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ABSTRACT

NUMERICAL SIMULATIONS OF TRAFFIC FLOW MODELS

by

Puneet Lakhanpal

〈Dr. Monika Neda〉, Examination Committee Co-Chair

Associate Professor of Mathematical Sciences

University of Nevada, Las Vegas

〈Dr. Pushkin Kachroo〉, Examination Committee Co-Chair

Professor of Electrical and Computer Engineering

University of Nevada, Las Vegas

Traffic flow has been considered to be a continuum flow of a compressible liquid

having a certain density profile and an associated velocity, depending upon density,

position and time. Several one-equation and two-equation macroscopic continuum

flow models have been developed which utilize the fluid dynamics continuity equa-

tion and help us find analytical solutions with simplified initial and boundary condi-

tions. In this thesis, the one-equation Lighthill Witham and Richards (LWR) model

combined with the Greenshield’s model, is used for finding analytical and numerical

solutions for four problems: Linear Advection, Red Traffic Light turning into Green,

Stationary Shock and Shock Moving towards Right. In all these problems, the nu-

merical solutions are computed using the Godunov Method and the Finite Element

Method, and later they are compared to each other. Furthermore, the finite element

time relaxation method is introduced for the treatment of the shocks in two numer-

iii



ical problems : (a) Stationary Shock and (b) Shock moving towards the right. The

optimal time relaxation parameters are numerically computed using three accuracy

measures and finally, the effects of multiple time relaxation settings are explored.
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CHAPTER 1

Introduction

Traffic flow can be defined as the study of how the vehicles move between ori-

gin and destination, and how the individual drivers interact with others. Since the

driver behavior cannot be predicted with absolute certainity, mathematical models

have been built which study the consistent behavior between the traffic streams via

relationships such as flow q, density ρ and the mean velocity v. These mathematical

models try to describe how these relationships evolve in space and time, and how

they can be used to solve the real traffic flow conditions to be further used in traffic

flow control and optimization (3). The Lighthill William and Richards (LWR) model

is one such model that tries to capture the traffic behavior.

In this thesis, two tasks are explored.

1. Study of the LWR model with two techniques:

� Finite Volume Godunov method

� Finite Element Galerkin method with Time relaxation

2. Comparison of the solutions of following numerical problems with the above

methods:

� Linear Advection

� A red traffic light turning into green

� Stationary Shock

1



� Shock moving towards right

1.1 Outline of the Thesis

This thesis is divided into the following chapters.

1. Chapter 1 presents the motivation and outline of the thesis.

2. Chapter 2 presents a brief overview of the LWR traffic flow model and describes

the speed-flow relationships.

3. Chapter 3 presents four problems in traffic flow for which numerical simulations

are desired.

4. Chapter 4 presents the theory behind the Finite Volume Godunov method and

the Finite Element method with time relaxation. These two methods will be

cross-evaluated and their performance will be measured against each numerical

problem.

5. Chapter 5 presents the numerical results obtained for each problem using Go-

dunov and Finite Element method.

6. Chapter 6 presents the conclusion and outlines the areas of further research.
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CHAPTER 2

Traffic Flow

2.1 Introduction

If a vehicle is assumed to be a molecule, then the traffic can be defined to be an

incompressible fluid which cannot be compressed after a certain density. In 1955 and

1956, Lighthill, Whittam and Richards proposed a macroscopic traffic flow model,

which is very popularly known as the LWR model. According to this model, the

traffic flow was represented using a first order partial differential equation and was

based on a hyperbolic system of conversation laws, as defined below.

2.1.1 Conservation Laws

A conservation law is a Partial Differential Equation of the form

∂ρ

∂t
+
∂f

∂x
= 0 (2.1)

where t represents the time coordinate; x represents the space coordinate, ρ :

R × R → Rm is an m dimensional vector of conserved quantities and f : Rm → Rm

reprents the flux or the rate of flow of the conserved quantity ρ. Furthermore, the

flux in a given direction represents the amount of ρ which has crossed a unit surface

in the given direction per unit time.

The system (2.1) is said to be hyperbolic if for each value of ρ, the eigen values

of the Jacobian matrix f ′(ρ) are real and there exists a complete set of m linearly

3



independent eigen vectors, representing the diagonalizability of the matrix.

2.1.2 Traffic Flow Theory

The Traffic flow theory is the study of following three variables.

1. Density ρ(x, t): Number of cars per unit distance, per lane.

2. Velocity v(x, t)

3. Traffic Flow Q(x, t): Average number of cars passing per unit time, per lane.

The relationship between the above three variables is presented in the following sub-

section.

Relationship between Traffic Flow variables

Let ρ(x, t) and V (x, t) be continuous functions of x and t. Consider a very small

time interval ∆t. During this small time interval, the values of ρ(x, t) and V (x, t) be

approximated by constants. Therefore, during the time ∆t, V (x, t)∆t cars exist in

the space as shown in Figure 2.1. Therefore, the number of cars passing an observer

can be written as V (x, t)∆tp(x, t). Hence, by definition,

Q(x, t) = p(x, t)V (x, t) (2.2)

In 3-d space, the relationship V =
Q

ρ
has been described in Gerlough and Huber

(4) and can be illustrated in Figure 2.2

4



Figure 2.1: Distance travelled in ∆t hours

Figure 2.2: v =
Q

ρ
represents the surface of admissible traffic flow model, where ρj

represents the jam density and Vf represents the free-flow velocity (Source: Huber
(4)).
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CHAPTER 3

Problem Description

3.1 Introduction

In this chapter, we consider the one-equation Lighthill William and Richards

(LWR) model of traffic flow, which will be used in conjunction with the Greenshield’s

model. Both these models formulate the basis of the numerical simulations in this

thesis. Later, different variations of the LWR model will be used to define several

well known numerical problems in the research literature.

3.2 LWR and Greenshield’s model

The Lighthill-Whitham-Richards Model, commonly known as the LWR model,

was introduced back in mid-1950s as a one dimensional macroscopic model to study

the traffic flow. In this model, the traffic was considered to be an inviscid but com-

pressible fluid (fluid-dynamic model) and the traffic flow variables: density ρ, velocity

v and flow f , were defined as continuous variables in time and space. According to

this model, the traffic flow f was defined to be a function of density ρ and velocity

as shown in Equation (3.1)

∂

∂t
ρ(t, x) +

∂

∂x
f(t, x) = 0 (3.1)

In Equation (3.1), ρ represents the traffic density of the vehicles which is related to

the flux f and velocity v according to the relation f = ρv, which was also introduced

6



in Equation (2.2).

Later, Greenshield’s model connected the traffic density ρ and the traffic velocity

v with a linear relationship illustrated in Equation (3.2).

v(ρ) = vf

(
1− ρ

ρm

)
(3.2)

where vf is the free flow speed and ρm is the maximum jam density. According

to the Equation (3.2), the free flow speed vf represents the speed of the traffic when

the density ρ is zero. Similarly, the maximum density ρm is the traffic density at

which speed of the traffic v is equal to zero. Due to the relation shown in Equation

(3.2), the graph between the flux f and the density ρ assumes a concave shape, since

∂2f

∂ρ2
< 0. This relationship is shown in Figure 3.1.

3.3 Numerical Problems

In this section, several well known numerical problems are defined as the variations

of LWR and Greenshield’s model. All these problems will later be numerically solved

using the Godunov and Finite Element Method, as described in Chapter (4) and

simulated in Chapter (5). This section defines the traffic flow PDE flow derived from

Equations (3.1) and (3.2).

Considering the LWR and the Greenshield’s model, we have

7



Figure 3.1: Experimental relationship between density, flow and velocity based on
LWR and Greenshield’s model (Source: Kachroo (9))
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∂

∂t
ρ(t, x) +

∂

∂x
f(ρ) = 0

f(ρ) = ρv(ρ)

v(ρ) = vf (1−
ρ

ρm
)

(3.3)

Replacing v(ρ) in f(ρ) and later f(ρ) in the partial differential Equation (3.3), we

get

∂ρ

∂t
+

(
vf −

2vf
ρm

ρ

)
∂ρ

∂x
= 0 (3.4)

where the variables x, t have been suppressed with the notation definition that

ρ = ρ(x, t). Equation (3.4) is the general form of traffic flow PDE that will be used

in this thesis.

3.3.1 Linear Advection

In Trangenstein (13), Linear Advection has been described as the motion of a

conserved quantity along a constant velocity field. Therefore, contrary to the velocity

being a function of density v(ρ), the velocity assumes as constant speed c. This

converts the equation (3.3) into,

∂ρ

∂t
+ c

∂ρ

∂x
= 0 ∀x ∈ < ∀t > 0

ρ(x, 0) = ρ0(x) ∀x ∈ <
(3.5)

The differential equation (3.5) can be re-written as follows,
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0 = [1 c]


∂ρ

∂t
∂ρ

∂x

 (3.6)

In other words, the density gradient seems to be orthogonal to a constant vector.

Therefore, the density ρ must be constant on lines parallel to the constant vector.

These lines are called as characteristic lines, which in this case would be written as

x− ct = constant. Hence,

ρ(x0 + cτ, t0 + τ) = constant ∀(x0, t0) ∀τ

If τ = t− t0 is chosen,

ρ(x0 + c(t− t0), t) = ρ(x0 − ct0, 0) = ρ0(x0 − ct0)

If x is given, x0 can be chosen such that x0 = x − ct + ct0 yields Equation (3.7),

which will be the solution to the differential Equation (3.5).

u(x, t) = u0(x− ct) (3.7)

The statement that Equation (3.7) is the solution to the differential Equation (3.5)

can be verified as below.

Define new variables ξ, τ and the corresponding density ˜ρ(ξ, τ) such that

ξ = x− ct, τ = t

ρ̃(ξ, t) = ρ(x, t)

(3.8)
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If the chain rule is now applied to the system of equations (3.8), we get

∂ρ

∂t
=

∂ρ̃

∂τ
− ∂ρ̃

∂ξ
c

∂ρ

∂x
=

∂ρ̃

∂ξ

Therefore, we get the following equation

0 =
∂ρ

∂t
+ c

∂ρ

∂x
=
∂ρ̃

∂τ

ρ̃(ξ, 0) = u0(ξ)

(3.9)

which proves that ρ̃ is the solution to the initial value problem defined in Equation

(3.9).

Consider the initial profile of the density ρ in Equation (3.5) to have a discontinuity

in the middle of a road segment, as shown in Figure 3.2. Therefore, provided that

c > 0, the density ρ at time t will have the same profile, but only will be shifted c ∗ t

units in space, as shown in Figure 3.3.

Figure 3.2: Linear Advection: Initial Density Profile u0(x)
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Figure 3.3: Linear Advection: Analytical solution of the Density Profile u(x, t), given
that t > 0 c > 0

3.3.2 Red Traffic Light Turning Into Green

Studying the behavior of how traffic density changes over time when a red traffic

light turns into green, is a classic problem in traffic research. In this problem, it is

assumed that a traffic light becomes red at time t = 0 such that the density behind

the traffic light ρ(x < 0; t = 0) = ρl becomes greater than the density ahead of the

traffic light ρ(x > 0; t = 0) = ρr further down the road. As a simpler case, it can

also be assumed that the traffic behind the traffic light is lined up bumper to bumper

such that ρ(x < 0; t = 0) = ρm. As an additional simplication, it can further be

assumed that no traffic exists ahead of the traffic light further down the road such

that ρ(x > 0, t = 0) = 0. However, let’s study this problem in a general case when

ρl > ρr.

The partial differential equation to be solved in this problem is as follows,
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∂ρ

∂t
+

(
vf −

2vf
ρm

ρ

)
∂ρ

∂x
= 0

This equation was also introduced as Equation (3.4) earlier.

In quasilinear form, Equation (3.3) could be written as,

∂

∂t
ρ(t, x) + f ′(ρ)

∂

∂x
ρ(t, x) = 0 (3.10)

From Equations (3.3) and (3.10), we get the characteristic speed as,

f ′(ρ) = vf (1− 2
ρ

ρm
) (3.11)

The characteristic speed obtained in Equation (3.11) is the slope of the graph

shown in Figure 3.4.

Figure 3.4: Characteristic speed (Source: Kachroo (9))

Following Equation (3.11), we observe that since ρl > ρr, therefore,
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f ′(ρl) = vf (1− 2
ρl
ρm

) < f ′(ρr) = vf (1− 2
ρr
ρm

) (3.12)

Since the characteristic speed towards the left of the traffic light is lesser than

the characteristic speed towards the right, a blank region is created by these char-

acteristics in the x − t space. This behavior can be seen in Figure 3.5, as shown

below.

Figure 3.5: Red Light turning into Green: Characteristics generating blank region in
x− t space (Source: Kachroo (9))

In Kachroo (9), it has been mentioned that only a symmetry solution can fill in

the gap as shown in Figure 3.5. Let’s attempt to find such a solution.

Set ρ(x, t) = w(x/t) and differentiate it with respect to time coordinate t and the

space coordinate x. We get,

∂

∂t
ρ(x, t) = − x

t2
w′(x/t)

∂

∂x
ρ(x, t) =

1

t
w′(x/t)

(3.13)

Substituting Equation (3.13) into Equation (3.10), we get

14



− x
t2
w′(x/t) +

1

t
f ′ (w(x/t))w′(x/t) = 0 (3.14)

If Equation (3.14) is multiplied by t and rearranged, it turns to Equation (3.15)

f ′ (w(β))w′(β) = βw′(β) (3.15)

Solving Equation (3.15), we get 2 cases:

Case I

w′(β) = 0 (3.16)

i.e. w is a constant for β ≤ β1 and β ≥ β2.

Case II For β1 < β < β2, w varies smoothly with w′ 6= 0. Therefore, Equation

3.15 yields Equation (3.17) as shown below.

f ′ (w(β)) = β , β1 < β < β2 (3.17)

Combining Case I and II, the density ρ becomes

ρ(β) =


ρl , β ≤ f ′(ρl)

w(β) , f ′(ρl) < βf ′(ρr)

ρr , β ≥ f ′(ρr)

(3.18)
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Now, substituting back w(x/t) by ρ(x, t) in Equation (3.18), we get

ρ(x, t) =


ρl ,

x

t
≤ f ′(ρl)

ω(
x

t
) , f ′(ρl) <

x

t
≤ f ′(ρr)

ρr ,
x

t
≥ f ′(ρr)

(3.19)

where

ω(
x

t
) =

f ′(ρr)− f ′(ρl)
ρr − ρl

(
x

t
)

The density solution, obtained in Equation (3.19), also known as a rarefaction

solution, can be illustrated in Figure 3.6.

Figure 3.6: Red Light turning into Green: Rarefaction solution (Source: Kachroo
(9))

3.3.3 Stationary Shock

A shock in density happens when the characteristics intersect in space and time.

When characteristics intersect, that point in space has multiple values of densities

at the same time. In this problem, the density behind a certain point on the road
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segment (say x = 0) ρ(x < 0; t = 0) = ρl is taken to be lesser than the density ahead

of that point ρ(x > 0; t = 0) = ρr further down the road. In other words, at time

t = 0, ρl < ρr. As a special case, ρl can be taken to be 0 and ρr can be taken to be

ρm. In this case, according to Haberman (5), the situation will be interpreted as an

initial semi-infinite line of bumper to bumper traffic followed by no traffic.

The partial differential equation to be solved in this problem is defined in Equation

(3.4). Additionally, the characteristic speed was also introduced as follows in Equation

(3.11).

f ′(ρ) = vf (1− 2
ρ

ρm
)

For shocks in general, since ρl < ρr, therefore,

f ′(ρl) = vf (1− 2
ρl
ρm

) > f ′(ρr) = vf (1− 2
ρr
ρm

) (3.20)

Based upon Equation (3.20), since the characteristic speed on the left f ′(ρl) is

higher than that on the right f ′(ρr), therefore, the characteristic curves from the left

catch up with those on the right. This produces a shock wave with speed λ given by

Rankine-Hugoniot condition, as described in Kachroo (9). These characteristics are

shown in Figure 3.7 and the shock speed is defined in Equation (3.21).

λ =
f(ρr)− f(ρl)

ρr − ρl
(3.21)

A stationary shock is produced when ρl and ρr are chosen such that the shock
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Figure 3.7: Shock solution and its characteristics (Source: Kachroo (9))

speed given by Equation (3.21) is 0. In other words, given an initial density profile

shown in Figure 3.8 and stated in Equation (3.22) , the shock stays at the same

position ∀ t > 0, as shown in Figure 3.9 and stated in Equation (3.23).

ρ(x, 0) =


ρl x < a

ρr x >= a

(3.22)

ρ(x, t) =


ρl x < a

ρr x >= a

(3.23)

3.3.4 Shock moving towards right

As introduced earlier in the previous subsection, a shock is formed when charac-

teristics intersect at t > 0. This situation arises when ρl < ρr, thereby leading to

f ′(ρl) > f ′(ρr) as per Equation (3.20).

Additionally, the shock moves towards right if the shock speed defined in Equation

(3.21) is positive. In other words, λ > 0 as per Equation (3.24).
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Figure 3.8: Stationary Shock: Initial Condition at time t = 0

Figure 3.9: Stationary Shock: Solution ∀t
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λ =
f(ρr)− f(ρl)

ρr − ρl
> 0 (3.24)

The partial differential equation to be solved in this problem is as follows,

∂ρ

∂t
+ vf

∂ρ

∂x
− 2vf
ρm

ρ
∂ρ

∂x
= 0

This equation was also introduced as Equation (3.4) earlier. The density profile

at time t = 0 and t > 0 are shown in Figures 3.10 and 3.11 respectively.

Figure 3.10: Shock moving towards right: Initial Condition at time t = 0
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Figure 3.11: Shock moving towards right: Solution at time t > 0
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CHAPTER 4

Numerical Methods

4.1 Introduction

In this chapter, the basics of two numerical methods are introduced - Godunov

and Finite Element. Later, the Finite Element method is enhanced by introducing

the concept of time relaxation in traffic flow.

4.2 Godunov method

This section provides the basics of the Godunov method and later specifies the

Traffic Flow PDE being used in the Godunov analysis.

4.2.1 Basics of Godunov method

The Godunov method of numerical simulations is a conservative scheme, where

the solution can be represented in the following form:

ρn+1
i = ρni +

∆t

∆x
[fi− 1

2
− fi+ 1

2
] (4.1)

where

fi+ 1
2

= fi+ 1
2
(ρni−lL , · · · , ρ

n
i+lR

) (4.2)

with lL and lR being two non-negative integers and fi+ 1
2

being a numerical approxi-

mation to the flux f(ρ), as described in Equation (3.1).

This method is widely used for solving Riemann problems, as shown in Figure 4.1
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and defined in Equation (4.3).

Figure 4.1: Definition Sketch for Riemann Problem

ρ(x, t = 0) =


ρl(x) ; x ≤ a

ρr(x) ; x > a

(4.3)

where ρl and ρr are two functions of coordinate x and a is the location of the

initial discontinuity.

As introduced earlier, Equation (3.21) provides the speed of the shock wave, which

exists when ρl < ρr. However, a rarefaction is obtained when ρl > ρr.

λ =
f(ρr)− f(ρl)

ρr − ρl

This analysis of shockwave and rarefaction conditions provides us the Godunov
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based ODE model for traffic. The conservation law of traffic flow allows us to create

this ODE model and is given in Equation (4.4).

dρ(t)

dt
= fin − fout + u(t) (4.4)

where a unit length for the section is considered. This equation is derived from Figure

4.2, as shown below.

Figure 4.2: Godunov Dynamics (Source: Kachroo(12))

In the Figure 4.2, fin(t) represents the inflow, fout(t) represents the outflow, ρl(t)

represents the upstream density and ρr(t) represents the downstream density at time

t. Using the function F (., .) obtained using the Godunov method (11) at the left

junction, the inflow fin(t) can be computed using Equation (4.5).

fin(t) = F (ρl, ρ) (4.5)

Similarly, for the right junction, the outflow fout(t) can be computed using Equa-

tion (4.6).
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fout(t) = F (ρ, ρr) (4.6)

In Leveque (11), it has been mentioned that the function F (ρl, ρr) can be written

in terms of its arguments using the Godunov method as,

F (ρl, ρr) = f(ρ∗(ρl, ρr)) (4.7)

where the term ρ∗ represents the flow dictating density and is computed as follows,

1. f ′(ρ`), f
′(ρr) ≥ 0⇒ ρ∗ = ρ`

2. f ′(ρ`), f
′(ρr) ≤ 0⇒ ρ∗ = ρr

3. f ′(ρ`) ≥ 0 ≥ f ′(ρr)⇒ ρ∗ = ρ` if λ > 0, otherwise ρ∗ = ρr

4. f ′(ρ`) < 0 < f ′(ρr)⇒ ρ∗ = ρλ

Here, ρλ is obtained as the solution to f ′(ρλ) = 0.

4.2.2 LWR-Greenshield’s Traffic Flow PDE used in Godunov analysis

As introduced earlier in Equation (3.4), the following Traffic Flow PDE is used

for numerical simulations using Godunov analysis.

∂ρ

∂t
+

(
vf −

2vf
ρm

ρ

)
∂ρ

∂x
= 0

The above definition of F (ρl, ρr) = f(ρ∗(ρl, ρr)) is used to compute the traffic

density ρ, as defined earlier in Equation (4.1).
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ρn+1
i = ρni +

∆t

∆x
[fi− 1

2
− fi+ 1

2
]

4.3 Finite Element method

This section provides the basics of the Finite Element method, specifies the Traffic

Flow PDE being used in the FEM analysis and later introduces the concepts of time

relaxation important while treatment of shocks.

4.3.1 Basics of Finite Element method

According to Hutton (7), Finite Element Method (FEM) is a computational tech-

nique to obtain approximate solutions of boundary value problems, which are mathe-

matical problems where one or more dependent variables satisfy a differential equation

everywhere within a known domain and satisfy specific conditions on the boundary of

the domain. In FEM, a small finite element of size dx×dy that encloses a finite-sized

subdomain is first defined as shown in Figure 4.3(b). The vertices of the element

are called as nodes, where the value of the dependent variable is explicity calculated

for the finite element. At these nodes, the value of the dependent variables are first

computed and then are used to approximate the values at non-nodal points by in-

terpolating those nodal values. For instance, consider φ1, φ2 and φ3 to be the nodal

values of the dependent variable in Figure 4.3(b). Then, with the help of N1, N2 and

N3 interpolation (or shape) functions, the dependent variable within the element is
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Figure 4.3: (a) 2 − D domain of dependent variable φ(x, y) (b) Three node Finite
Element defined in domain (c) Additional elements showing partial mesh of domain

defined by Equation (4.8).

φ(x, y) = N1(x, y)φ1 +N2(x, y)φ2 +N3(x, y)φ3 (4.8)

The triangulation element shown in Figure 4.3(b) and described in Equation (4.8) is

said to have 3 degrees of freedom, since three nodal values are necessary to describe

the dependent variable within the element. In general, degree of freedom for a finite

element equals the product of number of nodes and the nodal values of the dependent

variable required to be computed at every node. Since each finite element is connected

at an exterior node with its adjacent element as shown in Figure 4.3(c), the finite

element equations are fomulated to maintain the continuity of the dependent variable

at each node. However, it is noted that the interelement continuity of the derivatives
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of the dependent variable does not necessarily exist. Through this discretization of the

domain, a finite element mesh is generated which nearly includes the entire physical

domain. In general, triangular elements are known to approximate the domain as

well as its boundaries nicely.

4.3.2 LWR-Greenshield’s Traffic Flow PDE used in FEM analysis

As introduced earlier in Equation (3.4), the following Traffic Flow PDE is used

for numerical simulations using FEM analysis.

∂ρ

∂t
+ vf

∂ρ

∂x
− 2vf
ρm

ρ
∂ρ

∂x
= 0

Since we are only considering the one-dimensional traffic flow problem, the above

Equation (3.4) is equivalent to the following Equation (4.11).

ρt +

(
vf −

2vf
ρm

ρ

)
ρ′ = 0 (4.9)

This equation is similar to the Navier Stokes Equation as given in Ervin et al.

(14). Before introducing the variational formulation for the above equation, let’s

define a few notations. Considering Ω ∈ <, the L2(Ω) norm and the inner product

are denoted by ‖.‖ and (., .) respectively. For functions v(x, t) defined on entire time

interval (0, T ), define ‖v‖∞,k := sup
0<t<T

‖v(t, .)‖k and ‖v‖m,k :=

(∫ T

0

‖v(t, .)‖mk dt
) 1

m

.

The function space used in FEM analysis is X := H1
0 (Ω) and the dual space of X is

denoted as X ′, with norm ‖.‖−1.

A variational formulation of Equation (4.11) can be stated as: Find ρ ∈ L2(0, T ;X)∩
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L∞(0, T ;L2(Ω)) with ρt ∈ L2(0, T ;X ′) satisfying

(ρt, v) + vf (ρ
′, v)− 2vf

ρm
(ρ · ρ′, v) = 0 , ∀v ∈ X

ρ(x, 0) = ρ0(x) ,∀x ∈ Ω

(4.10)

4.3.3 Finite Element method with Time Relaxation

In this thesis, the diffusion is not being used to solve the hyperbolic traffic flow

pde given by Equation (3.4). Due to this, several oscillations exist around the shock

solutions. A simple regularization technique was proposed by Adamz , Stoltz and

Kleiser in (1) and (2). In this technique, if ρ represents the variable of interest, h

represents the characteristic mesh width, and δ = O(h) a chosen length scale, ρ∗ is

created to be another variable which represents the part of ρ varying over length scales

< O(δ) i.e. the fluctuating part of ρ. The term χρ∗ is then added to the differential

equation such that our model in Equation (4.11) is transformed to be,

ρt + vfρ
′ − 2vf

ρm
ρ · ρ′ + χρ∗ = 0 (4.11)

According to Ervin et al. (14), the term χρ∗ drives the unresolved density scales

exponentially to zero. The term χ is called as the relaxation coefficient and has

the units
1

time
. Now, with the introduction of the new term χρ∗, the variational

formulation of Equation (4.11) is stated as: Find ρ ∈ L2(0, T ;X) ∩ L∞(0, T ;L2(Ω))

with ρt ∈ L2(0, T ;X ′) satisfying
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(ρt, v) + vf (ρ
′, v)− 2vf

ρm
(ρ · ρ′, v) + χ(ρ−GNρ, v) = 0 ,∀v ∈ X

ρ(x, 0) = ρ0(x) ,∀x ∈ Ω

(4.12)

In Equation (4.12), ρ denotes a spatially averaged function of ρ defined as: ρ :=

G(ρ) satisying

−δ2ρ′′ + ρ = ρ , in Ω

ρ = 0 , on ∂Ω

(4.13)

where δ represents the filter length scale. According to Ervin et al. (14), the oper-

ator GN in Equation (4.12) represents the N th van Cittert approximate deconvolution

operator defined by

GNφ :=
N∑
n=0

(I −G)nφ, N = 0, 1, 2, . . . (4.14)

For example, the approximate de-convolution operator corresponding to N =

0, 1, 2 are G0ρ = ρ, G1ρ = 2ρ− ρ and G2ρ = 3ρ− 3ρ+ ρ.

Therefore, for N = 0, by substituting G0ρ in Equation (4.12), we get the following

system of equations in which the density goes through filtering once:

(ρt, v) + vf (ρ
′, v)− 2vf

ρm
(ρ · ρ′, v) + χ(ρ− ρ, v) = 0 ,∀v ∈ X

ρ(x, 0) = ρ0(x) ,∀x ∈ Ω

(4.15)
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where ρ is computed through Equation (4.13)

Similarly, for N = 1, substituting G1ρ = 2ρ − ρ in Equation (4.12), gives us the

following system of equations:

(ρt, v) + vf (ρ
′, v)− 2vf

ρm
(ρ · ρ′, v) + χ(ρ− 2ρ+ ρ, v) = 0 , ∀v ∈ X

ρ(x, 0) = ρ0(x) ,∀x ∈ Ω

(4.16)

where ρ is first computed through Equation (4.13), which then is used to get ρ

through solving−δ2 ρ ′′+ρ = ρ. Once ρ is obtained, the density ρ is computed through

Equation (4.17). The same procedure is followed for higher order of deconvolution

N , and for N = 2, where the system of equations obtained by substituting G2ρ =

3ρ− 3ρ+ ρ in Equation (4.12) gives,

(ρt, v) + vf (ρ
′, v)− 2vf

ρm
(ρ · ρ′, v) + χ(ρ− 3ρ+ 3ρ− ρ, v) = 0 ,∀v ∈ X

ρ(x, 0) = ρ0(x) , ∀x ∈ Ω

(4.17)
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CHAPTER 5

Numerical Simulations

5.1 Introduction

In this chapter, the one-equation Lighthill William and Richards (LWR) model

of traffic flow has been studied through two techniques: a) Godunov method and

b) Finite element method with time relaxation. For both methods, solutions to

several numerical problems found in the research literature are calculated and the

comparative results are presented. In all the problems, we compare how godunov

solution compares against the finite element solution. For shock problems (Stationary

Shock and Shock moving towards right), we investigated how order of relaxation affect

the solution, given the same relaxation parameter χ and filter length scale δ.

5.2 Equations

As introduced earlier in (3.3), the following equation is of interest.

∂

∂t
ρ(t, x) +

∂

∂x
f(ρ) = 0

f(ρ) = ρv(ρ)

v(ρ) = vf (1−
ρ

ρm
)

This equation, when unfolded through substitution of variables, could be written

down as follows:
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∂ρ

∂t
+

(
vf −

2vf
ρm

ρ

)
∂ρ

∂x
= 0

The above equation, given by (3.4) as well, forms the base of the numerical sim-

ulations in this chapter. Its variational formulation is given as below. Considering

Ω ∈ <

(ρt, v) + vf (ρ
′, v)− 2vf

ρm
(ρ · ρ′, v) + χ(ρ−GNρ, v) = 0 , ∀v ∈ X

ρ(x, 0) = ρ0(x) ,∀x ∈ Ω

For numerical simulations based on finite element method and Backward-Euler

temporal discretization with linear extrapolation ρn = 2ρn−1 − ρn−2 such that the

discretized finite element formualtion for time interval (0, T ] could be written as: For

n = 1, 2, . . . , NT , find ρnh ∈ Xh such that,

(ρnh, v) + ∆tvf (ρ
n
h
′, v)− 2vf

ρm
∆t((2ρn−1h − ρn−2h ).ρnh

′, v) + χ∆t(ρnh −GNρ
n
h, v)

= (ρn−1h , v)∀v ∈ Xh (5.1)

5.3 Accuracy measures

For computation of numerical accuracy, the following measures were used:

1. l2 norm of the error :
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The l2 norm of the error vector e is defined as

‖e‖ =

√√√√ n∑
k=1

|ek|2

where ek represents one term from the error vector and k = 1, 2, . . . N .

2. Bounded Variation (BV) norm of the error :

The bounded variation (bv) norm of the real valued error function defined on

an interval [a, b] ⊂ < is defined as

V a
b (e) = sup

p∈P

np−1∑
i=0

|e(xi+1)− e(xi)|

where the supremum is taken over the set

{P = {x0, . . . , xnP} |P is a partition of [a, b]}

3. Smoothness of Estimated Solution:

The inverse of Coefficient of Variation (Wikipedia) can be used for calculating

the smoothness of the estimated solution. If e represents the error between

the estimated solution y and it’s lag, we can calculate the smoothness of the

estimated solution s(e) as

s(e) =
|µ(e)|
σ(e)

=
|µ(y(2 : n− 1)− y(1 : n− 2))|
σ(y(2 : n− 1)− y(1 : n− 2))
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where n represents the number of data points in the estimated solution.

5.3.1 Comparing the solutions

The accuracy measures defined above are used in comparing different sets of nu-

merical solutions with the exact solutions.

1. Comparing Godunov and Finite Element Solution:

The l2 norm and the bounded variation (bv) norm of the error defined above are

used for numerically comparing the Godunov solution with the FEM solution.

In each numerical problem, the l2 norm and the bounded variation (bv) norm

of the error is computed over space and plotted at each time t ∈ [0, T ].

2. Getting optimal parameters χ and δ for FEM with Time Relaxation:

As mentioned above, the Finite Element Method with Time Relaxation method

is used for suppressing the oscillations in two problems: a) Stationary Shocks

b) Shock moving towards right. Since different combinations of χ and δ give

different measures of l2 norm of the error, bounded variation (bv) norm of the

error and smoothness of estimated solution, all the three measures are used to

find the best possible χ and δ. The search space consists of the discrete set

{χset × δset}

where,

χset = {1, 2, 3, . . . , 100} , δset = {0.5h, h, 1.5h, 2h, 2.5h, 3h, 3.5h, 4h, 4.5h, 5h}
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and h represents the mesh width. Therefore, for the Stationary Shock and the

Shock moving towards right problem, a total of 1000 χ and δ combinations are

used to find the best possible χ and δ.

5.4 Common Parameters

This section lists the important parameters that are common to all numerical

simulations below.

Parameter Name Description Value

a Beginning point of the road segment -200
b Ending point of the road segment 200
l Length of the road segment a− b = 400 units
T Final time 5 seconds
M Number of Nodes 1001
h FEM Mesh Width 0.3996004
k Time Step 0.008064516
N Number of iterations 620
ρm Jam density 0.04
ρo Initial density 0.02
vf Free-Flow speed 25

Table 5.1: Common Parameters used in numerical simulations

Apart from the above parameters, the Finite Element method simulations used

P2 continuous piecewise quadratic basis functions and FreeFEM++ package (6) was

used to perform finite element simulations.
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5.5 Linear Advection

As introduced in Chapter 3, linear advection refers to the motion of a conserved

quantity along a constant vector field. In this problem, since the velocity is constant,

the flow is only dependent upon the density. Apart from the common parameters

defined above, consider the following parameters:

Parameter Name Description Value

c Advection Velocity 3.0
ρl Left density towards x = 0− at t = 0 0.01
ρr Right density towards x = 0+ at t = 0 0.03

Table 5.2: Linear Advection: Parameters used in numerical simulation

Based upon the above parameters ρl and ρr, the initial density profile we get for

this problem is shown in Figure 5.1.

Figure 5.1: Linear Advection: Initial density profile
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In the subsequent sections, the numerical techniques introduced in Chapter 4 are

used to find the numerical solution to the Linear Advection problem.

5.5.1 Godunov solution

Figure 5.2 provides the Godunov solution of this problem at final time T = 5

seconds. Moreover, Figure 5.3 shows the l2 and the bounded variation (bv) norm of

the error for each time t ∈ [0, T ].

Figure 5.2: Linear Advection: Godunov solution at time T = 5 seconds

As observed from the Figures 5.2 and 5.3, the Godunov method simulates this

problem well but has a smooth, continuous solution around the discontinuity at time

T = 5 seconds.
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Figure 5.3: Linear Advection: l2 norm and the bounded variation (bv) norm of the
error for Godunov solution

5.5.2 FEM solution

Figure 5.4 provides the FEM solution of this problem at final time T = 5 seconds.

Moreover, Figure 5.5 shows the l2 and the bounded variation (bv) norm of the error

for each time t ∈ [0, T ].

Figure 5.4: Linear Advection: FEM solution at time T = 5 seconds
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Figure 5.5: Linear Advection: l2 norm and the bounded variation (bv) norm of the
error for FEM solution

As observed from the Figures 5.4 and 5.5, the FEM method simulates this problem

well and is able to capture the discontinuity properly.

5.5.3 Comparison of solutions obtained from Godunov method and FEM

method

In this section, the numerical results obtained from the Godunov method and FEM

method are presented. Figure 5.6 gives an overview of how the Godunov solution

compares with the FEM solution at final time T = 5 seconds. The l2 norm and

the bounded variation norm of the error obtained from Godunov method and FEM

method are also presented in Figure 5.7. The latter figure helps us understand that

the FEM method outperforms the Godunov method in terms of the l2 norm of the

error.
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Figure 5.6: Linear Advection: Comparison of numerical simulations obtained from
Godunov method and FEM method

Figure 5.7: Linear Advection: Comparison of l2 norm and bounded variation (bv)
norm of the errors obtained from Godunov method and FEM method
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5.6 Red Traffic Light turning into Green

As introduced in Chapter 3, when a red traffic light turns into green, a rarefac-

tion wave is formed if ρl > ρr. Apart from the common parameters defined at the

beginning of this chapter, consider the following parameters ρl and ρr:

Parameter Name Description Value

ρl Left density towards x = 0− at t = 0 ρm = 0.04
ρr Right density towards x = 0+ at t = 0 0.0

Table 5.3: Red Traffic Light turning into Green: Parameters used in numerical sim-
ulation

Based upon the above parameters ρl and ρr, the initial density profile we get for

this problem is shown in Figure 5.8.

Figure 5.8: Red Traffic Light turning into Green: Initial density profile

In the subsequent sections, the numerical techniques introduced in Chapter 4 are
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used to find the numerical solution to this problem.

5.6.1 Godunov solution

Figure 5.9 provides the Godunov solution of this problem at final time T = 5

seconds. Moreover, Figure 5.10 shows the l2 and the bounded variation (bv) norm of

the error for each time t ∈ [0, T ].

Figure 5.9: Red Traffic Light turning into Green: Godunov solution at time T = 5
seconds

As observed from the Figures 5.9 and 5.10, the Godunov method simulates this

problem well.

5.6.2 FEM solution

Figure 5.11 provides the FEM solution of this problem at final time T = 5 seconds.

Moreover, Figure 5.12 shows the l2 and the bounded variation (bv) norm of the error
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Figure 5.10: Red Traffic Light turning into Green: l2 norm and the bounded variation
(bv) norm of the error for Godunov solution

for each time t ∈ [0, T ].

Figure 5.11: Red Traffic Light turning into Green: FEM solution at time T = 5
seconds

As observed from the Figures 5.11 and 5.12, the FEM method also simulates this

problem well.
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Figure 5.12: Red Traffic Light turning into Green: l2 norm and the bounded variation
(bv) norm of the error for FEM solution

5.6.3 Comparison of solutions obtained from Godunov method and FEM

method

In this section, the numerical results obtained from the Godunov method and

FEM method are presented. Figure 5.13 gives an overview of how the Godunov

solution compares with the FEM solution at final time T = 5 seconds. The l2 norm

and the bounded variation norm of the error obtained from Godunov method and

FEM method are also presented in Figure 5.14. The latter figure helps us understand

that the FEM method outperforms the Godunov method in terms of both, the l2

norm and the bounded variation norm of the error.

5.7 Stationary Shock

As introduced in Chapter 3, a shock stays stationary if ρl and ρr are chosen such

that the shock velocity remains zero. Apart from the common parameters defined at

the beginning of this chapter, consider the following parameters ρl and ρr:
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Figure 5.13: Red Traffic Light turning into Green: Comparison of numerical simula-
tions obtained from Godunov method and FEM method

Figure 5.14: Red Traffic Light turning into Green: Comparison of l2 norm and
bounded variation (bv) norm of the errors obtained from Godunov method and FEM
method

46



Parameter Name Description Value

ρl Left density towards x = 0− at t = 0 0.01
ρr Right density towards x = 0+ at t = 0 0.03

Table 5.4: Stationary Shock: Parameters used in numerical simulation

Based upon the above parameters ρl and ρr, the initial density profile we get for

this problem is shown in Figure 5.15.

Figure 5.15: Stationary Shock: Initial density profile

For the above ρl and ρr, the shock speed can be computed from Equation (3.21)

as

λ =
f(ρr)− f(ρl)

ρr − ρl
=
ρl ∗ vf ∗ (1− ρl

ρm
)− ρr ∗ vf ∗ (1− ρr

ρm
)

ρl − ρr

λ =
0.01 ∗ 25 ∗ (1− 0.01

0.04
)− 0.03 ∗ 25 ∗ (1− 0.03

0.04
)

0.01− 0.03
= 0
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Therefore, for the chosen ρl and ρr, we get shock speed λ = 0, which causes

the shock to remain stationary ∀ t > 0. In the subsequent sections, the numerical

techniques introduced in Chapter 4 are used to find the numerical solution to this

problem.

5.7.1 Godunov solution

Figure 5.16 provides the Godunov solution of this problem at final time T = 5

seconds. Moreover, Figure 5.17 shows the l2 and the bounded variation (bv) norm of

the error for each time t ∈ [0, T ].

Figure 5.16: Stationary Shock: Godunov solution at time T = 5 seconds

As observed from the Figures 5.16 and 5.17, it seems that the Godunov method

simulates the stationary shock extremely well. This is because the Godunov solution

is based upon the flow at the left and right junctions of a segment, but since the shock
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Figure 5.17: Stationary Shock: l2 norm and the bounded variation (bv) norm of the
error for Godunov solution

velocity is 0, the flow is 0. Hence, the solution keeps it’s initial profile ∀t > 0.

5.7.2 FEM solution without time relaxation

In Equation (4.12), the relaxation parameter χ can be set to 0 to yield a finite

element variational problem without any relaxation. Figures 5.18 and 5.19 provide the

FEM solution at the final time T = 5 seconds and the l2 and the bounded variation

(bv) norm of the error for each time t ∈ [0, T ] respectively.

As can be observed in the Figures 5.18 and 5.19, the finite element method is not

able to numerically simulate the stationary shock and gets tremendous amounts of

oscillations.

5.7.3 FEM solution with time relaxation

As introduced in Chapter 4, the term χρ∗ can be added to the finite element

variation formulation, which helps to drive the unresolved density scales exponentially
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Figure 5.18: Stationary Shock: FEM solution without any time relaxation

Figure 5.19: Stationary Shock: l2 norm and bounded variation (bv) norm of the error
for FEM solution without any time relaxation
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to zero. The finite element variational formulation with time relaxation was given in

the beginning of this chapter and also, in Chapter 4.

However, the usage of time relaxation in finite element method requires choosing

the relaxation parameter χ and filter length scale δ. Based upon the process described

earlier in this chapter, numerical computations were done to get the optimal χ and δ

over 1000 such combinations.

For all such combinations, l2 norm of the error, bounded variation (bv) norm of

the error and the smoothness of the estimated solution were calculated by performing

time relaxation twice, whose variational formulation is given in Chapter 4. Following

steps were taken to choose the optimal χ and δ.

1. In order to reduce the search space, only those candidates of χ−δ combinations

were selected for which min(l2) < l2 < 1.3 ∗min(l2).

2. From amongst the above candidates, that χ− δ combination was chosen which

gave the minimal bounded variation (bv) norm of the error and the maximum

smoothness of the estimated solution.

The results are presented in Figure 5.20.

As observed in Figure 5.20, χ = 100 and δ = 0.5h resulted in minimal l2 norm

of the error. Additionally, it had the minimal bounded variation (bv) norm of the

error and led to maximum smoothness of the estimated solution. With the chosen

parameters χ = 100 and δ = 0.5h and time relaxation with N = 1 in finite element

method, the results obtained are shown in Figures 5.21 and 5.22 . Figure 5.21 provides

the FEM solution for Time Relaxation with N = 1 at the final time T = 5 seconds.
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Figure 5.20: Stationary Shock: Usage of l2 norm of the error, bounded variation (bv)
norm of the error and Smoothness of Estimated Solution to find the optimal χ − δ
combination.

Additionally, Figure 5.22 provides the l2 norm and the bounded variation (bv) norm

of the error for each time t ∈ [0, T ] respectively.

Figure 5.21: Stationary Shock: FEM solution for Time Relaxation with N = 1

For the chosen parameter: χ = 100 and δ = 0.5h, a comparison was also per-

formed on how different orders deconvolution of time relaxation affects the numerical
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Figure 5.22: Stationary Shock: l2 norm and bounded variation (bv) norm of the error
for FEM solution with Time Relaxation and N = 1

simulations of the stationary shock problem. This comparison is provided in Figures

5.23 and 5.24.

Figure 5.23: Stationary Shock: FEM solutions for different orders of time relaxation
schemes where χ = 100 and δ = 0.5h

From Figure 5.24, it can be observed that the performance of FEM time relaxation
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Figure 5.24: Stationary Shock: l2 norm and bounded variation (bv) norm of the error
for different orders of time relaxation schemes where χ = 100 and δ = 0.5h

twice is much better than the time relaxation once and thrice. Hence, performing time

relaxation twice on the finite elements should suffice to get an acceptable solution of

stationary shock problem without much oscillations.

5.7.4 Comparison of solutions obtained from Godunov method and FEM

time relaxation method

In this section, the numerical results obtained from the Godunov method and FEM

method with time relaxation and N = 1 (χ = 100 and δ = 0.5h) are presented. Figure

5.25 gives an overview of how the Godunov solution compares with the FEM solution

at final time T = 5 seconds. The l2 norm and the bounded variation norm of the error

obtained from Godunov method and FEM method presented in Figure 5.26, provide

a better understanding of the comparative performance of the two solutions for this

numerical problem. From the latter figure, it can be observed that the Godunov
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solution outperformed the FEM solution.

Figure 5.25: Stationary Shock: Comparison of numerical simulations obtained from
Godunov method and FEM method for Time Relaxation with N = 1

5.8 Shock moving towards right

As introduced in Chapter 3, a shock moves towards right if ρl and ρr are chosen

such that the shock velocity becomes positive. Consider the following parameters ρl

and ρr:

Parameter Name Description Value

ρl Left density towards x = 0− at t = 0 0.01
ρr Right density towards x = 0+ at t = 0 0.025

Table 5.5: Parameters used in numerical simulation of a shock moving towards right

Based upon the above parameters ρl and ρr, the initial density profile we get for
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Figure 5.26: Stationary Shock: Comparison of l2 norm and bounded variation (bv)
norm of the errors obtained from Godunov method and FEM method for Time Re-
laxation with N = 1

this problem is shown in Figure 5.27.

For the above ρl and ρr, the shock speed can be computed from Equation (3.21)

as

λ =
f(ρr)− f(ρl)

ρr − ρl
=
ρl ∗ vf ∗ (1− ρl

ρm
)− ρr ∗ vf ∗ (1− ρr

ρm
)

ρl − ρr

λ =
0.01 ∗ 25 ∗ (1− 0.01

0.04
)− 0.025 ∗ 25 ∗ (1− 0.025

0.04
)

0.01− 0.025
= 3.125

Therefore, for the chosen ρl and ρr, we get shock speed λ > 0, which causes the

shock to move towards right. In the subsequent sections, the numerical techniques

introduced in Chapter 4 are used to find the numerical solution to this problem.
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Figure 5.27: Shock moving towards right: Initial density profile

5.8.1 Godunov solution

Figure 5.28 provides the Godunov solution of this problem at final time T = 5

seconds. Moreover, Figure 5.29 shows the l2 and the bounded variation (bv) norm of

the error for each time t ∈ [0, T ].

Figure 5.28: Shock moving towards right: Godunov solution at time T = 5 seconds
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Figure 5.29: Shock moving towards right: l2 norm and the bounded variation (bv)
norm of the error for Godunov solution

5.8.2 FEM solution without time relaxation

In Equation (4.12), the relaxation parameter χ can be set to 0 to yield a finite

element variational problem without any relaxation. Figures 5.30 and 5.31 provide the

FEM solution at the final time T = 5 seconds and the l2 and the bounded variation

(bv) norm of the error for each time t ∈ [0, T ] respectively.

Figure 5.30: Shock moving towards right: FEM solution without any time relaxation
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Figure 5.31: Shock moving towards right: l2 norm and bounded variation (bv) norm
of the error for FEM solution without any time relaxation

As can be observed in the Figures 5.30 and 5.31, the finite element method is

not able to numerically simulate the moving shock and gets tremendous amounts of

oscillations.

5.8.3 FEM solution with time relaxation

As introduced in Chapter 4, the term χρ∗ can be added to the finite element

variation formulation, which helps to drive the unresolved density scales exponentially

to zero. The finite element variational formulation with time relaxation was given in

the beginning of this chapter and also, in Chapter 4.

However, the usage of time relaxation in finite element method requires choosing

the relaxation parameter χ and filter length scale δ. Based upon the process described

earlier in this chapter, numerical computations were done to get the optimal χ and δ

over 1000 such combinations.
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For all such combinations, l2 error, bounded variation and the smoothness of

the estimated solution were calculated by performing time relaxation twice, whose

variational formulation is given in Chapter 4. Following steps were taken to choose

the optimal χ and δ.

1. In order to reduce the search space, only those candidates of χ−δ combinations

were selected for which min(l2) < l2 < 1.09 ∗min(l2).

2. From amongst the above candidates, that χ− δ combination was chosen which

gave the minimal bounded variation (bv) norm of the error and the maximum

smoothness of the estimated solution.

The results are presented in Figure 5.32.

Figure 5.32: Shock moving towards right: Usage of l2 norm of the error, Bounded
Variation (bv) norm of the error and Smoothness of Estimated Solution to find the
optimal χ− δ combination.

As observed in Figure 5.32, χ = 9 and δ = 5h resulted in l2 norm of the error
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to be within 109% of the minimum l2 norm of the error. Additionally, it had the

minimal bounded variation (bv) norm of the error and led to maximum smoothness

of the estimated solution. With the chosen parameters χ = 9 and δ = 5h and twice

relaxation in finite element method, the results obtained are shown in Figures 5.33

and 5.34 . Figure 5.33 provides the FEM solution for Time Relaxation with N = 1

at the final time T = 5 seconds. Additionally, Figure 5.34 provides the l2 norm and

the bounded variation (bv) norm of the error for each time t ∈ [0, T ] respectively.

Figure 5.33: Shock moving towards right: FEM solution for Time Relaxation with
N = 1

For the chosen parameter: χ = 9 and δ = 5h, a comparison was also performed

on how different orders of time relaxation affects the numerical simulations. This

comparison is provided in Figures 5.35 and 5.36.

From Figure 5.36, it can be observed that the performance of FEM time relaxation

with N = 2 and N = 1 is better than N = 0 case. However, the performance of FEM
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Figure 5.34: Shock moving towards right: l2 norm and bounded variation (bv) norm
of the error in FEM solution for Time Relaxation with N = 1

Figure 5.35: Shock moving towards right: FEM solutions for different orders of time
relaxation schemes where χ = 9 and δ = 5h
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Figure 5.36: Shock moving towards right: l2 norm and bounded variation (BV) norm
of the errors for different orders of time relaxation schemes where χ = 9 and δ = 5h

time relaxation N = 1 and N = 2 is comparable for the chosen time relaxation

parameters. Hence, performing time relaxation with N = 1 on the finite elements

should suffice to get an acceptable solution without much oscillations.

5.8.4 Comparison of solutions obtained from Godunov method and FEM

time relaxation method

In this section, the numerical results obtained from the Godunov method and

FEM method for Time Relaxation with N = 1 (χ = 9 and δ = 5h) are presented.

Figure 5.37 gives an overview of how the Godunov solution compares with the FEM

solution at final time T = 5 seconds. The l2 norm and the bounded variation norm of

the error obtained from Godunov method and FEM method presented in Figure 5.38,

provide a better understanding of the comparative performance of the two solution for

this numerical problem. From the latter figure, it can be observed that the Godunov
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solution outperformed the FEM solution because although the FEM solution captured

the movement of the shock and did not give any oscillations, the FEM solution was

smoothed around the discontinuity. However, the Godunov solution not only captured

the movement without much oscillations, but also gave the expected shape of the

discontinous curve.

Figure 5.37: Shock moving towards right: Comparison of numerical simulations ob-
tained from Godunov method and FEM method for Time Relaxation with N = 1
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Figure 5.38: Shock moving towards right: Comparison of l2 norm and bounded vari-
ation (bv) norm of the errors obtained from Godunov method and FEM method for
Time Relaxation with N = 1
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CHAPTER 6

Conclusion

6.1 Summary

This thesis applied numerical methods popular in fluid research into traffic flow

problems. Several numerical simulations for the LWR and Greenshield’s model were

presented using both, the Godunov and the Finite Element method. The application

of time relaxation within finite elements allowed finite element simulations to get rid

of the diffusion term and suppress oscillations just by fine tuning the time relaxation

parameters χ and δ.

It was observed that:

1. Finite Element Method outperformed Godunov method in two problems:

� Linear Advection

� Red Traffic Light turning into Green

2. Godunov method outperformed Finite Element Time Relaxation method in two

problems:

� Stationary Shocks

� Shock moving towards right

3. In presence of shocks, the Finite Element Method performs bad and has lots of

oscillations, if no time relaxation is added. However, addition of time relaxation

suppresses oscillations to a great extent.
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4. Increasing the order of time relaxation does not necessarily mean that the so-

lution will become more smooth and will have better properties. As observed,

doing time relaxation with N = 1 outperformed time relaxation with N = 0

and N = 2. This was clearly observed in Stationary Shocks, however, the per-

formance of time relaxation with N = 1 was close to time relaxation with N = 2

for Shock moving towards Right.

5. l2 norm of the error, bounded variation norm of the error and the smoothness

of the estimated solution proved to be extremely helpful measures in selecting

the right candidates for optimal parameters χ and δ.

6.2 Future Work

This section presents the following areas where the thesis can be extended for

further research.

1. Currently, the numerical simulations were computed using the LWR and Green-

shield’s model. However, Kachroo (9) presents other models for the velocity

density relationship where the numerical simulations can be performed using

the Godunov and Finite Element Methods. A few of those models are shown

below:

� Greenberg model: v(ρ) = vf ln

(
ρm
ρ

)
� Underwood model: v(ρ) = vf exp

(
− ρ

ρm

)
� Northwestern University model: v(ρ) = vfexp

(
−0.5(

ρ

ρm
)2
)
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2. In this thesis, numerical simulations were performed for four benchmark prob-

lems. The simulations can be performed for other problems as well such as: a

shock moving towards left.

3. The thesis can be further extended by performing higher order discretization in

time with Crank-Nicolson schemes, theta schemes etc. Please see Volker (8) for

more details.

4. Last but not the least, a non linear time relaxation can be performed that can

perform better reduction in oscillations more efficiently. Please see Layton (10)

for more details.
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