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ABSTRACT 

 

Valuation of Financial Derivatives Subject to 

Liquidity Risk 

 

By 

Yanan Jiang 

 

Dr. Michael Marcozzi and Dr. Chih-Hsiang Ho, Examination Committee Chairs 

 

Professors of Mathematical Sciences 

 

University of Nevada Las Vegas  

 

Valuation of financial derivatives subject to liquidity risk remains an open problem in 

finance. This dissertation focuses on the valuation of European-style call option under 

limited market liquidity through the dynamic management of a portfolio of assets. We 

investigate liquidity from three perspectives: market breadth, depth, and immediacy. We 

present a general framework of valuation based on the optimal realization of a 

performance index relative to the set of all feasible portfolio trajectories. Numerical 

examples are then presented and analyzed that show option price increases as the market 

transitions from liquid to less liquid state. Furthermore, buying and selling activities, 

based on our optimal trading strategy, decrease as the market becomes less liquid because 

the gain from more frequent rebalancing of the portfolio is not able to offset the liquidity 

risk. 



 

 iv 

ACKNOWLEDGEMENT 

 

      I would like to express my sincere gratitude to my supervisors professor Michael D. 

Marcozzi and professor Chih-Hsiang Ho for their expert guidance and continued support 

throughout the course of my graduate study. In particular, I thank professor Marcozzi for 

his invaluable insights and inspiring discussions that made this work possible. His 

patience and support helped me overcome my health crisis and finish this dissertation. 

       I would like to thank my committee members, pofessors Hongtao Yang, and 

Seungmook Choi for their valuable inputs, and review of this manuscript. 

      Finally, I would like to thank my parents. None of this would have been possible 

without their love and support. 

 

 



 

 v 

TABLE OF CONTENTS 

 

ABSTRACT  ..................................................................................................................... iii 

ACKNOWLEDGEMENT ................................................................................................ iv 

TABLE OF CONTENTS  .................................................................................................. v 

LIST OF FIGURES .......................................................................................................... vi 

LIST OF TABLES .......................................................................................................... viii 

CHAPTER 1 INTRODUCTION ....................................................................................... 1 

1.1 Defining Liquidity ....................................................................................................... 1 

1.2 Background Information .............................................................................................. 6 

1.3 Literature Review....................................................................................................... 22 

CHAPTER 2 VALUE PROBLEM .................................................................................. 28 

2.1 Model of the Economy............................................................................................... 29 

2.2 Hamilton-Jacobi Equation ......................................................................................... 35 

2.3 Valuation of the model............................................................................................... 39 

CHAPTER 3 NUMERICAL SIMULATION .................................................................. 43 

CHAPTER 4 CONCLUSION AND FUTURE RESEARCH ......................................... 65 

BIBLIOGRAPHY ............................................................................................................ 72 

VITA ................................................................................................................................ 89 

 



 

 vi 

LIST OF FIGURES 

 

Figure 1. Option price U(s,t) in case 1 (Ɗ = 0.001 and  γ = 0.5) ..................................... 44 

Figure 2. Asset shares s(t) in case 1 (Ɗ = 0.001 and  γ = 0.5) ......................................... 44 

Figure 3. Buying activities   ( ) in case 1 (Ɗ = 0.001 and  γ = 0.5) .............................. 45 

Figure 4. Selling activities    ( ) in case 2 (Ɗ = 0.001 and  γ = 0.5) .............................. 45 

Figure 5. Option price U(s,t) in case 2 ( Ɗ = 0.001 and  γ = 0.005) ................................ 48 

Figure 6.  Asset shares s(t) in case 2 ( Ɗ = 0.001 and  γ = 0.005) ................................... 48 

Figure 7. Buying activities    ( ) in case 2 (Ɗ = 0.001 and  γ = 0.005) ......................... 49 

Figure 8. Selling activities    ( ) in case 2 (Ɗ = 0.001 and  γ = 0.005) .......................... 49 

Figure 9. Option price U(s,t) in case 3 (Ɗ = 0.05 and  γ = 0.5) ....................................... 52 

Figure 10.  Asset shares s(t) in case 3 (Ɗ = 0.05 and  γ = 0.5) ........................................ 52 

Figure 11.  Buying activities    ( ) in case 3 (Ɗ = 0.05 and  γ = 0.5) ............................ 53 

Figure 12. Selling activities    ( ) in case 3 (Ɗ = 0.05 and  γ = 0.5) .............................. 53 

Figure 13.  Option price U(s,t) in case 4 (Ɗ = 0.05 and  γ = 0.005) ................................ 56 

Figure 14.  Asset shares s(t) in case 4 ( Ɗ = 0.05 and  γ = 0.005) ................................... 56 

Figure 15. Buying activities    ( ) in case 4 (Ɗ = 0.05 and  γ = 0.005) ......................... 57 

Figure 16. Selling activities    ( ) in case 4 (Ɗ = 0.05 and  γ = 0.005) .......................... 57 

 

 

 

 



 

 vii 

Figure 17. Option Price U(s,t) in relation to Market Depth  ............................................ 61 

Figure 18. Option Price U(s,t) in relation to Immediacy Constant .................................. 62 

Figure 19. Asset Shares s(t) in relation to Market Depth ................................................ 64 

Figure 20. Asset Shares s(t) in relation to Immediacy Constants .................................... 64 



 

 viii 

LIST OF TABLES 

 

  

Table 1:  Option Prices relative to Option’s Moneyness (D=0.001 and γ = 0.5) ............ 46 

Table 2:  Summary Statistics of Option Prices for Case 1 (D=0.001 and γ = 0.5) .......... 47 

Table 3:  Option Prices relative to Option’s Moneyness (D=0.001 and γ = 0.005) ........ 50 

Table 4:  Summary Statistics of Option Prices for Case 2 (D=0.001 and γ =0.005) ....... 51 

Table 5:  Option Prices relative to Option’s Moneyness (D=0.05 and γ = 0.5) .............. 54 

Table 6:  Summary Statistics of Option Prices for Case 3 (D=0.05 and γ = 0.5) ............ 55 

Table 7:  Option Prices relative to Option’s Moneyness (D=0.05 and γ = 0.005) .......... 58 

Table 8:  Summary Statistics of Option Prices for Case 4 (D=0.05 and γ = 0.005 ......... 59 

 

 

 

 

 

 

 

 

 

     

 



 1 

 

 

CHAPTER 1 

INTRODUCTION 

 

     Valuation of financial derivatives is one of the central problems in modern finance. 

The classical Black-Scholes model provides a framework for pricing derivatives in a 

market that is perfectly liquid, a term we will define in the next section. However, as we 

have seen from the recent financial crisis, real market often lacks liquidity. The purpose 

of this dissertation research is to investigate how option prices are affected by lack of 

liquidity, and how hedging strategy should be adjusted given different liquidity level in 

the market. The rest of this chapter will proceed as follows:  in section 1.1, we will define 

what liquidity is. In section 1.2, we introduce some necessary background information. In 

section 1.3, we review the previous literature on asset liquidity model. 

  

1.1 Defining Liquidity 

 

    Liquidity, due to its multidimensionality, is a delicate concept to define. We all 

know liquidity roughly refers to the ease of transacting and little price perturbation as a 

result of trading. However, to model liquidity mathematically, we need a more accurate 

definition. Many researchers have attempted to give a precise definition of liquidity. 

Krakovsky [104] describes liquidity as the sensitivity of the stock price to the quantity 
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traded, i.e. the ratio  between the change in stock price and the change in the amount of 

stocks traded. Schwartz [134] considers liquidity as the ability of quickly trading an asset 

at its fair price. Amihud and Mendelson [11], [12], [13] denote liquidity as the cost of 

executing a transaction quickly. Hachmeister [78] defines liquidity as the ability to buy or 

sell large amounts of shares quickly without negatively affecting the price. Dowd [63] 

refers to liquidity as the ability of a trader to execute a trade or liquidate a position with 

little or no cost, risk or inconvenience. Dowd [63] further explained: “Liquidity is a 

function of the market, and depends on such factors as the number of traders in the 

market, the frequency and size of the trades, the time it takes to carry out a trade, and the 

cost of transacting.” In this dissertation research, we described asset liquidity as the 

ability to sell an asset efficiently, that is, in a timely manner and without loss of value, 

and measure liquidity from three aspects: market breadth and depth as well as immediacy 

(cf. [78], [96], [107], [111]). 

  Market breadth, also known as bid-ask spread, describes the difference between the 

buying price and selling price of an asset and indicates a cost of transacting [53], [76]. If 

the size of the bid-ask spread is small, then the market is more liquid; and vice versa. 

Bid-ask spread can be measured as the absolute difference between bid and ask prices or 

as a percentage spread [10], [131], [137], i.e. 

 

                                                ,                                                                    (1.1) 

or 
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                                       (         ) ((          )  ),                                 (1.2) 

 

where      is the ask price and      is the bid price.  

       Market depth describes the size of an order needed to move the market a given 

amount (cf. [98], [104], [124]) and indicates a price perturbation. If the market is deep, a 

large order is needed to change the price, then the market is more liquid; and vice versa. 

Market depth can be measured as                           

 

                                                       
  

  
,                                                                       (1.3)     

   

where    is the liquidity ratio (number),    is the transaction size, and    is the stock price. 

Equation 1.3 can be interpreted as the transaction size needed to drive the stock price up 

or down one unit.  

       Variants of the this market depth measure includes 

 

 Amivest liquidity ratio [92] 

 

                                                   
∑  

∑(   )     
  ,                                                          (1.4)        
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                  where 

                           :  liquidity ratio (number), 

                           :  transaction size, 

                           :  stock price,  

                             : percentage change in the transaction price.  

 

 Hui-Heubel liquidity ratio [92] 

 

                                                    
(         )     

  (   ̅)
,                                                    (1.5) 

 

                    where 

                           :  liquidity ratio (number), 

                              :  highest daily stock price over last 5 days,        

                              :  lowest daily stock price over last 5 days, 

                           :  total transaction volume over last 5 days, 

                           :  number of shares outstanding, 

                           ̅:  average closing price of the stock over last 5 days. 
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 Marsh-Rock liquidity ratio [119] 

       

                                                     
∑|   |

 
 ,                                                                  (1.6) 

                      where 

                           :   liquidity ratio (number), 

                             :  percentage change in the transaction price, 

                           : number of transactions within a given period. 

 

  Immediacy refers to the speed with which a trade can be executed at a prescribed cost 

thus impacting the portfolio’s hedge. 

 An example of a very liquid market is the foreign exchange, where there are always 

willing participants. The market is deep, and trades can be executed immediately. An 

example of an illiquid market is the real estate market, where there aren’t always willing 

buyers. A sale can incur a huge of loss value when the market condition is not favorable, 

and buying or selling takes time. 
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1.2 Background Information  

       

     A financial derivative is a contract whose value depends upon the value of some 

underlying asset, such as a stock [139]. The contract specifies the rights and obligations 

between the buyer and the seller to receive or deliver future cash flows based on some 

future event [139].  

  

    One of the most popular types of derivative is option. Option is a contract between two 

parties on trading an asset at a future date [93]. There are two basic types of option: call 

and put. A call option gives the holder the right (not the obligation) to buy an underlying 

asset for a specified strike price by a certain expiration date. A put option gives the holder 

the right (not the obligation) to sell an underlying asset for a specified strike price by a 

certain expiration date. Depending upon the dates on which the option may be exercised, 

most options are either European or American options. A European–style option allows 

the holder to exercise his/her right to buy or sell only on the expiration date [93]. An 

American-style option, however, allows the holder to exercise his/her right to buy or sell 

any time before or on the expiration date [93]. Since the holder of the option receives a 

privilege, he/she has to pay a premium to the option writer. It is the value of this premium 

and how market illiquidity affects this premium that we are investigating.  
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       As an option’s expiration date is reached, the holder of the option may choose to 

exercise his/her rights. In the case of a call option, if the spot price is higher than the 

strike price, the holder of the option will buy a predetermined amount of the underlying 

asset and sell it on the market for an instant profit. The profit is equal to the spot price of 

the underlying asset minus the strike price and the option premium. On the other hand, if 

the spot price is lower than the strike price, the holder of the option will not exercise. 

Besides speculation, options are also used to protect against risk. For example, a public 

utility company who owns a gas-fired power plant would buy call options on natural gas 

to protect against high gas prices and thereby mitigate price spikes on customer’s electric 

bill. 

 

       There are three option statuses [139]: in-the-money (ITM), at-the-money (ATM), and 

out-of-the-money (OTM). A call option is in-the-money if the stock price is higher than 

the strike price, a put option is in-the-money if the strike price is higher than the stock 

price. An option is at-the-money if the stock price is equal to the strike price. A call 

option is out-of-the-money if the stock price is lower than the strike price, a put option is 

out-of-the-money if the strike price is below the stock price. Why are we interested in 

option’s moneyness? Some researchers [32] have shown that market illiquidity have a 

different impact on option’s value depending on the option’s moneyness. Out-of-the-

money (OTM) options are more affected by illiquidity while in-the-money (ITM) options 

are less affected. Why are people interested in buying or selling OTM options? OTM 

options have a much higher percentage gain on the same move of the underlying security 

http://en.wikipedia.org/wiki/Option_(finance)
http://en.wikipedia.org/wiki/Strike_price
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than ATM options or ITM options, and OTM options are very cheap to buy. The 

following is a real world example. Suppose natural gas is trading at $4.00 per MMBTU, 

and a public utility company wants to buy call option on natural gas to protect against 

high prices. The company has three choices: OTM option with strike price of $5.00 per 

MMBTU, ATM option with strike price of $4.00 per MMBTU, or ITM option with strike 

price of $3.00 per MMBTU. The prices for the contracts are $0.001, $0.50, and $1.00 

respectively. If, on the expiration date, natural gas trades at $7.00, then the percentage 

gain for OTM option would be ($7.00-$5.00)/$0.001=200,000%, the percentage gain for 

ATM option would be ($7.00-$4.00)/$0.50=600%, and the percentage gain for ITM 

option would be ($7.00-$3.00)/$1.00=400%. 

 

       In the United States, option trading began in 1973, in the Chicago Board Options 

Exchange. Then almost no one could have predicted that in subsequent decades, it 

brought a huge impact on the practice and theory of finance. Today, the options market 

has become an important component of the financial markets. Option is an example of 

successful innovation in finance, and its development injects vitality into the field of 

finance. 

 

       Other popular types of derivatives are future and forward contracts. A futures 

contract is an agreement to exchange a specified asset or commodity at a certain date for 

a certain delivery price [93]. The buyer hopes that the asset price is going to increase, 

while the seller hopes that it will decrease. Futures contracts are highly standardized and 
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specify delivery date and contract size [139]. The contract also stipulates the minimum 

price fluctuation or tick size and the daily price limit [93]. Futures contracts are traded on 

a futures exchange, and require both parties to put up an initial margin, which is designed 

to protect both parties against default [139]. Futures contracts do not contain the element 

of choice; the parties concerned are obligated to honor the contract [139]. The value a 

futures contract is evaluated every day, and the change in value is paid to one party by the 

other, so that the net profit or loss is paid gradually over the lifetime of the contract [139]. 

 

      A forward contract is an agreement between two parties to buy or sell an asset on a 

specified date in the future for a specified price, known as the forward price [93]. 

Forward contracts are traded in an over-the-counter market among major financial 

institutions and cost nothing to enter. Unlike futures contracts, forward contracts are not 

standardized and can be tailored to individual needs [93]. Forward contracts do not 

contain the element of choice, the parties concerned are obligated to ultimately buy or 

sell the asset [139]. In a forward contract, profit or loss is only realized at the expiry date. 

 

       How do we value a derivative, in particular, an option?  The history of option pricing 

can be traced back to French mathematician Bachelier [14]. In his doctoral thesis, he used 

Brownian motion to describe the stock price process and gave pricing formula for the 

European call option. Unfortunately, his model was based on unrealistic assumptions, 

namely: First, the assumption that the underlying stock price follows a normal 

distribution; second, the value of call option may be greater than the value of the 

http://en.wikipedia.org/wiki/Futures_exchange
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underlying stock; third, the assumption that the stock's expected return is zero. For this 

reason, Bachelier's thesis did not receive people's attention until 1965 when economist 

Paul Samuelson discovered the paper. In 1973, Black and Scholes [20] proposed the 

famous Black-Scholes formula. Almost at the same time, Merton [20] expanded the 

mathematical understanding of Black-Scholes model and the pricing formula. In 1976, 

Cox and Ross [41] proposed the Risk-Neutral valuation method. In 1979, Cox, Ross and 

Rubinstein [42] gave a simplified proof of the Black-Scholes formula using the 

fundamental theorem of asset pricing and proposed the binomial option pricing model. 

 

        Now we introduce the Black-Scholes model and its derivation. First let’s review the 

basic stock price dynamics. Suppose   denotes the price of a stock, then the return of the 

stock is given by  
  

 
, where    is a small increment in price   . Suppose there is no risk 

and expected rate of return of   is     then the return of    over a time of    is given as: 

 

                                                      
  

 
    .                                                                      (1.7) 

 

As the time interval becomes smaller, i.e.      , we get the ordinary differential 

equation: 

 

                                             
  

 
    ,                                                                      (1.8) 
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whose solution is given by [135]: 

 

                                           ( )   ( )   .                                                              (1.9) 

 

Since in reality uncertainties always exist, a more practical model of the stock price 

process is obtained by adding a random term to (1.9) 

 

                               
  

 
                  ( ),                                      (1.10)

   

where   ( )   √   is a standard Brownian motion normally distributed with mean zero 

and variance   , and   is a random sampling from a standardized normal variable with 

mean zero and variance one. 

 

Equation (1.10) can be expressed as: 

  

                              ( )      ( )       ( )   ( ).                                           (1.11) 

 

  

  

Equation (1.11) is referred to as the geometric Brownian motion. 

 

       Now Let’s consider two financial assets in which the price per share of the bank 

account is denoted by  ( ) and that of a stock by  ( ). A portfolio is a pair ( ( )  ( )) 

consisting of the number of shares of   ( ) and   ( )  held at time  , respectively. 
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       For the bank account, we suppose 

 

                                                  ( )    ( )  ,                                                        (1.12)      

                                                          

where   represents the risk-free rate of return.  

 

For underlying stock, we suppose 

 

                                              ( )      ( )       ( )   ( ),                                (1.13) 

 

for drift μ ∈ R, volatility   > 0, and a standard Brownian motion   ( ). 

 

      To model the financial market we assume the following [93]: 

 

1. The stock price  ( ) follows geometric Brownian motion, the drift μ is a known 

constant and the volatility   is a known positive constant. 

2. The risk-free rate of return   is a known constant. 

3. There are no transaction costs or taxes. 

4. There are no dividends on the underlying asset. 

5. Trading can be done continuously. 

6. The market is arbitrage free and liquid. 

7. All securities are perfectly divisible (i.e., we can buy or sell a fraction of a share). 
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8. Short selling is permitted. 

 

We assume that the option value is a function of the stock price  ( ) and time  , i.e. 

   ( ( )  ). The instantaneous change in the value of the option, by Ito's Lemma, is  

 

 

                         (     ( )   
 

 
   ( )    )     ( )    ( ),                 (1.14) 

 

where    is the derivative of the option value with respect to time,    is the derivative of 

the option value with respect to stock price, and      is the second derivative of the option 

value with respect to stock price. The instantaneous change in option value per unit time, 

  , is also referred to as the option’s delta; and the change of sensitivity of option value 

relative to change in price stock,    , is also  referred to as the option’s gamma. 

 

We also assume the portfolio Π consisting of  ( ) of shares of a bond  ( ) and   ( ) of 

shares of the stock  ( ), i.e. 

                                            

                                             ( ) ( )   ( ) ( ).                                                     (1.15) 

  

The instantaneous change in the value of the portfolio due to the changes in security 

prices, by (1.12) and (1.13), is 
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                                ( )(  ( )  )   ( )(    ( )       ( )   ( ))       

                  

                                   ( ( )  ( )   ( )   ( ))     ( )   ( )   ( ).               (1.16) 

  

In order to replicate the option with our portfolio, we set      , that is equation (1.14) 

must coincide with equation (1.15).  

 

                          (     ( )   
 

 
   ( )    )      ( )    ( )   

 

                                           ( ( )  ( )   ( )   ( ))     ( )   ( )   ( ) ,           (1.17) 

 

or                   

                                               

                                    

{
 
 

 
   ( )    ( )   ( )                                                                       (    )

     ( )   
 

 
   ( )      ( )  ( )   ( )   ( )        (    )

                  

 

From (1.18), we obtain 

 

                                                       ( )    .                                                               (1.20) 

 

Since    ( ) ( )   ( ) ( ),  then 
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                                                    ( )  
     ( )

 ( )
 .                                                        (1.21) 

 

Substituting (1.20) and (1.21) into (1.19), we obtain  

 

                                   ( )   
 

 
   ( )     

     ( )

 ( )
  ( )       ( ), 

 

or 

 

                              ( )   
 

 
   ( )            ( )       ( ).                (1.22) 

 

Simplifying (1.22), we obtain the famous Black-Scholes equation 

 

                                                  
 

 
                                                         (1.23)      

 

Note we have derived the Black-Scholes equation by replicating the option with stocks 

and bonds. This derivation is based on Luenberg [115]. However, it is also possible to 

derive the Black-Scholes equation by a more standard approach based on Hull (cf. [93]). 

Once again we start by assuming the stock price process follows geometric Brownian 

motion 

 



 

 16 

                                               ( )      ( )       ( )   ( ),                               (1.24) 

 

for drift μ ∈ R, volatility   > 0, and a standard Brownian motion   ( ). Applying Ito's 

Lemma to   ( ( )  ), we obtain the instantaneous change in the value of the option 

             

                         (     ( )   
 

 
   ( )    )     ( )    ( ),                 (1.25) 

 

Suppose the portfolio consists of long one unit of option and short   units of stocks, 

where      , then the portfolio value is  

 

                                         ( ( )  )      ( ( )  )     .                            (1.26) 

 

 The instantaneous change in the value of the portfolio is 

 

                                         ( ( )  )        ( ( )  )                          (1.27) 

 

Substituting (1.24) and (1.25) into (1.27), we obtain  

 

            (     ( )   
 

 
   ( )    )      ( )    ( ) 

 

                                                                 (   ( )       ( )   ( ) 
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                  (   
 

 
   ( )    )                                                                             (1.28) 

 

Thus uncertainty has been eliminated, and the portfolio is effectively riskless. By the 

arbitrage-free argument, the rate of return on the portfolio must be equal to the rate of 

return on the riskless bond, i.e. 

 

                                                                                                                         (1.29)                             

 

Substituting (1.28) into (1.29) and simplifying, we obtain 

 

                                          
  

  
 
 

 
    

   

   
   

  

  
     .                                   (1.30) 

 

In the case of European-style call option, the boundary conditions are [139]: 

(i)       ( ( )  )      (     ), where    is the expiration date,   ( ) is the   

     stock price at time   , and    is the strike price; 

(ii)      When  ( )   , for    ,  ( ) will stay zero for all subsequent times, thus    

       (   )   ; 

(iii)    As  ( ) increases without bound, the strike price becomes less important. Thus    

    as    ,  ( ( )  )  ( ). 
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The Black-Scholes equation can be solved analytically by transforming it to a heat 

equation using a variable transformation [139]. Let      ,     
   
 

 
  

,       (   ), 

we can rewrite the Black-Scholes equation as follows: 

 

                                               
  

  
 
 

 
    

   

   
   

  

  
      

 

                                ⇒ 
 

 
   

  

  
 
 

 
    (

  

  
  

  
 

 

  
   

   
)    
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Let  (   )         (   ), we obtain 
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      (1.32) 

 

Let    
 

 
(   ),      (   )     

 

 
(   ) , then equation (1.32) is 

transformed into the heat equation 

 

                                                      
  

  
 
   

   
.                                                                 (1.33)  

 

The exact solution for a European call option is given by [139]: 

 

                                    ( ( )  )   ( ) (  )    
    (  ),                            (1.34) 

 

 

where     
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  (

 ( )

 
) (  

  

 
)(   )

 √   
, 

 

                             

and  

 

   call option premium; 

   current stock price;  

   strike price; 

     time to expiry; 

   standard deviation of the stock price; 

  ( )   natural logarithm; 

 ( )   cumulative standard normal probability distribution; 

      standard normal random variables; 

   risk-free rate of interest. 

    

         The following is a simple example of how the Black-Scholes hedging strategy 

works. Suppose the stock is trading at $100 per share, the price of the call option on stock 

is $10, and the option’s delta is 0.3.  An option writer sells a call option, and the buyer of 

the option buy 100 shares at maturity. To construct a hedged portfolio, the seller should 

buy 0.3 x 100 = 30 shares of stock. If the stock price goes up $1, the option price will go 

up by $0.3, and then the seller has a $30 ($1 x 30 shares) gain in its stock position, and a 

$30 ($0.3 x 100 shares) loss in its option position. The net gain/loss is zero. On the other 
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hand, if the stock price goes down by $1, the option price will go down by $0.3. The net 

gain/loss is also zero. 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 22 

1.3 Literature Review 

 

          One of the first market liquidity research was conducted by Demsetz.  In 1968, 

Demsetz published a landmark paper "The cost of transacting "[53]. This work marked 

the birth of stock market microstructure theory. Although the paper didn’t explicitly 

mention the term “liquidity”, it was widely considered as the pioneering work in the field. 

The paper focuses on the bid-asked spread, and believes that the cause of the bid-spread 

is the imbalance between supply and demand. One of the key viewpoints is that 

transaction cost is the price concession needed for an immediate conversion of an asset 

into money. For example, if a buyer wants an immediate purchase, he/she can apply for a 

higher price to attract those who are not eager to sell. On the other hand, if a seller cannot 

find a suitable counterparty or sufficient demand, he/she can offer a lower price for 

immediate transaction. Other earlier works that focused on the bid-asked spread and 

market microstructure includes: Copeland and Galai [39], Glosten and Harris [75], 

Amihub and Mendelson [8], [9], [10], [11], [12], [13], Hasbrouck et al. [79], [80], [81], 

[82], [83], Grossman and Miller [77], Acharya and Pedersen [1], Brennan and 

Subrahmanyam [25], Domowitz and Wang [62], Coughenour and Saad [40], Fernando 

[69],  Lin, Sanger and Booth [110], Holthausen, Leftwich and Mayers [88], [89], Hong 

and Rady [90], Lippman and McCall [111], and Chordia et al. [34], [35], [36], [37].  
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       While most of the above mentioned works are empirical in nature, there is a large 

body of literature that study liquidity from the perspective of arbitrage pricing theory. 

These literature can be broadly classified into three categories: modeling of price impact 

(market depth), relying on mappings of the Black-Scholes economy; augmenting the 

Black-Scholes dynamics via the introduction of an explicit exogenous event (Poisson 

process); perturbing the volatility in the Black-Scholes model from the perspective of 

large investors. 

 

        Cetin, Jarrow and Protter (cf. [32]) considered illiquidity as an extra “friction” in the 

price dynamics and modeled the price dynamics based on affine mappings of the Black-

Scholes economy. The stock price process follows geometric Brownian motion, 

          

                                           ( )      ( )       ( )   ( )                                     (1.28)  

 

for drift μ ∈ R, volatility σ > 0, and a standard Brownian motion   ( ). The transaction 

price to be paid at time   for trading   shares is 

 

                                                  ̅( )               ∈                                               (1.29) 

                   

where   is a liquidity parameter. When the market is perfectly liquid,   is equal to zero, 

the price dynamics reduces to the Black-Scholes model. As the market becomes less 

liquid,   becomes larger. They hypothesized the existence of a stochastic supply curve 
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which gives a relationship between the stock prices and quantity of stocks traded. For a 

perfectly liquid market, the slope of the supply curve would be zero because the stock 

price is not affected by the quantity traded. However, when the market is not so liquid, 

the slope of the supply curve becomes steeper as the amount of traded assets becomes 

larger. This indicates a price impact due to transaction size. Their study also shows that 

liquidity is a significant factor of option price. Moreover, they found that illiquidity has 

less impact on in-the-money (ITM) options than out-of-the-money (OTM) options. They 

found that in-the-money (ITM) options are subject to the lowest percentage impact of 

illiquidity. On the contrary, the out-of-the-money (OTM) options are significantly 

affected by illiquidity despite OTM options are cheaper than ITM options. 

 

            Similar models include: Bakstein and Howison [15], Rogers and Singh [130], Cetin 

and Rogers [30], Cetin, Soner and Touzi [31], Blais [21], Blais and Protter [22], Almgren 

et al. [5], [6], [7], Hea and Mamaysky [84], Jarrow [97], Isaenko [95], Liu and Yong 

[113], and Ting, Warachkaa and Zhao [138]. The advantage of this approach is that it is 

easy to implement, i.e. the liquidity parameter can be estimated through regression. 

However, this model works where the market is essentially “steady-state”, i.e. for a 

liquidity parameter that is fixed or has limited ranges. Thus determining hedging strategy 

under varied liquidity parameters remains an issue. 

 

     Another paradigm originates from the observation that illiquid market often has price 

spikes of traded assets. Lee and Protter [108] use Jump-diffusion model to model price 
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spikes in illiquid markets via the introduction of an explicit exogenous event. The stock 

price process follows the dynamics: 

                                          

 

                               ( )    ( )     ( )  ( )                                                     (1.30)  

 

  

for drift μ ∈ R, volatility σ > 0, a standard Brownian motion   ( ), and the increment of 

a Poisson process      with jump size  . Since jumps in prices give rise to incomplete 

market, perfect hedging is not always possible (cf. [129]). They implemented local risk 

minimization strategies based on martingale decomposition. Other works that follow this 

approach include: Bellamy and Jeanblanc [18], Eberlein and Jacod [65], Cont and 

Tankov [38], El Karoui and Quenez [67], Ladde [106], Kou [100], Kou and Wang [101], 

[102], and Kou, Petrella and Wang [103]. 

 

      The advantage of this approach is that it captures some important empirical 

phenomena and offers tractable solutions. However, since liquidity is implicitly 

embedded in the model, it fails to provide an explicit link between market liquidity and 

corresponding hedging strategy.  

 

        The third paradigm originates from the observation that many markets are 

essentially perfectly liquid from the perspective of small investors but not perfectly liquid 
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from the perspective of large investors. For small traders, the price does not change much 

in response to their trades. For large investors, their trading volume represents a large 

proportion of the trading activities in the market, thus it will have a significant impact on 

the price. The presence of large investors is an importance source of market illiquidity. 

 

       Frey et al. [71], [72], [73] study market illiquidity due to the influence of large 

traders; the stock price process follows the dynamics: 

 

                  

                                     ( )    ( )   
 

       
 ( )  ( ),                                     (1.31) 

 

where   is a liquidity parameter (market depth),   is a parameter describing the 

asymmetry of liquidity, i.e. the asymmetric relationship between moneyness and 

liquidity, and      represents the value of gamma, i.e. the second  derivative of the option 

value with respect to stock price. The model argues that, unlike the volatility in the 

Black-Scholes model, the volatility is not a constant. Instead, the volatility term is 

dominated by three main parameters   ,  , and    . Depending upon the values of these 

parameters, a large trader can adopt different trading strategies.  

       

       Other related works includes: Esser and Moench [68], Bank and Baum [16], Cvitanic 

and Ma [46], Cuoco and Cvitanic [43], Schonbucher and Wilmott [133], Kabanov and 

Safarian [91], Longstaff [114], Boyle and Vorst [23], Palmer [126], Moulton [121], 
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Bordag [23], Gennotte and Leland [74], Broadie, Cvitanic and Soner [26], Platen and 

Schweizer [128], Sircar and Papanicolaou [136]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 28 

 

CHAPTER 2 

VALUE PROBLEM 

     

     We consider in this chapter the determination of the fair price of European style call 

option in a market with limited liquidity. We assume that in this market one asset is 

perfectly liquid, namely bond (bank account); the other asset is subjects to limited 

liquidity, namely stock. In section 2.1, we develop the model of the economy 

incorporating market breadth as a transaction costs related to the bid-ask spread, market 

depth as a price perturbation dependent upon the trading strategy, and immediacy via 

transaction rates. Since the market is made incomplete by the limited market breadth and 

depth, the Black-Scholes delta hedging argument no longer applies. Instead, we follow 

the value-maximizing strategy of a dynamically evolving portfolio of assets proposed by 

Hodges and Neuberger [86] and Davis et al. [49], [50], [51], [52]. Other authors who 

have employed value-maximizing strategy includes Munk [122], [123], Zakamouline 

[140], Damgaard [47], [48], Monoyios [120], Forsyth [70], Barles and Soner [17], 

Bertsimas and Lo [19], Henderson and Hobson [88], and Hugonnier, Kramkov, and 

Schachermayer [91]. As such, our model is a generalization of the more familiar Black-

Scholes framework. In section 2.2, we characterize the indexed value function as the 

unique solution to the ultraparabolic Hamilton-Jacobi equation. Valuation of the model is 

described in section 2.3.  
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2.1 Model of the economy    

 

      We consider two financial assets in which the price per share of the bank account is 

denoted by  ( ) and that of a stock by  ( ). A portfolio is a pair ( ( )  ( )) consisting 

of the number of shares of  ( ) and  ( ) held at time  , respectively. The value of the 

portfolio or wealth  ( ) is 

 

                                              ( )   ( ) ( )   ( ) ( )                                          (2.1) 

 

We make the further distinction between shares which are bought and sold, such that 

 

                                         ( )    ( )    ( ) and  ( )    ( )    ( ), 

 

where (  ( )   ( )) denote shares of bonds bought (“+”) and sold (“-”), respectively; 

and (  ( )   ( )) denote shares of stocks bought (“+”) and sold (“-”), respectively. 

      We rebalance the portfolio through the trading strategy ( ( )  ( )), 

 

                                    ( )  (   ( )    ( ))  and   (̅ )  (   ( )    ( )), 

 

denoting the respective rates at which shares in the portfolio are bought and sold. In 

particular, we relate the strategy to the portfolio via the dynamics 
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   ( )

  
    ( )         

   ( )

  
    ( ),                                 (2.2a) 

 

                                              
   ( )

  
    ( )          

   ( )

  
    ( ),                                 (2.2b) 

 

such that      ( )    and      ( )   , for some immediacy    . We note that 

a larger   would indicate greater asset liquidity. 

 

     In a realistic market setting where there is limited liquidity, there are always bid-ask 

spreads, and thus transaction cost. Let   denote the bid-ask spread, given by 

     

                                      ( )    ( )      ( )   ( )     ( )   ( ),              (2.3) 

 

where  ,   , and    are positive constants, and    ( ) and    ( ) are Wiener processes. 

We take the market breadth to be    , that is, an affine mapping of the bid-ask spread 

scaled by the breadth constant    . In particular, we note that the smaller the value of 

B, the greater the liquidity of the asset.  Since we withdraw an amount of wealth for 

buying stocks from the bank account and add an amount of wealth gained from selling 

stocks to the bank account, the cost of a refinancing the portfolio is 

 

                                      ( ) ( )   ( ) ( )      ( )  ( ),                                     (2.4) 
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where        

 

                                  ( )     ( )     ( ) and  ( )     ( )     ( ). 

 

    In terms of the limited market depth, we have the following behavior. We suppose that 

perturbations to the price of the stock in a market lacking depth is given incrementally by      

 

                                                              
  ( )

 ( )
     ( ),    

or 

                                                          
  ( )

 ( )
     ( ), 

 

where    . Again, the smaller the depth constant  , the greater the asset liquidity. The 

overall stock price process can be described as having two components: stock price 

process under perfectly liquid condition, which follows the classical Black Scholes 

model; and price perturbation component due to limited market depth, i.e. 

 

                                                                        , 

 

or infinitesimally as  

     

                                                                       .                                       (2.5) 
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As such, the dynamics of the asset in a market with limited depth is given as follows 

 

 

                            ( )    ( )      ( )   ( )     ( )   ( )    ( )  ( ) 

 

or from (2.2b), 

 

                         ( )  [    ( )] ( )      ( )   ( )     ( )   ( ),          (2.6) 

 

where the drift  ∈   , and volatilities    and    are positive,    ( ) is a Wiener process, 

and    ( ) provides a correlation between the dynamics of the stock price and the bid-

ask spread. We will show in chapter 4 that the different sizes of price perturbation due to 

limited market depth can result in significant changes in the option values as well as 

trading strategies.  

 

        For the bank account, we suppose 

 

                                                      ( )    ( )  ,                                                          (2.7) 

 

where     represents the risk-free rate of return. 
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        Finally, for the portfolio velocity, i.e. the change in wealth during a small time 

 

interval   , we differentiate (2.1), 

 

 

               ( )   ( ) ( )    ( ) ( )   ( ) ( )  {[    ( )] ( )}              (2.8)  

 

 

                                                                              ( ) ( )   ( )     ( ) ( )   ( ).                                                                                

 

 

Since the first term and the third term of (2.8) add up to      ( )  ( )  by (2.4), we have 

 

                                

                  ( )     ( ) ( )     ( )  ( )   {[    ( )] ( )}                        (2.9) 

                                                                                             

                                                                   ( ) ( )   ( )     ( ) ( )   ( ).                                                                                

 

                         

By adding and subtracting the term   ( ) ( ), and some simple algebra, we obtain  

 

 

                             ( )  {  ( )  [(   ) ( )    ( )( )] ( )}                    (2.10) 

 

                                                                                ( ) ( )   ( )     ( ) ( )   ( ), 

 

where the asset liquidity is given by 
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                                                          ( )           .                                        (2.11) 

 

We note that the asset liquidity manifests as a component of the drift of the portfolio’s  

 

velocity. Moreover, in a perfectly liquid market, i.e.   ( )   , our model reduces to the  

 

Black-Scholes model.  
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2.2 Hamilton-Jacobi equation 

      

     We may assume that the trading of stocks and bonds is done continuously over a finite 

time interval [   ̃], such that  ̃   , where   denotes the contract life of the option. 

Summarizing section 2.1, the dynamics of the economy are specified by the ultradiffusion 

process  

 

 

                                             ( )     (   ̅)                                                           (2.12a)  

 

                                             ( )     (   ̅)                                                           (2.12b)  

 

                                      ( )    ( )      ( )   ( )     ( )   ( )               (2.12c)  

    

                      ( )  [    ( )] ( )      ( )   ( )     ( )   ( )          (2.12d) 

 

                            ( )  {  ( )  [(   ) ( )    ( )( )] ( )}                    (2.12e)  

 

                                                                    ( ) ( )   ( )     ( ) ( )   ( )              

 

for  ∈ (   ̃), such that   ( )    ,   ( )    ,  ( )   ,  ( )   ,  ( )   , and 

 ̅  (      ). Here, the initial conditions    are temporal, while  ,   and   are variables 
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of state. Note that we have a choice as to the initial composition of the portfolio, and as 

such,    and    are indices of the system, whereas the trader's efforts to rebalance the 

portfolio in the form of buying and selling shares    constitutes a system control. The 

system control is the optimal trading strategy that affects the wealth process to achieve 

the desired objective, i.e. the maximization of expected excess wealth. The system 

control depends on not only the time  , but also the wealth process  ( ), the stock price 

process   ( ), and the dynamics of the bid-ask spread   ( ).         

 

      Let  ̅  (     ) and  ̅  (       ), then along with the process (2.10), we consider 

the expected value of the optimization criteria 

 

                                     ̅(    ̅)    ̅  ̅[ ( )   ( ( ))],                                        (2.13a) 

 

and the indexed value function 

 

                                           ( ̅  ̅)     
  ̅∈[   ] 

  ̅(    ̅),                                                   (2.13b)  

 

such that  ( ) is the pay-off of the option. The  ̅-indexed value function attempts to 

maximize the expected excess wealth, indexed upon the choice of the initial portfolio  ̅. 

  

        We next seek to determine the indexed value function  ( ̅  ̅). To this end, let     
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  (   )  and   (   ̃)  (   ) . The indexed value function  ( ̅  ̅), by the 

principle of optimal stochastic control, is the unique solution of the ultraparabolic 

Hamilton-Jacobi equation 

 

                                          
  

  
      ̅ ( )̅     a.e.  in      ,                      (2.14a) 

 

for terminal condition         

 

                                                |{   }      ( )  in  ̅    ,                                (2.14b) 

and boundary data 

 

                                               |       ( )  in     ,                                    (2.14c)  

 

 

Such that the optimal feedback control law  ̅ (   ̅)  (  
 (   ̅)   

 (   ̅) satisfies 

 

              
  

  
   ( )( ) 

  

  
   

 (   ̅)
  

   
   

 (   ̅)
  

   
                                   (2.15) 

 

                       
   (   ̅) [   ]

{   
  

  
   ( )( ) 

  

  
   (   ̅)

  

   
   (   ̅)
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where 
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2.3 Valuation of the model  

 

     As an option writer, we form a portfolio in order to hedge the option and liquidate the 

portfolio at time   to meet the pay-off of the option. The pay-off is  ( ( ))  

    ( ( )     ) for a European call option, where  ( ( )) denotes the pay-off,  ( ) 

denotes the stock price at expiry, and E denotes the strike price. To determining the fair 

price of an option is equivalent to finding the expected minimum wealth necessary to 

meet the pay-off of the option. We will achieve this goal by doing the following.  

 

     First, we want to maximize the expected excess wealth of the portfolio, i.e. the value 

of the portfolio at time   minus the pay-off of the option  ( )   ( ( )). This will 

ensure that at any time     [   ̃], we have sufficient funds to meet our obligation without 

losing money. Since the stock price is stochastic, the quantity  ( )   ( ( )) at any 

given time   is random, we take the expectation of the excess wealth of the portfolio. The 

maximum will then be taken with respect to our control parameter   ̅  (cf. (2.2b)). 

Parameter   ̅  represents the control over the buying/selling of assets. For simplicity, we 

have considered the “bang-bang” type control. (“Bang-bang” refers to the fact that the 

optimal action for     and      is either   or  , the control is either “buy” or “sell”.) To 

this end, we introduce the conditional value function   which is dependent on the initial 

portfolio distribution, such that,     

 

                        (            )       ̅∈[   ]  [ ( )   ( ( ))]                        (2.16)  
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where  ( ( )) is the pay-off of the option, and    . The conditional value function   

attempts to maximize the expected excess wealth, indexed upon the choice of the initial 

portfolio  ̅ (cf. (2.12b))  

 

      Next, since the fair price of the option would be the minimum amount of initial stock 

holding that is needed to replicate the pay-off, we introduce the concept of performance 

index, i.e. the minimum wealth needed to meet our obligation. To this end, let the 

performance index be given by 

 

                            ̃(      ̅)     { | (            )   }                                   (2.17)      

 

     Since the conditional value function depends on the initial portfolio distribution, we 

take the minimum of the performance index among all feasible initial portfolio 

distributions relative to a terminal constraint 

 

                          (   )     { ̃(      ̅)| ̅  (  ̅ )}                                             (2.18) 

 

     The terminal constraint is constructed such that if the stock price   at time   is higher 

than the strike price E, and the buyer of the option decides to exercise the option, we will 

deliver one share of stock to him/her. To this end, let 
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                                                         (   )   , 

 

and  

 

                                                      (   )  {
           
            

 

 

where E is the strike price of the option. We then suppose the terminal set M( ̅  ) is 

specified by 

 

                   M( ̅  )  {(  (   )    (   )|(   ) ∈  )}, for     (   ) 

 

The value function  (   ) represents the expected minimum wealth necessary at time   

required to meet the pay-off  ( ) at time    and as such is the fair price of the European 

option.  

 

      Note that in contrast to the Black-Scholes model, which is derived under complete 

market, our model does not care whether the market is complete or not. If the market is 

complete, in this particular context perfectly liquid, our model reduces to the Black-

Scholes model. For an incomplete market, such as a market that has limited liquidity, our 
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model offers a feasible way to price an option. Therefore our model can be regarded as a 

generalization of the Black-Scholes option pricing model. 
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CHAPTER 3 

NUMERICAL SIMULATION 

 

 

 
      In this chapter, we show the numerical results from our model based on the methods 

introduced in Marcozzi [117], [118]. For computation expedience, we consider 

immediacy and depth effects only; that is, we suppose          . Moreover, we 

set        per year,   
  (   )  per year and        per year, an option life of 

          years, and a strike price for the European call option of     . The mesh 

utilized               ,          , and             . The 

computational domain was [         ]  [       ]  [      ]. All the code is written 

in FORTRAN and the computations are conducted on an Intel Core i7 3.40 GHz CPU 

with 12 GB RAM. 

     Case 1: We first consider the case of a liquid market featuring relative depth and little 

immediacy friction (   = 0.001 and    = 0.5). Figure 1 gives the relationship between the 

option prices and the stock prices at various time until expiration. Figure 2 shows, 

according  to our trading strategy, how many shares of stocks we should hold as the stock 

price evolves. Figure 3 and Figure 4 show the optimal time to buy and sell according to 

our trading strategy. Table 1 reports option prices at different time until expiration with 

reference to option’s moneyness; and Table 2 provides summary statistics of option 

prices for case 1.  
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           Figure 1. Option price  (   ) in case 1 (   = 0.001 and    = 0.5). 

                       

 

               Figure 2.   Asset shares  ( ) in case 1 (   = 0.001 and    = 0.5) . 
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               Figure 3. Buying activities   ( ) in case 1 (   = 0.001 and    = 0.5) . 

              

               Figure 4. Selling activities   ( ) in case 1 (   = 0.001 and    = 0.5) . 
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Table 1:  Option Prices relative to Option’s Moneyness      

 

(D=0.001 and   = 0.5) 

 

   Time until Expiration               Option Moneyness                      Option Price   

            (in years)                                                                               (in dollars) 

0.0001 

 

In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.000999 

 

.000004 

 

.000000 

0.00008 

 

In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001000 

 

.000118 

 

.000000 

0.00006 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001019 

 

.000242 

 

.000017 

0.00004 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001041 

 

.000336 

 

.000041 

0.00002 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001068 

 

.000382 

 

.000063 

0.00000 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001105 

 

.000402 

 

.000085 
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                   Table 2:  Summary Statistics of Option Prices for Case 1  

 

 

 Mean Median SD Min Max 

In-the-

money 

 

At-the-

money 

 

Out-of-

the-

money 

0.001038 

 

 

0.000247 

 

 

0.000034 

0.001030 

 

 

0.000289 

 

 

0.000029 

0.000042 

 

 

0.000158 

 

 

0.000035 

0.000999 

 

 

0.000004 

 

 

0.000000 

0.001105 

 

 

0.000402 

 

 

0.000085 

 

 

    

     Case 2: We maintain a relative deep market while limiting the transaction rate through 

the immediacy (   = 0.001 and    = 0.005). Figure 5 through Figure 8 give the graphs on 

option prices versus stock prices, asset shares, buying and selling activities, respectively. 

Table 3 and Table 4 report option prices with reference to option’s moneyness and 

summary statistics of option prices for case 2, respectively. 
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                   Figure 5. Option price  (   ) in case 2 (   = 0.001 and    = 0.005) . 

 

                     Figure 6. Asset shares  ( ) in case 2 (   = 0.001 and    = 0.005) . 
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                  Figure 7. Buying activities   ( ) in case 2 (   = 0.001 and    = 0.005) .

  

                  Figure 8. Selling activities   ( ) in case 2 (   = 0.001 and    = 0.005) .  



 

 50 

Table 3: Option Prices relative to Option’s Moneyness      

 

(D = 0.001 and   =0.005) 

 

   Time until Expiration           Option Moneyness                   Option Price   

             (in years)                                                                       (in dollars) 

0.0001 

 

In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.000100 

 

.000007 

 

.000001 

0.00008 

 

In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001041 

 

.000157 

 

.000024 

0.00006 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001105 

 

.000278 

 

.000062 

0.00004 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001174 

 

.000372 

 

.000106 

0.00002 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001240 

  

.000453 

  

.000151 

0.00000 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001274 

 

.000497 

 

.000179 
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                     Table 4:  Summary Statistics of Option Prices for Case 2  

 

 

 Mean Median SD Min Max 

In-the-

money 

 

At-the-

money 

 

Out-of-the-

money 

0.000989 

 

 

0.000294 

 

 

0.000087 

0.001139 

 

 

0.000325 

 

 

0.000084 

0.000044 

 

 

0.000186 

 

 

0.000071 

0.000100 

 

 

0.000007 

 

 

0.000001 

0.001274 

 

 

0.000497 

 

 

0.000179 

 

 

      Case 3: We look at the market with limited depth while transaction rate provides little 

friction (   = 0.05 and    = 0.5). Figure 9 through Figure 12 give the graphs on option 

prices versus stock prices, asset shares, buying and selling activities, respectively. Table 5 

and Table 6 report option prices with reference to option’s moneyness and summary 

statistics of option prices for case 3, respectively. 
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                       Figure 9. Option price  (   ) in case 3 (   = 0.05 and    = 0.5) . 

 

                        Figure 10. Asset shares  ( ) in case 3(   = 0.05 and    = 0.5) . 



 

 53 

 

                      Figure 11. Buying activities   ( ) in case 3(   = 0.05 and    = 0.5) . 

 

                        Figure 12. Selling activities   ( ) in case 3 (   = 0.05 and    = 0.5) . 
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Table 5: Option Prices relative to Option’s Moneyness 

 

(D = 0.05 and   = 0.5) 

   Time until Expiration            Option Moneyness                   Option Price   

             (in years)                                                                         (in dollars) 

0.0001 

 

In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.000101 

 

.000011 

 

.000001 

0.00008 

 

In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001044 

 

.000160 

  

.000024 

0.00006 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001105 

 

.000279 

 

.000064 

0.00004 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001174 

 

.000377 

 

.000109 

0.00002 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001240 

  

.000461 

  

.000157 

0.00000 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001296 

 

.000517 

 

.000192 
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                   Table 6: Summary Statistics of Option Prices for Case 3  

 

 

  Mean Median SD Min Max 

In-the-

money 

 

At-the-

money 

 

Out-of-

the-money 

0.001144 

 

 

0.000301 

 

 

0.000091 

0.001139 

 

 

0.000328 

 

 

0.000087 

0.000112 

 

 

0.000191 

 

 

0.000075 

0.001010 

 

 

0.000011 

 

 

0.000001 

0.0001296 

 

 

0.000517 

 

 

0.000192 

 

 

 

      Case 4: We look at the market that is relatively frozen such that there is little depth as 

well as excessive transaction friction (   = 0.05 and    = 0.005). Figure 13 through 

Figure 16 give the graphs on option prices versus stock prices, asset shares, buying and 

selling activities, respectively. Table 7 and Table 8 report option prices with reference to 

option’s moneyness and summary statistics of option prices for case 4, respectively. 
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                     Figure 13. Option price  (   ) in case 4 (   = 0.05 and    = 0.005) . 

 

                       Figure 14.  Asset shares  ( ) in case 4 (   = 0.05 and    = 0.005) . 
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                   Figure 15. Buying activities   ( ) in case 4 (   = 0.05 and    = 0.005) . 

 

  

                   Figure 16. Selling activities   ( ) in case 4 (  = 0.05 and    = 0.005) . 
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                            Table 7: Option Prices relative to Option’s Moneyness 

 (D = 0.05 and   = 0.005) 

   Time until Expiration           Option Moneyness                    Option Price   

             (in years)                                                                          (in dollars) 

0.0001 

 

In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.000101 

 

.000011 

 

.000001 

0.00008 

 

In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001044 

 

.000160 

  

.000024 

0.00006 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001105 

 

.000291 

 

.000066 

0.00004 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001176 

 

.000395 

  

.000115 

0.00002 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001243 

  

.000476 

  

.000161 

0.00000 In-the-money 

 

At-the-money 

 

Out-of-the-money 

 

.001296 

 

.000541 

 

.000203 
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Table 8: Summary Statistics of Option Prices for Case 4  

 

 

 Mean Median SD Min Max 

In-the-

money 

 

At-the-

money 

 

Out-

of-the-

money 

0.001145 

 

 

0.000312 

 

 

0.000095 

0.001140 

 

 

0.000343 

 

 

0.000090 

0.000112 

 

 

0.000200 

 

 

0.000070 

0.001010 

 

 

0.000011 

 

 

0.000001 

0.001296 

 

 

0.000541 

 

 

0.000203 

 

 

 

      The first and the most obvious feature from the graphs is: buying activities are more 

concentrated in the lower portion of the graphs where the stock prices are low (shown in 

Figure 3, Figure 7, Figure 11, and Figure 15.); while selling activities are more 

concentrated in the upper portion of the graphs where the stock prices are high (shown in 

Figure 4, Figure 8, Figure 12, and Figure 16). This result is intuitive and making good 

economic sense because buying stocks when the prices are low and selling when prices 

are high is an effective way to maximize the terminal wealth in the portfolio.  

 

       The second feature we see from the graphs is: both buying and selling activities 

decrease as the market transitions from liquid to less liquid state. We first compare the 

buying activities in Figure 3, Figure 7, Figure 11, and Figure 15, we see a decreasing 
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trend. We then compare selling activities in Figure 4, Figure 8, Figure 12, and Figure 16, 

we also see a decreasing trend. This could be explained as follows. As the market 

becomes less and less liquid, the liquidity cost of rebalancing the portfolio becomes 

higher and higher. When the trading gain does not exceed the liquidity cost, our optimal 

trading strategy simply tells us to stop trading. 

 

       Next, an interesting question would be: how does market liquidity affects option 

price? The graphs and tables above give us some hints, but to see it more clearly, we plot 

the option prices at the time of contract expiration versus the market depth constants (  = 

0.001, 0.005, 0.05) in Figure 17; and option prices at the time of contract expiration 

versus the immediacy constants (  =0.005,0.05,0.5) in Figure 18. We also look at the 

effects on different option statuses (in-the-money for        , at-the-money for    , 

and out-of-the-money for        ) 

 



 

 61 

 

                         Figure 17. Option Price  (   ) in Relation to Market Depth. 
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                       Figure 18. Option Price  (   ) in Relation to Immediacy Constant. 

 

     We can clearly see the option prices increase as market depth constants increase (the 

smaller the depth constant, the greater the asset liquidity). We also discover that the 

prices for in-the-money option and at-the-money option increase slightly as the market 

goes from liquid to less liquid, while the price for out-of-the-money option increase 

significantly. This finding is consistent with the results from Cetin, Jarrow, Protter and 

Warachka [32]. In their research, they used market depth as the primary measure of 

liquidity and showed that the option prices increase as the market becomes less liquid. 

They further showed that out-of-the-money options are subject to the highest percentage 

price impact among all three options. 
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      We see less dramatic effects in the relationship between the option prices and 

immediacy constants. Option prices decrease slightly as immediacy constants increase 

(the larger the immediacy constant, the greater the asset liquidity). The level of price 

impact among all three options does not show significant difference. 

  

      Another interesting question would be: how does the composition of our hedged 

portfolio changes as market transitions from liquid to less liquid state? To answer that, 

we plot the stock holdings in relation to the market depth constants, and the stock 

holdings in relation to the immediacy constants. In Figure 19, we plot the changes in 

stock holdings as the market depth constant changes from   = 0.001 to   = 0.05. In 

Figure 20, we plot the changes in stock holdings as the immediacy constant changes from 

  = 0.005 to   = 0.5. 

 

      In Figure 19, stock holdings in our optimal hedged portfolio decrease as the market 

depth constant changes from   = 0.001 to   = 0.05 (liquid to less liquid). Similar effect 

is seen in Figure 20 that stock holdings in our optimal hedged portfolio increase as the 

immediacy constant changes from   = 0.005 to   = 0.5 (less liquid to more liquid). 
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                        Figure 19.  Asset Shares  ( ) in Relation to Market Depth. 

   

                     Figure 20. Asset Shares  ( ) in Relation to Immediacy Constants. 
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CHAPTER 4 

CONCLUSION AND FUTURE RESEARCH 

 

      The research in this PhD dissertation extends and generalizes the classical model of 

option pricing in a market with limited liquidity and offers a new paradigm of pricing 

options under such conditions. We defined and investigated liquidity from three 

perspectives: market breadth, depth, and immediacy. We then incorporated liquidity of 

the underlying asset into the classical Black-Scholes option pricing framework and 

presented model valuation based on the optimal realization of a performance index 

relative to the set of all feasible portfolio trajectories. 

 

      The main findings of the research are as follows: 

 

 Market liquidity has a significant impact on option prices. Option price increases 

as the market transitions from liquid to less liquid state; and there is more price 

impact on the out-of-the-money options than in-the-money or at-the money 

options. 
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 Buying and selling activities, based on our optimal trading strategy, decrease as 

the market becomes less liquid. A reasonable explanation is that the gain from 

more frequent rebalancing of the portfolio is not able to offset the liquidity risk. 

 

 Buying activities are more concentrated in the region of the graph where the stock 

price is low, while selling activities are more concentrated in the region of the 

graph where the stock price is high. This makes good economic sense because 

“buy low” and “sell high” help us achieve value maximization of our portfolio.   

 

 Stock holdings, in our optimal hedged portfolio, decrease as the market transitions 

from more liquid to less liquid state. A good explanation is that, in a less liquid 

market, stock position is riskier than bond position. 

 

     For future research, we would like to extend our model to the pricing of derivatives in 

the energy markets. As evidenced in existing literatures (cf. [33], [66]), energy contracts 

and derivatives are traded over the counter (OTC) and often lack liquidity. Natural gas 

market, an evolving commodity market, frequently lacks market liquidity.  We would 

like to incorporate our liquidity model into the commonly used models in the energy 

field, such as the spread option model. We offer two examples from the real world as 

motivation. 
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     First, let’s review what a spread option is.  A spread option derives its value from the 

difference between the prices of two or more assets (cf. [27], [28]). Spread options can be 

written on all types securities including equities, bonds, currencies, as well as 

commodities like natural gas [135]. In some commodity markets, spread options are 

based on the difference between the prices of the same commodity at two different 

location (location spread) or at two different points of time (calendar spread) [59]. This 

type of option can be purchased on large exchanges, but is primarily traded in the over-

the-counter market [69], [172].  

 

    We consider here a spread European call option with the payoff related to two 

underlying assets’ price   ( ) and   ( ).  The price processes for   ( ) and   ( ) follow 

geometric Brownian motions 

 

                                              ( )       ( )          ( )   ( ),                           (4.1)          

                       

and 

 

                                               ( )      ( )        ( )    ( ).                            (4.2)     

 

for drifts    ∈ R, volatilities   ,    > 0, and two standard Brownian motions    ( ) and 

   ( ) with correlation   [64].  The payoff at maturity time  of this option with strike 

price   is the amount  
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                                                         (  ( )    ( )     )                                                   

 

The price   of the option is given by: (cf. [2], [4], [28]) 

 

 

                                                  [(  ( )    ( )   )
 ].      

 

or                             

 

                  [(  ( ) 
(    

   )      ( )    ( ) 
(    

   )      ( )   )
 
].      (4.3) 

 

We can see that the price   is given by the integral of a function of two variables with 

respect to a bivariate distribution [94]. Unfortunately, the price of the spread option 

cannot be given by a closed form formula (cf. [3], [29], [54]). An efficient numerical 

method is needed to price such option. 

 

Example1. Suppose the natural gas price in January 2011 at location A is $4.41 per 

MMBTU, the natural gas price in May 2011 at location B is $4.97 per MMBTU, and the 

combination of injection and withdrawal cost is $0.03 per MMBTU. We can use a natural 

gas storage facility to buy and inject gas when/where the price is low, i.e. January 2011 at 

location A, and sell gas when/where the price is high, i.e. May 2011 at location B. By 
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doing so, we can capture the price difference around $0.53 per MMBTU. If we hold a 

spread option of the price difference of January at location A and May at location B,  and 

think of the  strike price K being the combination of injection and withdrawal cost, then 

this spread option has payoff    (                 ) which is the same as $0.53 

per MMBTU. This example uses locational/time spread and illustrates that we can 

consider the value of gas storage as a spread option. Existing literatures that have 

considered spread option pricing method in the valuation of gas storage includes [33], 

[99], [127]. We further suppose that the natural gas market has limited liquidity, we can 

perturb (4.1) and (4.2) with our liquidity model discussed in chapter 2, however finding 

an efficient numerical method to solve the model poses a challenge. 

 

Example 2. A special type of spread option is called the spark spread option or the heat 

rate option. The spark spread, is defined as the difference between the electricity price 

and the cost of generation (cf. [55], [57], [59]). For a public utility company who owns a 

gas-fired power plant, the amount of natural gas that is needed to generate a given 

amount of electricity depends on the plant’s efficiency (cf. [58], [60]) or the heat rate. 

Heat rate is defined as the number of British thermal units (BTU) of the natural gas 

required to generate 1 megawatt hour (MWh) of electricity [57]. The lower the heat rate, 

the more efficient the power plant. The spark spread associated with a particular heat rate 

is the current price of electricity minus the product of heat rate and current gas price (cf. 

[57], [61]), i.e.  
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                                    spark spread =   ( )       ( )                                            (4.4) 

 

where   ( )  is  the electricity price,     is the heat rate, and    ( ) is the natural gas 

price.  

 

     The owner of a public utility company will dispatch a particular gas plant only if the 

electricity price is higher than the cost of generation for that plant.  Then revenue 

received by the power plant can be considered as a heat rate call option. Further, the 

value of the plant, from a financial point of view, can be regarded as a heat rate call 

option as well. 

                    

     Suppose the price processes for natural gas    ( ) and electricity    ( ) follow 

geometric Brownian motions 

 

                                            ( )       ( )          ( )   ( ),                          (4.5)  

                       

and 

 

                                           ( )       ( )          ( )    ( )                            (4.6)  

 



 

 71 

for drifts      and    ∈  , volatilities     and    > 0, and two standard Brownian 

motions    ( ) and    ( ) with correlation  .  The payoff at maturity time   of this 

option with strike price   is the amount  

 

                                                    (  ( )       ( )       ) , 

 

where    is the heat rate.                  

     We further suppose that one of the assets, namely natural gas, has limited market 

liquidity; and the other asset, electricity has perfect market liquidity, we can perturb  (4.5) 

with the framework we discussed in chapter 2. Again finding a feasible and efficient 

method to solve the model awaits future research. 
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