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Abstract 

 

A More General Diffusion Model for Lightning Radiative Transfer 

 

by 

Elliott Saint-Pierre 

 

Dr. Dieudonné D. Phanord 

Founding Director of the Center of Atmospheric, Oceanic and Space Science 

Professor of Mathematical Sciences 

University of Nevada, Las Vegas 

 

A more general diffusion model for lightning radiative transfer is presented. The 

development is based on the work published by Koshak et al (J. Geo. Phys. Res., vol. 99, 

(D7), 14361-371, (1994). In this thesis, the diffusion coefficient is allowed to vary as a 

function of the radial component of the cloud and cylindrical geometry is used. Different 

approximations in the analysis of the resulting radial equation are provided. The method 

of Frobenius permits the obtention of a complete solution. Possibilities and means for 

further development of this research are included. In general, we work in three 

dimensions, use Ref [1] to indicate reference #1, and a circumflex to represent a vector of 

unit magnitude. 
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Chapter 1 – Brief History of Lightning 

 

Introduction 

 Humanity has been curious about lightning probably from the beginning of our 

species, and yet even today there are many basic questions that remain open Ref [1]. 

Many of these questions are: how is lightning initiated within a cloud? what factors 

control the geometrical development of lightning? what physical processes control the 

propagation of return strokes? what physical phenomena occur during a cloud discharge? 

as well as other myths about lightning, and the thundercloud. So many disputes go 

resolved with lightning because it is a very sparse, intense, distant, and an unpredictable 

phenomenon. However, these characteristics are probably what made us so curious about 

the phenomenon.  

 The focus of this work is to explore through mathematical physics how bright any 

part of a cloud will be when a lightning flash occurs within the thundercloud. It is the 

hope of the author that these results will one day be compared with real data in order to 

validate the assumptions made, and thus hopefully learn more about the nature of 

thunderclouds.  

 

Mythology 

 Before delving into what we know about lightning, let us snicker a little about 

what our ancestors thought about lightning Ref [2]. The earliest known depiction of 

lightning was found in Australia on a carving of a rock dated to be around twenty 

thousand years old. It was a depiction of a person with very wild hair that is believed to 
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represent the sensation that one feels during a lightning storm when one’s hair is standing 

up due to the electricity in the air. Since then, almost every culture had some kind of a 

religious belief about lightning. Typhon was a god from Egypt that hurled lightning bolts. 

A seal from Mesopotamia showed a deity standing on a winged creature holding a bundle 

of lightning bolts. The Babylonians had Ishkur who wielded a boomerang to make 

thunder in one arm, and a spear for lightning in the other. The Chinese had Lei Tsu who 

wore a halo of fire, and beat drums to make thunder.  

Indians had Indra who also carried thunderbolts. The Yoruba had Shango, the 

Mayans had Ah-Peku, the Irish had Tuireann, the Polynesians had Haikili, the Basques 

had Orko, and the Slavs had Perun, and others. The Tibetans associated lightning with 

Vajra which represents both power and the phallus. The Greeks, of course, had Zeus who 

was given lightning and thunder by some Cyclopes, and used it to defeat his father 

Cronus for dominion over the universe. In the Old Testament, God used lightning as a 

sign of anger and to show his presence to both his followers, and their enemies. In the 

New Testament, lightning is used as a prelude to Jesus. Lightning has been used in many 

more instances in other literature. It has clearly been an inspiring force for many past and 

probably current cultures as well.  

 

Lightning Initiation 

 Much is still unknown about how lightning is initiated. There seems to be two 

leading groups of theories of how the initial spark of lightning occurs Ref [3]. The first 

theory involves hydrometeors colliding in a strong electric field (≈250-500 kV/m), which 

would result in a point discharge. Scientists have studied this phenomenon in labs using 



3 

 

corresponding hydrometeors (water vs. ice) to different environments. However, the 

problem with this theory is that the usual electric field measured within a thunderstorm is 

less than 300 kV/m which is too small. Scientists postulate the existence of pockets of 

higher electric fields within the thundercloud remaining to be discovered Ref [4].  

 The other leading hypothesis for how lightning is initialized stems from the fact 

that as cosmic rays hit the atmosphere, energetic secondary electrons are produced. These 

energetic electrons (≈1 Mev) could result in a sustained electron avalanche, and do so at 

electric fields much less than the previous explanation. This theory appears promising. 

Never the less, it remains inconclusive, if this is the leading cause for lightning initiation 

Ref [5, 6].  

 

Location of Lightning in Thundercloud 

From looking at different instances of lightning that came from many clouds, 

generalization of their origin can be made. There have been two important studies noted 

in the research. The first one conducted by Ref [7], where the scientist mapped the 

lightning coming from four small, severe thunderstorms in Oklahoma. He found that 

lightning originated bimodally at 7 km from the ground, and at 10 km from the ground; 

the corresponding average temperatures of the two regions were -14 degrees Celsius and 

-38 degrees Celsius respectively. Ground flashes tended to originated in the lower region, 

while the intracloud flashes originated in the upper regions.  

The other noted experiment conducted was more extensive Ref [8]. This 

experiment analyzed almost 800 lightning flashes from 13 storms. The scientist in charge 

of the experiment also observed the bimodal nature of lightning. However, he measured 
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the two vertical regions to be 5.3 km at -3 degrees Celsius and 9.2 km at -28 degrees 

Celsius. He found that in the horizontal plane the lightning strikes tended to occur within 

a few kilometers from one another. In addition, he pointed out that lightning frequently 

originated in “holes” of reflectivity in the cloud. Reflectivity is the amount of return of 

the radar signal. A stronger radar return tends to indicate more hydrometeors, or more 

ice. Ref [8] concluded that such holes are where ice is being created and noted that such 

holes would provide discontinuity in the charge density of the cloud, something that 

could make it easier for the cloud to produce lightning.  

 

Electrification of Clouds 

 The difference between a cloud and a thundercloud is that a thundercloud 

produces lightning. In order to produce lightning, there needs to be a great deal of charge 

within the cloud. The overall charge distribution of a thundercloud comprises a lot of 

positive charge on the top of the cloud, a lot of negative charge on the bottom of the 

cloud, and a little bit of positive charge on the very bottom of the cloud; these three 

charges form a tripole Ref [3].  

 The scientific community does not yet know why a cloud becomes electrified; 

many ideas have been advanced. The first method is called the Inductive Method. This 

method takes the fact that the cloud exists in an electric field, and assumes that all the 

water vapor would be polarized as well. When a rain drop is falling, it should have 

negative charge on the top and positive on the bottom. As it falls, it collides with water 

vapor that would also have a negative charge on the top, and positive on the bottom. As 

the positively charged bottom of the droplet hits the negatively charged top of the water 
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vapor, it leaves behind positively charged water vapor as the water droplet leaves the 

cloud Ref [9]. There are various perturbations on this theory depending on how cold the 

water droplets are, and how long the rain droplet interacts with the surrounding water 

vapor. In the end, this process by itself is thought to be unable to explain the amount of 

electrification of the clouds that are observed.  

 Another theorized cause for cloud electrification is centered around the fact that 

as graupel forms or melts, the water gains either a negative or positive charge. This 

method is called a Noninductive Method and differs from the previous method because it 

does not require the hydrometeors to be polarized. Graupel is a solid form of water that 

occurs as super cooled water comes in contact with an ice crystal, and then becomes 

solid. As the forming graupel interacts with surrounding ice or water vapor, the charge 

grows and is dispersed in the cloud Ref [10]. An extensive amount of research has been 

done on this phenomenon, and it appears that this process is significant enough to cause a 

cloud to become a thunderstorm although other mechanisms are thought to play a role in 

cloud electrification as well.  

 Next a method of electrification will be discussed that is purely based on external 

factors. There are currents flowing in the atmosphere called “fair weather currents”. If a 

non-electrified cloud were placed in a vertical fair weather current (the current is going 

perpendicular to the earth surface), the cloud would produce a discontinuity in the ohmic 

currents. This is because cloudy air has 10% of the conductivity of the clear air. 

Immediately, a charge would form on the boundary of the cloud, reducing its ohmic 

impedance. As the charge built up around the top and bottom boundaries, those charges 

would affect the currents on the inside of the cloud Ref [11]. However, due to 



6 

 

observations of how quickly a cloud could form, become electrified, and produce 

lightning, it is unlikely to result from this method. This is because in this model the 

negative charged particles originate from the top of the cloud. The time it would take for 

the negatively charged particles to move to where the negatively charged particles are 

normally found, the bottom half of the cloud, it would take more time than observed for a 

cloud to form and start to produce lightning. In addition, it was calculated Ref [12] that 

before the negative charged particles arrived at the bottom of the cloud, that there would 

be sufficient charge densities to achieve lightning before the negatively charged particles 

got to their usually observed location in the cloud. Despite the problems with this model, 

it is thought that at least this process adds to the electrification of the thundercloud, both 

at the boundary and inside. Also it has been suggested that if this processes adds a few 

flashes of early lightning, that that would aid the overall electrification of the 

thundercloud Ref [13].  

 There are other proposed mechanisms (mainly by the melting and releasing CO2 

bubbles or the growing of ice within the cloud). However, they only appear to be minor 

contributors of electrification of a thundercloud.  

 

The Lightning Process 

 Air at normal temperature makes for a poor conductor. This section describes the 

bridge that is built when the negatively charged ions in a cloud reach something that is 

positively charged like the ground, another cloud, or the same cloud. When the bridge is 

being constructed, the surge of current traveling through the air (from both the original 

negatively charged stroke and the positively charged return stroke) heats the air to greater 



7 

 

than 20,000 degrees Kelvin, eventually reaching as high as 30,000 degrees Kelvin. This 

causes the air molecules to become ionized Ref [3]. As current continues to flow between 

the two ends of the channel, the heat continues to rise until the ambient air develops 

characteristics of a plasma (which is a good conductor) Ref [14]. This process of heating 

up the air takes around 10 µs. Since plasma is such a good conductor, the resistance of 

the air gets quite low, and thus the air ceases to get heated further. Once energy has 

stopped flowing through the channel, about 50 µs later the channel will slowly cool to 

temperatures around 2,000 – 4,000 degrees Kelvin, at which point the air is again a poor 

conductor.  

 In addition to ionizing the air in the lightning channel, it also increases the 

pressure and luminosity. The large burst of pressure causes a shockwave traveling at ten 

times the speed of sound (Mach 10). The wave eventually slows down as it moves 

through the air to become audible. This sound is the thunder.  

 

Study of Lightning is Important 

Chemistry 

From laboratory experiments, backed up with anecdotal evidence Ref [1], it is 

known that when lightning occurs, it raises the temperature of the surrounding air to 

around 30,000 degrees Kelvin. When this happens, the sudden increase in temperature 

results in the transformation of the nearby common compounds N2, O2, H2O, and CO2 

into less common compounds N, O, H, OH, CO, NO. If the resultant compounds are 

allowed to cool slowly enough, then they will revert back to the ambient compounds. 

However, if the resultant compounds are cooled fast enough (by virtue of being in a cloud 
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or rain hitting the compounds), the resulting compounds will be “frozen” in their state. 

The net result is that lightning storms cause trace elements of N, O, H, OH, CO, NO as 

well as other compounds.  

The NO (nitric oxide) production by lightning appears to be particularly 

important. Naturally NO is produced primarily from plants and from the burning of fossil 

fuels. However, when considering how nitrogen was fixed before life had yet formed on 

Earth, lightning was probably one of the primary sources of nitrogen fixation Ref [1]. NO 

is able to be transformed into NO2, given by the formula, 2 NO + O2 → 2 NO2 (nitrogen 

dioxide). NO2 is heavier than air, so when it is made from terrestrial means, it can act like 

a pollutant. However, when it is made from a thundercloud, some of it is able to seep into 

the atmosphere, where it acts as a catalyst to produce ozone. In addition, despite NO2 

being a pollutant when in the air (below the atmosphere), it can act as a fertilizer when 

the rain from a thunderstorm is able to collect the NO2 and deposit it in the soil.  

Another exciting result of lightning on the chemistry of the earth (and perhaps 

other planets) is in a reducing, prebiological terrestrial atmosphere Ref [15], when there 

was not enough oxygen in the atmosphere, the molecule HCN is produced in copious 

amounts, as demonstrated by laboratory and theoretical calculations. If this is true, this 

molecule could have found its way to oceans and ponds at such levels to allow for the 

formation of peptide chains and similar precursors to amino acids. However, when the 

molecules CO and CO2 become more prevalent in an atmosphere, the production of HCN 

reduces greatly. Thus, in order to understand the full impact of lightning on the evolution 

of life, it is important to know how much CH4, CO, and CO2 would have been in earth’s 

early atmosphere.   
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Lightning is tied to Strength of Hurricane 

 Evidently, the frequency of lightning strikes within the eyewall of a hurricane is 

related to the strength of that hurricane Ref [16]. This is very beneficial for predicting 

how strong an oncoming storm will be. The eyewall is the inner heat-driven region 

immediately surrounding the eye of the hurricane. The process that leads to lightning 

being produced within a hurricane starts with water vapor condensing to from cloud 

droplets, which releases heat. This heat causes updrafts of air, which provides fuel for the 

hurricane. If the heat is strong enough, charge separation will occur, which will allow 

lightning.  

 

Lightning and Rainfall 

 The relationship between the amounts of intensity of rain from a thunderstorm 

relative to the number of lightning flashes appears to be a current topic of study Ref [3]. 

The problems appear to stem from the irregularity in how these studies are conducted and 

how diverse clouds appear to be at the time of study Ref [3]. For instance, it was noted 

that some clouds produce lightning before the rain began, others after the rain began, and 

many of these studies take place over different parts of the globe. Most of the studies 

count only the ground flashes, ignoring the cloud-to-cloud flashes completely which 

could be understood due to theories on how lightning propagates. However, it still seems 

like a fairly myopic view. Most of the studies relied on people counting the ground 

flashes which may add to the diversity of the results. Or, perhaps there is not a correlation 

between lightning and rainfall according to some research Ref [3]. Either way, this is a 
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current topic of study that has a lot of baggage. Considering that none of these 

experiments are conducted in laboratories, they are all different. Thunderclouds and 

lightning are brief/transient phenomena making the beginning and end difficult to 

quantify. The process in which lightning is formed is still unknown.  

 

Lightning as a Power Supply 

 Anyone who has considered sources for renewable energy has at one time 

wondered whether lightning could be used as a potential power source. Some parts of the 

globe get lightning on a regular basis. The effects of the power of lightning consistently 

prove fairly devastating. We all know lightning rods are able to attract lightning fairly 

regularly, so why not? The answer is there is not enough power from a lightning strike 

Ref [17]. A solar power plant can produce around 83 10 /J s  which will be rounded to 

810 /J s . A single lightning stroke produces at most 1010 J . So, in a little more than 100 

seconds, a nuclear power plant has easily exceeded the energy output of the lightning 

strike. A family cottage would consume more power than 1010 J  over the course of a 

year. According to Ref [18], Florida is one of the top receivers or lightning in the 

country. In the summer time Brevard County, FL at its peak in the summer can get 6.6 

thousand lightning strikes in a month which translates to around 220 strikes a day, or 

around 15 hours of power output from a solar power plant. Of course, these lightning 

strikes are spread throughout a county, and in the winter on average the lowest number of 

lightning strikes in a year is 3 in December. There are other, more reliable, renewable 

energy sources available.  
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Instruments Used to Measure the Atmosphere 

 There are many instruments used to measure various aspects of our atmosphere 

that are related to the study or detection of lightning. This section will go over some of 

the ones that are used.  

 Field Mills are terrestrial instruments used to measure the electric field of the 

atmosphere to determine if lightning is immanent Ref [3]. This instrument works by 

having a rotator which rotates. As it rotates, it alternately exposes sensors to the electric 

field in the atmosphere. The charge builds, and is then used to determine the electric field 

of the atmosphere.  

 To measure the electric field in the sky more directly, there are several means, all 

with advantages and drawbacks and use similar techniques as the field mills Ref [3]. 

These means are typically rockets, airplanes, and balloons. Rockets are good because 

they provide an instantaneous reading of the electric field of many parts of a cloud, 

especially many vertical readings. However, there are not many places in the United 

States that allow for firing rockets due to airspace concerns. Airplanes are also very good 

because they can cover a large distance fairly quickly and are good at getting horizontal 

profiles of the cloud. Unfortunately the disadvantages to using aircraft are fuel is costs. 

Aircraft have a hard time flying in hail. Going into the cloud at night can be dangerous, 

and vertical profiles of the cloud are more difficult to obtain. Balloons are also very good 

at obtaining vertical profiles, are cheap, and are less dangerous than flying aircraft in 

storms. However, balloons cannot be guided, and are not as fast as rockets.  

 Instruments are used to measure the charge on individual particles within the 

cloud. These instruments are often mounted to either a balloon (to measure vertical 
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sections of the cloud), or an aircraft. When researchers retrieve data, they are able to 

determine the current density from sections of the cloud, by adding the charges from the 

individual particles.  

 When making measurements on lightning, a common trait scientists study is how 

much light is being produced by lightning. Included in these studies are the waveforms 

and optical emissions of lightning. The great part about making these measurements is 

cost effectiveness to produce the equipment which is purchased at commercial-grade 

electronics stores. This equipment can easily be attached to anything flown into the 

cloud, and has been even been used on space shuttles.  

 There are additional measurement devices that measure other characteristics of 

lightning or a thunder cloud Ref [3]. Some of these measurement devices measure the 

velocity in which the lightning propagates using various camera techniques. Other 

devices try to find the location where lightning occurred by recording electrostatic field 

changes at several locations. The resulting data are inserted into equations to find the 

source of the lightning. Another interesting technique for determining where the lightning 

originated is to use acoustic mapping on thunder to find the source of the thunder, and 

thus the lightning strike since the speed of light is faster than the speed of sound.  

 The last instrument to be discussed is the Lightning Imaging Sensor (LIS). This 

instrument is aboard the TRMM Observatory which was launched into space in 1997, and 

is used to detect the distribution and variability of lightning primarily in the tropical 

regions of the planet. LIS is very efficient at detecting lighting, during the day it is even 

supposed to be able to collect 90% of lightning that occurs within its field of view. What 

is also very useful about LIS, is it provides researchers data on luminosity of lightning 
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from space, where otherwise the researchers would be limited to images from the ground 

Ref [19].  

 

Conclusion 

 The author humbly reminds the readers that a vast amount of literature embedded 

into historical notes does exist about lightning. It was never intended to accompany the 

reader on a historical tour. The point of the chapter is to provide the flavor of the 

diversity and complexity of the subject matter. Hoping that curiosity will be piqued and 

interest will be motivated.  
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Chapter 2 – Existing Work 

 

In Ref [20], they approached the problem of lightning radiative transfer by 

treating the thundercloud like one would a nuclear reactor; where photons, instead of 

neutrons, where the agent interacting with the surrounding particles. The purpose of Ref 

[20] is to ultimately find I, the photon density within the thundercloud. The work was 

accomplished assuming cubic symmetry and allowing some quantities to be constant. In 

this thesis, an alternative approach for I is provided using cylindrical coordinate system, 

and assuming the diffusion coefficient D not to be constant.  

Ref [20] starts the problem by using a one-speed Boltzmann transport theory, 

derive equation (1) 

    (1) 

where I represents the photon density within a thundercloud (particle intensity), c is the 

particle speed, and K is the inverse photon mean-free-path. The mean-free-path is how far 

a photon will travel before it collides with an obstacle.  defines the probability that a 

collision will result in a scattering event (rather than an absorption event).  represents 

the location of the lightning event.  is the direction, t is time after initial event, Q is the 

lightning source, and p is the probability that a particle will scatter into direction  
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In all previous works,  is assumed to be a constant . However, in 

this thesis,  will be assumed to be a function depending on the radial position r. 

Since Ref [21] has thus far demonstrated to be the closest approximation to reality, 

cylindrical coordinates will be used. The rest of this chapter will be devoted to the 

solution of equation (1), in particular solving for I. Chapter 3, Chapter 4, and Chapter 5 

will develop and implement the new model. Chapter 6 will conclude with future work.  

 

Mathematical Structure of the Existing Model 

The development provided in this section follows directly from Ref [20]. The first 

major step is to use spherical harmonics to transform equation (1) into a more practical 

form. The spherical harmonic terms I, Q, and p are as defined below  

        (3) 

        (4) 

       (5) 

where it should be noted that for simplicity  for .  

In order to apply orthogonality relations, the spherical harmonic conjugate  is 

multiplied to both sides of equation (3)  
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Integrating over  and applying the provided orthogonality relation 

 when  and  Ref [22]  
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the notation . However,  is just an expression of angles and is not a 

function of r, so  implying  

.    (19) 

Rearranging equation (15) and using the above detail lead to 

  (20) 

which is the final form of equation (11).  
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     (24) 

Applying again the orthogonality relation just after equation (6) to equation (24), the final 

form of expression (12) is 

   (25) 

Working similarly as above, expression (13) and (14) are rewritten respectively as 

      (26) 

and 

       (27) 

Substituting equations (20), (25), (26), and (27) into equations (11), (12), (13), and (14), 

respectively, leads to 
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Equation (29) is equation (1) written in spherical harmonics.  
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As will be seen shortly, equation (29) will be critical for deriving the very 

important equations (30) and (31) 

     (30) 

    (31) 

where  

        (32) 

 

.     (33) 
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        (35) 

Equation (30) results from taking equation (29) and letting  while equation (31) 
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   (36) 

where the  notation is replaced by  for convenience. Reverting back to 

a modified version of equation (11),  becomes 

    (37) 

  (38) 

The transformation of equation (37) into equation (38)is shown in Appendix A. 

Substituting equation (38) into equation (36), and using the definition of , 

equation (30) is derived.  

Equation (31) is considerably more challenging to prove. Consider the definition 

of . Taking the partial derivative of (33) with respect to t  yields 

     (39) 
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   (40) 

When applying the same procedure to  and  components of equation (39), a similar 

equation to equation (40) is obtained. Combining all pieces together leads to 

     (41) 

using the definitions of ,  and . Notice, equation (41) is close to 

equation (31). What remains to arrive at equation (31) is to simplify the expression 

 and to prove .  

To simplify , the expression for , 

as defined in equation (29), needs to be examined. Once the expression for  has been 

broken up term by term, the proper indices,  and m, are used to simplify equation (41). 

From here notations  or  will both be used interchangeably.  
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where the primes are switched for simplicity and 

        (43) 

as in Ref [22].  

The integral  in equation (42), with  as defined in 

equation (2) is expanded to obtain 

 

   (44) 

Equation (44) will be simplified component by component. The simplification begins 

with the  component. Following Ref [22], we have 
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where the  are the associated Legendre polynomials. The following identity is 

required to reduce equation (45) further 
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   (47) 

Equation (47) is the simplification for the  component of equation (44).  

Proceeding as above, the  component in equation (44) is 

     (48) 

Using the identities of equation (46) in equation (44) yields 

 

   (49) 

Equation (49) is the simplification for the  component in equation (44). 

As far as the  component of equation (44) is concerned, equation (50) is derived 

using the above procedures  
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.       (50) 

Before continuing with the transformation of equation (44), the , , and  

components will be multiplied by the  and integrated over . Notice, some of the 

resulting terms will vanish due to orthogonality of the ’s. Since equations (47), (49), 

and (50) are going to be used in equation (41),  is defined in equation (42). Recall 

that one of the assumptions of the problem is  for . Thus the  

terms equal zero as they require . Now consider the terms that take the form

. Clearly,  has to equal zero in order for them not to vanish due to 

orthogonality. Thus since , this limits  as . So 

 and therefore .  

Substituting equations (47), (49), and (50) into equation (44) with omitting the 

terms with a  due to the above reasoning, the integral in equation (44) becomes 
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    (51) 

Now, to work further with equation (41) expressions for , , and  will be derived 

in the order presented.  

 We begin with . Using equation (42), (51), and , we obtain 
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Due to the reasoning following equation (50), orthogonality requires 

. Therefore equation (52) is reduced to  

     (53) 

Again applying orthogonality to (53) leads to 

    (54) 

as  and  are the only non-zero terms, and  were provided in equation  

(43).  

 The subsequent derivation is regarding . Following the procedure which led to 

equation (52), we have 
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   (55) 

Here, again, orthogonality imposes . 

Therefore equation (55) is reduced to  

   (56) 

Again, using orthogonality in equation (56) yields 

  (57) 

as  and  are the only non-zero terms.  

 Thirdly  is obtained similarly as  and . Therefore  
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         (58) 

as again  and  are the only non-zero terms.  

Given that , , and  are obtained in equations (54), (57), and (58) 

respectively, when substituted into the second term of equation (41) leads to the 

following 

  (59) 

Simplifying equation (59) gives 

  (60) 

which is 

  (61) 

where again  is identically  of equation (32).  
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Any function with argument in the domain [-1,1] can be expanded in Legendre 

Polynomials Ref [24]. Hence, since  lies in this domain, the phase function 

can be expressed as 

       (62) 

where  is a Legendre Polynomial.  

Looking at equation (62), recall for a generic  

 

 

0

1

1

.

P x

P x x




           (63) 

Using equation (63) in conjunction with the second part of equation (62),  and  are 

computed as follows 

     

   

1

0 0

1

1

1
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      (64) 

and 
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


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       (65) 

Recall from equation (35) how g  is defined 
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Finally, using equations (64), (65), and the definition of g ,  

1
1

0 0

2

3

2 3
g




 
       (66) 

and thus  

1
0.

3
g


             (67) 

This completes the derivation of equation (31). 

Continuing from equations (30) and equation (31),  

 

, 

if the sources are isotropic ( ), and  is neglected, , then 

equation (31) becomes  

     0, 1 ( ) , .
3

c
r t g K r J r t             (68) 

Dividing equation (68) by  01 ( )g K r   gives 

     (69) 

with  and . Here, ( )D r  is the diffusion 

coefficient and ( )K r  is the mean-free-path.  

Substituting equation (69) into equation (30) 
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   (70) 

or 

        (71) 

where  is a linear self-adjoint operator defined as 

 0( ) 1 ( )D r K r c       £ .         (72) 

It is important to realize the first term of the linear self-adjoint operator, £ , can be 

expanded as in Ref [23] 

 

2( ) ( ) ( ) .D r D r D r                       (73) 

In addition, in most previous works  and  are assumed to be constants. 

Consequently , , and the  operator is now 

.          (74) 

Therefore, the general equation, equation (71), is transformed into 

 
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     (75) 

or since 
   ,,

0
Q r tr t

t t

 
 

 
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1
, 0.

Kc
r t

D




 
   
 

        (76) 

Note: equation (76) is a tractable form that is often used in Lightning Radiative Transfer.  
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Sturm-Liouville 

As in Ref [20], Ref [22],and Ref [25], the Sturm-Liouville process will now be 

used on equation (71). Since  is a self-adjoint operator, it has complete and orthogonal 

eigenfunctions, , a solution to equation (71) can be expanded as 

         (77) 

where the eigenfunctions,  i r , and corresponding eigenvalues, 
i , are obtained from 

the auxiliary Sturm-Liouville problem 

   2 .i i ir r   £           (78) 

In order to determine the coefficient, ( )i t , the orthogonality of the 

eigenfunctions will be used. To proceed with this, equation (77) will be multiplied by 

 j r  and integrated over the volume.  
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      (79) 

Notice, equation (79) is purely a function of t . Let 

       2, ( ) .i i i i

V V

t r r t dV t r dV             (80) 

Solving for ( )i t  leads to 
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Taking the process that was used to derive equation (80) and applying it to 

equation (71) gives 

 
   

 ,
, 0.

Qii

i

V

r tt
r r t dV

t t
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However, the term  can be simplified. Starting with equation (78) 

     

       

     

2

2

2

,

, ,

, .

i i i

V

i i i

V V

i i i

V

r r r t dV

r r t dV r r t dV

t r r t dV

   

    

   

   







 



£

£

£

       (83) 

Substituting equation (83) into equation (82) to obtain 
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Now, Laplace’s Transform is introduced as  and 

is applied to equation (84) to obtain 

       (85) 

where 
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 Using these equations in equation (85) yields 
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From equation (86), ( )iP s  is obtained 
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 
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The inverse Laplace transform of equation (87) is 
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Here,  
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Implementing equation (89) into equation (88) leads to 
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When equations (81) and (90) are applied to equation (77), the mathematical form of 

 ,r t  is provided 
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 Referring back to equation 7 of Ref [20], the intensity is given as 

1 3ˆ ˆ( , , )
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I r t J
c
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 
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The importance of equation (69) and equation (91) can be seen in equation (92). These 

two steps solve the mathematical representation of the diffusion model for lightning 

radiative transfer.  
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Different Known Applications of the Model 

In this section, three different geometries will be taken into consideration. They 

can be found in Ref [20], Ref [26], and Ref [21].  

Cartesian Coordinates: 

Ref [17] solves equation (78) using Cartesian coordinates to obtain the 

eigenfunctions, eigenvalues, and the intensity respectively: 

       (93) 

     (94) 

.  (95) 

Spherical Coordinates: 

Ref [26] solves equation (78) using spherical coordinates to produce the same 

quantities as stated above: 
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where the ’s are the zero’s for the spherical Bessel equation.  
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Cylindrical Coordinates: 

Ref [21] solves (78) using cylindrical coordinates to give analogous expressions: 
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  (101) 

where here  is the radius of the cylinder (cloud), and  is the height.  

Statistical Approach: 

 In Ref [27], a Monte Carlo approach is used to study the intensity of radiation 

through clouds due to lightning. In this approach, photon collision was calculated one-by-

one and summed together. It is quite different from the analytical approach presented 

above. In addition, the authors of Ref [27] stated that it was difficult to obtain reliable 

Monte Carlo statistics for the angular distribution of photons that escape a cloud surface 

because there are too many solid angle bins. The above remark is also echoed in the 

summary section of Ref [20]. The Monte Carlo approach is computer intensive and cost 

inefficient.  

This sums up the most relevant previous works that have been done for finding 

the intensity or the photon density within a cloud immediately after a lightning strike 

using the diffusion model.  

a L
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Chapter 3 – General Diffusion Coefficient 

 

In previous works, the coefficient of diffusion was held constant. In this thesis, we 

consider the inverse mean-free-path K as a function of space. The coefficient of diffusion 

D is dependent on the inverse mean-free-path. As D varies as a function of space, the £  

operator of equation (74) becomes more general. The new model assumes D to vary 

along one component of the location of the lightning event. Specifically our model 

assumes the cloud to have cylindrical geometry which is one of the most relevant 

geometries for studying lightning propagation through clouds.  

Using the cloud’s cylindrical symmetry and the physical characteristics of the 

coefficient of diffusion, it is appropriate to consider only radial dependence of the 

diffusion coefficient (i.e. ( )
a

D r
r

 ) Ref [28]. Here, a is a number that is generic to the 

cloud. A value for a is deduced using the constant approximation for D  of Ref [21]. In 

addition, r is the radial component of the location of the lightning event. To the best of 

the author’s knowledge, no such model has yet been studied. Since the new operator £ , 

analogue to equation (74), is a more general transformation of the fundamental nature of 

the differential equation, equation (72). This indeed is a significant departure from the 

previous model as demonstrated below.  

 

Solving Sturm-Liouville in Cylindrical Coordinates for Generic ( )D r : 

Beginning with the definition of £  in equation (72) and substitution into equation 

(78) leads to 



40 

 

  2

0( ) ( ) 1 ( ) ( ).i i ir D r K r c r                 (102) 

Simplifying equation (102) gives 

 2

0[ ( ) ] (1 ) ( ) ( ) 0.i iD r K r c r               (103) 

As in Chapter 2,  

 2[ ( ) ] ( ) ( )D r D r D r              (104) 

Using this vector decomposition, equation (103) becomes 

  2 2

0( ) ( ) (1 ) ( ) ( ) 0.i iD r D r K r c r              (105) 

Equation (105) is general and applicable to any cloud model.  

Introducing cylindrical coordinates, equation (105) is transformed as  

 
2 2

2

02 2 2

1 1
( ) ( ) (1 ) ( ) ( ) 0.i iD r r D r K r c r

r r r r z
  



       
          

       
  (106) 

Notice that equation (106) has four terms. In order to continue with the derivation, 

the second term will be analyzed separately. The model imposes only radial variation on 

( )D r . With this assumption the second term is written as 

 
1 ( ) ( )ˆˆ ˆˆ( ) .

D r D r
D r r z r

r r z r r r




       
         

       
    (107) 

Thus equation (106) is modified to obtain 

2 2
2

02 2 2

1 1 ( )
( ) (1 ) ( ) ( ) 0.i i

D r
D r r K r c r

r r r r z r r
  



         
         

         
  (108) 

 To solve equation (108), the well-known technique of separation of variables is 

utilized to find ( )i r . For more detail on this technique, see Ref [29], Ref [24], and Ref 
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[22]. The method begins by dividing equation (108) by ( )D r , where ( ) 0D r   for any r  

which leads to 

22 2

0

2 2 2

( )
(1 ) ( )1 1

( ) 0.
( ) ( ) ( )

i
i

D r
K r crr r

r r r r z D r r D r D r

 




 
              

      
 

  (109) 

To simplify the subsequent derivations, the following results are provided: 

 0

2

0 0

2

0

2

0

0

2

( ) ,
3 1 ( )

(1 ) ( ) (1 )
,

( ) 3(1 ) ( )

(1 )
,

3(1 )

.

X

Y i

c
K r

g D r

K r c c

D r g D r

c
C

g

C



 












 











        (110) 

Implementing equation (110) into equation (109) we have 

2 2

2 2 2 2

( )
1 1

( ) 0.
( ) ( ) ( )

X Y
i

D r
C Crr r

r r r r z D r r D r D r




 
              

      
 

   (111) 

Now assume ( ) ( ) ( ) ( )i r R r Z z   . Utilizing this new form of the solution, ( )i r  in 

equation (111) gives  

2 2

2 2 2 2

1 1 ( )
( ) ( ) ( ) 0

( ) ( ) ( )

X YC CD r
r R r Z z

r r r r z D r r D r D r




      
        

      
  (112) 

or alternatively  

2 2

1 ( ) 1
0.

( ) ( ) ( )

X YC CD r
R R R Z RZ Z R R Z

r D r r D r D r

   
                 

   
  (113) 

Dividing either equation (112) or equation (113) by ( ) ( ) ( )R r Z z  reduces the 

derivation to 
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2 2

1 ( ) 1
0.

( ) ( ) ( )

X YC CR R D r R Z

R r R D r R r Z D r D r

       
        

  
     (114) 

To obtain ( )Z z , the constant of separation 2  is introduced below  

2

2 2

1 ( ) 1
.

( ) ( ) ( )

X YC CR R D r R Z

R r R D r R r D r D r Z


      
         

  
    (115) 

What remains of equation (115) is a mixed differential equation in variables r  and   

given by 

2

2 2

1 ( ) 1
0.

( ) ( ) ( )

X YC CR R D r R

R r R D r R r D r D r


      
        

  
     (116) 

With an additional separation constant 2m , equation (116) is decoupled into  

2 2 2 2 2

2

( )
.

( ) ( ) ( )

X YC CR R D r R
r r r r m

R R D r R D r D r


      
         

 
    (117) 

As demonstrated above, the fundamental partial differential equation governing 

the problem given by equation (106), produced via Separation of Variables three ordinary 

differential equations. Specifically:  

2 ,
Z

Z



             (118) 

2 ,m


 


           (119) 

2 2 2 2 2

2

( )
0.

( ) ( ) ( )

X YC CR R D r R
r r r r m

R R D r R D r D r


     
        

 
    (120) 

 The next step is to independently solve equations (118), (119), and (120). 

Equation (118) is an Ordinary Differential Equation (ODE) in the harmonic oscillator 

family. The general form for Z  is  

   ( ) sin cos .Z z A z B z           (121) 
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For our purposes, when 0z   and z L  ( L  being the height of the cylindrical cloud), 

0Z   since ˆ( , , )I r t  vanishes at the top and bottom of the cloud. However, the cosine 

function is not equal to zero when its argument is zero. Therefore 0B  . In order to 

make the sine term vanish for any L , 
n

L


   with n a positive integer ranging from 0 to 

infinity. Thus ( )Z z  takes the form 

( ) sin .n n

n
Z z A z

L

 
  

 
         (122) 

The constant 
nA  is to be determined from applying the boundary conditions.  

 The treatment of equation (119) is similar to that of equation (118). Its solution is 

   ( ) sin cos .m m mU m V m             (123) 

Notice in equation (123) the sine and cosine functions are preserved because there is no 

vanishing boundary for the azimuthal component.  

 Observe equation (120), the radial equation, is more complicated and is of the 

form 

2 2 2 2 2

2

( )
0.

( ) ( ) ( )

X YC CD r
r R rR r R r m R

D r D r D r


   
           

  
    (124) 

At this juncture, the diffusion coefficient, ( )D r , will be replaced by 
a

r
 where 0 r    

and 0a  .  

The advantage with this model is that the diffusion coefficient varies inversely 

with r , which follows the density one might expect in a cloud. However, this model has 

the potential for D  to become infinite at the origin of coordinates, and eventually 
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approach zero as r grows sufficiently large. These two extreme cases are not realistic. 

Their treatments are beyond the scope of this analysis.  

Upon substitution and subsequent manipulations, we arrive at the following 

equation  

2 2 2 2 2

2
0X Y

a
d

r
C Cdrr R rR r R r m R

a aa

r rr



 
    

    
           
      

            

, 

2
2 3 4 3 2 2 2

2
0X Y

a

C Cr
r R rR r R r r r m R

a a a


 
 

            
 

, 

2 4 3 2 2 2

2
0X YC C

r R rR rR r r r m R
a a


 

          
 

, 

2 4 3 2 2 2

2
0X YC C

r R r r r m R
a a


 

       
 

, 

2
2 2

2 2
0.X YC C m

R r r R
a a r


 

       
 

       (125) 

The result given in equation (125) is a very difficult ODE to solve. Its analytic 

solution is not obvious. However, let us compare the order of magnitudes of 
2

2

XC
r

a
, YC

r
a

, 2 , and 
2

2

m

r
. Recall that 

2

0

0

(1 )

3(1 )
X

c
C

g









 and 2

Y iC  . According to Ref [20], 

0.84g  , 
0 0.99996  , and 2 16 2 29 10 /c m s   implying 

  5 16

12 2 2

1

4 10 9 10
7.5 10 /

3(1.6 10 )
XC m s





 
  


. In Ref [21] D  is selected to be a constant 

calculated to be equal to 101 10D    with 
2 90.17 1.7 10i D    .  
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In this work, ( )
a

D r
r

  with an average value assumed to be 10( ) 1 10D r   . The 

expected distance is taken as 
2

2
 multiplied by the radius of the cylinder which ranges 

from 5km to 15km for a thundercloud as used in Ref [20] and Ref [21]. Thus, 

10

3

2
( ) 1 10

5 10

a a
D r

r m
   


 and the approximate value of a  is 

 10 3 132
1 10 5 10 3.5 10

2

 
       

 
.  

Returning to the bracketed term of equation (125) with all appropriate 

substitutions, leads to 

22 12 9 2
2 2 2

2 2 27 13 4 2

7.5 10 1.7 10

1.2 10 3.5 10 2 10

X YC C m n m
r r r r

a a r r




   
         

   
 

     
2

15 2 5 8 2

2

2

2 1 0 2 2

6.3 10 4.8 10 2.5 10

1

m
r r n

r

g r g r g g
r

  



      

   

     (126) 

Different values of r  and m  applied to equation (126) generate different modifications 

of equation (125). To each modification is associated a different radial equation 

producing specific results. The work delineated above will be the content of the next 

chapter.  
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Chapter 4 – Different Approximations to Solve the Radial Equation 

 

Thus far this work has provided a scientific review of lighting in chapter 1, the 

adequate mathematics used to model photons propagating in a thundercloud in Chapter 2, 

where the thundercloud was treated as a nuclear reactor. In addition, the results for three 

different geometries were given. In particular these geometries were: (a) parallelepiped, 

(b) cylinder, (c) sphere. Moreover, a Monte Carlo approach was also included. A constant 

feature to all previously mentioned works is that the coefficient of diffusion was held 

constant.  

In the third chapter, a new model was introduced. This new model departs from 

the others by allowing the diffusion coefficient to vary as a function of space. To arrive at 

functional forms ready for subsequent applications, ( )D r  is assumed to be equal to 
a

r
. 

Even though cylindrical coordinates were selected, the consequences of this assumption 

led to serious complications as displayed in equation (125) after the method of separation 

of variables was employed.  

The solution for the final form of the radial equation is derived. Notice, there are 

two constants and two integers. These constants were approximated and compared with 

the azimuthal eigenvalue (m), over different values of r. Consequently, three situations 

are delineated below.  

Situation 1: Small r 

This case corresponds to 1 ≤ m ≤ 50, 5m ≤ r ≤ 350m. To see how equation (125) 

reacts to the selected values, a short simulation is presented using Excel. See Figure 1 and 

Appendix B. 
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Figure 1: Situation 1 

 

 

In Figure 1, the green represents the different possible 
2

2

m

r
 terms; the green curve to the 

far left corresponds to 1m   while the curve on the far right represents 50m  .  

 Analyzing the data provided in Table 1, and illustrated in Figure 1, it is evident 

that the 
2

2

m

r
 term is dominant as compared to the other terms and it is retained. 

Therefore, equation (125) takes the following form 

2 2 0.r R m R            (127) 
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 To arrive at Figure 1, 11 different values of m  were used. Each value gives rise to 

a table similar to Table 1. To avoid redundancy, only one out of the 11 possible tables 

was given. Notice all the tables would be the same except for the fifth, sixth, and eighth 

columns since these columns are m  dependent. The fourth column displaying 
1  

demonstrates how much larger the 
1g  values are than the 

2g  values. The fourth column 

displaying 
2  demonstrates how much larger the 

2g
 values are than the 

1g values.  

 Returning to equation (127), it is identified as Cauchy-Euler of non-constant 

coefficient. The solutions are known to be in the power family. Therefore the trial 

solution is of the form R r . Upon substitution into equation (127) yields a 

characteristic polynomial with roots given by 
21 1 4

.
2

m


 
   

The general form of ( )R r  is written as 

2 21 1 4 1 4

2 2 2
1 2( ) .

m m

R r r c r c r
 

 
  
  

        (128) 

To be consistent with Figure 1, 
1 0c   and thus the final functional form of the radial 

equation (125) adapted to the assumption above is 

 
21 1 4

2 ,R r C r
 

           (129) 

where .m  

 Now that the r ,  , and z  components have been obtained and given by 

equations (122), (123), and (129), the eigenfunction corresponding to the differential 

equation, equation (128), is 
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   
2 21 1 4 1 1 4

2 2( ) sin sin cos sin .mn mn mn

n n
r C r m z D r m z

L L

 
  

       
     

     

  (130) 

Observe that equation (130) is the result corresponding to the first modification of 

equation (125) with the approximated 2 91.7 10 .mn     

 

Situation 2: Large r 

 This case corresponds to 1 ≤ m ≤ 50, 355m ≤ r ≤ 15km. To see how equation 

(125) reacts to the selected values, a short simulation is presented using Excel. See Figure 

2 and Appendix C.  

 

Figure 2: Situation 2 
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 Analyzing the data provided in Table 2, and illustrated in Figure 2, the most 

important term is the YC
r

a
 term and will be retained. Therefore, equation (125) takes the 

form 

0.YC
R rR

a
             (131) 

 Equation (131) is recognized to be a modified Airy equation with solution 

 
1/3 1/3

2 2

1 2 .R r c Ai r c Bi r
a a

       
         

         

      (132) 

For the solution to be bounded, 
2 0c   and the final radial equation for large r  becomes 

 
1/3

2

1 .R r c Ai r
a

  
   

   

         (133) 

Using equation 2.37 of Ref [30] equation (133) is 

   
   

 
 

 

3

0

1/3
2

2/3

1/3

1 1 2
3 (0) (0)

3 ! 3 3 (3 1)

( )
( 1)( 2)...( 1)

( )

1
(0)

2
3

3

1
(0)

1
3

3

k k

k

k k k

k

r r
R r Ai r Ai Ai

k k

a

d k
d d d d d k

d

Ai

Ai

 









     
       

    

 
  
 

 
     




 

 
 

  
 

 
 



   (134) 

where   1

0

x nn e x dx


     and 0n   Ref [31]. 
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The graphs below (courtesy of Wolfram Alpha) demonstrate the effectiveness of the 

( )
a

D r
r

  model. The proper physical attributes of the problem are respected and the 

solution slowly decays for large r . See figures 3 and 4.  

 

Figure 3: Airy Function Over Small Range 

 

 

Figure 4: Airy Function Over Larger Range 

 

 

To satisfy the boundary condition that the solution vanishes at the radius of the cylinder, 

aR ,  

    0aR r Ai R            (135) 

corresponding to the zeros of the Airy function as provided from equation 2.52 of Ref 

[30]: 
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 

2/3

2 4 6

5 5 77125
1 ...

48 36 82944

3
4 1 .
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Analogous to equation (130), the eigenfunction corresponding to situation 2 is 
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      (137) 

or 

   
 

 

 

 

3

0

1 1 2
( ) 3 (0) (0)

3 ! 3 3 (3 1)

sin
sin .

cos

k k

k

mn

k k k

mn

mn

r r
r Ai Ai

k k

C mn
z

L D m

 










     
     

    

  
   
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
    (138) 

 

Situation 3: Azimuthal Symmetry 

 This case corresponds to 0m  , or complete azimuthal symmetry. Incorporating 

this assumption into equation (125) yields  

2 2

2
0X YC C

R r r R
a a


 

      
 

.         (139) 

To convert equation (139) to a more tractable form, let 2 2

XC
C

a
 , 1

YC
C

a
 , and 2

0C   

so now the above equation reads 

2

2 1 0 0.R C r C r C R                (140) 

In order to solve equation (140), it will be written into a Parabolic Cylinder 

equation given below 

2
2

2

1
0.

4

d R
q p R

dq

 
   
 

         (141) 
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First equation (140) needs to be modified as 

2
22

1 1
2 02

2 2

0.
2 4

C Cd R
C r C R

dr C C

  
       
   

       (142) 

Using the substitution 1

22

C
q T r

C

 
  

 
 in equation (142), we obtain the successive three 

equations 
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  
, 
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dq T T C

  
     

  
       (143) 

To model equation (143) after equation (141), 2

4

1

4

C

T
  or  

1/4

24 .T C   T  is not 

imaginary because q  should be real. Therefore the q  and the p  from equation (141) 

takes the values of  
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   (144) 

and thus equation (143) takes the parabolic cylinder form of equation (141).  
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According to Ref [32] the solution of equation (143) is 
1 2( )R q y y   where 

1y  

are the even solutions and 
2y  are the odd solutions. The even and odd solutions are 

defined below: 

2
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1

24
1 1

1

24
2 2

1 1 1 1
, ,

2 4 2 2

1 3 3 1
, , .

2 4 2 2
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  

 

 
  

 

        (145) 

Here, M is a confluent hypergeometric function Ref [32] and is represented as follows 

 
 

 0

, ,
!

j
j

j j

s z
M s t z

t j





          (146) 

where the  
j

s  notation is defined in equation (134). Upon analyzing the graphs (see 

Figure 5 and Figure 6) of 
1y  and 

2y , we noticed that 
1y  does not vanish at the boundary. 

Thus 
1 0c  . Since 

2y  satisfies the boundary conditions, 
2y  is the radial component.  
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Figure 5: Log base 10 of Even Function for M 
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Figure 6: Odd Function of M 

 

 

Analogous to the previous eigenfunctions, the eigenfunction corresponding to 

situation 3 is 
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or 
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Chapter 5 - The Method of Frobenius 

 

In the previous sections, for practicality, different approximations were made to 

work with the radial equation given below,  

2
2 2

2 2
( ) ( ) 0.X YC C m

R r r r R r
a a r


 

       
 

       (149) 

This section addresses the challenging mathematics if one were interested in considering 

solutions that varied wildly between small azimuths. The method used to solve equation 

(149) is the method of Frobenius.  

 The first step to transform equation (149) into a form so that the Method of 

Frobenius can be used, is to multiply equation (149) by 
2r ; for simplicity the constants in 

equation (149) will be changed to pC  where p  is the power of the corresponding r  term. 

This will be elucidate when looking at the following equation 

2 4 3 2

4 3 2 0( ) ( ) ( ) 0r R r C r C r C r C R r             (150) 

where 2

0C m  , 2

2C   , 3
YC

C
a

 , 4 2

XC
C

a
  .  

The method of Frobenius assumes the function takes on the form  

0 0

( ) .k j j k

j j

j j

R r r a r a r
 



 

            (151) 

Inserting equation (151) into equation (150) yields 
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   (152) 

In order to find the values for k , the indicial equation needs to be obtained. This is 

accomplished by allowing j to equal zero. In order for a polynomial to be identically 

equal to zero, the coefficient of each power must independently equal to zero. Collecting 

the r
k
 terms produces 

 0 0( 1) 0ka r k k C            (153) 

where 
0 01 1 4 1 41

.
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C C
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  
    

Let 01 4t C   so above becomes 
1

.
2 2

t
k    

To facilitate subsequent development, equation (152) is modified to include the term 
1C r  

with 
1 0C    

  4 3 2

0 4 3 2 1
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a r j k j k C C r C r C r C r






               (154) 

Combining all terms of identical powers of r , allows equation (154) to be recast in a 

simpler form given in Appendix D. 

Application of linear independence to equation 

Error! Reference source not found. imposes that each column associated to a power 
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must be identically zero. Therefore we have the recursion relation for 
1a  and 

2a  given 

below 

 

 
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For simplicity, consider the expression 
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Using equation (156), the 
2a  term of equation (155) is rewritten as 
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.  (157) 

 Following the same procedure as above, both equation and values for 
3a  and 

4a  

are deduced below 
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Or to summarize, the first five coefficients are listed below 
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 At this juncture, the goal is to arrive at a tractable form for 
0

j k

j

j

a r






 . This is 

where the summary presented in equation (160) is useful. Looking at the first terms and 

collecting their components by the number of C ’s present, the following general 

expression is obtained.  
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or since 
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 Upon multiplication of equation (162) with the azimuthal and z  dependence, the 

eigenfunction can be deduced 
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  (163) 

This is the most general form for the eigenfunction generated by the model without any 

approximation.  
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Chapter 6 – Conclusions and Future Work 

 

Intensity 

 The work performed in this thesis was to find eigenfunctions corresponding to the 

different approximations used to simplify the radial component of the governing 

differential equation (equation(125)) which is 

2
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2 2
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a a r
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       (164) 

The different assumptions used to solve equation (164) were based on the magnitude of 

the constants and allowing m  to vary from 1 to 50. In addition, the azimuthal symmetry 

case was studied in detail. However, the general solution was also provided using the 

method of Frobenius.  

 For application purposes, the intensity of radiation due to lightning in the cloud 

needs to be obtained. Many instruments involved in lightning detection do provide the 

numerical value for the intensity. To calculate the intensity, equation (90)and the 

equation for the lightning source Ref [20] must be used with the appropriate 

eigenfunctions derived earlier in chapters four and five. Equation (90) and the model for 

the lightning source are provided below 
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Moreover, the formula for obtaining the intensity of radiation from lightning is known to 

be  

1 3 ˆ
4

I J
c




 
   

 
          (167) 

according to Ref [20] when a proper source of lightning has been identified. To adapt the 

general model defined in the thesis by, ( )
a

D r
r

 , to the four treated cases, equations 

(130), (137), (148), and (163) would be utilized. This would increase the scope of the 

present work.  

 

Simulation of Results and Comparison with Instrument Generated Data 

 In this type of research, analytical solutions are necessary but not sufficient. All 

instruments must be calibrated in order for their results to be acceptable. This thesis does 

indeed generate four different analytic solutions representing radiation intensities. Each 

solution for the intensity not only requires a unique program to describe the analytic 

solution, but also a thorough investigation into the implications and validity of the result 

upon being compared with previous results and previous measurements.  

 The demands for this work to be accomplished are summarized below: 

a) Obtain mathematically and physically correct analytical solution for the intensity 

b) Numerical program the analytic solution 

c) Use part a) and b) to simulate the cloud (i.e. create a fictitious cloud) 

d) Animate the cloud using up-to-date software (i.e. observe the propagation of 

lightning through the mathematically generated cloud) 

e) Compare the model results with instrument data 
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One of the purposes of this work can be used to calibrate ground or space born lightning 

instruments.  

 

Z Dependence 

 It is possible that the diffusion coefficient could change only as a function of z. As 

the cloud increases in altitude, the changes in temperature become noticeable. This is a 

physical phenomenon which affects the density of the cloud and causes serious 

fluctuation in the diffusion processes. In such situations, what are the consequences for 

the new model?  

 The first consequences will be manifested in the general operator which will take 

the form  

 0( ) 1 ( )D z K z c       £ .        (168) 

leading to  

 

2

2 2 2 2

2

2

( ) ( ) 0

( ) ( ) ( ) 0

( )
( ) ( ) ( ) 0.

( ) ( ) ( )

X Y

m

r R r rR r r m R r

C CD z
Z z Z z Z z

D z D z D z

 





   

    

  
      

 

     (169) 

Observe that the first equation is harmonic in nature equation, and the second equation is 

cylindrical Bessel. The difficulty lies in the third equation as more research would need 

to be accomplished to find a suitable functional representation for ( )D z .  

For example, if ( )D z is allowed to equal z , the azimuth is assumed to be 

symmetric ( 0m  ), the height of the cloud is about a thousand meters from top to bottom 

( 310L  ), 
2 910YC    as was also done above, then the resulting solution for the 
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second equation is  0J r . If   is taken to be a small value, then the third equation can 

be approximated to be  

 2 ( ) ( ) ( ) 0Y Xz Z z zZ z Z z zC C     .       (170) 

Using Wolfram Alpha, the solution for ( )Z z  is determined to be Bessel of order 2 XC  

which is extremely difficult since 127.5 10XC   .  

 

Conclusion - Conversion to Scattering 

 Once the intensity has been obtained at a point within the cloud, it will be 

converted into a plane wave which is electromagnetic in nature. That plane wave will be 

considered as the incidence required to activate the scattering problem. Notice, the cloud 

is composed of a distribution of scatters. The distribution can be homogeneous or 

nonhomogeneous. The scatterers might be uniform or different. The purpose will be to 

apply the work done by Victor Twersky in Multiple Scattering Theory Ref [33], Ref [34], 

Ref [35]. Three cases will be considered: 

i) The Single object in Isolation: The scatterer is penetrable. incidence  

 

Figure 7: Single Scatterer 

incidence  

 

 

 

 

incidence  

inside  scatteredu  
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Two solutions must be obtained.  

a) The total outside solution 

out incidence scatteredu         (171) 

b) The total solution 
in  inside the scatterer.  

c) The transition conditions will be applied at the boundary 

 

   ˆ ˆ

out in B

n out n in B

 

 







    

  (172) 

ii) A Fixed Configuration of N Scatterers 

 

Figure 8: Fixed Configuration of Scatterers 

 

 

 

 

 

 

 

The purpose of this case is to derive similar to Twerski Ref [36] the total 

multiple scattering solution for the obstacle located at 
tr  using the self-consistent 

approach through the general system of integral equations describing the multiple 

scattering amplitude 

         
ˆˆˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, : , : / 2 .tik p i b

t t t s s pn
G o g o i e g o p y G p d 

 
       (173) 
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Here, ô  is the direction of observation; î  the direction of incidence; and ̂  is the 

polarization. In addition, 
n  indicates the contribution from all neighbors 

excluding the scatterer located at 
tr . The integral is over the Sommerfeld’s path 

defined by pr  Ref [29].  

iii) The Ensemble of Fixed Configurations 

Different combinations will be opened for consideration:  

a) The fixed configurations and the obstacle are uniform or homogenous 

b) The fixed configurations are uniform. However, the distribution of 

scatterers is inhomogeneous  

c) The fixed configurations are heterogeneous and the embedded obstacles 

are homogenous 

d) The fixed configurations in the obstacles are non-homogenous  

Regardless of the particular case studied, appropriate statistical theory must be 

applied to derive the lightning radiative transfer equation counterpart of Twersky’s given 

in Ref [37]  

         ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ; , , , .t c tsik r ik R

t s ts c s c

v c

G r r g r k ye dr f R g r r G r r e


 



        (174) 

Equation (174) will be used to derive the bulk propagation parameter   and  of the 

cloud.  
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Appendix A 

 

 

 

 

where  from Ref [22]. 
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Appendix B 

 

Table 1: Situation 1 

r 2g  
1g  µ1 2g

 (m=50) µ2 0g  

5 1.53061E-13 2.42857E-04 1.58667E+09 1.00000E+02 2.42857E-06 9.86960E-04 

20 2.44898E-12 9.71429E-04 3.96667E+08 6.25000E+00 1.55429E-04 9.86960E-04 

40 9.79592E-12 1.94286E-03 1.98333E+08 1.56250E+00 1.24343E-03 9.86960E-04 

60 2.20408E-11 2.91429E-03 1.32222E+08 6.94444E-01 4.19657E-03 9.86960E-04 

80 3.91837E-11 3.88571E-03 9.91667E+07 3.90625E-01 9.94743E-03 9.86960E-04 

100 6.12245E-11 4.85714E-03 7.93333E+07 2.50000E-01 1.94286E-02 9.86960E-04 

120 8.81633E-11 5.82857E-03 6.61111E+07 1.73611E-01 3.35726E-02 9.86960E-04 

140 1.20000E-10 6.80000E-03 5.66667E+07 1.27551E-01 5.33120E-02 9.86960E-04 

160 1.56735E-10 7.77143E-03 4.95833E+07 9.76563E-02 7.95794E-02 9.86960E-04 

180 1.98367E-10 8.74286E-03 4.40741E+07 7.71605E-02 1.13307E-01 9.86960E-04 

200 2.44898E-10 9.71429E-03 3.96667E+07 6.25000E-02 1.55429E-01 9.86960E-04 

220 2.96327E-10 1.06857E-02 3.60606E+07 5.16529E-02 2.06875E-01 9.86960E-04 

240 3.52653E-10 1.16571E-02 3.30556E+07 4.34028E-02 2.68581E-01 9.86960E-04 

260 4.13878E-10 1.26286E-02 3.05128E+07 3.69822E-02 3.41477E-01 9.86960E-04 

280 4.80000E-10 1.36000E-02 2.83333E+07 3.18878E-02 4.26496E-01 9.86960E-04 

300 5.51020E-10 1.45714E-02 2.64444E+07 2.77778E-02 5.24571E-01 9.86960E-04 

320 6.26939E-10 1.55429E-02 2.47917E+07 2.44141E-02 6.36635E-01 9.86960E-04 

340 7.07755E-10 1.65143E-02 2.33333E+07 2.16263E-02 7.63621E-01 9.86960E-04 

360 7.93469E-10 1.74857E-02 2.20370E+07 1.92901E-02 9.06459E-01 9.86960E-04 

380 8.84082E-10 1.84571E-02 2.08772E+07 1.73130E-02 1.06608E+00 9.86960E-04 

400 9.79592E-10 1.94286E-02 1.98333E+07 1.56250E-02 1.24343E+00 9.86960E-04 

420 1.08000E-09 2.04000E-02 1.88889E+07 1.41723E-02 1.43942E+00 9.86960E-04 

440 1.18531E-09 2.13714E-02 1.80303E+07 1.29132E-02 1.65500E+00 9.86960E-04 

460 1.29551E-09 2.23429E-02 1.72464E+07 1.18147E-02 1.89110E+00 9.86960E-04 

480 1.41061E-09 2.33143E-02 1.65278E+07 1.08507E-02 2.14864E+00 9.86960E-04 

495 1.50015E-09 2.40429E-02 1.60269E+07 1.02030E-02 2.35644E+00 9.86960E-04 
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Appendix C 

 

Table 2: Situation 2 

r 2g  
1g  µ1 2g

 (m=50) µ2 0g  

500 1.53061E-09 2.42857E-02 1.58667E+07 1.00000E-02 2.42857E+00 9.86960E-04 

1000 6.12245E-09 4.85714E-02 7.93333E+06 2.50000E-03 1.94286E+01 9.86960E-04 

1500 1.37755E-08 7.28571E-02 5.28889E+06 1.11111E-03 6.55714E+01 9.86960E-04 

2000 2.44898E-08 9.71429E-02 3.96667E+06 6.25000E-04 1.55429E+02 9.86960E-04 

2500 3.82653E-08 1.21429E-01 3.17333E+06 4.00000E-04 3.03571E+02 9.86960E-04 

3000 5.51020E-08 1.45714E-01 2.64444E+06 2.77778E-04 5.24571E+02 9.86960E-04 

3500 7.50000E-08 1.70000E-01 2.26667E+06 2.04082E-04 8.33000E+02 9.86960E-04 

4000 9.79592E-08 1.94286E-01 1.98333E+06 1.56250E-04 1.24343E+03 9.86960E-04 

4500 1.23980E-07 2.18571E-01 1.76296E+06 1.23457E-04 1.77043E+03 9.86960E-04 

5000 1.53061E-07 2.42857E-01 1.58667E+06 1.00000E-04 2.42857E+03 9.86960E-04 

5500 1.85204E-07 2.67143E-01 1.44242E+06 8.26446E-05 3.23243E+03 9.86960E-04 

6000 2.20408E-07 2.91429E-01 1.32222E+06 6.94444E-05 4.19657E+03 9.86960E-04 

6500 2.58673E-07 3.15714E-01 1.22051E+06 5.91716E-05 5.33557E+03 9.86960E-04 

7000 3.00000E-07 3.40000E-01 1.13333E+06 5.10204E-05 6.66400E+03 9.86960E-04 

7500 3.44388E-07 3.64286E-01 1.05778E+06 4.44444E-05 8.19643E+03 9.86960E-04 

8000 3.91837E-07 3.88571E-01 9.91667E+05 3.90625E-05 9.94743E+03 9.86960E-04 

8500 4.42347E-07 4.12857E-01 9.33333E+05 3.46021E-05 1.19316E+04 9.86960E-04 

9000 4.95918E-07 4.37143E-01 8.81481E+05 3.08642E-05 1.41634E+04 9.86960E-04 

9500 5.52551E-07 4.61429E-01 8.35088E+05 2.77008E-05 1.66576E+04 9.86960E-04 

10000 6.12245E-07 4.85714E-01 7.93333E+05 2.50000E-05 1.94286E+04 9.86960E-04 

10500 6.75000E-07 5.10000E-01 7.55556E+05 2.26757E-05 2.24910E+04 9.86960E-04 

11000 7.40816E-07 5.34286E-01 7.21212E+05 2.06612E-05 2.58594E+04 9.86960E-04 

11500 8.09694E-07 5.58571E-01 6.89855E+05 1.89036E-05 2.95484E+04 9.86960E-04 

12000 8.81633E-07 5.82857E-01 6.61111E+05 1.73611E-05 3.35726E+04 9.86960E-04 

12500 9.56633E-07 6.07143E-01 6.34667E+05 1.60000E-05 3.79464E+04 9.86960E-04 

13000 1.03469E-06 6.31429E-01 6.10256E+05 1.47929E-05 4.26846E+04 9.86960E-04 

13500 1.11582E-06 6.55714E-01 5.87654E+05 1.37174E-05 4.78016E+04 9.86960E-04 

14000 1.20000E-06 6.80000E-01 5.66667E+05 1.27551E-05 5.33120E+04 9.86960E-04 

14500 1.28724E-06 7.04286E-01 5.47126E+05 1.18906E-05 5.92304E+04 9.86960E-04 

15000 1.37755E-06 7.28571E-01 5.28889E+05 1.11111E-05 6.55714E+04 9.86960E-04 
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Appendix D 

  0

0 0( )( 1)k k C a r   +   1

1 0C a r  +   2

2 0C a r  + … 

   +   1

0 1( )( 1)k k C a r   +   2

1 1C a r  + …  

   +   +         2

0 2( 1)( 2)k k C a r   + … 0  
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