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ABSTRACT

NUMERICAL ANALYSIS AND FLUID FLOW MODELING OF

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

by

Tahj Hill

Monika Neda, Examination Committee Chair

Professor of Mathematical Sciences

University of Nevada, Las Vegas

The Navier-Stokes equations (NSE) are an essential set of partial differential equations

for governing the motion of fluids. In this paper, we will study the NSE for an incompressible

flow, one which density ρ = ρ0 is constant.

First, we will present the derivation of the NSE and discuss solutions and boundary con-

ditions for the equations. We will then discuss the Reynolds number, a dimensionless number

that is important in the observations of fluid flow patterns. We will study the NSE at various

Reynolds numbers, and use the Reynolds number to write the NSE in a nondimensional form.

We will then derive energy and enstrophy balances for the NSE. At high Reynolds num-

bers, a fluid’s velocity u has many small spatial scales, which become difficult to account for,

especially in three-dimensional flow. We discuss the time relaxation model (TRM), which
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aims to truncate these small scales while allowing the large scales to be accurately resolved,

[25]. We will derive the energy and enstrophy balances for the TRM and show that the

energy and enstrophy are the same as the NSE, but with enhanced dissipation terms.

Finally, we will derive a continuous finite element variational formulation for the TRM.

Using FreeFEM++, we will run numerical results for the TRM for a specific benchmark

problem.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER 1 NAVIER-STOKES EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 REYNOLDS NUMBER AND TURBULENCE . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CHAPTER 3 ENERGY AND ENSTROPHY OF THE NAVIER-STOKES EQUATIONS 17

CHAPTER 4 TIME RELAXATION MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CHAPTER 5 NUMERICAL ANALYSIS OF THE TIME RELAXATION MODEL . . . . . 31

CHAPTER 6 NUMERICAL EXAMPLE: TAYLOR-GREEN VORTEX . . . . . . . . . . . . . . . . 43

CHAPTER 7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



LIST OF FIGURES

6.1 A three-dimensional representation of the initial Taylor-Green vortex over the
domain [0, 2π]3. The domain is represented in two “slices”: one to show the
velocity vectors and one to show the surfaces and velocity contours. . . . . . . . . . . 43

6.2 The Taylor-Green vortex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 The vorticity of Taylor-Green vortex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4 Energy and enstrophy versus time for Reynolds number Re =500,000 and

relaxation parameter χ = ∆t for 6,000 tetrahedral elements. . . . . . . . . . . . . . . . . . 47
6.5 Energy and enstrophy versus time for Reynolds number Re =500,000 and

relaxation parameter for 16,464 tetrahedral elements. . . . . . . . . . . . . . . . . . . . . . . . . 48
6.6 The velocity and vorticity of the TRM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



LIST OF ALGORITHMS

1 Fixed point iteration loop for the TRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



CHAPTER 1

NAVIER-STOKES EQUATIONS

Introduction

The Navier-Stokes Equations (NSE) are an essential set of partial differential equations for

governing the motion of fluids. Originally derived by Claude-Louis Navier in 1823, with a

more rigorous derivation by George Gabriel Stokes in 1845, the NSE are based upon the

application of the following important physical principles: Newton’s law of viscosity, which

relates shear stress in a fluid to the rate of distortion of fluid elements; the conservation of

mass, which states the mass of an isolated system remains constant over time; and Newton’s

second law, Force = mass × acceleration [6].

For a region Ω and 0 < t ≤ T , the Navier-Stokes equations are defined as

ρ (ut + u · ∇u)− µ∆u +∇p = f , (1.1)

∇ · u = 0, (1.2)

where u(x, t) is the fluid velocity, µ is the dynamic viscosity, ρ is density, p(x, t) is the fluid

pressure, and f(x, t) is the body force. Equation (1.1) is known as the Cauchy momentum

equation, which governs momentum transport, and equation (1.2) is known as the mass con-
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tinuity equation, which describes the movement of mass through a continuous fluid, [12].

Today, the NSE are of importance because they are complete equations of motion for a

viscous Newtonian fluid, one which obeys a general relationship between shear stress and

velocity. Viscosity, the measure of a fluid’s resistance to shear when in motion, decreases

with increasing temperature in a liquid while increasing with decreasing temperature in a

gas. The NSE describes the motion of fluids, such as air and water, from their laminar to

turbulent flows. As velocity increases, the flow of a fluid will change from laminar, flowing

in layers, to turbulent, having random fluctuations. As such, fluid velocity is a common

variable in applications of the NSE, as well as density ρ, pressure p, external forces f , and

tensor stress
−→
t , [3], [6]. Herein, we will study the NSE for an incompressible flow, one which

density ρ = ρ0 is constant.

Derivation of the Navier-Stokes Equations

The equations (1.1) and (1.2) are based on the conservation of momentum and conservation

of mass, respectively. The mass continuity equation states that if mass is conserved, the rate

of change of mass in a volume V is equal to the net mass flux across the boundary ∂V , [24].

The Cauchy momentum equation states that the rate of change of linear motion equals the

net forces acting on a collection of fluid particles, or Force = mass × acceleration, [24].

Below, we present the derivations of the two equations, beginning with the mass continuity

equation.
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Mass Continuity Equation

For a density ρ, the rate of change of mass is written as

∂

∂t

∫
V

ρdx, (1.3)

where ∂
∂t

represents the rate of change and
∫
V
ρdx is the total mass.

Let n be the outward normal to ∂V and take u · n < 0 to represent the inflow through

∂V . Then the net mass influx across the boundary is given by

−
∫
∂V

(ρu) · ndσ. (1.4)

Since (1.3) and (1.4) are equal, the mass continuity equation is given by

∂

∂t

∫
V

ρdx = −
∫
∂V

(ρu) · ndσ. (1.5)

By the divergence theorem,

∫
∂V

(ρu) · ndσ =

∫
V

∇ · (ρu) dx.

Then (1.5) becomes ∫
V

∂ρ

∂t
= −

∫
V

∇ · (ρu) dx,
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which becomes ∫
V

∂ρ

∂t
+∇ · (ρu) dx = 0. (1.6)

Equation (1.6) holds for any arbitrary volume V . Thus, if all variables are continuous, it

must also hold at a single point, [34]. Therefore, reducing V to a single point gives

∂ρ

∂t
+∇ · (ρu) = 0. (1.7)

If the fluid is incompressible, then density ρ is constant. Thus ρ(x, t) ≡ ρ0 and the conser-

vation of mass reduces to the divergence-free condition:

∇ · u = 0, (1.8)

as desired.

Cauchy Momentum Equation

Consider a fluid particle at position x and time t, and note that acceleration is the derivative

of the velocity vector with respect to time. Since u depends only on time and position

coordinates (i.e. u = u(x, t)), we may apply the material derivative, defined as

Du

Dt
=
∂u

∂t
+
∑
j

uj
∂ui
∂xj

= ut + u · ∇u.
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Then the acceleration term reduces to

Du

Dt
= ut + (u · ∇) u. (1.9)

Thus, for a volume V , Force = mass × acceleration gives

∫
V

ρ (ut + u · ∇u) dx = F.

External forces, such as gravity, buoyancy, and electromagnetic forces, are collected in

a body force term
∫
V

fdx, while the net contribution of internal forces, such as pressure, is

given by the Cauchy stress tensor, denoted
−→
t . Thus, the net contribution of internal forces

on V is
∫
S

−→
t dS, where S = ∂V . Therefore, F becomes

∫
V

ρ (ut + u · ∇u) dx =

∫
V

fdx+

∫
S

−→
t dS. (1.10)

Cauchy stress tensor
−→
t is a linear function of n̂, the normal vector to the imaginary plane,

[24]. Then there is a 3× 3 matrix Π such that
−→
t (n̂) = n̂ ·Π. Thus,

∫
V

ρ (ut + u · ∇u) dx =

∫
V

−→
t (n̂)dσ +

∫
V

fdx,

=

∫
∂V

n ·Πdσ +

∫
V

fdx,

=

∫
V

(∇ ·Π + f)dx.

As with (1.6), the previous equation holds for any arbitrary volume V . Therefore, if all
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variables are continuous, it must also hold at a single point. Shrinking V to a point gives

ρ (ut + u · ∇u) = ∇ ·Π + f . (1.11)

The stress tensor Π consists of a pressure force and a non-pressure part, known as the

viscous stress tensor V, [24]. For an incompressible flow, define the dynamic pressure as

p := 1
3

(Π11 + Π22 + Π33). Then the pressure force is

pressure force = − pIn̂,

where I is the identity matrix. Thus, the stress tensor is defined as

Π = −pI + V.

Or, in matrix form,

Π =


Π11 Π12 Π13

Π21 Π22 Π23

Π31 Π32 Π33

 = −


p 0 0

0 p 0

0 0 p

+


Π11 + p Π12 Π13

Π21 Π22 + p Π23

Π31 Π32 Π33 + p

 .

Let D be the deformation tensor, defined as D = ∇u + ∇uT . Since the fluid is a

Newtonian fluid, it satisfies the assumption that V = µD, [24]. Therefore, plugging in

values to (1.11),

ρ (ut + u · ∇u) +∇p−∇ · (µD(u)) = f . (1.12)
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It can be shown that µ∇ ·D(u) = µ∆u, [24]. Dividing (1.12) by ρ, the equation becomes

ut + u · ∇u +∇p+ ν∆u = f , (1.13)

where the pressure p is redefined p = p/ρ0 and ν = µ/ρ0, known as the kinematic viscosity,

[24].

Solutions and Boundary Conditions of the NSE

Term u · ∇u in the momentum equation is called the inertial term. It is the only nonlinear

term in the Navier-Stokes equations. Unlike many equations in mathematical physics, the

nonlinearity comes from the mathematical aspects of the problem rather than the physical

attributes of the system, [19]. Due to the nonlinearity of the inertial term, the question of

existence and uniqueness must be raised for the given boundary conditions. For the given

physics, it is not guaranteed that a satisfactory solution exists. Thus, boundary conditions

and function spaces must be considered, [19].

Two possible types of boundary conditions considered for the NSE are the no-slip bound-

ary conditions, where the velocity is zero on the boundary, and space-periodic boundary con-

ditions, which are used to study idealized flows far away from real boundaries. No-slip bound-

ary conditions are used when a fluid fills a smooth, bounded domain with a rigid boundary,

and they are more physically practical than space-periodic conditions. Space-periodic con-

ditions, while not as physically practical, are useful for idealized models of certain flows, [19].
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In solving the existence and uniqueness of the NSE, two types of solutions are consid-

ered: strong solutions and weak solutions. In two dimensions the weak solutions are actually

strong solutions, they are unique, and they exist for all time. It is more complex in the

three-dimensional case, however. Weak solutions are known to exist for all time, but are not

known to be unique. Conversely, strong solutions are known to be unique and to exist on a

certain finite time interval, but it is not known if they exist for all time, [19].

The mathematical gap between existence and uniqueness of the weak solutions of the

three-dimensional NSE is the basis of much of the study of the equations. Since all practical

fluid flows arise in the three-dimensional case, it is unknown if the NSE are a complete

description of fluid flows. Furthermore, it is unclear if this gap is a property of real fluids

or if there exists an inadequacy in the model, [19], [24]. This open problem for the three-

dimensional case is known as the fundamental problem in the mathematical analysis of the

NSE, and it is one of the million-dollar Clay prize problems, [24].
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CHAPTER 2

REYNOLDS NUMBER AND TURBULENCE

Introduction

A major problem in early fluid mechanics was understanding flow patterns in pipes. In a

pipe, the flow may be fully laminar, fully turbulent, or have turbulent regions, known as tur-

bulent slugs, separated by laminar regions. The issue arose in how to use these observations

to make predictions about turbulent flow occurring for different flow rates, pipe diameters,

temperatures, and liquids, [24]. These predictions must also be made without actually ob-

serving the flow, for in many cases, direct observation is not possible, [26].

The character of flow in a round pipe is dependent on several variables: fluid density ρ,

fluid viscosity µ, reference speed V and reference length L, [24]. Using these variables, as well

as the concept of dimensional analysis, Osborne Reynolds demonstrated that flow patterns

can be predicted if the magnitude of a dimensionless number is known, [26]. This number is

known as the Reynolds number, and it is important in the observations of fluid flow patterns.

For fluid density ρ, reference length L, reference velocity U , and fluid viscosity µ, the

Reynolds number is defined as

Re :=
ρUL

µ
. (2.1)
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Using standard SI units for example, it can be shown that the Reynolds number is

dimensionless, [26]:

Re =
ρV L

µ
= ρ× U × L× 1

µ
,

=
kg

m3
× m

s
×m× m · s

kg
.

Since all the units cancel, Re is dimensionless. It is still important, however, that all terms

be consistent in units to obtain the correct numerical value, [26].

The Reynolds number represents the ratio of inertial forces to viscous forces. If Re is close

to 0, the viscous forces dominate the inertial forces. An example of such is one of a highly

viscous fluid moving slowly. For Re large, however, the viscous forces may be neglected, as

in the flows of gases. The Reynolds number occurs in all flow settings, and is particularly

useful in determining the pattern of fluid flow, as it can be used to determine whether a flow

is laminar or turbulent, [24].

Fluid flows with a high Reynolds number are turbulent and those with lower numbers are

laminar. In practical applications, a flow is assumed to be laminar if the Reynolds number

is below 2000, and a flow is assumed to be turbulent if the Reynolds number is above 4000.

Between 2000 and 4000, there is a region of uncertainty, called the critical region, where it

is impossible to determine the behavior of the flow. In most applications, the flow is either

in the well within the turbulent range or well within the laminar range. Thus, the critical

region does not cause any difficulty, [26].
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Nondimensionalization of the NSE

In the study of the NSE, it is advantageous to use a nondimensional form of the equations, in

which we define dimensionless variables to replace the independent and dependent variables

of the problem. This will allow us to study the equations in a general form, rather than for

one distinct set of parameter values, [22]. Furthermore, it becomes easier to solve the NSE

numerically in this form, as the information of the characteristics of a process can be stored

in a few dimensionless parameters, rather than many dimensional ones, and it eliminates

confusion about which units to store the dimensional parameters in, [10].

Consider the Cauchy momentum equation (1.1). Introduce dimensionless variables by

expressing t,u,x, p as fractions of the reference parameters L and U , as well as reference

body acceleration G, i.e.

ûi =
ui
U
, x̂k =

xk
L
, t̂ =

U

L
t, p̂ =

p

ρU2
, f̂ =

f

G
. (2.2)

Note that

∂

∂x̂k
ûi =

∂

∂x̂k

ui
U

=
1

U

∂

∂x̂k
ui =

L

U

∂

∂xk
ui.

Therefore,

∂

∂xk
ui =

U

L

∂

∂x̂k
ûi.

We then nondimensionalize the NSE as follows. We use the two-dimensional case as three
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dimensions are proved similarly. Take

ut =
∂

∂t
u =

∂

∂t

 ∂
∂t
u1

∂
∂t
u2

 =

 ∂
∂t
Uû1

∂
∂t
Uû2

 =

U ∂
∂t
û1

U ∂
∂t
û2

 = U

U
L
∂
∂t̂
û1

U
L
∂
∂t̂
û2

 =
U2

L
ût̂,

u · ∇u =

u1

u2

 ·
 ∂

∂x
u1

∂
∂x
u2

∂
∂y
u1

∂
∂y
u2

 = U

û1

û2

 · UL
 ∂

∂x̂
û1

∂
∂x̂
û2

∂
∂ŷ
û1

∂
∂ŷ
û2

 =
U2

L
û · ∇̂û,

∆u =

∆u1

∆u2

 =

 ∂
∂x

(
∂
∂x
u1

)
+ ∂

∂y

(
∂
∂y
u1

)
∂
∂x

(
∂
∂x
u2

)
+ ∂

∂y

(
∂
∂y
u2

)
 =

 U
L2

(
∆̂û1

)
U
L2

(
∆̂û2

)
 =

U

L2
∆̂û,

∇p =

 ∂
∂x
p

∂
∂y
p

 =
ρU2

L

 ∂
∂x̂
p̂

∂
∂ŷ
p̂

 =
ρU2

L
∇̂p̂.

Then the Cauchy momentum equation becomes

U2

L
ût̂ +

U2

L
û · ∇̂û− ν U

L2
∆̂û +

1

ρ

ρU2

L
∇̂p̂ = Gf̂,

and the mass continuity equation becomes

∇ · u =
∂u1

∂x1

+
∂u2

∂x2

=
∂Uû1

∂x1

+
∂Uû2

∂x2

= U

(
∂û1

∂x1

+
∂û2

∂x2

)
= U

(
∇̂ · û

)
.

Since the continuity equation is equal to zero, we may divide both sides by U to get

∇̂ · û = 0.
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Next, dividing both sides of the momentum equation by U2

L
gives

ût̂ + û · ∇̂û− ν 1

UL
∆̂û +

ρU2

L
∇̂p̂ =

(
LG

U2

)
f̂ .

Finally, dropping the superscripts for simplicity, the nondimensional Navier-Stokes Equations

are

ut + u · ∇u− Re−1∆u +∇p =
1

Fr2 f ;

∇ · u = 0.

This new system depends only on two parameters: the Reynolds’s number Re and the Froude

number, Fr = U√
GL

, which measures the influence of the gravitational field on the inertial

flow, [2], [10].

When nondimensionalizing the NSE, it is necessary to determine which factor we are

most interested in studying. For purposes of this paper, we wish to study the effects of

various Reynolds numbers on the NSE. Thus, we will assume the Froude number is equal to

1, i.e. there is a perfect balance of the gravitational and inertial forces, to better observe the

influence of the Reynolds number later, [2], [10]. Therefore, the final nondimensional NSE

is given by

ut + u · ∇u− Re−1∆u +∇p = f ; (2.3)

∇ · u = 0. (2.4)
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Throughout the remainder of this paper, we will refer to (2.3) and (2.4) when discussing the

NSE.

Stokes Flow

In many studies of fluid flow, it is of interest to consider the case when Re is small, i.e.

Re � 1. This is attained by dealing with a very viscous liquid, or flows with very small

velocity, also known as creeping flows. These special cases are referred to as Stokes flow, [9].

Since Re is small, the viscous forces are dominant. Therefore, we may drop the ut and

u · ∇u terms from (2.3)-(2.4), thus linearizing the system, [9]. The Stokes equation is then

−∆u +∇p = f ; (2.5)

∇ · u = 0. (2.6)

Turbulent Flow and the Navier-Stokes Equations

Compared to laminar flow, turbulent flows are more prevalent in applications, but less easily

seen, [29]. Their structures are far more complicated than those of laminar flows, making

the study of turbulent flow meaningful, yet difficult, [24]. Three key reasons for studying

turbulent flows include their prevalence in applications, the transport of mixing and matter

by turbulent flows, and the effects of turbulence on these processes.
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Turbulent flows transport and mix fluid much more effectively than comparable laminar

flows. This is important in many applications because when different fluids are brought in to

mix, it is desirable for the mixture to take place as quickly as possible, [29]. Because shear

stress is larger in turbulent flows, they are effective at “mixing” the momentum of a fluid.

For example, rates of heat and mass transfer at liquid-gas and solid-fluid interfaces are more

enhanced in turbulent flows.

In the study of turbulence, there is a need to distinguish between small- and large-scale

motion of turbulent flows. At high Reynolds numbers, there is a separation of scales. The

behavior of large-scale motions is influenced by the geometry of the flow and controls the

transport and mixing of fluids. Conversely, the behavior of small-scale motion is mostly

determined by the viscosity and the rate at which they receive energy from the large scales.

Thus, the small-scale motion is independent of the flow geometry, [29].

In turbulent flow, there exists a critical length scale of eddies called the Kolmogorov

microscale. Large eddies below this critical size are dominated by viscous forces and die

very quickly because of them. The Kolmogorov microscale is defined as O(Re−
3
4 ) in three

dimensions and O(Re−
1
2 ) for two-dimensional turbulence, [24].

Turbulent flow consists of an energy cascade of three-dimensional eddies of various sizes.

Solutions of the Navier-Stokes Equations exhibit this energy cascade due to certain funda-

mental properties they contain. First, if kinematic viscosity ν = 0, then the kinetic energy

of the flow is conserved. Second, the nonlinearity of the NSE conserves energy globally, but
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it breaks large eddies into smaller ones, thus transferring energy to smaller scales, [24].

If ν > 0, then the viscous terms dissipate energy from the flow globally, [24]. Except on

very small scales of motion, the energy dissipation due to the viscous terms is negligible for

Re large. Finally, the forces driving the flow persistently input energy into the largest scales

of motion, [24].

Essentially, these properties of the NSE give information that energy is put into the

largest scales of the flow. There is an intermediate range where the nonlinearity of the NSE

drives the energy into smaller scales. At sufficiently small scales, however, dissipation is not

negligible, and the energy in the smallest scales decays to zero exponentially fast, [24].
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CHAPTER 3

ENERGY AND ENSTROPHY OF THE NAVIER-STOKES EQUATIONS

Energy Balance

Consider the Navier-Stokes Equations (2.3)–(2.4). Multiplying by u and integrating along

the region Ω, we obtain

∫
Ω

[
ut · u + u · u∇u− uRe−1∆u + u∇p

]
dΩ =

∫
Ω

f · u dΩ,∫
Ω

ut · u dΩ +

∫
Ω

u∇u · u dΩ− Re−1

∫
Ω

u∆u dΩ +

∫
Ω

u∇p dΩ =

∫
Ω

f · u dΩ,

1

2

d

dt

∫
Ω

u · u dΩ +

∫
Ω

u∇u · u dΩ− Re−1

∫
Ω

u∆u dΩ +

∫
Ω

u∇p dΩ =

∫
Ω

f · u dΩ.

Let σ = ∂Ω and assume u = 0 on the boundary. Then,

1

2

d

dt

∫
Ω

u · u dΩ =
1

2
‖u‖2 ,∫

Ω

u∇u · u dΩ = (u∇u,u) = 0,

Re−1

∫
Ω

u∆u = −Re−1

∫
Ω

∇u∇u dΩ + Re−1

∫
σ

∇u · n · udσ = Re−1 ‖∆u‖2 ,∫
Ω

u∇p dΩ = −
∫

Ω

p∆u dΩ +

∫
σ

pu · ndσ = 0.
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Therefore,

1

2

d

dt
‖u‖2 + Re−1 ‖∇u‖2 = (f ,u). (3.1)

Integrating (3.1) with respect to time,

∫ T

0

1

2

d

dt
‖u‖2 dt+

∫ T

0

Re−1 ‖∇u‖2 dt =

∫ T

0

(f ,u) dt.

This equation becomes

1

2
‖u(T )‖2 − 1

2
‖u(0)‖2 + Re−1

∫ T

0

‖∇u‖2 dt =

∫ T

0

(f ,u) dt, (3.2)

where
1

2
‖u(T )‖2 is the kinetic energy at time T ,

1

2
‖u(0)‖2 is the initial kinetic energy,

Re−1

∫ T

0

‖∇u‖2 dt is the total energy dissipated over [0, T ], and

∫ T

0

(f ,u) dt is the total

power input over [0, T ].

Enstrophy

Vorticity is defined as the curl of the velocity vector, and rises due to the frictional or viscous

effects of a fluid. Mathematically, it is defined as

ω = ∇× u. (3.3)

Enstrophy, then, is the integral of the square of the vorticity vector, [19]:

Enstrophy(t) :=
1

2
‖∇ × u‖2 =

1

2

∫
Ω

|∇ × u|2 dΩ =
1

2
(∇× u,∇× u) . (3.4)
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Enstrophy, and by extension vorticity, play an important role in the solutions to the NSE.

For the strong solutions, the enstrophy is finite at all times, while for the weak solutions,

the enstrophy may become infinite at some points in time, [19].

The transfer of enstrophy is directly related to the transfer of energy in two-dimensional

turbulence. Above the range where energy is injected into the system, it goes from lower

modes to higher modes, and in the range below the injection of energy, it goes from higher

modes to lower modes. Enstrophy has a similar transfer: lower to higher in the range above

the injection of energy, and higher to lower in the range below it. Within a certain range

above the injection of energy, there is a higher transfer of enstrophy, causing a direct enstro-

phy cascade. Below the range, there is an inverse energy cascade, [19].

In this direct enstrophy cascade, the velocity field is separated into parts. These small

parts contain eddies, or components of the wave flow, within a small range of length scales.

Within a certain range of above the injection of energy, energy is transferred to smaller

length scales, and therefore negligible dissipation. This similarity between energy and en-

strophy in two dimensions is because in two dimensions, the vorticity has one component

in the direction normal to the flow, which causes many constraints on the dynamics of the

turbulence. As such, fluid flow in two dimensions must conserve enstrophy as well as energy,

and the enstrophy and energy cascades may not exist on the same portions of a domain, [19].
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Derivation of the Enstrophy Balance

Multiplying the Navier-Stokes Equations (2.3)–(2.4) by ∆u, we obtain

ut ·∆u + u · ∇u ·∆u− Re−1∆u ·∆u +∇p ·∆u = f ·∆u.

Recall that (u,v) =

∫
Ω

u · v dΩ. Integrating over domain Ω, we obtain

∫
Ω

ut ·∆u dΩ +

∫
Ω

u · ∇u ·∆u dΩ−
∫

Ω

Re−1∆u ·∆u dΩ +

∫
Ω

∇p ·∆u dΩ, (3.5)

where

∫
Ω

ut ·∆u dΩ = −
∫

Ω

(∇× ut)(∇× u) dΩ,

= −1

2

d

dt

∫
Ω

(∇× u)(∇× u) dΩ,

= −1

2

d

dt

∫
Ω

|∇ × u|2 dΩ,

= −1

2

d

dt
‖∇ × u‖2 .

We also have

∫
Ω

u · ∇u ·∆u dΩ = (u∇u,∆u) = 0,

−
∫

Ω

Re−1∆u ·∆u dΩ = −Re−1

∫
Ω

∆u ·∆u dΩ = −Re−1 ‖∆u‖2 ,∫
Ω

∇p∆u dΩ = (∇p,∆u) =

∫
Ω

(∇×∇p) · (∇× u) dΩ = 0.
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Let f = 0, so that the right hand side is zero. Then we have

−1

2

d

dt
‖∇ × u‖2 − Re−1 ‖∆u‖2 = 0. (3.6)

Multiplying by −1, we have

1

2

d

dt
‖∇ × u‖2 + Re−1 ‖∆u‖2 = 0.

Integrating with respect to time, we obtain

∫ T

0

[
1

2

d

dt
‖∇ × u‖2 + Re−1 ‖∆u‖2

]
dt = 0.

By the Fundamental Theorem of Calculus, this becomes

1

2
‖∇ × u(T )‖2 − 1

2
‖∇ × u(0)‖2 + Re−1

∫ T

0

‖∆u‖2 dt = 0, (3.7)

or

1

2
‖∇ × u(T )‖2 + Re−1

∫ T

0

‖∆u‖2 dt =
1

2
‖∇ × u(0)‖2 , (3.8)

where Re−1

∫ T

0

‖∆u‖2 dt is the enstrophy dissipation. Observe that enstrophy at time T is

conserved in the absence of viscosity.
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CHAPTER 4

TIME RELAXATION MODEL

Introduction

At high Reynolds numbers, fluid velocity u has many small spatial scales, which become

difficult to account for, especially in three-dimensional flow. As such, the standard NSE be-

comes less computationally feasible because a very fine mesh is needed so that the computer

can capture the small scales, [16], [17]. However, this runs the risk of altering the largest

structures of the flow, which contain most of the flow’s energy and are responsible for most

of the mixing and flow’s momentum transport, [25].

To reconcile this problem, many mathematical models have been developed and stud-

ied in computational fluid dynamics. One of the simplest and most widely applicable such

models is the time relaxation model (TRM). Introduced by Stolz, Adams and Kleiser in

[32], [33], the TRM aims to truncate the small scales in a solution, allowing the large scales

to be accurately resolved without the computational and economic burden of resolving the

smallest, [25].
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From the Navier Stokes Equation (2.3)–(2.4), we obtain the Time Relaxation Model :

ut + u · ∇u− Re−1∆u +∇p+ χ(u− ū) = f , (4.1)

∇ · u = 0, (4.2)

where χ is a scalar constant known as the relaxation parameter, and ū is the solution of the

partial differential equation

−δ2∆ū + ū = u, (4.3)

where δ is constant (filter width). For δ large, ū is smooth. For δ small, ū is close to u.

Note that χ > 0 and has units of 1/time. The term χ(u− ū) aims to drive the unresolved

scales to zero exponentially fast, [17]. To use the time relaxation, the parameter χ must be

specified and scaled appropriately with respect to other parameters in the problem, [25].

Energy Balance for the Time Relaxation Model

The solution of the time relaxation model is u and p such that they satisfy the system of

partial differential equations (4.1)–(4.3). Assume u = 0 on the boundary σ = ∂Ω and as-

sume no body force f = 0. The energy remains the same in the absence of body force, and

the system changes if f 6= 0 and/or if ν 6= 0, where ν ≈ Re−1.

23



Multiplying (4.1) by u, and integrating in space and time, we obtain

∫
Ω

[
ut · u + u(u · ∇u)− u · Re−1∆u + u · ∇p+ u · χ(u− ū)

]
dΩ =

∫
Ω

f · u dΩ,

which becomes

∫
Ω

ut · u dΩ +

∫
Ω

u · ∇u · u dΩ− Re−1

∫
Ω

u ·∆u dΩ

+

∫
Ω

u · ∇p dΩ +

∫
Ω

u · χ(u− ū) dΩ =

∫
Ω

f · u dΩ.

Since f = 0, the right hand side equals zero. Thus, we have

∫
Ω

∇p · u dΩ = −
∫

Ω

p(∇ · u) dΩ +

∫
σ

p · n · udσ = −
∫

Ω

p(∇ · u) dΩ = 0,

by (4.2). Take ∫
Ω

(u · ∇u)u dΩ = 0.

Then

∫
Ω

u ·∆u dΩ = −
∫

Ω

∇u · ∇u dΩ +

∫
σ

∇u · n · udσ,

= −
∫

Ω

∇u · ∇u dΩ,

=

∫
Ω

|∇u|2 dΩ,

= ‖∇u‖2 .
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So we have

∫
Ω

ut · u dΩ + Re−1 ‖∇u‖2 + χ

∫
Ω

(u− ū)u dΩ = 0,

1

2

d

dt

∫
Ω

u · u dΩ + Re−1 ‖∇u‖2 + χ

∫
Ω

(u− ū)u dΩ = 0,

1

2

d

dt
‖u‖2 + Re−1 ‖∇u‖2 + χ

∫
Ω

(u− ū)u dΩ = 0.

Integrating in time, we obtain

1

2
‖u(T )‖2 +

∫ T

0

Re−1 ‖∇u‖2 dt+

∫ T

0

χ

∫
Ω

(u− ū)u dΩ dt =
1

2
‖u(0)‖2 . (4.4)

Based on equation (4.4), we conclude that the TRM has the same energy as the NSE, but

an extra dissipation εTRM , [25], defined as

εTRM =

∫ T

0

Re−1 ‖∆u‖2 dt+

∫ T

0

χ

∫
Ω

(u− ū)u dΩ dt. (4.5)

We want to understand what happens to the energy of a fluid that is driven by this time

relaxation model. If there are some changes in the partial differential equations, there will be

a change in energy as well. The additional energy dissipation in the time relaxation model

by χ(u− ū) causes the energy to dissipate faster, [27].

It is important to show that the extra dissipation integral is nonnegative, i.e.

∫ T

0

χ

∫
Ω

(u− ū)u dΩ dt ≥ 0
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because if it is negative the energy balance makes no sense. When a fluid is more viscous

(i.e., Re small), the velocity slows down and the energy is lower, [27].

Take the partial differential equation (4.3)

−δ2∆ū + ū = u.

Subtracting ū from both sides,

−δ2∆ū = u− ū. (4.6)

Note that for some φ such that

−δ2∆φ̄+ φ̄ = φ,

we have

(−δ2∆ + I)φ̄ = φ,

which becomes

φ̄ = (−δ2∆ + I)−1φ,

where

(−δ2∆ + I)−1 =: G.

Thus

φ̄ = G(φ). (4.7)
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An operator F : X → Y is symmetric positive semi-definite if

(Fu, u) ≥ 0 ∀u 6= 0 in X.

Since G defined in equation (4.7) satisfies this definition, it is symmetric positive semi-

definite, [14].

Multiplying by u and integrating the left hand side of the PDE (4.6) along Ω, and

assuming f = 0 along the boundary, we have

∫
Ω

(u− ū)u dΩ =

∫
Ω

−δ2∆ū · u dΩ,

=

∫
Ω

δ2∇ū · ∇u dΩ−
∫
σ

δ2ū · n · udσ,

= δ2

∫
Ω

∇ū · ∇u dΩ,

= δ2

∫
Ω

G(∇u) · ∇u dΩ,

= δ2(G(∇u),∇u) ≥ 0,

since G is symmetric positive semi-definite. Thus

∫
Ω

(u− ū) · u dΩ ≥ 0,

so ∫ T

0

χ

∫
Ω

(u− ū) · u dΩ dt ≥ 0.
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Enstrophy Balance for the Time Relaxation Model

Take the same system of partial differential equations (4.1)–(4.3) and assume no body force

f = 0 and ν = 0. The enstrophy remains the same in the absence of body force and viscosity,

and the system changes if f 6= 0 and/or ν 6= 0, [27].

Multiplying (4.1) by ∆u, and integrating in space and time, letting σ = ∂Ω, we obtain

∫
Ω

ut ·∆u dΩ +

∫
Ω

u · ∇u ·∆u dΩ−
∫

Ω

Re−1∆u ·∆u dΩ

+

∫
Ω

∇p ·∆u dΩ +

∫
Ω

χ(u− ū) ·∆u dΩ = 0,

where

∫
Ω

ut ·∆u dΩ = −
∫

Ω

(∇× ut) · (∇× u dΩ) +

∫
σ

ut · ∇ × u · ndσ,

= −
∫

Ω

(∇× ut) · (∇× u) dΩ,

= −1

2

d

dt
‖∇ × u‖2 ,

and

∫
Ω

u · ∇u ·∆u dΩ = 0,

−
∫

Ω

Re−1∆u ·∆u dΩ = −Re−1

∫
Ω

∆u ·∆u dΩ = −Re−1 ‖∆u‖2 ,∫
Ω

∇p ·∆u dΩ = −
∫

Ω

(∇×∇p) · (∇× u) dΩ = 0,
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since the curl of a gradient is zero.

χ

∫
Ω

(u− ū)∆u dΩ = χ

∫
Ω

−δ2∆ū ·∆u dΩ.

Moreover,

χδ2

∫
Ω

∆ū ·∆u dΩ = −χδ2(G(∆u),∆u),

where (G(∆u),∆u) ≥ 0 since G is symmetric positive semi-definite. This gives

−1

2

d

dt
‖∇ × u‖2 − Re−1 ‖∆u‖2 − χδ2

∫
Ω

∆ū ·∆u dΩ = 0.

Mutliplying by −1,

1

2

d

dt
‖∇ × u‖2 + Re−1 ‖∆u‖2 + χδ2

∫
Ω

∆ū ·∆u dΩ = 0.

Integrating with respect to time t, we have

1

2
‖∇ × u(T )‖2 +

∫ T

0

Re−1 ‖∆u‖2 dt

+

∫ T

0

χδ2

∫
Ω

∆ū ·∆u dΩ dt =
1

2
‖∇ × u(0)‖2 .

(4.8)

As with the energy, we conclude that the TRM has the same enstrophy as the NSE, but an

enhanced dissipaton εTRM , defined as

εTRM =

∫ T

0

Re−1 ‖∆u‖2 dt+

∫ T

0

χδ2

∫
Ω

∆ū ·∆u dΩ dt. (4.9)
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Note that when χ = 0 and/or δ = 0, this integral is 0, and we are back to the NSE.

Thus, the enstrophy balance will be the same as the standard one for the NSE. This is the

same for both the energy and enstrophy balances, [27].
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CHAPTER 5

NUMERICAL ANALYSIS OF THE TIME RELAXATION MODEL

Herein, we introduce the finite element method, derive the finite element variational

formulation for the TRM and use it to simulate a flow for a specific benchmark problem.

Introduction

In the study of more difficult fluid flows, certain numerical methods are needed to solve

the model’s equations, [29]. Numerical methods are methods for solving problems in terms

of numbers or graphical representations. In the study of numerical methods, the range of

applicability and the accuracy of the methods are investigated and considered, [23].

In numerical methods, the steps from a given situation to a conclusion include setting

up a mathematical model of the problem, choosing an appropriate method, programming

into a computer algebra system, doing the computation, and interpreting the results. As

such, algorithms are very important in the formulation of numerical methods. Algorithms

are written in a step-by-step procedure that states the method in a form understandable to

humans, and they are then used to write a program to execute the method in a language

the computer can understand, [23].
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Finite Element Method

An important numerical method with respect to the Navier-Stokes Equations is the finite ele-

ment method. The finite element method states that the solution u of a differential equation

can be represented as a linear combination of unknown parameters cj and selected func-

tions φj. The parameters cj are chosen so that the differential equation is satisfied, and the

functions φj, called approximation functions are selected such that the satisfy the boundary

conditions of the problem, [20].

In applications, regions are geometrically complex, making it difficult to generate ap-

proximate functions that satisfy the different boundary conditions on different portions of

the boundary. In the finite element method, the given domain is viewed as a collection

subdomains, called finite elements, where it is possible to generate the given φj, [20]. These

subdomains are simpler geometric shapes, usually triangles or rectangles. We seek the ap-

proximate solutions on these subdomains because it is easier to represent the more compli-

cated functions as a collection of simple polynomials. It is important that each segment of

the solution “fits” with its neighbors; i.e. the function and its partial derivatives up to a

given order are continuous at the connecting points, [30].

The first step in the finite element method is then setting up the domain into this finite

set of elements. The subsequent steps include weighted-integral or weak formulation of the

differential equation to be analyzed and developing the finite element model for the problem.

The finite elements are then assembled to obtain a global system of algebraic equations, and
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the boundary conditions are imposed to solve the equation. Finally, the solutions are com-

puted, and the quantities of interest are found, [20].

Weak Formulation of the NSE

Consider the non-dimensional Navier-Stokes Equations (2.3) and (2.4) with no-slip boundary

conditions (i.e. u = 0 on ∂Ω):

ut + u · ∇u− Re−1∆u +∇p = f ,

∇ · u = 0.

Also consider the space L2(Ω) with inner product (u,v) =
∫

Ω
u · v. Also consider the

Sobolev space Wm,p(Ω), defined as the set of all functions u ∈ Lp(Ω) such that Dαu ∈ Lp(Ω)

for all |α| ≤ m; that is, all derivatives up to a given order are in the space Lp(Ω). When

p = 2, the Sobolev space is an inner product space, and a subspace of L2(Ω). We write

H1
0 (Ω) or H1(Ω) instead of W k,2(Ω), [14].

Let the velocity space X be defined as

Velocity Space—X := H1
0 (Ω).
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Also, define the pressure space

Pressure Space—P := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q dΩ = 0

}
.

From the divergence-free condition ∇ · u = 0, define the divergence-free space as

Divergence-free Space—Z :=

{
v ∈ X :

∫
Ω

q∇ · v dΩ = 0, ∀q ∈ P
}
.

Also denote the dual space of X as X ′, with norm ‖·‖−1,[28].

Multiplying (2.3) by a test function v ∈ X, q ∈ P and integrating over Ω, we have

(ut,v) + (u · ∇u,v)− Re−1 (∆u,v) + (∇p,v) = (f ,v) ∀v ∈ X;

(∇ · u, q) = 0 ∀q ∈ P.

Take, by Green’s formula,

(∆u,v) =

∫
X

(∆u) · v dX =

∫
G

v∇u · n dG−
∫
X

∇u · ∇v dX,

where G = ∂X. Since the velocity space X has homogeneous boundary conditions, we have∫
G

v∇u · n dG = 0. Therefore,

(∆u,v) = −
∫
X

∇u · ∇v dX = − (∇u,∇v) .
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By the divergence theorem, we get

(∇p,v) =

∫
X

(∇p) v dX =

∫
G

p · v · n dG−
∫
X

p∇ · v dX,

where
∫
G
p · v · n dG = 0 by the boundary conditions. Then

(∇p,v) = −
∫
X

p · (∇ · v) dX = − (p,∇ · v) .

Also,

(∇ · u, q) =

∫
X

(∇ · u) q dX = 0,

by the divergence-free space. Thus, the weak formulation for the NSE can be stated as

follows: Find (u, p) ∈ X × P satisfying:

(ut,v) + (u · ∇u,v)− (p,∇ · v) + Re−1 (∇u,∇v) = (f ,v) ∀v ∈ X; (5.1)

(q,∇ · u) = 0 ∀q ∈ P ; (5.2)

u (0,x) = u0(x) ∀x ∈ Ω. (5.3)

Next, we look at the filtering. Let φ ∈ L2(Ω) and δ > 0, and let φ be the result of a

filtering operation on φ, [28]. Then, as in (4.3), φ is the unique solution of

−δ2∆φ+ φ = φ,
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where

(
I− δ2∆

)
φ = φ,

φ =
(
I− δ2∆

)−1
φ,

φ = G(φ),

for an operator G = (I− δ2∆)
−1
φ, where G is symmetric positive semi-definite, [14], [28].

Then from [28], we have the following notation:

‖φ∗‖ = (φ−G(φ), φ)1/2 . (5.4)

Using the same process as for the NSE, we can define the weak formulation for the TRM,

which can be stated as follows: Find (u, p) ∈ X × P satisfying:

(ut,v) + (u · ∇u,v)− (p,∇ · v) + Re−1 (∇u,∇v) +

χ (u− ū,v) = (f ,v) , ∀v ∈ X,
(5.5)

(q,∇ · u) = 0, ∀q ∈ P. (5.6)

In order to solve equations (5.5)–(5.6) by the finite element method, we must construct

finite dimensional subspaces Xh, Qh, Zh of our velocity, pressure, and divergence-free spaces,

respectively, with piecewise continuous test functions, [7]. Let Ω ⊂ Rd (d = 2, 3) be a

polygonal domain and let Th be a triangulation of Ω consisting of either triangles (in the 2D
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case) or tetrahedrals (in the 3D case), [7], [28]. Also, let Ω̄ be the closure of Ω. Then

Ω =
⋃
K∈Th

K.

Let Pk(K) be the space of polynomials on K of degree less than or equal to K. Since test

functions v ∈ Pk(K), q ∈ Ps(K) must be continuous at all internal vertices of the subdomain,

we have v ∈ C(Ω̄)d (d = 2, 3), q ∈ C(Ω̄). Then the finite element spaces are defined as

Xh :=
{

v ∈ X ∩ C
(
Ω̄
)d

: v|k ∈ Pk(K), , ∀K ∈ Th
}

;

Ph :=
{
q ∈ P ∩ C

(
Ω̄
)

: v|k ∈ Ps(K), , ∀K ∈ Th
}

;

Zh := {v ∈ Xh : (q,∇ · v) = 0, ∀q ∈ Ph} .

Assume that the spaces Xh, Ph satisfy the following compatibility condition, known as the

discrete inf-sup condition, [7], [17]: there exists γ ∈ R, γ > 0,

γ ≤ inf
qh∈Ph

sup
vh∈Xh

∫
Ω
qh∇ · vhdA
‖qh‖P ‖vh‖X

. (5.7)

As in [28], define the skew-symmetric trilinear form b∗(·, ·, ·) : X ×X ×X → R as

b∗(u,v,w) :=
1

2
(u · ∇v,w)− 1

2
(u · ∇w,v) .

For u,v,w ∈ X, with ∇ · u = 0,

b∗(u,v,w) := (u · ∇v,w) .
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We define the discrete differential filter, where φ
h ∈ Xh is the unique solution of

δ2
(
∇φh,∇vh

)
+
(
φ
h
,vh

)
= (φ,vh) , ∀vh ∈ Xh. (5.8)

For internal flows under no-slip boundary conditions, incompressibility must be preserved.

In this case, the Stokes differential filter, based upon the Stokes’ equations, is used, [28].

Here,
(
φ
h
, p
)
∈ Xh × Ph is the unique solution of

δ2
(
∇φh,∇vh

)
+
(
φ
h
,vh

)
− (p,∇ · vh) = (φ,vh) , ∀vh ∈ Xh, (5.9)(
∇ · φh, q

)
= 0, ∀q ∈ Ph. (5.10)

We use a Crank-Nicholson scheme on (5.5)–(5.6). Let ut ≈
un+1
h −un

h

∆t
and u

(
tn+1/2

)
=

un+1/2 = 1
2

(u(tn)− u(tn−1)). From the weak formulation of the TRM and definition of

trilinear form, the finite element formulation for the TRM can be stated as follows: Find

(uh, ph) ∈ Xh × Ph such that

1

∆t

(
un+1
h − unh,vh

)
+ b∗

(
u
n+1/2
h ,u

n+1/2
h ,vh

)
+ Re−1

(
∇u

n+1/2
h ,∇vh

)
−
(
p
n+1/2
h ,∇ · vh

)
+ χ

(
u
n+1/2
h − u

n+1/2
h

h

,vh

)
=
(
f
(
tn+1/2

)
,vh
)
, ∀vh ∈ Xh,

(5.11)

(
qh,∇ · un+1

h

)
= 0, ∀qh ∈ Ph. (5.12)

Because the spaces Xh, Ph satisfy the discrete inf-sup condition, (5.11)-(5.12) are equiv-

alent to the following problem, [28]:
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For n = 1, 2, . . . ,M − 1 find un+1
h ∈ Zh such that

1

∆t

(
un+1
h − unh,vh

)
+ b∗

(
u
n+1/2
h ,u

n+1/2
h ,vh

)
+ Re−1

(
∇u

n+1/2
h ,∇vh

)
+χ

(
u
n+1/2
h − u

n+1/2
h

h

,vh

)
=
(
f
(
tn+1/2

)
,vh
)
, ∀vh ∈ Xh;

(5.13)

(
qh,∇ · un+1

h

)
= 0, ∀qh ∈ Ph. (5.14)

There are many different options for polynomial spaces (Pk(K), Ps(K)). One of the sim-

plest is the Taylor-Hood element, (Pk, Pk−1). That is, test functions v ∈ Pk(K), q ∈ Pk−1(K).

It would appear that the simplest choice for the numerical solutions of the TRM would be

(P1, P0), where the test functions for velocity are piecewise linear and constant and the test

functions for pressure are piecewise constant. However, this is unsuitable for the Stokes

equations, as the velocity space is too small for any meaningful approximations, and the inf-

sup condition is not satisfied, [8]. Thus, the lowest order Taylor-Hood element is (P2, P1),

where velocity test functions are polynomials and pressure functions are piecewise linear

continuous functions, [8].

Our final program consists of a nested for loop, with an outer loop for each time iteration,

and a fixed point iteration loop for the nonlinear term in the TRM, within each time iteration.

Pseudocode for the fixed point iteration loop is given by Algorithm 1.

Stability of the Finite Element Formulation

In the development of the algorithm, it is important to show that it is stable. That is, small

changes in initial data should cause only small changes in the final results. If small changes
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Algorithm 1 Fixed point iteration loop for the TRM

Choose number of time total iterations iter, number of fixed point iterations, fixediter

FOR k = 1, 2, . . . , iter

Set uk−1 = uk, pk−1 = pk

FOR n = 1, 2, . . . , f ixediter

Evaluate Stokes differential filter

Evaluate TRM

If max
∣∣ukn−1 − ukn

∣∣ < ε STOP, move to next time step

END

END

in initial data produce large changes in final results, the algorithm is said to be unstable,

[23]. The corresponding scheme for a time-dependent PDE is said to be stable in a norm ‖·‖

if, assuming no body force, there exists a constant C such that

‖un‖ ≤ C
∥∥u0
∥∥ ,

where C is independent of ∆t,∆x and initial condition u0, [7].

We use the discrete Gronwall’s lemma, [17]: Let ∆t,H, and an, bn, cn, γn (for integers

n ≥ 0) be nonnegative numbers such that

al + ∆t
l∑

n=0

≤ ∆t
l∑

n=0

γnan + ∆t
l∑

n=0

cn +H for l ≥ 0.
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Suppose that ∆tγn < 1, for all n, and set σn = (1−∆tγn)−1. Then,

al + ∆t
l∑

n=0

bn ≤ exp

(
∆

l∑
n=0

σnγn

){
∆t

l∑
n=0

cn +H

}
for l ≥ 0.

We want to show that the scheme has the following a priori bound:

∥∥ulh∥∥2
+ 2∆tχ

l∑
n=1

‖ûn∗h ‖
2 + 2∆tν

l∑
n=1

‖∆ûnh‖
2 ≤ C

(
‖f‖2

2,0 +
∥∥u0

h

∥∥2
)
.

To show that the scheme (5.11)–(5.12) is stable, let vh = u
n+ 1

2
h in (5.13). Then the trilinear

term vanishes, leaving

1

∆t

(
un+1
h − unh,u

n
h

)
+ Re−1

(
∇u

n+ 1
2

h ,∇u
n+ 1

2
h

)
+ χ

(
u
n+ 1

2
h − u

n+ 1
2

h

h

,u
n+ 1

2
h

)

=
(
f
(
tn+ 1

2

)
,u

n+ 1
2

h

)
.

Then we have

1

∆t

(
un+1
h − unh,u

n
h

)
=

1

∆t

(
un+1
h − unh,

un+1
h + unh

2

)
,

=
1

2∆t

(
un+1
h − unh,u

n+1
h + unh

)
,

=
1

2∆t

[(
un+1
h ,un+1

h

)
+
(
un+1
h ,unh

)
−
(
un+1
h ,unh

)
− (unh,u

n
h)
]
,

=
1

2∆t

[∥∥un+1
h

∥∥2 − ‖unh‖
2
]
.

Similarly, we have

Re−1
(
∇u

n+ 1
2

h ,∇u
n+ 1

2
h

)
= Re−1

∥∥∥∇u
n+ 1

2
h

∥∥∥2

.

41



By equation (5.4),

χ

(
u
n+ 1

2
h − u

n+ 1
2

h

h

,u
n+ 1

2
h

)
= χ

(
u
n+ 1

2
h −Gh

(
u
n+ 1

2
h

)
,u

n+ 1
2

h

)
= χ

∥∥∥un+ 1
2

∗

h

∥∥∥2

.

By the Cauchy-Schwarz and Young’s inequalities,

(
f
(
tn+ 1

2

)
,u

n+ 1
2

h

)
≤ Re

2

∥∥∥f (tn+ 1
2

)∥∥∥2

−1
+

Re−1

2

∥∥∥∇u
n+ 1

2
h

∥∥∥2

.

So we have

1

2∆t

[∥∥un+1
h

∥∥2 − ‖unh‖
2
]

+
Re−1

2

∥∥∥∇u
n+ 1

2
h

∥∥∥2

+ χ
∥∥∥un+ 1

2

∗

h

∥∥∥2

≤ Re

2

∥∥∥f (tn+ 1
2

)∥∥∥2

−1
.

Summing from n = 1 to M − 1 gives

1

2∆t

[∥∥uMh ∥∥2 −
∥∥u0

h

∥∥2
]

+ χ
M−1∑
n=1

∥∥∥un+ 1
2

∗

h

∥∥∥2

+ Re−1
M−1∑
n=1

∥∥∥un+ 1
2

h

∥∥∥2

≤
M−1∑
n=1

∥∥∥fn+ 1
2

∥∥∥2

−1
,

which becomes

∥∥uMh ∥∥2
+ 2∆tχ

M−1∑
n=1

∥∥∥un+ 1
2

∗

h

∥∥∥2

+ ∆tRe−1
M−1∑
n=1

∥∥∥un+ 1
2

h

∥∥∥2

≤
∥∥u0

h

∥∥2
+ ∆tRe

M−1∑
n=1

∥∥∥fn+ 1
2

∥∥∥2

−1
.

By the discrete Gronwall’s lemma, we have our unconditional stability result, [17].
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CHAPTER 6

NUMERICAL EXAMPLE: TAYLOR-GREEN VORTEX

Figure 6.1: A three-dimensional representation of the initial Taylor-Green vortex over the
domain [0, 2π]3. The domain is represented in two “slices”: one to show the velocity vectors
and one to show the surfaces and velocity contours.

The Taylor-Green vortex is an unsteady flow of a decaying vortex, with an exact closed

form solution of the incompressible NSE, [4], [5]. Solution of the Taylor-Green vortex are

among the few known analytical solutions to the NSE, and they are often used as a bench-

mark to test the accuracy of algorithms solving the NSE, [4]. It is a three-dimensional,
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incompressible flow that evolves from a two-dimensional velocity field, [17], given by

u1(x, y, z, 0) = sin(x) cos(y) cos(z),

u2(x, y, z, 0) = − cos(x) sin(y) cos(z),

u3(x, y, z, 0) = 0,

and periodic boundary conditions on [0, 2π]3, [15], [18].

(a) The two-dimensional velocity field
for the Taylor-Green vortex.

(b) The three-dimensional flow of the
Taylor-Green vortex

Figure 6.2: The Taylor-Green vortex.

Figure 6.2 shows the initial velocity of the Taylor-Green vortex for the domain [0, 2π]3.

Taking a cross-section of the xy-plane at z = 0, figure 6.2a shows the two-dimensional ve-

locity field, consisting of flows moving to the center of four individual vortices. The vortices

in the top left and bottom right of the xy-plane move in the counterclockwise direction,

while the two vortices in the top right and bottom left move in the clockwise direction. The

three-dimensional flow is shown by figure 6.2b.
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Let the initial density ρ(x, 0) = 1, [15]. The initial kinetic energy is

K(0) =

∫ 2π

0

∫ 2π

0

∫ 2π

0

ρ(x,0) · u1(x,0) · u1(x,0)

2
dxdydz,

=
1

4

∫ 2π

0

∫ 2π

0

∫ 2π

0

[1− cos(2x) cos(2y)] cos2(z)dxdydz,

= π3,

and is conserved for the Taylor-Green vortex. Therefore, numerical dissipation in a given

algorithm can be examined by observing the rate of decrease of the kinetic energy from

its initial value π3 over time, [15], [18]. For the Taylor-Green vortex, the flow develops a

singularity at the center of a highly twisted vortex core, and the production of vorticity and

enstrophy is proportional to the derivative of the velocity vector. Thus, there should be a

growth in enstrophy seen in the simulation results, [18]. Figure 6.3 shows the vorticity of the

Taylor-Green vortex at initial time. Vorticity vectors are given in red. Using the right-hand

rule, we see that the vorticity is positive for the two vortices moving in the counterclockwise

direction. Conversely, vorticity is negative for the two vortices moving the clockwise direc-

tion.

We show the effects of the time relaxation model at two different mesh sizes: a course

mesh consisting of 6,000 tetrahedral elements, or 10 subintervals in all three directions, and a

finer mesh consisting of 16,464 tetrahedral elements, or 14 subintervals in all tree directions.

We used the time step ∆t = 0.001 and 100 time steps yielding the time interval t = [0, 0.1].
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(a) The vorticity (in red) and velocity
(in black) of the Taylor-Green vortex in
three dimensions

(b) The vorticity (in red) and velocity
(in black) field of the Taylor-Green vor-
tex, taken along the xy-plane at z = 0.

(c) The vorticity (in red) and velocity
(in black) field of the Taylor-Green vor-
tex, taken along the xz-plane at y = 0.

(d) The vorticity (in red) and velocity
(in black) field of the Taylor-Green vor-
tex, taken along the yz-plane at x = 0.

Figure 6.3: The vorticity of Taylor-Green vortex.

We test the TRM at relaxation parameters χ = 0 (equivalent to the NSE) and χ = ∆t at

Reynolds number Re = 500,000, using a stop criterion of ε = 1 × 10−10 for the fixed point

iteration loop for the nonlinear term. Using (P2, P1) Taylor-Hood elements, we use piecewise

quadratic equations for our test functions for velocity and piecewise linear continuous test

functions for pressure.

We first considered the coarse mesh of 6,000 tetrahedral elements for χ = 0. The program

broke at time t = 0.046, failing to meet the stop criterion after only 46 time steps. We next
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(a) Normalized kinetic energy (b) Normalized enstrophy

Figure 6.4: Energy and enstrophy versus time for Reynolds number Re =500,000 and relax-
ation parameter χ = ∆t for 6,000 tetrahedral elements.

considered the coarse mesh for relaxation parameter χ = ∆t. In this case, the program ran

for the complete time interval, showing the advantages of time relaxation on such a coarse

mesh. Figure 6.4 shows the normalized kinetic energy K(t)/K(0) and enstrophy. We see

that the enstrophy increases as expected, and the normalized kinetic energy stays constant

at near unity.

For the more fine mesh of 16,464 tetrahedral elements, the program was indeed successful

for relaxation parameter χ = 0, and the results are given by figure 6.5. It is important to

note, however, the increased computational requirement for the standard NSE compared to

the TRM in our example. The case of χ = 0 failed on the more coarse mesh of 6,000 tetra-

hedral elements, the largest mesh size a standard computer with 8GB of RAM can handle.

The finer mesh of 16,464 tetrahedral elements required a computer of at least 32 GB of RAM

to run smoothly for the complete time interval. It also required significantly more time to

run, taking several days to complete all 100 time steps.
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(a) Normalized kinetic energy (b) Normalized enstrophy

Figure 6.5: Energy and enstrophy versus time for Reynolds number Re =500,000 and relax-
ation parameter for 16,464 tetrahedral elements.

(a) The velocity vectors of the TRM at
time t = 0.1.

(b) The vorticity (in red) and velocity
(in blue) vectors for the TRM at time
t = 0.1, taken along the xy-plane at z =
0.

Figure 6.6: The velocity and vorticity of the TRM.

Figure 6.6 shows the similarities between the velocity and vorticity of the Taylor-Green

Vortex and the values of the TRM with χ = ∆t at time t = 0.1. We observe that the velocity

field and vorticity vectors are similar to those of the analytical initial Taylor-Green vortex

given by figure 6.3, showing the accuracy of the scheme.
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CHAPTER 7

CONCLUSION

We see that in the study of the Navier-Stokes equations, careful consideration must be

taken in determining parameters. By non-dimensionalizing the equations, the NSE can be

studied in a more general form, with various dimensionless parameters, such as the Reynolds

number and the Froude number. These parameters can be adjusted to study their influence

on the problem.

Due to the complexities that arise in numerically solving the NSE, the Time Relaxation

Model was presented to ease the computational burden, allowing solutions to be found at

more coarse mesh sizes than could be used with the standard NSE. Through careful deriva-

tion, we have shown that the TRM has the same energy and enstrophy as the NSE but with

enhanced dissipation.

Using the finite element method, a finite element formulation was presented for the TRM,

which was used as an algorithm for the numerical solution. By using the Taylor-Green vor-

tex, we tested the accuracy of the algorithm. We saw that the kinetic energy was preserved

in time and the enstrophy grew as expected.
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