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ABSTRACT 

 

Boundary Element Method (BEM) and Method of Fundamental Solutions (MFS) 

for the boundary value problems of the 2-D Laplace’s equation 

By 

Ermes A. Salgado-Ibarra 

Dr. Li Xin, Examination Committee Chair 
Associate Professor of Mathematics 

University of Nevada, Las Vegas 
 

 

       In this thesis we study the solution of the two dimensional Laplace equation by the 

boundary Element method (BEM) and the method of fundamental solutions (MFS). Both 

the BEM and MFS used to solve boundary value problems involving the Laplace 

equation 2-D settings. Both methods rely on the use of fundamental solution of the 

Laplace’s equation (the solution of Laplace’s equation in the distributional sense). We 

will contrast and compare the results we get using the BEM with results we get using 

the MFS. 
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Chapter 1 

 

Fundamental solution of the 2-D Laplace Equation 

1.1    Fundamental Solution 

   To use the BEM to solve boundary value problems we need to transform the boundary 

value problem into a boundary integral equation.  We use the Green’s theorem and the 

concept of the fundamental solution introduced in what follows to describe the 

transformation process more precisely.  The BEM will be used to find a numerical 

solution to the Laplace partial differential equation in a domain        where     is 

the usual  -dimensional Euclidean space (  =2, for the rest of the discussion). 

1.2    The 2-D   Function 

       Before we discuss the fundamental solution a brief review of the Dirac delta 

function in    denoted by the symbol   (similar to the case of   -dimensional space, or 

the real number line).  The Dirac delta function will be used to derive the fundamental 

solution of the Laplace equation in 2-dimensional Euclidean space.  Let   be a linear 

partial differential operator with constant coefficients in       ( ),     , is called a 

fundamental solution of   if   satisfies the equation 
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 ( )    ( ),                                                             (1.2) 

where the operator   has form  ∑     
     ,    (        ) is a multi-index,   ’s 

are non-negative integers,             ,               
 are constant 

coefficients, and    (
 

   
)
  

   (
 

   
)
  

  = 
    

   
      

  
  and  ( ) is the Dirac delta 

function in   . Although strictly speaking, the Dirac delta function is not a function in 

the ordinary sense of the definition of a function in mathematical jargon, it can be 

defined as a continuous linear functional (also called a singular distribution) in terms of 

the weak limit of a sequence of regular functions such as the Gaussian distribution 

functions, Cauchy distributions, “box” functions, etc., [Lokenath Debanth and Piotr 

Mikusinsky 2005]. Similar to how the Dirac delta is defined in    as a weak limit of 

functions defined on the real line one can define the Dirac delta function in    , for 

   -D spaces. Thus, in the case of a 2-D Euclidean space, let   (   ) and   (     )  

represent a pair of moving and fixed points on the x-y plane, respectively,    a small disk 

centered at  ; and       the area of the circle (figure 1.1) and define a set of functions 

denoted by   (   ), where     by 

   (   )      (         )    {   

 

 
                (   )      

                 (   )        

                      (1.2)                                             
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Figure 1.1:  The 2-D   function 

                                                

 

 ( )    (         ) 

 

                                                                                                                      

      

                           

                              

                                                         

We take the limit of   (   ) , as    , in equation (1.2) to get 

            (   )          (   )          (         ) 

  (         )   {
  (   )  (     )
  (   )  (     )

                                         (1.3) 

  where equation (1.3) defines the Dirac delta function as the weak limit of the 

functions defined by equation (1.2) for each    , as    .                              

   Next, draw a 2-D region   that encloses   (figure 1.2) and let    denote an 

infinitesimal area element of this region, and    a disk centered at   is a 

neighborhood of   within   of area  . Note that in the following integral formulas 

we write    to denote an infinitesimal boundary element of the boundary of 

domain  , which we write as     . 

𝑝(𝑥𝑜  𝑦𝑜)  
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           Figure 1.2:  A small disk    enclosing point   within   

 

                                                                            

                                                                                                                                                                           

                                                                                                  

  

                

                   

Then the integral of the 2-D   function over the region   gives 

                        ∫  (   )   ∫  (         )  
  

  

    
   

∫   (         )   
  

 

                                                         ∫
   

 
       

 

 
         

  
                                (1.4)                                                                                                                                                                                           

The integral here is over region , a 2-D domain but for simplicity, we use a single rather 

than a double integral symbol to represent the domain integral. For convenience, 

 (   ) is denoted by   ( ), which will represent a 2-D   function centered at fixed 

point   in  . Thus, definition (1.3) and the integral (1..4) are rewritten as 
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                                   , if the moving point   is at  , 

  ( )                                                                                                (1.5) 

0, for    , 

and 

         ∫   ( )    
 

,       is inside                                                     (1.6) 

    If    is on the (smooth) boundary    of region   (Figure 1.3), then the disk    

surrounding   (the center of   ) is divided into two parts by   . Namely, the portion 

of     within   (forming a semicircular disk     of approximate area 
 

 
 ) and the 

portion of    outside of  . Hence, 

                            ∫   ( )   
 

      ∫     
( )       

       ∫
    

    
    

                                                        
  

 
  

 

 
.                                                                    (1.7) 

Figure 1.3:  Point       , the (smooth) boundary of  ;    is the portion of disk    

within   centered at   forming a semicircular disk     of area  ’ =  
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Note that the portion of    outside of   makes no contribution to the integral of the 

Dirac-delta function and only the portion of the semicircular disk      makes any nonzero 

contribution to the integral in equation (1.7). In the context of equation (1.7) the Dirac 

delta function is said to have compact support within domain or 2-D region   (recall 

that the support of a function is the closure of a set of points in a domain outside of 

which it vanishes). If the boundary at   is not smooth (figure 1.4) then the integral is 

given by 

                         ∫   ( )         
  

 
       

 

 
  

    
 

   
                                             (1.8) 

where   is the radius of the circle and   is the angle included within    at  ; i.e.,   is 

the 2-D solid angle made by   against the boundary    of region   and    reduces to 

     the only part of   that will contribute to the integral in equation (1.8). Notice that 

equation (1.8) is the general case of equations (1.6) and (1.7). Thus, if   is entirely inside 

  then      and equation (1.6) results from using equation (1.7). Similarly, if      

(a smooth boundary) then     and equation (1.7) is also the result of using equation 

(1.8). 
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Figure 1.4:  The point   is on the broken boundary,   is the radius of the small disk    of 

area   and   is the angle included within    at  . Only the portion of the disk     of area 

   contributes to the integral in equation (1.8) 

 

                                                

                                                                                                        

                                                                        

 

 

 

        More generally, we can use the properties of the Dirac delta function to calculate 

the value of a 2-D continuous function  (   ) at a point   inside a 2-D domain   and its 

boundary     . Analogous to the 1-D   function it can be shown that the value of   

(provided   is continuous in domain   and on its boundary) is given by the following 

formulas:                                                   

                                                 ( ), if p is inside domain  

∫  (   )  ( )   
 

        ( )  , if p is on smooth boundary                                  (1.9) 

                                                ( )    , if p is on a non-smooth boundary    
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It can be shown [Debanath and Mikusinski 2005] that the above result can be 

generalized to the case of higher dimensions than 2 for continuous functions   in    

with compact support (i.e. the closure of the set of points        outside where   

vanishes). 

1.3    Fundamental Solution 

       To use the BEM to solve boundary value problems we must transform the problem 

into an equivalent boundary integral equation problem. The use of the fundamental 

solution (i.e., the Green’s function) and Green’s integral theorems are very useful tools 

for this purpose. We discuss next the fundamental solution to the 2-D Laplace partial 

differential equation. 

1.4    2-D Laplace Equation 

       According to the definition (equation (1.1)), the fundamental solution   of the 2-D 

Laplace equation  

    
   

   
 

   

   
 

should satisfy    

                                                                            ( ),                                                  (1.10) 

where    ( ) is the Dirac delta function centered at a point       in a 2-D domain 

(figure 1.5). 
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Figure 1.5:   A 2-D domain   with boundary    

 

 

                                                                                                                               

                                                                                                    

                                                                                                            

                                                                                 

                                                                                    

 

Taking   as the origin and expanding equation (1.9) in polar coordinates, we analyze the 

circularly symmetric solution  = ( ). Thus, with   only dependent only of   and 

  ( )   , if     0, equation (1.9) can be written in the form 

                                          
 

 
 
 

  
 ( 

  

  
)    ,          .                                               (1.11) 

The integral of (1.11) is calculated directly to give the general solution   in the form 

                                                          for        ,                                               (1.12) 

where   and   are integration constants.  Clearly    satisfies 

                                                     for       .                                                           (1.13) 
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The surface integral of     should also satisfy  

                                      ∫        ∫   ( )     
  

                                               (1.14) 

where   is an arbitrary 2-D domain surrounding  .  Again, let    be a small disk centered 

at   (Figure 1.5) of area     . Then using the divergence theorem the integral in 

(1.14) is transformed into a line integral over the boundary of disk   , which we denote 

by  .  Thus, 

 ∫        ∫       ∫       
     

 

                                                                    ∮ (  )      
 

  
∮

  

  
   ∮

 

 
   

 

  
 

 

  
 

Hence, we get 

                                                            
 

 
 ∮     

 

 
        

 

  
,                                         (1.15) 

where (  )  is the projection of the normal component of the gradient of   along the 

contour    .  Thus, substituting (1.15) into equation (1.14) yields   
 

  
.  Setting 

    in equation (1.12) we obtain the fundamental solution to the 2-D Laplace 

equation, 

                                                                     
 

  
  

 

 
                                                          (1.16) 

The fundamental solution to the Laplace equation has a physical interpretation.  From 

electromagnetic field theory, it can be shown that the electric potential generated at a 

point    by a line of charge at a point   with unit linear charge density is    
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(omitting any dielectric constant), where   is the distance from   to   where point   is 

often called the source point and   the field point, or point at which we wish to measure 

the effect of the source a distance   away from it in a 2-D, or 3-D region of space in 

which the field due to the source acts ( electromagnetic, gravitational, fields for 

example). 

1.5    Green’s Formula 

     In transforming boundary value problems to integral equation problems, Green’s 

formula is a very useful tool.  We state the result.  It will be very useful in the derivation 

of latter results to follow.  Suppose   and   are continuous functions in a domain     

  , with continuous first and second derivatives in   as well.  Then functions   and   

satisfy the Green’s formula, 

                    ∫ (         )   ∮ (  
  

  
  

  

  
)

  
  ,                                           (1.17) 

where       is the boundary of domain   and  
  

  
 , and 

  

  
 are the outward normal 

derivatives of   and , respectively on the boundary of domain  . 

 

 

 

 

 



12 
 

 

Chapter 2 

 

Boundary Element Method (BEM) 

2.1 Description of BEM 

       As a numerical method, the boundary element method, or BEM, is a more recently 

developed numerical method used to find approximate solutions to boundary value 

problems.  Prior to its development there was so called boundary integral equation 

methods in which the boundary value problem of a partial differential equation was 

transformed into an integral equation over the boundary of the region by the use of 

equations like Green’s formula (equation (1.16)).  The boundary element method 

complements the finite element method (FEM) method to solve boundary value 

problems. The main difference between the boundary element method and the finite 

element method is that the finite element method is a regional method. This means that 

the whole region of interest is discretized. If the regions are not regular and automatic 

discretization techniques cannot be used, an artificial method must be used to discretize 

the region, or domain characterizing the geometry of the problem, or the type of partial 

differential equation that needs to be solved for some particular problem. Thus, the 

preparation and input of data used to model a boundary value problem into a computer 

may become a very complex task. For example, the number of element nodes in the 
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FEM can become so large that the ultimate system of linear equations is huge. The 

boundary element method divides only the boundary, or boundaries of the region of 

interest into elements. This diminishes the dimensionality of the problem. The 3-D 

problem becomes a 2-D problem, a 2-D problem, likewise, becomes a 1-D problem. 

Hence, input of data to model the problem into a computer becomes a less complex 

task as the number of resulting algebraic equations involved is significantly reduced.  

       The basic steps in the process of solving a boundary value problem using the BEM 

are as follows: 

1)  Determine a partial differential equation and boundary conditions (also, any 

initial conditions) of the boundary value problem. 

2)  Transform the region (by a region we mean a domain in 2-D, or 3-D space), the 

partial differential equations, and boundary conditions into a set of boundary 

integral equations.  The main mathematical tool for this transformation is the 

Green’s formula as mentioned above. 

3) Similar to the FEM, we divide the boundary of the domain into finite elements 

and assume a zero, or linear, second, or higher order interpolation over an 

element as appropriate for the particular domain of interest. Add up the integrals 

over each element, such that the boundary integral equation is discretized into a 

system of linear equations. Solving the resulting system of equations, we obtain a 

function value at each node or the numerical approximation to the solution of our 

boundary value problem. 
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2.2 The boundary value problem 

Let   be a two-dimensional domain bounded by an ellipse in the  -  plane with 

equation given by   
  

   
  

    , where   is the semi-major axis, and   is the semi-minor 

axis of the ellipse (figure 2.1). 

Figure 2.1:   A domain Ω in the  -  plane (the interior of an ellipse) with boundary   

                                                                                            

                                                                                                                            

                                                                                                       

                                                                                                                                                      

                                                                           

                                                                                                        

        

Consider the following boundary value problem of the Laplace equation in a domain   

of    defined by 

                                                             ( )   ,     ,                                                       (2.1) 

                                                               ( )   ( ),      ,                                                (2.2) 
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where   (   ),      the well-known Laplacian operator which can be given in  

polar, Cartesian, and other coordinate systems suitable for the problem under  

 is also a (boundary) linear differential operator that acts on  ( ) to  

yield a Dirichlet, Neumann, or Robin (mixed) boundary condition that the solution  ( )  

must satisfy on the boundary of a given 2-D domain. 

 

2.3    Application of the fundamental solution with a singularity to the Green’s formula 

     Let   be a point on the boundary   of a 2-D domain  , where we wish to calculate  

the solution  ( ) of the Laplace equation for the boundary value problem given by  

equations (2.1), and (2.2).Take 

                                                         
 

  
  

 

 
                                                                        (2.3) 

as the fundamental solution of the Laplace equation (derived in chapter 1),substituting  

  and   into the Green’s formula in equation (1.16) yields 

 

                               ∫ (         )   ∮ (  
  

  
  

  

  
)

  
  ,                                  (2.4) 

where   is the boundary of 2-D domain   (Figure 2.1) and   is the distance from a  

point       to the point      .Note that both  , and   can be inside the domain  , but  

when applying the BEM one point or the other becomes a boundary point. Thus, the 

 fundamental solution   given by equation (2.4) has a singularity at  , since  

  √      (the Euclidean distance from   to  ) and          .Hence,   becomes  

undefined at      .However, if the Dirac 2-D Dirac delta function is used i.e.  satisfies  
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       ( ), and since          (equation (2.1)), the left hand side of equation  

(2.4) gives 

                       ∫ (   
 

      )   ∫    ( )  ( )   
 

 .                                         (2.5) 

By the integral properties of the   function if   is inside the region  , then 

∫  [   ( )]       
 , where    is the value of   at      . Hence, we have 

                ∮ (  
  

  
  

  

  
)   

 
 ∮ [ 

    (   )

   
 

  

  

 

  
  

 

 
]   

 
.                        (2.6) 

Thus, the fundamental solution with a singularity is still applicable to Green’s formula in 

spite of the restrictions imposed on  , and   about continuity and differentiability of 

first and second derivatives of these functions if they are to satisfy the Green’s formula 

for any point   inside domain   and its boundary  . 

         Equation (2.6) sets up a relation between   at   in domain   with   and its normal 

derivative  
  

  
 on the boundary   of domain  . However, only   is known in the given 

boundary value problem; 
  

  
  is unknown. In this case, equation (2.6) cannot be used to 

calculate   on  . We first must move   onto  , thus, from equation (1.9), using the 

Dirac   function, the integral on the right hand side of equation (2.5) is given by 

                                      ∫    ( )  ( )   
 

  
  

  
                ,                                   (2.7) 
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where   the angle is subtended domain by   at       (Figure 2.2).That is, when moving 

    onto   equation (2.6) becomes 

 
  

  
    ∮ (   

  

  
  

   

  
)   

 
  ∮ [  

    (   )

   
 

   

  
 

 

  
  

 

 
]    

 
    ,           (2.8) 

respectively, are the values of    in   for any     . Thus, we obtain a boundary 

integral equation that sets up a relationship between   and its (outward) normal 

derivative 
  

  
 for a point   on the boundary of domain  . Since   is given by the 

conditions of the boundary value problem in equation (2.1), 
  

  
 can be calculated using 

the BEM. Hence, by substituting   and  
  

  
 at any point       can be calculated. 

                  Figure 2.2:    Point    on a smooth boundary   of a 2-D domain   subtending 

an angle   against the boundary with respect to   from some point   inside the domain 
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Application of the BEM method: 

         To solve equation (2.6) we first divide the boundary   into many boundary 

subelements of  . Next,   must be interpolated across each element. This can be done 

by using shape, or basis functions as explained  in the steps describing how to carry out 

the BEM method. The shape functions can be zero order (constant), or first order 

(linear), or second order (quadratic), or third order (cubic), or even higher order shape 

functions. Although accuracy may increase with higher order interpolation schemes so 

will the number of nodes needed to divide the boundary. In the BEM each node has a 

corresponding linear equation tied to it. Thus, the resulting number of linear equations 

involed in solving for   will increase as the order of the interpolation scheme to 

approximate   across each element increases. This, of course, will mean that more time 

and more memory will be consumed by the computing device being used to carry out 

the calculations,etcTo understand some specifics, we next explain some interpolation 

schemes. For simplicity the discussion is limited to the use of linear and quadratic basis 

functions as the main interpolation schemes to be used in the solution of some 

boundary value problems that will be dealt with in this thesis paper. 

Linear interpolation.  Using the steps described to carry out the BEM we first divide the 

boundary   of domain   into     linear elements by   nodes (figure 2.3). 
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Figure 2.3:   A linear boundary element    
 with two endpoints   and     

                                                                    

                                                                                                                               
 

                                                                                                                                                                                                                                                                                                                       

                                                                                                                      

          

 

 

The length of each element should satisfy the following two requirements: 

(i) in each element the geometric variation is linear, i.e. it  can be described by a linear 

funtion and 

(ii) the variations in   and 
  

  
 are also linear. Let    

 represent a linear element of the 

subdivision of  , where          . Decomposing the boundary integral of equation 

(2.8) into a sum of integrals over each element, the equation for each node   can be 

rewritten as 

                     
  

  
    ∑ ∫ [ 

    (   )

   
 

  

  
 

 

  
  

 

 
]

   

   
      (      , nodes)          (2.9) 
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The node indices for two successive endpoints of an element are, for example,   and 

   ; where the first and second end points of an element has coordinates (     ) ,  

(         ) , and values of  , and its normal derivateve at these coordinates are 

donoted by    ,      , (
  

  
)
 
 , and  (

  

  
)
   

, respectively. The linear interpolation is 

carried out using linear isoperimetric elements [Rao 1998]. This means we use local 

element coordinates to perform integrations over each element by Gaussian quadrature 

methods that depend on the order of the interpolation scheme. In this case the 

variables of the probem,   and the local coordinates of a point (   ) on each element 

   
 will be expressed as functions of an identical parameter   in terms of linear, and 

quadratic shape functions as explained in what follows. The shape functions used will be 

based on the Lagrange’s interpolation polynomal method [Rao 1982]. For         

linear elements, and         nodes, define the shape functions as follows, 

                                ( )      ,          ( )        (    1).                                    (2.10) 

The shape, or basis functions    and      in the equations in (2.10) have the following 

charcteristics: 

                    and      are linear functions of     ,         where 

                                            ∑      
   
      (  )      {

     
     

                                  (2.11) 

where     is the Kronecker delta function. The parameter  in the above equations 

represents a coorninate on the isoperimetric element. A single number representing the 
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x and y coordinates of a point in a 2-D domain, or on its boundary. If we are dealing with 

a surface in 3-D Euclidean space for example, two such parameters would be used to 

approximate the surface in the neighborhood of a point lying on the surface. Hence the 

number of local coordinates is reduced by one, by using the method of isoperimetric 

elements to represent the local geometry of a problem domain. 

Thus, on each boundary element    
 of   (being treated as a linear isoperimetric 

element) locally, each element is assumed to be a straight line segment, and variations 

in the variables and coordinates are assumed to be linear; all equations used in the 

linear interpolation expressed in terms of the linear shape functions in equations (2.10). 

That is, to interpolate within each element we set  ,  ,  , and 
  

  
  equal to 

                                   ∑     
   
    ,          

  

  
 ∑   (

  

  
)
 

   
    , 

               ∑     
   
    ,            ∑     

   
    ,        (         ).         (2.12) 

The integrals over each element     
 are,                                                                                                                                                                                                                                                                                                                                                                                                          

           ∫   
    (   )

      

    ∑ ∫ (  ( )   

   
   

    (   )

   
   )  = ∑      

   
                              (2.13) 

and, 

      ∫
  

  

 

  
   

 

    

    ∑ (∫   ( )   

   
   

 

  
  

 

 
   ) (

  

  
)
 
 ∑    

   
   (

  

  
)
 
               (2.14) 
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          ∫   ( ) 
    (   )

      

    ,        ∫   ( )
 

  
  

 

 
    

   

                                        (2.15) 

where        , and      .         

       The integrals in  equations (2.13) and (2.14) can be calculated using Gaussian 

quadrature. The number of Gaussian points in each element is related to the degree of 

variation within the integrand. In Gaussian quadrature the integrals are rewritten as a 

linear combination of the shape functions    evaluated at integration points within each 

elment    
 , where            

. Four Gaussian points are usually enough for the 

integrals such as given by equation (2.13). In Gaussian quadrature form these integrals 

are rewritten as                   

                    ∫   ( )
   (   )

   
   ∑   (  )

    (     )

     

 
          

                             (2.16) 

and 

                    ∫   ( ) 
 

  
  

 

   
     ∑   

 
   (  )

 

  
  

  

   
                              (2.17) 

where     is the distance from the  -th node to the integration point q on the element 

   
 (figure 2.4). The coordinates of the Gaussian integration points   are given by 

                                             ∑   (  )  
   
    ,      ∑   (  )  

   
                              (2.18) 

where     (     ) is the cosine of the angle between     and the outward unit normal 

vector    to subelement    
 of  ,  the    weights used in integration by the Gaussian 
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quadrature method , and    the length of boundary element    
as measured from a 

quadrature point   lying on this element. The values of     and    for a four point 

Gaussian integration are given in special tables [Brebbia 1978]. 

Figure 2.4:  Distance from node   to integration point  =    , for a linear element    
;   is 

a unit outward normal vector to the linear boundary element    
. 

                                                                                                                    

                                                                                                

                                                                                                                                                                                                                                                                                                                                                                                        

 If a node   belongs to an element    
 (i.e., it coincides with   or    (figure 2.5)) then 

there will exist a singularity as    goes to zero. Thus, the integrands 
    (   )

 
 and   

 

 
 are 

singular but the integrals                and        still exist. The values of these are found 

to be 

                      ∫   ( ) 
    (   )

      

      ,     ∫     ( ) 
    (   )

      

     ,         (2.19)   

since     (   )=   
 

 
 = , and where      .                                                                           

We also get, 

         ∫   ( )
 

  
  

 

 
    ∫

    

  
 

 

  
   

 

 
   

  

    

  
  

  
(
 

 
     ),                        (2.20) 
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where      
    

  
 , and                                                                                                                        

     ∫     ( )
 

  
  

 

 
   ∫

 

  
 

 

  
   

 

 
   

  

    

  
  

  
(
 

 
      ).                           (2.21)  

where       
 

  
  , and       (for the end point of the j-th boundary element).                                                                                     

Figure 2.5:   For singular linear boundary element    
,    is fixed for some fixed 

quadrature point at node  ;            , and      , along      . 

                                                                       

                                                                   

                      |                                                                                       | 

                                       
                                                                      

            (       )                        

Thus, if    
 contains node  , the above formulas are used to calculate               and 

   . Otherwise, we need to use the equations (2.12) and (2.13). Before summing the 

integral (2.9) over each element note that equations (2.12), and (2.13) can be written in 

terms of matrices that can be expanded into   rows or   columns: 

                        ∑      
   
                                                              

                                           (                 )  (              )                       (2.22) 
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and,     

  ∑    
   
   (

  

  
)
 
    (

  

  
)
 
 (

  

  
)
 
    

                             (                 )  [(
  

  
)
 
   (

  

  
)
 
 (

  

  
)
 
   (

  

  
)
 
] 

 

   (2.23)                                                                              

where          ,        , and        in equations (2.21) and (2.22) and 

      for    , and similar results hold for    .  

   Now let     (                 ),     (              ), 

   (                ) , and (
  

  
)
 
 [(

  

  
)
 
   (

  

  
)
 
 (

  

  
)
  

   (
  

  
)
 
]
 

, where  

         . Thus, from the integrals in equatons (2.12), and (2.13) we can write 

               ∫   
    (   )

      

           , and    ∫
  

  

 

  
   

 

    

        (
  

  
)
 
 ,             (2.24) 

where       ,        ,      .                                                                                   

Hence, the sum of these integrals is given by (in vector form): 

                   ∑ ∫   
    (   )

      

    (               )  (            )  
    

                                            ∑      
 
         ,                                                 (2.25) 

                   ∑ ∫
  

  

 

  
   

 

    

    
     (               )   [(

  

  
)
 
   (

  

  
)
 
   (

  

  
)
 
]
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                                                             ∑    
 
   (

  

  
)
 
    

  

  
                                         (2.26) 

where     and     are the sum of     and    , respectively, of the elements around a node 

 , given by equations (2.13) and (2.12), respectively. For node  , we can thus rewrite 

equation (2.9) as 

                                              
  

  
           

  

  
 .                                                  (2.27) 

From all   nodes, we obtain (or assemble) a system of linear equations written in a 

compact vector – matrix  equation as 

                                                
 

  
      

  

  
 ,                                                        (2.28) 

where        (  ) is an     diagonal matrix of values of    at the         

nodes.   (   ), and   (   ), are also     matrices, and   and 
  

  
  are     

column vectors given by equations (2.24) and (2.25), respectivley. Equation (2.28) can 

be rewritten as 

                                              
  

  
 (      )                                                      (2.29) 

Hence, this is a system of linear equations whose right hand side is known; therefore, 

we can solve for 
  

  
.  Substituting   and 

  

  
 at each node into equation (2.6) and then 

integrating it, we can solve for   at any point       , from values of   given inside the 

domain . 
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2.4    Boundary element solution of a boudary value problem for the Laplace equation  

using linear boundary elements 

      Consider the following boundary value prolbem for the 2-D Poisson’s equation 

  ( )                                                          (2.30) 

                    ( )                                                            (2.31) 

where   (   ) and the boundary of   ( )  is an ellipse (figure2.6) given by the 

equation 

                                                       
  

   
  

               (        ).                              (2.32) 

Equation (2.30) is used in the study of incompressible viscous fluid flow as it flows 

steadily through a cylindrical pipe with an elliptical cross section. The velocity 

distribution in the pipe can be approximated using the BEM method [Chen, N 1991].                     

Using symmetry (since the flow is steady throughout the cross section of domain  ) only 

the first quarter of the elliptical domain in the first quadrant of the  -  axis is used 

where the boudary element model consists of ten two noded linear boundary elements, 

and three selected internal nodes. The fact that the fluid velocity is steady trhrought the 

pipe cross-section, and the symmetry of the pipe justifies the use of the symmetry for 

this problem. For steady fluid flow through out the cross-section of the pipe, the 

distribution of fluid velocity values at points that are symmetric with respcet to an x-y 
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coordinate plane with origin at the center of the elliptical cross-section of the pipe, 

should be practically the same.[Milne-Thompson 1960]. 

Figure 2.6:   From symmetry about the   and   axes only the upper right quarter 

boundary of the elliptical domain    is discritized where the elliptical boundary of 

domain   is given by  equation (2.31) 

 

 In figure 2.6 the direction of the arrows show the the counterclockwise node 

numbering scheme; i1, i2, and i3 are the internal nodes with coordinates given in table 

2.1(next few pages)  

       Equation (2.29) is a Poisson’s equation with boundary condition given by (2.30) and 

can be reduced to Laplace’s equation if we let      
     

 
 . Then the Poisson’s 

problem is reduced to solving the equivalent Laplace’s equation for the boundary value 

problem 
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                                                            ( )                                                                 (2.33)    

                                                            ( )  
     

 
                                                         (2.34) 

Thus, to solve for   in the original boundary value problem given by equations (2.30) 

and (2.31) we simply substitute the solution we get for    in the above boundary value 

problem. The above Laplace’s equation with the given boundary conditon is solved by 

the boundary element method using linear boundary elements (figure 2.6). 

For an incompressible viscous fluid with steady flow through the elliptical cross section 

of a pipe      at the boundary, and the exact analytical solution of the original 

boundary value problem as given by equations (2.30) and (2.31) is given by [Milne-

Thompson, 1960] 

                                                                
    

     (  
  

   
  

  )                                         (2.35)                                                                                                                                                                                                                                                                                                                                                                                                                      

Then the value of    inside Ω is calculated using eauation  (2.6) i.e. 

  
   ∮ ( 

   (   )

  
  

  

   

 

  
  

 

 
)  , with   

   instead of   substituted into the BEM 

equations, where the equation for    rewritten for numerical implementation in a 

computer code as:    
  ∑ ∫ [  

    (   )

   
 

  

  

 

  
   

 

 
]
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                                        ∑ [         (
  

  
)
 
 ] 

    , 

where   is an interior point in domain   (it can also be a boundary point of the domain 

in case we need to determine unkwon values of the function in between nodes).Results 

are tabulated next in the following tables. The code to calculate the solution and the 

errors against the exact solution are implemented in a Fortran computer code [Berbbia 

and Dominguez 1992]. The data inputs for the nodes, and results following tables. 

Values calculated by the boundary element method for the original boundary value 

problem given by (2.30) and (2.31) are displayed along with the exact solution and the 

relative errors for the displayed boundary nodes (tables 2.2, and 2.3). 

Table 2.1.  Input data for 10 linear boundary element nodes (figure 2.6). 

      Node  : (     )   =   = 

(     ) 0.0000 0.0000 

(     ) 1.2500 0.0000 

(     ) 2.5000 0.0000 

(     ) 7.5000 0.0000 

(     ) 10.0000 0.0000 

(     ) 8.8140 2.3617 

(     ) 6.1740 3.9333 

(     ) 3.3044 4.7191 

(     ) 0.0000 5.0000 

(       ) 0.0000 2.5000 

(       )  (     ) 0.0000 0.0000 

 

        Next (table 2.2), denote a boundary condition indicator by Code(i)=0. This means 

that the velocity is known at node I, and Code(i)=1 signifies that the line of symmetry is 
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at node i. Two values of Code, and two boundary conditions are read per element, 

corresponding to the two nodes of a linear boundary element for which the nodes are at 

the element. The velocity at node i given by the boundary conditon in equation (2.34). 

 

Table  2.2. Results calclulated  by the BEM method for boundary value problem given by 

(2.30), and (2.31), of the velocity distribution in a quarter of the cross-section of the 

elliptical domain specfied by equation (2.32) for this problem.  

Boundary nodes: --------------------- Velocity   (BEM) Velocity   
(EXACT) 

% ERROR 

 =  = --------------------- --------------------- --------------------- 

0.0000 0.0000 20.011 20.000 0.06 

2.5000 0.0000 18.758 18.750 0.04 

5.0000 0.0000 15.006 15.000 0.04 

7.5000 0.0000 8.7520 8.7500 0.02 

10.000 0.0000 0.0000 0.0000 0 

8.8140 2.6357 0.0000 0.0000 0 

6.7140 3.9333 0.0000 0.0000 0 

3.3044 4.7191 0.0000 0.0000 0 

0.0000 5.0000 0.0000 0.0000 0 

0.0000 2.5000 15.007 0.0000 0.05 

0.0000 0.0000 20.011 20.000 0.06 

0.0000 3.375 10.892 10.887 0.05 

 

In table 2.2 above, note that we list the prescribed velocity distribution on the boundary 

of the ellipse given by equation (2.33). The velocity is not zero in the discritized 

boundary of the ellipse along the x and y axes in the first quadrant of the x-y plane. For 

the whole pipe the velocity distribution is the same for the entire cross-section of the 

ellipse as well as on its boundary (by symmetry). 
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Table.2.3: Results for the velocity distribution in the pipe for given internal nodes. 

            BEM EXACT %ERROR 

internal node internal node --------- --------- --------- 

i1=2.5000 2.5000 13.577 13.750 0.05% 

i2=5.0000 2.5000 10.005 10.000 0.05% 

i3=7.5000 2.5000 3.749 3.750 0.03% 

 

       The example of a boundary value problem for the Poisson’s equation discussed in 

this section also shows that if the equation can be reduced to a much easier Laplace’s 

equation, then by making a substitution for a particular solution of the Poisson’s 

equation, it can be set up in a form that can be efficiently handled numerically by a BEM 

analysis of the equation involving only a boundary mesh (a 1-D mesh for a 2-D boundary 

value problem). Of course, care should be taken to transform the boundary conditions 

accordingly. 

2.5    Quadratic boundary elements 

             Next, we examine quadratic interpolation across each boundary element. Three 

succesive nodes are used to construct each element (figure 2.7). The interpolation 

functions are given in isoperimetric form by: 
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                                                ∑     
   
    

  

  
  ∑     

   
    , 

                                                ∑     
   
    ,   ∑     

   
    , 

                                                .                                                                   (2.36) 

In the above equations    , means the second node in between the three noded 

quadratic element under analysis. 

The quadratic basis and shape functions in the above equations are given by 

                                                          ( )           , 

                                                            ( )          , and 

                                                           ( )        .                                                         (2.37)  

The characterstics of the basis functions are: 

    ,     , and       are quadratic functions of  , and satisfy the relations: 

                                   ∑      
   
     (  )      (the Kronecker delta function)           (2.38) 

where          , is the number of quadratic boundary elements and     nodes 

at the endpoints of each element, and     , is the coordinate parameter of the 

isoperimetric element, and the equations in (2.38) are the Lagrange interpolation 
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quadratic polynomials used for second order approximation across each boundary 

elment donted by    
 where            

 

 
       . We show only a portion of the 

boundary (figure 2.7) over which the integration is to be carried out. The whole 

boundary is , of course, a closed curve. 

Figure 2.7:   A quadratic boundary element    
 (         ) with it’s three nodes 

          shown. These are its integration points;   is the position vector from an 

internal point   of a closed region   to some point on the element 

∙                                                                                                                               
 

                                                                                                                                                                                                                                                                                                

  

 

The integrals over each element are 

    ∫   ( ) 
    (   )

      

     ∑   
 
   (  )

   (     )

     
 (  )  , 

    ∫   ( ) 
 

  
  

 

    

     ∑   
 
   (  )

 

  
  

  

  
 (  )          . 

And, 

    ( )  ((∑
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                                 )   (     )   (    )          )   

(     )   (    )     
 

 .                                                                                         (2.39) 

Note that in equation (2.39)     is a function of the quadratic element parameter   since 

the quadratic shape functions, and hence their derivatives, as well as the coordinates of 

a point on the isoperimetric boundary element, are functions of this parameter in the 

right hand side of (2.39) when we use isoperimetric boundary elements. 

The remainder of the process that is needed for the quadratic element is the same as 

the linear elment and is thus omitted from further discussion. 

2.6 Solution of the Laplace equation using quadratic boundary elements 

        As another example of the use of the BEM to problems in potential theory, consider 

the problem of a prismatic bar under torsion, also known as the St. Venant’s torsion 

problem in applied engineering mechanics to probems of stress, shear, etc,. The bar has 

an elliptical cross-section with semi-major axis a=10, and semi-minor axis b=5 is 

discritezed into 16 quadratic boundary elements numbered as shown in the first 

quadrant (figure 2.8). Using the symmetry of the problem we calculate   the so- called 

warping function, a measure of how much the bar is twisted under applied torsional 

moments or torques about its center of symmetry in the first quadrant. Using quadratic 

boundary element nodes, numbered in a counterclockwise fashion (figure 2.8) and 

supposing the St. Venant’s theory of torsion applies, the strain state of a twisted bar for 

arbitrary cross sections, far from the points of application of the external moments, 
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depends very weakly on the distribution of the external load. The solution of the given 

problem is formulated as the following boundary value problem: 

                                                      (     )     in                                                             (2.40)                                                       

                                                    
  (     )

  
     (   )  on                                                 (2.41)   

Figure  2.8:   Elliptical cross-section of a beam under torsional loads 

 

The exact solution for the torsional problem involving a beam of elliptical cross section 

is given by    (
     

     
)      [Lebedev and Cloud 2004]. By symmetry along the axes, 

    inside  , where the harmonic function    is called the warping function and      

and   are defined for a cross section of the beam, and are the normal, postion, and 

tangetial vectors respectiveley, on a point of the boundary   of domain   (figure 2.8). 
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The displacements of the bar          can be found in terms of   and the torsion 

angle per unit length  , as follows: 

 

          ,                                                                        (2.42) 

         ,                                                                          (2.43) 

      ,                                                                               (2.44) 

where    and    are parallel to the principal axis and    is parallel to the axis of the bar 

or perpendicular to the plane of this paper ;   
 

  
 ;   is the applied torsional moment; 

  is the shear modulus;   is the “effective” polar moment of area, which for an ellipitical 

cross section is given by 

                                                               
    

 

    
  .                                                      (2.45) 

       The boundary value problem given by equations (2.41) and (2.42), is a Newmann 

type boundary value problem and has a unique solution since it can be shown that the 

condition 

                                                                    ∮
  

   
     ,                                                   (2.46) 

is fullfilled with the prescribed boundary conditions. The value of   in at least at one 

point of the domain is given in order that the solution be unique for this problem. This is 
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done by using the existing symmetry of the problem. For convex domains another way 

of stating the St. Venant’s torsion theory is that for any torsion problem where the 

boundary is convex (as is the case for boundary value problem given by equation (2.41)) 

the maximum projected shear traction occurs at the point on the boundary that is 

nearest the centroid of the domain [Lebedev and Cloud 2004]. In our case the domain 

(the interior of an ellipse) is convex, and by symmetry the centroid is at the origin of 

axes of the ellipse . The problem is solved by using 16 quadratic elements and a 

computer code (Fortran) specifically desinged for quadratic interpolation over boundary 

element integrals. We show the results in table 2.6. Notice two internal points are used 

in the first quadrant of the elliptical cross-section (figure 2.8) which are marked by Xa 

and Xb with + (a cross sign) above them, with values shown for the input variables at 

nodes marked (figure 2.8)     ,      and      (figure 2.8 and table 2.6).  

Calculations  show that the warping function values calculated with quadratic boudary 

elements are in good agreement with the exact solution. The results of the calculations 

are displayed next (table 2.6). 

Table  2.6:   Results of calculated values for warping function   

 

 

 

Boundary and internal points used: 

 

Calculated 
Warping 
function  : 

Error: Exact: 

   (           )    -12.506 -0.022 -12.484 

   (           )    -14.506 -0.006 -14.570 

   (           )    -9.363 -0.007 -9.356 

   (         )    -2.399 +0.001 -2.400 

   (         )    -8.403 -0.003 -8.400 
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      As we can see from the results in table 2.6, using quadratic boundary elements, the 

calculated values of the warping function turn out to be very close  to the ones 

calculated using the expression for exact solution for   (   (
     

     
)     ).  

       Next, we compute  approximatios to the solutions of the boundary value problems 

in this chapter using the method of fundamental solutions, or the MFS method. This 

method will not require a discretization of the boundary of the domain. In other words, 

it is essentially a meshless method[Chen 2009]. 
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Chapter 3 

 

Method of fundamental solutions (MFS): Comparison with the BEM for the 2-D 

Poisson’s and Laplace’s Equations from chapter 2 

3.1 Numerical Implementation of the MFS for the Poisson’s equation 

       The main idea behind the MFS consists mainly in approximating the solution of a 

boundary value problem by a linear combination of known fundamental solutions 

associated with a set of fictitious boundary points located outside the problem domain 

 , related to the boundary value problem that we are trying to find an approximate 

solution too (figure 3.1). In many applications of the MFS involving 2-D boundary value 

problems it is common practice to generate the fictitious boundary points so that they 

are evenly distributed outside of the domain of the original boundary value problem 

[Chen 2008]. These points are part of the so-called fictitious boundary    of a 2-D 

domain       ̅, where  ̅ denotes the closure of  . Likewise,   is also called a fictitious 

domain. We first discuss the treatment of the Laplace equation with a Dirichlet 

boundary condition from chapter 2. As we can recall, the problem is defined as 

                                                            ( )                                                                (3.1) 

                                                            ( )  
     

 
                                                        (3.2) 
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We also recall that equations (3.1)-(3.2) are derived from considering a boundary value 

problem for the Poisson’s equation in chapter 2 defined by 

  ( )                                                                 (3.3) 

                    ( )                                                                   (3.4) 

The above equation is solved indirectly by  first solving the boundary value problem for 

unknown function    in the Laplace equation (3.1), with corresponding Dirichlet 

boundary condition given by equation (3.2). This was done in chapter 2 by the BEM 

method. We substitue the BEM solution for    into the equation 

                                                                           
     

 
                                                     (3.5) 

thus, we get the corresponding BEM soluton to the original boundary value problem of 

interest (the solution   to the Poisson’s equation (3.3), with boundary condition (3.4)). 

Equaton (3.5) was used in chapter 2 to transform the boundary value problem of a 

Poisson’s equation to the boundary value problem of the Laplace’s eqution. In the same 

vein, we treat the same boundary value problem for the Laplace equation (3.1) by the 

MFS method, and simply substitute the result we get using the MFS back into equation 

(3.4) to get the corresponding MFS solution for the orignal Poisson’s equation given by 

(3.2), with boundary condition (3.3). 
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Figure 3.1:    Geometry of the MFS. Fictitious domain  , with fictitious boundary   . A 

set of fictitious boundary points mark the fictitious boundary shown as dark diamonds 

surrounding a fictitious domain    and the domain problem   with boundary  

 

 

       For the Laplace’s equation in boundary value problem given by equations (3.1)-(3.2) 

a fictitious circular boundary    of radius r=10.5 is generated, and is comprised of 20 

evenly distributed fictitious boundary points surrounding the boundary value problem 

domain defined by    (   )       
  

   
  

      ,where  =10, and  =5 (figure3.2). 
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Figure 3.2:    Geometry of the MFS method for the Laplace’s equation in boundary value 

problem defined by equations (3.1)-(3.2).The fictitious boundary   is marked by a set of 

circular blank dots as shown below, surrounding the problem domain    (   )  

     
  

  
 

  

  
    with boundary   (an ellipse; where  =10, and  =5) 
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To implement the MFS for the boundary value problem in this section we set    equal to  

                                                   ̂( )  ∑   
 
    (    ) ,                                                       (3.6) 

 where   (     )   , and    (     )    . Then equation (3.6) defines the 

expression for the approximate MFS solution we seek for representing the solution of 

the boundary value problem given by equations (3.1)-(3.2), as a linear combination of 

fundamental solutions for the 2-D Laplace’s equation. Thus, the MFS solution calculated 

by using expression (3.6 ) is then used to obtain an MFS approximate solution  ̂ to the 

original boundary value problem involving the Poisson’s equation for unknown   in 

(3.3).To implement the MFS by solving for the unknown coefficients    we use the 

boundary nodes   (     )    corresponding to the prescribed boundary values of    

defined by equation (3.2) and which must satisfy   ( )   ( ) , for     . Thus, let 

                                                    ̂(  )   (  ) ,    (     )   ,                                      (3.7) 

 and for    (     )    , aslo let 

                                               ̂(  )  ∑   
 
    (  ,  ) ,     ,                                    (3.8) 

Thus, from equation (3.8), a system of linear equations for unknown coefficients    is 

obtained for the MFS expression in (3.6) that is used to obtain an approximate solution 

of the Laplace equation for the boundary value problem of interest in this section. The 

system of linear equations in (3.8), can be expressed in matrix form as 
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   [
 (     )   (     )

   
 (     )   (     )

] 

[
 
 
 
 
  

 
 
 

  ]
 
 
 
 

 

[
 
 
 
 
 (  )

 
 
 

 (  )]
 
 
 
 

                                     (3.9) 

or     , where      (     )  is an     matrix with entries  (     ) (the 

fundamental solution of the 2-D Laplace equation computed at points given at the 

boundary of the problem domain, and fictitious domain), and   is the column vector 

consisting of the coefficients           in equation (3.8),   is a column vector given 

by the right hand side of equation (3.9), consisting of entries  (  ),  corresponding to 

the prescribed boundary conditions given by the right hand side of equation (3.7,) i.e. 

the term  ( ), where      (     )   ,       . Only the first 10 points 

generated for the fictitious boundary are listed next (table 3.1).By the symmetry of the 

problem the other 10 points generated are the same up to a change in +/- signs, 

although the fundamental solution of the Laplace equation is computed at all 20 points 

involving the fictitious boundary   , and the boundary   of domain  . 

Table 3.1:   The set of first  j=1,…,10, fictitious boundary points (     )     are listed 

below, where    is a circle of radius r=10.5. The actual number of points generated was 

20 for the computation of the MFS approximate solution 

 

   is a circle 

of radius: 

r=10.5 

 

 

(     )     = 

 

(10.5,0.0) 

 

(9.931,3.409) 

 

(8.286,6.449) 

 

(5.743,8.790) 

 

(2.557,10.178) 

 

(-0.867,10.461) 

 

(-4.217,-9.615) 

 

(-7.111,7.725) 

 

(-9.234,4.997) 

 

(-10.356,1.728) 
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The set of coefficients      are determined from (3.9), or by     , where   

   (     )  is an     matrix, whose entries are the fundamental solution to the 2-D 

Laplace equation as described before, along with column vectors   and  , defined by 

(3.9).Hence, the coefficients   , in column vector  , are obtained from the matrix 

equation 

                                                                                 ,                                                      (3.10) 

where     is the inverse of matrix   [  (     )] Provided   is non-singular, the    

will be unique. 

       Finally, solving for the coefficients   , we can construct the MFS approximate 

solution  ̂ defined by (3.6), for   in the original Poisson’s equation (3.3) by using (3.5). 

To estimate the magnitude of the error  ( ) in the MFS approximate solution  ̂ at 

points      (     )   , we set  ( ) equal to 

                                                         ( )    ( )   ̂( ) ,                                                   (3.11) 

where  ( ) in (3.11) ,is the exact solution to the Poisson’s equation (3.3) given in 

Chapter 2. 

       The results of numerical implementation of the MFS method are listed below, along 

with BEM results from chapter 2 for the same Poisson’s equation treated by the MFS 

here. The magnitude of the error as given by (3.11) is also displayed for interior table 3.2 

below. 
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Table 3.2:    Results of the MFS method compared with the BEM method (shown in 

order of coordinates used) for the Poisson’s equation in 2-D domain    (   )  

     
  

  
 

  

  
    shown in figure (3.2).The % relative error for the BEM was shown in 

table (2.2) 

 

Fictitious 

Boundary 

  (points 

tested ) 

 

 

(     )     = 

 

 

(10.5, 0.0) 

 

 

(9.931, 3.409) 

 

 

(8.286, 6.449) 

 

 

(5.743, 8.790) 

 

(2.55,10.178) 

 

(-0.86, 10.461) 

 

(-4.217, -9.615) 

 

(-7.111, 7.725) 

 

(-9.234,4.997) 

 

(-10.356, 1.728) 

Domain   

(points tested) 

 

(     )    = 

 

(0.0, 0.0) 

 

(2.5., 0.0) 

 

(5.0, 0.0) 

 

(7.5, 0.0) 

(2.5, 2.5) (1.25, 3.3750) (-2.5, -2.5) (-5.0, 0.0) (-7.5, 0..0) (-1.25, -3.750) 

MFS 

approximation: 

 

20.911 

 

18.769 

 

15.116 

 

8.757 

 

10.500 

13.757 ---------- ---------- ---------- ---------- ---------- 
BEM 

approximation: 

 

20.11 

 

18.758 

 

15.006 

 

8.752 

 

10.557 

13.757 no change no change no change no change no change 

Exact solution: 20.00 18.750 15.00 8.750 10.755 

13.750 no change no change no change no change no change 

 ( ) = 

(MFS: 

Eq.3.11) 

 

0.911 

 

0.019 

 

0.116 

 

0.005 

 

0.056 

 

3.2 Numerical Implementation of the MFS for the Laplace’s equation with a Neumann 

boundary condition for the St.Venant’s beam torsion problem in chapter 2 

         Recall the St.Venant’s Torsion problem for an elliptical cross section of a bar under 

torsional, or “twisting” loads. For simplicity we use a 2-D domain exactly the same as the 

one for the Poisson’s boundary value problem. A fictitious boundary    comprised of 32 

fictitious boundary points is generated surrounding domain   .   is a circle of radius 

r=11.00. In a similar fashion as the boundary value problem for the Poisson’s equation, 
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we take advantage of the symmetry of the problem, and the assumption of uniformly 

distributed loads on the cross section of the bar. Thus, it suffices to list the first 

(     )           , generated fictitious boundary points lying approximately in the 

upper right half of the x-y plane (table 3.3) and pair these with the non-fictitious 

boundary points   (     )   , for      , and use the same exact procedure for 

the numerical implementation of the MFS to construct an MFS expression for an 

approximate solution to the the St.Venant’s boundary value problem treated in this 

section by the MFS method. The numerical implementation of the MFS is carried over 

around the entire boundary using an algorithm similar to the one used for the numerical 

solution to the Poisson’s equation. The high symmetry of the problem will yield results 

virtually the same as for the points we list in table 3.3 next. Only a slight modification 

has to be made for this problem since the boundary condition is not a Dirichlet type 

boundary condition. As mentioned above the boundary condition for this problem is of 

Neumann type. The computation of an MFS solution at various points of the problem 

domain employs the outward normal derivative of the fundamental solution of the 

Laplace equation as explained in what follows. 
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Table 3.3:   Some generated fictitious boundary points (     )      used to construct an 

MFS approximate solution for the St.Venant’s torsion problem 

 

 

 

 

 

 

 

 

 

 

Fictitious boundary points listed in table 3.3 are shown below (figure 3.3) marked by 

dark crosses ( ) surrounding domain   (   )       
  

   
  

     . 

 

 

 
(     )     ( a circle of radius r =11.0) 

(     )  (          ) 
 

     (     )  (10.7428,2.6357) 
 

(     )  (          ) 
 

   (     )  (            ) 
 

     (     )  (             ) 
 

    (     )  (             ) 
 

       (     )  (              ) 
 

      (     )  (              ) 
 

         (     )  (               ) 
 



50 
 

Figure 3.3:    Fictitious boundary points used for the MFS treatment of the St.Venant’s 

torsion problem. The fictitious boundary is denoted by    as shown below consisting of 

dark crosses surrounding domain    (   )       
  

  
 

  

  
    

 

          Now we implement MFS method to obtain an approximate solution to the 

boundary value problem for the St.Venat’s torsion poblem. First, we recall from chapter 

2, the problem was defined as  

                                                      (     )     in                                                             (3.11)                                                       

                                                       
  (     )

  
     (   )  on                                              (3.12) 
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      Similar to the construction of the MFS expression to approximate the solution to the 

Laplace’s equation in section 3.1, we define an MFS epression for the solution of the 

Neumann type boundary value problem which takes the of expression 

                                                     ̂( )  ∑    (    ) 
 
     ,                                                 (3.13) 

where   (   )   , and    (     )      are some fictitious boundary points. Using 

similar arguments to implement the MFS method for the Laplace’s equation in section 

3.1,denote by  ( ) the given prescribed boundary conditions (table 3.3). Hence, choose 

      ,      , we set 

                                                       
  ̂( )

  
  (  ),      .                                              (3.14) 

Namely 

                                           (  )  ∑   
 
   

  (     )

  
 ,                                               (3.15)   

where    (     )     , and    (     )     The prescribed boundary conditions 

used in equation (3.14) are shown in table 3.3 next. 
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Table 3.3:   Prescribed boundary conditions for nodes (     )   , in the first quadrant 

of the x-y plane, for quadratic boundary elements related to the St. Venant’s torsion 

problem. Prescribed node values for four quadratic boundary elements are sown. Each 

element consists of  =3 nodes (figure 2.8) 

 
PRESCRIBED 

BOUNDARY CONDITIONS 

 
FIRST 
NODE  

(     )/VALUE 
    

 
SECOND 

NODE 
(     )/VALUE 

    

 
THIRD 
NODE 

(     )/VALUE 
    

ELEMENT   : 

      

************* ************* ************* 

   (10.0,0.0)/0.0 (9.670,1.273)/-3.379 (8.814,2.3617)/-
4.8834 

   (8.814,2.367)/-
4.8334 

(7.7008,3.1898)/-
4.9447 

(6.174,3.933)/-
4.3104 

   (6.174,3.933)/-
4.3104 

(4.7898,4.3891)/-
3.4657 

(3.3044,4.719)/-
2.4411 

   (3.3044,4.719)/-
2.4411 

(1.557,4.939)/-
1.1614 

(0.00,5.00)/-0.3379 

 

Again, by symmetry the prescribed boundary conditions the boundary elements given 

by table 3.3 are the same for the rest of the boundary elements around the perimeter of 

the elliptical boundary. 

For numerical implementation of the MFS of the boundary value problem, we re-

express equation (3.15) in matrix form as 

   [

  (     )

  
 

  (     )

  

   
  (     )

  
 

  (     )

  

] 

[
 
 
 
 
  

 
 
 

  ]
 
 
 
 

 

[
 
 
 
 
 (  )

 
 
 

 (  )]
 
 
 
 

 ,                                    (3.16) 
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or     , where   [
  (     )

  
]  is the matrix above in the left hand side of (3.16) with 

entries 
  (     )

  
 representing the values of the outward normal derivatives of 

 (    ),computed at boundary, and fictitious boundary points,    (     )    , and 

   (     )     , respectively, for         , and   is the column vector of 

unknown coefficients   , and   is the column vector of prescribed boundary values 

 (  ) for the outward normal derivatives of   (the warping function) at given nodes 

       (table 3.3). As in section 3.1 to implement the MFS we compute    , the 

inverse of   [
  (     )

  
] to solve for the coefficients    and thus use these to construct 

the MFS expression (3.13) for the approximate solution to the Laplace equation with 

Neumann boundary conditions, or the St.Venant’s torsion problem, defined by (3.11)-

(3.12). The computation of   [
  (     )

  
] leads to a matrix that is close to being 

singular. A similar result was observed for the matrix of fundamental solutions in the 

MFS treatment of the Laplace’s equation in section 3.1. In either case, both matrices 

were invertible. The size the matrix of the MFS approximate solution given by 

  [
  (     )

  
] is a       square matrix as 16 quadratic boundary elements each with 

3 nodes was used to compute  . 9 of the generated fictitious boundary nodes, are also 

listed. These 9 nodes cover the first four quadratic boundary elements used in chapter 2 

for this problem. All located in the first quadrant of the x-y plane. Again, the 

computation of entries for matrix   above is actually carried out around the entire 

perimeter of the elliptic boundary of the domain. Finally, using some interior boundary 

points we compute the MFS approximate solution using (3.13). We display these results 
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in table 3.4 next. The magnitude of the error is computed using the relation:  ( )  

  ( )   ̂( ) (similar to equation 3.11). 

Table 3.4:    Results of the MFS compared with the BEM(shown in order of coordinates 

used) for the Laplace’s equation of the St.Venant’s torsion problem for a beam of 

elliptical cross-section defined by    (   )       
  

   
  

     .The % relative error 

for the BEM was shown in table (2.2) only for two interior points. Additional interior 

BEM points tested (not shown in table (2.2)) are also displayed 

 

Fictitious 

Boundary 

  (points 

tested ) 

 

(11.00,0.00) 
 

 

(10.7428,2.63) 
 

 

(9.98,4.61) 
 

 

(8.75,6.66) 
 

(7.12,8.38) 
 

(5.12,9.72) (2.94,10.59) 
 

(0.59,10.98) 
 

(1.78,10.86) 
 

Domain   

(points tested) 

(     )    = (1.1, 1.1) (2.0, 2.0) (2.5, 2.5.) 

(3.1, 3.1) (4.0, 4.0) (4.5, 3.5) (4.5, 4.5) (5.0, 5.0) 

MFS 

approximation: 

-0.688 -2.096 -4.6600 -7.2130 

-11.8711 -3.9377 -15.1773 -15.1888 -18.7711 

BEM 

approximation: 

-0.73 -2.093 -4.6701 

 

-7.2170 

-11.8901 -3.9444 -15.1871 -15.1651 -18.68 

Exact solution: -0.75 -3.00 -4.6875 -7.2075 

-12.00 -3.9375 -15.1875 -15.1875 -18.75 

 ( ) = 

(MFS: 

Eq.3.11) 

0.042 0.096 0.0275 0.0211 

 ( ) =  
(BEM) 

0.030 0.093 0.0174 0.0040 
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3.3    Concluding Remarks 

       From observation of the results obtained by application of the MFS and the BEM, to 

the boundary value problems treated in this thesis, both methods yielded results very 

close to the exact analytic solutions for the Poisson’s equation in the model of an ideal 

fluid velocity distribution as it flows across a pipe of elliptical cross section, at a uniform 

rate. The results for the analysis of torsional loads over a beam of elliptical cross section 

with same parameters as the one used in the boundary value problem for the Poisson’s 

equation i.e., the St.Venant’s torsion problem for a beam of uniform cross section 

subject to external loads, also seems to lead to results very much in accord with the 

exact analytical solution to this problem. In contrast to the BEM, the MFS was decisively 

less complicated than the BEM, as much more work is involved in implementation of the 

BEM. Choosing how to discretize the boundary, by deciding whether linear, quadratic, 

or higher order interpolation functions, is only the beginning of using the BEM method. 

The computer implementation can be the difficult part of using the BEM, as singular 

integrals can may be encountered and make the computer coding involved very time 

consuming, as well as the actual time involved in getting results from carrying out the 

computations on some particular computing device. The BEM is still however a better 

alternative to say FEM methods involving even more time discretizing a problem 

domain, in addition to the time involved in the construction of an appropriate computer 

code for the numerical implementation of a problem to which the BEM may be equally 

suitable to handle [Brebbia 1992]. Application of the MFS to the same problems treated 

in this thesis paper was again a little much easier than the BEM. One obvious reason was 
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the use of a few sets of points on a so-called fictitious boundary surrounding the domain 

of interest. Thus, no time is spent on figuring out how to discretize the boundary of the 

problem domain. The computer coding for numerically implementing this method for 

the same problems was less time consuming also as one does not have to worry about 

the many aspects of the geometry of the domain being treated, which could in itself 

make discretizing difficult a boundary if the geometry of the domain is highly irregular. 

No boundary discretizing involved was especially a nice feature of using the MFS for the 

boundary value problems treated in this thesis paper. Generating solutions for by the 

MFS took less computer time than generating them by the BEM method. This was 

mainly due to the coding involved for the algorithms to compute the fundamental 

solutions of the 2-D Laplace equation. In the BEM the computer coding of the 

algorithms used in the numerical implementation of the problems treated to handle the 

specific problems discussed in this thesis paper is considerably more involved. Besides 

computing the fundamental solution, many integrals over the boundary elements have 

to be computed. In short more time and computational resources are considerably 

more demanding issues in using the BEM in contrast to the MFS. In either case, from 

tables 3.2 and 3.4 of this chapter displaying results for both methods, one can see that 

both methods however different from each other seem to show little variation in results 

they yield, and approximate the exact analytical solutions to both boundary value 

problems to which they were applied too. 

        In both boundary value problems studied in this thesis the geometry of an ellipse is 

obviously highly symmetrical and so choosing a fictitious boundary such as a circle was 
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the most obvious choice to work with for the numerical implementation of the MFS for 

both problems. However, it should be noted that the MFS seems to be best applicable 

to partial differential equations with known fundamental solutions. In many cases 

finding the fundamental solution to some particular partial differential equation can be 

quite difficult depending on how singular the integrals involved in computing such 

solutions may be [Chen and Smyrlis 2008]. The accuracy of the MFS also seems to 

depend on how well the collocation, and or source points of a fictitious domain are 

distributed over the fictitious boundary surrounding the problem domain [Li and Chen 

2009]. For the particular problems studied here however, this did not seem to be a 

problem as long as a circular boundary with not too large of a radius or too small of a 

radius was used. Only a couple of two other radii were tested to see if results yielded 

would get any better. But it made little difference for both boundary value problems 

studied for this thesis paper. As long as the radii of fictitious circular boundaries did not 

vary much from the ones chosen originally, the matrices constructed to solve for the the 

coefficients in the MFS approximate solutions, given by equations (3.8), and (3.15) for 

the MFS approximate solution of the Laplace’s equation (then for the Poisson’s 

equation), and for the St. Venant’s torsion problem, respectively, though highly close to 

being singular, produced results for the Laplace’s equation related to the Poisson’s 

equation, and the St. Venat’s torsion problem, show fairly good results in very good 

agreement with the exact analytical solutions. Again, a look results displayed in tables 

3.2, and 3.4 confirms this. To complement numerical results in these tables, a 3-D plot 

displaying the MFS solution to the Poisson’s boundary value problem of fluid flow 
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through the cross-section of an elliptical pipe is shown next (figure 3.4). In addition, a 2-

D, and 3-D plot for the St.Venant’s torsion problem is shown, displaying the distribution 

of torsional loads over the cross-section of the same type of geometry as the Poisson’s 

problem  of fluid flow distribution through the pipe as discussed earlier(elliptical cross 

section, see figures 3.5 and 3.6). 

Figure 3.4: 3-D plot showing velocity distribution of fluid across a pipe of elliptical cross-

section for the Poisson’s equation (MFS approximate solution).The arrows show the 

direction of the flow. Note the small arrows near the boundary of the pipes cross 

section to depict velocity drop until near zero velocity conditions prevail on the 

boundary where the prescribed boundary conditions are of zero velocity 
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Figure 3.5:   2-D plot of torsional load distribution (MFS approximation) over the 

elliptical cross-section of a beam for the St.Venant’s torsion problem. The cross-like area 

shows the region of the cross-section of the beam towards where the maximum 

projected tractions tend to concentrate on part of the beams cross-sectional area 

closest to the centroid of the beam. The centroid of the beam is clearly just the origin of 

axes in the x-y plane  
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Figure 3.6:   A 3-D plot of a small slice of the elliptical beam shown in figure 3.6 showing 

the distribution of shear stress when the beam is twisted.(MFS approximation). The 

contours shown in black are part of the region of the beams cross section. The surface 

intersecting these contours represents the shear stress distributions mostly 

concentrated near the beams centroid as discussed in Chapter 2 
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