rule 0.007, 

seems to be closer to the optimal line, which makes it a better rule than Rule 0.5, but not 

the optimal one.  

     In Chapter 3, we discussed the ROC curve.  Figure 3.1, illustrates a line called the 

minimum d, sometimes this line is called the optimal line. The optimal point is located by 

finding the smallest distance from the point (0,1) and some cutoff point. This distance has 

the following formula: 

  = [ 1 −     +  1 −    
 ]                                  (5.5) 

where SN is the sensitivity and SP is the specificity for some cutoff point.  The optimal 

cutoff point is the point that maximizes the correct classification (Kumar & Indrayan, 

2011). We located the optimal point at coordinates (0.174, 0.781), which is at cutoff point 

0.00698.  This rule would have a prediction error of 17.42%.  There are two error rates, 

Table 5.4: Sensitivity, 1-Specificity, Distance, Prediction and Points for ROC 

 (a) Rule .007 (b) Rule 0.4 (c) Rule 0.00698 

Sensitivity 
P  ̂ = 1|  = 1 =

99

128
 

≈ 0 77 

P  ̂ = 1|  = 1 =
5

128
 

≈ 0 04 

P  ̂ = 1|  = 1 =
100

128
 

≈ 0 781 

1-Specificity 

1 − P  ̂ = 0|  = 0 = 

1 −
15327

18452
≈ 0 17 

1 − P  ̂ = 0|  = 0 = 

1 −
18448

18452
≈ 0 00022 

1 − P  ̂ = 0|  = 0 = 

1 −
15244

18452
≈ 0 174 

d .2829 0.96 .2794 

Prediction 17.38% 0.7% 17.42% 

Points (0.17,0.77) (0 00022, 0 04  

(0.174,0.781) 

(Optimal Cutoff) 
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one is called a false negative and the other is false positive. The false negative rate is 0.22 

and the false positive rate is 0.17. The risks for the two groups are pretty balanced, which 

is the desirable outcome when looking at an optimal cutoff point. As we moved further 

from this optimal point in either direction, we noticed that these error rate values became 

significantly unbalanced.  These three rules are placed onto Graph 5.2 for comparison.  

 

5.4 Validation of Prediction Error Rate 

     The reliability of the prediction error rate observed in the model-building set of data is 

examined by applying the prediction rules to a validation set. If the new prediction rate is 

about the same as that for the model-building data set, then the latter gives a reliable 

indication of the predictive ability of the fitted logistic regression model and the chosen 

prediction rule (Kutner, Nachtsheim, & Neter, 2004). 

Figure 5.2 ROC Curve with Cutoff Points  

 

 



57 
 

     Our validation set will be a sample of the data provided for the year 2008 collisions in 

Las Vegas. In Table 5.4, we see the summary output for both rules that were discussed in 

the prediction portion of this thesis. 

 
None of the rules have prediction error rates that are considerably higher than the error 

rates based on the model-building data set. Therefore, they may be reliable.  In our final 

chapter, we will discuss some of the possible changes that could be made at a later time 

to the model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.4: Validation Set Summaries and Prediction Error Rates  

True 

Classification 

(a) Rule .007 (b) Rule .5 (c) Rule 0.00698 

 ̂ = 0  ̂ = 1 Total  ̂ = 0  ̂ = 1 Total  ̂ = 0  ̂ = 1 Total 

Y = 0 14888 4630 19518 19507 11 19518 
14875 4643 19518 

Y = 1 27 164 191 182 9 191 27 164 191 

Total 14915 4794 19709 19689 20 19709 15039 4670 19709 

Prediction Error 

Rates 

 4630 + 27 

19709
≈ 23 6% 

 182 + 11 

19709
≈  98% 

 27 + 4643 

19709
≈ 23 7% 
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Chapter 6 

Discussion, Limitations, and Conclusions 

6.1 Discussion 

     The principal objective of this study was to examine the transportation data to advance 

understanding and appreciation of the causes of fatalities related to a vehicle collision. 

This study looked at several different independent predictors to see which ones would 

best be able to predict the odds of having a fatality in a vehicle in Las Vegas, Nevada.  

      We hypothesized that the following predictors would either increase or decrease the 

odds of having a fatality in a vehicle collision:  Responsible driver age and gender, what 

distracted the responsible driver, the reason for the accident, the weather and type of 

lighting for the day, vehicle information, angle of impact, zip code characteristics, and 

date of the collision. 

     For this hypothesis, we used a logistic regression analysis to examine the best 

predictors of odds of fatalities occurring. The predictor variables can be broken up into 

two categories. These are known as risk factors, which increase the chances of a fatality, 

and protector factors, which decrease or prevent the chances of a fatality. We found that 

the drinking, drugs, ailment, dark, dawn, dusk, ran off road, driverless vehicle, over 

evaluating, driving a car versus a van, driving a truck versus a van, driving a motorcycle 

compared to a van, driving a government vehicle vs. a van, and driving an unusual 

vehicle vs. a van, airbag not deploying, HS diploma education and a four-year degree 

seem to increase the odds of having a fatality in a vehicle collision. The predictors that 

are classified risk factors are: drugs, ailment, darkness, dusk, driverless vehicle, over 

evaluating, driving a car verses a van, driving a government vehicle verses a van and 

driving an unusual vehicle verses a van.  These variables all increase the chances of 
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having a fatality significantly more than the other variables (bi > 1). The rest of the 

variables are referred to as protector variables, since their coefficient is less than one. 

     We found that the wearing of a seatbelt, the more vehicles involved, following too 

closely, making an illegal turn, being rear ended, getting hit at an angle, getting 

sideswiped, roadway environment, and inattention to driving all decrease the log-odds of 

a fatality.  These are all referred to as protector factors since they decrease the chances of 

a fatality occurring. After we found the predictors that would pass the Goodness of Fit 

test and did diagnostics on this model, we used it to create a prediction of a new 

observation and then validated this with data from 2008. It seems that the final model that 

was created is a moderately good model for prediction purposes.  

      Some of the possible reasons why the 2008 data may not have a better fit for the 

prediction rules is because 1) in 2009, there were vehicles released with more updated 

safety measures, 2) in 2009 there could have been new policies put into action that could 

increase the safety of driving, 3) some of the zip codes between 2008 and 2009 were 

changed, and 4) some intersections may have become safer due to lights being placed in, 

medians developed, 4-way stop signs, etc.  These are all possible reasons why the 

predictions are a bit different.  

6.2 Limitations 

     Some of the data was unusable due to not being able to locate proper zip codes to help 

with the analysis of the zip code characteristics, in particular the cross streets. An item 

that would have been helpful is the longitude and latitude of the collision.  This would 

have pinpointed exactly where the collision occurred and there would have been no guess 

work needed. However, this could only be done if police officers had a GPS in their 
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vehicles that would easily input the coordinates into their paperwork.  This possibly 

would require a multi-million dollar budget just across Nevada, let alone the rest of the 

country; however, if the government was really interested in where these fatalities are 

absolutely occurring and implementing strategies to decrease the collisions, the possible 

lives saved could be worth the expense.  

     Part of this same limitation is the fact that there may be an issue with too few 

successes (i.e., fatalities) in the data. One way to check this is by comparing the means of 

the unusable information (since it is missing the zip codes) to the information that has zip 

codes. If there appears to be substantial differences in the means for the two groups, there 

could be an issue.  In Appendix I, we have the results of the two situations; it does not 

appear as though there are any extreme situations that would indicate an issue.  A second 

way to check for the issue of too few successes is by comparing the cutoff point with the 

actual predicted rate of having a fatality in comparison to accidents.  The optimal cutoff 

point was 0.00698 and the rate of successes was 128/18580 = .00689; thus not showing 

an issue since the cutoff point is very close to the true value of number of successes.       

     A second limitation to using data from police reports is the police themselves.  Many 

are very busy throughout the day and do not get to finish their paperwork until their shift 

is over; sometimes not even until the end of the week.  Because of this, some details may 

become fuzzier or the officer may have completely forgotten where the accident occurred 

or other details such as if the person was a female or male that was responsible. The other 

limitation with the data we began with could be the direct result of the health care 

provider, as they may not see the actual injury that a person has as a fatal injury and thus 
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send them home. Days later, the person may die from the complications related to the 

initial injury and it may not be reported as a fatality due to the original vehicle collision.     

     A third limitation of this study is that it is only using a straightforward method of 

logistic regression. It might be possible that the data was spatially dependent, since zip 

code information is provided. This means that if the accident had occurred in one zip 

code, it could have had an effect on a neighboring zip code. Again, having the exact 

coordinates of a vehicle collision would have been extremely helpful in allowing us to be 

able to estimate the distance between several accidents within a certain time to see if 

there was any dependency.  For example, an accident could have occurred in one zip 

code, but caused a pile up in a second or third zip code. All of these accidents would all 

have had an estimated time of accident that was relatively the same.  However, because 

we cannot see the exact geographic location of the collisions, there is no telling whether 

these multiple collisions could be dependent.  

     Fourthly, since there are repeated measures in a zip code, there could be a need for a 

random effects model. Even though during Chapter 2, the majority of the zip code was 

removed from the model, the population and median income were not. However, they did 

have repeated values for zip codes.  To fix this issue they were placed in ordinal 

categories. By the final model, these two were removed due to not being significant. 

They might have been significant, if we used a different model such as a random effects 

model; which is a type of hierarchical linear model.   

6.3 Conclusion 

     In conclusion, although this particular model is moderately useful at this stage, it 

could be just the beginning of a model that could really detect where the odds of a fatality 
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increase and where certain types of educational programming could occur. It may be 

beneficial to eventually look at the two different modeling types spoken about in the 

limitations section. The hope of this thesis is to become part of a larger study that may be 

able to be used to help further policies to create safer roads for all people involved.  
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Appendix A: Description Statistics 

 

Section 1: Continuous Explanatory Variable 

  Coefficient 
Wald 

Test 
P-Value 

OR of 

Coefficient 

Lower 

95% CI 

Upper 

95% CI 

Lower 

OR 

95% CI 

Upper 

OR 95% 

CI 

x51 -0.06 -3.63 0.00 0.94 -0.09 -0.03 0.91 0.97 

x52 0.06 2.32 0.02 1.07 0.01 0.12 1.01 1.12 

x53 0.33 4.27 0.00 1.39 0.18 0.48 1.20 1.62 

x54 0.09 3.97 0.00 1.10 0.05 0.14 1.05 1.15 

x55 0.07 2.11 0.04 1.07 0.00 0.14 1.00 1.15 

 

Section 2: Dichotomous Explanatory Variable 

  Coefficient 
Wald 

Test 
P-Value 

OR of 

Coefficient 

Lower 

95% 

CI 

Upper 

95% CI 

Lower 

OR 

95% CI 

Upper 

OR 

95% 

CI 

x1 0.51 2.56 0.01 1.66 0.12 0.89 1.13 2.44 

x3 1.51 7.69 0.00 4.54 1.13 1.90 3.09 6.68 

x4 1.88 6.52 0.00 6.56 1.32 2.45 3.73 11.55 

x5 -1.37 -2.34 0.02 0.26 -2.51 -0.22 0.08 0.80 

x6 1.06 2.08 0.04 2.90 0.06 2.07 1.06 7.92 

x7 -1.13 -1.12 0.26 0.32 -3.09 0.84 0.05 2.33 

x9 0.11 0.40 0.69 1.11 -0.42 0.63 0.66 1.88 

x10 1.84 4.64 0.00 6.30 1.06 2.62 2.90 13.69 

x11 -0.97 -5.48 0.00 0.38 -1.32 -0.63 0.27 0.54 

x12 0.60 3.27 0.00 1.82 0.24 0.96 1.27 2.61 

x13 1.24 2.69 0.01 3.46 0.34 2.15 1.40 8.56 

x14 1.02 2.41 0.02 2.77 0.19 1.85 1.21 6.33 

x15 -0.73 -1.02 0.31 0.48 -2.13 0.67 0.12 1.95 

x16 0.06 0.10 0.92 1.06 -1.09 1.21 0.34 3.35 

x17 -0.42 -0.71 0.48 0.66 -1.57 0.73 0.21 2.07 

x18 1.06 5.71 0.00 2.88 0.69 1.42 2.00 4.14 

x19 -0.48 -2.67 0.01 0.62 -0.83 -0.13 0.44 0.88 

 

 

 

 

Appendix A: Section 2 continued 
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  Coefficient 
Wald 

Test 

P-

Value 

OR of 

Coefficient 

Lower 

95% 

CI 

Upper 

95% 

CI 

Lower 

OR 95% 

CI 

Upper OR 

95% CI 

x22 -1.46 -2.05 0.04 0.23 -2.86 -0.07 0.06 0.93 

x23 0.37 2.06 0.04 1.45 0.02 0.72 1.02 2.05 

x24 -1.53 -5.86 0.00 0.22 -2.04 -1.02 0.13 0.36 

x25 1.27 2.48 0.01 3.58 0.27 2.28 1.31 9.79 

x26 -0.91 -1.78 0.08 0.40 -1.90 0.09 0.15 1.10 

x27 -0.88 -3.27 0.00 0.42 -1.40 -0.35 0.25 0.70 

x29 2.78 2.63 0.01 16.14 0.71 4.85 2.03 128.30 

x30 1.31 1.29 0.20 3.72 -0.68 3.31 0.51 27.27 

x31 0.25 0.24 0.81 1.28 -1.73 2.22 0.18 9.22 

x33 -0.03 -0.09 0.93 0.97 -0.75 0.68 0.47 1.98 

x34 -2.49 -3.49 0.00 0.08 -3.88 -1.09 0.02 0.34 

x35 -0.04 -0.17 0.86 0.96 -0.47 0.39 0.63 1.48 

x37 2.17 7.48 0.00 8.76 1.60 2.74 4.96 15.48 

x38 -0.05 -0.14 0.89 0.95 -0.77 0.67 0.46 1.95 

x40 3.53 5.45 0.00 34.04 2.26 4.80 9.58 120.93 

x41 1.30 2.20 0.03 3.67 0.14 2.46 1.15 11.68 

x42 0.77 1.51 0.13 2.16 -0.23 1.77 0.79 5.90 

x43 2.51 6.23 0.00 12.35 1.72 3.30 5.60 27.24 

x46 0.94 4.60 0.00 2.55 0.54 1.33 1.71 3.80 

x47 -1.51 -7.62 0.00 0.22 -1.90 -1.12 0.15 0.33 

x48 0.32 1.77 0.08 1.37 -0.03 0.67 0.97 1.95 

x56 -2.06 -11.45 0.00 0.13 -2.41 -1.71 0.09 0.18 
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Section 3: Polychotomous Explanatory Variable 

  Coefficient 
Wald 

Test 

P-

Value 

OR of 

Coefficient 

Lower 

95% CI 

Upper 

95% 

CI 

Lower 

OR 

95% 

CI 

Upper 

OR 

95% CI 

factor(x2)1 -0.34 -1.65 0.10 0.71 -0.73 0.06 0.48 1.06 

factor(x2)2 -0.36 -1.36 0.17 0.70 -0.88 0.16 0.41 1.17 

factor(x2)3 0.50 1.30 0.19 1.65 -0.25 1.26 0.78 3.53 

factor(x20)1 -0.19 -0.71 0.48 0.83 -0.71 0.33 0.49 1.40 

factor(x20)2 -0.14 -0.61 0.54 0.87 -0.60 0.31 0.55 1.37 

factor(x20)3 -0.17 -0.72 0.47 0.84 -0.63 0.29 0.53 1.34 

factor(x21)1 -0.09 -0.41 0.68 0.91 -0.53 0.34 0.59 1.41 

factor(x21)2 -0.52 -2.00 0.05 0.60 -1.02 -0.01 0.36 0.99 

factor(x21)3 -0.17 -0.64 0.52 0.84 -0.69 0.35 0.50 1.42 

factor(x44)1 1.11 1.49 0.14 3.04 -0.35 2.58 0.70 13.18 

factor(x44)2 1.00 1.39 0.16 2.73 -0.41 2.42 0.66 11.20 

factor(x44)3 4.10 5.59 0.00 60.61 2.66 5.54 14.36 255.82 

factor(x44)4 1.43 1.95 0.05 4.19 -0.01 2.87 0.99 17.65 

factor(x44)5 1.7982 1.95 0.05 6.04 -0.004 3.83 0.996 46.02 

factor(x49)1 -0.15 -0.52 0.61 0.86 -0.71 0.41 0.49 1.51 

factor(x49)2 -0.02 -0.07 0.94 0.98 -0.63 0.58 0.53 1.79 

factor(x49) 3 0.24 0.82 0.41 1.27 -0.33 0.81 0.72 2.25 
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Appendix B: Results from Deviance Test 

 

Coefficient 
Residual 

Deviance 

Null 

Deviance 

Chi-

Squared 

Test 

P-

value 

factor(x2) 1523 1529.4 6.4 0.09 

factor(x20) 1528.6 1529.4 0.8 0.85 

factor(x21) 1524.9 1529.4 4.5 0.21 

factor(x44) 1415.6 1529.4 113.8 0 

factor(x49) 1415.6 1529.4 113.8 0 
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Appendix C: Zip Code Map of just Las Vegas  
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Appendix D: Description of Variables  

Description of the Variables Obtained from the 

Transportation Data, 18580 Observations 

Variable Description Codes/Values 

x1 

Gender of 

Responsible 

Driver 

1 = Male, 0 = Female 

x2 

Age of 

Responsible 

Driver 

0 = 0-25, 1 = 26-50,                                       

2 = 51-75, 3 = 76-100 

x3 

Drinking or 

Drunk while 

Driving 

0 = No Alcohol,                                              

1 = Alcohol is involved 

x4 

Under 

Influence of a 

Drug  

0 = No Drugs, 1 = Drugs Involved 

x5 

Inattention 

(due to radio, 

cell phone, 

etc.) 

0 = Not due to inattention,                      

1 = Due to inattention 

x6 
Ailment (due 

to illness) 
0 = Feeling Fine,                                          

1 = Feeling Ill, Faint, or Fatigued 

x7 Wet Weather 
0 = not wet weather,                                 

1 = wet weather 

x9 
Cloudy 

Weather 
0 = Clear sky,                                                 

1 = Cloudy, Smog, or Fog 

x10 Dark 1 = Complete Darkness, 0 = Other 

x11 Daylight 1 = Daylight, 0 = Other 

x12 Non-Daylight 1 = Light Source Not Sun, 0 = Other 

x13 Dawn 1 = Dawn, 0 = Other 

x14 Dusk 1 = Dusk, 0 = Other 

x15 
Road 

Construction 
1 = Road Construction, 0 = Other 

x16 
Road 

Obstruction 
1 = Road Obstructions, 0 = Other 

x17 
Road 

Environment 
1 = Snow, water, Ice on Road,                

0 = Other 

x18 Roadway  
1 = Road Construction & Debris,            

0 = Other 
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Description of the Variables Obtained from the 

Transportation Data, 18580 Observations 

Variable Description Codes/Values 

x19 Time of Day 0 = AM, 1 = PM 

x20 
The Quarter of 

the Year 

0 = 1st Quarter of Year,                             

1 = 2nd Quarter of Year,                                  

2 = 3rd Quarter of Year,                            

3 = 4th Quarter of Year 

x21 
The Quarter of 

the Month 

0 = 1st Quarter of Month,                             

1 = 2nd Quarter of Month,                                  

2 = 3rd Quarter of Month,                            

3 = 4th Quarter of Month 

x22 Sideswipe 1 = Sideswipe, 0 = Other 

x23 Angle 1 = Hit at an Angle, 0 = Other 

x24 Rear 1 = Rear Hit, 0 = Other 

x25 
Head on 

Collision 
1 = Head on Collision, 0 = Other 

x26 
Inappropriate 

Lane Change 
1 = Lane Change, 0 = Other 

x27 Illegal Turn 1 = Improper Turn, 0 = Other 

x29 
Racing or 

Speeding 
1 = Racing/Speeding, 0 = Other 

x30 
Going the 

Wrong Way 
1 = Drove Wrong Way, 0 = Other 

x31 
Passing Other 

Vehicle 
1 = Passing Vehicle, 0 = Other 

x32 Backing up 1 = Backing Up, 0 = Other 

x33 
Disregarded 

Road Signs 
1 = Disregarded Road Signs, 0 = 

Other 

x34 
Followed too 

Closely 
1 = Followed too Close, 0 = Other 

x35 Failed to Yield 1 = Failed to Yield, 0 = Other 

x37 Ran off the Road 1 = Ran off Road, 0 = Other 

x38 Hit and Run 1 = Hit and Run, 0 = Other 

x40 
Driverless 

Vehicle 
1 = Driverless Vehicle, 0 = Other 
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Description of the Variables Obtained from the 

Transportation Data, 18580 Observations 

Variable Description Codes/Values 

x41 
Mechanical 

Failure 
1 = Mechanical Failure, 0 = Other 

x42 
Obstructed 

Visibility 
1 = Obstructed Visibility, 0 = Other 

x43 
Over 

Evaluated 
1 = Over Evaluated, 0 = Other 

x44 Vehicle Type 

0 = Van, 1 = Truck, 2 = Car,                        

3 = Motorcycles,                                           

4 = Government Vehicle,                                  

5 = Unusual Vehicle 

x46 
Airbag 

Deployment 
0 = Airbag Deployed,                                     

1 = Airbag Did Not Deploy 

x47 
Seatbelt 

Usage 
1 = Seatbelt Used Correctly, 0 = Other 

x48 
Median 

Income 

0 = Median Income less than $51,000, 

1 = Median Income Greater Than or 

Equal to $51,000 

x49 
Zip code 

Population 

1 = Less than 19,951, 2 = Between 

19,951 and 38,301, 3 = 38,302 and 

56,652, 4 = more than 56,652 

x51 
Less than a 

HS Diploma 
0-100 Percent 

x52 
Hs Diploma 

Only 
0-100 Percent 

x53 
Two-Year 

Degree 
0-100 Percent 

x54 
Four- Year 

Degree 
0-100 Percent 

x55 
Graduate 

School 
0-100 Percent 

x56 

Total number 

of Vehicles 

involved in 

Collision 

0 = Less than Three Vehicles,                 

1 = More than or Equal to Three 

Vehicles 
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Appendix E: Response Variable, Predictor Variable & Rule Passing 

 

 

      
Pass the Prediction 

Rule 

Case i      ̂   
Rule 

0.007 

Rule 

0.4 

Rule 

0.0064 

1 0 0.014240 N Y N 

2 0 0.002143 Y Y Y 

3 0 0.002143 Y Y Y 

4 0 0.002143 Y Y Y 

5 0 0.002143 Y Y Y 

 ⋮  ⋮  ⋮  ⋮  ⋮  ⋮ 
 18575 0 0.004604 Y Y Y 

 18576 0 0.005765 Y Y Y 

 18577 0 0.026400 N Y N 

 18578 0 0.002259 Y Y Y 

 18579 0 0.005921 Y Y Y 

 18580 0 0.010761 N Y N 
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Appendix F: Hosmer-Lemeshow Goodness of Fit Test for Logistic Regression Function  

 

 

      
Number of Non-Fatal 

Collisions 
  

Number of Fatal 

Collisions 

Group i Interval   Observed Expected   Observed Expected 

1 [9.45e-06,0.000339]   1888 1887.602   0 0.3984134 

2 (0.000339,0.000648]   1833 1832.138   0 0.8615453 

3 (0.000648,0.0011]   1880 1879.357   1 1.6434339 

4 (0.0011,0.00164]   1831 1830.438   2 2.5618473 

5 (0.00164,0.0022]   1865 1863.405   2 3.59502 

6 (0.0022,0.00276]   1873 1872.4   4 4.5998515 

7 (0.00276,0.00412]   1821 1822.732   8 6.2682024 

8 (0.00412,0.00644]   1853 1853.279   10 9.7205015 

9 (0.00644,0.0116]   1840 1835.47   11 15.5299185 

10 (0.0116,0.681]   1768 1775.179   90 82.8212662 
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Appendix G: Models 

 

 

 

Section 1:  PME 

Coefficient Estimate Std.Error zvalue Pr(>|z|) Signif Coefficient Estimate Std.Error zvalue Pr(>|z|) Signif 

(Intercept) -19.05098 529.50999 -0.036 0.971299 
 

x26 -0.83919 0.54391 -1.543 0.122858   

x1 0.15193 0.22235 0.683 0.494408 
 

x27 -1.23975 0.3049 -4.066 4.78E-05 *** 

factor(x2)1 -0.42407 0.22262 -1.905 0.056795 . x29 1.49135 1.17874 1.265 0.205796   

factor(x2)2 -0.20766 0.29198 -0.711 0.476947 
 

x30 0.06822 1.11028 0.061 0.951007   

factor(x2)3 1.10321 0.42353 2.605 0.009194 ** x31 -0.67543 1.13194 -0.597 0.550708   

x3 0.7742 0.25635 3.02 0.002527 ** x33 0.2356 0.46418 0.508 0.611759   

x4 1.41067 0.33942 4.156 3.24E-05 *** x34 -1.59335 0.74878 -2.128 0.033342 * 

x5 -1.47019 0.62777 -2.342 0.019186 * x35 0.48573 0.30739 1.58 0.114062   

x6 1.18543 0.58718 2.019 0.043502 * x37 0.65263 0.37875 1.723 0.08487 . 

x7 -1.25723 1.18584 -1.06 0.289052 
 

x38 -0.09016 0.39525 -0.228 0.819557   

x9 0.31964 0.29658 1.078 0.281143 
 

x40 2.40304 0.80907 2.97 0.002977 ** 

x10 12.68741 529.50694 0.024 0.980884 
 

x41 0.23782 0.68852 0.345 0.729787   

x11 11.51972 529.50675 0.022 0.982643 
 

x42 1.03871 0.55914 1.858 0.063215 . 

x12 11.76037 529.50677 0.022 0.98228 
 

x43 1.96904 0.51603 3.816 0.000136 *** 

x13 12.52404 529.50698 0.024 0.98113 
 

factor(x44)1 0.98035 0.76322 1.284 0.19897   

x14 13.14163 529.5069 0.025 0.9802 
 

factor(x44)2 0.75457 0.7318 1.031 0.302484   

x15 -0.46659 0.83088 -0.562 0.574418 
 

factor(x44)3 3.55771 0.76232 4.667 3.06E-06 *** 

x16 0.12324 0.83042 0.148 0.882019 
 

factor(x44)4 1.2954 0.74473 1.739 0.081961 . 

x17 -0.61975 0.89782 -0.69 0.490013 
 

factor(x44)5 1.67191 0.95546 1.75 0.080144 . 

x18 -0.81845 0.32161 -2.545 0.010932 * x46 0.68654 0.23485 2.923 0.003463 ** 

x19 -0.22678 0.21036 -1.078 0.281009 
 

x47 -0.6076 0.23966 -2.535 0.011238 * 

factor(x20)1 -0.34253 0.2871 -1.193 0.232838 
 

factor(x48)1 -0.26218 0.32046 -0.818 0.413281   

factor(x20)2 -0.334 0.25659 -1.302 0.193035 
 

factor(x49)2 0.0351 0.39911 0.088 0.929922   

factor(x20)3 -0.17523 0.25437 -0.689 0.49091 
 

factor(x49)3 0.08577 0.42249 0.203 0.839118   

factor(x21)1 -0.11578 0.23971 -0.483 0.629092 
 

factor(x49)4 0.26283 0.42019 0.626 0.531633   

factor(x21)2 -0.49638 0.27516 -1.804 0.071236 . x51 0.02443 0.04896 0.499 0.61777   

factor(x21)3 -0.08629 0.28638 -0.301 0.763169 
 

x52 0.08098 0.03081 2.628 0.008589 ** 

x22 -1.43782 0.78311 -1.836 0.06635 . x53 0.14885 0.19027 0.782 0.434035   

x23 -0.27238 0.28616 -0.952 0.341183 
 

x54 0.15009 0.07779 1.929 0.053697 . 

x24 -1.27673 0.42804 -2.983 0.002857 ** x55 -0.06282 0.08296 -0.757 0.448923   

x25 0.68393 0.6118 1.118 0.263612   x56 -0.97199 0.29574 -3.287 0.001014 ** 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1  

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 1529.4  on 18579  degrees of freedom 

Residual deviance: 1118.1  on 18518  degrees of freedom 

AIC: 1242.1 

Number of Fisher Scoring iterations: 15 
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Section 2: ME Model 

Coefficients Estimate Std.Error zvalue Pr(>|z|) 
Signi

f 
Coefficients Estimate Std.Error zvalue Pr(>|z|) 

Sig

nif 

(Intercept) -17.58407 
341.0301

1 
-0.052 0.958878   x27 -0.98312 0.29062 -3.383 0.000718 *** 

x1 0.15055 0.21836 0.689 0.490551 
 

x29 1.43838 1.18354 1.215 0.224247   

x3 0.70908 0.24634 2.878 0.003996 ** x34 -1.71901 0.7438 -2.311 0.020826 * 

x4 1.3583 0.32447 4.186 2.84E-05 *** x37 0.58095 0.36341 1.599 0.109904   

x5 -1.35307 0.61883 -2.187 0.028779 * x40 2.313 0.77943 2.968 0.003002 ** 

x6 0.99641 0.57286 1.739 0.081971 . x41 0.22623 0.66604 0.34 0.734108   

x10 11.31864 
341.0276

3 
0.033 0.973523 

 
x43 1.78885 0.48288 3.705 0.000212 *** 

x11 10.15528 
341.0273

7 
0.03 0.976244 

 
factor(x44)1 0.90838 0.76059 1.194 0.232354   

x12 10.33141 
341.0273

9 
0.03 0.975832 

 
factor(x44)2 0.84225 0.72882 1.156 0.24783   

x13 11.05459 341.0277 0.032 0.974141 
 

factor(x44)3 3.47581 0.75875 4.581 4.63E-06 *** 

x14 11.70135 
341.0276

1 
0.034 0.972628 

 
factor(x44)4 1.27215 0.74219 1.714 0.08652 . 

x18 -0.79102 0.26535 -2.981 0.002873 ** factor(x44)5 1.7172 0.93845 1.83 0.067277 . 

x19 -0.2233 0.20423 -1.093 0.274235 
 

x46 0.76478 0.23331 3.278 0.001046 ** 

factor(x21)1 -0.12156 0.23537 -0.516 0.605526 
 

x47 -0.58126 0.23292 -2.496 0.012577 * 

factor(x21)2 -0.52902 0.27231 -1.943 0.052046 . x51 0.01281 0.03795 0.338 0.735617   

factor(x21)3 -0.12704 0.28227 -0.45 0.652655 
 

x52 0.08895 0.02735 3.253 0.001142 ** 

x22 -1.76761 0.77003 -2.296 0.021703 * x53 0.06683 0.16722 0.4 0.689397   

x23 -0.31645 0.28024 -1.129 0.258801 
 

x54 0.13224 0.07292 1.813 0.069765 . 

x24 -1.37676 0.40356 -3.412 0.000646 *** x55 -0.06289 0.06998 -0.899 0.368824   

x25 0.63624 0.60529 1.051 0.293194   x56 -0.7872 0.2693 -2.923 0.003465 ** 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1  

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 1529.4  on 18579  degrees of freedom 

Residual deviance: 1151.8  on 18540  degrees of freedom 

AIC: 1231.8 

Number of Fisher Scoring iterations: 14 
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Section 3: BEPE Model 
Coefficients Estimate Std.Error zvalue Pr(>|z|) Signif Coefficients Estimate Std.Error zvalue Pr(>|z|) Signif 

(Intercept) -7.05985 1.01236 -6.974 3.09E-12 *** x27 -1.16166 0.29213 -3.977 6.99E-05 *** 

factor(x2)1 -0.42524 0.21949 -1.937 0.052695 . x34 -1.72697 0.742 -2.327 0.019941 * 

factor(x2)2 -0.19078 0.28494 -0.67 0.503155   x37 0.604 0.36232 1.667 0.095502 . 

factor(x2)3 1.14173 0.41504 2.751 0.005943 ** x40 2.22307 0.7597 2.926 0.003431 ** 

x3 0.91288 0.23447 3.893 9.88E-05 *** x42 0.98249 0.5463 1.798 0.072106 . 

x4 1.41549 0.3246 4.361 1.30E-05 *** x43 1.91313 0.47814 4.001 6.30E-05 *** 

x5 -1.37695 0.6153 -2.238 0.025231 * factor(x44)1 1.02798 0.75819 1.356 0.175149   

x6 1.0915 0.56642 1.927 0.053978 . factor(x44)2 0.79294 0.72941 1.087 0.276991   

x10 1.01858 0.46014 2.214 0.026854 * factor(x44)3 3.56536 0.75376 4.73 2.24E-06 *** 

x13 0.96971 0.49596 1.955 0.05056 . factor(x44)4 1.31096 0.74314 1.764 0.07772 . 

x14 1.45818 0.44052 3.31 0.000932 *** factor(x44)5 1.68857 0.93821 1.8 0.071895 . 

x17 -1.03455 0.63867 -1.62 0.105263   x46 0.73317 0.23059 3.18 0.001475 ** 

x18 -0.8207 0.26599 -3.085 0.002033 ** x47 -0.64272 0.23256 -2.764 0.005716 ** 

x22 -1.41483 0.72822 -1.943 0.052034 . x52 0.09386 0.02549 3.682 0.000231 *** 

x24 -1.20403 0.31101 -3.871 0.000108 *** x54 0.09739 0.02781 3.502 0.000462 *** 

x25 0.88209 0.54875 1.607 0.107957   x56 -0.96479 0.23471 -4.111 3.95E-05 *** 

x26 -1.0078 0.53171 -1.895 0.058039 . 
            

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1  

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 1529.4  on 18579  degrees of freedom 

Residual deviance: 1139.1  on 18547  degrees of freedom 

AIC: 1205.1 

Number of Fisher Scoring iterations: 10 
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Section 4: All Significant Model 

Coefficients Estimate Std.Error zvalue Pr(>|z|) Significance 

(Intercept) -5.25856 0.67037 -7.844 4.35E-15 *** 

x3 0.89277 0.22481 3.971 7.15E-05 *** 

x4 1.33962 0.31652 4.232 2.31E-05 *** 

x5 -1.22409 0.60336 -2.029 0.042478 * 

x10 0.92194 0.43406 2.124 0.033669 * 

x14 1.32248 0.43351 3.051 0.002283 ** 

x18 -0.77403 0.24241 -3.193 0.001408 ** 

x22 -2.33038 0.75538 -3.085 0.002035 ** 

x23 -0.59354 0.25491 -2.328 0.019891 * 

x24 -1.81672 0.37594 -4.832 1.35E-06 *** 

x27 -1.21895 0.28333 -4.302 1.69E-05 *** 

x34 -1.61862 0.74076 -2.185 0.028882 * 

x40 1.91411 0.74777 2.56 0.010475 * 

x43 1.59249 0.46759 3.406 0.00066 *** 

x46 0.49767 0.22233 2.238 0.025192 * 

x47 -0.93301 0.22065 -4.229 2.35E-05 *** 

x52 0.09148 0.02334 3.919 8.90E-05 *** 

x54 0.10544 0.02706 3.897 9.75E-05 *** 

x56 -0.95176 0.24583 -3.872 0.000108 *** 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1  

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 1529.4  on 18579  degrees of freedom 

Residual deviance: 1244.3  on 18561  degrees of freedom 

AIC: 1282.3 

Number of Fisher Scoring iterations: 10 

 

 

 

 

 

 

 

 

 

 

 

 

 



77 
 

Appendix H: Correlation Matrix 

 
 

x3 x4 x5 x6 x10 x13 x14 x18 x22 x23 x24 x27 x34 

x3 1 0.1 -0.04 0 0.05 0.07 -0.01 0.22 -0.01 -0.03 -0.01 -0.06 -0.03 

x4 0.1 1 -0.02 0.02 0 0.01 0.01 0.09 0 -0.01 0 -0.04 -0.02 

x5 -0.04 -0.02 1 0.15 0.01 0.01 0.03 -0.01 -0.03 -0.14 0.16 -0.08 0 

x6 0 0.02 0.15 1 -0.01 0.03 0.01 0.12 0 -0.02 -0.01 -0.04 -0.02 

x10 0.05 0 0.01 -0.01 1 -0.01 -0.01 0.06 0 0 -0.03 -0.03 -0.03 

x13 0.07 0.01 0.01 0.03 -0.01 1 -0.01 0.05 -0.01 0.01 -0.02 -0.02 -0.01 

x14 -0.01 0.01 0.03 0.01 -0.01 -0.01 1 0 0 0.01 -0.01 0 -0.02 

x18 0.22 0.09 -0.01 0.12 0.06 0.05 0 1 0.05 0.18 -0.32 -0.1 -0.18 

x22 -0.01 0 -0.03 0 0 -0.01 0 0.05 1 -0.25 -0.22 -0.05 -0.11 

x23 -0.03 -0.01 -0.14 -0.02 0 0.01 0.01 0.18 -0.25 1 -0.79 0.41 -0.37 

x24 -0.01 0 0.16 -0.01 -0.03 -0.02 -0.01 -0.32 -0.22 -0.79 1 -0.38 0.47 

x27 -0.06 -0.04 -0.08 -0.04 -0.03 -0.02 0 -0.1 -0.05 0.41 -0.38 1 -0.21 

x34 -0.03 -0.02 0 -0.02 -0.03 -0.01 -0.02 -0.18 -0.11 -0.37 0.47 -0.21 1 

x37 0.13 0.07 0 0.07 0.04 0.01 0 0.27 -0.01 0.01 -0.09 -0.03 -0.05 

x40 0.01 0.02 0 0.01 0 0.03 0 -0.01 -0.01 0.02 -0.02 -0.02 -0.01 

x43 0.04 0.01 0.03 0.01 0.07 0 0 0.12 -0.01 0 -0.04 0 -0.03 

factor(x44)1 0.03 0.01 -0.01 0.01 -0.02 0.01 0 0 0 -0.02 0.03 0 0.01 

factor(x44)2 0.01 -0.01 0.01 -0.01 0.03 -0.01 -0.01 0.01 -0.02 0.03 -0.02 0.01 -0.01 

factor(x44)3 0.04 0.01 -0.02 -0.01 0 -0.01 -0.01 0.02 0 0 -0.04 -0.04 -0.01 

factor(x44)4 -0.02 0 0 0 0 0 0.02 -0.01 0.01 -0.01 0.01 0 0.01 

factor(x44)5 -0.01 0 0.01 0 0 0.01 0 -0.02 0 0 0 -0.01 0.03 

x46 0.1 0.01 -0.01 0.05 0.03 0.03 -0.01 0.17 -0.07 0.1 -0.11 0.05 -0.07 

x47 -0.17 -0.07 0.03 0 -0.03 -0.03 0 -0.13 -0.02 0 0.04 0.03 0.02 

x52 0.01 0.01 0 -0.01 -0.01 0 0 -0.03 0.01 -0.07 0.07 -0.03 0.05 

x54 0 0.01 0.02 0.02 0.03 -0.01 0.01 0.03 0 -0.01 0 0 -0.01 

x56 -0.14 -0.06 0.03 -0.07 -0.07 -0.03 0.01 -0.3 0.04 -0.03 0.24 0.01 0.13 

 
x37 x40 x43 

factor 

(x44)1 

factor 

(x44)2 

factor 

(x44)3 

factor 

(x44)4 

factor 

(x44)5 
x46 x47 x52 x54 x56 

x3 0.13 0.01 0.04 0.03 0.01 0.04 -0.02 -0.01 0.1 -0.17 0.01 0 -0.14 

x4 0.07 0.02 0.01 0.01 -0.01 0.01 0 0 0.01 -0.07 0.01 0.01 -0.06 

x5 0 0 0.03 -0.01 0.01 -0.02 0 0.01 -0.01 0.03 0 0.02 0.03 

x6 0.07 0.01 0.01 0.01 -0.01 -0.01 0 0 0.05 0 -0.01 0.02 -0.07 

x10 0.04 0 0.07 -0.02 0.03 0 0 0 0.03 -0.03 -0.01 0.03 -0.07 

x13 0.01 0.03 0 0.01 -0.01 -0.01 0 0.01 0.03 -0.03 0 -0.01 -0.03 

x14 0 0 0 0 -0.01 -0.01 0.02 0 -0.01 0 0 0.01 0.01 

x18 0.27 -0.01 0.12 0 0.01 0.02 -0.01 -0.02 0.17 -0.13 -0.03 0.03 -0.3 

x22 -0.01 -0.01 -0.01 0 -0.02 0 0.01 0 -0.07 -0.02 0.01 0 0.04 

x23 0.01 0.02 0 -0.02 0.03 0 -0.01 0 0.1 0 -0.07 -0.01 -0.03 

x24 -0.09 -0.02 -0.04 0.03 -0.02 -0.04 0.01 0 -0.11 0.04 0.07 0 0.24 

x27 -0.03 -0.02 0 0 0.01 -0.04 0 -0.01 0.05 0.03 -0.03 0 0.01 

x34 -0.05 -0.01 -0.03 0.01 -0.01 -0.01 0.01 0.03 -0.07 0.02 0.05 -0.01 0.13 

x37 1 0.01 0.09 0.02 -0.01 0.03 -0.01 -0.01 0.07 -0.1 -0.02 0.01 -0.3 

x40 0.01 1 0 0 -0.01 0 0 0 -0.01 -0.05 0 0 -0.03 

x43 0.09 0 1 0 0.01 0 0 0 0.01 -0.02 -0.01 0.01 -0.08 

factor(x44)1 0.02 0 0 1 -0.5 -0.05 -0.21 -0.05 -0.04 -0.01 0 -0.03 0 

factor(x44)2 -0.01 -0.01 0.01 -0.5 1 -0.14 -0.54 -0.14 0.07 0.02 0.01 0.01 0.01 

factor(x44)3 0.03 0 0 -0.05 -0.14 1 -0.06 -0.02 -0.04 -0.09 0 0.01 -0.07 

factor(x44)4 -0.01 0 0 -0.21 -0.54 -0.06 1 -0.06 -0.03 0 -0.01 0.03 0 

factor(x44)5 -0.01 0 0 -0.05 -0.14 -0.02 -0.06 1 -0.02 -0.01 -0.01 -0.02 -0.01 

x46 0.07 -0.01 0.01 -0.04 0.07 -0.04 -0.03 -0.02 1 -0.03 -0.03 0.06 -0.1 

x47 -0.1 -0.05 -0.02 -0.01 0.02 -0.09 0 -0.01 -0.03 1 -0.01 0.01 0.1 

x52 -0.02 0 -0.01 0 0.01 0 -0.01 -0.01 -0.03 -0.01 1 0.02 0.03 

x54 0.01 0 0.01 -0.03 0.01 0.01 0.03 -0.02 0.06 0.01 0.02 1 -0.02 

x56 -0.3 -0.03 -0.08 0 0.01 -0.07 0 -0.01 -0.1 0.1 0.03 -0.02 1 
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Appendix I: Missing Data Analysis 

 
Variables y x1 x2 x3 x4 x5 x6 x7 x9 x10 x11 

No Missing Data 0.01 0.61 0.97 0.08 0.02 0.09 0.01 0.02 0.11 0.01 0.71 

Missing Data 0.00 0.62 0.95 0.08 0.02 0.10 0.01 0.02 0.12 0.02 0.70 

Difference 0.01 -0.02 0.03 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.01 

Variables x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 

No Missing Data 0.25 0.01 0.02 0.03 0.02 0.04 0.16 0.68 1.40 1.34 0.06 

Missing Data 0.25 0.01 0.02 0.05 0.03 0.04 0.18 0.67 1.40 1.34 0.07 

Difference 0.00 0.00 0.00 -0.02 -0.01 -0.01 -0.02 0.01 0.00 0.00 -0.01 

Variables x23 x24 x25 x26 x27 x29 x30 x31 x32 x33 x34 

No Missing Data 0.47 0.41 0.01 0.07 0.25 0.00 0.00 0.01 0.02 0.06 0.16 

Missing Data 0.37 0.46 0.01 0.07 0.21 0.00 0.00 0.01 0.02 0.05 0.13 

Difference 0.10 -0.05 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.01 0.03 

Variables x35 x37 x38 x40 x41 x42 x43 x44 x46 x47 x48 

No Missing Data 0.21 0.01 0.07 0.00 0.01 0.01 0.01 2.14 0.12 0.92 0.48 

Missing Data 0.14 0.02 0.05 0.00 0.01 0.01 0.01 2.15 0.13 0.93 Missing 

Difference 0.07 -0.01 0.01 0.00 -0.01 0.00 -0.01 0.00 
-

0.01 
-0.01 N/A 

Variables x49 x50 x51 x52 x53 x54 x55 x56       

No Missing Data 2.57 12.88 14.16 20.63 4.21 8.57 4.91 0.91       

Missing Data Missing Missing Missing Missing Missing Missing Missing 0.87       

Difference N/A N/A N/A N/A N/A N/A N/A 0.03       
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