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ABSTRACT

Structures on a K3 Surface

by

Nathan P. Rowe

Dr. Arthur Baragar, Examination Committe Chair
Associate Professor of Mathematics
University of Nevada, Las Vegas

In the first part of this paper, we examine properties of K3 surfaces of the form

(x2 + 1)(y2 + 1)(z2 + 1) + Axyz − 2 = 0.

We show the surface has Picard number q ≥ 12 by finding 12 curves whose equivalence

classes are linearly independent. These curves have self intersection −2. We find the

lattice representations of the single-coordinate swapping automorphisms in x, y, and

z. We show that we have enough of the Lattice to make accurate predictions of poly-

nomial degree growth under the automorphisms. We describe these automorphisms

in terms of operations on elliptic curves.

In the second part of this paper, we look at curves whose shape is sketched by

the orbit of a point under the composed automorphisms mentioned above. These

curves were studied by Fields Medalist Kurt McMullen. One can prove these curves

are non-algebraic through the use of intersection theory. We offer a simple counting

argument that one such curve is not algebraic. We do this by counting points in Fp

and comparing this to the Hasse-Weil upper bound for such curves.
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CHAPTER 1

INTRODUCTORY MATERIAL

1.1 Preface to the Reader

In this chapter we give some of the background material necessary to understand

the paper. Further background is given as it is needed within the later chapters. It is

assumed that the reader has a basic understanding of fields, and matrix operations.

1.2 Affine vs Projective Space

Here we give a review on some of the concepts of affine and projective space.

Common examples of affine geometries or affine spaces include Rn and Cn. We can

similarly define an affine space with any field, F .

The One Dimensional Projective Space, P(F )

We will define P(F ), the projective extension of a field F . P(F ) is usually defined

to be the set of lines passing through the origin in F×F . Such a line has the equation

{(x, y) | ax+ by = 0} .

Where a and b come from F and a, b are not both zero. Hence we can think of

P(F ) as the set {(a, b) $= (0, 0) | a, b ∈ F} with the equivalence relation defined by

(a, b) ≡ (c, d) ⇔ {(x, y) | ax+ by = 0} = {(x, y) | cx+ dy = 0}.

This equivalence relation simplifies down to (a, b) ≡ (c, d) if and only if there

is some λ ∈ F so that (a, b) = (λc,λd). This allows us to normalize each pair of

coordinates to think of them as being truly 1-dimensional. For this reason we often

write P(F ) = {(x1, x2) | x2 = 1 or (x2 = 0 and x1 = 1)}. We associate the point

1



(x1, x2) with the value
x1

x2
if x2 $= 0. The point (1, 0) ≡ (x1, 0) we think of as a point

at ∞. We call the points with x2 $= 0 the affine part of P(F ) as it is in correspondence

with the affine space, F .

The n-Dimensional Space, Pn(F )

There are two natural ways to extend this into multi-dimensional spaces, the most

common of which is written Pn(F ). P1(F ) is the space we just defined by looking at

lines through the origin in F 2. We similarly define Pn(F ) to be F n+1 modulo lines

through the origin.

The projective space, P2(F ), is the set of 3-tuples, (x, y, z), equipped with the

equivalence relation (x1, y1, z1) ≡ (x2, y2, z2) if and only if there is some λ ∈ F such

that (x1, y1, z1) = (λx2,λy2,λz2).. This allows us to normalize the point (x, y, z) to

divide away z when possible. If z $= 0, we identify the point (x, y, z) ∈ P2(F ) with the

point
(x
z
,
y

z

)
∈ F 2. The collection of points with z = 0 we think of as forming a line

at infinity. This line is isomorphic to any other line in P2(F ). That is, it is isomorphic

to P1(F ). In fact, there is nothing special about the line with z = 0. removing any

one line in P2(F ) yields a space isomorphic to F 2.

Similarly we have that Pn(F ) is a set of n + 1 tuples that are not all zero. We

divide away the last component of this n + 1 tuple when it is different than zero.

Otherwise we think of the point as being located at infinity. Pn(F ) has infinite part

isomorphic to Pn−1(F ).

We explain P2 in terms of projections in order to explain the nomenclature. If

we pick (x0, y0, z0) to be any point in Q3 different from the origin, this point defines
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a unique line through the origin. If our point has z0 different than zero, the line

it defines will intersect the plane z = 1 in exactly one location, namely the point

(x0/z0, y0/z0, 1). If z0 = 0 then we think of our line as intersecting the plane z = 1 at

infinity. The two free variables left when z = 0 form a line at infinity isomorphic to P1.

This idea is called a projection of the space, Q3 onto the plane z = 1. We recognize

that this projection is the same idea as Q3 modulo lines, and hence it produced the

space P2. A similar projection idea can be used to describe Pn.

We will mostly be dealing with Pn(C), and hence we will write Pn to mean Pn(C)

for simplicity of notation.

The n-Dimensional Space, P1 × P1 × ...× P1

Another natural, though far less common, way to extend this idea of projective

space into multiple dimensions is to take the direct product of single dimensional

projective lines. For example, The space P1 × P1 is a two dimensional. In other

words, it is surface. We denote its points with ((x1, x2), (y1, y2)). Here each of the two

components is thought of as a point in P1 and hence can be normalized to be thought

of as 1-dimensional. P1 × P1 has two projective lines at infinity, ((x1, x2), (1, 0)) and

((1, 0), (y1, y2)). We will often write these lines in affine coordinates as (x,∞) and

(∞, y). These two lines share a point of intersection at ((1, 0), (1, 0)) which we will

write as (∞,∞).

Most of our work in this paper will be done in the space, P1 × P1 × P1. This

space is three dimensional with points in the space written ((x1, x2), (y1, y2), (z1, z2)).

The space has affine part isomorphic to C3 and at infinity it has 3 planes isomorphic

to P1 × P1. Each pair of planes share a line isomorphic to P1, and all three of these
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lines intersect at the point ((1, 0), (1, 0), (1, 0)) or (∞,∞,∞). If we attempt to simply

account for all of the points in P1 × P1 × P1 and ignore its structure, we can say that

P1 × P1 × P1 = C3 ∪
(

3
1

)
C2 ∪

(
3
2

)
C ∪ (∞,∞,∞).

Extending this to n dimensions, we have P1 × P1 × ...× P1. Its points are written

as a an n-tuple of 2-tuples. Counting points again, we see that

P1 × P1 × ...× P1 =
n⋃

i=0

(
n
i

)
Ci

In the above equation, we think of C0 as the single point, (∞,∞, ... ,∞).

Equations of Curves in P1 × P1 × P1

Let Caff be an algebraic irreducible affine curve in C3. Since we think of P1×P1×P1

as a projective extension of C3, we expect that we should be able to extend this affine

curve to a projective curve. We can certainly imbed any affine curve in projective

space by simply including all the same points. The problem with this method is that

it does not necessarily preserve the continuity of the curve. A curve that is simply

imbedded into projected space will be undefined and hence discontinuous at infinity.

A question with a less obvious answer is “can we continuously extend Caff into

a projective curve?” The answer to this question is yes, and furthermore, such an

extension is unique. Thus we denote Cproj to be the unique continuous projective

extension of the affine curve, Caff. We generate Cproj as follows:

Let Faff (x, y, z) = 0, Gaff(x, y, z) = 0 be the polynomial equations defining Caff.

Let nx = degx(FA(x, y, z)) be the largest degree of x in Faff(x, y, z). Similarly let

ny = degy(Faff(x, y, z)) and nz = degz(Faff(x, y, z). Also let mx, my, and mz be the
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degrees in x, y, and z for Gaff(x, y, z). Then let us define

Fproj((x1, x2), (y1, y2), (z1, z2)) = FA(x1/x2, y1/y2, z1/z2)x
nx
2 yny

2 znz
2 .

and

Gproj((x1, x2), (y1, y2), (z1, z2)) = GA(x1/x2, y1/y2, z1/z2)x
mx
2 ymy

2 zmz
2 .

We note that Fproj and Gproj are polynomials in x1, x2, y1, y2, z1, and z2 and have

no variables remaining in the denominator. This explains our choice of each ni and

mj. We should also note that Fproj and Gproj are homogeneous in all 6 components.

Then the polynomial equations,

Fproj((x1, x2), (y1, y2), (z1, z2)) = 0, Gproj((x1, x2), (y1, y2), (z1, z2)) = 0

define our projective curve, Cproj. The curve Cproj has affine part isomorphic to Caff

and continuously extends into its infinite part.

We close by stating that this same method can be used to uniquely extend affine

surfaces into projective surfaces. We also mention that since the extension from affine

coordinates is unique we will often (for simplicity) define a projective entity with its

affine equation.

1.3 Intersection Theory

We start with the familiar. Recall that in C2, we have the Fundamental Theorem

of Algebra. This states that if f(x) is a polynomial of degree n then the equation,

f(x) = 0 has exactly n many solutions (counting multiplicity) over the complex

numbers.
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One step more complicated we may take two algebraic curves X and Y in P2(C)

with degree n and m respectively. The classical result, Bezout’s Theorem, says that if

X and Y have no components in common, then the number of intersections between

X and Y is exactly equal to mn counting multiplicity over the complex numbers.

This already suggests a method of calculating intersections by passing off to

equivalence classes. In this example, the equivalence relation would be defined by

X ≡ Y if deg(X) = deg(Y ). We will see later that it is natural to think of

the intersection of two curves as the product of their equivalence classes. Thus

#{X ∩ Y } = [X] · [Y ] = deg(X) deg(Y ).

The Intersection Product

A slightly more complicated example presents itself with the surface P1×P1. Here

we take two projective curves on the surface that have affine equations f(x, y) = 0

and g(x, y) = 0. To count the intersections between these two curves we use the

formula

#{f(x, y) ∩ g(x, y)} = degx(f) degy(g) + degy(f) degx(g).

This idea further suggests passing off to equivalence classes for the curves f and g.

We think of the equivalence classes as belonging to a two dimensional vector space

with basis elements D1 and D2. Here D1 represents a curve, C, with degx(C) = 1,

degy(C) = 0; and D2 represents a curve with degx(C) = 0, degy(C) = 1.

If we let f have degx(f) = n1 and degy(f) = n2 then [f ] = n1D1+n2D2 which we

can write in vector notation as
[
n1 n2

]
. Now let [g] =

[
m1 m2

]
. We define a

product so that [f ]·[g] = #{f∩g}. Note that [f ]·[g] = (n1D1+n2D2)·(m1D1+m2D2).

6



Hence we see by distribution that

[f ] · [g] = n1m1D1 ·D1 + n1m2D1 ·D2 + n2m1D1 ·D2 + n2m2D2 ·D2

It was originally stated that #{f ∩ g} = n1m2 + n2m1. To satisfy this formula, we

must have D1 ·D1 = D2 ·D2 = 0 and D1 ·D2 = 1.

Let us verify this:

Let f1(x, y) = x = 0, and f2(x, y) = y = 0 so that D1 = [f1], and D2 = [f2]. Since

f1 = f2 = 0 implies that x = y = 0, we see that

D1 ·D2 = [f1] · [f2] = #{f1(x, y) ∩ f2(x, y)} = 1.

We now have the problem of calculatingD1 ·D1 and D2 ·D2. Both of these intersection

are self intersections of equivalence classes of curves. Luckily, since D1 and D2 both

contain multiple curves in their equivalence classes, we need not be able to directly

calculate the self intersection of a single curve. We instead pick two different curves in

D1 and find their intersection. Let f1(x, y) = x = 0 as above and g1(x, y) = x−1 = 0

Both curves belong to D1 and their intersection is empty since f1 = g1 only if x = 0

and x = 1. Hence we see that

D1 ·D1 = [f1] · [g1] = #{f1(x, y) ∩ g1(x, y)} = 0.

Similarly we have that

D2 ·D2 = 0,

which completes our verification.

We may also write out [f ] · [g] as a matrix product. Recall above that [f ] =
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[n1, n2], and [g] = [m1, m2]. Then

[f ] · [g] =
[
n1 n2

] [ D1 ·D1 D1 ·D2

D1 ·D2 D2 ·D2

] [
m1

m2

]
.

Since we have calculated that D1 ·D1 = D2 ·D2 = 0 and D1 ·D2 = 1, we see that

[f ] · [g] =
[
n1 n2

] [ 0 1
1 0

] [
m1

m2

]
= n1m2 + n2m1.

The matrix, J = [Di ·Dj] =

[
0 1
1 0

]
used above is called the intersection matrix on

the surface P1 × P1.

Note that f ≡ g if and only if
[
degx(f), degy(f)

]
=

[
degx(g), degy(g)

]
. We

also see that [fg] = [f ] + [g]. Thus, by letting D1 = [x], and D2 = [y], we see that

[f ] = degx(f)D1 + degy(f)D2.

We extend this to a lattice by considering all linear combination of D1 and D2

with integer coefficients. The objects in this lattice are called divisors, and the group

of divisors is called the Picard group or Picard lattice. Not all objects in the Picard

Lattice represent curves. For example, the zero vector has no curves associated with

it. Divisors which do represent curves are called effective divisors, and may be thought

of as equivalence classes of curves. The dimension of the Picard group is called the

Picard number, q, which we found to be 2. The matrix, J =

[
0 1
1 0

]
, found above

is called the intersection matrix.

Going back to the simpler example, curves in P2, the picard group is only 1-

dimensional, and the intersection matrix is simply the identity matrix, [1].

The Picard group exists for any smooth surface, and we can always define the

intersection of two curves as a product. We provided two very simple examples where
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the intersections number between two curves could be written down purely in terms of

the degrees of each curve. This is not always the case. There is often some connection

to degree, but it is not always quite as straight forward.

On K3 surfaces over mathbbC, which we define in a later section, the Picard

number, q, varies in [1, 20]. Generically a K3 surface has Picard number 1. See [1]

for a large class of K3 surfaces with q = 3, and for two classes of K3 surfaces with

q = 4. All K3 surfaces over Q with q = 20 have been computed in [7]. In this paper,

we present a class of surfaces with q ≥ 12.

Self Intersection and the Adjunction Formula

Recall that to find J on the surface P1 × P1, we needed to know

Di ·Dj =

{
0 if i = j
1 if i $= j

In particular, we needed to know the value of Di ·Di. Above we managed to calculate

this value by taking two different curves in the equivalence class Di and manually

computing their intersections. A problem arises when an equivalence class D has

only one curve in it. Our original trick fails to be applicable.

To handle such situations, we must invoke the Adjunction Formula as applied to

surfaces [4]. This says that for any X, a smooth surface, and any D, a smooth divisor

of curves on X,

KD = (KX +D) ·D.

KX above is the canonical divisor of the surface X. Also, since D is a divisor of

curves, KD = 2g − 2 where g is the genus of a curve in D. Solving for D ·D we get

D ·D = 2g − 2−KX ·D

9



This tells us that if we know the canonical divisor of X and the genus of a curve,

C, we can always calculate the self intersection the divisor [C]. This is true even for

divisors with only one element.

1.4 Surfaces in P1 × P1 × P1

For any complete smooth algebraic surface in P1 × P1 × P1, there are 3 natural

divisors to consider.

Let V be a surface with defining equation F (x, y, z) = 0 written in affine form.

We let Ex=0 be the curve on the V defined by the equation F (0, y, z) = 0. The divisor

class [Ex=0] is exactly those curves which intersect in the same way as Ex=0. That is

to say, a curve, E , is an element of [Ex=0] if and only if for any algebraic curve, C, on

V , #{C ∩ E} = #{C ∩ Ex=0}.

We claim that for any constant value, c, the curve, Ex=c, is an element of [Ex=0].

Proof. Let C be an arbitrary curve on V with defining equations, F (x, y, z) = 0, and

f(x, y, z) = 0. We need to show that #{C∩Ex=0} = #{C∩Ex=c} to verify the claim.

We first note that

{C ∩ Ex=0} = {(f(x, y, z) = 0 ∩ F (x, y, z) = 0) ∩ (x = 0 ∩ F (x, y, z) = 0)},

and so

{C ∩ Ex=0} = {f(0, y, z) = 0 ∩ F (0, y, z) = 0}.

Now, the curves defined by f(0, y, z) = 0 and F (0, y, z) = 0 can be thought of a

curves in P1 × P1 and hence intersect according to our formula in section 1.3. Thus
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we see that

#{(f(0, y, z) = 0) ∩ (F (0, y, z) = 0)} = degy(f) degz(F ) + degz(f) degy(F ).

We similarly find that {C ∩ Ex=c} = {f(c, y, z) = 0 ∩ F (c, y, z) = 0}. Therefore

#{C ∩ Ex=c} = degy(f) degz(F ) + degz(f) degy(F ). Hence we have that

#{C ∩ Ex=c} = #{C ∩ Ex=0}.

This proves our claim.

Since [Ex=0] = [Ex=c], we may simply refer to this divisor as Ex. We may similarly

define the devisors Ey and Ez. These three divisors are present in all such surfaces,

V .

(2, 2, 2) Forms in P1 × P1 × P1

A K3 surface over the complex numbers is defined to be a complete smooth simply

connected surface with a trivial canonical divisor. This definition is very technical

and offers little insight into what makes K3 surfaces interesting. One of the most

important things that we can grab from the definition of a K3 surface is that for any

V a K3 surface, KV , the canonical divisor of V , is just the zero vector. Thus, recalling

the adjunction formula from Section 1.3, for any smooth curve C on V we see that

[C] · [C] = 2g − 2−KX · [C]

simplifies to

[C] · [C] = 2g − 2.

Note that any smooth curve of genus zero on V has self intersection −2. For this

negative self intersection to make sense, the curve’s divisor class must be otherwise
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empty. −2 curves do exist on some K3 surfaces and play an important role in the

study of K3 surfaces. We will find many such curves in the family of surfaces studied

in this paper.

Generically a K3 surface has no −2 curves. It also has Picard number 1 and has

no automorphisms. However, there are many infinite families of K3 surfaces with

very interesting automorphisms and larger Picard number. One interesting example

of K3 surfaces is the family of (2, 2, 2) forms in P1 × P1 × P1.

We say a surface, V , is a (2, 2, 2) form in P1×P1×P1 if its defining affine equation,

F (x, y, z) = 0 has degree 2 in each of x, y, and z. If we let V be any smooth, irreducible

(2, 2, 2) form, then V is aK3 surface [12]. A genericK3 surface of this form has Picard

number q = 3. A natural basis for the Picard lattice are the three divisors, Ex, Ey,

and Ez which are clearly linearly independent. Such a surface also possesses obvious

automorphisms. We call these automorphisms the quadratic swap and describe them

in section 2.1.

One of the most important things that we can grab from the definition of a K3

surface is that for any V a K3 surface, KV , the canonical divisor of V , is just the

zero vector. Thus, recalling the adjunction formula from Section 1.3, for any smooth

curve C on V we see that

[C] · [C] = 2g − 2−KX · [C]

simplifies to

[C] · [C] = 2g − 2.

Note that any smooth curve of genus zero on V has self intersection −2. For this

12



negative self intersection to make sense, the curve’s divisor class must be otherwise

empty. We will find many such curves in the family of surfaces studied here.
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CHAPTER 2

DESCRIBING AUTOMORPHISMS

2.1 Isometries and the Quadratic Swap

The foci of this paper are properties of a class of K3 surfaces in P1 × P1 × P1. In

affine space, it has the form V : F (x, y, z) = 0 where

F (x, y, z) = (x2 + 1)(y2 + 1)(z2 + 1) + Axyz − 2.

The obvious basic isometries present on V are (A) the 3 isometries that swap any 2

coordinates:

φx,y : (x, y, z) → (y, x, z),

φx,z : (x, y, z) → (z, y, x),

φy,z : (x, y, z) → (x, z, y);

(B) the 3 isometries that send any two coordinates to their negative:

Nx,y : (x, y, z) → (−x,−y, z),

Nx,z : (x, y, z) → (−x, y,−z),

Ny,z : (x, y, z) → (x,−y,−z);

and their compositions. The closure of these elements gives us a group of basic

isometries of order 24. It is isomorphic to S3 × Z/2Z× Z/2Z.

The other natural automorphisms to look at are the quadratic swapping maps

that fix two coordinates and send the 3rd coordinate to the other quadratic root of

14



the surface. That is to say, if we let x, and x′ be the two roots of F (X, y0, z0) = 0,

then let us define

σx : (x, y0, z0) → (x′, y0, z0).

Similarly we define

σy : (x0, y, z0) → (x0, y
′, z0),

and

σz : (x0, y0, z) → (x0, y0, z
′).

These 3 automorphisms generate an infinite group. Its presentation is as follows:

〈
σx, σy, σz : σ2

x = σ2
y = σ2

z = e
〉
.

We can more precisely define the action of the σ maps on a given point. Let

(x1, y0, z0), and (x2, y0, z0) be two points on V with y0, and z0 arbitrary. Then we can

solve for x1 and x2 by solving the quadratic equation

F (X, y0, z0) = ((1 + y20)(1 + z20))X
2 + (Ay0z0)X + ((1 + y20)(1 + z20)− 2) = 0.

We obtain two solutions for X from the quadratic equation, namely x1 =
−b

2a
+

√
b2 − 4ac

2a
, and x2 =

−b

2a
−
√
b2 − 4ac

2a
. Notice that x1+x2 =

−b

a
so that x2 = −x1−

b

a
.

We see that our map σx : (x, y0, z0) → (x′, y0, z0) can be better described by

σx((x, y0, z0)) =

(
−x− Ay0z0

(1 + y20)(1 + z20)
, y0, z0

)
.

Similarly we obtain that

σy((x0, y, z0)) =

(
x0,−y − Ax0z0

(1 + x2
0)(1 + z20)

, z0

)
,
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and

σz((x0, y0, z)) =

(
x0, y0,−z − Ax0y0

(1 + x2
0)(1 + y20)

)
.

Hence we see that σx, σy, and σz are rational maps.

2.2 The Intersection Matrix

We will soon see that our surface, V , has rational curves present at infinity. We

know by the adjunction formula that any smooth rational curve (a smooth curve

of genus zero) will have a self intersection of −2. We will find 12 such linearly

independent −2 curves. These 12 curves generate a sublattice of the Picard lattice.

We will describe the intersection matrix for this sublattice. First we will need to

re-write the equation F (x, y, z) as a polynomial in projective space.

We must extend our affine surface equation, F (x, y, z) = 0 into the projective

equation, F ((x1, x2), (y1, y2), (z1, z2)) = 0. We do this by plugging x =
x1

x2
, y =

y1
y2
,

and z =
z1
z2

into F . Multiplying by (x2)
2(y2)

2(z2)
2, we obtain the equation,

F ((x1, x2), (y1, y2), (z1, z2)) = (x2
1 + x2

2)(y
2
1 + y22)(z

2
1 + z22) + Ax1x2y1y2z1z2 − 2x2

2y
2
2z

2
2 .

This is the projective polynomial describing V .

Notice that in the equation above if we let x = (i, 1) = i, y = (1, 0) = ∞, then

z = (z1, z2) is free to be anything. This curve is a smooth rational curve. That is to

say, it is isomorphic to P1. This is what tells us that it has genus 0 and is hence a −2

curve. Similarly, each of the twelve −2 curves is free in exactly one variable when one

is made equal to ±i and another equal to infinity. We let D1 = ((1, 0), (i, 1), (z1, z2))
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which in affine coordinates we will write as (∞, i, z). D1 through D12, in order, are

D1 through D6: (∞, i, z), (∞,−i, z), (∞, y, i), (∞, y,−i), (i,∞, z), (−i,∞, z),

D7 through D12: (x,∞, i), (x,∞,−i), (i, y,∞), (−i, y,∞), (x, i,∞), (x,−i,∞).

Knowing any one of these −2 curves and applying all of the isometries found in the

previous section will yield the other 11. That is, for any j, Dj is in the orbit of D1.

For example, we obtain D2 from D1 by applying the isometry Nx,y to D1 since −∞ =

−(1, 0) = (−1, 0) = (1, 0) = ∞. We similarly see that D8= φx,y(φy,z(Nx,y(D1))).

We saw in the introduction that for a negative self-intersection to be consistent,

the divisor class of the curve must be otherwise empty. Since Dj is a −2 curve, the

divisor class, [Dj], has only one curve in it. Thus, we abuse notation and use Dj for

both the curve and its divisor class.

Let us find a basis for the span of these 12 divisors. We will first check to see if

these curves are linearly independent. To test this, we will construct the matrix of

intersections, J = [Dj ·Dk]. We now compute each of these intersections below.

First we note that each curve has a self-intersection of −2 so that Di ·Di = −2.

Now each Di is fixed in two variables and free in one. If two such curves have the same

fixed coordinate with differing values then the two curves cannot intersect. Thus we

see that a majority of pairs of curves have an intersection of zero. For example, this is

the case with D1 and D2 as well as with D1 and D7. Every other pair of curves must

share exactly one fixed coordinate with the same value. This point of intersection

clearly has multiplicity 1 since the curves are perpendicular. With this information
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we are able to construct the matrix of intersections,

J = [Dj ·Dk] =





−2 0 1 1 0 0 0 0 0 0 1 0
0 −2 1 1 0 0 0 0 0 0 0 1
1 1 −2 0 0 0 1 0 0 0 0 0
1 1 0 −2 0 0 0 1 0 0 0 0
0 0 0 0 −2 0 1 1 1 0 0 0
0 0 0 0 0 −2 1 1 0 1 0 0
0 0 1 0 1 1 −2 0 0 0 0 0
0 0 0 1 1 1 0 −2 0 0 0 0
0 0 0 0 1 0 0 0 −2 0 1 1
0 0 0 0 0 1 0 0 0 −2 1 1
1 0 0 0 0 0 0 0 1 1 −2 0
0 1 0 0 0 0 0 0 1 1 0 −2





.

The matrix J has determinant −135 and hence we see that the 12 curves are

linearly independent. This establishes our lower bound of 12 for the Picard number

of our surfaces. This also gives us a 12 dimensional sublattice, Λ, of the full Picard

Lattice. By letting D1 through D12 be the basis elements of Λ, we may use J as our

intersection matrix to define the intersection product between some curves.

The way we do this is as follows: Let C1, and C2 be two curves on our surface.

Suppose that their divisors, [C1], and [C2] are represented in our lattice, Λ. Then we

have that

#{C1 ∩ C2} = [C1] · [C2] = [C1]
TJ [C2].

The Picard number may be larger than 12 for our surfaces. The discovery of a

curves on our surface not already represented in Λ would push the dimension of the

Picard Lattice up. Such a curve may or may not exist, so we can only say that the

picard number is ≥ 12.
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2.3 The Action of σ on Λ

Next we shall look at the action of the quadratic swapping maps σx, σy, and σz

on our sublattice, Λ. Every automorphism σ of V induces an action σ∗ on the picard

lattice of V . This action is defined by σ∗[C] = [σC] for any curve C on V . It turns

our that σ∗ acts linearly on the picard group, so to solve for σ∗, we need only find its

action on a basis. We do not know that we have a basis of the picard group of V , but

we can use our basis of Λ to solve for σ∗
x, σ

∗
y , and σ∗

z restricted to Λ.

We will do this explicitly with σx on the basis, {D1, ..., D12} of Λ. First we try

to find σx(D1) = σx((∞, i, z)). We cannot directly apply our formula from [2.1] since

it was written for affine coordinates. Instead we must manually search for a new

solution of FP (X, i, z). We expect that a new solution will be affine, so we work with

equation

FA(X, i, z) = AXiz − 2 = 0.

Solving for X yields X = − 2i

Az
works so that

σx(D1) = (
−2i

Az
, i, z).

Similarly we see

σx(D2) = (
2i

Az
,−i, z),

σx(D3) = (
−2i

Ay
, y, i), and

σx(D2) = (
2i

Ay
, y,−i).

Next we see that σx swaps D5 and D6, and swaps D9 to D10. The map sends D7, D8,

D11, and D12 to themselves.
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We have already determined the intersections of each -2 curve with any other, so

the only new curves to find intersections with are σx(D1) through σx(D4). We will

make example of just one case, σx(D1), as all curves are similar. We quickly see that

σx(D1) is different than D2, D5 through D8, and D12 in the y-component so that

σx(D1) has intersection zero with with those curves. We also see that if we make

x = 0 then we get that z = ∞. This tells us that σx(D1) has intersection zero with

D3 and D4. If we make z = ∞, we see that x = 0 so that σx(D1) has zero intersection

with D9 and D10. We once again apply our intersection formula on the surface P1×P1

to see that [σx(D1)] ·D1 = 1. This intersection occurs at the point (∞, i, 0). Similarly

[σx(D1)] ·D11 = 1, and this intersection occurs at the point (0, i,∞).

Doing this for all of σx(D1) through σx(D4), we obtain a 12× 12 matrix of inter-

sections, M = [σxDj ·Dk] = σ∗
xJ .

M =





1 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 −2 1 1 0 1 0 0
0 0 0 0 −2 0 1 1 1 0 0 0
0 0 1 0 1 1 −2 0 0 0 0 0
0 0 0 1 1 1 0 −2 0 0 0 0
0 0 0 0 0 1 0 0 0 −2 1 1
0 0 0 0 1 0 0 0 −2 0 1 1
1 0 0 0 0 0 0 0 1 1 −2 0
0 1 0 0 0 0 0 0 1 1 0 −2





.

If we let Tx be the matrix defining the action of σ∗
x on Λ then the above matrix, M
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is equal to TxJ . Solving for Tx we obtain

Tx =





−1 0 0 0 1 1 1 1 0 0 −1 0
0 −1 0 0 1 1 1 1 0 0 0 −1
0 0 −1 0 0 0 −1 0 1 1 1 1
0 0 0 −1 0 0 0 −1 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1





.

We may repeat the above process with σy and σz to obtain

Ty =





0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
1 1 1 1 −1 0 0 0 −1 0 0 0
1 1 1 1 0 −1 0 0 0 −1 0 0
0 0 −1 0 0 0 −1 0 1 1 1 1
0 0 0 −1 0 0 0 −1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0





,

and

Tz =





1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 1 −1 0 0 0 −1 0 0 0
1 1 1 1 0 −1 0 0 0 −1 0 0
−1 0 0 0 1 1 1 1 0 0 −1 0
0 −1 0 0 1 1 1 1 0 0 0 −1





.

We note that, as we would expect, T 2
x = I, T 2

y = I, and T 2
z = I.

The way we use these matrices is as follows: If a curve, C, on our surface has
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divisor class [C] in Λ, then

[σx(C)] = T t
x[C], [σy(C)] = T t

y [C], and [σz(C)] = T t
z [C].

2.4 Curves that Fix One Coordinate are in Λ.

In this section, we show that the three natural divisors discussed in section 1.4,

Ex, Ey and Ez, do not extend our intersection matrix J . That is to say, our Picard

sublattice already has within it all of the curves generated by fixing one component.

We define Ex=x0 to be the curve formed by fixing x = x0 on V . Then its divisor

class, Ex, contains all such curves with a fixed x component by our work in section

1.3. We will see that Ex is already contained within our lattice. To show this, we

extend the matrix J by adding a 13th row and column representing Ex. We will see

that this extended matrix has determinant zero and is thus linearly dependent.

We must first compute the intersection of Ex with each of the Di’s. This comes

down to checking the degree of each Di in the x component. Thus we see that Ex has

intersection 1 with D7, D8, D11, and D12, and intersection 0 with all other Di’s. We

calculate the self intersection Ex · Ex by choosing two curves in the divisor class Ex.

The curves Ex=0 and Ex=1 do not intersect since 0 $= 1. Thus we see that Ex ·Ex = 0.

This gives us all of the necessary information to form our extension of J by
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including Ex as the 13th row and column. We call this matrix, Ĵ . Then

Ĵ =





−2 0 1 1 0 0 0 0 0 0 1 0 0
0 −2 1 1 0 0 0 0 0 0 0 1 0
1 1 −2 0 0 0 1 0 0 0 0 0 0
1 1 0 −2 0 0 0 1 0 0 0 0 0
0 0 0 0 −2 0 1 1 1 0 0 0 0
0 0 0 0 0 −2 1 1 0 1 0 0 0
0 0 1 0 1 1 −2 0 0 0 0 0 1
0 0 0 1 1 1 0 −2 0 0 0 0 1
0 0 0 0 1 0 0 0 −2 0 1 1 0
0 0 0 0 0 1 0 0 0 −2 1 1 0
1 0 0 0 0 0 0 0 1 1 −2 0 1
0 1 0 0 0 0 0 0 1 1 0 −2 1
0 0 0 0 0 0 1 1 0 0 1 1 0





.

The determinant of Ĵ is zero, and hence Ex is in the span of {D1, ..., D12}. We can

solve explicitly for Ex. Since Ex has intersection 1 with D7, D8, D11, and D12 and

intersection zero with the other basis elements, we have that

JEx = (0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1).

Solving for Ex we get

Ex = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0).

In other words,

Ex = D1 +D2 +D3 +D4.

Similarly we see that

Ey = D5 +D6 +D7 +D8 = (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0),

and

Ez = D9 +D10 +D11 +D12 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1).
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There is an easier way to have noticed that Ex = D1 + D2 + D3 + D4. If we fix

(x1, x2) = (1, 0) (i.e. x = ∞), then the curve, Ex=∞ has the equation

FP ((1, 0), (y1, y2), (z1, z2)) = (y21 + y22)(z
2
1 + z22) = 0.

This curve is made up of exactly the 4 components, D1 through D4. In other words,

since the curve Ex=∞ decomposes into D1 through D4, the divisor class [Ex=∞] = Ex

will be exactly D1 +D2 +D3 +D4.

We will need these lattice representations, Ex, Ey, and Ez, in the next section.

They will be necessary to compute a curve’s degree in x, y, and z using only its

representation in our Picard sub-lattice, Λ.

2.5 Example: Predicting Polynomial Degree Growth

Now that we have come up with matrix representations of σ∗
x, σ

∗
y , and σ∗

z , as well

as the lattice representation of Ex, Ey, and Ez, we can check to see that these matrices

accurately predict the intersections of images of curves under the σ maps. If we do

this with a curve rationalized in x, y, and z as a function of one variable, we will see

that these intersections will correspond to the curve’s degrees in each component.

In this section, we work out one example. Let us first find a singular elliptic curve

on the surface. A singular elliptic curve will have a parameterization in one variable

which helps to serve two purposes. One, it will greatly simplify the computation

of the curve’s images under the σ maps. Two, given a rationalized projective curve

C = (X(t), Y (t), Z(t)) with X, Y , and Z all rational expressions written in affine for

simplicity, we can calculate #{C ∩ Ex=x0} as follows. Let X(t) = NX(t)/DX(t) for
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some polynomials, N , D with gcd(N,D) = 1. We want to count the solutions to the

equation,

NX(t)

DX(t)
= x0.

Case 1: for x0 $= 0 or ∞, this is equivalent to counting solutions to NX(t) −

x0DX(t) = 0. The fundamental theorem of algebra tells us here that

#{C ∩ Ex=x0} = deg(NX(t)− x0DX(t)) = max{deg(NX(t)), deg(DX(t)}.

Case 2: when x0 = 0 there will be deg(NX(t)) many solutions varying t through

C, but there will also be a solution of order max(0, deg(DX)− deg(NX)) when t = 0.

Summing these together, we see that we have the same value for #{C ∩ Ex=x0}.

Case 3: when x0 = ∞, we again count two kinds of solutions. There will be

deg(DX(t)) solutions which correspond to division by zero. There will also be one

solution of multiplicity max(deg(NX) − deg(DX), 0) when t = ∞. Once again we

obtain the same value for #{C ∩ Ex=x0}.

Since in all cases we had

#{C ∩ Ex=x0} = deg(NX(t)− x0DX(t)) = max{deg(NX(t)), deg(DX(t)},

we define deg(X(t)) = max{deg(NX(t)), deg(DX(t)}. With this definition, we see

that

deg(X(t)) = [C] · Ex = [C]tJEx,

deg(Y (t)) = [C] · Ey = [C]tJEy,

and

deg(Z(t)) = [C] · Ez = [C]tJEz.
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This allows us to easily verify that our lattice is making accurate predictions of degree

growth.

Let Ex=1 be the elliptic curve defined by the intersection of V with the plane,

x = 1. This curve has affine equation F (1, y, z) = 0. I.e.:

Ex=1 : 2(1 + y2)(1 + z2) + Ayz − 2 = 0, x = 1.

We want to rationalize this curve in terms of a single parameter. The reason this will

be possible is that there is a singular point on Ex=1 where y = 0, and z = 0.

Let us take an arbitrary (1,1) form, C, in y, z. It has the equation,

yz + ay + bz + c = 0.

We will make C intersect Ex=1 at (y, z) = (0, 0) and at one other rational point in

Q[i]. Ex=1 is a (2,2) form so that we expect #{Ex=1∩C} =
[
2 2

] [ 0 1
1 0

] [
1
1

]
=

4. There will be an automatic double intersection at the point (0, 0) and a single

intersection at our third point leaving one degree of freedom to define our fourth

point of intersection. This will give us a rationalization of E.

For C to go through the point (y, z) = (0, 0) we see that c = 0. Now we need a

rational point other than (0, 0) on our curve, Ex=1. One such point is (y, z) = (i,
−2i

A
).

We plug (i,
−2i

A
) in for y and z into the equation for C to solve for a in terms of b.

2 + ai+ b
−2i

A
= 0,

thus

a = −2i(−1 + ib)

A
.
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In the end we have that C has the equation,

yz − 2i(−1 + ib)

A
y + bz = 0.

Now we calculate with the help of mathematical software that Ex=1, and C have the

following solution set:

(0, 0)2
(
i,
−2i

A

) (
−4ib2 − 8b− 4i+ A2b

4b2 + 8ib− 4 + A2
,
4ib2 − 8b− 4i+ A2b

2(b2 + 1)A

)
.

This fourth solution is a rationalization of Ex=1 with free variable, b. We make

the substitution b = t to obtain that

Ex=1 =

(
1,−4it2 − 8t− 4i+ A2t

4t2 + 8it− 4 + A2
,
4it2 − 8t− 4i+ A2t

2(t2 + 1)A

)
.

We note that

[Ex=1] = Ex = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0).

Also recall that

Ey = (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0),

and

Ez = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1).

We are now ready to test that our basis properly predicts the degrees of compo-

nents of Ex=1 as it is transformed by σx, σy, and σz. Notice that degx(Ex=1) = 0,

degy(Ex=1) = 2, and degz(Ex=1) = 2 using the definition of the degree of a rational

expression given above. Working in the lattice we also compute that [Ex=1] ·Ex = 0,

[Ex=1] · Ey = 2, and [Ex=1] · Ez = 2 just as we expect.
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Now we test to see that the lattice continues to make accurate prediction of degrees

of Ex=1 under the actions of σx, σy, and σz. Ex=1 is fixed by σy and σz, so we look

at σx(Ex=1).

Since Ex=1 is rationalized in the form, (1, Y (t), Z(t)), we can apply our function,

σx((x, y, z)) =

(
−x− Ayz

(1 + y2)(1 + z2)
, y, z

)
, to Ex=1. The y and z components will

remain fixed, but x changes to x′ where

x′ =
4A4t2 − 16A2 − 80t2A2 + 32it3A2 − 32itA2 + 384t2 − 384it3 + 128it− 128t4

4A4t2 − 48t2A2 + 32it3A2 − 32itA2 + 16A2 + 384t2 − 128− 128it3 + 384it
.

Notice the degree of x′ with respect to t is 4. It is of utmost importance that we sim-

plify x′ as much as possible so that if P is the numerator of x′, and Q the denominator,

then gcd(Q,P ) = 1.

Now we find the lattice representation of σx(Ex=1) which is given by [σx(Ex=1)] =

T t
x[Ex=1]. We obtain

T t
x[Ex=1] = (−1,−1,−1,−1, 2, 2, 1, 1, 2, 2, 1, 1).

We find its intersection with Ex, Ey, and Ez to test that our lattice makes accurate

predictions. We get

(T t
x[Ex=1]) · Ex = 4,

(T t
x[Ex=1]) · Ey = 2,

(T t
x[Ex=1]) · Ez = 2.

All of these values match up properly with the degrees of σx(Ex=1) in x, y, and z.

The author has also tested that the lattice accurately predicts polynomial degrees

for further images of Ex=1 under the action of all the σ maps. Accurate predictions
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of degrees were verified up to compositions of length 10. Due to computational

difficulties, this was done with A = 2 instead of A variable. See the table below for

partial results.

Table 2.1. Some tested images of Ex=1 with A = 2

Image degree in x degree in y degree in z

Ex 0 2 2
σxEx 4 2 2
σyσxEx 4 8 2
σzσyσxEx 4 8 12
σxσzσyσxEx 24 8 12
σxσyσxEx 14 8 2
σzσxσyσxEx 14 8 22
σyσxσyσxEx 14 22 2
σzσyσxσyσxEx 14 22 38
σxσyσxσyσxEx 30 22 2
σxσzσyσxσyσxEx 72 22 38
σyσzσyσxσyσxEx 14 72 38
σxσyσzσyσxσyσxEx 104 72 38
σzσyσzσyσxσyσxEx 14 72 122

This is evidence that our basis for Λ is large in the sense that it is closed under

the action of the σ automorphisms. This, unfortunately, is not evidence that we have

the entire Picard lattice. See [1] for an example of surface with a strict sublattice of

the Picard lattice which similarly makes accurate predictions of degrees for curves in

the sublattice.
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2.6 σ Maps as Elliptic Curve Operations

The curve we get on V from fixing one of x, y, or z has self intersection zero, so

by the adjunction formula these curves have genus 1. Thus each such curve is an

elliptic curve. For this reason, we can think of V as a continuum of elliptic curves

glued together along an axis. Such a continuum of curves is called a fibering of our

surface. The rich structure and background of Elliptic curves leads us naturally to

search for an additional automorphism of V .

The group structure on elliptic curves can be used to generate a automorphism of

our surface. To do this, we will need a continuous way of choosing our additive zero

on Ex=x0 for each x0 and similarly with Ey=y0 , and Ez=z0 . We will make use of the

rational curves, D1 through D12, to give us this continuous way of choosing our zero.

In this way, the map sending P to −P on a fixed elliptic curve can be extended to a

map on the whole of V .

We demonstrate this for elliptic curves defined by fixing x = x0. The elliptic

curve, Ex=x0 , takes the affine form F (x0, y, z), and hence is a (2,2) form. A (2,2)

form and any (1,1) form will intersect exactly 4 times. This means that if we have

3 known points of intersection, then it will define our fourth point of intersection.

Elliptic curve addition takes advantage of this fact.

We first define a trinary operation,

∗x0 : E
3
x=x0

→ Ex=x0 .

where ∗x0 is defined by following: Let C be a (1, 1) form made to go through the

points P1, P2, and P3. Then ∗x0(P1, P2, P3) = P4 where P4 is the fourth intersection
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of Ex=x0 and C.

We use this map to establish an additive group on Ex=x0 . Our addition map will

be of the form , −(P1+P2) = ∗x0(P1, P2,O′) where O′ is a fixed point defined in terms

of x0. We will derive O′ from our choice of the point, O, where O is the additive zero

of our group.

Note that if + is to be an additive operation on Ex=x0 then O+O must equal O.

I.e. ∗x0(O,O,O′) = O. This gives us a way of defining O′ in terms of O since we see

that ∗x0(O,O,O) = O′.

As mentioned above, we must choose our O in a special way so that this automor-

phism defined on individual fibers extends to an automorphism of the entire surface.

We choose O to be positioned on one of D7, D8, D11, and D12 since these four curves

give us one point on each fiber. Our addition will be different depending on which of

these curves we use for our choice of O. Here we will work out our addition with the

choice that O is on D7. That is, we define O to be the intersection of Ex=x0 and D7

so that O = (x0,∞, i).

With this choice of O, we now derive O′ = ∗x0(O,O,O). We must find the

equation for C, a (1,1) form in the fixed x = x0 plane that has a triple intersection

with Ex=x0 at the point (x0,∞, i). Let us begin by finding the first and second

derivatives of Ex0 at O.

Ex0 has the affine curve equation FA(x0, y, z) = 0. We will do our derivative cal-

culation in affine coordinates and then make the substitution Y =
1

y
before plugging

in the point O. This will allow for simpler calculation.

Let C have the affine equation yz + ay + bz + c = 0. Making our substitution we
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get that z + a + bzY + cY = 0. Letting (Y, z) = (0, i) be a solution we obtain that

a = −i. We next let
dY

dz
(C) =

dY

dz
(Ex=x0). We compute that

dY

dz
(C) = −1 + bY

bz + c
,

and

dY

dz
(Ex=x0) = − 2z + 2zY 2 + 2zx2

0 + 2zx2
0Y

2 + Ax0Y

−2Y + 2Y z2 + 2Y x2
0 + 2Y x2

0 ∗ z2 + Ax0z
.

Plugging in (Y, z) = (0, i), we obtain the constraint,

1

bi+ c
=

2(1 + x2
0)

Ax0
.

Similarly we let
d2Y

(dz)2
(C) =

d2Y

(dz)2
(Ex0) to obtain the constraint,

2b

−b2 + 2ibc+ c2
=

2i(−8− 16x2
0 − A2x2

0 − x4
0A

2 − 8x4
0)

A3x3
0

.

These two constraints uniquely define b, and c. solving for the two, we obtain

b = − i(A2x2
0 + 8x2

0 + 8)

4Ax0(1 + x2
0)

,

and

c =
A2x2

0 − 8x2
0 − 8

4Ax0(1 + x2
0)

.

Putting this all together, we see that C has affine coordinates,

yz − iy − i(A2x2
0 + 8x2

0 + 8)

4Ax0(1 + x2
0)

z +
A2x2

0 − 8x2
0 − 8

4Ax0(1 + x2
0)

= 0.

Notice that (y, z) = (
2i

Ax0
,−i) is a solution to the above equation and is also a point

on Ex=x0 . Since the other 3 intersections of C and Ex0 were forced to be at the point,

O, we have that O′ = (x0,
2i

Ax0
,−i).
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Recall from Section 4 above that σy(x0,∞,−i) = (x0,
2i

Ax0
,−i). It is interesting

to note then that O′ = σy(Ny,z(O)).

Now that we have defined O, and found O′, let us define

λ7 : Ex0 → Ex0

to be the elliptic map on Ex0 sending P to −P with O and O′ defined as above.

Thus, since −P = −(P +O) = ∗x0(P,O,O′), we see that λ7(P ) = ∗x0(P,O,O′).

We wish to investigate this further by evaluating λ7(P ) for P arbitrary. Let

P = (x0, y0, z0) be an arbitrary point on Ex0 . Since FA(x0, y0, z) is quadratic in z, we

can also write P = (x0, y0, z1) or P = (x0, y0, z2) where z1 and z2 are the two roots of

the quadratic. Let us work under the assumption that z0 =

z(A, x0, y0) =
−Ax0y0 +

√
A2x2

0y
2
0 + 4− 8x2

0y
2
0 − 4y40 − 8y40x

2
0 − 4x4

0 − 8x4
0y

2
0 − 4x4

0y
4
0

2(1 + y20 + x2
0 + x2

0y
2
0)

.

Half of the points on Ex=x0 should be of this form, while the other half will have its z

coordinate be the conjugate root. By encoding our point this way, we have made the

coordinates of our point witness that P is an element of Ex=x0 . The author has found

that without writing z this way, some mathematical software packages are unable to

solve the equation in the next step.

Let C be a (1,1) form that passes through the 3 points, O, O′, and P. This (1,1)

form must then intersect Ex0 in exactly one other point. Let our (1,1) form take the

affine form,

C : yz + ay + bz + c = 0.

We will solve for a, b, and c. We first have C pass through O. To do this, we will
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once again make the substitution Y =
1

y
to obtain the new equation,

C : z + a+ bzY + cY = 0

Since C passes through O, (Y, z) = (0, i) is a solution. This gives us that a = −i.

We may return once again to using the coordinates y, and z before having C pass

through O′. Letting (y, z) = (
2i

Ax0
,−i) be a solution to equation for C, and letting

a = −i, we obtain the *, c = ib − 4

Ax0
. This gives us that C has the equation,

yz − iy + bz + ib− 4

Ax0
= 0, and hence,

b =
−Ax0yz + IyAx0 + 4

Ax0(z + I)
.

We now plug in our point P into the above equation and solve for b in terms of y0,

x0, and A. The formula for b = b(A, x0, y0) is too big to include here. We also get an

equally large formula for c = c(A, x0, y0) by plugging our new value for b into the *,

c = ib− 4

Ax0
.

We have determined all 3 variables of C, so we need only to calculate the 4th

intersection of C and Ex=x0 . Let us think of x0, y0, and A fixed so that the equation,

yz(A, x0, y)− iy + b(A, x0, y0)z(A, x0, y) + c(A, x0, y0) = FA(x0, y, z(A, x0, y)),

has only one variable, y. Note that the point (x0, y, z(A, x0, y)) is guaranteed to be a

solution to FA(x0, y, Zy) = 0 so that the above equation simplifies down to

yz(A, x0, y)− iy + b(A, x0, y0)z(A, x0, y) + c(A, x0, y0) = 0

Turning to algebraic software, we obtain the following solution set for y:

y = ∞,
2i

Ax0
, y0,−y0.
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The first 3 solutions were those that we programmed into C. The new solution

discovered is y = −y0. Thus the point, (−y0, z(A, x0,−y0)), is our fourth point of

intersection. What we have shown here is that

λ7((x0, y0, z(A, x0, y0)) = (x0,−y0, z(A, x0,−y0)).

where plugging in A, x0,−y0 yields

z(A, x0,−y0) =
Ax0y0 +

√
A2x2

0y
2
0 + 4− 8x2

0y
2
0 − 4y40 − 8y40x

2
0 − 4x4

0 − 8x4
0y

2
0 − 4x4

0y
4
0

2(1 + y20 + x2
0 + x2

0y
2
0)

.

We note that z(A, x0,−y0) is the negative conjugate of z(A, x0, y0). That is,

suppose z1 and z2 are the two solutions to the quadratic, FA(x0, y0, Z). Now if we let

z1 = z(A, x0, y0) then z2 = −Z−y0 . Therefore λ7(x0, y0, z1) = (x0,−y0,−z2), and thus

λ7(P ) = Ny,z(σz(P )) where Ny,z is the isometry sending y to −y and z to −z.

We similarly define λ1 through λ12 so that λ1, λ2, λ5, and λ6 are all elliptic maps

from Ez0 → Ez0 . λ3, λ4, λ9, and λ10 are all maps from Ey0 → Ey0 , and λ7, λ8, λ11,

and λ12 are the maps fromEx0 → Ex0 .

If we similarly go through the above process with each of λ1 through λ12, we see

that

λ1 = Nx,y ◦ σy, λ2 = Nx,y ◦ σy,

λ3 = Nx,z ◦ σz, λ4 = Nx,z ◦ σz,

λ5 = Nx,y ◦ σx, λ6 = Nx,y ◦ σx,

λ7 = Ny,z ◦ σz, λ8 = Ny,z ◦ σz,

λ9 = Nx,z ◦ σx, λ10 = Nx,z ◦ σx,
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λ11 = Ny,z ◦ σy, λ12 = Ny,z ◦ σy.

Thus, each of the σ maps can be thought of as the the composition of a basic

isometry with an elliptic curve map sending a point P to −P .

This gives us insight into to form of the map σi ◦σj. Let us compose the two maps

λ1, and λ5. If we let P = (x, y, z) then we see

σy ◦ σx(P ) = λ1 ◦ λ5(P ) = ∗z(∗z(P,O5,O′
5),O1,O′

1).

Here ∗z(P,O5,O′
5) is just O5 − P . Thus we see that

σy ◦ σx(P ) = ∗z(O5 − P,O1,O′
1) = −(O − P ) = P −O

Hence we see that (σy ◦ σx)
n(P ) = P − [n]O. Similarly we see that for all i $= j,

(σi ◦ σj)
n(P ) = P + [n]Ki,j

for some point Ki,j of infinite order.

In [10] it is shown that such an elliptic map will have the height of (σy ◦ σx)
n(P )

grow quadratically with n. In the next chapter we will investigate some of the prop-

erties of the the composed automorphisms, σi ◦ σj ◦ σk. We will show that heights of

points grow exponentially under the action of this automorphism. This tells us that

it must not be similarly defined as elliptic curve map sending P to P +K for any K.
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CHAPTER 3

A COUNTING ARGUMENT

3.1 Elliptic Islands

Curt McMullen studied the surfaces with affine equation,

(x2 + 1)(y2 + 1)(z2 + 1) + Axyz − 2 = 0

in [5]. The focus of his paper was the presence of what he called “Elliptic Islands”

on the surface for various values of A. Note that the term “elliptic” here comes from

dynamics and does not have a connection to elliptic curves or curves of genus 1.

If we define σx, σy, and σz as in section 2.1, then these islands are sketched by

the orbit of a point on the surface under the combined automorphism, σx ◦ σy ◦ σz.

McMullen noticed that for values of A close to 2, the surface is dominated by these

islands, but as we let A increase to 8, the surface becomes dominated by ergodic

orbits. See figures 3.1 through 3.3 for images of the Elliptic Islands and ergodic parts

with various values of A.
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Figure 3.1. Some orbits of points on the surface with A = 2

Figure 3.2. Orbits of points on the surface with A = 3
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Figure 3.3. Left: A = 6, Right: A = 8

3.2 An Orbit on the Surface with A = 6

In this paper we are interested in a particular orbit. Let P = (1, 1,−1), then P

is on the surface with A = 6. The orbit of P forms elliptic islands. We will use this

orbit to argue that these elliptic islands are non-algebraic curves.

Figure 3.4 shows the surface with A = 6 and the orbit of P . It will be important

to note later that orbit shown here contains more than 18119 many points.
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Figure 3.4. The Orbit of point P

All points in the orbit of P are visible in the above image. Note that the orbit

contains exactly 4 real Elliptical Island components.

The author counted the number of points present in the orbit of P in Z/pZ ×

Z/pZ×Z/pZ for various values of p. See Table 3.1 for a selection of the tested values,

and see Figure 3.5 for a plot of p vs the number of points in the orbit of P for all

tested values.
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Table 3.1. The Orbit of P in Fp for selected values of p

p # of points in the orbit of P # divided by p

3 2 0.67
7 8 1.14
11 4 0.36
19 26 1.37
43 134 3.12
79 152 1.92
83 32 0.39
467 2324 4.98
4519 12 0.0027
10099 84154 8.33
17807 32 0.0018
18119 169330 9.35

Figure 3.5. Graph of p vs the number of points in the orbit of P
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Notice that for p = 18, 119 we have 169,930 points in the orbit of P.

Evidence that the Orbit of P is Infinite

We can offer only heuristic evidence that the orbit of P contains infinitely many

points.

In section 2.2, we saw the matrix representations of σx, σy, and σz. Those were

labelled Tx, Ty, and Tz respectively. Let R = TxTyTz =

R =





2 2 3 3 1 1 2 2 −1 −1 −2 −1
2 2 3 3 1 1 2 2 −1 −1 −1 −2
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 1 2 1 1 1 2 1 −1 −1 −1 −1
1 1 1 2 1 1 1 2 −1 −1 −1 −1
1 1 1 1 0 −1 0 0 0 −1 0 0
1 1 1 1 0 −1 0 0 0 −1 0 0
0 −1 0 0 1 1 1 1 0 0 0 −1
−1 0 0 0 1 1 1 1 0 0 −1 0





.

R has 6 eigenvalues on the complex unit circle and 6 eigenvalues that are the roots

of the following irreducible polynomial over Q:

f(x) = x6 − 5x5 − 6x4 − 5x3 − 6x2 − 5x+ 1.

See figure 3.6 for a plot of f(x).
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Figure 3.6. plot of the polynomial f(x) = x6 − 5x5 − 6x4 − 5x3 − 6x2 − 5x+ 1

Note that f(x) has one root larger than one, α ≈ 6.139301847. f(x) is a Salem

polynomial and α is a Salem number [2]. This number tells us that for all but

finitely many points on V , the height of the point grows exponentially under the

automorphism, σx ◦ σy ◦ σz, with common ratio equal to α [11] [9]. Here the height

of a point, Q = (x0, y0, z0) is defined as follows:

h(Q) = ln(H(x0) +H(y0) +H(z0)).
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Where H is the function defined by

H

(
p

q

)
= max(|p|, |q|).

For our point, P = (1, 1,−1), h(P ) = ln(1+1+1) ≈ 1.098. Let P0 denote our original

point, and let Pn+1 = σx ◦ σy ◦ σz(Pn). We calculate that P1 = (−7/13, 1/5,−1/2)

and that h(P1) = ln(13 + 5 + 2) ≈ 2.996.

Table 3.2 shows the heights of the sequence Pn for the first few n. The coordinates

of P9 are rational numbers with numerator and denominator each around a million

digits. Calculating P9 took approximately 7 minutes with a 2.5 GHz Intel Core 2 Duo

processor.

Table 3.2. The height of Pn under the action of σx ◦ σy ◦ σz

n height(Pn) height(Pn)/height(Pn−1)

0 1.098612 N/A
1 2.995732 2.726833027
2 16.68609 5.569954099
3 104.6982 6.274579485
4 643.4880 6.146122960
5 3.953× 103 6.143520283
6 2.427× 104 6.139532494
7 1.490× 105 6.139444004
8 9.148× 105 6.139303332
9 5.616× 106 6.139304939

This experimentally verifies that the height of P grows at the predicted rate for

points of infinite order. Indeed, we can estimate α accurate to the hundred-thousands

place based on the data presented in Table 3.2. Though this does not suffice for proof,

it is extremely strong evidence that the orbit of P has infinitely many points.
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The Orbit of P Does Not Sketch an Algebraic Curve

Here we argue that the island sketched by the orbit of P cannot be an algebraic

curve. We do this under the assumption that the orbit of P is infinite.

Theorem 3.1. If the orbit of P is infinite and sketches an algebraic curve, then this

curve has at least 10 components.

Proof. Suppose the orbit of P is infinite and sketches an algebraic curve, C. That is,

suppose every point in the orbit of P lies on the curve, C.

Since each point obtained this way is rational, C contains infinitely many rational

points. Now Falting’s Theorem tells us that any algebraic curve with infinitely many

rational points must have genus either zero or one.

By the Fundamental Theorem of Algebra, a curve with genus 0 (a rational curve)

has no more than p+ 1 many points in the finite field, Fp.

A result due to Hasse tells us that the number of points on an elliptic curve over

the finite field, Fp, is bounded by p+ 2
√
p+ 1. [10]

We have counted 169930 points in the orbit of P in F18119 telling us that C has at

least this many points in F18119. Now since 09 ∗ (18119 + 2
√
18119 + 1)1 = 165502 ≤

169930, C must have at least 10 components. This completes our proof.

Now since P = (1, 1,−1) is a real-valued point, and σx ◦ σy ◦ σz is a rational map,

each element in the orbit of P will be a real valued point. Thus we can conclude that

C must have at least 10 real components. Now since we plotted more than 18119

many points when making figure 3.4, all 10 of these components must be visible. We

have already seen images of the real part of C. It has only 4 visible components.
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Thus we conclude that C must not be an algebraic curve.

3.3 Ideas for Further Research

Here we offer some ideas for further research along the lines of this paper.

Idea #1: Fully Describe Aut(V)

Originally when I started working on this topic with my advisor, Dr. Arthur

Baragar, our hope was to describe the entire automorphic group Aut(V). We have

evidence that the collection of isometries found in this paper is not the entire automor-

phic group. Much effort was done to try to find even a single additional automorphism

of the surface.

For example, originally when I explored the automorphism generating by sending

P to −P with O chosen to be on one of the −2 curves, I was looking for something

new. Learning that this map was simply a σ map composed with another isometry

was interesting, but not what I had hoped for. It was rather surprising that this map

did not yield a new automorphism on the surface. See [1] for an example where a

similarly defined map does yield a new automorphism.

One idea left that may yield new isometries of the surface is related to the first

idea. It is sometimes the case that on K3 surfaces with elliptic curve fibrations that

the rank of every elliptic curve in the fibering is larger than one. We have shown in

this paper that each elliptic fiber has rank at least 1. This is clear since there are

infinately many Q[i]-rational points on every fiber. The composed maps σi ◦ σj can

be thought of as maps sending P to P +K for some point K of infinite order. If we
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can find other generators of infinite order in the additive group for each elliptic fiber,

this might give us new automorphisms of the surface. These automorphisms will also

have the form of sending P to P +Q where Q is some other point of infinite order in

the fiber.

See [1] for an example of such a surface with elliptic curve rank always ≥ 2.

Idea #2: Prove the Picard Number, q = 12

We have not offered any good evidence in this paper that q = 12. We know that

our surface belongs to an infinite family with picard number generically equal to 12.

This is easy to prove. If we look at the family of surfaces with affine equation

(1 + x2)(1 + y2)(1 + z2) + (lower order terms) = 0,

This family has 8 free variables so that the dimension of the moduli space of these

surfaces is 8.

Now we note that all of the lower order terms have no affect on what happens at

infinity. Thus the 12 −2 curves found in this paper will be present for all surfaces in

this moduli space. Hence we see that this 8 dimensional family of K3 surfaces has

picard number, q ≥ 12. Now it has been shown that the picard number and dimension

of the moduli space for a surface sum to 20 for all but a countable collection of lower

dimensional families of surfaces. Thus we see that generically q = 12 in our family of

surfaces.

This result may fail in countably many lower dimensional subfamilies of K3 sur-

faces, so we do not know that the picard number of our 1 dimensional family of K3

surfaces is 12. This does, however, give us reason to believe it might be.
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There is a known method to calculate q which works for some K3 surfaces. Van

Luijk gave a method for finding upper bounds for q. When one of these upper bounds

coincides with the lower bound for q (q ≥ 12 in our case), we know the value of q

exactly. This method is computationally expensive and requires advanced algorithms.

We must count the number of points on the surface in F2i and F3j for i ≤ 10 and

j ≤ 9. Checking point by point is unfeasible since there are (39 + 1)3 ≈ 7.6 × 1012

many points to check in F39 .

Instead of checking point by point, one can use the theory of elliptic curves to

quickly count how many point are on each elliptic fiber as we vary x. This method

still requires that we count the points on 310 + 1 many elliptic curves, so we would

need a very fast algorithm at computing these numbers. This faster method was also

conceived of by Ronald van Luijk and was successfully implemented in [3].
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