
UNLV Theses, Dissertations, Professional Papers, and Capstones 

August 2019 

An Application of Conformal Mapping to the Boundary Element An Application of Conformal Mapping to the Boundary Element 

Method for Unconfined Steady Seepage with a Phreatic Surface Method for Unconfined Steady Seepage with a Phreatic Surface 

Jorge Eduardo Reyes 
reyesj1@unlv.nevada.edu 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Applied Mathematics Commons, and the Mathematics Commons 

Repository Citation Repository Citation 
Reyes, Jorge Eduardo, "An Application of Conformal Mapping to the Boundary Element Method for 
Unconfined Steady Seepage with a Phreatic Surface" (2019). UNLV Theses, Dissertations, Professional 
Papers, and Capstones. 3748. 
https://digitalscholarship.unlv.edu/thesesdissertations/3748 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by 
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3748&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3748&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/3748?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3748&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu


AN APPLICATION OF CONFORMAL MAPPING TO THE BOUNDARY ELEMENT

METHOD FOR UNCONFINED STEADY SEEPAGE WITH

A PHREATIC SURFACE

By

Jorge Reyes

Bachelor of Science - Mathematics
University of Nevada, Las Vegas

2015

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science - Mathematical Sciences

Department of Mathematical Sciences
College of Sciences

The Graduate College

University of Nevada, Las Vegas
August 2019



—————————————————————————————–

Copyright by Jorge E. Reyes Jr., 2019

All Rights Reserved

—————————————————————————————–



 

ii 
 

  

  

 

Thesis Approval 

The Graduate College 

The University of Nevada, Las Vegas 

        

August 5, 2019 

This thesis prepared by  

Jorge Reyes 

entitled  

An Application of Conformal Mapping to the Boundary Element Method for Unconfined 

Steady Seepage with a Phreatic Surface 

is approved in partial fulfillment of the requirements for the degree of 

Master of Science - Mathematical Sciences 

Department of Mathematical Sciences 

Angel Muleshkov, Ph.D.    Kathryn Hausbeck Korgan, Ph.D. 
Examination Committee Chair      Graduate College Dean 

 

Monika Neda, Ph.D. 
Examination Committee Member        

  

Pengtao Sun, Ph.D. 
Examination Committee Member 

 

David Kreamer, Ph.D. 
Graduate College Faculty Representative 

 



ABSTRACT

An Application of Conformal Mapping to the Boundary Element Method for

Unconfined Steady Seepage with a Phreatic Surface

By

Jorge Reyes

Dr. Angel Muleshkov, Examination Committee Chair

Associate Professor of Mathematical Sciences

University of Nevada, Las Vegas

In this thesis, numerical results using the Boundary Element Method (BEM) for groundwater

flow in a domain with a boundary that contains numerous singularities with a phreatic surface

are developed. The flow in the domain is modeled using Darcy’s law for a homogeneous isotropic

porous medium. The boundary conditions are a combination of Dirichlet and Neumann with the

phreatic surface having both boundary conditions. Exact solutions by Conformal Mapping for

simplified domains with the same singularity as the original domain allow for modifications to the

BEM resulting in an improvement to the numerical solution.

An iterative process is used to determine the location of the phreatic surface and the location

of the exit point. The iteration starts with an initial guess for the phreatic surface using the exact

solution by conformal mapping for an infinite unconfined domain that preserves the important

features of the domain around phreatic surface near the exit point.

Initially, the problem is solved using the conventional BEM as described by Liggett and Liu

(1983). It is expected that the singularities and unknown location of the phreatic surface will lead

iii



to a failure of the BEM solution especially near the singular points and on the phreatic surface.

Then, the modified BEM with the conformal mapping improvements is used to find the solution.

The modified and conventional BEM are then compared with an emphasis on accuracy of the

numerical solutions. Several tables and figures are produced to illustrate the results.
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CHAPTER 1

INTRODUCTION

1.1 Groundwater Flow and Darcy’s Law

The dynamics of fluids in a porous media have long been studied. It is a subject of interest for

Groundwater Hydrology as well as many fields of Physics and Engineering. The following work is

based on the assumptions that allow the use of Darcy’s Law which establishes linear dependency

between the discharge velocity and the hydraulic gradient given in Eq.(1.5) (Harr, 1962; Bear, 1972;

2018).

The conditions in which Darcy’s Law can be used to model a flow are as follows. The first

assumption in Darcy’s Law is that the flow is steady, specifically laminar, which is found at lower

velocities (Harr, 1962; Bear, 1972; 2018). This, however, raises the question about where exactly

does laminar flow end and turbulent flow begin. In what is an oversimplification to the actual

answer, it seems that having a Reynolds’ number less than 1 seems to distinguish laminar flow and

where Darcy’s Law seems to be valid, although sometimes a Reynolds’ number as high as 10 can

work (Bear, 2018; Harr, 1962).

The following additional conditions are imposed for the purposes of allowing Darcy’s Law to

be described with the two-dimensional Laplace equation. The soil is assumed homogeneous and

isotropic, the fluid is incompressible, and the flow has the same movement in vertical parallel planes.

The formulation of Darcy’s Law typically begins with the following Bernoulli equation (Harr,

1962)

1



H =
p

ρg
+ z +

v2

2g
. (1.1)

Where

H is Total Hydraulic head

p

ρg
is the pressure head

z is the elevation head

v2

2g
is the velocity head

p is the atmospheric pressure

ρ is the density of the fluid

g gravitational constant

Eq.(1.1) shows that the sum of the pressure head, elevation head, and velocity head at any point

in a domain is constant (Harr, 1962). If we take v � 1 since groundwater flow is exceptionally

slow, the velocity head can be neglected and Eq.(1.1) becomes

h =
p

ρg
+ z (1.2)

where h is now considered the piezometric head (Bear, 2018; Harr, 1962; Liggett and Liu, 1983).

We now begin with the Navier-Stokes equation for incompressible flow


ρ

(
∂v

∂t
+ v · ∇v

)
= ∆v −∇h+ f

∇ · v = 0

(1.3)

where v is the velocity, and f is an external force (Tice, 2014; Layton, 2008; Bear, 2018). The

fact that we assume that the seepage is steady allows us to neglect the term regarding time (Tice,

2014). Since we have also assumed a sufficiently low Reynolds number, the v · ∇v term drops out

2



of the equation as well (Layton, 2008), and thus Eq.(1.3) becomes the Stokes equation


−∆v +∇h = f

∇ · v = 0

(1.4)

(Tice, 2014; Layton, 2008; Bear, 1972; 2018). The homogeneous and isotropic conditions then

allow Eq.(1.4) to become

v = K (f −∇h) (1.5)

Where K is the coefficient of permeability which in this case is a constant. Eq.(1.5) is commonly

referred to as Darcy’s Law (Tice, 2014; Bear, 1972; 2018; Harr, 1962; Bruch, 1991). In our case

there are no external forces such as sinks or sources so f = 0 and Eq.(1.5) becomes

v = −K∇h (1.6)

and we now clearly see that the discharge velocity is linearly dependent on the hydraulic gradient

(Harr, 1962; Bear, 1972).

Now, If we apply the Law of Conservation of Mass to Eq.(1.6), we get

div(K∇h) = 0 =⇒ ∆h = 0 (1.7)

which is the two-dimensional Laplace equation written as

∂2h

∂x2
+
∂2h

∂y2
= 0. (1.8)

“It is of the utmost convenience in groundwater flow to introduce the velocity potential φ, defined

3



as

φ = −Kh+ C (1.9)

where C is an arbitrary constant”(Harr, 1962). From Eq.(1.9) and Eq.(1.8) it is clear that we also

have

∂2φ

∂x2
+
∂2φ

∂y2
= 0. (1.10)

Therefore, both h and φ are harmonic functions, and groundwater flow can be modeled by the

two-dimensional Laplace equation (Harr, 1962; Bruch, 1991; Chantasiriwan, 2011; Cedergen, 1968;

Bear, 1972; 2018; Muleshkov, 1988).

1.2 Solving Two-Dimensional Laplace Boundary Value Problems

The methods discussed in this section will be limited to those deemed relevant for the type of

domains with boundary conditions as in this thesis. The boundary conditions used in this thesis

are Dirichlet, and zero Neumann (Evans, 2010).

The Two-Dimensional Laplace equation has a rich history of being solved using conformal

mapping. A conformal mapping is a function f(z) that is said to preserve local angles (Mathews and

Howell, 2012). Using this fact in concert with potential theory, the theory of harmonic functions,

and the Riemann Mapping Theorem gives mathematicians and engineers a powerful tool for solving

the two-dimensional Laplace equation (Muleshkov, 2016). The conformal mapping f(z) = u(x, y)+

iv(x, y) solves boundary value problems (BVPs) if f(z) maps D onto D∗, is one-to-one, analytic

at every point in D, and f ′(z0) 6= 0 for every point z0 in D (Mathews and Howell, 2012; Carrier

et al., 1983). This mapping’s existence and uniqueness can be proven with the Riemann Mapping

Theorem, but it does not give a procedure for finding the conformal mapping (Carrier et al., 1983;
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Muleshkov, 2016). The details on how we find our conformal mappings are given in section 2.3.

Numerical methods that can solve BVPs for the two-dimensional Laplace equation are in no

short supply. The Finite Element Method (FEM), is currently a popular method used by many

fields of Engineering and Physics. This thesis focuses on the Boundary Element Method (BEM),

a popular alternative to FEM depending on the specifics of the problem. Other methods include

finite difference methods (FDM), meshless methods, mixed methods, and many others.

1.3 Previous Work on BEM Solutions with Singularities and Phreatic Surfaces.

1.3.1 BEM Solutions with Singularities on the Boundary

The BEM is well established among engineering circles. As such, there are many articles and

resources on using the BEM under a wide variety of situations. In this brief overview, we focus

on work related to this thesis, particularly, on how others dealt with singularities on the boundary

while using the BEM.

Traditionally, when using the BEM, the boundary is discretized into elements, small portions of

the boundary (usually line segments), with nodes connecting them. On the elements with Dirichlet

boundary conditions, where φ is given,
∂φ

∂n
will be linearly approximated using linear interpolation

between the two nodes at the end of the elements, where the normal derivative is unknown and

desired. Similarly, the elements with Neumann boundary conditions, where
∂φ

∂n
is given, φ will be

linearly approximated using linear interpolation between the two nodes at the end of the element

where the value of the function is unknown and desired.

When there are singularities on the boundary, the previous methodology may need to be ad-

justed. For instance, some books elect to use higher order interpolations on the elements adjacent

to the singularities (Kythe, 1995). This may help the method get better results, though it does not

5



get to the heart of the issue.

A different approach would be to ignore the singularities by using discontinuous elements around

the singularity. This is done since
∂φ

∂n
does not exist at the corner where the singularity is. Instead

of having one node at the corner, two nodes are placed on ether side of the corner, for instance, at a

distance of ε and δ away (Kythe, 1995; Bruch, 1991). This method will be used as the “traditional

method” when finding the BEM solution in this thesis.

Another method that has been used is to subtract a solution of the function φ around the

singularity (Igarashi and Honma, 1996; Lefeber, 1989). This method is based on the regularized

function method in which a regularized function ψ(x) is introduced in place of the potential function

φ(x), where φ(x) = φk +

∞∑
l=1

aklĝkl(x) and ĝkl(x) is a special solution about the singular point.

ψ(x) is now set as φ(x)−
K∑
k=1

L∑
l=1

aklĝkl(x) and Igarashi and Honma now note that ψ(x)“no longer

possesses singularity, since the singular term ... have been subtracted off from φ” (Igarashi and

Honma, 1996). Then the BEM is used and once the coefficient(s) of the special solution(s) about

the singularities are found, φ can be found.

The last method discussed is introduced by Muleshkov (1988). This method alters the interpo-

lation used around the singularity to find the unknown variable

(
φ or

∂φ

∂n

)
, but not by just using

an interpolation of a higher order. The function used is obtained from a conformal mapping solu-

tion of a similar domain where the sides of the singularity are extended infinitely. The boundary

conditions are preserved as to get the correct local behavior around the singularity. The fact that

the exact conformal mapping solution is imposed on the elements adjacent to the singularity leads

to an improvement of the BEM in terms of accuracy around the singularity and inside the domain

itself.

This Thesis focuses on the method developed by Muleshkov (1988). Megan Romero’s (2018)
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thesis took a further look into the this method by comparing the traditional method to the modified

method with the exact solution in a rectangle and another generalized polygon. In this thesis, we

further expand on the work of Romero by looking at a domain containing the arc of a circle, but

more importantly a domain with a phreatic surface. A phreatic surface is also often called a free

surface in modern literature and is often used when modeling two-dimensional unconfined flow. The

inclusion of a phreatic surface often causes difficulties since a portion of the boundary is unknown

and the location of a phreatic surface deserves its own research that is discussed in the following

subsection.

1.3.2 Locating the Phreatic Surface

Regardless of the methods chosen the solve the BVP (FDM, FEM, BEM) the most common

way of locating a phreatic surface is some kind of iteration (Chen et al., 2007). For FDM and FEM

what is frequently employed is some kind of adaptive mesh (Lacy and Prevost, 1987; Yeung, 1982;

Wang et al., 2015). Nevertheless, “Free-surface flows seem particularly suitable for integral-equation

treatment since physical quantities of primary interest ... are required only on the boundaries.”

(Yeung, 1982). This is the one of the primary reasons the BEM was chosen over the other numerical

methods. This thesis uses the algorithm outlined in Chantasiriwan (2011) for finding the location

of the exit point, or to the same effect, finding the width of the seepage surface. The iterative

procedure used is taken from Burch (1991). The initial guess is derived in a similar way to what is

done in Muleshkov (1988) with just slight changes. The results and possible further research will

be given in Chapter 5.
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CHAPTER 2

BACKGROUND KNOWLEDGE AND INTRODUCTION OF THE

PROBLEM

2.1 Domain and Boundary Conditions of the Problem

In this thesis we will solve the Laplace equation BVP for a domain that is chosen sufficiently

complicated as to allow realistic modeling of groundwater flow. The seepage problem that we solve

using the BEM and the modified BEM has the following boundary conditions:

On AB, φ(x, 0) = 0, 0 < x < b

On BC, φ(x, g(x)) = g(x) ∧ ∂φ

∂n
(x, g(x)) = 0, −`1 < x < b

On CD, φ(−`1, y) = `3, d < y < `3

On DE, φ(x,−x− `2 − 2R) = `3, −`1 < x < −R

On EF,
∂φ

∂n
(R cos θ,R sin θ − `2 −R) = 0 ,

π

2
< θ < π

On FA,
∂φ

∂n
(0, y) = 0 −`2 < y < 0

Which results in Figure 2.1. Note κ = −`2 −R.

We may observe that points A,D,E, F are all singularities. Point B’s (the exit point) x-

coordinate is unknown, and the shape and location of the phreatic surface, g(x), is unknown.

Note that points B and C are regular points since they are an intersection of a streamline and an

equipotential line with the angle formed at the point being
π

2
.
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z

y

x

A(0, 0)

F (0,−`2)

D(−`1, d)

E(−R, κ)

B(b, 0)

C(−`1, `3)

Figure 2.1: Physical Domain/Domain of Interest, z-plane.

2.2 The Boundary Element Method

This section introduces some of the basic theory of BEM within the context applicable to the

problems in this thesis. Given twice differentiable functions U(x, y) and V (x, y), in a domain, D ,

we apply Green’s Second Identity,

∫∫
D

(
U∇2V − V∇2U

)
dxdy =

∮
∂D

(
U
∂V

∂n
− V ∂U

∂n

)
ds, (2.1)
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where
∂U

∂n
and

∂V

∂n
are the normal derivatives of U(x, y) and V (x, y), respectively. If U(x, y) and

V (x, y) are harmonic, then ∇2U = 0 and ∇2V = 0, hence Eq.(2.1) becomes equation

0 =

∮
∂D

(
U
∂V

∂n
− V ∂U

∂n

)
ds. (2.2)

U(x, y) and V (x, y) can then be chosen to be:

U(x, y) = φ(x, y), V (x, y) = ln rp

Where V (x, y) can be obtained from the Fundamental Solution for the two-dimensional Laplace

equation and rp =
√

(x− xp)2 + (y − yp)2 is the distance from the point (x, y) to a fixed point P ,

(xp, yp). Plugging in our chosen functions for U(x, y) and V (x, y) Eq.(2.2) becomes

∮
∂D

(
φ

rp

∂rp
∂n
− ∂φ

∂n
ln rp

)
ds = 0. (2.3)

If (xp, yp) = (x, y), then rp = 0 which causes a singularity of the integrand in Eq.(2.3) (Liggett and

Liu, 1983; Muleshkov, 1988). To remedy this problem, we evaluate Eq. (2.3) with its principal

value, giving us

p.v.

∮
∂D

(
φ

rp

∂rp
∂n
− ∂φ

∂n
ln rp

)
ds = αpφp (2.4)

where αp is the angle that is formed by the adjacent segments of point P (Liggett and Liu, 1983).

If point P is on a smooth part of the boundary, then the angle is π. Whereas if point P is inside

the boundary, then the angle is 2π.

In this case, since the boundary of D is discretized into segments with nodes at the endpoints

s = sm and s = sm+1, Eq.(2.4) becomes
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∫ sm+1

sm

(
φ

rp

∂rp
∂n
− ∂φ

∂n
ln rp

)
ds+

∫ sm+2

sm+1

(
φ

rp

∂rp
∂n
− ∂φ

∂n
ln rp

)
ds+ · · · = αpφp (2.5)

where m and p go from 0 to N − 1. Eq.(2.5) can be written in the more compact form

N−1∑
p=0

N−1∑
m=0

I
(p)
m,m+1 = αpφp (2.6)

where

I
(p)
m,m+1 =

∫ sm+1

sm

(
φ

rp

∂rp
∂n
− ∂φ

∂n
ln rp

)
ds. (2.7)

As previously mentioned, φ or
∂φ

∂n
will be linearly approximated depending on which is unknown.

This unknown value will be denoted by Ω, where Ωm represents φ or
∂φ

∂n
(whichever is unknown)

at the mth point/node. Using the endpoint nodes sm and sm+1 we can get the following linear

interpolation

Ω = Ωm

(
sm+1 − s
sm+1 − sm

)
+ Ωm+1

(
s− sm

sm+1 − sm

)
. (2.8)

Pugging in Eq.(2.8) into Eq.(2.7), one gets

Ipm,m+1 = Ωm · a(m)
p,m + Ωm+1 · a(m)

p,m+1 +Bp,m (2.9)

where a(m)
p,m and a

(m)
p,m+1 are the coefficients of Ωm and Ωm+1, respectively, and Bp,m is the evaluated

integral that contains the known constant from the boundary conditions.

Similarly, if we have endpoints sm−1 and sm in Eq.(2.7), we arrive at the following equation

Ipm−1,m = Ωm−1 · a(m−1)p,m−1 + Ωm · a(m−1)p,m +Bp,m−1. (2.10)
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Now we can define Ap,m as the coefficient of Ωm using Eqs.(2.9),and (2.10) as

Ap,m = a(m−1)p,m + a(m)
p,m − δpαpφp (2.11)

where δp =


1, φp is unknown

0, φp is known

,

and the integral that results from φ or
∂φ

∂n
being known on an element can be written as

Bp = αp(1− δp)φp −
N−1∑
m=0

Bp,m (2.12)

where p goes from 0 to N − 1 (Muleshkov, 1988).

We can then use Eqs.(2.15) and (2.12) to form a system of linear equations,

N−1∑
m=0

Ap,mΩm = Bp (2.13)

where p goes from 0 to N − 1 (Muleshkov, 1988).

In matrix form, Eq.(2.13) can be written as

[A]N,N [Ω]N,1 = [B]N,1. (2.14)

Later on, once the right hand side of Eq.(2.9) is evaluated, we know a(m)
p,m in the form of an

integral that depends on the the portion of the boundary being evaluated I.

a(m)
p,m = I(xm, xm+1, ym, ym+1, . . . ). (2.15)
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This is further discussed in Chapter 3 and 4. Once a(m)
p,m is known, then a(m−1)p,m can be conveniently

found by the following formula

a(m−1)p,m = −I(xm, xm−1, ym, ym−1, . . . ) (2.16)

(Muleshkov, 1988).

2.3 A Simplified Domain with Similar Toe Drain and Phreatic Surface

The Boundary Conditions on all domains discussed will have a combination of Dirichlet and

Neumann with the phreatic surface having both boundary conditions. It should be noted that

the Neumann boundary condition will always be zero, which in turn allows us to use conformal

mapping in the problem. The domain in Figure 2.2 has the following boundary conditions:

On AB, ϕ(x, 0) = 0, 0 < x < b

On BC, ϕ(x, h(x)) = y ∧ ∂ϕ

∂n
(x, h(x)) = 0, x < b

On CA,
∂ϕ

∂n
(0, y) = 0 , y < 0.

Figure 2.2 is simple enough to allow us to solve the Laplace BVP analytically using conformal

mapping, which is done in Sec 2.4, yet with proper assumptions still similar enough to Figure 2.1

to allow us to use the results as the initial guess for the shape and location of the phreatic surface

h(x) for the iteration.
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ψ = 0
ϕ = y

ψ = q

ϕ = 0

z

A(0)

C(∞)

B(b)
x

y
C(∞)

Figure 2.2: Simplified Domain, z-plane.

We may observe that point A is a singularity since the angle formed at point A is
3π

2
, Point

B’s (the exit point) x-coordinate is unknown, on CA ψ equals a constant q, and the shape and

location of the phreatic surface, h(x), is unknown.

Now, examining the boundary conditions, we can divine that the corresponding domain in the

complex potential plane looks like the domain in Figure 2.3

ω

A(iq)

B(0) C(∞)

C(∞)

ϕ

ψ

Figure 2.3: Domain in Complex Potential Plane, ω-plane
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2.4 Exact Conformal Mapping Solution for the Simplified Domain

The immediate difficulty when dealing with a phreatic surface is the fact that the shape and

location are unknown. We are in turn compensated by having two boundary conditions on the

phreatic surface, one for the function and one for the normal derivative. Nevertheless, finding a

conformal mapping from the physical domain in the z-plane to its image in the ω-plane , where

ω = ϕ + iψ is the complex potential, is impossible. This problem is remedied by the use of an

auxiliary function W (ω) =
dz

dω
, which is the reciprocal of the complex velocity or the Kirchoff

function (Harr, 1962; Carrier et al., 1983). This process will now be shown with the domain in

Figure 2.2. Let u = Re[W ] and v = Im[W ].

On AB, ϕ = 0 ∧ y = 0 =⇒ z = x ∧ ω = iψ. Thus,

W =
dz

dω
=

dx

idψ
= −i dx

dψ
(2.17)

where u = 0 and v = − dx

dψ
. Since dx > 0 and dψ < 0 then v > 0.

On BC, ϕ = y ∧ ψ = 0 =⇒ z = x+ iy ∧ ω = y. Thus,

W =
dz

dω
=

dx+ idy

dy
=

dx

dy
+ i (2.18)

where u =
dx

dy
and v = 1. Since dx < 0 and dy > 0 then u < 0.

On CA, ψ = q ∧ x = 0 =⇒ z = iy ∧ ω = ϕ+ iq. Thus,

W =
dz

dω
= i

dy

dϕ
(2.19)

where u = 0 and v =
dy

dϕ
.Since dy > 0 and dϕ < 0 then v < 0. In addition, from CA to AB v
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switches sign implying that A maps to 0.The above results in the domain shown in Fig 2.4.

W

B(i)

A

C(∞)

A(0)

C(∞)

v

u

Figure 2.4: Domain in W-plane

Now, we map the domain in Figure 2.4 to the first quadrant.

W1 = −W + i (2.20)

From the mapping we get B 7→ 0, C 7→ ∞, A 7→ i.

W1

B(0)

A(i)

C(∞)

C(∞)

u1

v1

Figure 2.5: Domain in W1- plane (First Quadrant)

We now consider the ω−plane. We first rotate and scale the domain to something more usable
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resulting in Figure 2.6.

ω1 = i
π

2q
ω (2.21)

ω1

B(0)A(−
π

2
)

C(∞)C(∞) ψ1

ϕ1

Figure 2.6: Domain in ω1 - plane

From this domain we can then take the sine and rotate to get the first quadrant once more as seen

in Figure 2.7.

ω2 = −i sin

(
i
π

2q
ω

)
= sinh

(
π

2q
ω

)
(2.22)

ω2

B(0)

A(i)

C(∞)

C(∞)

ϕ2

ψ2

Figure 2.7: Domain in ω2- plane (First Quadrant)
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Now note that the ω2 plane and W1 planes just happen to be exactly the same, and by equating

the two the following equation results.

−W + i = sinh

(
π

2q
ω

)
⇐⇒ W = i− sinh

(
π

2q
ω

)
(2.23)

recall that W =
dz

dω
which gives us the following

dz

dω
= i− sinh

(
π

2q
ω

)
(2.24)

After some algebraic manipulation and integrating we get

z = iω − 2q

π
cosh

(
π

2q
ω

)
+ C. (2.25)

To solve for C, we use the correspondence between point A and its image in the complex potential

plane. Plugging into Eq.(2.25) results in

(0) = i(iq)− 2q

π
cosh

(
π

2q
(iq)

)
+ C (2.26)

From there, we conclude that C = q. The conformal mapping now has the following form

z = iω − 2q

π
cosh

(
π

2q
ω

)
+ q. (2.27)

To find the relation between q and b we just have to plug in the point B on both sides which

gets us

(b) = i(0)− 2q

π
cosh

(
π

2q
(0)

)
+ q (2.28)
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Which results in the following equation that determines the exit point or length of the seepage

surface.

b = q

(
1− 2

π

)
(2.29)

From here, we can also plug in z = x+ iy, and ω = ϕ+ iψ which results in the following

x+ iy = i(ϕ+ iψ)− 2q

π
cosh

(
π

2q
(ϕ+ iψ)

)
+ q. (2.30)

From here we would like to solve for ϕ and ψ explicitly, but since that is not possible, we settle for

x and y in terms of ϕ and ψ

x(ϕ,ψ) = q − ψ − 2q

π
cosh

(
π

2q
ϕ

)
cos

(
π

2q
ψ

)
(2.31)

y(ϕ,ψ) = ϕ− 2q

π
sinh

(
π

2q
ϕ

)
sin

(
π

2q
ψ

)
(2.32)

Now we can begin to investigate the boundary.

On BC, ω(z) = ϕ = y, z = x+ iy, and y = h(x). Plugging this information in results in

x+ ih(x) = ih(x)− 2q

π
cosh

(
π

2q
h(x)

)
+ q. (2.33)

After some simplification, we get the following shape and location for the phreatic surface.

h(x) =
2q

π
arccosh

(
−π
2q

(x− q)
)

(2.34)

19



On CA, ω(z) = ϕ+ iq, z = iy which results in

y = ϕ− 2q

π
sinh

(
π

2q
ϕ

)
. (2.35)

Lastly on AB, ω(z) = iψ, z = x which results in

x = q − ψ − 2q

π
cos

(
π

2q
ψ

)
. (2.36)
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Figure 2.8: Flownet of Simplified Domain
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2.5 The Phreatic Surface and Initial Guess for the Problem

We can see that Figure 2.1 should have approximately the same phreatic surface shape and

location. The initial guess for the shape and location of the phreatic surface in both domains will

come from the analytical solution. We use Eqs.(2.29) and (2.34) to derive what will become the

initial guess of the phreatic surface. From Eq.(2.29), we solve for q in terms of b, the x-coordinate

of the exit point, resulting in the following

q =
πb

π − 2
. (2.37)

Solving Eq.(2.34) for x in terms of y results in

x = −2q

π
cosh

(
π

2q
y

)
+ q (2.38)

plugging in the information from point C (x = −`1 and y = `3) into Eq.(2.38) results in

−`1 = −2q

π
cosh

(
π

2q
`3

)
+ q (2.39)

Eq.(2.39) is then solved numerically for q. Let q0 > 0 be the solution of Eq.(2.39) we then plug q0

into Eq.(2.37) resulting in

q0 =
πb

π − 2
=⇒ b =

(π − 2)q0
2

(2.40)

where b is used as the initial guess of the exit point for the iteration.

The rest of the initial guess for the phreatic surface is given by the piecewise function g(x). Let
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µ = −`1 + `3.

g(x) =


−a(x+ `1)

2 + `3, −`1 ≤ x ≤ µ

α arccosh(b+ 1− x), µ < x ≤ b

(2.41)

where

a =
(

2
√
b− µ

√
2 + b− µ arccosh(b+ 1− µ) + `3

)−1
(2.42)

and

α =
2`3
√
b− µ

√
2 + b− µ

2
√
b− µ

√
2 + b− µ arccosh(b+ 1− µ) + `3

(2.43)

are chosen to guarantee continuity and differentiability at the transition point. The upper part

of Eq.(2.41) is chosen to keep point C a regular point which requires that line BC and line CD

intersect at an angle of
π

2
. The lower part of Eq.(2.41) is chosen for a similar reason with line AB

and curve BC, but also because the analytic solution from the conformal mapping was an inverse

hyperbolic function.

2.6 Algorithm for Determination of the Location of the Phreatic Surface

In Liggett and Liu (1983), an efficient algorithm was proposed for locating a phreatic surface

in a domain modeling a dam with tail water (vertical exit). Chantasiriwan (2011) applied this

algorithm inside of another iterative process for locating a phreatic surface in a domain modeling a

dam with toe drain (horizontal exit). The main idea of Chantasiriwan’s 2011 paper is that instead

of directly solving a seepage problem in Figure 2.9, they solve the seepage problem in Figure 2.10.

It is important to note that ∆x′ < ∆x, so that a new vertical boundary Γ3 is formed.

This algorithm will be implemented with our seepage problem resulting in Figure 2.11 with

b′ < b. b′′ is determined initially as g(b′) from Eq.(2.41). B′ is then fixed and the BVP is solved as
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Figure 2.9: Model of Dam with Toe Drain
(Chantasiriwan, 2011)

Figure 2.10: Model of Dam with Seep-
age Surface and Toe Drain (Chantasiriwan,
2011)

a traditional tail water problem. The iteration used here is yj+1 =
yj + uj

2
where uj is the value

of φ given from the jth iteration of the BEM. Bruch (1991) states that this weighted iteration has

been shown to be more stable for underground water flow. After this iteration is done, the other

iteration adjusts the location of b′. Chantasiriwan (2011) states that this algorithm would then

ideally result with Γ3 = 0 thus solving the the original seepage problem. However, he notes that

practically there is a non-zero minimum value for which the iteration becomes unstable.
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z

y

x

A(0, 0)

F (0,−`2)

D(−`1, d)

E(−r, κ)

B′′(b′, b′′)

B′(b′, 0)

C(−`1, `3)

Figure 2.11: Modified Physical Domain, z-plane.
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CHAPTER 3

THE TRADITIONAL BOUNDARY ELEMENT METHOD

In order to use the BEM as outlined in Section 2.2 to find the solution φ(x, y) of the BVP in

Section 2.1, we need to discretize the domain in Figure 2.1. The discretization of the domain is

done as follows: AB′ is discretized into k1 elements, B′B′′ is discretized into k7 elements, B′′C is

discretized into k2 elements then the first element is further subdivided into k8 elements, CD is

discretized into k3 elements, DE is discretized into k4 elements, EF is discretized into k5 elements,

and FA is discretized into k6 elements. Due to the kind of singularity at points A, D, and E,

instead of having one node at each point, there are two nodes that approach each point using

discontinuous elements adjacent to the points. The total number of nodes is N = k1 + k2 + k7 +

k8 − 1 + k3 + 1 + k4 + 1 + k5 + k6 + 1. For clarity purposes the following notation will also be

introduced: K1 = k1, K7 = k1+k7, K2 = K7+k8−1+k2, K3 = k3+K2, K4 = k4+1+K3, K5 =

k5 + 1 +K4, K6 = k6 + 1 +K5. The integrals from Eq.(2.7) for each part of the boundary are now

developed. All indexed integrals are defined and solved in the Appendix.

3.1 Assembly of Integrals on Line Segment AB′

On AB′, φ(x, 0) = 0, ε1 < x < b′ thus

∂φ

∂n
= Ω = Ωm

(
xm+1 − x
xm+1 − xm

)
+ Ωm+1

(
x− xm

xm+1 − xm

)
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and rp =
√

(x− xp)2 + y2p. From Eq.(2.7), one gets

I
(p)
m,m+1 = −Ωm

∫ xm+1

xm

(
xm+1 − x
xm+1 − xm

)
ln
√

(x− xp)2 + y2p dx

− Ωm+1

∫ xm+1

xm

(
x− xm

xm+1 − xm

)
ln
√

(x− xp)2 + y2p dx. (3.1)

After integration, Eq.(3.1) becomes

I
(p)
m,m+1 = −Ωm I1(xm, xm+1, xp, |yp|) + Ωm+1 I1(xm+1, xm, xp, |yp|). (3.2)

Then, by using Eqs.(2.15) and (2.16), we get

a(m)
p,m = −I1(xm, xm+1, xp, |yp|) (3.3)

a(m−1)p,m = I1(xm, xm−1, xp, |yp|). (3.4)

3.2 Assembly of Integrals on Line Segment B′B′′

On B′B′′, φ(b′, y) = y, 0 < y < b′′ thus

∂φ

∂n
= Ω = Ωm

(
ym+1 − y
ym+1 − ym

)
+ Ωm+1

(
y − ym

ym+1 − ym

)
,

rp =
√

(b′ − xp)2 + (y − yp)2,

and
∂rp
∂n

(b′, y) =
b′ + xp√

(b′ + xp)2 + (y − yp)2
. From Eq.(2.7), one gets

I
(p)
m,m+1 =

∫ ym+1

ym

(b′ + xp)y

(b′ + xp)2 + (y − yp)2
dy

− Ωm

∫ ym+1

ym

(
ym+1 − y
ym+1 − ym

)
ln
√

(b′ − xp)2 + (y − yp)2 dy

− Ωm+1

∫ ym+1

ym

(
y − ym

ym+1 − ym

)
ln
√

(b′ − xp)2 + (y − yp)2 dy. (3.5)
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After integration, Eq.(3.5) becomes

I
(p)
m,m+1 = −Ωm I1(ym, ym+1, yp,

∣∣b′ − xp∣∣) + Ωm+1 I1(ym+1, ym, yp,
∣∣b′ − xp∣∣). (3.6)

Then, by using Eq.(2.15) and (2.16), we get

a(m)
p,m = −I1(ym, ym+1, yp,

∣∣b′ − xp∣∣) (3.7)

a(m−1)p,m = I1(ym, ym−1, yp,
∣∣b′ − xp∣∣) (3.8)

Bp,m = −b′′I2(b′′, 0, yp, b′ + xp). (3.9)

3.3 Assembly of Integrals on Phreatic Surface B′′C

On B′′C , φ(x, g(x)) = g(x) ∧ ∂φ

∂n
(x, g(x)) = 0, −`1 < x < b′ thus

φ = Ω = Ωm

(
xm+1 − x
xm+1 − xm

)
+ Ωm+1

(
x− xm

xm+1 − xm

)
.

The following substitutions are made:

cm = xm − xm+1

dm = ym+1 − ym

gm =
√
c2m + d2m

fp,m =
dm(xp − xm) + cm(yp − ym)

gm

Fp,m =
fp,m
gm

.

From Eq.(2.7), we get

I
(p)
m,m+1 = −gm

cm

∫ xm+1

xm

φ

rp

∂rp
∂n

dx. (3.10)
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It should be noted that the free-surface is approximated as a series of connected line segments with

the equations

y = ym −
dm
cm

(x− xm). (3.11)

From here we may consider

∂rp
∂n

=
∂rp
∂x

dm
gm

+
∂rp
∂y

cm
gm

=
dm(x− xp) + cm(y − yp)

gmrp
(3.12)

plugging in results in Eq.(3.10) becoming

I
(p)
m,m+1 = − 1

cm

∫ xm+1

xm

φ
dm(x− xp) + cm(y − yp)

r2p
dx. (3.13)

the choice of substitutions and Eq.(3.11) yields a convenient expression for r2p

r2p = (x− xp)2 − (y − yp)2 = (x− xp)2 −
(
dm
cm

(x− xm) + yp − ym
)2

=
g2m
c2m

(
(x− xp + dmFp,m)2 + (cmFp,m)2

)
(3.14)

we also have another convenient relation

−gmfm,p = dm(xm − xp) + cm(ym − yp) = dm(x− xp) + cm(y − yp) (3.15)

plugging Eqs.(3.14) and (3.15) into Eq.(3.13) results in

I
(p)
m,m+1 = cmFp,m

∫ xm+1

xm

φ

(x− xp + dmFp,m)2 + (cmFp,m)2
dx (3.16)
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(Muleshkov, 1988). From here, we note

I
(p)
m,m+1 =

cmFp,m
cm

∫ xm+1

xm

−Ωm(xm+1 − x)− Ωm+1(x− xm)

(x− xp + dmFp,m)2 + (cmFp,m)2
dx. (3.17)

Therefore,

I
(p)
m,m+1 = ΩmI2(xm, xm + 1, xp − dmFp,m, |cmFp,m|)− Ωm+1I2(xm+1, xm, xp − dmFp,m, |cmFp,m|)

(3.18)

Then, by using Eqs.(2.15) and (2.16), we get

a(m)
p,m = I2(xm, xm+1, xp − dmFp,m, |cmFp,m|) (3.19)

a(m−1)p,m = −I2(xm, xm−1, xp − dm−1Fp,m−1, |cm−1Fp,m−1|). (3.20)

3.4 Assembly of Integrals on Line Segment CD

On CD, φ(−`1, y) = `3, d+ ε3 < y < `3 thus

∂φ

∂n
= Ω = Ωm

(
ym+1 − y
ym+1 − ym

)
+ Ωm+1

(
y − ym

ym+1 − ym

)
,

rp =
√

(−`1 − xp)2 + (y − yp)2,

and
∂rp
∂n

(−`1, y) =
`1 + xp√

(`1 + xp)2 + (y − yp)2
. From Eq.(2.7), one gets

I
(p)
m,m+1 = −`3

∫ ym+1

ym

`1 + xp
(`1 + xp)2 + (y − yp)2

dy

+ Ωm

∫ ym+1

ym

(
ym+1 − y
ym+1 − ym

)
ln
√

(`1 + xp)2 + (y − yp)2 dy

+ Ωm+1

∫ ym+1

ym

(
y − ym

ym+1 − ym

)
ln
√

(`1 + xp)2 + (y − yp)2 dy. (3.21)
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After integration, Eq.(3.21) becomes

I
(p)
m,m+1 = −I3(ym, ym+1, yp, `1 + xp) + ΩmI1(ym, ym+1, yp, `1 + xp) + Ωm+1I1(ym+1, ym, yp, `1 + xp).

(3.22)

Then, by using Eqs.(2.15), (2.16) and (2.9), we get

a(m)
p,m = I1(ym, ym+1, yp, `1 + xp) (3.23)

a(m−1)p,m = −I1(ym, ym−1, yp, `1 + xp) (3.24)

Bp,m = −I3(ym, ym+1, yp, `1 + xp). (3.25)

3.5 Assembly of Integrals on Line Segment DE

On DE, φ(x,−x− `2 − 2r) = `3, −`1 + ε4 < x < −r

∂φ

∂n
= Ω = Ωm

(
xm+1 − x
xm+1 − xm

)
+ Ωm+1

(
x− xm

xm+1 − xm

)
.

The substitution sp = `2 + 2r + yp + xp is made, thus

rp =
√

(x− xp)2 + (y − yp)2 =
√

(x− xp)2 + (x+ `2 + 2r + yp)2

=
√

2

√(
x− xp +

1

2
sp

)2

+
(sp

2

)2
. (3.26)

On DE, we also have

∂rp
∂n

=

〈
−1√

2
,
−1√

2

〉
·
〈
∂rp
∂x

,
∂rp
∂y

〉
=
−1√

2

(
x− xp
rp

+
y − yp
rp

)
=

sp√
2rp

. (3.27)

31



From Eq.(2.7), one gets

I
(p)
m,m+1 =

`3
2

∫ xm+1

xm

sp(
x− xp + 1

2sp
)2

+
( sp

2

)2 dx
−
√

2Ωm

∫ xm+1

xm

(
xm+1 − x
xm+1 − xm

)
ln

√2

√(
x− xp +

1

2
sp

)2

+
(sp

2

)2 dx

+
√

2Ωm+1

∫ xm+1

xm

(
x− xm

xm+1 − xm

)
ln

√2

√(
x− xp +

1

2
sp

)2

+
(sp

2

)2 dx. (3.28)

From here, it can be shown that

a(m)
p,m = − ln 2√

8
(xm+1 − xm)−

√
2I1

(
xm, xm+1, xp −

1

2
sp,

sp
2

)
(3.29)

a(m−1)p,m =
ln 2√

8
(xm−1 − xm) +

√
2I1

(
xm, xm−1, xp −

1

2
sp,

sp
2

)
(3.30)

Bp,m = `3I3

(
xm, xm+, xp −

1

2
sp,

sp
2

)
. (3.31)

3.6 Assembly of Integrals on Arc EF

On EF,
∂φ

∂n
(R cos θ,R sin θ + κ) = 0, κ = −`2 −R,

π

2
< θ < π.

Thus φ = Ω = Ωm

(
θm+1 − θ
θm+1 − θm

)
+ Ωm+1

(
θ − θm

θm+1 − θm

)
.

Since x = R cos θ and y = R sin θ + κ, we have

rp =
√

(R cos θ − xp)2 + (R sin θ − (yp − κ))2 (3.32)

and

∂rp
∂n

= − 1

rp

(
(R cos θ − xp) cos θ + (R sin θ − (yp − κ)) sin θ

)
(3.33)
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From Eq.(2.7), one gets

I
(p)
m,m+1 = Ωm

∫ θm+1

θm

(
θm+1 − θ
θm+1 − θm

)
(R cos θ − xp) cos θ + (R sin θ − (yp − κ)) sin θ

(R cos θ − xp)2 + (R sin θ − (yp − κ))2
rdθ

+ Ωm+1

∫ θm+1

θm

(
θ − θm

θm+1 − θm

)
(R cos θ − xp) cos θ + (R sin θ − (yp − κ)) sin θ

(R cos θ − xp)2 + (R sin θ − (yp − κ))2
rdθ

(3.34)

= Ωm

∫ θm+1

θm

(
θm+1 − θ
θm+1 − θm

)
R2 − xpR cos θ − (yp − κ)R sin θ

(R cos θ − xp)2 + (R sin θ − (yp − k))2
dθ

+ Ωm+1

∫ θm+1

θm

(
θm+1 − θ
θm+1 − θm

)
R2 − xpR cos θ − (yp − κ)R sin θ

(R cos θ − xp)2 + (R sin θ − (yp − κ))2
dθ. (3.35)

From here, it can be shown that

a(m)
p,m = I7(θm, θm+1, xp, yp − κ,R) (3.36)

a(m−1)p,m = −I7(θm, θm−1, xp, yp − κ,R). (3.37)

3.7 Assembly of Integrals on Line Segment FA

On FA,
∂φ

∂n
(0, y) = 0 −`2 < y < ε2.

Thus φ = Ω = Ωm

(
ym+1 − y
ym+1 − ym

)
+ Ωm+1

(
y − ym

ym+1 − ym

)
,

rp(0, y) =
√

(−xp)2 + (y − yp)2,

and
∂rp
∂n

(0, y) =
−xp√

(−xp)2 + (y − yp)2
. From Eq.(2.7), one gets

I
(p)
m,m+1 = −Ωm

∫ ym+1

ym

(
ym+1 − y
ym+1 − ym

)
xp

x2p + (y − yp)2
dy

− Ωm+1

∫ ym+1

ym

(
y − ym

ym+1 − ym

)
xp

x2p + (y − yp)2
dy (3.38)
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After integration, Eq.(3.38) becomes

I
(p)
m,m+1 = −Ωm I2(ym, ym+1, yp, |xp|) + Ωm+1 I2(ym+1, ym, yp, |xp|). (3.39)

Then, by using Eqs.(2.15) and (2.16), we get

a(m)
p,m = −I2(ym, ym+1, yp, |xp|) (3.40)

a(m−1)p,m = I2(ym, ym−1, yp, |xp|). (3.41)
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CHAPTER 4

THE MODIFIED BOUNDARY ELEMENT METHOD

4.1 Treatment of the Singularity at Point A

The local behavior around the singular point A is found. We consider the infinite extension

of the adjacent sides of point A in the domain in Figure 2.1 preserving the boundary conditions,

shown in Figure 4.1. The corresponding domain in the complex potential plane of the domain in

Figure 4.1 is shown Figure 4.2.

z

y

x
A(0) A2 A3(∞)

A3(∞)

A1

Figure 4.1: Extension of Boundary Near
Point A

ω

ψ

φ

A(iq1) A1 A3(∞)

A3(∞)

A2

Figure 4.2: Domain in Complex Potential
Plane of Figure 4.1

The conformal mapping that maps the domain in Figure 4.1 to the corresponding domain in

Figure 4.2 is

ω = −iM1
3
√
z + iq1 (4.1)
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where M1 and q1 are arbitrary real numbers. Using Eq.(4.1) and any choice of M1 and q1 results

in the the flow net in Figure 4.3. Since ω = φ+ iψ, φ(x, y) is the real part of ω. Thus, if z = reiθ,

we get

φ(x, y) = M1
3
√
r cos

(
θ

3
+

3π

2

)
(4.2)

as the solution of the BVP for the domain shown in Figure 4.1.

Figure 4.3: Flownet of Domain in Figure 4.1

On Segment A1A (from node K6 − 2 to K6 − 1),

θ =
3π

2
and r = −y, hence

Ω = φ = M1
3
√
−y (4.3)

At A1, y = yK6−2, so

ΩK6−2 = M1
3
√
−yK6−2 =⇒ M1 =

ΩK6−2
3
√−yK6−2

(4.4)
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Therefore,

Ω = φ =
ΩK6−2

3
√−yK6−2

3
√
−y (4.5)

Using Eq.(4.5), Eq.(2.7) becomes

I
(p)
K6−2,K6−1 = −ΩK6−2xp

3
√−yK6−2

∫ yK6−1

yK6−2

3
√
−y

(y − yp)2 + x2p
dy (4.6)

=
−3xpΩK6−2

3
√−yK6−2

I4(yp, xp, 3
√
−yK6−2) (4.7)

Thus, one gets

a
(K6−2)
p,K6−2 =

−3xp
3
√−yK6−2

I4(yp, xp, 3
√
−yK6−2) (4.8)

to be used as a replacement to what was found using the traditional method. ΩK6−1 is excluded

from the system in the modified BEM.

On Segment AA2 (from node 0 to 1),

y = 0, θ = arctan
(y
x

)
= 0,

∂r

∂y
= 0, and

∂θ

∂y
=

1

x
. Hence

Ω =
∂φ

∂n
= −∂φ

∂y
= −M2

3

1√
x2

(4.9)

At A2, x = x1, so

Ω1 = −M2

3

1√
x21

=⇒ M2 = −3Ω1
3

√
x21 (4.10)

Therefore,

Ω =
∂φ

∂n
= Ω1

3

√(x1
x

)2
(4.11)
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Using Eq.(4.11), Eq.(2.7) becomes

I
(p)
0,1 = Ω1

∫ x1

x0

3

√
x21
x2

ln
√

(x− xp)2 + y2p dx

=
Ω1

2
3

√
x21

(
3 3
√
x ln

(
(x− xp)2 + y2p

))∣∣∣∣x1
0

− 3 3
√
x2aΩ1

∫ x1

0

3
√
x

(x− xp)
(x− xp)2 + y2p

dx

=
3Ω1

2
x1 3
√
x1 ln

(
(x1 − xp)2 + y2p

)
− 9 3

√
x21Ω1

∫ 3
√
x1

0

u6 − xpu3

(u3 − xp)2 + y2p
du

=
3Ω1

2
x1 3
√
x1 ln

(
(x1 − xp)2 + y2p

)
− 9 3

√
x21Ω1

(
3
√
x41

3yp
I5(xp, yp, 3

√
x1)− xpI∗4 (xp, yp, 3

√
x1)

)

=
3Ω1

2
x1 3
√
x1 ln

(
(x1 − xp)2 + y2p

)
− 3x21

yp
Ω1I5(xp, yp, 3

√
x1)− xpΩ1I4(xp, yp, 3

√
x1) (4.12)

Thus, one gets

a
(1)
p,1 =

3

2
x1 3
√
x1 ln

(
(x1 − xp)2 + y2p

)
− 3x21

yp
I5(xp, yp, 3

√
x1)− xpI4(xp, yp, 3

√
x1) (4.13)

to be used as a replacement to what was found using the traditional method. Ω0 is excluded from

the system in the modified BEM.

4.2 Treatment of the Singularity at Point D

The local behavior near the singular point D is found. We consider the infinite extension of

the sides of point D in Figure 2.1 preserving the boundary conditions, shown in Figure 4.4. The

corresponding domain in the complex potential plane of the domain in Figure 4.4 is shown in Figure

4.5.

The conformal mapping that maps the domain in Figure 4.4 to the domain in Figure 4.5 is

ω = M3e
5π
6
i(z + `1 − di)4/3 + `3 + q2i (4.14)
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z

D(−`1 + id)

D2

D3(∞)

D3(∞)

D1

Figure 4.4: Extension of Boundary Near
Point D

ω

D(`3 + iq2)

D1

D3(∞)

D3(∞)

D2

φ

ψ

Figure 4.5: Domain in Complex Potential
Plane of Figure 4.4

where M3 and q2 are arbitrary real numbers. Using Eq.(4.14) and any choice for M3 and q2 results

in the flow net in Figure 4.6. Since ω = φ+ iψ, φ(x, y) is the real part of ω. Thus, if z = reiθ, we

get

φ(x, y) = M3r
4
3 cos

(
4θ

3
+

5π

6

)
+ `3 (4.15)

as the solution of the BVP for the domain shown in Figure 4.4.

Figure 4.6: Flownet of Domain in Figure 4.439



On Segment D1D (from node K3 − 1 to K3),

x = −`1, θ =
π

2
, r = y − d,

∂θ

∂x
=

1

d− y
, and

∂r

∂x
= 0. Hence,

Ω =
∂φ

∂n
= −∂φ

∂x
=

4M3

3
3
√
y − d (4.16)

At D1, y = yK3−1, so

ΩK3−1 =
4M3

3
3
√
yK3−1 − d =⇒ M3 =

3ΩK3−1

4 3
√
yK3−1 − d

(4.17)

Therefore,

Ω = −∂φ
∂x

= ΩK3−1
3

√
y − d

yK3−1 − d
(4.18)

Using Eq.(4.18), Eq.(2.7) becomes

I
(p)
K3−1,K3

= Bp,K3−1 + ΩK3−1

∫ yK3

yK3−1

3

√
y − d

yK3−1 − d
ln
√

(`1 + xp)2 + (y − yp)2 (4.19)

= Bp,K3−1 − ΩK3−1I6

(
yp − d, `1 + xp,

3
√
yK3−1 − d

)
(4.20)

Thus, one gets

a
(K3−1)
p,K3−1 = −I6

(
yp − d, `1 + xp,

3
√
yK3−1 − d

)
(4.21)

to be used as a replacement to what was found using the traditional method. ΩK3−1 is excluded

from the system in the modified BEM.

On Segment DD2 (from node K3 + 1 to K3 + 2),

y = −x− `1 + d, θ = −π
4

, r =
√

2(x+ `1),
∂r

∂y
=
y − d
r

,
∂θ

∂y
=
x+ `1
r2

,
∂r

∂x
=
x+ `1
r

,
∂θ

∂x
=
d− y
r2

,
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and
∂φ

∂n
= − 1√

2

∂φ

∂x
− 1√

2

∂φ

∂y
from Eq.(4.15) we get

− 1√
2

∂φ

∂x
=

1

2

(
4

3
M4

6
√

2 3
√
x+ `1

)
(4.22)

and

− 1√
2

∂φ

∂y
=

1

2

(
4

3
M4

6
√

2 3
√
x+ `1

)
(4.23)

Thus, adding Eq.(4.22) and Eq.(4.23) results in

Ω =
∂φ

∂n
=

4M4

3
6
√

2 3
√
x+ `1 (4.24)

At D2, x = xK3+2, so

ΩK3+2 =
4M4

3
6
√

2 3
√
xK3+2 + `1 =⇒ M4 =

3

4 6
√

2

ΩK3+2

3
√
xK3+2 + `1

(4.25)

Therefore,

Ω =
∂φ

∂n
= ΩK3+2

3

√
x+ `1

xK3+2 + `1
(4.26)

Using Eq.(4.26), Eq.(2.7) becomes

I
(p)
K3+1,K3+2 = Bp,K3+1 −

ΩK3+2√
2

∫ yK3+2

yK3+1

3

√
x+ `1

xK3+2 + `1
ln
(
(x+ xp)

2 + (−x− `1 + d− yp)2
)
dx

(4.27)

=Bp,K3+1 −
ΩK3+3 ln 8

4
√

2

(
xK3+2 + `1

)
(4.28)

−
√

2ΩK3+2I6

(
xp + `1 − yp + d

2
,
xp + `1 + yp − d

2
, 3
√
xK3+2 + `1

)
(4.29)
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Thus, one gets

a
(K3+2)
p,K3+2 = − ln 8

4
√

2

(
xK3+2 + `1

)
−
√

2I6

(
xp + `1 − yp + d

2
,
xp + `1 + yp − d

2
, 3
√
xK3+2 + `1

)
(4.30)

to be used as a replacement to what was found using the traditional method. ΩK3+1 is excluded

from the system in the modified BEM.

4.3 Treatment of the Singularity at Point E

The local behavior around the singular point E is found. We consider the infinite extension

of the segments adjacent to point E in Figure 2.1 preserving the boundary conditions, shown in

Figure 4.7. The corresponding domain in the complex potential plane of the domain in Figure 4.7

is shown in Figure 4.8.

zE3(∞)

E(−R+ iκ)

E1 E2

E3(∞)

Figure 4.7: Extension of Boundary Near
Point E

ω

E(`3 + iq3)

E1

E3(∞)

E3(∞)

E2

φ

ψ

Figure 4.8: Domain in Complex Potential
Plane of Figure 4.7
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The conformal mapping that maps the domain in Figure 4.7 to the corresponding domain Figure

4.8 is

ω = −

√
M∗5 (z − (−R+ iκ))4

(z − i(κ−R))4 − (z − (−R+ iκ))4
+ `3 + q3i (4.31)

where M∗5 > 0 and q3 are arbitrary real numbers. Using Eq.(4.31) and choosing any M5 and q3

results in the the flow net in Figure 4.9. Since ω = φ + iψ, φ(x, y) is the real part of ω. Thus, it

can be shown that if

f1(x, y) = x2 + (y − κ)2 (4.32)

f2(x, y) = 2R(R− κ+ x+ y) (4.33)

f3(x, y) = f1(x, y) + f2(x, y) (4.34)

f4(x, y) = 2f1(x, y) + f2(x, y)−R2 (4.35)

f(x, y) =
(x+ r)2 + (y − κ)2

2
√
R2f1(x, y)f3(x, y)f4(x, y)

(4.36)

and

g(x, y) = cos

(
1

2
Arg

(
M∗5 (x+ iy − (iκ−R))4

(x+ iy − i(κ−R))4 − (x+ iy − i(κ−R))4

))
, (4.37)

then we get

φ(x, y) = `3 −M5f(x, y) · g(x, y), (4.38)

where M5 =
√

5M∗5 , as the solution of the BVP for the domain in Figure 4.7.

On Segment E1E (from node K4 − 1 to K4),

y = −x− `2 − 2R,
∂φ

∂n
= − 1√

2

∂φ

∂x
− 1√

2

∂φ

∂y
from Eq.4.38, we can get

Ω =
∂φ

∂n
= − 1√

2

∂φ

∂x
− 1√

2

∂φ

∂y
= −M5√

2

(
∂φ

∂x
(x,−x− `2 − 2R) +

∂φ

∂y
(x,−x− `2 − 2R)

)
(4.39)
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(a) Contour plot for various values of φ (b) Contour plot for various values of ψ

(c) Flownet of Domain in Figure 4.7

Figure 4.9: Contour Plots of Domain in Figure 4.7

At E1, x = xK4−1, so

ΩK4−1 = −M5√
2

(
∂φ

∂x
(xK4−1,−xK4−1 − `2 − 2R) +

∂φ

∂y
(xK4−1,−xK4−1 − `2 − 2R)

)
(4.40)
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Thus,

M5 = −
√

2ΩK4−1

(
∂φ

∂x
(xK4−1,−xK4−1 − `2 − 2R) +

∂φ

∂y
(xK4−1,−xK4−1 − `2 − 2R)

)−1
(4.41)

Therefore,

Ω = ΩK4−1

(
∂φ
∂x (x,−x− `2 − 2R) + ∂φ

∂y (x,−x− `2 − 2R)
)

(
∂φ
∂x (xK4−1,−xK4−1 − `2 − 2R) + ∂φ

∂y (xK4−1,−xK4−1 − `2 − 2R)
) . (4.42)

Let ζ =

(
∂φ

∂x
(xK4−1,−xK4−1 − `2 − 2R) +

∂φ

∂y
(xK4−1,−xK4−1 − `2 − 2R)

)
. Using Eq.(4.42), Eq.(2.7)

becomes

I
(p)
K4−1,K4

= Bp,K4−1 −
ΩK4−1
ζ

∫ xK4

xK4−1

(
∂φ

∂x
(x,−x− `2 − 2R) +

∂φ

∂y
(x,−x− `2 − 2R)

)
ln (rp) dx

= Bp,K4−1 − ΩK4−1I8

(
xK4−1, xK4

, xp −
1

2
sp,

sp
2

)
(4.43)

Thus, one gets

a
(K4−1)
p,K4−1 = −I8

(
xK4−1, xK4

, xp −
1

2
sp,

sp
2

)
(4.44)

to be used as a replacement to what was found using the traditional method. ΩK4 is excluded from

the system in the modified BEM.

On Segment EE2 (from node K4 + 1 to K4 + 2),

x2 + (κ+ y)2 = R2, x = R cos θ, and y = R sin θ − κ. Hence

Ω = φ(x, y) = `3 −M5f(x, y) · g(x, y) (4.45)
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where now

f(R cos θ,R sin θ − κ) = f̂(θ) =
1 + cos θ√

3 + 2(cos θ + sin θ)
(4.46)

and

g(R cos θ,R sin θ − κ) = ĝ(θ) = cos

(
1

2
arg

(
M∗5

4e2iθ(2 sin θ + 2 cos θ + 3)

))
(4.47)

At E2, θ = θK4+2, so

ΩK4+2 = `3 −M5f̂(θK4+2)ĝ(θK4+2) (4.48)

Thus

M5 =
`3 − ΩK4+2

f̂(θK4+2)ĝ(θK4+2)
(4.49)

Therefore,

Ω = φ = `3 +

(
ΩK4+2 − `3

f̂(θK4+2)ĝ(θK4+2)

)
f̂(θ)ĝ(θ) (4.50)

Using Eq.(4.50), Eq.(2.7) becomes

I
(p)
K4+1,K4+2 =

∫ θK4+2

θK4+1

((
f̂(θ)ĝ(θ)

f̂(θK4+2)ĝ(θK4+2)

)
ΩK4+2 + `3

(
1− f̂(θ)ĝ(θ)

f̂(θK4+2)ĝ(θK4+2)

))
r

rp

∂rp
∂n

dθ

(4.51)

=
ΩK4+2

f̂(θK4+2)ĝ(θK4+2)
I9(θK4+1, θK4+2, xp, yp − κ,R) + I10(θK4+1, θK4+2, xp, yp − κ,R) (4.52)

Thus, one gets

a
(K4+2)
p,K4+2 =

1

f̂(θK4+2)ĝ(θK4+2)
I9(θK4+1, θK4+2, xp, yp − κ,R) (4.53)

to be used as a replacement to what was found using the traditional method. ΩK4+1 is excluded

from the system in the modified BEM.
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4.4 Treatment of the Singularity at Point F

The local behavior near the singular point F is found. We consider the infinite extension of the

adjacent sides of point F in Figure 2.1 preserving the boundary conditions, shown in Figure 4.10.

The corresponding domain in the complex potential plane of the domain in Figure 4.10 is shown

Figure 4.11.

z y

F2

F3(∞)

F (−i`2)

F3(∞)

F1

Figure 4.10: Extension of Boundary Near
Point F

ω

F (φf + iq4)F2F3(∞) F3(∞)F1

φ

ψ

Figure 4.11: Domain in Complex Potential
Plane of Figure 4.10

The conformal mapping that maps the domain in Figure 4.10 to the domain on Figure 4.11 is

ω = −M7
(z + i`2)

2

(z − i(κ−R))2 − (z + i`2)2
+ φF + iq4 (4.54)

= −M7
(z − i(κ+R))2

(z − i(κ−R))2 − (z − i(κ+R))2
+ φF + iq4 (4.55)

where q4 and φf are arbitrary real numbers and M7 > 0. Using Eq.(4.55) and any choice M3 and

q2 results in the the flow net in Figure 4.12. Since ω = φ+ iψ, φ(x, y) is the real part of ω. Thus,
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it can be shown that

φ(x, y) = φF +
M7

4

(
2 +

κ− y
R

+
R(κ− y)

x2 + (κ− y)2

)
, (4.56)

where φF = ΩK5 , is the solution of the BVP for the domain shown in Figure 4.10.

Figure 4.12: Flownet of Domain in Figure 4.10

On Segment F1F (from node K5 − 1 to K5),

x2 + (y − κ)2 = R2 and y = R sin θ + κ hence

Ω = φ = ΩK5 +
M7

2
(1− sin θ) (4.57)

At F1, θ = θK5−1
, so

ΩK5−1 = ΩK5 +
M7

2

(
1− sin θK5−1

)
=⇒ M7 =

2(ΩK5−1 − ΩK5)(
1− sin θK5−1

) (4.58)
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Therefore,

Ω =
ΩK5(sin θ − sin θK5−1

) + ΩK5−1(1− sin θ)(
1− sin θK5−1

) (4.59)

Using Eq.(4.59), Eq.(2.7) becomes

I
(p)
K5−1,K5

=

∫ θK5

θK5−1

(
ΩK5(sin θ − sin θK5−1

) + ΩK5−1
(1− sin θ)(

1− sin θK5−1

) )
·

R2 − xpR cos θ − (yp − κ)R sin θ

(R cos θ − xp)2 + (R sin θ − (yp − κ))2
dθ (4.60)

Thus, one gets

a
(K5−1)
p,K5−1

=
1

1− sin
(
θK5−1

)I11(θK5−1
, θK5

, xp, yp − κ,R, 1) (4.61)

to be used as a replacement to what was found using the traditional method. a
(K5)
p,K5

will be given

later on in this section.

On Segment FF2 (from node K5 to K5 + 1),

x = 0. From Eq.(4.56) we get

φ = ΩK5 +
M8

4

(
2 +

k − y
R

+
R(k − y)

x2 + (k − y)2

)
= ΩK5 +

M8

4

(
2 +

k − y
R

+
R

k − y

)
(4.62)

At F2, y = yK5+1, so

ΩK5+1 = ΩK5 +
M8

4

(
2 +

k − yK5+1

R
+

R

k − yK5+1

)
=⇒ (4.63)

M8 =
4(ΩK5+1 − ΩK5)

2 +
k−yK5+1

R + R
k−yK5+1

=
4R(k − yK5+1)(ΩK5+1 − ΩK5)

2R(k − yK5+1) + (k − yK5+1)2 +R2
(4.64)
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Therefore,

Ω = ΩK5 +
R(k − yK5+1)(ΩK5+1 − ΩK5)

(R+ (κ− yK5+1))2

(
2 +

k − y
R

+
R

k − y

)
(4.65)

Using Eq.(4.65), Eq.(2.7) becomes

I
(p)
K5,K5+1 = −ΩK5

∫ yK5+1

yK5

xp
x2p + (y − yp)2

dy

−
R(κ− yK5+1)(ΩK5+1 − ΩK5)

(R+ (κ− yK5+1))2

∫ yK5+1

yK5

2xp
x2p + (y − yp)2

dy

−
R(κ− yK5+1)(ΩK5+1 − ΩK5)

(R+ (κ− yK5+1))2

∫ yK5+1

yK5

(κ− y)xp
R((xp)2 + (y − yp)2)

dy

−
R(κ− yK5+1)(ΩK5+1 − ΩK5)

(R+ (κ− yK5+1))2

∫ yK5+1

yK5

Rxp
(κ− y)((xp)2 + (y − yp)2)

dy (4.66)

Let
ξ =

R(κ− yK5+1)

(R+ (κ− yK5+1))2
(4.67)

Then, Eq.(4.66) becomes

I
(p)
K5,K5+1 = −ΩK5I3(yK5

, yK5+1, yp, xp)

− 2ξ(ΩK5+1 − ΩK5)I3(yK5
, yK5+1, yp, xp)

+
xpξ

r
(ΩK5+1 − ΩK5)

(
ln

∣∣∣∣∣
√

(yK5+1 − yp)2 + +x2p
(yK5

− yp)2 + x2p

∣∣∣∣∣+
yp − κ
xp

I3(yK5
, yK5+1, yp, xp)

)

+Rξ(ΩK5+1 − ΩK5)I12(yK5
, yK5+1, yp, xp, κ) (4.68)
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Let

η =

√
(yK5+1 − yp)2 + +x2p

(yK5
− yp)2 + x2p

(4.69)

Then, Eq.(4.68) becomes

(
xp
r

ln |η|+
(
yp − κ
R

− 2

)
I3 + rI12

)
ξΩK5+1 −

(
xp
R

ln |η|+
(
yp − κ
R

− 2− 1

ξ

)
I3 +RI12

)
ξΩK5

(4.70)

Thus, one gets

a
(K5)
p,K5

= −
(
xp
R

ln |η|+
(
yp − κ
R

− 2− 1

ξ

)
I3 +RI12

)
ξ

− (1− sin
(
θK5−1

)
)−1I11(θK5−1

, θK5
, xp, yp − κ, sin

(
θK5−1

)
, R) (4.71)

a
(K5+1)
p,K5+1 =

(
xp
R

ln |η|+
(
yp − κ
R

− 2

)
I3 +RI12

)
ξ (4.72)

to be used as replacements to what was found using the traditional method.
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CHAPTER 5

CONCLUSIONS

5.1 Numerical Results

Both the Traditional and Modified BEM were implemented in programs using Mathematica

11 (Wolfram Research Inc. 2018). The program asks for the following dimensions to construct a

domain like in Figure 2.11: `1, `2, `3, and R. One must be cautious when inputing these values,

since d is calculated by finding the intersection of the lines x = −`1 and y = −x− (`2−2R). d < `3

is imposed to insure a simply connected domain without any self-intersections. The dimensions

used for the results in this section are `1 = 20, `2 = 15, `3 = 8, and R = 5. The amount of

boundary elements used for the BEM and modified BEM are as follows: k1 = 14, k7 = 5, k2 =

135, k8 = 1, k3 = 40, k4 = 69, k5 = 45, k6 = 50. In the first iteration of both the BEM and

Figure 5.1: First Iteration at b′ = 1.515
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Figure 5.2: View of Exit Point in Figure 5.1

Modified BEM have similar results with both appearing to be correct. This is shown in Figures 5.1

and Figures 5.2. Let Ω(1)
m be the results from the traditional BEM and Ω(2)

m be the results from the

modified BEM. The data for the first iteration can be seen in Table 5.1.

m xm ym Ω(1)
m Ω(2)

m

∣∣∣ym − Ω(1)
m

∣∣∣ ∣∣∣ym − Ω(2)
m

∣∣∣
19 1.515 0.906 0.953 0.946 0.047 0.04
20 1.468 1.123 1.18 1.152 0.057 0.029
21 1.404 1.364 1.39 1.365 0.026 0.001
22 1.33 1.589 1.584 1.56 0.005 0.029
23 1.251 1.799 1.758 1.734 0.041 0.065
24 1.165 1.993 1.913 1.889 0.08 0.104
25 1.076 2.175 2.054 2.03 0.121 0.145
26 0.983 2.345 2.183 2.158 0.163 0.187
27 0.886 2.506 2.301 2.277 0.205 0.229
28 0.786 2.658 2.411 2.387 0.247 0.27
29 0.684 2.802 2.514 2.491 0.288 0.311
30 0.578 2.939 2.612 2.589 0.327 0.35
31 0.471 3.07 2.704 2.682 0.366 0.388
32 0.361 3.195 2.792 2.771 0.403 0.424
33 0.249 3.315 2.877 2.856 0.438 0.459
34 0.135 3.43 2.958 2.938 0.472 0.492
35 0.019 3.541 3.036 3.018 0.504 0.523
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m xm ym Ω(1)
m Ω(2)

m

∣∣∣ym − Ω(1)
m

∣∣∣ ∣∣∣ym − Ω(2)
m

∣∣∣
36 -0.099 3.647 3.112 3.095 0.535 0.553
37 -0.218 3.75 3.186 3.17 0.564 0.58
38 -0.34 3.849 3.258 3.243 0.591 0.607
39 -0.462 3.945 3.328 3.314 0.617 0.631
40 -0.587 4.038 3.396 3.384 0.642 0.654
41 -0.713 4.128 3.464 3.452 0.665 0.676
42 -0.84 4.215 3.529 3.52 0.686 0.696
43 -0.969 4.3 3.594 3.586 0.706 0.715
44 -1.099 4.382 3.657 3.651 0.725 0.732
45 -1.23 4.462 3.72 3.715 0.742 0.748
46 -1.363 4.54 3.781 3.778 0.759 0.762
47 -1.496 4.616 3.842 3.84 0.774 0.776
48 -1.631 4.69 3.902 3.902 0.788 0.788
49 -1.768 4.762 3.961 3.963 0.801 0.799
50 -1.905 4.832 4.019 4.023 0.813 0.81
51 -2.043 4.901 4.077 4.082 0.824 0.819
52 -2.183 4.968 4.133 4.141 0.834 0.827
53 -2.324 5.033 4.19 4.199 0.844 0.834
54 -2.465 5.097 4.245 4.257 0.852 0.841
55 -2.608 5.16 4.3 4.314 0.86 0.846
56 -2.752 5.221 4.354 4.37 0.867 0.851
57 -2.896 5.281 4.408 4.426 0.873 0.855
58 -3.042 5.34 4.461 4.482 0.879 0.858
59 -3.188 5.397 4.514 4.537 0.884 0.86
60 -3.336 5.454 4.566 4.592 0.888 0.862
61 -3.484 5.509 4.617 4.646 0.892 0.863
62 -3.633 5.563 4.669 4.699 0.895 0.864
63 -3.783 5.617 4.719 4.753 0.898 0.864
64 -3.934 5.669 4.769 4.806 0.9 0.863
65 -4.086 5.72 4.819 4.858 0.902 0.862
66 -4.239 5.771 4.868 4.91 0.903 0.861
67 -4.392 5.82 4.917 4.962 0.904 0.859
68 -4.546 5.869 4.965 5.013 0.904 0.856
69 -4.701 5.917 5.013 5.064 0.904 0.853
70 -4.857 5.964 5.06 5.115 0.904 0.849
71 -5.014 6.01 5.107 5.165 0.904 0.845
72 -5.171 6.056 5.153 5.215 0.903 0.841
73 -5.329 6.101 5.199 5.265 0.901 0.836
74 -5.488 6.145 5.245 5.314 0.9 0.831
75 -5.647 6.189 5.29 5.363 0.898 0.826
76 -5.808 6.231 5.335 5.411 0.896 0.82
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m xm ym Ω(1)
m Ω(2)

m

∣∣∣ym − Ω(1)
m

∣∣∣ ∣∣∣ym − Ω(2)
m

∣∣∣
77 -5.969 6.274 5.38 5.46 0.894 0.814
78 -6.13 6.315 5.424 5.508 0.891 0.807
79 -6.293 6.356 5.468 5.556 0.889 0.801
80 -6.456 6.397 5.511 5.603 0.886 0.793
81 -6.619 6.436 5.554 5.65 0.883 0.786
82 -6.784 6.476 5.597 5.697 0.879 0.778
83 -6.948 6.515 5.639 5.744 0.876 0.77
84 -7.114 6.553 5.681 5.79 0.872 0.762
85 -7.28 6.59 5.722 5.837 0.868 0.754
86 -7.447 6.628 5.763 5.883 0.864 0.745
87 -7.615 6.664 5.804 5.928 0.86 0.736
88 -7.783 6.701 5.845 5.974 0.856 0.727
89 -7.952 6.736 5.885 6.019 0.852 0.718
90 -8.121 6.772 5.925 6.064 0.847 0.708
91 -8.291 6.807 5.964 6.108 0.842 0.698
92 -8.461 6.841 6.004 6.153 0.838 0.688
93 -8.633 6.875 6.043 6.197 0.833 0.678
94 -8.804 6.909 6.081 6.241 0.828 0.668
95 -8.977 6.942 6.119 6.284 0.823 0.658
96 -9.149 6.975 6.157 6.328 0.818 0.647
97 -9.323 7.008 6.195 6.371 0.813 0.637
98 -9.497 7.04 6.232 6.414 0.807 0.626
99 -9.671 7.071 6.27 6.456 0.802 0.615
100 -9.846 7.103 6.306 6.498 0.796 0.605
101 -10.022 7.133 6.343 6.54 0.791 0.594
102 -10.198 7.164 6.379 6.581 0.785 0.582
103 -10.375 7.194 6.415 6.622 0.779 0.571
104 -10.552 7.223 6.451 6.663 0.772 0.56
105 -10.73 7.252 6.486 6.703 0.766 0.549
106 -10.908 7.28 6.521 6.743 0.759 0.537
107 -11.087 7.308 6.556 6.783 0.753 0.526
108 -11.266 7.336 6.591 6.822 0.745 0.514
109 -11.446 7.363 6.625 6.86 0.738 0.503
110 -11.626 7.39 6.659 6.898 0.731 0.491
111 -11.807 7.416 6.693 6.936 0.723 0.48
112 -11.988 7.441 6.727 6.973 0.715 0.468
113 -12.17 7.466 6.76 7.009 0.706 0.457
114 -12.352 7.491 6.793 7.045 0.698 0.446
115 -12.535 7.515 6.826 7.081 0.689 0.434
116 -12.718 7.538 6.859 7.115 0.679 0.423
117 -12.901 7.561 6.892 7.149 0.67 0.412
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m xm ym Ω(1)
m Ω(2)

m

∣∣∣ym − Ω(1)
m

∣∣∣ ∣∣∣ym − Ω(2)
m

∣∣∣
118 -13.086 7.584 6.924 7.183 0.66 0.401
119 -13.27 7.606 6.956 7.216 0.65 0.39
120 -13.455 7.627 6.988 7.248 0.639 0.379
121 -13.641 7.648 7.02 7.279 0.628 0.369
122 -13.827 7.668 7.052 7.31 0.617 0.358
123 -14.013 7.688 7.083 7.34 0.605 0.348
124 -14.2 7.707 7.115 7.37 0.593 0.338
125 -14.387 7.726 7.146 7.398 0.58 0.328
126 -14.575 7.744 7.177 7.426 0.567 0.318
127 -14.763 7.761 7.208 7.453 0.554 0.308
128 -14.952 7.778 7.238 7.48 0.54 0.298
129 -15.141 7.794 7.269 7.506 0.525 0.289
130 -15.33 7.81 7.3 7.531 0.511 0.279
131 -15.52 7.825 7.33 7.556 0.495 0.27
132 -15.711 7.84 7.36 7.58 0.48 0.26
133 -15.901 7.854 7.39 7.603 0.463 0.251
134 -16.092 7.867 7.42 7.626 0.447 0.242
135 -16.284 7.88 7.45 7.648 0.43 0.232
136 -16.476 7.892 7.48 7.669 0.412 0.223
137 -16.668 7.903 7.51 7.69 0.394 0.213
138 -16.861 7.914 7.54 7.711 0.375 0.203
139 -17.055 7.924 7.569 7.731 0.355 0.193
140 -17.248 7.934 7.599 7.751 0.335 0.183
141 -17.442 7.943 7.628 7.77 0.315 0.173
142 -17.637 7.951 7.657 7.789 0.294 0.162
143 -17.831 7.959 7.687 7.808 0.272 0.151
144 -18.027 7.966 7.716 7.826 0.25 0.14
145 -18.222 7.972 7.745 7.844 0.227 0.128
146 -18.418 7.978 7.774 7.862 0.204 0.116
147 -18.615 7.983 7.803 7.88 0.18 0.103
148 -18.811 7.988 7.832 7.898 0.155 0.09
149 -19.009 7.991 7.861 7.915 0.13 0.076
150 -19.206 7.995 7.89 7.932 0.104 0.062
151 -19.404 7.997 7.919 7.95 0.078 0.047
152 -19.602 7.999 7.948 7.967 0.051 0.031
153 -19.801 8. 7.977 7.986 0.023 0.014

Table 5.1: Results of First Iteration

Now if we plot the nodes for the phreatic surface for the first 51 iterations we get Figure 5.4 for

the Modified BEM and Figure 5.3 fo the Traditional BEM. The figures are color coded with the

later the iteration the lighter the color.
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Figure 5.3: 51 Iteration at b′ = 1.515 with Traditional BEM

From Figures 5.4, 5.5, and 5.3 the conclusion that the Modified BEM is improving the stability

for the numerical solution is clear. Now, Figure 5.3 is a slight exaggeration, in that it is very

visually impactful, but in a more efficient program than my own, the iteration would have just

Figure 5.4: 51 Iteration at b′ = 1.515 with Modified BEM
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been terminated on the 31st loop when node ΩK7 < 0 first occurred. Nevertheless, the results

stand and after 51 iterations we arrive at Figure 5.6 and Table 5.2

Figure 5.5: View of Exit Point in Figure 5.4

Figure 5.6: 51st Iteration at b′ = 1.515
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m xm Ω(1)
m Ω(2)

m

∣∣∣y(50)m − Ω(1)
m

∣∣∣ ∣∣∣y(50)m − Ω(2)
m

∣∣∣
19 1.515 -0.571 0.053 0.46983 0.00102
20 1.468 -0.046 0.123 190.722 0.01638
21 1.404 0.568 0.337 55.244 0.0055
22 1.33 4.417 0.875 27.327 0.00496
23 1.251 -0.308 1.033 0.31607 0.00587
24 1.165 0.178 1.278 0.14859 0.00563
25 1.076 3.176 1.45 2.49626 0.00096
26 0.983 5.98 1.604 4.4521 0.00111
27 0.886 8.295 1.747 5.79722 0.00137
28 0.786 10.178 1.884 6.84976 0.00108
29 0.684 12.865 2.016 8.39369 0.00079
30 0.578 0.312 2.141 0.10532 0.00056
31 0.471 0.073 2.262 0.2264 0.00039
32 0.361 -0.094 2.378 0.17508 0.00028
33 0.249 -0.172 2.489 0.07154 0.0002
34 0.135 -0.132 2.597 0.02123 0.00015
35 0.019 -0.039 2.701 0.05475 0.00011
36 -0.099 3.714 2.802 4.87508 0.00009
37 -0.218 3.404 2.9 4.35361 0.00007
38 -0.34 3.315 2.996 4.10379 0.00006
39 -0.462 3.288 3.088 3.96464 0.00006
40 -0.587 3.291 3.178 3.8781 0.00005
41 -0.713 3.308 3.266 3.81083 0.00005
42 -0.84 3.333 3.352 3.75339 0.00005
43 -0.969 3.363 3.436 3.70183 0.00004
44 -1.099 3.396 3.518 3.65409 0.00004
45 -1.23 3.43 3.598 3.60889 0.00004
46 -1.363 3.466 3.677 3.56538 0.00004
47 -1.496 3.502 3.754 3.52293 0.00004
48 -1.631 3.539 3.829 3.48105 0.00004
49 -1.768 3.576 3.903 3.4394 0.00004
50 -1.905 3.614 3.976 3.39771 0.00004
51 -2.043 3.651 4.047 3.35583 0.00004
52 -2.183 3.689 4.117 3.31363 0.00004
53 -2.324 3.728 4.186 3.27107 0.00004
54 -2.465 3.767 4.254 3.22812 0.00004
55 -2.608 3.806 4.32 3.18478 0.00004
56 -2.752 3.846 4.386 3.14107 0.00004
57 -2.896 3.887 4.45 3.09703 0.00003
58 -3.042 3.928 4.514 3.05271 0.00003
59 -3.188 3.97 4.577 3.00816 0.00003

59



m xm Ω(1)
m Ω(2)

m

∣∣∣y(50)m − Ω(1)
m

∣∣∣ ∣∣∣y(50)m − Ω(2)
m

∣∣∣
60 -3.336 4.013 4.638 2.96343 0.00003
61 -3.484 4.056 4.699 2.91858 0.00003
62 -3.633 4.1 4.759 2.87366 0.00003
63 -3.783 4.144 4.819 2.82873 0.00003
64 -3.934 4.189 4.877 2.78384 0.00003
65 -4.086 4.234 4.935 2.73904 0.00003
66 -4.239 4.28 4.992 2.69437 0.00003
67 -4.392 4.326 5.048 2.64988 0.00003
68 -4.546 4.373 5.104 2.6056 0.00003
69 -4.701 4.42 5.159 2.56157 0.00003
70 -4.857 4.467 5.213 2.51782 0.00003
71 -5.014 4.515 5.267 2.47437 0.00003
72 -5.171 4.562 5.321 2.43126 0.00003
73 -5.329 4.61 5.373 2.3885 0.00003
74 -5.488 4.658 5.426 2.34611 0.00003
75 -5.647 4.706 5.477 2.3041 0.00003
76 -5.808 4.755 5.528 2.26249 0.00003
77 -5.969 4.803 5.579 2.22129 0.00003
78 -6.13 4.851 5.629 2.18051 0.00003
79 -6.293 4.899 5.679 2.14015 0.00003
80 -6.456 4.948 5.728 2.10022 0.00003
81 -6.619 4.996 5.777 2.06072 0.00003
82 -6.784 5.044 5.826 2.02166 0.00003
83 -6.948 5.092 5.874 1.98302 0.00003
84 -7.114 5.14 5.922 1.94482 0.00003
85 -7.28 5.188 5.969 1.90706 0.00003
86 -7.447 5.235 6.016 1.86972 0.00003
87 -7.615 5.283 6.062 1.83281 0.00002
88 -7.783 5.33 6.109 1.79632 0.00002
89 -7.952 5.377 6.154 1.76025 0.00002
90 -8.121 5.424 6.2 1.72459 0.00002
91 -8.291 5.471 6.245 1.68934 0.00002
92 -8.461 5.518 6.29 1.65449 0.00002
93 -8.633 5.564 6.334 1.62003 0.00002
94 -8.804 5.611 6.378 1.58597 0.00002
95 -8.977 5.657 6.422 1.55228 0.00002
96 -9.149 5.702 6.465 1.51897 0.00002
97 -9.323 5.748 6.508 1.48603 0.00002
98 -9.497 5.793 6.551 1.45345 0.00002
99 -9.671 5.838 6.593 1.42123 0.00002
100 -9.846 5.883 6.634 1.38934 0.00002
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m xm Ω(1)
m Ω(2)

m

∣∣∣y(50)m − Ω(1)
m

∣∣∣ ∣∣∣y(50)m − Ω(2)
m

∣∣∣
101 -10.022 5.928 6.676 1.3578 0.00002
102 -10.198 5.972 6.716 1.32659 0.00002
103 -10.375 6.016 6.757 1.29571 0.00002
104 -10.552 6.06 6.797 1.26514 0.00002
105 -10.73 6.104 6.836 1.23488 0.00002
106 -10.908 6.148 6.875 1.20492 0.00002
107 -11.087 6.191 6.913 1.17525 0.00002
108 -11.266 6.234 6.951 1.14588 0.00002
109 -11.446 6.277 6.988 1.11678 0.00002
110 -11.626 6.319 7.025 1.08795 0.00002
111 -11.807 6.361 7.061 1.0594 0.00002
112 -11.988 6.404 7.096 1.0311 0.00002
113 -12.17 6.445 7.131 1.00305 0.00002
114 -12.352 6.487 7.165 0.97524 0.00002
115 -12.535 6.529 7.199 0.94768 0.00002
116 -12.718 6.57 7.231 0.92035 0.00001
117 -12.901 6.611 7.263 0.89324 0.00001
118 -13.086 6.652 7.294 0.86635 0.00001
119 -13.27 6.692 7.325 0.83967 0.00001
120 -13.455 6.733 7.354 0.81319 0.00001
121 -13.641 6.773 7.383 0.78692 0.00001
122 -13.827 6.813 7.411 0.76084 0.00001
123 -14.013 6.853 7.439 0.73494 0.00001
124 -14.2 6.893 7.465 0.70923 0.00001
125 -14.387 6.932 7.491 0.68369 0.00001
126 -14.575 6.971 7.516 0.65832 0.00001
127 -14.763 7.011 7.541 0.63311 0.00001
128 -14.952 7.05 7.564 0.60806 0.00001
129 -15.141 7.088 7.587 0.58316 0.00001
130 -15.33 7.127 7.609 0.5584 0.00001
131 -15.52 7.166 7.631 0.53379 0.00001
132 -15.711 7.204 7.652 0.50932 0.00001
133 -15.901 7.242 7.672 0.48497 0.00001
134 -16.092 7.28 7.692 0.46075 0.00001
135 -16.284 7.318 7.711 0.43666 0.00001
136 -16.476 7.356 7.729 0.41268 0.00001
137 -16.668 7.393 7.747 0.38881 0.00001
138 -16.861 7.431 7.765 0.36505 0.00001
139 -17.055 7.468 7.782 0.3414 0.00001
140 -17.248 7.505 7.798 0.31784 0.00001
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m xm Ω(1)
m Ω(2)

m

∣∣∣y(50)m − Ω(1)
m

∣∣∣ ∣∣∣y(50)m − Ω(2)
m

∣∣∣
141 -17.442 7.542 7.814 0.29439 0.00001
142 -17.637 7.579 7.83 0.27103 0.00001
143 -17.831 7.616 7.846 0.24776 0.00001
144 -18.027 7.652 7.861 0.22459 0.00001
145 -18.222 7.688 7.876 0.20151 0.
146 -18.418 7.725 7.89 0.17852 0.
147 -18.615 7.761 7.905 0.15563 0.
148 -18.811 7.796 7.919 0.13284 0.
149 -19.009 7.832 7.933 0.11015 0.
150 -19.206 7.867 7.946 0.08756 0.
151 -19.404 7.902 7.96 0.06509 0.
152 -19.602 7.937 7.972 0.0426 0.
153 -19.801 7.972 7.978 0.02027 0.

Table 5.2: Results of 51st Iteration

5.2 Future Work

In this thesis, the modified BEM (Muleshkov, 1988) was used for two-dimensional unconfined

flow. In particular, a seepage with toe drain or horizontal exit was used. In the future, one could try

to generalize what is done in this thesis to the case of an exit with arbitrary angle θ. Furthermore,

discussion of different kinds of singularities could merit research. An interesting example would

be singularities that occur on cusps. Alternatively, another avenue of future research could be

applying the modified BEM to other areas of physics or engineering such as steady-state heat flow,

electrostatics, or elasticity. The following subsections discuss possible further research.

When attempting to extend this work to other areas of hydrodynamics? there are some immedi-

ate difficulties. While the BEM has been applied to multiphase flow, unsteady flow, leaky aquifers,

and anisotropic aquifers, as well as many other types of flow problems (Liggett and Liu, 1983), the

modified BEM may not be applicable in these situations. In its current form, the modified BEM’s

main limitation is the need for a Laplace equation with the boundary conditions that allow the

use of conformal mapping. This requirement limits the application of the modified BEM to flow
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problems with a low Reynolds number and low flow velocity.

5.2.1 Treatment of Singularity at Point B′

The explanation of why Chantasiriwan’s algorithm becomes unstable as the height seepage

surface approaches zero could be the fact that the exit point becomes a singularity. In Figure 2.1,

it can be seen that point B is a regular point. However, in Figure 2.11, point B′ is now a singularity,

since line segment B′B′′ does not have the boundary condition
∂φ

∂n
= 0. This means we may apply

the same conformal mapping modifications as what was done with the other singularities in this

thesis. The preliminary work of applying the modification to the elements around the singular

point B′ is discussed in the remainder of this subsection. We consider the infinite extension of the

sides adjacent to point B′ in Figure 2.11 preserving the local behavior. This is shown in Figure 5.7.

The corresponding domain of the domain in Figure 5.7 in the complex potential plane is shown in

Figure 5.8. Note that the shape and location of line B′B′3 is unknown in Figure 5.8.

z

B′2

B′1

B′3(∞)

B′3(∞) B′(b′) x

y

Figure 5.7: Extension of Boundary Near
Point B′

ω

B′(iq5)

B′1

B′3(∞)

B′3(∞)

B′2

φ

ψ

Figure 5.8: Domain in Complex Potential
Plane of Figure 5.1

By using the complex velocity function
dω

dz
and the intermediary domain in Fig 5.9 the conformal
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W

B′(−i)

B′1

B′3(∞)

B′3(∞)

B′2
v

u

Figure 5.9: Domain in W-plane

mapping can be found.

The conformal mapping that maps the domain in Figure 5.7 to the corresponding domain Figure

5.8 is

ω = iM9

(
(z − b′)2

2
− (z − b′)

)
+ iq5 (5.1)

where M9 and q5 are arbitrary real number. Since ω = φ+ iψ, φ(x, y) is the real part of ω. If we

set M9 = 1 and q5 = 0. It can be shown that

φ(x, y) = (1 + b′)y − xy (5.2)

ψ(x, y) =
1

2

(
b′2 − 2b′(x− 1)− 2x+ x2 − y2

)
(5.3)

is the solution of the BVP for the domain shown in Figure 5.7. Using Eqs.(5.2) and (5.3), Figure

5.10 is made. The figures do show that the behavior of the flow around B′, where b′ = 1.5 was

used for the graphs, is concerning. Further work to treat the singularity, possibly leading to better

results, can be done in the future.
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(a) Contour plot for various values of φ (b) Contour plot for various values of ψ

(c) Flownet of Figure 5.7

Figure 5.10: Contour Plots of Figure 5.7

5.2.2 Alternative Conformal Mappings Around Singular Points

The simplified domains used in the conformal mappings would be that they are not unique. To

elaborate further, the style used in this thesis is not the only way to simplify a domain; one could use

a simplified polygon or different infinite extensions. Another idea could be using more than 2 parts

of the boundary. As an example of some of the ideas presented, Figure 5.11 illustrates a possible
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alternative to what was done in Sections 4.3 and 4.4. This raises the question on whether under

special circumstances if multiple singularities can be treated with the same conformal mapping.

z
H(∞)

H(∞)

G

F (−i`2)

E(−R+ iκ)

Figure 5.11: Extension of Boundary Near EF

ω

E(`3 + iq̂)H(∞)

H(∞)

φ

ψ

F (p̂+ iq̂)

Figure 5.12: Domain in Complex Potential
Plane of Figure 5.11

The following conformal mapping would map the domain in Figure 5.11 to the right triangle in

Figure 5.13.

Z1(z) =
z + (κ−R)i

z + (κ+R)i
(5.4)

The Domain in Figure 5.13 can then be mapped to the upper half plane using a Schwarz-

Christoffel transformation, which for a triangle results in a Hypergeometric function.
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Z1

E(i)

H(1)F (0)

y1

x1

Figure 5.13: Domain in Z1 Plane of the domain in Figure 5.11

5.2.3 Alternative Determination Algorithm for Locating the Phreatic Surface on Dams with Toe

Drain

This thesis used the algorithm found in Chantasiriwan (2011) for location of the phreatic sur-

face. As was discussed in subsection 5.2.1, this method is far from perfect. The inherent flaws of

modifying the physical domain are clear. If one could find an alternative algorithm that does not

depend on changing the domain of the BVP, that would be ideal. This can can be achieved by

running the BEM algorithm multiple times, until either φ = 0 or
∂φ

∂n
= 0 at the exit point. Both

methods seem promising and could be done using a method similar to the bisection method for

finding zeros. However, this would be very inefficient, since each test would require the BEM to be

performed on the boundary for every test. Nevertheless, the following figure shows the results of

the first loop of these proposed algorithm.
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Figure 5.14: First Iteration of New Algorithm
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Appendix A. List of Integrals Used and Their Solutions

Integral I1

The Integral I1 is given by

I1(a, b, c, d) =

∫ b

a

b− z
b− a

ln
√

(z − c)2 + d2 dz (A.1)

where a 6= b and d ≥ 0.

I1 is solved ∀a, b, c, d ∈ R in (Muleshkov, 1988). In the most general case, when d > 0, Eq.(A.1)

becomes

I1(a, b, c, d) =
(a− c)(a− 2b+ c) + d2

2(b− a)
ln
√

(a− c)2 + d2 +
1

4
(a− 3b+ 2c)

+
(b− c)2 − d2

2(b− a)
ln
√

(b− c)2 + d2 +
d(b− c)
b− a

(
arctan

b− c
d
− arctan

a− c
d

)
. (A.2)

When a 6= b 6= c and d→ 0 Eq.(A.2) becomes

I1(a, b, c, 0) =
(a− c)(a− 2b+ c)

2(b− a)
ln |b− a|+ (b− c)2

2(b− a)
ln |b− c|+ 1

4
(a− 3b+ 2c). (A.3)

When c→ a and d = 0, Eq.(A.3) becomes

I1(a, b, a, 0) =
1

2
(b− c) ln |b− a|+ 3

4
(a− b) (A.4)
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When c→ b and d = 0, Eq.(A.3) becomes

I1(a, b, b, 0) =
1

2
(b− a) ln |b− a|+ 1

4
(a− b) (A.5)

Integral I2

The Integral I2 is given by

I2(a, b, c, d) =

∫ b

a

b− z
b− a

· d

(z − c)2 + d2
dz (A.6)

where a 6= b.

I2 is solved ∀a, b, c, d ∈ R in (Muleshkov, 1988). In the most general case, when d 6= 0, Eq.(A.6)

becomes

I2(a, b, c, d) =
b− c
b− a

(
arctan

b− c
d
− arctan

a− c
d

)
d

b− a
ln
√

(b− c)2 + d2

+
d

b− a
ln
√

(a− c)2 + d2. (A.7)

When d = 0, Eq.(A.7) becomes

I2(a, b, c, 0) = 0 (A.8)

Integral I3

The Integral I3 is given by

I3(a, b, c, d) = d

∫ b

a

dz

(z − c)2 + d2
(A.9)
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where a 6= b.

I3 is solved ∀a, b, c, d ∈ R in (Muleshkov, 1988). In the most general case, when d 6= 0, Eq.(A.9)

becomes

I3(a, b, c, d) = arctan
b− c
d
− arctan

a− c
d

(A.10)

When d = 0, from Eq.(A.28) becomes

I3(a, b, c, 0) = 0 (A.11)

Integral I4

The Integral I4 is given by

I4(a, b, c) =

∫ c

0

z3

(z3 − a)2 + b2
dz (A.12)

where c 6= 0.

I4 is solved for b > 0 in (Muleshkov, 1988) as Ĩ5. In the most general case, when b > 0, Eq.(A.12)

becomes

I4(a, b, c) =
1∑

k=−1

[
Rk
2

ln

(
1− 2µk

c

λ
+
c2

λ2

)
+

Sk
λµ̄k

(
arctan

c
λ − µk
µ̄k

+ arctan
µk
µ̄k

)]
(A.13)

for k ∈ {−1, 0, 1}. Where

λ =
6
√
a2 + b2 θ =

1

3
arccos

a

λ3

µk = cos

(
θ +

2kπ

3

)
µ̄k = sin

(
θ +

2kπ

3

)
Rk =

µ̄k
3λ2 sin 3θ

Sk =
µkµ̄k

3λ sin 3θ
.
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Integral I5

The Integral I5 is given by

I5(a, b, c) =
3b

c4

∫ c

0

z6

(z3 − a)2 + b2
dz (A.14)

where c 6= 0.

I5 is solved ∀a, b, c, d ∈ R in (Muleshkov, 1988). In the most general case, when b > 0, Eq.(A.14)

becomes

I5(a, b, c) =
3b

c3
+
λ4

c4

1∑
k=−1

[
v̄k ln

√
1− 2µk

c

λ
+
c2

λ2
+ vk

(
arctan

c
λ − µk
µ̄k

+ arctan
µk
µ̄k

)]
(A.15)

Where

λ =
6
√
a2 + b2 θ =

1

3
arccos

a

λ3

µk = cos

(
θ +

2kπ

3

)
µ̄k = sin

(
θ +

2kπ

3

)
vk = cos

(
4θ +

2kπ

3

)
v̄k = sin

(
4θ +

2kπ

3

)

for k ∈ {−1, 0, 1}. When b→ 0 but a 6= c3, Eq.(A.15) becomes

I5(a, 0, c)→
b

c4

(
3c+

ac

a− c3
+

2 3
√
a

a− c3
ln

(c− 3
√
a)3

c3 − a
− 4 3
√
a√
3

(
arctan

(
2c√
3 3
√
a

+
1

3

)
− π

6

))
(A.16)

Also, when a→ c3, Eq.(A.16) becomes

I5(c
3, 0, c) = 0 (A.17)
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Integral I6

The Integral I6 is given by

I6(a, b, c) =
3

2c

∫ c

0
z3 ln

[
(z3 − a)2 + b2

]
dz (A.18)

Where a 6= b and b ≥ 0. I6 is solved ∀a, b, c, d ∈ R in (Muleshkov, 1988). In the most general case,

when b > 0, Eq.(A.18) becomes

I6(a, b, c) =
3c3

8
ln
(
(c3 − a)2 + b2

)
− 9

16
c3 − 9

4
a+

3

4c
λ4

1∑
k=−1

[
− vk ln

√
1− 2µk

c

λ
+
c2

λ2

+ v̄k

(
arctan

c
λ − µk
µ̄k

+ arctan
µk
µ̄k

)]
(A.19)

Where

λ =
6
√
a2 + b2 θ =

1

3
arccos

a

λ3

µk = cos

(
θ +

2kπ

3

)
µ̄k = sin

(
θ +

2kπ

3

)
vk = cos

(
4θ +

2kπ

3

)
v̄k = sin

(
4θ +

2kπ

3

)
.

When b→ 0, Eq.(A.19) becomes

I6(a, 0, c) =
3

4
c3 ln |c3 − a| − 9

16
c3 − 9

4
a− 3

4c

3
√
a4 ln

∣∣∣∣ c3√a − 1

∣∣∣∣+
3

8c

3
√
a4 ln

∣∣∣∣1 +
c
3
√
a

+
c2

3
√
a2

∣∣∣∣+
3
√

3

4c

3
√
a4 arctan

(
1√
3

+
2c√
3 3
√
a

)
−
√

3π

8

3
√
a4 (A.20)

Also, when c→ 3
√
a, Eq.(A.20) becomes

I6(a, 0,
3
√
a) =

9

8
c3
(

ln c2 + ln 3− 5

2
+

π

3
√

3

)
(A.21)
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Integral I7

The Integral I7 is given by

I7(a, b, c, d, f) =

∫ b

a

(
b− z
b− a

)
f2 − cf cos(z)− df sin(z)

(f cos(z)− c)2 + (f sin(z)− d)2
dz (A.22)

where a 6= b and f > 0.

I7 is solved numerically using Mathematica (Wolfram Research Inc. 2018).

Integral I8

The Integral I8 is given by

I8(a, b, c, d) =
1

ζ

∫ b

a

(
∂φ

∂x
(z,−z − `2 − 2R) +

∂φ

∂y
(z,−z − `2 − 2R)

)
ln
(√

2
√

(z − c)2 + d2
)
dz

(A.23)

Where a 6= b.

I8 is solved numerically using Mathematica (Wolfram Research Inc. 2018).

Integral I9

The Integral I9 is given by

I9(a, b, c, d, f) =

∫ b

a

(
f̂(z)ĝ(z)

) f2 − cf cos(z)− df sin(z)

(f cos(z)− c)2 + (f sin(z)− d)2
dz (A.24)

where a 6= b.

I9 is solved numerically using Mathematica (Wolfram Research Inc. 2018).
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Integral I10

The Integral I10 is given by

I10(a, b, c, d, f) =

∫ b

a

(
1− f̂(z)ĝ(z)

f̂(θK4+2)ĝ(θK4+2)

)
f2 − cf cos(z)− df sin(z)

(f cos(z)− c)2 + (f sin(z)− d)2
dz (A.25)

where a 6= b.

I10 is solved numerically using Mathematica (Wolfram Research Inc. 2018).

Integral I11

The Integral I11 is given by

I11(a, b, c, d, f, g) =

∫ b

a

(
g − sin θK5−1

) f2 − cf cos(z)− df sin(z)

(f cos(z)− c)2 + (f sin(z)− d)2
dz (A.26)

where a 6= b.

I11 is solved numerically using Mathematica (Wolfram Research Inc. 2018).

Integral I12

The Integral I12 is given by

I12(a, b, c, d, f) =

∫ b

a

d

(f − z)((z − c)2 + (d)2)
dz (A.27)
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where a 6= b.

I12 is solved ∀a, b, c, d, f ∈ R. In the most general case, when d 6= 0, Eq.(A.27) becomes

I12(a, b, c, d, f) =
1

2(d2 + (c− f)2)

(
2(c− f)

(
arctan

(
a− c
d

)
− arctan

(
b− c
d

))

+ d

(
log

∣∣∣∣ (b− c)2 + d2

(a− c)2 + d2

∣∣∣∣+ 2 log

∣∣∣∣a− fb− f

∣∣∣∣)
)

(A.28)

When d = 0, from Eq.(A.27) becomes

I12(a, b, c, 0, f) = 0 (A.29)
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