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ABSTRACT

Exact Statistical Inferences for Functions of Parameters of the

Log-Gamma Distribution

by

Joseph McDonald

Malwane Ananda, Examination Committee Chair

Professor of Mathematical Sciences

University of Nevada, Las Vegas

The log-gamma model has been used extensively for flood frequency analysis and is

an important distribution in reliability, medical and other areas of lifetime testing.

Conventional methods fails to provide exact solutions for the log-gamma model while

asymptotic methods provide approximate solutions that often have poor performance

for typical sample sizes. The two parameter log-gamma distribution is examined us-

ing the generalized p-value approach. The methods are exact in the sense that the

tests and the confidence intervals are based on exact probability statements rather

than on asymptotic approximations. Exact tests and exact confidence intervals for

the parameter of interest based on a generalized test statistic will be used to compute

generalized p-values which can be viewed as extensions to classical p-values. The

generalized approach is compared to the classical approach using simulations and

published studies. The Type I error and confidence intervals of these exact tests are
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often better than the performance of more complicated approximate tests obtained by

standard methods reported in literature. Statistical inference for the mean, variance

and coefficient of variance of the log-gamma distribution are given, and the perfor-

mances of these procedures over the methods reported in the literature are compared

using Monte Carlo simulations.
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CHAPTER 1

INTRODUCTION

Introduction

The Log-Gamma distribution, sometimes called the Log-Pearson type 3 distri-

bution, is extensively used in hydrology. It is recommended specifically for flood-

frequency analysis by the Water Resources Council. The Log-Gamma distribution

and the Negative Log-Gamma distribution are used in life-testing and reliability anal-

ysis. Suppose we are interested in predicting the magnitude of the most severe flood

in the next 10,000 years. Or perhaps we are concerned if a 10,000-year flood will

occur in the next 50 years. Flood-frequency analysis was an empirical process before

1914 using graphical methods with records under 20 years and incomplete records.

Warren E. Fuller(1914) [?] related average flood magnitude to recurrence interval

which is also called T-year flood intervals. H. Alden Foster (1924) [?] proposed using

the Pearson type III, often called the gamma distribution, to analyze floods using a

simple function of the mean, standard deviation and skew. Distributions with ex-

treme values that can be used to access risk were established by Leonard Tippett

(1902-1985). With the help of R.A. Fisher, Tippet found three asymptotic limits for

extreme order statistics each named after their authors; the Gumbel distribution, the

Frechet distribution, and the Weibull distributions. Allen Hazen took the logarithms

1



of the flood data in 1924 and introduced using a regional skew coefficient in 1930.

National flood insurance programs were developed in the 1960’s resulting in a need

for uniform flood-frequency analysis techniques. The Log-Pearson III distribution

with regional skew information using the method moments of the logarithms of the

observed data for estimated parameters was adopted by the Water Resource Council

(W.R.C.) in 1967 as the recommended method for flood frequency analysis for the

Unite States. This is still the official method for predicting T-year flood intervals as

of the writing of this paper. (Bulletin 15 [?]) Manuel A. Benson (1968), chairman of

the Work Group on Flow-Frequency Methods Hydrology Committee for the W.R.C.

investigated six different methods for flood frequency predictions. Two-parameter

Gamma, Gumbel, Log Gumbel, Log Normal, Hazen and the Log Pearson Type III

(LP3) were fitted by the programs of more than one agency for the six methods re-

sulting in 14 separate computations. The Work Group recommended the LP3 and

was ultimately adopted by the W.R.C. in 1967. Computational ease of finding the

method of moments for parameter estimation was one of the major advantages of the

LP3. Bobee (1975,1986,1987 and 1989) explored different methods for finding the

first three moments including the generalized method of moments and mixed method

of moments. [?]

Bernard Bobee (1975) [?] purposed that the method of moments be applied to

the original data instead of their logarithms yielding similar results. Condie (1977)

[?] proposed using the maximum likelihood method based on Canadian flood data
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sets concluding his method was superior to the method of moments. Bobee and

others have also used a mixed method of moments methods using both original and

logarithms of the data. Based on the standard error of the T-year flood, Nozdryn-

Poltinicki and Watt (1979) [?] found in their Monte Carlo simulation study of the

above methods that the MLE and the MOM were almost comparable. In general,

an unusually high bias in all of the parameter estimates were found when testing

1000 random samples of size of 10, 20, 30, 50 and 75. The standardized bias (BIAS),

standard error (SE) and the mean root square error (RMSE) were computed. They

suggested the use the method of moments recommended by the W.R.C. because of

the computational ease.

The Log-Gamma distribution (LG) and the Log-Pearson III (LP3) do not enjoy a

clearly well-defined naming convention throughout statistical journals and literature.

There is no agreement in research on the names of these distribution within modern

articles and literature. Proper attention is needed to identify which distribution is be-

ing used when these distributions are referenced. Both distributions are derived from

the gamma distribution but they are parameterized differently resulting in different

shapes, domains and models. The Log-Gamma distribution will be defined in this

paper using the form most often used in hydrology. In this paper the Log-Pearson

Type III (LP3) distribution will refer to the following 3 parameter probability density

distribution:
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fx(x; a, b, c) =
1

x |b|Γ(a)

[
log x− c

b

]a−1

exp

[
− log x− c

b

]
. (1.1)

where the parameter space is: a > 0, b 6= 0, −∞ < c <∞

and the domain is:

0 < x ≤ ec b < 0

ec ≤ x <∞ b > 0.

a, b, and c are the logscale, shape and location parameters, respectively, and log x

is the natural logarithm, lnx. The logscale is not a true scale parameter but it is a

scale parameter for the gamma distribution which can be a useful property. The two

parameter distribution is the parametrization that is used most often in this paper. If

the location parameter is zero, c = 0, we will called this distribution the Log-Gamma

(LG) distribution where a and b are the logscale and shape parameters, respectively.

The c parameter is a location parameter and is sometimes called a threshold param-

eter. Furthermore, we will restrict the logscale parameter, b, to positive values only.

For the purpose of this paper, consider the following two-parameter Log-Gamma

distributions (LG):
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f(x; a, b) =
1

x |b|Γ(a)

[
log x

b

]a−1

exp

[
− log x

b

]
=

(log x)a−1

baΓ(a)
x−1/b−1, a > 0, b > 0, and x > 1. (1.2)

The following parameterized is often used where β = 1
b
:

f(t;α, β) =
βα(log t)α−1

Γ(α)
t−β−1, α > 0, β > 0, and t > 1. (1.3)

These forms are versatile in the sense they allow us to rewrite the distributions in

several forms that allow both computational and mathematical advantages.

Most of the early work on the Log-Gamma distribution was in the form of the Ex-

treme Value, EV, distribution. Prentice and Lawless examined this EV distribution

which is an extension of the generalized gamma distribution. The gamma distribution

is not used as often as the log-normal, log-logistic and the Weibull for the modeling

of lifetime data. The log-normal and the log-logistic are derived from the normal and

logistic distributions respectively. We would say that T is log-normally distributed if

Y = log T is normally distributed. The extreme value distribution comes from the

Weibull distribution in a similar fashion. If T has a Weibull distribution, then log T

has an extreme value distribution which is also referred to as the Gumbel distribution.

The gamma distribution does fit some lifetime data as well as models for insurance,

rainfalls, gene expressions and many other uses. One of the extensions from the
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gamma distribution is the log-gamma distribution or generalized log-gamma distri-

bution which includes the Weibull and the log-normal as special cases. According to

Lawless [?], the log-gamma model was originally introduced by specifying that (T/α)β

has a one-parameter gamma distribution with index parameter k > 0. Equivalently,

W = (Y − u1)/b1, where Y = log T, u1 = logα and b1 = β−1, has a log-gamma

distribution. The motivation for Lawless and Prentice to transform the log-gamma

variate Z = k1/2(W − logK) is the mean and the variance for the gamma distribution

both equal k, and as k increases, such that the gamma and log-gamma distributions

do not have limits. The mean and variance for W are E(W ) = ψ(k), the digamma

function and V ar(W ) = ψ′(k), the trigamma function. For large k, the digamma

function and the trigamma function behave like log k and 1/k, respectively.

Using definitions from Lawless,(1982) [?] define the one parameter gamma distribu-

tion pdf Y ∼ G(k) is

g(y) =
yk−1e−y

Γ(k)
where y > 0, k > 0.

The generalized log-gamma model is then the three-parameter family of distribu-

tions for which Z = (Y − u)/b has p.d.f.

f(z; k) =
kk−1/2

Γ(k)
exp

(
k1/2z − kezk−1/2

)
where z =

y − u
b

, −∞ < z <∞.

u is a location parameter and b is a scale parameter. It is useful to note that as

k → ∞, this distribution converges to to the standard normal pdf. We can also use
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this distribution as a two-parameter family by setting u = 0.

Johshson, Kotz and Balakrishnan (1995) [?] calls this pdf

f(w) =
1

Γ(k)
exp(kw − ew) −∞ < w <∞, k > 0 (1.4)

as the Log-Gamma distribution. Prentice (1974) [?] re-parameterized the gener-

alized gamma density (Stacey, 1962) extending the distribution of the logarithm of

a generalized gamma variate. This form is also included in the family of extreme

value distributions. This new distribution is clearly a separate distribution than the

distribution used in this paper.

Consul and Jain (1974)[?] and other authors use a form of the distribution more

closely related to the traditional Log Pearson III or Log-Gamma distribution. This a

transformation of the gamma distribution which is useful especially when the values

of the variable are very small or very large.

Mathematical Properties of the LP3 Distribution

As noted before, naming conventions for the log-Pearson type III distribution,

LP3, and the Log-Gamma distribution, LG, were not consistent. The LP3 and the

LG both can be written with 1, 2 or 3 parameters with one location and two shape

parameters. Some text will refer to one the of the shape parameters as a logscale
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parameter because it can be derived for the scale parameter of the Gamma distribu-

tion. The random variable x has a Log-Pearson distribution if y = loga x has Pearson

distribution. The LP3 distribution was often written with base a as loga x in early

works. The name for the model for this paper will be the two parameter Log Pearson

type III (LP3) or the log-gamma distribution (LG).

Hydraulic engineer Bernard Bobee authored several hundred scientific publications

in statistical hydrology and played a key role in the establishment of the Review Water

Science in France. The popularity of the Log-Gamma distribution was increased

resulting in many authors examining the best estimators for the parameters and

functions of parameters of the distribution. Lack of computing power and expense of

computer time were obstacles that influenced the early choices for best methods of

parameter estimation. Bobee [?] (1975) and Bobee and Ashkar [?].

f(x;α, β) =
1

xβαΓ(α)
(log(x))α−1 exp (− log(x)/β)

=
1

Γ(α)βα
x−1/β−1 (log(x))α−1 ∼ LG(α, β) (1.5)

where x > 1, α > 0, β > 0. α and β are both continuous shape parameters.The

log(x) is the natural ln(x).

As above in equation ?? and equation ??, sometimes it is more convenient computa-
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tionally to let b = 1/β.

f(x; a, b) =
ba

Γ(a)
x−b−1 (log(x))a−1 ∼ LG(a, b)

Negative Log-Gamma Distribution

The Log-Gamma distribution is an important model used in the analysis more

recently in reliability analysis using a Bayesian like approach. Allella (2001) [?]

f(t) =
ba

Γ(a)
t−b−1 (log(t))a−1 for 1 < t <∞ , a > 1, b > 0.

Let T = logR where log is the natural logarithm and 0 < R ≤ 1.

f(r; a, b) =
1

baΓ(a)
rb−1 [− log r]a−1 ; a, b > 0, 0 < r ≤ 1. (1.6)

Allella [?] et.all (2001) classifies this form as the Negative Log-Gamma distribu-

tion. It is particularly useful for data uncertainty modeling in reliability analysis

because the domain consists of values in the interval [0, 1], as required for a reliability

variable value. The Negative Log-Gamma (NLG) can be used as a ”conjugate a priori”

pdf for components’ reliability in the exponential reliability model. Allella showed

the Negative Log-Gamma (NLG) distribution using the parametrization X = −R

can approximate the reliability pdf of complex ”series-parallel” systems. Martz and

Waller (1982) [?] have shown that the NLG can be used a prior pdf in a Bayesian

treatment in reliability assessment and as a posterior system reliability pdf. The
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NLG distribution is particular useful in reliability assessment because the domain is

[0, 1] and the product of independent NLG random variables is still a NLG random

variable. The Negative Log-Gamma distribution is used in uncertainty modeling for

reliability analysis of complex systems of many components. [?] (1992) A Bayesian

assessment is computed for a system reliability for a r-out-of-k system consisting of

k independent and identical components.
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Johnson (1994) [?] documented the distribution of logX where X has the standard

gamma distribution based on an thorough investigation by Olshen (1937) [?]. The

standard probability density function for the two-parameter gamma distribution is

px(x) =
xα−1e−x/β

βαΓ(α)
, x ≥ 0 where β = 1. (1.7)

The moment-generating function of logX is

E
[
et logX

]
= E

[
X t
]

=
Γ(α + t)

Γ(α)
(1.8)

and the cumulant generating function is log Γ(α + t) − log Γ(α). Consul and Jain

(1971) [?] used the model when Y = − logX has a gamma(α, β) distribution. The

pdf is

pY (y;α,β) =
1

βαΓ(α)
× (− log y)α−1

y1+1/β
, 0 < y < 1

which is the same as the model I will call negative log-gamma distribution (NLG).

The rth moment (about zero) is

E [Y r] = E
[
etX
]

=

(
β

β + r

)α
=

(
1 +

r

β

)−α
(1.9)

Consul and Jain (1971) [?] examined properties of this distribution and also ob-

tained the distributions of the product and the quotient of two independent log-

gamma variants.
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Historical Remarks

Balakrishnan and Chan (1994) [?] have studied order statistics from the log-

gamma distribution and determined their means, variances and covariances. The

best linear unbiased estimators (BLUEs) of the location and the scale parameters

were determined based on complete samples as well as Type-II censored samples us-

ing the mean, variance and the covariances. Lawless [?] applied both type I and Type

II censored samples for the log-gama distribution as well as exact methods for un-

censured samples using pivotal quantities. The distribution of the pivotal quantities

are analytically intractable but can be calculated by simulation to a desired accuracy.

These pivotal quantities are available when the data are Type 2 censured.

Z1 =
û− u
b̂

, Z2 =
b̂

b
, and ZP =

û− yp
b̂

where u = logα is the location parameter, b = β−1 is a scale parameter, Y = log T

and T ∼ Gamma(α, β). yp is is the pth value of the ordered sample y.

The Log Gamma Model

Define the model for this paper is the two parameter Log-Pearson type III or

log-gamma distribution.

f(x;α, β∗) =
1

xβ∗αΓ(α)
(log(x))α−1 exp (− log(x)/β∗)

=
1

Γ(α)β∗α
x−1/β−1 (log(x))α−1 ∼ LG(α, β∗) (1.10)
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It is sometimes written with the logscale parameter as β = 1/β∗

f(x;α, β) =
βα

xΓ(α)
(log(x))α−1 exp (−β log(x))

=
βα

Γ(α)
x−β−1 (log(x))α−1 ∼ LG(α, β) (1.11)

where x ≥ 1, α > 0, β > 0. α and β are both continuous shape parameters. The

log(x) is the natural logarithm, ln(x).
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Sometimes it is more convenient to let b = 1/β.

f(x; a, b) =
ba

Γ(a)
x−b−1 (log(x))a−1 ∼ LG(a, b)

The MLE for Log-Gamma Distribution

We will look at the moments and the MLE for the log-gamma distribution. R.

Condie (1977) [?] examined the maximum likelihood estimators for the three param-

eters of a log Pearson Type 3 distribution derived from the logarithmic likelihood

function. Condie concluded that the maximum likelihood analysis was superior in

terms of the estimate of standard error to the method of moments that is usual tech-

nique for flood data. We will use this form as it is written in Condies’s paper with

renaming the parameters,a > 0, b 6= 0, and c > 0 which are the scale, shape and
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location parameters respectfully.

fX(x|a, b, c) =
1

x |b|Γ(a)

(
lnx− c

b

)a−1

exp

(
− lnx− c

b

)
; (1.12)

If b < 0 then 0 < x ≤ ec and if b > 0, ec ≤ x <∞.

fX(x|a, b, c) =
(lnx− c)a−1

baΓ(b)
x−1/b−1ec/b (1.13)

If c = 0, then fX(x|a, b) =
(lnx)a−1

baΓ(a)
x−1/b−1 (1.14)

Using the likelihood function and the log likelihood function:

L(X; a, b, c) =
n∏
i=1

[(lnXi − c)/a]b−1 exp [−(lnXi − c)/a] / [|a|Γ(b)Xi] (1.15)

lnL(X; a, b, c) = lnL(X; a, b, c) = (b− 1)
∑

ln [(lnXi − c)/a]−

1

a

∑
(lnXi − c) −

∑
lnXi − n ln |a| − n ln Γ(b) (1.16)

This gives us three equations to solve:

∂ lnL

∂a
= −nψ(a) +

∑
ln [(lnXi − c)/b] = 0 (1.17)

∂ lnL

∂b
=

1

b2

∑
(lnXi − c)−

na

b
= 0 (1.18)

∂ lnL

∂c
= −n

a
− (b− 1)

∑
[lnXi − c]−1 = 0 (1.19)
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Alternate Forms

The Log-Gamma distribution can also be written in terms of the Lower Incom-

plete Gamma Function. [?] The probability, P (X < u) can be written in terms of

the incomplete gamma function where X is form the log-gamma distribution with

shapelog = α and the ratelog = β.

F (u) = P (X < u) =
βα

Γ(α)

∫ u

1

(log(t))α−1 t−β−1 dt (1.20)

=
1

Γ(α)

∫ β log u

0

zα−1e−z dz

=
Γ (α; β · log u)

Γ(α)

where Γ(α; β · log u) is the Lower Complete Gamma Function,

Γ (α;x) =

∫ x

0

zα−1e−z dz.

The Log-Gamma distribution is a special case of the generalized extreme value dis-

tribution. It is often used in insurance and finance extreme events and is maximin

stable, an useful and rare property in this class.
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CHAPTER 2

THE METHODOLOGY

Exact Statics

Exact statistical methods is a branch of statistics that was developed to obtain

more accurate results for hypothesis testing, confidence intervals, and point esti-

mation. This is accomplished by eliminating procedures based on asymptotic and

approximate statistical methods which often require large sample sizes or inconve-

nient assumptions to yield accurate results. Conventional methods often yield poor

results for simple problems when nuisance parameters are introduced or when deal-

ing with small sample sizes. Weerahandi (1995) [?] defined exact statistical methods

as being exact in the sense of intervals and tests that are based on exact probability

statements instead of being based on asymptotic approximations. According to Weer-

ahandi (1995) [?] ”With respect to a specific probability measure, a sample space,

and the parameter of interest fixed at the value specified by the null hypothesis, p-

value is the exact probability of a well-defined extreme region.” The extreme region

is a well-defined subset of the sample space with the observed value on its boundary.

Inferences are valid for any sample size since statistical tests and confidence inter-

vals are based on exact probability statements. Furthermore, generalized p-values

are constructed such that the test variables produce unbiased significance tests. Ex-
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actness and unbiasedness are necessary for Fisher’s treatment of significance testing.

Exact methods do not make distributional assumptions such having equal variances

in ANOVA and regression. There are computer programs available such as Stata and

XPro that can compute exact methods.

Exact Statistics can have different methodologies such as generalized pivotal quan-

tities for finding exact p-values for ANOVA problems and regression under unequal

variances. Tsiu and Weerahandi (1989) [?] and Weerahandi [?] extended General-

ized P-values and Generalized Confidence Intervals respectively. Weerahandi (2012)

[?] discusses some of the problems of the classical treatment of point estimation in

simple problems where Least Squares Estimates(LSE) or Maximum Likelihood Esti-

mation (MLE) give negative results for positive parameters. The MLE based methods

are the only systematic method available to tackle any parameter such as a function

of variance components. The classical approach to point estimation does not pro-

vide a systematic method to incorporate the knowledge that one may have about

the parameter space without resorting to Bayesian methods or to ad hoc methods

without sound theory supporting it. Weerahandi used these generalized methods

by estimating fixed effects of variance components of Linear Mixed Models and pre-

dictors of random effects of mixed models. Hanning, Iyer and Patterson (2006) [?]

showed these exact methods based on exact probability statements are often asymp-

totically exact in the classical sense. Gamage et al (2004) [?] applied these extended

definitions called Generalized Estimation (GE) to the famous Multi-Variate Behrens-
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Fisher problem. Lee and Lin (2004) [?] tackled intervals for the ratio of two normal

means. Roy and Mathew (2005) [?] constructed a generalized confidence limit for

the reliability function of a two-parameter Exponential distribution. Krishnamoor-

thy et al (2006) [?], used generalized P-values and Generalized Confidence Intervals

(CGI) to model data that has a lognormal distribution. The calculations are easy to

compute and the results are applicable to small sample sizes when comparing tests

for the ratio or difference of two lognormal means. Chen and Zhou (2006) [?] used

Generalized Confidence Intervals for the ratio of two means and the difference of two

means for lognormal populations with zeros values, and by Bebu et al (2009) with

confidence intervals for limited moments and truncated moments for normal and log-

normal models. Other authors are currently applying and extending these methods

to other distributions.

Many classical tests for point estimation rely on assumptions such as populations

have equal variances or statistical independence. Classical F-tests and t-tests on linear

models can fail to detect significant differences in treatment even when the given

data gives sufficient evidence otherwise. Weerahandi (2010) [?] Weerahandi(1987)

used generalized p-values for comparing parameters of two linear regression models

with unequal variances and showed that the generalize p-value is an exact probability

of a well-defined unbiased extreme region. Common statistical techniques such as

Variance Components and ANOVA under unequal variances do not have classical

exact test. Extensions of classical p-values called generalized p-values are defined

such that tests are performed based on exact probability statements that are valid for
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any sample size. Consider a normal population with mean µ and variance σ2 where

X̄ and S2 are the sample mean and the sample variance. We know that:

Z =
√
n(X̄ − µ)/σ ∼ N(0, 1) and U = nS2/σ2 ∼ χ2

n−1.

A problem arises testing the parameter of interest ρ = µ/σ, the coefficient of variation,

because of the nuisance parameter.

Using the Generalized p-values approach, Weerahandi (1995) [?] investigated

ANOVA with equal error variances by extending the classical F-tests to include the

unequal variances. Weerahandi showed the classical F-test fails to reject the null hy-

pothesis even when the data provides strong evidence against it. Krutchkoff (1988) [?]

reported that the failure of the assumption of equal variances can have catastrophic

results in his extensive study of the power of the F-test. Rice and Gaines (1989) ex-

tended the p-value given in Barnard (1984)[?] to the one-way ANOVA case. Although

Weerahandi’s one-way ANOVA case using the generalized F-test is numerically equiv-

alent to the test of Rice and Gaines (1989), the generalized F-test is computationally

more efficient and is closely related to the classical F-test. The p-value is also the

exact probability of an unbiased and well defined subset of the sample space. Weer-

ahandi showed in several examples that the classical F-test under the assumption

of equal variances failed to reject a false null hypothesis that the means were equal

whereas the generalized F-test correctly rejected the false null hypothesis.

We are concentrating on exact methods for two-parameter distributions with both
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parameters unknown. Generalized p-values are extensions of the classical p-values.

Most conventional statistical models do not provide exact solutions except for a

limited number of problems. Weerahandi (2014) [?] showed that inferences on the

most basic distributions such as the two-parameter continuous Uniform Distribution,

UNIF(θ1, θ2), do not have exact tests. Let X1, X2, . . . , Xn be a random sample from

the Uniform distribution with the density

f(x; θ1, θ2) =
1

θ2 − θ1

where θ1 < x < θ2. (2.1)

The sufficient statistics for θ1 and θ2 are S = X(1) = Min{X1, X2, . . . , Xn} and

T = X(n) = Max{X1, X2, . . . , Xn}. S and T are minimal sufficient statistics for the

parameters and they are also MLE’s for θ1 and θ2, respectively, as well. Weerahandi

(2012) [?] argued that constructing test statistics or pivotal quantities on the pa-

rameters or functions of the parameters based on MLE’s will often result in with

approximate results with inferior performance. The Generalized Likelihood Ratio

(GLR) principle may get exact or asymptotic approximations depending on the func-

tion of the parameters of interest. The Generalized Test Statistic and the Generalized

Likelihood Ratio test statics are equivalent in this case and exact because the are both

free of nuisance parameters. But the Generalized Likelihood Ratio approach will not

always be free of the nuisance parameter if we are using the coefficient of variation

or the second moment. The inferences in a simple case like the uniform distribution

for functions of parameters can be difficult or yield no solution at all. Weeranhandi
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and Gamage (2014) [?] uses the generalized approach as systematic method for find-

ing regular quantities when they exists and for finding generalized pivotal quantities

when regular pivotal quantities fail to exist.

GE: Generalized Estimation

This paper examines a method for making inferences about the parameters or the

functions of parameters for two-parameter continuous distributions based on exact

probability distribution. There is not one approach that will work to find extended

p-values by construction for all distributions. The famous Behrens-Fisher problem

is a good example to discuss; the interval estimation and hypothesis testing of the

difference of the means of two independent normally distributed samples when the

variances of the two populations are not assumed to be equal. Exact fixed-level tests

based on complete sufficient statistics do not exist according to Linnik (1968), [?] but

approximate solutions based on complete sufficient statistics do exist as well as exact

conventional tests based on statistics other than complete sufficient statistics. Scheffe

(1943) investigated a class of exact solutions to the problem which were inefficient

since his methods did not use all the information in the data about the true value of

the parameter. Weerahandi (1995) [?] points out that the confidence intervals were

longer than those given by approximate solutions. Weerahandi found exact solutions

using complete sufficient statistics to the Behrens-Fisher problem using generalized

estimation which was formally introduced by Tsui and Weerahandi (1989) [?].
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Generalized P-Values

Generalized p-values are extended p-values obtained by extending test variables

called Generalized Test Variables, GTV. Generalized p-values are the same as classi-

cal p-values except in the way that the extreme region is defined. These generalized

p-values are exact probabilities of well-defined extreme regions of the underlying sam-

ple space and do not depend on any nuisance parameters.

Generalized P-Value for one sided hypothesis testing:

H0 : θ ≤ θ0 vs H1 : θ > θ0

Definition 1. If Cx is a generalized extreme region, then p is its generalized p-value

for testing H0.

p = Sup
θ≤θ0

Pr(X ∈ Cx(ζ)|θ) (2.2)

where ζ = {θ, δ} where θ is the parameter of interest and δ is a vector of nuisance

parameters.

Define: T = T (X; x, ζ) is the generalized test variable.

Define: Tobs = T (X; x, ζ0) is the observed test value.

Definition 2. Generalized Test Variable, GTV: Let T = T (X; x, ζ) be a function

of X and θ only. The random quantity T is a generalized test variable if it has the

following three properties:
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Property 1: The observed value, tobs = t(x; x, ζ) does not depend on unknown

parameters.

Property 2: When θ is specified, T has a probability distribution free of nuisance

parameters.

Property 3: For fixed x and δ, Pr(T ≤ t; θ) is a monotonic function of θ for any

given t.

If the generalized test variable is stochastically increasing or decreasing in the param-

eter of interest, say θ, the generalized p-values can be computed as

p = Pr(T ≥ Tobs|θ = θ0) if T is increasing. (2.3)

p = Pr(T ≤ Tobs|θ = θ0) if T is decreasing. (2.4)

These generalized p-values are the same in the following sense; Given a specified

probability measure, a sample space, and the parameter of interest fixed at the value

specified by the null hypothesis; the p-value is always the exact probability of an

unbiased extreme region with the observed sample on its boundary. It measures

how well the data supports or contradicts the null hypothesis. P-values smaller than

the significance level suggests that the observed data is inconsistent with the null

hypothesis whereas larger p-values fail to reject the null hypothesis. Although we can

on occasion construct extreme regions using pivotal quantities that are the same as

the ones we constructed using the extended approach, the procedure for constructing
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the extended p-values for each distribution is usually no simple task with a one size

fits all approach. Each case has its own difficulties.

Definition 3. Generalized Pivotal Quantity, GPQ: Let R = r(X; x, θ) be a function

of X and possibly x and θ. The random quantity R is a generalized pivotal quantity

if it has the following two properties:

Property 1 The distribution of R is free of unknown parameters.

Property 2 The observed value R, robs = r(x; x, θ), does not depend on nuisance

parameters.

Let {X1, X2, . . . , Xn} be a random sample from a continuous distribution with

the density function, f(x;α, β), having two unknown parameters. Let S and T be

minimal sufficient statistics for the parameters α and β. Although not a requirement,

it is computationally convenient if the sufficient statistics are transformed such that

the transformed variables are independent. The approach eventually leads to two

independent sufficient statistics but the construction is easier if we start with inde-

pendent statistics. Weerahandi and Gamage (2014) [?]

WLOG, start with making inferences about the parameter α. Let FS(s) be the

Cumulative Distribution function, CDF, of a random sample S. Since FS(s) is a CDF,

then by definition it has a uniform distribution over the unit interval [0,1]. Define the
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random variable U as

U = U(S;α, β) = FS(S) ∼ UNIF (0, 1) (2.5)

Define the observed values of our sufficient statistics as (S, T ) as (s, t) and the observed

value of U(S) as U(s). We need to get rid of the nuisance parameter which is β in this

case since we are making inferences about α. Therefore, treat U(s;α, β) as a function

of β for fixed values of α and s. Let the inverse function, u−1, be the equation such

that u−1(u(β)) = β. This quantity Rβ(S;α, β, s) will be used to replace the nuisance

parameter β in the construction of the generalized pivotal quantity.

Rβ(S;α, β, s) = u−1(U(β)) = β̂(U) (2.6)

The random variable, Rβ, must be constructed to satisfy the properties that the

observed value of S of s, Rβ(s;α, β, s) = β and the distribution of Rβ is free of the

nuisance parameter β. Define FT |S=s(t) as the conditional cumulative distribution

function of T given S = s. Again, this distribution is Uniform over the interval [0, 1]

since it is a CDF:

V (T ; s) = FT |S=s(t) ∼ UNIF(0, 1). (2.7)
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The unconditional distribution of V (S, T ;α, β) is also Uniform(0,1) and since

V (T ; s) does not depend on s, it is distributed independently of S. Construct a

potential GPQ for α.

R =
V (S, T ;α, β)

v(s, t;α,Rβ(S;α, β, s))
(2.8)

=
V (S, T ;α, β)

v(t, s;α, β̂(U))
(2.9)

where

V (S, T ;α, β) andU(S;α, β) ∼ UNIF (0, 1)

After constructing the Generalized Pivotal Quantity, we want to verify, R, satisfies

the following two properties:

1. R becomes 1 at the observed values s of = S and t of T

2. the distribution of R is free of the nuisance parameter β.

We can now make inferences about our parameter of interest say α because by

construction, the Generalized Pivotal Quantity depends only on α. Consider making

a 90% generalized confidence interval using a Monte Carlo simulation by generating

uniform random numbers for U and V . The generalized confidence interval would be

[min{A,B},max{A,B}] where A is the value for α such that the 95th percentile of

the distribution is equal to 1 and B is the value for α such that the 5th percentile of

the distribution is equal to 1. We could switch the roles of α and β to make inferences
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about β.

Weerahandi (1995)[?] in his book Exact Statistical Methods for Data Analysis

demonstrated how to find generalized inferences using a variety of examples each

with their own difficulties. Weerahandi and Tsui(1989) [?], Weerahandi (1995) and

Weerahandi and Gamage (2104) [?] developed the generalized estimation approach in

linear regression with unequal variances, the differences in means of two independent

exponential distribution and the differences in means of two independent normal

distributions with unequal variances. Mixed Models in general point estimation, the

uniform distribution with function of parameters and the gamma distribution were

also examined. Each distribution is different with no universal method for developing

generalized pivotal quantities (GPQ) and generalized test variables (GTV).

28



CHAPTER 3

TESTING THE LOG-SCALE, β, OF THE LG DISTRIBUTION

Introduction

A test statistic for the inference of the shape parameter β will be constructed.

We have two minimal sufficient statistics for parameters α and β for the Log-Gamma

distribution (LG).

f(x;α, β) =
βα

Γ(α)
x−β−1 (log x)α−1 where x ≥ 1, α > 0, β > 0. (3.1)

The minimal sufficient statistics are

P =
n∏
i=1

logXi (3.2)

T =
n∏
i=1

Xi ∼ LG(nα, β) (3.3)

Although there is no requirement that these statistics be independent, it is computa-

tionally advantageous if the two standard sufficient statistics are transformed so that

the transformed variables are independent. The approach actually leads to two inde-

pendent sufficient statistics. The method requires a cumulative distribution function

that will be used to handle the nuisance parameter that we will treat as function of
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our parameter of interest. We will also need a conditional cumulative distribution

function of T given S = s which will be uniform over the unit interval. (P, T ), the

minimal sufficient statistics for (α, β) respectively are complete since the Log-Gamma

distribution is in the exponential family. While having complete sufficient statistics

is not a requirement for the procedure, this fact will make our computations easier.

The likelihood function for the Log-Gamma distribution is:

L(α, β|X) =
n∏
i=1

βα

Γ(α)
X−β−1
i (logXi)

α−1 =

[
βα

Γ(α)

]n( n∏
i=1

Xi

)−β−1( n∏
i=1

logXi

)α−1

(3.4)

It is computational advantageous to use T ∗ = T 1/n which keeps the values of the

product manageable especially when the number of samples are increased or when

the data values are significantly large.

T 1/n =

(
n∏
i=1

Xi

) 1
n

∼ LG(nα, nβ). (3.5)

I proposed S to be statistically independent to T .

S =
P

1
n

log T
=

(
n∏
i=1

logXi

) 1
n

log
n∏
i=1

Xi

=

(
n∏
i=1

logXi

) 1
n

n∑
i=1

logXi

(3.6)
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Finding an Independent Statistic

Basu’s Theorem, [?], is used to prove T and S are independent. S was found

using a technique developed by Godambe, an Indian statistician from his work on

estimating functions. Godambe (1980) [?] examined ancillary and sufficiency in the

presence of a nuisance parameter using definitions proposed from his work, Godambe

(1976a) [?]. He showed under suitable conditions the conditional likelihood equation

provides an estimating function independent of conditioning. In our first case, we

need a conditional cumulative distribution FT |S=s(T ) where α is our nuisance pa-

rameter. One major drawback of Godambe’s (1976) [?] result is that it requires the

existence of a complete sufficient statistic for the parameter of interest while treating

the nuisance parameter as fixed (this will be replaced by the values of x). The Log-

Gamma and the Gamma distributions are both members of the regular exponential

family of distribution fulfilling the the requirement of existence of complete sufficient

statistics. There are others procedures available if our distribution was not in this

family of distributions. Find statistic T such that it has the following properties given

by Godambe (1976). [?]

Theorem 4. The abstract sample space is denoted by X = {x}, the abstract parameter

space is Ω = {θ} = (α, β) where α ∈ Ω1 and β ∈ Ω2, the density function with respect

to some measure µ on X is p(x, θ). Let (S, T ) is minimal sufficient statistic for (α, β).

Let p(x, θ) = ft(x, α)h(t, θ), where h is the marginal density of t.

• (i) The conditional density ft of x given t depends on θ only through α.
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• (ii) The class of distributions of t corresponding to β ∈ Ω2 is complete for each

fixed α ∈ Ω1.

Any statistic t satisfying conditions (i) and (ii) above is said to be an ancillary statistic

with respect to α. The marginal distribution of t is said to contain no information

about α, ignoring β.

Since T is complete and S =
∏

log(X)1/n/
∑

log(X) is ancillary, T and S are

independent by Basu’s Theorem. Furthermore, S is an ancillary statistic with respect

to β so that we can make inferences about β as desired.

Expanding the likelihood function, L(α, β|X), and using Godambe’s Theorem ??, we

get:

f(X|α, β) = f(X|T, α)f(T |α, β) (3.7)

f(T |α, β) =
(β)nα

Γ(nα)
T−β−1 (log T )nα−1 (3.8)

And rearranging equation ?? we get...

f(X|T, α) =
f(X|α, β)

f(T |α, β)
=

[
βα

Γ(α)

]n( n∏
i=1

Xi

)−β−1( n∏
i=1

logXi

)α−1

βnα

Γ(nα)
T−β−1 (log T )nα−1

∝

(
n∏
i=1

logXi

)α−1

(log T )nα−1 =

(
n∏
i=1

logXi

)
(

n∑
i=1

logXi

)n ∝
(

n∏
i=1

logXi

)1/n

(
n∑
i=1

logXi

) (3.9)
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This result is the same to the proposed statistic S in equation ??. Therefore, S and

T are independent.

Inference about the β Parameter

Let’s consider making inferences about the β parameter treating α as the nuisance

parameter.

H0 : β ≤ β0 vs. H1 : β > β0 (3.10)

Let FS|T=s(s) be the conditional cumulative distribution function of S given T = t.

We know that the conditional CDF of W (S;α) = FS|T=t(S) given T = t is uniform

over the interval [0, 1]. Furthermore, by construction let W = W (S;α) = FS(S;α).

The distribution W is uniform over the interval [0, 1] and it is distributed independent

of U in our original construction.

Generalized Pivotal Quantity

The CDF of T ∼ LGnα(t; β0) is Pr(T ≤ t).

FT (t;α, β0) =
βnα0

Γ(nα)

t∫
1

(log y)nα−1

yβ0+1
dy = LGnα (t; β0) (3.11)

= plgamma(t, shapelog = nα, ratelog = β0)

=
βnα0

Γ(nα)

β0 log t∫
0

ynα−1e−β0 dy = Gnα (β0 log t) (3.12)

= pgamma(β0 log t, shape = nα)
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where the latter equation is the lower incomplete gamma function with the shape

parameter of nα evaluated at t. Many statistical software packages may not have the

Log-Gamma distribution as a built-in function so we can use the gamma function

instead. The statistical program R has a package Actuar [?] written by Vincent

Goulet and Mathieu Pigeon.

β0 is the hypothesized parameter of interest. Now we are ready to take care of the

nuisance parameter, α, by defining a random variable U as an Uniform distribution

over the unit interval [0, 1] which will act as our CDF.

U(T ) = FT (T ;α, β) = LGnα (t; β0) (3.13)

Solve the the equation u = LGnα (t; β0) for α called α̂ (u; t) by taking its inverse.

Since we know that values of t, n and β0, the inverse function becomes a function of α

only thus eliminating the nuisance parameter. This can be done by using a function

such as uniroot in R by using a random number U, the hypothesized value of β0

and the observed value of t in plgamma(t, shapelog = nα̂, ratelog = β0) to find α̂, the

value of the nuisance parameter.

Weerahandi and Gamage (2014)[?] have shown in the two parameter Uniform distri-

bution with parameters UNIF(α, β) that this step will work with either a closed form

distribution or a distribution that is not closed as in our Log-Gamma distribution.

Calculation times were significantly reduced when the distribution is simple closed

form.
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The random quantity Ra = Ra(T ;α, β, t) = u−1(U(T )) becomes α denoted as

α̂(U). By design, the random variable Ra satisfies the following two properties.

1. at the observed values of t of T, Ra = Ra(t;α, β, t) = α.

2. the distribution of Ra is free of α.

We need to verify our proposed generalized pivotal quantity, GPQ, R is free of

unknown parameters at the observed values of s of S and t of T . The random variable

R satisfies these two properties:

R =
W (S, T ;α, β)

w(s, t;Ra(T ;α, β, t), β)
(3.14)

=
W

w(s, t; α̂(U), β)
(3.15)

where U = U(T ;α, β) ∼ Unif(0, 1) and W = W (S, T ;α, β) ∼ Unif(0, 1) are inde-

pendent uniform random variables. α̂(U) = u−1(U) and u−1() is a function of t and

β only.

1. at the observed values of s of S and t of T, the value of R becomes 1.

2. the distribution of R is free of the nuisance parameter α.

The distribution of R is therefore a generalized pivotal quantity, GPQ, as defined

in the chapter 2 and can be used to make inferences on β such as point estimates and

confidence intervals. Functions of α and β such as the mean or coefficient of variance
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can be theoretically tested as well. Hypothesis testing can be performed using the

generalized test variable, GTV, based on the constructed GPQ.

R =
W

w(t, α̂(U ; s, β0))
(3.16)

H0 : β ≤ β0 vs. H1 : β > β0 (3.17)

R0 =
W

w(s, t; α̂(U), β0)

The generalized p-value for testing the null hypothesis H0 against H1 is

p = Pr(R0 ≤ 1) = Pr(W ≤ w(s, t; α̂(U), β0) (3.18)

= E(w(s, t; α̂(U), β0)) (3.19)

because R stochastically increasing in β and this is an exact probability statement.

Therefore R = 1 when the observed values of s and t are evaluated and the

distribution or R is free of nuisance parameters α in this example.

Generalized Confidence Intervals Based on p-Values

The GPQ R can be used to find the confidence intervals since it depends only

on β. The value for β for which the 2.5th percentile of the distribution is equal to

1. Weerahandi, 1995 [?] defines GCI as Pr(R ∈ Cγ) = γ where Cγ is a subset of

36



the sample space depending only on the observed values, x− = {x1, x2, x3, . . . , xn}.

The main idea of this method is that we are making probability statements based of

exact probability statements which does not rely on asymptotic statistical methods

that required a large sample size. Tsui and Weerahandi (1989) [?] extended the

classical definition to derive exact solutions to such problems as the Behrens-Fisher

problem and testing variance components. The confidence intervals for the Log-

Gamma distribution will be obtained Monte Carlo simulation since the observed

value and the distribution of R are free of nuisance parameters. Confidence intervals

for α and β are calculated and discussed in a latter chapter.

Numerical Results of the Simulation

Using a small size of n = 10, this performance study is based on 1,000 simulated

random samples of size 10 from X ∼ LG(α, β). Setting the α parameters at val-

ues at α = {1, 2, 3, 5, 10, 15, 20, 25, 30, 40, 50, 100}. Smaller values of β were testing

as well such as 0.1, 0.2, 0.5, 0.8 with a little bias as we get closer to zero for the β value.

The table below summarizes the rate of rejection of the null hypothesis when the

intended Type I error is 0.05 when the α parameter is varied from 1 - 100.

H0 : β ≤ β0 vs. H1 : β > β0 (3.20)

I also ran 2000 and 3000 iterations for selected values of α. The results are similar
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Table 3.1: Case H0 : β ≤ β0, β0 = {1, 2, 5}, N = 1000

α β0 = 1 β0 = 2 β0 = 5

P-Value 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

1 0.012 0.038 0.082 0.006 0.039 0.079 0.009 0.059 0.108
2 0.011 0.045 0.089 0.010 0.047 0.090 0.010 0.052 0.100
3 0.010 0.049 0.097 0.007 0.042 0.088 0.007 0.045 0.103
5 0.010 0.045 0.095 0.009 0.041 0.090 0.011 0.054 0.108
10 0.011 0.057 0.107 0.009 0.045 0.084 0.012 0.059 0.096
15 0.011 0.049 0.102 0.009 0.044 0.086 0.006 0.053 0.104
20 0.009 0.054 0.101 0.010 0.047 0.094 0.012 0.055 0.107
25 0.009 0.045 0.093 0.008 0.047 0.096 0.007 0.052 0.110
30 0.011 0.050 0.107 0.013 0.048 0.100 0.005 0.042 0.103
40 0.010 0.057 0.108 0.017 0.065 0.119 0.015 0.051 0.098
50 0.010 0.057 0.108 0.010 0.055 0.112 0.014 0.061 0.119
100 0.012 0.052 0.102 0.010 0.048 0.100 0.010 0.059 0.130

to the results of 1000 iterations. I tested β0 = {10, 15, 20} for selected values of α

from 1 to 100.
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Table 3.2: Case H0 : β ≤ β0, β0 = {10, 15, 20}, N = 1000

α β0 = 10 β0 = 15 β0 = 20

P-Value 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

1 0.009 0.049 0.106 0.013 0.055 0.112 0.011 0.046 0.091
2 0.020 0.071 0.126 0.012 0.043 0.096 0.008 0.043 0.093
3 0.005 0.052 0.100 0.017 0.059 0.111 0.010 0.037 0.088
5 0.018 0.061 0.112 0.014 0.055 0.097 0.009 0.049 0.098
10 0.008 0.042 0.088 0.011 0.046 0.094 0.006 0.039 0.085
15 0.007 0.050 0.095 0.009 0.048 0.110 0.014 0.047 0.092
20 0.011 0.057 0.110 0.007 0.043 0.093 0.016 0.058 0.101
25 0.011 0.046 0.087 0.009 0.058 0.113 0.010 0.050 0.099
30 0.015 0.051 0.109 0.011 0.059 0.120 0.011 0.040 0.089
40 0.005 0.037 0.089 0.013 0.054 0.103 0.010 0.057 0.101
50 0.009 0.039 0.085 0.003 0.039 0.092 0.010 0.046 0.092
100 0.013 0.058 0.101 0.007 0.059 0.107 0.010 0.045 0.091

Table 3.3: Case H0 : β ≤ β0, β0 = {30, 50, 100}, N = 1000

α β0 = 30 β0 = 50 β0 = 100

P-Value 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

1 0.008 0.041 0.080 0.009 0.046 0.090 0.005 0.044 0.088
2 0.009 0.050 0.092 0.013 0.048 0.089 0.009 0.045 0.097
3 0.009 0.045 0.096 0.008 0.052 0.099 0.019 0.057 0.111
5 0.008 0.046 0.085 0.005 0.054 0.096 0.011 0.056 0.109
10 0.013 0.049 0.094 0.009 0.054 0.112 0.013 0.038 0.082
15 0.008 0.046 0.088 0.012 0.054 0.100 0.011 0.051 0.106
20 0.006 0.039 0.082 0.008 0.050 0.096 0.015 0.054 0.105
25 0.016 0.053 0.116 0.009 0.053 0.100 0.007 0.052 0.103
30 0.012 0.057 0.114 0.013 0.057 0.104 0.011 0.043 0.100
40 0.008 0.052 0.102 0.007 0.051 0.103 0.005 0.047 0.099
50 0.005 0.043 0.095 0.007 0.044 0.090 0.012 0.057 0.112
100 0.009 0.057 0.111 0.016 0.053 0.103 0.008 0.041 0.088
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Table 3.4: Case H0 : β ≤ 10 vs. H0 : β > 10, N = 1000 and 2000

(a) N = 1000 iterations

α 0.01 0.05 0.10
1 0.013 0.055 0.112
2 0.012 0.043 0.096
3 0.017 0.059 0.111
5 0.014 0.055 0.097
10 0.011 0.046 0.094
15 0.009 0.048 0.110
20 0.007 0.043 0.093
25 0.009 0.058 0.113
30 0.011 0.059 0.120
40 0.013 0.054 0.103
50 0.003 0.039 0.092
100 0.007 0.059 0.107

(b) N = 2000 iterations

α 0.01 0.05 0.10
1 0.009 0.058 0.112
2 0.009 0.036 0.079
3 0.009 0.048 0.099
5 0.014 0.050 0.100
10 0.008 0.044 0.096
15 0.011 0.057 0.100
20 0.012 0.049 0.094
25 0.011 0.056 0.101
30 0.013 0.052 0.089
40 0.014 0.045 0.105
50 0.012 0.051 0.103
100 0.012 0.048 0.098

Table 3.5: Case H0 : β ≤ 15 vs. H0 : β > 15, N = 1000 and 2000

(a) N = 1000 iterations

α 0.01 0.05 0.10
1 0.013 0.055 0.112
2 0.012 0.043 0.096
3 0.017 0.059 0.111
5 0.014 0.055 0.097
10 0.011 0.046 0.094
15 0.009 0.048 0.110
20 0.007 0.043 0.093
25 0.009 0.058 0.113
30 0.011 0.059 0.120
40 0.013 0.054 0.103
50 0.003 0.039 0.092
100 0.007 0.059 0.107

(b) N = 2000 iterations

α 0.01 0.05 0.10
1 0.009 0.047 0.093
2 0.013 0.046 0.100
3 0.011 0.045 0.093
5 0.009 0.049 0.107
10 0.009 0.040 0.088
15 0.013 0.048 0.102
20 0.011 0.058 0.117
25 0.009 0.047 0.100
30 0.009 0.050 0.095
40 0.009 0.051 0.095
50 0.015 0.045 0.089
100 0.007 0.044 0.098

Table 3.6: Case H0 : β ≤ 20 vs H1 : β > 20, N = 3000

α 0.01 0.05 0.10
1 0.007 0.048 0.099
3 0.012 0.045 0.101
5 0.008 0.039 0.087
10 0.009 0.048 0.092
20 0.008 0.052 0.098
30 0.007 0.051 0.108
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CHAPTER 4

TESTING THE SHAPE, α, OF THE LG DISTRIBUTION

Let’s consider making inferences about the parameter α by looking at the likeli-

hood function fX(X|α, β). Consider the following the hypothesis:

H0 : α ≤ α0 vs. H1 : α > α0

Find an ancillary statistic for the conditional distribution needed to make inference

about α using the procedure given by Godambe [?] and Basu (1955) [?]. Our new

distribution is found using the same method since the

f(X|α, β) =
n∏
i=1

βα

Γ(α)
X−β−1
i (logXi)

α−1 =

[
βα

Γ(α)

]n( n∏
i=1

Xi

)−β−1( n∏
i=1

logXi

)α−1

(4.1)

where

T =
n∏
i=1

Xi ∼ LG(nα, β).

Using the the same process from Godambe 1976, f(X|α, β) = f(X|T, β)f(T |α, β)

I used T ′ for actual calculations. Both T and T ′ are complete sufficient statistics
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for β and a fixed α.

T ′ =

(
n∏
i=1

Xi

)1/n

∼ LG(nα, nβ) (4.2)

f(X|α, β) = f(X|α, β) = f(X|T, β)f(T |α, β) (4.3)

f(T ′|α, β) =
(nβ)nα

Γ(nα)
T−nβ−1 (T )nα (4.4)

f(T |α, β) =
βnα

Γ(nα)
T−β−1 (T )nα (4.5)

f(X|α, β) = f(X|T, β)f(T |α, β) (4.6)

Rearrange the terms to find the ancillary statistic.

f(X|T, β) =
f(X|α, β)

f(T |α, β)
=

[
βα

Γ(α)

]n( n∏
i=1

Xi

)−β−1( n∏
i=1

logXi

)α−1

(nβ)nα

Γ(nα)
T−nβ−1 (log T )nα−1

=

[
βα

Γ(α)

]n( n∏
i=1

Xi

)−β−1( n∏
i=1

logXi

)α−1

(nβ)nα

Γ(nα)

(
n∏
i=1

X
1/n
i

)−nβ−1

(log T )nα−1

=
Γ(nα)

nnαΓ(α)n

(
n∏
i=1

Xi

)−β−1( n∏
i=1

logXi

)α−1

(
n∏
i=1

Xi

)−β−1/n

(log T )nα−1

(4.7)

This is proportional to the following.

42



∝

(
n∏
i=1

Xi

)1/n−1( n∏
i=1

logXi

)α−1

(
log

n∏
i=1

X
1/n
i

)nα−1

∝

(
n∏
i=1

Xi

)1( n∏
i=1

logXi

)
(

1
n

n∑
i=1

logXi

)n (4.8)

Inference about the α Parameter

Let’s consider making inferences about the parameter α by looking at the likeli-

hood function fX(X|α, β). WLOG, reversing the role of W and U in the previous

construction.

We are testing H0 : α ≤ α0 vs. H1 : α > α0.

f(X|α, β) =
n∏
i=1

βα

Γ(α)
X−β−1
i (logXi)

α−1 =

[
βα

Γ(α)

]n( n∏
i=1

Xi

)−β−1( n∏
i=1

logXi

)α−1

Let FT |S=s(t) be the conditional cumulative distribution function of T given S = s.

We know that the conditional CDF of W (T ; s) = FT |S=s(T ) given S = s is uniform

over the interval [0, 1]. Furthermore, the unconditional distribution of W (T, s;α, β)

is UNIF(0, 1) and independent of S since the the distribution does not depend on s

by construction.
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Again by construction let W = W (T ; β) = FT (T ; β). The distribution W is

uniform over the interval [0, 1] and it is distributed independent of U as defined

below.

Generalized Pivotal Quantity

The CDF of T ∼ LGnβ(t;α0) is Pr(T ≤ t).

FT (t;α0, β) =
βnα0

Γ(nα0)

t∫
1

(log y)nα0−1

yβ+1
dy = LGnα0 (t; β) (4.9)

= plgamma(t, shapelog = nα0, ratelog = β)

=
βnα0

Γ(nα0)

β log t∫
0

ynα0−1e−βy dy = Gnα0 (β log t) (4.10)

= pgamma(β log t, shape = nα0)

α0 is the parameter under the hypothesized testing and β is the nuisance param-

eter. Let U be a uniform random variable distributed over the unit interval (0,1)

which will act as our CDF.

U(T ) = FT (S;α, β) = LGnβ (t;α0) (4.11)

Solve the equation u = LGnβ (t;α0) or β called β̂ (u; t) by taking its inverse. Since

we know that values of t, n and α0, the inverse function becomes a function of β only

thus eliminating the nuisance parameter. R∗ is free of unknown parameters at the
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observed values of s of S and t of T .

R∗ =
W (S, T ;α, β)

w(s, t;Ra(T ;α, β, t), β)

=
W

w(t, β̂(U ; s, α0))
(4.12)

1. the value of R∗ becomes 1 at the observed values s and t of (S, T ).

2. the distribution of R∗ is free of the nuisance parameter β.

The random variable Ra = Ra(T ;α, β, t) = u−1(U(T )) becomes β as β̂(U). There-

fore R = 1 when the observed values of s and t are evaluated and the distribution

or R is free of nuisance parameters β in this example where U ∼ Unif(0, 1) and

W ∼ Unif(0, 1) are independent uniform random variables. The distribution of R∗

is therefore a generalized pivotal quantity, GPQ, as defined in the chapter 2 and can

be used to make inferences on α such as point estimates and confidence intervals.

Functions of α and β such as the mean or coefficient of variance can be theoretically

testing as well. Hypothesis testing can be performed based of the generalized test

variable, GTV, based on the constructed GPQ.

H0 : α ≤ α0 vs. H1 : α > α0 (4.13)

R∗ =
W

w(s, t; β̂(U), α0)
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The generalized p-value for testing the null hypothesis H0 against H1 is

p = Pr(R∗ ≤ 1) = Pr(W ≤ w(s, t; β̂(U), α0) (4.14)

= E(w(s, t; β̂(U), α0)) (4.15)

because R∗ stochastically increasing in α and this is an exact probability statement.

Table 4.1: Case H0 : α ≤ α0, α0 = {1, 2, 3}, N = 1000

β α0 = 1 α0 = 2 α0 = 3

P-Value 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

1 0.008 0.043 0.092 0.008 0.040 0.086 0.004 0.037 0.076
2 0.009 0.055 0.095 0.009 0.042 0.091 0.006 0.034 0.078
3 0.011 0.045 0.103 0.011 0.052 0.110 0.012 0.054 0.114
5 0.009 0.051 0.102 0.008 0.053 0.103 0.010 0.045 0.097
10 0.011 0.057 0.107 0.011 0.049 0.099 0.010 0.048 0.092
15 0.009 0.034 0.090 0.009 0.044 0.086 0.009 0.046 0.097
20 0.012 0.049 0.092 0.009 0.042 0.096 0.006 0.042 0.085
25 0.009 0.045 0.093 0.014 0.042 0.084 0.010 0.045 0.105
30 0.010 0.047 0.105 0.015 0.055 0.102 0.010 0.040 0.093
40 0.016 0.060 0.114 0.012 0.054 0.100 0.012 0.059 0.110
50 0.014 0.052 0.099 0.012 0.053 0.100 0.009 0.052 0.091
100 0.016 0.047 0.101 0.010 0.052 0.107 0.011 0.051 0.105
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Table 4.2: Case H0 : α ≤ α0, α0 = {5, 10, 15}, N = 1000

β α0 = 5 α0 = 10 α0 = 15

P-Value 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

1 0.000 0.004 0.008 0.005 0.028 0.074 0.000 0.000 0.000
2 0.005 0.029 0.056 0.004 0.046 0.096 0.000 0.000 0.000
3 0.006 0.035 0.069 0.011 0.043 0.092 0.000 0.000 0.000
5 0.008 0.045 0.099 0.008 0.042 0.096 0.000 0.001 0.004
10 0.013 0.052 0.109 0.009 0.048 0.092 0.002 0.022 0.044
15 0.008 0.046 0.103 0.007 0.038 0.084 0.006 0.032 0.066
20 0.010 0.047 0.102 0.012 0.051 0.105 0.009 0.039 0.075
25 0.006 0.039 0.087 0.007 0.035 0.094 0.013 0.040 0.087
30 0.009 0.046 0.095 0.014 0.061 0.102 0.004 0.039 0.085
40 0.010 0.049 0.097 0.011 0.052 0.101 0.009 0.042 0.089
50 0.010 0.059 0.109 0.006 0.032 0.083 0.009 0.046 0.107
100 0.014 0.065 0.116 0.017 0.055 0.112 0.011 0.049 0.102
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CHAPTER 5

METHOD OF MOMENTS AND THE MLE OF THE LG DISTRIBUTION

The Method of Moments for the Log-Gamma

One of the popular methods for testing the parameters for the LG is the the

Method of Moments (MOM). Different approaches for this technique have been dis-

cussed including in chapter 2. The MOM for the Log-Gamma, LG, distribution is

obtain using the traditional derivation. Let x1, x2, . . . , xn be a random sample from

a LG distribution with parameters X ∼ LG(α, β). Define each moment about the

origin of the sample by

Mr =
1

n

n∑
i=1

xri (5.1)

and the theoretical moments define as

µr =

∫
D

xrf(x) dx =

∞∫
1

xr
βαx−β−1

Γ(α)
(lnx)α−1 dx =

(
1− r

β

)−α
(5.2)

;

when r < β.

For the two parameter Log-Gamma distribution, we have . . .

µ1 =

(
1− 1

β

)−α
and µ2 =

(
1− 2

β

)−α
(5.3)
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and

M1 =
1

n

n∑
i=1

Xi and M2 =
1

n

n∑
i=1

X2
i . (5.4)

Setting µ1 = M1 and µ2 = M2, taking the logarithm of both sides and then solving

each equation for α we get...

logM1

logM2

=
log
(

1− 1
β

)
log
(

1− 2
β

) (5.5)

It is easy to find β̃, the method of moments estimate for β given the data using a

root function such as uniroot in R.

Using β̃, find α̃ using

M1 =

(
1− 1

β̃

)−α̃
(5.6)

α̃ = − logM1

log
(

1− 1
β̃

) (5.7)

Testing selected values for α and β and varying sample sizes N , each Method of

Moments estimator for α̃ and β̃ will be compared using the Mean Squared Error, MSE,

with respect to the unknown parameter. Selected common values for the parameters

and sample sizes are presented in the following tables.

MSE
(
θ̂
)

= E
[
(θ̂ − θ)2

]
= V ar

(
θ̂
)

+
(
Bias(θ̂, θ)

)2

= V ar
(
θ̂
)

+
[
E
(
θ̂
)
− θ
]2
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The MOM for the Log-Gamma distribution are poor estimators especially for small

sample sizes or large values of β relative to α. The MOM estimates get better for

larger values of N. Selected values for β and α were tested using the same method

resulting in with similar results. The table shows typical results with β = 5 and

α = {1, 2, 5, 10, 20}.

Table 5.1: MSE: Method of Moments: N = 10− 1000 Samples

N Shape Rate α̃ β̃ MSE α̃ MSE β̃
10 1 5 2.784 10.100 4.109 66.609
10 2 5 5.572 9.300 14.757 52.163
10 5 5 7.824 9.168 9.798 47.145
10 10 5 20.512 9.513 116.999 40.619
10 20 5 67.684 10.904 2312.542 60.269

N Shape Rate α̃ β̃ MSE α̃ MSE β̃
20 1 5 1.087 7.537 0.087 16.817
20 2 5 2.519 7.214 0.472 13.263
20 5 5 4.645 7.216 0.422 11.663
20 10 5 13.018 7.834 10.426 16.854
20 20 5 42.124 8.633 497.622 22.524

N Shape Rate α̃ β̃ MSE α̃ MSE β̃
100 1 5 1.357 5.726 0.152 2.391
100 2 5 1.878 5.674 0.036 1.928
100 5 5 5.309 5.725 0.180 2.027
100 10 5 10.942 5.938 1.083 2.391
100 20 5 37.974 6.418 324.959 3.921

N Shape Rate α̃ β̃ MSE α̃ MSE β̃
1000 1 5 1.114 5.127 0.015 0.296
1000 2 5 2.228 5.119 0.056 0.255
1000 5 5 5.001 5.168 0.007 0.292
1000 10 5 10.624 5.255 0.409 0.407
1000 20 5 17.983 5.439 4.111 0.707
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Brief History of the MLE and the MOM

R Condie (1977) [?] examined the maximum likelihood estimators for the three

parameters of a Log Pearson Type III (LP3) distribution derived from the logarith-

mic likelihood function. Condie concluded that the maximum likelihood analysis was

superior in terms of the estimate of standard error to the method of moments that is

the usual technique for flood data. We will use this form as it is written in Condies’s

paper with renaming the parameters, a > 0, b 6= 0, and c > 0 which are the scale,

shape and location parameters respectfully with the exception of letting the location

parameter be equal to zero.

Arora and Singh (1988) [?] examined most of the available papers for the MLE

of the LP3 because of the popularity of the LP3 used as the based method by the

Water Resource Council. Several researchers investigated fitting the distribution for

the original data as well as the log-transformed data.

Bobee (1975)[?] suggested parameter estimation based on the moments of the real

data. Condie (1977) [?], Phien and Hira (1983)[?] and others, used the method of

maximum error of the MLE quantile estimator. Rao (1986)[?] proposed the method of

mixed moments (MIX), which conserves the mean and standard deviation of real data,

and the mean of log-transformed data, and Ashkar and Bobee (1988)[?] proposed a

generalized method of moments. Computationally, the MLE is very difficult compared

to the estimation methods available for LP3 such as moments or mixed moments.

The W.R.C. choose the Log-Gamma distribution for folld data partly because of the
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ease computation of the moments estimators. Matalas and Wallis (1973)[?] found

such severe computational difficulties associated with solving the MLE equations to

the extent of recommending another distribution altogether. Condie concluded on

the basis of the asymptotic standard error of the quantile estimator that the MLE

estimators are generally superior those fitted by moments.

The MLE for Log-Gamma Distribution

fX(x|a, b, c) =
1

x |b|Γ(a)

(
lnx− c

b

)a−1

exp

(
− lnx− c

b

)
; (5.8)

If b < 0 then 0 < x ≤ ec and if b > 0, ec ≤ x <∞.

fX(x|a, b, c) =
(lnx− c)a−1

baΓ(b)
x−1/b−1ec/b (5.9)

If c = 0, then fX(x|a, b) =
(lnx)a−1

baΓ(a)
x−1/b−1 (5.10)

Using the likelihood function:

L(X; a, b, c) =
n∏
i=1

[(lnXi − c)/a]b−1 exp [−(lnXi − c)/a] / [|a|Γ(b)Xi]

The log likelihood function:
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lnL(X; a, b, c) = (b− 1)
∑

ln [(lnXi − c)/a]

− 1

a

∑
(lnXi − c)−

∑
lnXi − n ln |a| − n ln Γ(b) (5.11)

This gives us three equations to solve:

∂ lnL

∂a
= −nψ(a) +

∑
ln [(lnXi − c)/b] = 0 (5.12)

∂ lnL

∂b
=

1

b2

∑
(lnXi − c)−

na

b
= 0 (5.13)

∂ lnL

∂c
= −n

a
− (b− 1)

∑
[lnXi − c]−1 = 0 (5.14)

which yields the following solutions:

â =
B

B − n2
where B =

n∑
i=1

(lnXi − c)
n∑
i=1

(lnXi − c)−1 (5.15)

b̂ =
1

na

n∑
i=1

(lnXi − c) (5.16)

ĉ =
1

n

n∑
i=1

lnXi − âb̂ (5.17)

We will make the location parameter be equal to zero for our comparison giving us

these two relations. For our two-parameter Log-Gamma distribution let α̂ = a and
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β̂ = 1/b.

α̂ =
B

B − n2
where B =

∑
(lnXi)

∑
(lnXi)

−1 (5.18)

β̂ =

[
1

nα̂

n∑
i=1

lnXi

]−1

(5.19)

The same setup as for the Method of Moments estimator was utilized for α̂ and β̂

using the Mean Squared Error, MSE, with respect to the unknown parameter.

Table 5.2: MLE: Maximum Likelihood Estimate: N = 10− 1000 Samples

N Shape Rate α̂ β̂ MSE α̂ MSE β̂

10 1 5 1.657 9.096 0.997 26.119
10 2 5 2.914 6.850 3.443 6.035
10 5 5 7.033 4.101 20.739 1.138
10 10 5 14.298 4.526 92.037 0.430
10 20 5 29.537 6.214 415.148 1.680
20 1 5 1.429 5.957 0.310 2.818
20 2 5 2.470 4.510 0.881 0.745
20 5 5 6.014 5.693 5.396 0.814
20 10 5 11.924 5.277 24.774 0.217
20 20 5 23.714 7.443 83.497 6.104
100 1 5 1.222 6.119 0.066 1.640
100 2 5 2.110 5.652 0.111 0.593
100 5 5 5.142 6.026 0.568 1.127
100 10 5 10.282 4.713 2.439 0.102
100 20 5 20.697 5.571 9.639 0.341
1000 1 5 1.140 6.222 0.023 1.535
1000 2 5 2.022 4.938 0.015 0.017
1000 5 5 5.013 4.891 0.055 0.017
1000 10 5 9.992 5.014 0.202 0.003
1000 20 5 20.078 4.898 0.722 0.011
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The General Estimation, GE, method is compared to the Maximum Likelihood

Estimates, MLE, using simulation for testing the β parameter. Type I error at 1%,

5%, 10% Intended Levels are compared with selected values for α from 1 to 100 and

the number of samples, n = 10.

H0 : β ≤ β0 vs, H1 : β ≤ β0

Table 5.3: Case H0 : β ≤ 10, N = 1000 iterations

α GE-0.01 MLE-0.01 GE-0.05 MLE-0.05 GE-0.10 MLE-0.10
1 0.008 0.340 0.039 0.491 0.087 0.575
3 0.011 0.388 0.047 0.456 0.091 0.507
5 0.013 0.431 0.052 0.491 0.108 0.528

10 0.012 0.498 0.047 0.545 0.094 0.568
25 0.012 0.547 0.053 0.576 0.105 0.593
50 0.008 0.588 0.056 0.608 0.104 0.615

Table 5.4: Case H0 : β ≤ 5, N = 1000 iterations

α GE-0.01 MLE-0.01 GE-0.05 MLE-0.05 GE-0.10 MLE-0.10
1 0.007 0.337 0.040 0.489 0.091 0.568
2 0.008 0.352 0.044 0.444 0.091 0.499
3 0.006 0.375 0.049 0.451 0.095 0.508
5 0.008 0.432 0.045 0.502 0.098 0.539
10 0.010 0.482 0.048 0.535 0.099 0.565
15 0.009 0.498 0.051 0.543 0.100 0.567
20 0.010 0.515 0.050 0.542 0.105 0.567
25 0.007 0.546 0.046 0.583 0.097 0.601
30 0.010 0.546 0.058 0.570 0.101 0.585
40 0.008 0.553 0.055 0.588 0.107 0.600
50 0.009 0.578 0.048 0.599 0.096 0.613
100 0.008 0.581 0.045 0.599 0.089 0.615
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Table 5.5: Case H0 : β ≤ 1, N = 1000 iterations

α GE-0.01 MLE-0.01 GE-0.05 MLE-0.05 GE-0.10 MLE-0.10
1 0.012 0.336 0.041 0.481 0.078 0.566
2 0.015 0.373 0.057 0.480 0.100 0.529
3 0.001 0.373 0.043 0.450 0.099 0.502
5 0.015 0.435 0.056 0.493 0.098 0.539
10 0.014 0.500 0.049 0.552 0.106 0.576
15 0.008 0.524 0.052 0.559 0.094 0.589
20 0.005 0.535 0.050 0.571 0.103 0.591
25 0.009 0.548 0.033 0.572 0.091 0.591
30 0.008 0.534 0.045 0.564 0.088 0.579
40 0.012 0.523 0.053 0.558 0.108 0.568
50 0.010 0.601 0.050 0.620 0.094 0.632

The p-values using the MLE in the simulations with sample size 10 are not close to

the intended values. Simulations with larger samples perform closer to their intended

levels and we achieve parity with samples sizes over 50 for most of the values of α and

β. If the number of samples were increased to 100, then the simulations performed to

their intended levels for all values of the parameters tested. Clearly the Generalized

Estimation process out performs the MLE and the MOM given smaller sample sizes

when testing the α and β parameters. The MOM surprisingly performed as well as

the MLE for sample sizes of 100 or more. This supports the WRC decision in 1967

(used as early as 1924) to use the MOM since the MOM is easier to compute than

the MLE.

The Generalized Estimate method works well for very small values for β as low as

0.1, we still get reasonable results. Here, α = 2, β0 = 0.5 and n = 10, the computed

GE and MLE are respectively are 0.048 and 0.419. At α = 2, β0 = 0.1 and n = 10,
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the computed GE and MLE are respectively are 0.051 and 0.433. As expected, if we

increased the sample size to over 40, the results for the MLE tend to be better. If

α = 2, β0 = 2 and n = 50, we have the results:

Table 5.6: Comparison between GE and MLE:H0 :≤ 2, n = 50

0.01 0.05 0.10
GE MLE GE MLE GE MLE

0.006 0.014 0.049 0.055 0.110 0.121

Numerical Results of the Simulation

A major feature the using exact distributions is very good estimates for both pa-

rameters when the sample size is as small as 10. The Method of Moments technique

was good for samples as small as 20 when the shape parameter, α, was under 10.

The MOM estimates for α was good for values over 20 if the sample sizes were 100

or larger. The logscale parameter, β only performed well when sample sized was 100

or more. Overall the MOM can be used as a limited estimator for the both parameters.

The MLE technique yields good estimations when the sample size is larger. This

is not the case when the sample size falls below 100 depending on the values of the

parameters as well. The Generalized Estimation technique out performed the MOM

and MLE techniques based on comparing the MSE of each parameter.
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CHAPTER 6

TESTING THE MEAN: µ

The generalized estimation method is used for testing the mean of the Log-Gamma

distribution using a generalized pivotal quantity. Exact pivotal quantities can not be

constructed so we will use the generalized pivotal quantity method developed in the

previous chapters. The mean is a function of both parameters α and β. We will tackle

the variance in the next chapter.

Definitions

E [X] =

∫ ∞
1

x · x
−β−1 (log(x))α−1

β−αΓ(α)
dx =

(
1− 1

β

)−α
for β > 1 (6.1)

E
[
X2
]

=

∫ ∞
1

x2 · x
−β−1 (log(x))α−1

β−αΓ(α)
dx =

(
1− 2

β

)−α
for β > 2 (6.2)

The mean:

µ = EX =

(
1− 1

β

)−α
for β > 1 (6.3)
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The Variance:

σ2 = EX2 − µ2 =

(
1− 2

β

)−α
−
(

1− 1

β

)−2α

for β > 2 (6.4)

Method

The framework for testing the ratelog parameter, β, in chapter 2 is used for testing

the mean of the Log-Gamma distribution. The ratelog parameter, β, can be written

as β = (1−µ−1/α)−1 or as b = 1−µ−1/α whichever computes more efficiently, treating

α as the nuisance parameter. We can also treat β as the nuisance parameter by

re-parameterizing α.

β =

(
1− µ−

1
α

)−1

or α = − log µ

log
(

1− 1
β

) =
log µ

log
(

β
β−1

) ; β > 1. (6.5)

Now we can replace β with (1− µ−1/α
0 )−1 and use the uniroot function in R or a

Newton-Raphson type method to solve for α̂ in order to eliminate the nuisance pa-

rameter. Set FT (t; α̂, µ0) = U(T ) given t and µ0 to find α̂ . U is an Uniform random

variable on the interval [0, 1]. We find the inverse function numerically treating the

equation u = LGnα(t) as a function of α.

Let T =
n∏
i=1

Xi ∼ LG(nα, β) (6.6)
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I use T ∗ =

(
n∏
i=1

Xi

) 1
n

∼ LG(nα, nβ) because it was computationally more efficient

when using larger values for n, the sample size. A distribution that does not have

a closed form can work although it is computationally advantageous to use a known

distribution as we will see in this mean approach. Using a unknown distribution

drastically slows down performance time. The CDF of T ∗ ∼ LG(nα, nβ) is used

to eliminate the nuisance parameter α using the previous derivation for testing the

logscale, β. Recall, T (or T ∗) is a complete sufficient statistic for β.

f(T ∗|α, β) =
(nβ)nα

Γ(nα)
T−nβ−1 (log T )nα (6.7)

We can compute log-gamma distribution in R’s actuar package or use the use the

gamma distribution which is more widely available in almost all statistical software

packages. Refer to the equation: ??.

We need to construct a conditional cumulative distribution of S given T = t,

denoted as FS|t=t(S) = FS(s). Let

U = U(S;α) = FS(S;α) (6.8)

Let U ∼ UNIF(0, 1) be a random variable such that is does not depend on ratelog

parameter, β. For simplicity of notation, we call the inverse for α as α̂(s;u). Revers-

ing the roles from testing the ratelog β value, finding α̂ using an unknown open-form
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distribution on S is more complicated and time consuming. α̂′s are computed by

using a Monte Carlo method and a root find algorithm such as uniroot in R. This

time we find candidates for α̂ for each random number, U , that satisfies u = FS(s;α).

With the roles reversed, let W be the Uniform random variable such that

W = LGnα,nβ(t;µ) ∼ UNIF(0, 1) (6.9)

A Generalized Pivotal Quantity, GPQ, for making inferences about µ can now be

constructed for handling the nuisance parameter α by substituting α̂(s, U) into W .

Define the random quantity Rµ = Rµ(S;α, β, s) = α̂(U(S)) .

The Generalized Pivotal Quantity, GPQ, constructed becomes

R =
W

w(s, α̂(t;U, µ0))
(6.10)

which satisfies the requirement for a GPQ. The distribution R is free of unknown

parameters and at the observed values s of S and t of T becomes 1. In this case, R

is increasing in the mean µ. The hypothesis for the mean is:

H0 : µ ≥ µ0 vs. H1 : µ < µ0 where µ = (1− 1/β)−α. (6.11)

61



p = Pr

(
W

w(s, α̂(t;U, µ0))
≤ 1

)
(6.12)

= Pr (W ≤ w(s, α̂(t;U, µ0)))

= E (w(s, α̂(t;U, µ0))) (6.13)

Numerical Results of the Simulation

I did some testing with 1000, 2000, 3000 iterations. This method is significantly

slower to find the values for the unknown distribution but it still yields very good

results for simulation studies. Using a size 10 from X ∼ LG(α, β) and generating

uniform random variables, U ∼ UNIF(0, 1) and W ∼ UNIF(0, 1), the Type I error of

the test is unbiased when the shape parameter is much larger than the scale value or

vice a versus. As you can see by the tables, the p-values are 0.005 - 0.01 lower than the

intended values when this occurs. I ran some samples for n = 3000 iterations for µ = 3

given α = 5, with β ≈ 5.0695 computed a Type I error at sizes 0.01, 0.05 and 0.10 with

results at 0.0117, 0.048, and 0.0963 respectively. These results were typical for most

the parameter configurations that were computed. I used 1000 iterations for most of

the simulation because of the length of time to run each simulations. Simulation were

computed for various values of the mean µ0 = {2, 3, 5, 10, 20, 30, 50, 100, 200}. Some

of the simulations are included below.

The log-gamma mean can be very large if the logshape parameter, α, is signifi-

cantly larger than the the logscale parameter, β. For example, if α = 50 and β = 3,

the mean would be 637,621,500. This method work for values as large as 108 for the
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Table 6.1: Case H0 : µ ≥ µ0, µ0 = {2, 3, 5}, N = 1000

α µ0 = 2 µ0 = 3 µ0 = 5

P-Value 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

1 0.011 0.054 0.098 0.014 0.049 0.091 0.016 0.057 0.099
2 0.010 0.060 0.095 0.013 0.048 0.095 0.012 0.052 0.090
3 0.010 0.053 0.102 0.010 0.053 0.098 0.018 0.049 0.090
5 0.014 0.058 0.094 0.014 0.052 0.084 0.012 0.044 0.096
10 0.014 0.063 0.106 0.009 0.052 0.099 0.004 0.041 0.088
20 0.014 0.049 0.094 0.011 0.050 0.105 0.006 0.044 0.090
30 0.013 0.053 0.108 0.007 0.040 0.092 0.007 0.035 0.089
50 0.015 0.056 0.107 0.013 0.048 0.089 0.010 0.049 0.093

mean. µ0 = 108, α = 10 and 10000 iterations computed a Type I error at sizes 0.01,

0.05 and 0.10 with results 0.01, 0.053, and 0.092 respectively.

Table 6.2: Case H0 : µ ≥ µ0, µ0 = {10, 20, 30}, N = 1000

α µ0 = 10 µ0 = 20 µ0 = 30

P-Value 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

1 0.011 0.058 0.106 0.012 0.056 0.107 0.009 0.048 0.090
2 0.013 0.051 0.103 0.015 0.051 0.096 0.007 0.046 0.093
3 0.014 0.052 0.096 0.011 0.047 0.095 0.010 0.044 0.095
5 0.014 0.045 0.085 0.014 0.045 0.085 0.007 0.044 0.090
10 0.009 0.046 0.090 0.009 0.046 0.090 0.007 0.044 0.094
20 0.008 0.050 0.101 0.010 0.041 0.089 0.012 0.070 0.112
30 0.009 0.048 0.085 0.007 0.044 0.091 0.010 0.064 0.106
50 0.013 0.053 0.083 0.012 0.045 0.082 0.012 0.046 0.096
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Table 6.3: Case H0 : µ ≥ µ0, µ0 = {50, 100, 200}, N = 1000

α µ0 = 50 µ0 = 100 µ0 = 200

P-Value 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

1 0.013 0.056 0.108 0.010 0.053 0.104 0.015 0.054 0.117
2 0.015 0.051 0.096 0.009 0.043 0.092 0.017 0.055 0.101
3 0.011 0.047 0.095 0.009 0.054 0.098 0.009 0.053 0.092
5 0.014 0.045 0.085 0.009 0.044 0.096 0.012 0.059 0.114
10 0.009 0.047 0.090 0.014 0.049 0.101 0.010 0.053 0.097
20 0.011 0.053 0.101 0.012 0.048 0.098 0.009 0.042 0.088
30 0.014 0.042 0.092 0.010 0.047 0.095 0.011 0.046 0.088
50 0.015 0.057 0.103 0.009 0.048 0.098 0.011 0.047 0.087
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CHAPTER 7

TESTING THE VARIANCE: σ2

The generalized estimation method is used for testing the variance of the Log-

Gamma distribution using a generalized pivotal quantity. Exact pivotal quantities can

not be constructed so we will use the generalized pivotal quantity method developed

in the previous chapters. The variance is a function of both parameters α and β.

Definitions

The variance is defined as ??. Construct the hypothesis test:

H0 : σ2 ≥ σ2
0 vs. H1 : σ2 < σ2

0

The Variance:

σ2 =

(
1− 2

β

)−α
−
(

1− 1

β

)−2α

for β > 2α > 0. (7.1)

The R package actuar has built in functions for the moments of the log-gamma

distribution. A root finding algorithm can be used to find β treating α as the nuisance

parameter. Reversing the process treating β as the nuisance parameter and solving

for α is equally difficult computationally.
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The R code in actuar

var <- mlgamma(2,a,b) - mlgamma(1,a,b)^2

where mlgamma(n, logshape = a, logscale = b) gives the moments of the log-gamma

distribution if b > 2.

Let W be the Uniform random variable such that

W = LGnα,nβ(t;µ) ∼ UNIF(0, 1) (7.2)

Method

The framework for testing the variance uses the same test statistic as the mean

and the β inference testing. There is some computational difficulty using the uniroot

function to find α and β from the hypothesized variance for the simulation. The

technique used for finding the inference for β is combined with an algorithm for

separating the variance into parameters of α and β. The hypothesis test for σ is

H0 : σ ≥ σ0 vs. H1 : σ < σ0.
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The generalized p-value for testing the null hypothesis H0 is given by

p = Pr

(
W

w(s, α̂(t;U, σ2
0))
≤ 1

)
(7.3)

= Pr
(
W ≤ w(s, α̂(t;U, σ2

0))
)

= E
(
w(s, α̂(t;U, σ2

0))
)

(7.4)

Numerical Results of the Simulation

Numerical testing with 1000 and 3000 iterations were performed. Remarkably,

finding the variance has the same speed as the β parameter simulation. Using a size

10 from X ∼ LG(α, β) and generating uniform random variables, U ∼ UNIF(0, 1)

and W ∼ UNIF(0, 1), the Type I error of the test is unbiased for most values of β

and α. I ran samples of n = 3000 and 5000 iterations for test values µ = 3 given

α = 5, with β ≈ 5.0695 computed a Type I error at sizes 0.01, 0.05 and 0.10 with

results at 0.0117, 0.048, and 0.0963 respectively. These results were typical for most

the parameter configurations that were computed. I used 1000 iterations for most

of the simulation because of the length of time to run each simulations. There were

very little performance difference between 1000 samples and 5000 samples. Simulation

were computed for various values of the variance σ2
0 = {2, 3, 5, 10, 20, 30, 50, 100, 200}.

Some of the simulations are included below.
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Table 7.1: Case H0 : σ2 ≥ σ2
0, σ

2
0 = {10, 20, 30}, N = 1000

α σ2
0 = 10 σ2

0 = 20 µ0 = 30

P-Value 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

1 0.011 0.058 0.106 0.012 0.056 0.107 0.009 0.048 0.090
2 0.013 0.051 0.103 0.015 0.051 0.096 0.007 0.046 0.093
3 0.014 0.052 0.096 0.011 0.047 0.095 0.010 0.044 0.095
5 0.014 0.045 0.085 0.014 0.045 0.085 0.007 0.044 0.090
10 0.009 0.046 0.090 0.009 0.046 0.090 0.007 0.044 0.094
20 0.008 0.050 0.101 0.010 0.041 0.089 0.012 0.070 0.112
30 0.009 0.048 0.085 0.007 0.044 0.091 0.010 0.064 0.106
50 0.013 0.053 0.083 0.012 0.045 0.082 0.012 0.046 0.096
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CHAPTER 8

TESTING THE COEFFICIENT OF VARIANCE: ρ = CV

The coefficient of variance is the ratio of the standard deviation, σ, and the non-

zero mean, µ, of a probability distribution. The coefficient of variation is a standard-

ized measure of dispersion of a probability distribution. The value is independent

of the units in the measurement resulting in a dimensionless number which could be

used to compare data sets with different units. Numerical problems arise when the

mean is close to zero causing the coefficient of variation to approach infinity and is

very sensitive to small changes in the mean. An advantage for using the coefficient

of variation over the variance is that it is a scale-invariant quantity.

Definitions

Define Coefficient of Variance as CV = ρ.

ρ =
σ

µ
=

√
(1− 2/β)−α − (1− 1/β)−2α

(1− 1/β)−α
. (8.1)

or we can write this as:

ρ =

√
(1− 2/β)−α

(1− 1/β)−2α − 1
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The hypothesis test for ρ is

H0 : ρ ≥ ρ0 vs. H1 : ρ < ρ0.

The generalized p-value for testing the null hypothesis H0 is given by

p = Pr

(
W

w(s, α̂(t;U, ρ0))
≤ 1

)
(8.2)

= Pr (W ≤ w(s, α̂(t;U, ρ0)))

= E (w(s, α̂(t;U, ρ0))) (8.3)

Method

Using the framework outlined chapter 2, use T ∗ =

(
n∏
i=1

Xi

) 1
n

∼ LG(nα, nβ) to

eliminate the nuisance parameter α. The hypothesized coefficient of variance value,

ρ0, is used to determine the value of β by re-parameterizing β in terms of ρ0 allowing

the treatment of α as the nuisance parameter as before.

Let U = U(T ) = FT (T ;α, β) = LGnα,nβ ∼ UNIF(0, 1). The inverse of α is denoted

as α̂(u; t). We find α̂ by creating a Monte Carlo simulation of distribution of T to

find the value of α̂ using uniroot in R.

The package actuar in R has the built-in function mlgamma(order, shapelog,

ratelog) which calculates the moments of the log-gamma distribution where order =
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1 is the first moment EX, order = 2 is the second moment EX2 and order = k is

EXk. Use uniroot or some other root finding algorithm to find either a = α or

b = β. cv is the hypothesized coefficient of variation.

cv=sqrt(mlgamma(2,a,b)-mlgamma(1,a,b)^2)/(mlgamma(1,a,b))

Numerical Results of the Simulation

Table 8.1: Case H0 : ρ ≥ ρ0, ρ0 = {0.25, 0.50, 1}, N = 1000

P-Value 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

α β ρ0 = 0.25 β ρ0 = 0.5 β ρ0 = 1

3 8.07 0.014 0.050 0.095 4.74 0.014 0.059 0.107 3.20 0.013 0.051 0.095
5 10.11 0.015 0.059 0.106 5.79 0.006 0.046 0.093 3.77 0.010 0.055 0.099
7 11.77 0.011 0.046 0.100 6.64 0.013 0.066 0.118 4.25 0.006 0.037 0.080
9 13.20 0.014 0.062 0.116 7.39 0.008 0.045 0.105 4.67 0.011 0.051 0.107
11 14.49 0.008 0.063 0.100 8.01 0.012 0.061 0.112 5.04 0.012 0.062 0.108
13 15.66 0.012 0.062 0.125 8.67 0.017 0.061 0.106 5.38 0.012 0.059 0.113
15 16.74 0.012 0.055 0.108 9.23 0.011 0.042 0.091 5.70 0.009 0.044 0.083
17 17.76 0.010 0.043 0.100 9.76 0.012 0.052 0.102 6.00 0.012 0.050 0.095

Table 8.2: Case H0 : ρ ≥ ρ0, ρ0 = {2, 3, 5}, N = 1000

P-Value 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

α β ρ0 = 2 β ρ0 = 3 β ρ0 = 5

3 2.55 0.010 0.056 0.110 2.37 0.014 0.054 0.101 2.22 0.012 0.039 0.097
5 2.91 0.019 0.062 0.112 2.65 0.017 0.058 0.111 2.44 0.014 0.057 0.102
7 3.21 0.009 0.049 0.098 2.89 0.012 0.045 0.094 2.64 0.015 0.052 0.108
9 3.47 0.020 0.057 0.110 3.10 0.013 0.039 0.094 2.81 0.013 0.056 0.112
11 3.71 0.020 0.058 0.108 3.30 0.012 0.055 0.106 2.98 0.013 0.058 0.101
13 3.93 0.011 0.060 0.107 3.48 0.018 0.054 0.100 3.12 0.014 0.053 0.097
15 4.14 0.018 0.058 0.114 3.65 0.015 0.049 0.106 3.26 0.006 0.052 0.107
17 4.33 0.006 0.048 0.108 3.81 0.015 0.048 0.095 3.39 0.011 0.049 0.111
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Table 8.3: Case H0 : ρ ≥ ρ0, ρ0 = {10, 15, 20}, N = 1000

P-Value 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

α β ρ0 = 10 β ρ0 = 15 β ρ0 = 20

10 2.64 0.013 0.057 0.109 2.54 0.015 0.058 0.108 2.49 0.010 0.059 0.111
15 2.94 0.012 0.053 0.100 2.81 0.009 0.048 0.098 2.74 0.010 0.053 0.118
20 3.20 0.011 0.056 0.113 3.05 0.014 0.055 0.107 2.97 0.012 0.051 0.099
25 3.44 0.009 0.051 0.009 3.27 0.012 0.064 0.109 3.17 0.014 0.051 0.105
30 3.64 0.017 0.062 0.106 3.46 0.016 0.046 0.094 3.35 0.012 0.064 0.103
35 3.85 0.009 0.050 0.103 3.64 0.010 0.044 0.086 3.52 0.010 0.041 0.096
40 4.03 0.011 0.049 0.102 3.81 0.011 0.049 0.099 3.68 0.011 0.055 0.099
50 4.37 0.010 0.052 0.101 4.12 0.011 0.051 0.101 3.98 0.006 0.051 0.113

Table 8.4: Case H0 : ρ ≥ ρ0, ρ0 = {25, 30, 50}, N = 1000

P-Value 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

α β ρ0 = 25 β ρ0 = 30 β ρ0 = 50

10 2.45 0.011 0.059 0.107 2.42 0.015 0.058 0.108 2.35 0.005 0.051 0.103
15 2.69 0.009 0.063 0.106 2.66 0.009 0.048 0.098 2.57 0.009 0.047 0.094
20 2.91 0.012 0.056 0.093 2.86 0.014 0.055 0.107 2.76 0.011 0.046 0.097
25 3.09 0.018 0.055 0.110 3.05 0.012 0.064 0.109 2.93 0.010 0.053 0.108
30 3.28 0.012 0.060 0.113 3.22 0.016 0.046 0.094 3.09 0.012 0.049 0.098
35 3.44 0.014 0.055 0.105 3.38 0.010 0.044 0.086 3.23 0.017 0.063 0.114
40 3.59 0.011 0.052 0.099 3.53 0.011 0.049 0.099 3.37 0.012 0.069 0.129
50 3.87 0.010 0.051 0.100 3.80 0.011 0.051 0.101 3.63 0.007 0.048 0.102
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CHAPTER 9

THE CONFIDENCE INTERVALS

Figure 9.1: Log-Gamma Confidence Interval with α = 10 and β = 10
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Figure 9.2: Log-Gamma Confidence Interval with α = 100 and β = 100
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We want to construct a confidence interval using the generalized estimation ap-

proach as defined in Chapter two. Our goal is to construct confidence intervals for

continuous distributions when there are no nuisance parameters by using pivotal

quantities or generalized pivotal quantities. Let X be a random sample from a dis-

tribution where X = {X1, X2, . . . , Xn} and A(X) and B(X) be two statistics such

that Pr [A(X) ≤ θ ≤ B(X)] = γ, the desired confidence coefficient. There are many

situations where exact confidence intervals are unavailable or are too computation-

ally difficult especially when there are a nuisance parameters. In our case, we have

θ = {α, β}.

1. Case 1: Find the confidence interval for α treating β as the nuisance parameter.

2. Case 2: Find the confidence interval for β treating α as the nuisance parameter.

Eliminating the nuisance parameters using the conditional densities defined (equation

3.3) for the Monte Carlo simulations.

C.I. using the Generalized Estimation

One benefit of using the generalized method is that we have eliminated the neg-

ative values on the lower bounds as the case when α = 2 and β = 3. The 90% C.I.

for M.L.E is (−1.219, 4.912) where the lower bound −1.219 is out of the parameter

space for β which is positive values. The length of the interval is 6.131 which is

twice as large as the G.E. 90% C.I., (1.673, 5.329) with length 3.656. The M.L.E. is

generally good to find the values of each parameter when the sample space is large
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but even when the the sample space is large, there may be multiple MLE’s for the

location parameter in the 3 parameter log-gamma distribution, Rao (1986) [?]. One

solution for the negative values in the confidence intervals is to take the maximum of

the the value and zero or just replace the values of that is negative with zero. Much

of the analysis of the log-gamma distribution has been concerning the T year flood

events. Condie, (1977) [?] and others, have determine that the the MLE method for

estimating parameters or a Mixed method of moments and MLEs were superior to

fitting by moments alone. Of course, if using a small sample size those estimates my

not be very good. Weerahandi (1995) [?] points out the that Generalized Confidence

Intervals may not always have the confidence coefficient γ as defined. This happens

when we construct our pivotal quantity on two minimal sufficient statistics which are

not complete. Therefore we do not utilize all of the information in the data concern-

ing our parameter.

I used the p-value code derived for General Estimation for the kernel of the

Confidence Intervals. From above, the values of Pr(R ≤ 1) = 1 − γ where R =

W/w(s, t, α̂(U), βγ/2) by solving for βα/2 and β1−γ/2 for the inverse process using the

bisection method. No appreciable benefits were gained above 200 Monte Carlo simula-

tions. The α, logshape, and the β, logscale parameters were evaluated with n = 10 and

n = 20 sample sizes for parameters: α = {1, 2, 3, 5, 10, 20} with β = {1, 2, 3, 5, 10, 20}

for 90% and 95% confidence intervals.
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The generalized confidence interval is given by [min{A,B},max{A,B}]. Let A

be a value of α for which the 97.5th percentile of the distribution is equal to 1, and

B be the value of β for which the 2.5th percentile of the distribution of is equal to 1

where Pr(R ≤ 1) = a and Pr(R ≤ 1) = 1−a. Here, a = 0.05/2 = 0.025. The interval

is an exact generalized interval based on exact probability statement. As expected in

our case, the GPQ out performed the MLE based method below especially in smaller

sample sizes.

Generalized Pivotal Quantity for the C.I. for Beta parameter

The same basic technique was used to find the confidence intervals that was used

to find the P-values for the hypothesis testing for the parameters and functions of

parameters.

For example, take the 95% confidence interval for α = 10 and β = 5. Hypothesis

testing such as H0 : β ≤ 2.719 against H1 : β > 2.719 yields a p-values of 0.057245

which is right on the lower boundary of the 95% confidence interval which we would

expect especially because the test for the β parameter is unbiased. Similarly, the

upper bound of the confidence interval, 10.2106, yields a p-value of 0.052535 for the

test of H0 : β ≥ 10.21 against H1 : β < 10.21.

Comparing the confidence intervals using the GE method with the confidence in-

tervals using asymptotic methods such as Fisher Information theory which produces
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Table 9.1: 90% General Estimation C.I. for the Lograte = β

N α β Interval Length
200 2 2 (1.141, 3.582) 2.441
200 3 2 (1.155, 3.620) 2.465
200 5 2 (1.148, 3.472) 2.324
200 10 2 (1.218, 3.655) 2.437
200 2 3 (1.798, 5.621) 3.823
200 5 3 (1.566, 5.378) 3.812
200 10 3 (1.753, 5.269) 3.516
200 2 5 (2.868, 9.007) 6.139
200 3 5 (2.891, 8.885) 5.994
200 5 5 (2.548, 8.811) 6.263
200 10 5 (2.956, 8.856) 5.951
200 2 10 (5.865, 18.370) 12.5044
200 3 10 (5.671, 17.519) 11.848
200 5 10 (5.886, 17.818) 11.932
200 10 10 (5.956, 17.870) 11.914

Table 9.2: 95% General Estimation C.I. for the Lograte = β

N α β Interval Length
200 2 2 (1.037, 4.026) 2.989
200 3 2 (1.026, 3.925) 2.899
200 5 2 (1.019, 3.837) 2.818
200 10 2 (1.026, 3.925) 2.899
200 2 3 ( 1.541, 6.037) 4.496
1000 5 3 (1.514, 5.622) 4.108
200 10 3 (1.596, 5.943) 4.346
200 2 5 (2.733, 10.690) 7.957
200 3 5 (2.590, 9.924) 7.334
1000 5 5 (2.803, 9.868) 7.065
300 10 5 (2.719, 10.121) 7.402
200 2 10 (5.022, 19.742) 14.720
200 3 10 (5.118, 19.635) 14.517
200 5 10 (4.868, 18.349) 13.481
200 10 10 (5.326, 19.809) 14.483
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Table 9.3: 90% General Estimation C.I. for the Shapelog = α

N α β Interval Length
200 2 2 (1.238, 3.465) 2.227
200 2 3 (1.219, 3.374) 2.155
200 2 5 (1.242, 3.426) 2.184
200 2 10 (1.297, 3.580) 2.283
200 5 2 (2.565, 9.028) 6.464
200 5 3 (2.850, 9.063) 6.214
200 5 5 (2.985, 8.940) 5.954
200 5 10 (3.110, 9.049) 5.939
200 10 2 (4.058, 21.596) 17.5381
200 10 3 (4.058, 21.596) 17.5381
200 10 5 (5.048, 19.202) 14.154
200 10 10 (5.699, 17.983) 12.284

good estimates when the sample size is large but not so good for small sample sizes.

Generalized Pivotal Quantity for the C.I. for Alpha parameter

The confidence intervals for α using the general estimation method is significantly

better in terms of length and eliminating negative values for the parameters,

Frequentists often use confidence intervals as method of interval estimation us-

ing repeated sampling. The confidence interval would contain the true population

parameter γ % percent of the time where the probability statement is based on the

confidence interval, not the population parameter.

As in the classical approach for finding point estimators, our estimator needs

to be an observable random quantity free of all nuisance parameters. Weeranhandi

(2014) [?] extends the concept of generalized point estimates to generalized confidence
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Table 9.4: 95% General Estimation C.I. for the Shapelog =α

N α β Interval Length
200 2 2 (1.107, 3.782) 2.675
200 2 3 (1.079, 3.633) 2.554
200 2 5 (1.110, 3.727) 2.617
200 2 10 (1.105, 3.694) 2.589
200 5 2 (2.263, 10.311) 8.047
200 5 3 (2.408, 9.590) 7.182
200 5 5 (2.641, 9.804) 7.163
200 5 10 (2.592, 9.257) 6.665
200 10 2 (3.131, 29.245*) 26.113
200 10 3 (3.308, 25.557) 22.250
200 10 5 (4.222, 21.045) 16.823
200 10 10 (4.957, 19.553) 14.595

intervals using generalized p-values. Our goal is to construct exact confidence intervals

without having to resort to asymptotic confidence intervals that are accurate only

when we have a large sample size by finding a pivotal quantity that does not depend

on the unknown true parameter or on any nuisance parameter based on observed

values of X.

Figure 9.3: Log-Gamma Confidence Interval with α = 20 and β = 10
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Figure 9.4: Log-Gamma Confidence Interval with α = 0.5 and β = 2
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C.I. using the MLE

The Maximum Likelihood Estimates, MLE, are used to compare to the GE and

the MOM methods.

f(x;α, β) =
βαx−β−1

Γ(α)
(log x)α−1

f(x;α, β) =
n∏
i=1

βαx−β−1
i

Γ(α)
(log xi)

α−1 =
βnα

[Γ(α)]n

n∏
i=1

x−β−1
i (log xi)

α−1 (9.1)

logL(α, β) = log

[
βnα

[Γ(α)]n

n∏
i=1

x−β−1
i

n∏
i=1

(log xi)
α−1

]
(9.2)

ln(α, β) = nα log β − n log Γ(α) + (−β − 1) log

(
n∏
i=1

xi

)
+ (α− 1) log

n∏
i=1

(log xi)

= nα log β − n log Γ(α)− (β + 1)
n∑
i=1

log xi + (α− 1)
n∑
i=1

log (log xi)

= nα log β − n log Γ(α)− n(β + 1)ȳn + n(α− 1)z̄n

where ȳn =
1

n

n∑
i=1

log xi and z̄n =
1

n

n∑
i=1

log(log xi). (9.3)
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The expected Fisher information matrix is:

In(α, β) = −

 ∂ln(α,β)
∂α2

∂ln(α,β)
∂β∂α

∂ln(α,β)
∂α∂β

∂ln(α,β)
∂β2

 =

 nψ′(α) −n
β

−n
β

nα
β2

 (9.4)

where the digamma function is ψ(α) =
d

dα
log Γ(α) =

Γ′(α)

Γ(α)

and the trigamma function is ψ′(α) = ψ1(α) =
d2

dα2
log Γ(α) =

d

dα
ψ(α).

We will use the MLE’s for the α and β parameters as initial values for expected

Fisher information.  α̂n

β̂n

 ≈ N


 α

β

 , In(θ)−1


We can also use the observes Fisher information.

 α̂n

β̂n

 ≈ N


 α

β

 ,Jn(θ)−1

 where Jn(θ) = −∇2ln(θ).

A similar method using a Newton-Raphson algorithm yields slightly better approx-

imations. There are several limitations to this technique including the requirement

for close initial estimates which can be troublesome for the log-gamma distributions,

large standard errors even with small sample sizes, and negative parameter values

causing the algorithm to crash unexpectedly.
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Varying sample sizes were evaluated with selected examples with small sample

sizes are provided below. The Newton-Raphson algorithm is used to find the two

unknown parameters using J(θ) the observed information matrix. This method, as

well as the MLE method is often unpredictable for small sample sizes.

Figure 9.5: Log-Gamma Confidence Interval with α = 2 and β = 1

Log−Gamma Distribution
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θ(s+1) = θ(s+1) + J−1
(
θ(s)
)
s
(
θ(s)
)

where s(θ) is the score function and J(θ) is the observed information matrix. Let

n = 10, α = 4 and β = 5:

α̂ = 2.885, β̂ = 3.959

J(θ̂) =

 8.269 −5.051

−5.051 3.681

 , J−1(θ̂) =

 0.748 1.026

1.026 1.698
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The standard errors are α̂se =
√

0.748 = 0.865 and β̂se =
√

1.680 = 1.296. The values

of the MLE used as initial estimates were α = 4.990 and β = 6.750. The Newton

Ralpson method is a vast improvement over the MLE method where the estimates

varied greatly for each approximation using the uniroot function in R.

The Confidence Intervals were obtained using this technique. I ran 1000 iterations

to show that the MLE is an asymptotically consistent estimator.

N Shape Rate a b LBa UBa LBb UBb

1000 1 5 1.172 5.974 -2.647 4.635 2.003 8.134
1000 2 5 2.035 4.876 -1.669 5.613 1.659 7.791
1000 5 5 5.037 5.016 1.424 8.706 1.978 8.109
1000 10 5 9.791 4.886 6.124 13.406 1.807 7.939
1000 20 5 18.904 4.729 15.26 22.541 1.663 7.794

We compared the estimates for the parameters for the log-gamma distribution

using the Generalized Estimation method with a parametric bootstrap method using

the MLE and the method of moments for each parameter. We can see by thee tables

that the Generalized Estimation method gave more narrow confidence intervals and

did not give values that were outside of the parameter space such as negative values.
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Table 9.5: 95% Confidence Intervals for α and β: α = 2

N Shape Rate α̂ β̂ 95% C.I. α̂ 95% C.I. β̂

10

2 1 4.325 2.428 (0.684, 7.966) (-0.638, 5.494)
2 2 1.744 1.847 (-1.897, 5.384) (-1.219, 4.912)
2 5 1.353 2.548 (-2.288, 4.994) (-0.518, 5.613)
2 10 2.234 7.300 (-1.407, 5.874) (4.235, 10.366)
2 20 1.371 10.648 (-2.270, 5.012) (7.582, 13.713)

20

2 1 3.290 1.569 (-0.351, 6.931) (-1.497, 4.634)
2 2 3.768 4.026 (0.127, 7.409) (0.961, 7.092)
2 5 2.749 5.811 (-0.891, 6.390) (2.745, 8.876)
2 10 1.961 7.723 (-1.679, 5.602) (4.658, 10.789)
2 20 2.654 24.209 (-0.987, 6.295) (21.144, 27.275)

30

2 1 1.886 1.029 (-1.754, 5.527) (-2.037, 4.094)
2 2 2.699 3.163 (-0.942, 6.340) (0.097, 6.228)
2 5 2.349 5.314 (-1.292, 5.990) (2.248, 8.380)
2 10 2.986 14.375 (-0.655, 6.627) (11.309, 17.440)
2 20 1.977 16.760 (-1.664, 5.618) (13.694, 19.825)

50

2 1 1.284 0.678 (-2.357, 4.925) (-2.388, 3.743)
2 2 2.039 1.811 (-1.602, 5.680) (-1.254, 4.877)
2 5 1.979 4.646 (-1.662, 5.620) (1.581, 7.712)
2 10 1.966 10.445 (-1.675, 5.606) (7.379, 13.510)
2 20 2.343 21.354 (-1.298, 5.984) (18.288, 24.419)

100

2 1 1.708 1.021 (-1.933, 5.348) (-2.044, 4.087)
2 2 2.343 2.233 (-1.297, 5.984) (-0.833, 5.298)
2 5 2.776 7.853 (-0.865, 6.417) (4.787, 10.919)
2 10 1.948 10.927 (-1.692, 5.589) (7.862, 13.993)
2 20 2.377 24.040 (-1.264, 6.018) (20.975, 27.106)
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Table 9.6: 95% Confidence Intervals for α and β: α = 5

N Shape Rate α̂ β̂ 95% C.I. α̂ 95% C.I. β̂

10

5 1 6.170 1.669 (2.604, 9.886) (-1.376, 4.756)
5 2 4.155 1.600 (-0.272, 7.010) (-1.768, 4.363)
5 5 6.390 5.972 (2.505, 9.787) (2.679, 8.810)
5 10 9.000 19.728 (5.182, 12.464) (16.275, 22.407)
5 20 7.135 26.722 (3.108, 10.390) (22.211, 28.342)

20

5 1 5.587 1.122 (1.800, 9.082) (-1.973, 4.159)
5 2 4.278 1.659 (0.889, 8.171) (-1.309, 4.822)
5 5 3.727 4.014 (0.645, 7.926) (1.550, 7.682)
5 10 6.140 12.273 (1.977, 9.258) (8.162, 14.294)
5 20 4.071 17.038 (-0.272, 7.009) (11.034, 17.165)

30

5 1 4.171 0.958 (0.530, 7.811) (-2.108, 4.024)
5 2 4.280 1.643 (0.639, 7.921) (-1.423, 4.709)
5 5 5.543 5.802 (1.903, 9.184) (2.736, 8.867)
5 10 4.218 9.751 (0.578, 7.859) (6.686, 12.817)
5 20 3.637 15.476 (-0.004, 7.278) (12.411, 18.542)

50

5 1 3.793 0.830 (0.296, 7.578) (-2.204, 3.927)
5 2 5.729 2.234 (2.174, 9.456) (-0.799, 5.333)
5 5 5.991 6.502 (2.223, 9.505) (3.298, 9.430)
5 10 4.470 8.821 (0.759, 8.041) (5.617, 11.748)
5 20 5.134 19.685 (1.919, 9.200) (18.251, 24.382)

100

5 1 6.082 1.146 (2.441, 9.723) (-1.920, 4.212)
5 2 4.837 2.027 (1.196, 8.477) (-1.039, 5.092)
5 5 6.132 5.999 (2.491, 9.773) (2.933, 9.065)
5 10 5.501 10.993 (1.860, 9.142) (7.927, 14.059)
5 20 4.350 17.459 (0.709, 7.991) (14.393, 20.524)
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Table 9.7: 95% Confidence Intervals for α and β: β = 2

N Shape Rate α̂ β̂ 95% C.I. α̂ 95% C.I. β̂

10

1 2 1.191 2.387 (-2.450, 4.832) (-0.678, 5.453)
2 2 1.663 1.973 (-1.978, 5.304) (-1.092, 5.039)
5 2 6.967 3.178 (3.327, 10.608) (0.112, 6.244)
10 2 10.436 1.956 (6.796, 14.077) (-1.110, 5.021)
20 2 37.972 3.642 (34.331, 41.613) (0.577, 6.708)

20

1 2 0.612 1.065 (-3.028, 4.253) (-2.001, 4.131)
2 2 1.846 1.647 (-1.795, 5.486) (-1.419, 4.712)
5 2 2.958 1.196 (-0.682, 6.599) (-1.870, 4.261)
10 2 22.515 4.773 (18.875, 26.156) (1.708, 7.839)
20 2 21.107 2.229 (17.466, 24.747) (-0.836, 5.295)

30

1 2 1.653 2.874 (-1.987, 5.294) (-0.192, 5.940)
2 2 1.618 1.656 (-2.023, 5.259) (-1.409, 4.722)
5 2 6.835 2.539 (3.194, 10.475) (-0.527, 5.604)
10 2 13.809 2.616 (10.168, 17.449) (-0.450, 5.682)
20 2 19.536 1.896 (15.895, 23.177) (-1.170, 4.961)

50

1 2 1.311 2.624 (-2.329, 4.952) (-0.442, 5.689)
2 2 2.065 1.895 (-1.576, 5.705) (-1.171, 4.961)
5 2 5.106 2.009 (1.465, 8.747) (-1.056, 5.075)
10 2 7.663 1.473 (4.022, 11.304) (-1.592, 4.539)
20 2 18.433 1.836 (14.793, 22.074) (-1.229, 4.902)

100

1 2 0.944 1.82 (-2.697, 4.585) (-1.246, 4.886)
2 2 2.148 2.361 (-1.493, 5.788) (-0.705, 5.427)
5 2 5.605 2.182 (1.964, 9.246) (-0.884, 5.248)
10 2 8.574 1.673 (4.933, 12.215) (-1.392, 4.739)
20 2 20.528 1.994 (16.887, 24.169) (-1.072, 5.059)
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Table 9.8: 95% Confidence Intervals for α and β: β = 5

N Shape Rate α̂ β̂ 95% C.I. α̂ 95% C.I. β̂

10

1 5 1.549 5.322 (-2.092, 5.190) (2.256, 8.388)
2 5 7.629 18.841 (3.988, 1.270) (15.776, 21.907)
5 5 5.356 5.191 (1.715, 8.997) (2.126, 8.257)
10 5 4.724 2.669 (1.083, 8.365) (-0.397, 5.734)
20 5 36.517 8.874 (32.876, 40.158) (5.808, 11.940)

20

1 5 0.963 3.650 (-2.678, 4.604) (0.585, 6.716)
2 5 1.321 3.733 (-2.320, 4.961) (0.668, 6.799)
5 5 4.849 4.607 (1.208, 8.490) (1.541, 7.673)
10 5 9.787 4.461 (6.147, 13.428) (1.396, 7.527)
20 5 18.244 4.630 (14.604, 21.885) (1.564, 7.696)

30

1 5 0.710 3.413 (-2.931, 4.351) (0.348, 6.479)
2 5 1.751 4.009 (-1.89, 5.391) (0.943, 7.075)
5 5 5.846 5.220 (2.205, 9.487) (2.155, 8.286)
10 5 9.375 4.310 (5.734, 13.016) (1.244, 7.375)
20 5 19.808 5.550 (16.167, 23.449) (2.485, 8.616)

50

1 5 0.952 4.581 (-2.689, 4.593) (1.515, 7.646)
2 5 2.231 5.133 (-1.410, 5.871) (2.068, 8.199)
5 5 6.880 6.507 (3.239, 10.520) (3.442, 9.573)
10 5 11.332 6.077 (7.691, 14.972) (3.011, 9.143)
20 5 19.976 4.765 (16.335, 23.617) (1.699, 7.831)

100

1 5 1.020 5.746 (-2.620, 4.661) (2.680, 8.811)
2 5 2.344 6.067 (-1.296, 5.985) (3.001, 9.133)
5 5 5.210 5.046 (1.569, 8.851) (1.980, 8.112)
10 5 8.901 4.505 (5.260, 12.542) (1.439, 7.570)
20 5 23.032 5.638 (19.391, 26.673) (2.572, 8.704)

87



CHAPTER 10

GOODNESS OF FIT BALL BEARINGS

Ball Bearings

Data Set 1: The first data set is as follows; (see below). The data given here arose

in tests on endurance of deep groove ball bearings. Statisticians have used this well-

known data set to compare different extreme value distributions such as the Weibull,

gamma, log-gamma, censored data, etc...

• Lieblein and Zelen (1956) [?] used log lifetimes and then used two-parameter

Weibull distribution

• Lawless (1982)[?] and Balakrishnan and Chan (1995a,b) [?][?] assumed a gen-

eralized gamma distribution for the original data and hence a log-gamma dis-

tribution for the log-lifetimes.

• Chien-Tai Lin, Sam J. S. Wu and Balakrishnan (2006)[?] Log-Gamma Distri-

bution Based on Progressively Type-II Censored Data

The assumptions in the original study by were given by Lieblein and Zelen (1956)

[?]. Some of the pertinent assumptions were:
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• Each test group can be regarded as a random sample from a homogeneous

population of ball bearings.

• The probability distribution of the number of revolutions to fatigue failure is

of the same form for each test group, although its parameters may differ from

group to group.

• Differences in the measured life of bearings classed as identical, tested at the

same load, reflect only the inherent variability of fatigue life, and are free from

systematic errors that may arise from different test conditions, materials, man-

ufacturing methods, etc.

• The Weibull distribution was used in the original study as the fatigue-life dis-

tribution although other methods performed as well or better in subsequent

studies using the same data sets.

The data are the number of million revolutions before failure for each of the 23 ball

bearings in the life test and they are 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80,

51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12,

105.84, 127.92, 128.04, 173.40.

The log-lifetimes are used in the Weibull, Gamma and Log-Gamma studies: 2.884,

3.365, 3.497, 3.726, 3.741, 3.820, 3.888, 3.948, 3.950, 3.991, 4.017, 4.217, 4.229, 4.229,

4.232, 4.432, 4.534, 4.591, 4.655, 4.662, 4.851, 4.852, 5.156.

Using Chi-Squared Goodness of Fit test for these three distributions, Log-Gamma is
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Figure 10.1: Log-Gamma Distribution with α = 60.6 and β = 14.6

the best, followed by Gamma and then Weibull. The three parameter Log Pearson

and the two parameter Log-Gamma performed equally well on using the Chi-Squared

goodness of fit test. The Log-Gamma distribution was compared to 65 distributions

with one to six parameters using Easy Fit [reference] by comparing the Kolmogorov-

Smirnov test, Anderson-Darling tests and the Chi-Squared test. The Log-Gamma

distribution provided a very good fit especially for a two parameter distribution. The

Log-Gamma distribution was a better fit for two out of the tests than the 3 parameter

Log-Pearson distribution.

The estimates for the parameters for the Log-Gamma distribution using the Gen-

eralized Estimation method with a parametric bootstrap method using the MLE and

the method of moments for each parameter.
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Figure 10.2: Weibull Distribution with α = 2.2 and β = 77.2

Ball Bearing Example

Notice by talking the log of the data the graph of the distribution is more cen-

tered with less skew. Using the MLE’s of the shape parameter,α = 59.17 , and the

logscale parameter, β = 14.25, fitting this data on the log-gamma distribution the

90% confidence for β is (8.668262, 25.876486) with length 17.208.

The true coverage for these parameters is using the simulation with fixed alpha

and beta. DO we know the true values of this?

As stated in the introduction sections, Lawless (1982) [?], Lawless (1980) [?]

and Prentice (1974) [?] used a ”transformed log-gamma distribution” which is a

re-parameterizations of the the Log-Pearson / Log-Gamma distribution that is di-

rectly derived from the gamma distribution. With this clever parametrization, the

log-gamma distribution has the Normal and the Extreme Value as distributions in

this new family. Lifetime analysis can be analyzed with the assumption of Weibull

91



Figure 10.3: Gamma Distribution with α = 3.7 and β = 19.4

or LogNormal with an adjust of the K parameter.

Starting with a one parameter gamma distribution, T ∼ Gamma(k), where k is

a shape parameter or sometimes called a index parameter in this case.

f(t) =
tk−1e−t

Γ(k)
where t > 0 and k > 0. (10.1)

Let W = log T or T = exp(W ).
dT

dW
= eW

. Substitute into equation 8.1.

fW (w) =
(ew)k−1e−e

w

Γ(k)
· ew =

exp(kw − ew)

Γ(k)
(10.2)

Finally, we want to substitute W = k−1/2Z + logK and dW = k−1/2dZ because as k

approaches infinity, the mean and variance of become infinite. This is the motivation
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Figure 10.4: Log-Gamma Distribution using log lifetimes with α = 112.4 and β = 79.4

for the new variate in the form of W .

fZ(z; k) =

exp

{
k(k−

1
2 z + log k)− exp(k−

1
2 z + log k)

}
k−

1
2

Γ(k)

=
kk−1/2

Γ(k)
exp

[
k1/2z − k exp(k−1/2z)

]
, −∞ < z <∞. (10.3)

When k = 1 we get the Extreme Value distribution and when k = ∞, we get the

Normal distribution corresponding to Weibull and the log-Normal distributions for

T . Two important comment by Lawless; the pdf f(z;k) changes very little as as k

increases from 1 to∞ and except for very large sample sizes, k is difficulty to estimate

precisely. This is the preferred parametrization for several authors in literature mainly

because it is now a little easier to find MLE’s confidence intervals as well as hypothesis

testing. Obviously the domain contains all real numbers as opposed to 1,∞ such as

the Log-Gamma distribution. We can now add a location and scale parameter to the
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Figure 10.5: Gamma Distribution using log lifetimes with α = 60.6 and β = 14.6

distribution by letting...

W1 =
Y − u
b
∼ LG(α, β)

where u = logα and b = β−1

If we let W = Y−µ
σ

, where σ = b/
√

(k) and µ = u+ b log k.

Some notes on the ball bearing. Using the numbers from Lawless, 1980, we get

MLE for µ̂ = 4.230 and σ̂ = 0.510 using k = 10.6. Suing the Log-Gamma distribution

I got α = log(112) = 4.718 and β = 0.01259 ∗
√

(10.6) =

Conditional and unconditional methods produced almost exactly the same results

although Lawless has shown theoretical grounds for preferring the conditional ap-

proach. The conditional distribution were conditioned on the observed value of the

ancillary statistic for the sample in question. ai = (yi− µ̄)/σ̃, (i = 1, ...n). According
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Figure 10.6: Weibull Distribution using log lifetimes with α = 8.6 and β = 4.3

to Lawless and Prentice, approximations are not good unless unless the sample sizes

are fairly large since we resort to using maximum likelihood-based large sample pro-

cedures even after transforming the log-gamma distribution. These result were better

but have limitations. Furthermore, approximating k has its own difficulties where

good inference procedures are often difficult when k is unknown, assumed based on

agreement or a range of plausible values.
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Figure 10.7: Log-Gamma vs.Gamma vs. Weibull

Figure 10.8: Log-Gamma vs.Gamma vs. Weibull using log lifetimes
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Figure 10.9: Ball Bearing CI with Data and Log Data
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Table 10.1: Fit tests for Log-Gamma Distribution

Log-Gamma
Kolmogorov-Smirnov
Sample Size 23
Statistic 0.08804
P-Value 0.9871
Rank 3
α 0.2 0.1 0.05 0.02 0.01
Critical Value 0.21645 0.24746 0.2749 0.30728 0.32954
Reject? No No No No No
Anderson-Darling
Sample Size 23
Statistic 0.22898
P-Value none
Rank 3
α 0.2 0.1 0.05 0.02 0.01
Critical Value 1.3749 1.9286 2.5018 3.2892 3.9074
Reject? No No No No No
Chi-Squared
Sample Size 23
Statistic 0.85779
P-Value 0.65123
Rank 18
α 0.2 0.1 0.05 0.02 0.01
Critical Value 3.2189 4.6052 5.9915 7.824 9.2103
Reject? No No No No No

98



CHAPTER 11

TESTING THE POWER OF THE PARAMETERS

This method can also be used to test real data sets for the mean, variance, and

each of the parameters, α and β. For example, the p-value for testing the mean of

the log-gamma distribution can be calculated by modifying the code used for the

simulation by testing the data set and the hypothesized value for the parameter or

functions of parameters such as the coefficient of variance.

The β Parameter

Recall the hypothesis test for the β is:

H0 : β ≥ β0 vs. H1 : β < β0

The parameters α and β will be called a and b, respectively, while α and β represent

the probability of a type I error and the probability of a type II error, respectively.
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Figure 11.1: Power of the generalized test for Log-Scale parameter, α = 0.05.
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Figure 11.2: Power of the generalized test for Log-Scale parameter, α = 0.05.
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Testing the µ0 value for data sets

Recall the hypothesis test for the µ is:

H0 : µ ≥ µ0 vs. H1 : µ < µ0

where µ = (1 − 1/β)−α. Sample sizes as low as n = 5 were too small to give

accurate results.
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Table 11.1: Case H0 : µ ≥ µ0, α = {2, 5, 10}

µ0 α = 3, β = 5 µ0 α = 5, β = 5 µ0 α = 5, β = 10

Samples 5 10 20 5 10 20 5 10 20

2 0.777 0.998 0.994 2.5 0.927 0.977 0.999 4 0.699 0.784 0.995
3 0.412 0.565 0.466 3.0 0.727 0.728 0.878 6 0.504 0.499 0.950
4 0.312 0.203 0.167 3.5 0.548 0.391 0.430 8 0.351 0.264 0.813
5 0.268 0.071 0.118 4.0 0.369 0.192 0.161 10 0.231 0.121 0.611
6 0.255 0.050 0.066 4.5 0.252 0.094 0.063 12 0.157 0.052 0.392
7 0.200 0.043 0.050 5.0 0.222 0.063 0.025 14 0.103 0.021 0.221
8 0.134 0.047 0.044 5.5 0.219 0.047 0.014 16 0.062 0.008 0.106
9 0.093 0.022 0.036 6.0 0.205 0.032 0.006 18 0.041 0.003 0.051
10 0.055 0.021 0.033 7.0 0.188 0.013 0.002 20 0.025 0.001 0.022
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CHAPTER 12

CONCLUSION

The Log-Gamma Distribution is used in hydrology, finance and reliability testing.

Accurate testing of the parameters and functions of the parameters is difficult using

current methods based on the Maximum Likelihood Estimates and the Method of

Moments especially for small sample sizes. Significantly more accurate results using

the Generalized Estimation method for typically used values in the parameters spaces

for sample sizes as low as 10 were produced for each parameter, the mean, the vari-

ance, and the coefficient of variance. Other functions of parameters can be testing

using the basic code and modifying the simulation part of the code. The length of

computation time was significantly increased for more complicated functions of pa-

rameters.

There were computational difficulties testing the shape parameter α when the

α value was larger than the β value. The test was not valid for α larger than β

value. This computational problem did not occur for functions of the parameters

which included the α and β parameters. The Generalized approach introduced by

Weerahandi for two parameter distributions is accomplished for each distribution is

dependent on the distribution of the sufficient statistics. Transforming the standard
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sufficient statistics into independent sufficient statistics is not an easy task. More

research for an easier, systemic approach for this step is warranted in order to tackle

other two parameter distributions such as the Weibull or the Laplace distribution.
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