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ABSTRACT

EMPIRICAL STUDIES ON INTEREST RATE

DERIVATIVES

by

Xudong Sun

Dr. Hongtao Yang, Examination Committee Chair
Associate Professor of Mathematics

University of Nevada, Las Vegas, USA

Interest rate models are the building blocks of �nancial market and the interest

rate derivatives market is the largest derivatives market in the world. In this dis-

sertation, we shall focus on numerical pricing of interest rate derivatives, estimating

model parameters by Kalman �lter, and studying various models empirically.

We shall propose a front-�xing �nite element method to price the American put

option under the quadratic term structure framework and compare it with a trinomial

tree method and common �nite element method. Numerical test results show the

superiority of our front-�xing �nite element method in the aspects of computing the

option and free boundary simultaneously with high accuracy. We shall also employ

the Kalman �lter and its variant techniques to estimate parameters of the a�ne term

structure models as well as quadratic term structure models. Various comparisons

of di�erent Kalman �lter performance and both the in-sample �t and out-sample

�t for Monte Carlo simulations as well as real treasury yield data are presented.

In addition, we shall propose a general one-factor interest rate model and apply a

homotopy perturbation method to valuate bond prices. One of the attractive qualities

of the approximated solution of homotopy perturbation method is its fast speed of

achieving the same accuracy compared to the tree method.
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CHAPTER 1

INTRODUCTION

An interest rate derivative is a derivative whose underlying asset is the right to pay or

receive a notional amount of money at a given interest rate, for example, bonds and

their options, swaps, captions, and �oors. The interest rate derivatives are popular

among investors with customized cash �ow needs or speci�c views on the interest rate

movements. The interest rate derivatives market is the largest derivatives market in

the world. According to the quarterly report of the O�ce of the Comptroller of the

currency (OCC), derivative contracts remain concentrated in interest rate products,

which comprise 81% of total derivative notional amounts $236.8 trillion of the US

market in the second quarter of 2014. It is clearly important to model interest rate in

order to price and to understand these �nancial derivatives. In this dissertation, we

shall study various one-factor models of interest rates and their calibration by using

the observed market data.

This chapter is organized as follows. In �1.1, we introduce basic elements about the

interest rate derivatives. �1.2 presents the overview of two methodologies of pricing

interest rate contingent claims under a single factor framework and some popular and

extensively used single factor interest rate models among the researchers and market
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practitioners. At the end, a outline of this dissertation is summarized in �1.4.

1.1 Bonds, Yields and Forward Rates

A bond is a contract, paid up front, which guarantees the holder a known amount

on a known date in the future. The known amount is referred as the principal value

or face value and the known date as the maturity date. The bond may also pay a

known cash dividend (called the coupon) at �xed times during the life of the contract.

If there is no dividend payment the bond is known as a zero-coupon bond or a

pure discount bond. The main purpose of issuing a bond is the raising of capital,

and the up-front premium that can be thought of as a loan to the government or

to the company that has issued the bond. The Securities and Financial Markets

Association (SIFMA) classi�es the bond market into �ve sectors: government and

agency, corporate, municipal, mortgage backed, asset backed and collateralized debt

obligation, and funding.

The U.S. bond market is the largest and most active bond market in the world.

As of June 2014, the size of the outstanding U.S. bond market debt was $39.9 trillion.

The most important part of the bond market is the government bond market due to

its size and liquidity. Because of the inverse relation between bond prices and interest

rates, the bond market is often used to indicate change in interest.

Let B(t, T ) denote the price of a zero-coupon bond at time t that pays one dollar

at time T , i.e., B(T, T ) = 1 for any T . At time t, the yield to maturity y(t, T ) of zero-

coupon bond B(t, T ) is the continuously compounded rate of return that increases

2



the bond price to one at time T . Then we have

B(t, T ) = e−(T−t)y(t,T ). (1.1)

The yield rates as a function of maturity T is also called the yield curve. We denote

r(t) the instantaneous risk-free interest rate that is also called short rate. The short

rate can be treated as a yield rate that has an extremely short maturity, i.e.,

r(t) = lim
T→t

y(t, T ).

Let f(t, T1, T2) denote the forward rate that is agreed upon at time t for a risk-free

loan starting at time T1 and ending at time T2. The forward rate can be expressed

in terms of two bond prices, i.e.,

f(t, T1, T2) =
lnB(t, T1)− lnB(t, T2)

T2 − T1

. (1.2)

If T1 = T2, we have the instantaneous forward rate at time t for a loan starting at

time T for an in�nitesimal period of time. We have

f(t, T ) = f(t, T, T ).

Letting T2 = T and T1 → T+ in (1.2), we obtain

f(t, T ) = −∂ lnB(t, T )

∂T
= − 1

B(t, T )

∂B(t, T )

∂T
,

where the bond price is assumed to be di�erentiable. Equivalently, the bond price

can be expressed in terms of forward rates as

B(t, T ) = e−
R T
t f(t,τ)dτ .

3



Thus by (1.1), we have

y(t, T ) =
1

T − t
∫ T

t

f(t, τ)dτ,

which implies that

r(t) = f(t, t).

In summary, we have presented the de�nitions of zero-coupon bond, yield rates,

forward rates, and the short rates as well as the relations between any two of them.

Actually, the above relations show us the perfectly equivalent ways of expressing the

same information. For instance, if a complete term structure of forward rates is

known, we can compute the zero-coupon bond price and spot rate.

1.2 One-Factor Models of Interest Rates

This section is devoted to outline the approaches of single factor models of interest

rates and to review most popular and widely used models. All these models use one

single speci�c factor as the sole state variable to summarize all the information about

the term structure at any time. As a result, the price of any interest rate contingent

claim will be a�ected by only short term rate and the time to maturity. For instance,

at time t, the price of a zero-coupon bond maturing at time T (T > t) has the form

of

B(t, T ) = B(t, T, r(t)).

There are two basic methodologies of pricing interest rate contingent claims under a

single factor framework being extensively used by researchers and market practition-

ers, namely the partial di�erential equation approach and the martingale approach.

4



The equivalency of these two approaches can be shown by the Feynman-Kac Theorem.

A brief review of these two approaches will be given in the following two subsections.

1.2.1 PDE approach of pricing interest rate derivatives

Let us assume that the dynamics of the short interest rates is governed by the di�usion

process

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dW (t), (1.3)

where W (t) is a one dimensional standard Brownian motion under the real-world

measure P, µ(·, ·) and σ(·, ·) are given real valued functions that totally determine the

behavior of the short rate. Let V (t) denote the value of an interest rate contingent

at time t. Resulting from the one factor assumption, V (t) depends on the short rate

r(t). We write

V (t) = V (t, T, r(t)). (1.4)

Applying Ito's lemma to V (t), we have

dV (t) =
∂V

∂r
dr +

∂V

∂t
dt+

1

2

∂2V

∂r2
(dr)2.

Substituting (1.3) into the above equation gives us

dV (t) =

[
∂V

∂t
+ µ(t, r(t))

∂V

∂r
+
σ(t, r(t))

2

∂2V

∂r2

]
+

[
∂V

∂r
σ(t, r(t))

]
dW (t).

If we divide both sides by V (t), then we have the instantaneous relative return on

the contingent claim:

dV (t)

V (t)
= µV dt+ σV dW (t), (1.5)
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where

µV =
1

V (t)

[
∂V

∂t
+ µ(t, r(t))

∂V

∂r
+
σ(t, r(t))

2

∂2V

∂r2

]
, (1.6)

σV =
1

V (t)

[
∂V

∂r
σ(t, r(t))

]
. (1.7)

Now, consider a portfolio consisted of x1 units of the interest rate derivative V1(t) =

V (t, T1, r(t)) and x2 units of the interest rate derivative V2(t) = V (t, T2, r(t)). The

portfolio value satis�es the following process:

P (t) = x1V1(t) + x2V2(t).

As V1 and V2 are interest rate contingent claims, their prices have forms of (1.5), i.e.,

dV1(t)

V1(t)
= µV1dt+ σV1dW (t),

dV2(t)

V2(t)
= µV2dt+ σV2dW (t).

Therefore, the variations of the portfolio value are given by

dP (t) = x1dV1(t) + x2dV2(t)

= (x1µV1V1 + x2µV2V2) dt+ (x1σV1V1 + x2σV2V2) dW (t).

In order to get a risk-neutral position, we need to choose x1 and x2 to reduce the

volatility of dP (t) to 0. According to arbitrage-free theory, the return rate of the

portfolio has to be the same as the risk-free rate. Thus, the following system must

be satis�ed:

x1σV1V1 + x2σV2V2 = 0,

x1µV1V1 + x2µV2V2 = (x1V1 + x2V2)r.

6



The system has a non trivial solution if and only if

µV1 − r(t)
σV1

=
µV2 − r(t)

σV2

,

which must hold for any T1 and T2. So each side of the above equation must be

independent of the contingent claim and we denote it by

λ(t, r(t)) =
µV − r(t)

σV
.

Here λ(t, r(t)) is called the market risk premium. After substituting µV and σV by

their de�nitions in (1.6) and (1.7), we end up with a second order parabolic partial

di�erential equation

∂V

∂t
+ (µ(t, r(t))− λ(t, r(t))σ(t, r(t)))

∂V

∂r
+
σ(t, r(t))2

2

∂2V

∂r2
− r(t)V = 0. (1.8)

We can conclude that all interest rate contingent claim in a no-arbitrage one factor

model must satisfy the fundamental equation (1.8). Di�erent models have di�erent

choices of input functions λ(t, r(t)), µ(t, r(t)) and σ(t, r(t)), while di�erent interest

rate contingent claims will satisfy the same type of partial di�erential equation with

di�erent boundary conditions. For instances, if we consider V as a zero-coupon bond

B(t, T ) with maturity T , then we have

∂B

∂t
+ (µ(t, r(t))− λ(t, r(t))σ(t, r(t)))

∂B

∂r
+
σ(t, r(t))2

2

∂2B

∂r2
− r(t)B = 0 (1.9)

with the �nal condition

B(T, T ) = 1. (1.10)

If we consider V as a call option on a zero-coupon bond B(t, T ) with maturity date

TC < T , then we have

7



∂C

∂t
+ (µ(t, r(t))− λ(t, r(t))σ(t, r(t)))

∂C

∂r
+
σ(t, r(t))2

2

∂2C

∂r2
− r(t)C = 0 (1.11)

with the �nal condition

C(TC) = (B(t, TC)−K)+

where K is the strike price.

Theoretically, we can price zero-coupon bond by solving the �nal value problem

(1.9)�(1.10) if the real valued functions µ(t, r(t)), σ(t, r(t)) and λ(t, r(t)) are given.

Functions µ(t, r(t)) and σ(t, r(t)) can be speci�ed by examining long-term statistical

properties of the short rate. However, specifying λ(t, r(t)) is harder due to its non-

observable property.

If we apply Feynman-Kac Theorem to equation (1.9), then we are able to express

the price of zero-coupon bond as an expectation:

B(t, T ) = EP
[
e−

R T
t r(s)ds− 1

2

R T
t λ2(s,r(s))ds−

R T
t λ(s,r(s))dW (s)|Ft

]
, (1.12)

where Ft is the sigma-algebra generated by the past information of process W (t) up

to time t under the P measure.

1.2.2 Martingale approach of pricing interest rate derivatives

The key concept of martingale approach is the equivalent martingale measure. Let

Q be the risk-neutral measure, under which all discounted security prices are mar-

tingales. Let us assume that the short rate r(t) under the risk-neutral measure Q is

given by

dr(t) = α(t, r(t))dt+ β(t, r(t))dWQ(t), (1.13)

8



where WQ(t) is a standard Brownian motion under Q measure. Then at time t, the

price of a traded security V (t) is given by

V (t) = D(t)EQ
t

[
V (T )

D(T )

]
, (1.14)

where D(t) = e
R t
0 r(s)ds. For instance, the zero-coupon bond price is given by

B(t, T ) = EQ
t

[
e−

R T
t r(s)ds

]
.

The equivalency between PDE approach and martingale approach can be established

by the Feynman-Kac representation and Girsanov's Theorem. Without loss of gen-

erality, let us consider the case of non-dividend paying security price V (t) at time t,

which satis�es equation (1.14). According to the Feynman-Kac formula, V (t) satis�es

the following PDE:

∂V

∂t
+

1

2
β(t, r(t))

∂2V

∂r2
+ α(t, r(t))

∂V

∂r
− r(t)V = 0. (1.15)

Since V (t) satis�es both (1.8) and (1.15), we must have

σ(t, r(t)) = β(t, r(t)),

λ(t) =
µ(t, r(t))− α(t, r(t))

σ(t, r(t))
.

We also have

dW (t) = dWQ(t)− λ(t)dt

by comparing (1.3) and (1.13). Further, by Girsanov's Teorem, P-measure and Q-

measure are related by the formula

dQ
dP

= e−
R t
0 λ(s)dW (t)− 1

2

R t
0 λ

2(s)ds.
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1.3 Review of Some Popular Models

In this section we will review in detail most well known and widely used one factor

interest rate models.

Merton (1973)

Merton was the pioneer to propose a general stochastic process as a model for short

rates. He assumed that the short rate process follows the stochastic di�erential equa-

tion:

dr(t) = µdt+ σdW (t), (1.16)

where µ and σ are constant. The explicit solution of SDE (1.16) is

r(t) = r(s) + µt+ σ

∫ t

s

dW (s)

for t ≥ s ≥ 0. Thus the short rate r(t) is normally distributed:

r(t)|Fs ∼ N
(
r(s) + (t− s)µ, (t− s)σ2

)
.

According to equation (1.9), the zero-coupon bond price satis�es

∂B

∂t
+ (µ+ λσ)

∂B

∂r
+
σ2

2

∂2B

∂r2
− r(t)B = 0

with the �nal condition B(T, T ) = 1, where the market risk premium λ is assumed

constant. This partial di�erential equation can be solved explicitly and the solution

is

B(t, T ) = e−τr(t)−
τ2(µ−λσ)

2
+ τ3σ2

6
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where τ = T − t is the time to maturity. Apparently, the bond price is an increasing

function of the time to maturity which is unrealistic because the bond price will blow

out when it has an in�nite maturity date. From the bond price, one can easily obtain

the yield rate

y(t, T ) = − lnB(t, T )

T − t = r(t) +
(T − t)(µ− λσ)

2
− (T − t)3σ2

6

Vasicek (1977)

Vasicek assumed that the short rate process follows the Ornstein-Uhlenbeck process:

dr(t) = κ(θ − r(t))dt+ σdW (t) (1.17)

where κ, θ and σ are positive constants and W (t) is a standard Brownian motion. In

this setting, when the short rate r(t) goes apart from its long term level θ, r(t) tends

to come back to θ at a mean-reverting speed κ. Vasicek also makes an assumption

that the market risk premium λ is constant. The solution of SDE (1.17) is

r(t) = θ + (r(s)− θ)e−κ(t−s) + σ

∫ t

s

e−κ(t−s)dW (u)

for t ≥ s ≥ 0, which implies that the short rate is normally distributed

r(t)|Fs ∼ N
(
θ + (r(s)− θ)e−κ(t−s),

σ2

2κ
(1− e−2κ(t−s))

)
.

As a result of the normal distribution, Vasicek model su�ers from the fact that the

interest rate can become negative, which is not only impractical but also incompatible

with no arbitrage theory.

The price of zero-coupon bond can be formulated in the following partial di�er-
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ential equation

∂B

∂t
+ (κ(θ − r(t))− λσ)

∂B

∂r
+
σ2

2

∂2B

∂r2
= 0

with the �nal condition B(T, T ) = 1. The above partial di�erential equation can be

solved explicitly with the solution

B(t, T ) = ea(τ)r(t)+b(τ)

where

a(τ) =
1

κ
(e−τκ − 1),

b(τ) =
σ2

4κ3
(1− e−2τκ) +

1

κ
(θ − λσ

κ
− σ2

κ2
)(1− e−τκ)− (θ − λσ

κ
− σ2

κ2
)τ,

τ = T − t.

The yield rate is given by

y(t, T ) = −1

τ
(a(τ)r(t) + b(τ)).

Cox, Ingersoll, Ross (1985)

Cox, Ingersoll, and Ross (CIR) choose µ(t, r(t)) the same as the one in Vasicek model

but they let σ(t, r(t)) = σ
√
r(t) and the market risk premium λ(t, r(t)) = λ

√
r(t).

Thus, the short rate process satis�es

dr(t) = κ(θ − r(t))dt+ σ
√
r(t)dW (t) (1.18)

where κ, θ and σ are positive constants and W (t) is the standard Brownian motion.

The drift factor ensures mean reversion of the short rate towards the long run term

12



value θ with speed of adjustment κ. The volatility factor, σ
√
r(t) avoids the possi-

bility of negative interest rates and an interest rate of zero is also precluded if the

condition

2κθ ≥ σ2

is met. Since the volatility is proportional to the interest rate, the volatility becomes

small when the interest rate is at a low level. As a consequence, when the interest

rate gets close to zero, its evolution is dominated by the drift factor, which drags the

interest rate upwards. The SDE (1.18) has a unique positive solution

r(t) = θ + (r(s)− θ)e−κ(t−s) + σe−κ(t−s)
∫ t

s

eκ(u−s)
√
r(u)dW (u)

for t ≥ s ≥ 0. It has been shown that the short rate r(t) has a distribution of

non-central chi-square, i.e.,

r(t)|Fs ∼ χ(a, b, c)

with b degrees of freedom and non-central parameter c, where

a =
4κr(t)

σ2(1− e−κ(t−s))
,

b =
2κθ

σ2
,

c =
4κe−κ(t−s)

σ2(1− e−κ(t−s))
.

Consequently, the mean and variance of r(t) given r(s) are given by

E(r(t)|r(s)) = θ + (r(s)− θ)e−κ(t−s)

and

V(r(t)|r(s)) = r(s)
σ2

κ
(e−κ(t−s) − e−2κ(t−s)) + θ

σ2

2κ

(
1− e−κ(t−s))2

.
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The zero-coupon bond price can be solved through PDE

∂B

∂t
+ (κ(θ − r(t))− λσ)

∂B

∂r
+
σ2

2

∂2B

∂r2
− r(t)B = 0. (1.19)

with the boundary condition B(T, T ) = 1. The solution of the above PDE is in form

of

B(t, T ) = ea(τ)−b(τ)r

where

a(τ) =
2κθ

σ2
ln

(
2γe

(γ+κ+λ)τ
2

(γ + κ+ λ)(eγτ − 1) + 2γ

)
,

b(τ) =
2(eγτ − 1)

(γ + κ+ λ)(eγτ − 1) + 2γ
,

γ =
√

(κ+ λ)2 + 2σ2,

τ = T − t.

The yield rate can be easily expressed in terms of a(τ) and b(τ)

y(t, T ) = −a(τ) + b(τ)r.

Hull and White (1990)

One major shortcoming of the above time-invariant models is that these models can-

not be calibrated to e�ective yield curves. To overcome these imperfections, Hull and

White (1990) introduce a class of models that allow both µ(t, r(t)) or/and σ(t, r(t))

be to time-dependent. The most general Hull-White model follows

dr(t) = (θ(t)− κ(t)r(t))dt+ σ(t)rβ(t)dW (t)
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with risk premium

λ(t, r) = λrγ

where λ and γ are non-negative parameters. The time varying functions θ(t), κ(t) and

σ(t) can be calibrate exactly to current market prices. The short rate, zero-coupon

bond price, and yield rate are not analytically obtainable anymore.

Under the Hull and White framework, if β is set to zero and κ and σ are positive

constants, then we have the extended Vasicek model

dr(t) = κ

(
θ(t)

κ
− r(t)

)
dt+ σdW (t).

The parameter κ is considered as the adjustment speed and θ(t)
κ

can be considered as

the time dependent reversion level. The parameter θ(t) can be calibrated using the

initial term structure as

θ(t) =
∂

∂t
f(0, t) + κy(0, t) +

σ2

2κ
(1− e−2κt).

The zero-coupon bond price can be explicitly expresses as

B(t, T ) = e−a(t,T )−b(t,T )r

with

b(τ) =
1

κ
(1− eκ(τ)),

a(t, T ) = − ln

(
B(0, T )

B(0, t)

)
− b(T − t)f(0, t) +

σ2

4κ
b(T − t)2(1− e−2κt).

Here we have used the bond prices B(0, ·) and the forward rates f(0, ·) current term

structure which can be computed from the market data.
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Hull and White have also developed trinomial tree method to calibrate the model

to market data ([33]). Nonetheless, the extended Vasicek model still su�ers from

allowing for negative interest rates.

Black and Karasinski (1991)

Instead of modeling the short rates r(t), Black and Karasinski propose that ln (r(t))

follows the extended Hull-White model ([11]):

d ln (r(t)) = (θ(t)− κ(t) ln (r(t)))dt+ σ(t)dW (t)

Black and Karasinski also suggested a binomial tree approach to calibrate the param-

eters �tting to the yield curve, the volatility curve.

The Quadratic Model

The Quadratic model is �rstly studied by Beaglehole and Tammey [9]. It has been

studied in the context of both theoretical analysis and empirical test [1], [40], [41].

The one factor quadratic model is based on an Ornstein-Uhlenbeck state process X(t)

that follows

dX(t) = (α(t)− β(t)X(t))dt+ σdW (t)

where W (t) is a standard Brownian motion under the risk-neutral measure. Then

the short rate process r(t) is speci�ed by

r(t) =
1

2
X(t)2.

One property that the quadratic short rate model, Cox-Ingersoll-Ross model and

Black-Karasinski model share is the short rates are never negative. The quadratic
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short rate model not only exhibits a nice analytic tractability but also is able to

capture the non-linearity of the time series and more �exible for model design. The

zero-coupon bond that can be expressed as a function of x(t) instead of r(t) satis�es

the following partial di�erential equation

∂B

t
+ (α(t)− β(t)x)

∂B

∂x
+

1

2
σ(t)2∂

2B

∂x2
− 1

2
x2P = 0

with the �nal condition B(T, T ) = 1 for any −∞ < x < ∞. It has been shown that

the bond price B(t, T ) has the following form

B(t, T, x) = e−A(t,T )−B(t,T )x− 1
2
C(t,T )x2

,

where A(t, T ), B(t, T ), and C(t, T ) are the solutions of the �nal value problem (4.10)�

(4.13). We shall study this model in detail in Chapter 2 and �4.2.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. In Chapter 2 we shall

discuss the details of the quadratic interest rate model and develop three numerical

algorithms to evaluate American put option on zero-coupon bond. Chapter 3 is

devoted to parameter estimation of the models with constant parameters such as

the Vasicek model, the CIR model, and the quadratic model by using Kalman �lter,

the extended Kalman �lter, and the unscented Kalman �lter techniques. We shall

also propose a special Kalman technique to e�ciently estimate the parameters of

the quadratic model. In Chapter 4, we shall calibrate the time-dependent models

such as the Hull-White model, the extended CIR model, and the quadratic model

to the market data and compare these models' performance of capturing yield rates'
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movements. In Chapter 5, we shall propose a family of one factor models to restrict

the short rate in the range of (0, 1), which makes more practical sense. We further

apply the homotopy perturbation method (HPM) to approximate the zero-coupon

bond prices and compare the performance of HPM and the trinomial tree method.

The conclusion remarks and future work are given in Chapter 6.
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CHAPTER 2

THE QUADRATIC MODEL

2.1 Introduction

Let X(t) be a mean-reverting process which is the solution of the following stochastic

di�erential equation:

dX(t) = (α(t)− β(t)X(t))dt+ σ(t)dW (t), (2.1)

where W is a standard Brownian motion under the risk-neutral measure and α(t),

β(t) and σ(t) are deterministic functions of t. Then the quadratic model of the short

interest rate process r(t) is given by

r(t) =
1

2
X(t)2. (2.2)

As for the Black-Karasinski model ([11]) and Cox-Ingersoll-Ross Model ([16]), the

short interest rates are never negative under the quadratic model. Besides, it has

more �exibility in term structure and can outperform a�ne models in explaining

historical bond price behavior in the United States ([1, 41]).

By Itô's formula, we have

dr(t) =

(
1

2
σ(t)2 + α(t)X(t)− β(t)X(t)2

)
dt+ σ(t)X(t)dW (t). (2.3)
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Since processX(t) can take any real number as its value and function ζ(x) = 1
2
x2 is not

invertible on (−∞,∞), we can not obtain a SDE for r(t) by replacing X(t) in terms

of r(t) in (2.3). It means that r(t) can not be regarded as an independent variable

for the quadratic model, i.e., the prices of interest rate derivatives are functions

of X(t) instead of r(t). However, we can formally obtain the following SDE for

X(t) =
√

2r(t):

dr(t) =

(
1

2
σ(t)2 +

√
2α(t)

√
r(t)− 2β(t)r(t)

)
dt+

√
2σ(t)

√
r(t)dW (t). (2.4)

When parameters are constant, this SDE becomes the double square root model

proposed by Longsta� ([43]):

dr(t) =

(
ν2

4
− κ
√
r(t)− 2βr(t)

)
dt+ ν

√
r(t)dW (t), (2.5)

where κ = −√2α and ν =
√

2σ. Here ν and β are corresponding to σ and λ in [43].

It should be pointed out that α < 0 is assumed in [43].

It clearly follows from the above discussion that the interest rate process of the

quadratic model de�ned by (2.2) is not the solution of SDE (2.4). Indeed, SDE (2.4)

((2.5)) does not have a positive solution. Otherwise, process X(t) =
√

2r(t) will be a

positive solution of SDE (2.1), which is impossible since the solution of SDE (2.1) is

a Gaussian process. Beaglehole and Tenney pointed out in [9] that SDE (2.5) should

go with the additional condition: process r(t) is re�ected whenever it reaches zero.

They have also shown numerically that the bond prices given by the formula in [43]

do not match the ones obtained by Monte Carlo simulations for the modi�ed model.

However, as indicated in [9], it is not di�cult to verify that the bond price formula
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in [43] with the parameters speci�ed as above is the one under the quadratic model

in [35] after replacing
√
r by x/

√
2 and r by x2/2.

A remedy for rescuing SDE (2.5) is to replace ν2

4
in (2.5) by δ:

dr(t) =
(
δ − κ

√
r(t)− 2βr(t)

)
dt+ ν

√
r(t)dW (t). (2.6)

Notice that it becomes the CIR model when κ = 0. Therefore, as for the CIR model,

this SDE has positive solutions when

δ >
1

4
ν2.

This claim can be justi�ed by examining the SED for X(t) = 2
√
r(t):

dX(t) =

(
η

X(t)
− κ− βX(t)

)
dt+ νdW (t),

where

η = δ − 1

4
ν2.

When η > 0, the drift term goes to positive in�nity as X(t)→ 0+, which makes that

zero is not accessible. Unfortunately, no analytic formula is available for zero-coupon

bond prices under the dynamics (2.6) of interest rates. We shall study this model in

our future work.

The remaining of this chapter is organized as follows. In �2.2, a front-fxing �nite

element method is considered to solve the free boundary value problem for American

put options on zero-coupon bond. In �2.3, we propose a new trinomial method for

both European and American options by transferring the SDE (2.1) into a SDE

without drift term. It should be pointed out that we does not need to change the
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paths of the tree to ensure positive probabilities. Lattice methods including binomial

and trinomial methods are more attractive to practitioners since they can be easily

implemented and are more �exible to compute option prices and hedge ratios at any

given point. In �2.4, we consider a �nite element method to solve the variational

inequality problem for American put options. In the last section, �2.5, we give two

examples to to examine the convergence of the proposed methods in the previous

sections and compare the quadratic model with other the Hull-White model and the

CIR model.

2.2 A Front Fixing Finite Element Methods for Amer-

ican Put Options

In this section, we shall apply the front �xing �nite element method to solve the free

boundary problem for American put options.

Consider the American put option on a T ∗-maturity zero-coupon bond. The

option expiration date is T (< T ∗), its exercise price is K, and its payo� function is

g(x, t) = max(K − P (x, t;T ∗), 0)

where P (x, t;T ∗) is the T ∗ bond price at (x, t). The put price will be denoted by

p(x, t). Notice that the bond price P (x, t;T ∗) goes to 0 as x → ±∞, which means

that the option payo� g(x, t) approaches the exercise price is K as x → ±∞. Since

the option can be exercised at any time up to its expiration date, there should be two

critical values ϕ1(t) and ϕ2(t) at any time t such that the put should be exercised

when x ≤ ϕ1(t) or x ≥ ϕ2(t). As usual, we can show that p(x, t) and ϕi(t) solve the
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following free boundary problem:

pt +
1

2
σ(t)2pxx + (α(t)− β(t)x)px − 1

2
x2p = 0, ϕ1(t) < x < ϕ2(t) (2.7)

p(ϕi(t), t) = g(ϕi(t), t), 0 < t ≤ T, i = 1, 2 (2.8)

px(ϕi(t), t) = gx(ϕi(t), t), 0 < t ≤ T, i = 1, 2. (2.9)

p(x, T ) = g(x, T ), ϕ1(T ) < x < ϕ2(T ). (2.10)

Consider the variable transforms

τ = T − t,

y =
x− ϕ1(t)

ϕ2(t)− ϕ1(t)
,

ψi(τ) = ϕi(T − t), i = 1, 2.,

u(y, τ) = p(x, t).

Then the spatial domain is changed from ϕ1(t) < x < ϕ2(t) to 0 < y < 1. Problem

(2.7)�(2.10) becomes

ut + Lu = 0, 0 < y < 1, 0 < τ ≤ T, (2.11)

u(0, τ) = f(0, τ ;ψ1, ψ2), 0 < τ ≤ T, (2.12)

u(1, τ) = f(0, τ ;ψ1, ψ2), 0 < τ ≤ T, (2.13)

uy(0, τ) = fy(0, τ ;ψ1, ψ2), 0 < τ ≤ T, (2.14)

uy(1, τ) = fy(1, τ ;ψ1, ψ2), 0 < τ ≤ T, (2.15)

u(y, 0) = u0(y), 0 ≤ y ≤ 1, (2.16)
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where

L = −a(ψ1, ψ2)uyy + b(y, τ ;ψ1, ψ2, ψ
′
1, ψ

′
2)uy + c(y, τ ;ψ1, ψ2)u,

∆ψ = ψ2 − ψ1,

a(ψ1, ψ2) =
σ2

2∆ψ(τ)2
,

b(y, τ ;ψ1, ψ2, ψ
′
1, ψ

′
2) = βy +

βψ1 − α− y∆ψ′ − ψ′1
∆ψ

,

c(y, τ ;ψ1, ψ2) =
1

2

(
(y∆ψ)2 + 2y∆ψ + ψ2

1

)
,

f(y, τ ;ψ1, ψ2) = g(y∆ψ + ψ1, T − τ),

u0(y) = f(y, 0;ψ1(0), ψ2(0)).

To apply the �nite element method, we shall integrate the natural boundary con-

ditions (2.14) and (2.15) into the variational problem and treat the essential boundary

conditions (2.12) and (2.13) as two nonlinear equations from which ψ1 and ψ2 can be

solved. De�ne the bilinear form B as follows:

B(v, w; τ, ψ1, ψ2) = a(ψ1, ψ2)(vy, wy) + (b(y, τ ;ψi, ψ
′
i)vy, w) + (c(y, τ ;ψ1, ψ2)v, w),

where (·, ·) denotes the inner product of L2(Ω), the space of square integrable functions

on Ω = (0, 1). Let H1(Ω) be the usual Sobolev space, and let H−1(Ω) be its dual

space . De�ne

V =
{
ω : ω ∈ L2(0, T ;H1(Ω)), ωτ ∈ L2(0, T, L2(Ω)), ωy(y, τ) = fy(y, τ) on ∂Ω

}
.

The variational form for problem (2.11)�(2.16) is: Find u ∈ V and ψi ∈ C([0, T ]) ∩
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C1((0, T ]) for i = 1, 2 such that u(0) = u0 and for 0 < τ ≤ T

(uτ , ω) + B(v, w; τ, ψ1, ψ2) = F(w; τ, ψ1, ψ2), ∀ω ∈ V, (2.17)

u(0, τ) = f(0, τ ;ψ1, ψ2), (2.18)

u(1, τ) = f(0, τ ;ψ1, ψ2) (2.19)

where

F(w; τ, ψ1, ψ2) = G(1, τ ;ψ1, ψ2)ω(1, τ)−G(0, τ ;ψ1, ψ2)ω(0, τ),

G(y, τ, ψ1, ψ2) = a(ψ1, ψ2)fy(y, τ ;ψ1, ψ2).

Let Πy : 0 = y0 < y1 < . . . < yN = 1 and Πτ : 0 = τ0 < τ1 < . . . < τM = T

be the partitions of [0, 1] and [0, T ], where M and N are positive integers. Then

hj = yj − yj−1 and ki = τi − τi−1 are the lengths of the sub-intervals [yj−1, yj] and

[τi−1, τi], respectively. Let Vh be the piece-wise linear element subspace of V with

respect to partition Πy, where h = max1≤j≤N(hj). Denote the basis function of Vh by

ω1, ω2, . . . , ωN such that ωj(yi) = δi,j for j = 0, 1, . . . , N and i = 0, 1, . . . , N , where

δij is the Kronecker delta.

Values ψ1(0) and ψ2(0) are determined according to the the optimal exercise, i.e.,

the following equation

P (x, T ;T ∗) = K.

Then u0(y) = f(y, 0;ψ1(0), ψ2(0)) is known. Let

ψ0
1 = ψ1(0), ψ0

2 = ψ2(0), u0
h =

N∑
j=0

u0(yj)ωj(y).

The �nite element approximation the the variational problem (2.17)�(2.19) by Crank-

Nicolson scheme in time is: For m = 1, 2, . . . , N , �nd umh ∈ Vh and ψm1 and ψm2 such

25



that for m = 1, . . . ,M

(δτu
m
h , ω) + Bm

(
u
m− 1

2
h , ω

)
= F

(
ω, τm;ψ

m− 1
2

1 , ψ
m− 1

2
1

)
, ∀ω ∈ Vh, (2.20)

umh (0) = f(0, τm;ψm1 , ψ
m
2 ), (2.21)

umh (1) = f(1, τm;ψm1 , ψ
m
2 ), (2.22)

where

Bm(u, ω) = B(u, ω; τm− 1
2
, ψm1 , ψ

m
2 , δτψ

m
1 , δτψ

m
2 ),

u
m− 1

2
h =

umh + um−1
h

2
, τm− 1

2
=
τm + τm−1

2
, ψ

m− 1
2

i =
ψmi + ψm−1

2

2
,

km = τm − τm−1, δτu
m
h =

umh − um−1
h

km
, δτψ

m
i =

ψmi − ψm−1
i

km
.

We can rewrite (2.20)�(2.22) in the matrix form:

(
A+

1

2
kmBm

)
Um =

(
A− 1

2
kmBm

)
Um−1 + kmFm (2.23)

um1 = f(0, τm;ψm1 , ψ
m
2 ) (2.24)

umN = f(1, τm;ψm1 , ψ
m
2 ) (2.25)

where

A = (ωj, ωi)N×N , Bm = (Bm(ωj, ωi))N×N , Um = (um1 , . . . , u
m
N),

Fm = (−Gm(0), 0, . . . , 0, Gm(1)), Gm(y) = G
(
y, τm;ψ

m− 1
2

1 , ψ
m− 1

2
1

)
.

To save computational time, we shall express Bm as the linear combination of the

matrices independent of m. Indeed, we have by simple calculation

Bm = c(1)
m B(1) + c(2)

m B(2) + c(3)
m B(3) + c(4)

m B(4) + c(5)
m B(5) + c(5)

m A,
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where

c(1)
m = a(ψm1 , ψ

m
2 ), c(2)

m = β − ∆δτψ
m

∆ψm
, c(3)

m =
βψm1 − α− δτψm1

∆ψm
,

c(4)
m =

1

2
(∆ψm)2 , c(5)

m = ∆ψmψm1 , c(6)
m =

1

2
(ψm1 )2 ,

B(1) = ((ωy)j, (ωy)i)N×N , B(2) = (yj(ωy)j, ωi)N×N ,

B(3) = ((ωy)j, ωi)N×N , B(4) = (y2
jωj, ωi)N×N , B(5) = (yjωj, ωi)N×N .

Notice that matrices A,B(1), . . . , B(5) are independent of m. Once these matrices

are computed and stored, we can assemble Bm fast with least amount of work at

each time step. We regard Um as an implicit function of ψm1 and ψm2 determined by

equation (2.23). Then we can treat (2.24) and (2.25) as a system of two nonlinear

equations for ψm1 and ψm2 . We can rewrite them as:{
L1(ψm1 ) = um1 −K + P (ψm1 , T − τm;T ∗) = 0,

L1(ψm2 ) = umN −K + P (ψm2 , T − τm;T ∗) = 0
(2.26)

which can be solved by Broyden method quickly.

To sum up, for a given tolerance ε, our front-�xing �nite element method can be

implemented as follows:

Algorithm 2.1. A front-�xing �nite element method for American Puts

1. Compute matrices A, B(1), B(2), B(3), B(4), and B(5).

2. For m = 1, 2, . . . ,M , do

� Let ψmi = ψm−1
i , i = 1, 2.

� For j = 1, 2, . . ., do

* Build system (2.23).
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∗ Build system (2.23).

∗ Solve system (2.23) by Thomas Algorithm.

∗ Solve non-linear system (2.26) for the new approximations

of ψm1 and ψm2 .

∗ If the norm of the di�erence of the old and new approxima-

tions of ψm1 and ψm2 is less than or equal to ε, then terminate

the loop.

End do

� Solve system (2.23) for a better approximation of Um.

End do

2.3 A Trinomial Method

In this section, we shall develop a trinomial method to compute the bond option price

at a given point (x0, t0). Consider an option on a T ∗-maturity zero-coupon bond. The

option expiration date is T (< T ∗) and its exercise price is K. The option payo� is

g(x, t) =


max(P (x, t;T ∗)−K, 0) for a call,

max(K − P (x, t;T ∗), 0) for a put,

where P (x, t;T ∗) is the bond price.

Let

a(t) = exp

(∫ t

t0

β(s)ds

)
, b(t) =

∫ t

t0

a(s)α(s)ds+ x0. (2.27)

Then by Ito's formula, the new process Y (t) = a(t)X(t)− b(t) follows

dY (t) = γ(t)dW (t),

where γ(t) = a(t)σ(t). It should be pointed out that X(t0) = x0 is corresponding to

Y (t0) = 0. For a given positive integer M , let k = (T − t0)/M be the step size in
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time. Denote by h the mesh size in spatial variable y. Let

ym = mh, tm = t0 +mk, m = 0, 1, 2, . . . ,M.

Then we setup our tree for process Y (t) by using nodes (yj, tm) for j = 0,±1,±2, . . . ,±m,

m = 0, 1, 2, . . . ,M . Let p−m, p
0
m, and p

+
m be the probabilities by which the tree branches

from node (yj, tm−1) to nodes (yj−1, tm), (yj, tm), and (yj+1, tm), respectively. Notice

that

Y (tm)− Y (tm−1) ≈ γ(tm−1)
√
kZ

for some standard norm random variable Z. Matching the mean and variance, we

can obtain the system for p−m, p
0
m, and p

+
m:

p−m + p0
m + p+

m = 1,

p−myj−1 + p0
myj + p+

myj+1 = yj,

p−my
2
j−1 + p0

my
2
j + p+

my
2
j+1 = y2

j + kγ2(tm−1).

Solving this system, we get

p−m = p+
m =

kγ2(tm−1)

2h2
, p0

m = 1− kγ2(tm−1)

h2
.

In order to ensure that p0
m is nonnegative for given k, we need the following restriction

on h:

h ≥ γmax

√
k,

where γmax is the maximum value of γ(t) over [t0, T ].

Let

ξ(y, t) =
y + b(t)

a(t)
.
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Then at time level t = tm, the x-coordinates for the nodes of the corresponding tree

for process X(t) are xmj = ξ(yj, tm) for j = 0,±1,±2, . . . ,±m. Denote by V m
j the

approximation of the put value at node (xmj , tm). Let

V M
j = g

(
xMj , tM

)
, j = 0,±1,±2, . . . ,±M.

We have the following trinomial algorithms to compute V 0
0 , the approximation of the

American and European prices at point (x0, t0):

Algorithm 2.2. A trinomial method for American options

For m = M − 1, . . . , 1, 0, do

� qm =
kγ(tm)

h2
;

� p0
m = 1− qm;

� p−m = p+
m =

1

2
qm;

� For j = −m, . . . ,m, do

� rmj =
1

2

(
xmj
)2
;

� vmj =
1

1 + krmj

(
p−mV

m+1
j−1 + p0

mV
m+1
j + p+

mV
m+1
j+1

)
;

� V m
j = max

(
vmj , g(xmj , tm)

)
;

End do

End do
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Algorithm 2.3. A trinomial method for European options

For m = M − 1, . . . , 1, 0, do

� qm =
kγ(tm)

h2
;

� p0
m = 1− qm;

� p−m = p+
m =

1

2
qm;

� For j = −m, . . . ,m, do

� rmj =
1

2

(
xmj
)2
;

� V m
j =

1

1 + krmj

(
p−mV

m+1
j−1 + p0

mV
m+1
j + p+

mV
m+1
j+1

)
;

End do

End do

It is easy to see that this trinomial method is numerically stable. In fact, we have

the following stability estimates: for the American option,

max
−(M−m)≤j≤M−m

∣∣V m
j

∣∣ ≤ max

(
max

−M≤j≤M

∣∣V 0
j

∣∣ , max
m≤`≤M

max
−(M−`)≤j≤M−`

g
(
x`j, t`

))

for m = 1, 2, . . . ,M , and for the European option

max
−(M−m)≤j≤M−m

∣∣V m
j

∣∣ ≤ max
−M≤j≤M

∣∣V 0
j

∣∣
for m = 1, 2, . . . ,M .

Remark 2.1. It is well-known that American and European calls on zero-coupon

bonds have the same values when the interest rate process is always positive (see

[55]).
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2.4 A Finite Element Method for American Put Op-

tions

Let p(y, t) be the American put option price when the new process Y (t) takes value

y at time t. Here we have let t0 = 0 and x0 = 0 for the de�nitions of a(t) and b(t) in

(2.27). Then p(y, t) is the solution of the following variational inequality problem:

pt +
1

2
γ(t)pyy − 1

2
ξ2(y, t)p ≥ 0, y ∈ R, 0 ≤ t < T,

p(y, t) ≥ g(ξ(y, t), t), y ∈ R, 0 ≤ t < T,(
pt +

1

2
γ(t)pyy − 1

2
ξ2(y, t)p

)
(p(y, t)− g(ξ(y, t), t)) = 0, y ∈ R, 0 ≤ t < T,

p(y, T ) = g(ξ(y, T ), T ), y ∈ R.

We should mention that the above variational inequality problem can also be derived

by applying the variable substitution x = y−b(t)
a(t)

to problem (2.7)�(2.10). As known

in �2.2, the option price is equal to its payo� when |x| is su�ciently large. Thus we

can pick a large negative number Y1 and a large positive number Y2 such that

p(y, t) = g(ξ(y, t), t), ∀y ≤ Y1 or y ≥ Y2, 0 ≤ t ≤ T.

Let

u(y, t) = p(y, T − t), ρ(t) =
1

2
γ(T − t),

f(y, t) = g(ξ(y, T − t), T − t), R(y, t) =
1

2
ξ2(y, T − t).

We can rewrite the above variational inequality problem over the bounded interval
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Ω = (Y1, Y2):

ut − ρ(t)uyy +R(y, t)u ≥ 0, y ∈ Ω, 0 < t ≤ T, (2.28)

u(y, t) ≥ f(y, t), y ∈ Ω, 0 < t ≤ T, (2.29)

(ut − ρ(t)uyy +R(y, t)u) (u(y, t)− f(y, t)) = 0, y ∈ Ω, 0 < t ≤ T, (2.30)

u(Y1, t) = f(Y1, t), 0 < t ≤ T, (2.31)

u(Y2, t) = f(Y2, t), 0 < t ≤ T, (2.32)

u(y, 0) = f(y, 0), y ∈ Ω. (2.33)

Let L2(Ω) be the space of square integrable functions on Ω and (·, ·) be its inner

product. We denote H−1(Ω) the dual space of usual Sobolev space H1(Ω). Let

U =
{
v : v ∈ L2(0, T ;H1(Ω)), vt ∈ L2(0, T ;L2(Ω)),

and v = f a.e. on ∂QT , v ≥ G a.e. in QT

}
,

where QT = Ω× (0, T ) and ∂QT = ∂Ω× (0, T )∩ [Y1, Y2]× 0. De�ne the bilinear form

a(t, u, v) =

∫ Y2

Y1

(
uy(y, t)vy(y, t) +R(y, t)u(y, t)v(y, t)

)
dy

Then the variational problem for (2.28)-(2.33) is: Find u ∈ U such that

(ut, v − u) + a(t, u, v − u) ≥ 0, a.e. t ∈ (0, T ], ∀v ∈ U (2.34)

Now we consider the �nite element approximations to parabolic variational in-

equality (2.4). Let Πh : Y1 = y0 < y1 < . . . < yN = Y2 be a partition of [Y1, Y2]

for a given positive integer N and h = max1≤j≤N(yj − yj−1) < 1. Denote the linear

element space under the partition Πh by Vh. For another given positive integer M ,
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let k = T/M be the step size in time and tm = mk for m = 0, 1, . . . ,M . Let

Um =
{
v ∈ Vh : v(y0) = f(y0, tm), v(yN) = f(yN , tm),

v(yj) ≥ f(yj, tm), j = 1, 2, . . . , N − 1
}

Denote wmh the approximation of w(tm, y) in Um and de�ne the following quantities:

tm−
1
2 = tm − 1

2
τ, u

m− 1
2

h =
1

2
(um−1

h + umh ), δτu
m
h =

umh − um−1
h

τ
.

Let u0
h be the interpolant of f(y, 0) in Um. The �nite element approximation of (2.4)

is: Find umh ∈ Um for m = 1, 2, . . . ,M such that

(δτu
m
h , v − umh ) + a

(
tm− 1

2
, u

m− 1
2

h , v − umh
)
≥ 0, ∀v ∈ Um. (2.35)

Here the Crank-Nicholson scheme was used in time.

It is not di�culty to rewrite (2.35) into a linear complementarity problem as

follows:

AmU
m ≥ Bm, Um ≥ Fm, (AmU

m −Bm)(Um − Fm) = 0 (2.36)

for m = 1, . . . ,M . We can easily verify that Am is a tridiagonal M -matrix when k is

su�ciently small. Thus, the above linear complimentary problem can solved e�ciently

by the algorithm developed in([17]). Our numerical tests show that problem (2.36)

can be solved by this algorithm with less than 10 iterations when k = h.

2.5 Numerical Examples

In this section, we shall give several numerical examples to examine the convergence

of the proposed methods in the previous sections and compare the quadratic model

with other the Hull-White model and the CIR model.

34



Example 2.1. In this example, we want to test our numerical algorithms by assuming

that f(T ) and g(T ) are determined by the quadratic model with constant parameters.

Recall that A(0, T ), B(0, T ) and C(0, T ) can be computed by (4.14)�(4.16). We set

σ = 0.06, β = 0.4, and α = 0.16. Then the long-term expected value of x(t) is

α/β = 0.4. For x(0) = 0.4, we have the initial interest rate r(0) = x(0)2/2 = 0.08.

One-year American put options written on 5-year and 30-year bonds with face value

$100 will be considered. The option exercise prices are chosen to be 87% and 83% of

the current forward bond prices respectively.

In Figures 2.1�2.2, we display the L2-norm and H1-norm of errors of American

option prices in �nite element method and front-�xing �nite element method. The

L2-errors and H1-errors are computed between two successive �nite element approx-

imations of option prices against step size h in time. We also display the L2 norm

of ψmi − ψ2m
i with respect to the number of time steps m = 0, 1, . . . ,M for the early

exercise interest rate in Figures 2.3�2.4. We can observe that the both �nite element

method and front �xing �nite element method with Crank-Nicolson scheme converges

quadratically and linearly in the L2-norm and H1-norm as expected. For the early

exercise interest rate, the rate of convergence of �nite element method is one, while

the rate of convergence of front �xing �nite element method is greater than one in

L2-norm.

Next, we want to compare the L2-error of the front-�xing element method (FFEM)

with the usual �nite element method (FEM). Tables 2.1�2.3 display the L2-errors for

today's option prices and L2-errors for early exercise interest rate as compared with

the �exact values� computed by FFEM and FEM with 16000 time steps for the top
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and bottom numbers in each cell. We can see that the front �xing �nite element

method provides more accurate and more stable results and converges more quickly

than the usual �nite element method, especially for the early exercise interest rate.
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Figure 2.2: Convergence of American Option Price: T ∗ = 30, K = 10

Example 2.2. In this example, we assume that the interest rate process r(t) evolves
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Figure 2.3: Convergence of Early Exercise Interest Rate: T ∗ = 5, K = $75
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according to the two-factor CIR model as in [32, 69] (see [39]):

r(t) = x1(t) + x2(t),

dxi = κi(θi − xi)dt+ σi
√
xidWi(t), i = 1, 2,

where κi is the speed of mean reversion, θi is the long term interest rate, σi is a

positive constant, W1(t) and W2(t) are two independent standard Brownian motion.

The zero-coupon bond price under this two-factor model is given by

P (r, t, T ) = P1(x1, t, T )P2(x2, t, T ),
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Table 2.1: L2 errors for today's option prices

σ = 0.06, α = 0.16, β = 0.4

T ∗ = 5, K = $75 T ∗ = 30, K = $10

M FEM FFEM FEM FFEM

500 2.24× 10−7 4.29× 10−9 2.35× 10−7 5.96× 10−8

2.24× 10−7 4.98× 10−9 2.34× 10−7 6.32× 10−8

1000 5.58× 10−8 8.32× 10−10 5.75× 10−8 1.08× 10−8

5.61× 10−8 1.53× 10−9 5.75× 10−8 1.37× 10−8

2000 1.43× 10−8 1.73× 10−10 1.50× 10−8 1.45× 10−9

1.40× 10−8 4.04× 10−10 1.49× 10−8 2.69× 10−9

4000 4.05× 10−9 2.02× 10−10 4.17× 10−9 1.81× 10−10

3.54× 10−9 8.74× 10−11 3.78× 10−9 4.57× 10−10

8000 1.34× 10−9 3.04× 10−10 1.35× 10−9 2.92× 10−10

9.12× 10−10 1.14× 10−11 9.26× 10−10 4.95× 10−11

Table 2.2: L2 errors for early exercise interest rates

σ = 0.06, α = 0.16, β = 0.4, T ∗ = 5, K = $75

left free boundary right free boundary

M FEM FFEM FEM FFEM

500 2.19× 10−7 4.01× 10−9 2.34× 10−7 3.12× 10−8

2.20× 10−7 5.18× 10−9 2.34× 10−7 3.47× 10−8

1000 5.74× 10−8 6.48× 10−10 6.01× 10−8 5.42× 10−9

5.75× 10−8 1.45× 10−9 6.02× 10−8 7.47× 10−9

2000 1.45× 10−8 1.91× 10−10 1.48× 10−8 6.82× 10−10

1.39× 10−8 3.54× 10−10 1.47× 10−8 1.47× 10−9

4000 4.17× 10−9 2.46× 10−10 4.08× 10−9 1.82× 10−10

3.59× 10−9 7.16× 10−11 3.66× 10−9 2.48× 10−10

8000 1.36× 10−9 3.36× 10−10 1.35× 10−9 3.19× 10−10

8.97× 10−10 8.88× 10−12 9.56× 10−10 2.69× 10−11

where

Pi(xi, t, T ) = Ai(T − t)e−Bi(T−t)xi
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Table 2.3: L2 errors for early exercise interest rates

σ = 0.06, α = 0.16, β = 0.4, T ∗ = 30, K = $10

left free boundary right free boundary

M FEM FFEM FEM FFEM

500 2.24× 10−7 4.29× 10−9 2.35× 10−4 5.96.27× 10−5

5.32× 10−4 1.72× 10−5 5.47× 10−4 8.41× 10−5

1000 2.66× 10−4 1.52× 10−5 2.72× 10−4 3.00× 10−5

2.66× 10−4 7.41× 10−6 2.73× 10−4 3.03× 10−5

2000 1.34× 10−4 1.36× 10−5 1.38× 10−4 1.54× 10−5

1.33× 10−4 2.96× 10−6 1.37× 10−4 1.04× 10−5

4000 6.86× 10−5 1.25× 10−5 7.06× 10−5 1.29× 10−5

6.62× 10−5 1.07× 10−6 6.80× 10−5 3.28× 10−6

8000 4.00× 10−5 1.37× 10−5 4.09× 10−5 1.45× 10−5

3.32× 10−5 3.03× 10−7 3.40× 10−5 8.34× 10−7

is the bond price when the short-term rate process is xi(t) and

Ai(τ) =

(
aie

biτ

bi(eaiτ − 1) + ai

)ci
, Bi(τ) =

eaiτ − 1

bi(eaiτ − 1) + ai
,

ai = (κ2
i + 2σ2

i )
1
2 , bi = (κi + ai)/2, ci = 2κiθi/σ

2
i .

The quadratic model is �tted to the two-factor CIR model as follows:

σ =
√

(σ2
1x1(0) + σ2

2x2(0))/(2r(0)),

f(T ) =
√
σ2

1x1(0)B1(T )2 + σ2
2x2(0)B2(T )2/σ,

g(T ) = log(P (x1(0), x2(0), 0;T ),

where x(0) =
√

2(x1(0) + x2(0)).

The bond face value is $100. The parameters for the TCIR model are given in

Table 2.4. For the �rst group of parameters, processes x1(t) and x2(t) are always

positive since κ1θ1
σ2
1
> 1/2 and κ2θ2

σ2
2
> 1/2, and for the second group of parameters,

since κ1θ1
σ2
1
> 1/2 and κ2θ2

σ2
2
< 1/2, process x1(t) is always positive, but processes x2(t)

can be zero with a positive probability ([16]).
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Now we consider one-year American put options written on bonds with expiration

dates 5-year, 10-year, 15-year and 20-year. Their exercise prices are given as the

percentage of the current forward bond price: 87%, 88%, 89%, and 90%. We assume

that the initial term structure is determined by the tow-factor CIR model with con-

stant parameters, and then we calibrate quadratic model, extended CIR model, and

Hull-White model to the initial term structure. The comparison of the option prices

under all these models is presented in Figures 2.5�2.6. Both �gures demonstrate that

all three models can accurately capture the put option price's movements. When the

volatility and the mean reverting speed are small in Case I, the put option prices

under quadratic model, extended CIR model, and Hull-White model are very close to

the one under the tow-factor CIR model, especially for the ones with short expiration

dates. When the tow-factor CIR model has bigger volatility and mean reverting speed

in Case II, both the extended CIR model and Hull-White model tend to underesti-

mate the put option prices, while the quadratic model tend to overestimate the put

option prices. Nonetheless, all three models are able to capture the put option price

curve's shapes.

Table 2.4: Parameters for the TCIR model

Group σ1 κ1 θ1 x1(0) σ2 κ2 θ2 x2(0)
I 0.03 0.10 0.05 0.05 0.03 0.01 0.05 0.05
II 0.15 0.16 0.04 0.04 0.15 0.10 0.05 0.05
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Figure 2.5: American Put Options: Case I
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Figure 2.6: American Put Options: Case II

41



CHAPTER 3

PARAMETER ESTIMATION BY KALMAN

FILTER

3.1 Literature Review

Besides modeling the the term structure of interest rates, an extensive study has

been focusing on estimating the model parameters. Several prominent methods have

been developed to estimate the model parameters over the decades. The maximum

likelihood method is naturally employed with the time-series approach, the cross-

section approach or their combination (see [61, 14, 7, 2] and the references cited

therein).

The maximum likelihood estimation requires the state variable is observable and

the likelihood function is analytically known. The simulation-based maximum like-

lihood approach is developed by using the approximation of the likelihood function

when the state is observable ([60, 63]). Without the knowledge of the likelihood

function, we may use the available moments of the distribution, which results so call

the the quasi-maximum likelihood estimation ([12, 62, 23]). Moreover, Hansen [31]

proposes the Nobel prize winning method � generalized method of moments (GMM)

that reduces the reliance on distribution assumptions by matching the empirical mo-
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ments with the theoretical ones. Chan et al. apply GMM to a variety of continuous

models of the short-term riskless rate models [13]. Later, Ingram and Lee[34] and

Dai and Singleton [18] proposed the simulated method of moments (SMM) to time-

series estimation. As the name suggests, SMM minimizes the reliance on distribution

assumptions by matching the empirical moments with the simulated ones.

Another popular estimation technique is the e�cient method of moments(EMM)

developed by Gallant and Tauchen[26]. The EMM is widely used to estimation term

structure models when maximum likelihood is unfeasible. For instance, by using

EMM, Andersen and Lund estimate the stochastic volatility models[3], Dai and Sin-

gleton estimate the a�ne models[19], and Ahn et al. estimate the quadratic term

structure models[1]. Since the short interest rates are unobservable, the methods

based on the Kalman �lter have been developed (see [24, 54, 27, 20, 4, 6] and refer-

ences cited therein). The observed variables are the interest rate derivatives such as

yield rates, bond prices, caps, and so on.

It would be bene�cial to practitioners to know which estimation method pro-

duces the most accurate results. Zhou [70] compares the �nite sample properties of

EMM, GMM, QMLE, and MLE for a square-root interest rate di�usion model by

Monte Carlo simulation and concludes that MLE achieves the most e�cient estima-

tion method, QMLE is less e�cient than MLE but it provides the best inference,

and EMM provide better inference than GMM and MLE in a high volatility scenario.

Du�ee and Stanton [25] also study the �nite-sample properties of MLE, EMM, and

Kalman �lter methods for term structure models. They conclude that MLE works

well for simple models and produces strongly biased parameter estimates when the
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model includes some �exible speci�cation terms. EMM performs poorly even in the

simplest term structure settings and the linearized Kalman �lter is a tractable and

reasonably accurate estimation technique. According to the previous study results

and Du�ee and Stanton's recommendation, this dissertation adopts Kalman �lter and

its variations to estimate term structure models.

3.2 The Kalman Filter For the A�ne Models

3.2.1 The a�ne models

In a�ne models, the instantaneous interest rate r(t) is assumed to follow the stochastic

di�erential equation:

dr(t) = κ(θ − r(t))dt+ σrν(t)dW (t) (3.1)

where W (t) is a Wiener process under the risk neutral measure and κ, θ, and σ are

positive parameters. We have the the Vasicek model and the CIR model for ν = 0 and

ν = 1
2
, respectively. Here parameter κ can be interpreted as the speed of reversion

that characterizes the velocity at which r(t) evolves around its long term mean level

θ.

Let P (r, t;T ) be the T -bond price when the interest rate is r at time t. Then it

is the solution of the fundamental partial di�erential equation

Pt +
1

2
σ2Prr + κ (θ − r)Pr − rP = 0, −∞ < x <∞, 0 ≤ t < T

subject to the �nal condition

P (r, T ;T ) = 1.

44



The favorable feature of the above model is that the yield is an a�ne function of

the short interest rate r(t). In fact, the zero coupon bond under a�ne models takes

the following form:

P (t, T ; Ψ) = e−a(T−t;Ψ)−b(T−t;Ψ)r(t). (3.2)

where

Ψ = (θ, κ, σ), γ =
√
κ2 + 2σ2, (3.3)

b(τ ; Ψ) =


1− e−κτ

κ
for ν = 0,

2(eγτ − 1)

2γ + (κ+ γ)(eγτ − 1)
for ν =

1

2
,

(3.4)

a(τ ; Ψ) =


(
θ − σ2

2κ2

)
(τ − b(τ ; Ψ)) +

σ2

4κ
b2(τ ; Ψ) for ν = 0,

− 2κθ

σ2
ln

(
2γe(γ+κ)τ/2

2γ + (γ + κ)(eγτ − 1)

)
for ν =

1

2
,

(3.5)

Let z(t, T ) denote the time continuously compounded yield on a zero coupon bond

of maturity T . Then we have

z(t, T ) = − lnP (t, T ; Ψ)

T − t =
a(T − t; Ψ) + b(T − t; Ψ)r(t)

T − t . (3.6)

3.2.2 The state-space formulation

To deal with the estimation problem, it is reasonable to assume that the yields

for di�erent maturities are observed with measurement errors. Based on (3.6), n

yields can be represent as the following system for n bonds with di�erent maturities

{T1, T2, · · · , Tn} at time t:
z(t, T1)
z(t, T2)

...
z(t, Tn)


︸ ︷︷ ︸

z(t)

=


a(t,T1)
T1−t

a(t,T2)
T2−t )
...

a(t,Tn)
Tn−t


︸ ︷︷ ︸

A(t)

+


b(t,T1)
T1−t
b(t,T2)
T2−t )
...

b(t,Tn)
Tn−t


︸ ︷︷ ︸

B(t)

r(t) +


υ1(t)
υ2(t)
...

υN(t)


︸ ︷︷ ︸

υt

(3.7)

45



i.e.,

z(t) = A+Br(t) + υ(t) (3.8)

where υ ∼ N (0, R) with the covariance matrix R = diag(ρ2
1, . . . , ρ

2
n).

The transition equations are slightly more complex. For the Vasicek Model, we

can solve the stochastic di�erential equation (3.1) to obtain

r(t) = θ(1− e−κ(t−s)) + e−κ(t−s)r(s) +

∫ t

s

e−κ(t−u)σdW (u)

for all 0 ≤ s ≤ t. Thus the transition equation for Vasicek Model is as follow:

r(ti) = θ(1− e−κ(ti−ti−1)) + e−κ(ti−ti−1)r(ti−1) + ε(ti), (3.9)

where

ε(ti) =

∫ ti

ti−1

e−κ(ti−s)σdWs.

It follows from the properties of Ito integral that

εi | Fti−1
∼ N (0, qi),

where

qi = Var
[
ε(ti)|Fti−1

]
=
σ2

2κ

(
1− e−2κ(ti−ti−1)

)
.

Hence

r(ti) | Fti−1
∼ N (µi, qi) , (3.10)

where

µi = θ(1− e−κ(ti−ti−1)) + e−κ(ti−ti−1)r (ti−1) .
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However, the transition density in CIR model follows a non-central χ-squared distri-

bution, which is rather di�cult to handle. For the purpose of simulation, we use the

�rst two moments of the non-central χ-squared distribution:

E
[
r(ti) | Fti−1

]
= θ + (r(ti−1)− θ)e−κ(ti−ti−1), (3.11)

Var
[
r(ti) | Fti−1

]
=
σ2

2κ

(
1− e−κ(ti−ti−1)

) (
θ + (2r(ti−1)− θ)e−κ(ti−ti−1)

)
. (3.12)

3.2.3 Kalman �lter

In 1960, Rudolph Kalman published his famous paper [38] proposing a powerful linear

�ltering technique named after him. The Kalman �lter is a means that provides

an e�cient recursive algorithm to estimate the state of a process and unobservable

parameters. The Kalman �lter is an optimal estimator in a sense of minimizing the

mean of the squared error. The reason that Kalman �lter is widely used in a lot of

areas such as tracking objects, economics and �nance, navigation, computer vision,

and so on is that it supports estimations of past, present and future. A good Kalman

�lter tutorial is presented by Terejanu in [65]. We only outline the general Kalman

�lter algorithm here and skip all the details that can be found in [65]. The Model

implementations will be discussed in detail in the following sections.

Consider a stochastic linear system

xk = Axk−1 +Buk−1 + wk−1, (3.13)

zk = Hxk + vk, (3.14)

where the control input uk is a known nonrandom variable, variable wk captures the

uncertainties of the model, and vk denotes the noise measurement. We assume that

47



wk ∼ N (0, Qk) and vk ∼ N (0, Pk) and that wk and wj, vk and vj, and wk and vk are

are uncorrelated.

The Kalman �lter algorithm includes the following three steps:

Initialization:

x0|0 = µ0 with error covariance P0.

Model Forecast step:

xk|k−1 = Axk−1|k−1 +Buk−1,

Pk|k−1 = APk−1|k−1A
T +Qk−1.

Data Assimilation Step:

xk|k = xk|k−1 +Kk

(
zk −Hxk|k−1

)
,

Kk = Pk|k−1H
T
(
HPk|k−1H +R

)−1
,

Pk|k = (I −KkH)Pk|k−1,

where Pj is the covariance of the state and Kk is the Kalman gain.

To estimate the parameters in the model, Kalman �lter is usually combined with

the MLE when the state vector dynamics is Gaussian with the normally distributed

noise or the QMLE when the state vector dynamics is not Gaussian or the noise is

not normally distributed.

The Kalman �lter algorithm for the Vasicek and CIR models is described in detail

as follows.

Step 1: Initializing the state vector. First, we need to �nd the appropriate start-

ing values for recursion. The unconditional mean and variance of transition sys-
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tems are good choices. The unconditional mean, for both the CIR and Vasicek

models, has the following form:

r0|0 = E [r0] = θ (3.15)

The unconditional variance is

P r
0|0 = Var [r0] =


σ2

2κ
for the Vasicek model,

σ2θ

2κ
for the CIR model.

(3.16)

Step 2: Forecasting the measurement equation. Assume that we have an op-

timal estimate ri−1|i−1 = E [ri−1 | Fi−1] with P r
i−1|i−1 = Var [ri−1 | Fi−1] at time

i − 1. The conditional forecast of the measurement equation has the following

form:

zi|i−1 = E [zi | Fi−1] = A+BE [ri | Fi−1] = A+Bri−1|i−1. (3.17)

The associated conditional variance is,

P z
i|i−1 = Var [zi | Fi−1] = BVar [ri | Fi−1]BT +R = BP r

i|i−1B
T +R. (3.18)

Step 3: Updating the inference about the state vector. The observed true value

of the measurement system, zi gives us a sense of the error in the conditional

prediction, which can be denoted as

ζi = zi − zi|i−1. (3.19)

At the current point in the Kalman �lter algorithm, this prediction error is used

to update our inference about the unobserved transition system. This updat-

ing takes the form of revising our conditional expectation with the underlying
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expression

ri|i = E [ri | Fi] = E [ri | Fi−1] +Kiζi = ri|i−1 +Kiζi, (3.20)

where

Ki = Var [ri | Fi−1]BTVar [zi | Fi−1]−1 = P x
i|i−1B

TP z
i|i−1

−1. (3.21)

is called the Kalman gain matrix. The gain matrix determines the weight given

to the new observation in the updated state system forecast. The conditional

variance of the stated system is also updated as follow:

P r
i|i = Var [ri | Fi] = (I −KiB)P r

i|i−1. (3.22)

Step 4: Constructing the likelihood function. The previous four steps have to

be repeated for each discrete time step in the data sample. In our test, we

use weekly US treasury yield data over a period of ten years. To actually

implement this algorithm to estimate the parameters, we initialize the state

vector using equation (3.15) and (3.16) and then iterate on equations (3.17) to

(3.22). At each step, we generate a measurement-system prediction error ζi and

a prediction error variance Var [ri | Fi−1]. With the �rst two moments, we can

construct the log-likelihood function for Vasicek model and log-quasi-likelihood

function for the CIR model. It will have the following form

L(θ) = −nN ln(2π)

2
− 1

2

N∑
i=1

(
ln(det(P r

i|i−1) + ζTi P
r
i|i−1

−1ζi
)
. (3.23)

In other words, Step 1 through Step 4 are used for the construction of a log-

likelihood function. To �nd the optimal parameters, we need to treat the above
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log-likelihood function as our objective function and use nonlinear numerical

optimization toolbox in MATLAB to �nd the maximum (or minimum of the

opposite of the likelihood function).

3.3 The Kalman Filter For the Quadratic Model

Recall that the instantaneous interest rate r(t) for the quadratic model is assumed to

be given by (Chapter 2)

r(t) =
1

2
x(t)2,

where the state variable x(t) that follows the stochastic di�erential equation:

dx(t) = κ(t)(θ(t)− x(t))dt+ σ(t)dWt. (3.24)

This SDE is identical to the one in Vasiceck Model, which means the state transition

equation should be the same too. We also have state transition equations as (3.9):

x(ti) = θ(1− e−κ(ti−ti−1))︸ ︷︷ ︸
E

+ e−κ(ti−ti−1)︸ ︷︷ ︸
F

x(ti−1) + ε(ti) (3.25)

or

xi = E + Fxi−1 + εi (3.26)

with the same de�nition of ε(ti). Unlike the Vasicek Model and CIR Model, the

yield-to-maturity of the quadratic model is a quadratic function of the state variable

instead of linear functions.

z(t, T ) = − ln (P (x(t); t, T ))

T − t =
1
2
c(t, T )x(t)2 + b(t, T )x(t)d+ a(t, T )

T − t (3.27)

where a(t, T ), b(t, T ), and c(t, T ) are de�ned in (4.14)�(4.16).

51



To estimation the parameters κ, θ and σ in the above model, we need to employ

the same assumption as we did for the Vasiceck Model and CIR Model that the

yields for the di�erent maturities have measurement errors. Analog to equation (3.7),

n yields can be represent as the following system for n bonds with di�erent maturities

[T1, T2, ·, Tn] at time t:
z(t, T1)
z(t, T1)

...
z(t, Tn)


︸ ︷︷ ︸

z(t)

=


a(t,T1)
T1−t
a(t,T2)
T2−t
...

a(t,Tn)
Tn−t


︸ ︷︷ ︸

AQ

+


b(t,T1)
T1−t
b(t,T2)
T2−t
...

b(t,Tn)
Tn−t


︸ ︷︷ ︸

BQ

x(t) +
1

2


c(t,T1)
T1−t
c(t,T2)
T2−t
...

c(t,Tn)
Tn−t


︸ ︷︷ ︸

CQ

x(t)2 +


υ1(t)
υ2(t)
...

υN(t)


︸ ︷︷ ︸

υt

, (3.28)

i.e.,

z(t) = AQ +BQxt + CQx2
t + υt (3.29)

where υ ∼ N (0, R) with the covariance matrix R = diag(ρ2
1, . . . , ρ

2
n). To deal with the

nonlinear measurement, we implement and compare three Kalman �lter variations,

namely, the extended Kalman �lter, unscented Kalman �lter and Kalman �lter for

the quadratic measurement function (3.29).

3.3.1 The extended Kalman �lter

A natural way to apply Kalman �lter to the nonlinear measurement function is to

linearize it at xf (t) obtained from the forecast step, i.e.,

z(t) = AQ +BQx(t) + CQx(t)2 + υt

= AQ +BQxf (t) + CQ
(
xf (t)

)2
+BQ

(
x(t)− xf (t))

+ 2CQxf (t)
(
x(t)− xf (t))+ CQ

(
x(t)− xf (t))2

+ υt
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≈ AQ +BQxf (t) + CQ
(
xf (t)

)2
+BQ

(
x(t)− xf (t))

+ 2CQxf (t)
(
x(t)− xf (t))+ υt

= AQ − CQ
(
xf (t)

)2
+
(
BQ + 2CQxf (t)

)
x(t) + υt

= A+Bx(t) + υt,

where

A = AQ − CQ
(
xf (t)

)2
, B = BQ + 2CQxf (t).

The above approximation together with (3.26) forms the following stochastic linear

system:

xi = E + Fxi−1 + εi, (3.30)

zi = A+Bxi + υi. (3.31)

We can apply the standard Kalman �lter in �3.2.3 to estimate the parameters of the

system, which leads to the following extended Kalman �lter algorithm:

Step 1: Initializing the state vector. The unconditional mean has the following

form:

x0|0 = E [x0] = θ.

The unconditional variance is

P x
0|0 = Var [x0] =

σ2

2κ
.
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Step 2: Forecasting the measurement equation. With an optimal estimate xi−1|i−1 =

E [xi−1| | Fi−1] with P x
i−1|i−1 = Var [xi−1| | Fi−1] available at time i− 1, the con-

ditional forecast of the measurement equation has the following form:

zi|i−1 = E [zi | Fi−1] ≈ A+BE [xi | Fi−1] = A+Bxi−1|i−1. (3.32)

The associated conditional variance is,

P z
i|i−1 = Var [zi | Fi−1] ≈ BVar [xi | Fi−1]BT +R = BP x

i|i−1B
T +R.

Step 3: Updating the inference about the state vector. The error in the con-

ditional prediction is

ζi = zi − zi|i−1.

and the updating conditional expectation is de�ned as

xi|i = E [xi | Fi] = E [xi | Fi−1] +Kiζi = xi|i−1 +Kiζi,

where the Kalman gain is

Ki = Var [xi | Fi−1]BTVar [zi | Fi−1]−1 = P x
i|i−1B

TP z
i|i−1.

The conditional variance of the stated system is updated as follow:

P x
i|i = Var [xi | Fi] = (I −KiB)P x

i|i−1.

Step 4: Constructing the likelihood function. The log-likelihood function has

the following form

L(θ) = −nN ln(2π)

2
− 1

2

N∑
i=1

(
ln(det(P x

i|i−1)) + ζTi P
x
i|i−1

−1ζi
)
.
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We should point out that the main advantage of the extended Kalman �lter is

that the estimation procedure is almost the same as the standard Kalman �lter recur-

sion and is very easy to use, to understand and computationally e�cient. However,

the extended Kalman �lter has some limitations such as not working in considerable

nonlinearities, the di�erentiable requirement on state transition equation and mea-

surement equation and unstablity of computing Jacobian matrices for high dimension

problems. Fortunately, both the state transition equation and the measurement equa-

tion are �rst order and second order polynomials in the quadratic term structure and

we do not have to worry about their nonlinearity, di�erentiability and computation

of the Jacobian matrices.

3.3.2 The unscented Kalman �lter

The unscented Kalman �lter (UKF) was proposed by Julier and Uhlman in their

sensational paper[37]. Unlike the extended Kalman �lter, the unscented Kalman �l-

ter does not linearize the measurement equation. Rather than approximation the

nonlinear measurement function z(t) in equation (3.29), the unscented Kalman �lter

approximates the conditional distribution of the state variable x(t) using the un-

scented transformation [52]. The unscented transformation is a method of using the

statistical linearization technique that is used to linearize a nonlinear function of a

random variable through a linear regression between n points drawn from the prior

distribution of the random variable. The UKF is a derivative-free alternative to the

extended Kalman �lter, thus it overcomes the extended Kalman �lter's limitations

such as the posterior mean and covariance could be corrupted due to the state distri-
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bution propagated analytically through the �rst-order linearization of the nonlinear

equations. Therefore, UKF is more accurate than Taylor series linearization [67]. In

[68], Wan and Van der Merwe employ UKF for nonlinear estimation and conclude

that UKF consistently achieves a better level of accuracy than EKF within a num-

ber of application domains including parameter estimation. Even though the UKF

is extensively used in the engineering literature, it has not been widely used in the

empirical asset pricing literature [15]. Among fewer papers that use UKF to esti-

mate the term structure models, Leippold and Wu estimate a series of multi-currency

quadratic models by using UKF [53], Nyholm and Rositsa also apply UKF to esti-

mate multi-factor quadratic models. Besides, unlike most other papers using standard

Kalman �lter to estimate the a�ne term structure models, Christo�ersen et al. con-

duct extensive study on showing that UKF outperforms the standard and extended

Kalman �lter in parameter estimation and forecasting swap rates and caps for a�ne

term structure models with nonlinear instruments. In this section, we shall rely on

the unscented Kalman �lter to estimate the quadratic interest rate models similar to

Leippold and Wu and Nyholm and Vido-Koleva.

To understand the unscented Kalman �lter, we need to be clear about the un-

scented transform that is used to statistically linearize the nonlinear functions. Con-

sider an n− dimension random variable x with mean x̄ and covariance Px is propa-

gated through a nonlinear function y = f(x). To calculate the mean and covariance of

y, we construct a matrix X of 2n+ 1 sigma points χi with the corresponding weights
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wi as follows:

χ0 = x̄,

χi = x̄+ (
√

(n+ λ)Px)i i = 1, 2, . . . , n,

χi = x̄− (
√

(n+ λ)Px)i i = n+ 1, n+ 2, . . . , 2n,

wm0 =
λ

n+ λ
,

wc0 =
λ

n+ λ
+ (1− α2 + β),

wmi = wci =
1

2(n+ λ)
i = 1, 2, . . . , 2n,

where λ = α2(n + κ) − n is a scaling parameter, α controls the spread of the sigma

points around x̄ and is set to a small positive value, κ is a secondary scaling parameter

that is usually set to 0, and β incorporates prior knowledge of the distribution of x.

When the distribution of xt is Gaussian, we have β = 2, κ = 3 − n or 0, and α = 1

for low dimensional problems. Here (
√

(n+ λ)Px)i denotes the ith row of the square

root of the matrix. It is easy to see that for any α, κ, β, we have:

2n∑
i=0

wmi χi = x̄, (3.33)

2n∑
i=0

wmi (χi − x̄)(χi − x̄)′ =
2n∑
i=0

wci (χi − x̄)(χi − x̄)′ = Px. (3.34)

These sigma points are propagated through the nonlinear function

yi = f(χi) i = 0, 1, . . . , 2n

and the mean and covariance of y are approximated using a weight sample mean and
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covariance of the posterior sigma points:

ȳ ≈
2n∑
i=0

wmi yi, (3.35)

Py ≈
2n∑
i=0

(yi − ȳ)(yi − ȳ)′. (3.36)

As discussed in [51], the approximations of the unscented transform are accurate

to the third order for Gaussian inputs for all nonlinearities and at least the second

order for non-Gaussian inputs. A simple comparison of EKF and UKF is show in

Figure 3.1 for a 2−dimensional system. The true mean and covariance propagation

using Monte-Carlo sampling are shown in the left; the results of EKF are shown in

the center and the right plots show the performance of the unscented transform with

5 sigma points. It is clear that the unscented transform does a better job than EKF

to approximate the mean and covariance of the nonlinear function y. The Unscented

Kalman Filter(UKF) is a straightforward extension of the Kalman �lter incorporating

the unscented transform of (3.33), (3.34), (3.35) and (3.36). Notice that the transition

equation (3.26) in quadratic interest model is linear, we do not need to calculate x̄ and

Px through equations (3.33) and (3.34). In another word, we can use the standard

Kalman �lter for x̄ and Px.

The algorithm of UKF for parameter estimation in system (3.26) and (3.31) is

formulated in the following algorithm:

Step 0: Calculating the weights. Since the weights are independent to the rest

steps, we should calculate the weight at the very beginning.

wm0 =
λ

n+ λ
,

58



wc0 =
λ

n+ λ
+ (1− α2 + β),

wmi = wci =
1

2(n+ λ)
i = 1, 2, . . . , 2n.

Step 1: Initializing the state vector. First, we also need to assign the uncondi-

tional mean and variance of transition systems starting values for recursion as

we did in the standard Kalman �lter for Vasicek models since they share the

same transition equation.

x0|0 = E [x1] = E [x1 | F0] = θ.

The unconditional variance for the Quadratic state variable is

P x
0|0 = Var [x1] = Var [x1 | F0] =

σ2

2κ
.

Step 2: Predicting state variable. After having an estimate xi−1|i−1 = E [xi−1| | Fi−1]

with P x
i−1|i−1 = Var [xi−1| | Fi−1] at time i− 1, we can predict the state variable

and its covariance at time t by

xi|i−1 = C + Fxi−1|i−1,

P x
i|i−1 = FP x

i−1|i−1F
′ +Q.

Step 3: Computing the 2n+ 1 sigma points. With the state prediction, the sigma
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points can be calculated as

χ0 = xi|i−1.

χi = xi|i−1 + (
√

(n+ λ)P x
i|i−1)i, i = 1, 2, . . . , n,

χi = xi|i−1 − (
√

(n+ λ)P x
i|i−1)i, i = n+ 1, n+ 2, . . . , 2n.

Step 4: Forecasting the measurement equation. The measurement forecasting

is updated by propagating the sigma points though the nonlinear measurement

function z(t) in equation (3.31). The conditional forecast of the measurement

equation has the following form:

zi|i−1 =
2n∑
i=0

wiz(χi).

The associated conditional variance is

P z
i|i−1 =

2n∑
i=0

wci [z(χi)− zi|i−1][z(χi)− zi|i−1]′ +R.

Step 5: Updating the inference about the state vector. The observed true value

of the measurement system, zi gives us a sense of the error in the conditional

prediction, which can be denoted as

ζi = zi − zi|i−1.

The Kalman gain matrix for UFK is de�ned as

Ki =
2n∑
i=0

wci [χi − xi|i−1][z(χi)− zi|i−1]′P z
i|i−1

−1
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and the state variable is updated by

xi|i = xi|i−1 +Kiζi

with covariance

P x
i|i = P x

i|i−1 −KiP
z
i|i−1K

′
i.

Step 6: Constructing the likelihood function. Like the log-quasi-likelihood func-

tion in the CIR model, the log-quasi-likelihood function of the quadratic model

has the following form

L(θ) = −nN ln(2π)

2
− 1

2

N∑
i=1

(
ln(det(P x

i|i−1)) + ζTi P
x
i|i−1

−1ζi
)
. (3.37)

Again, to �nd the optimal parameters, we need to treat the above log-quasi-

likelihood function as our objective function and use nonlinear numerical opti-

mization toolbox in MATLAB to �nd the maximum (or minimum of the oppo-

site of the likelihood function).

3.3.3 The quadratic Kalman �lter

Even though the unscented Kalman �lter does a �ne job estimating the parameters

in the quadratic model, we still hope to �nd a way to apply the standard Kalman

�lter directly to the quadratic model since the nonlinear measurement equation is in a

relatively simple form of quadratic function. Monfort, Renne and Roussellet propose

the quadratic Kalman �lter to the linear transition equation and quadratic measure-

ment equation in any dimension [57]; meanwhile we independently discover the same

technique in 1−dimension case. Here we shall demonstrate quadratic Kalman �lter
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Figure 3.1: Comparison of the UT for mean and covariance propagation.
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estimator for 1−dimension problem that is formulated in (3.30) and (3.31). The basic

idea behind the quadratic Kalman �lter is increasing the dimension of the transition

and measurement equations to reduce the nonlinearality in (3.31).

Equations (3.30) and (3.31) form the so-called linear-quadratic state-space model:

xi = E + Fxi−1 + εi,

zi = A+Bxi + Cx2
i + υi.

In order to reduce the above nonlinear system to a linear system, we regard x2
i as a

new state variable and let

Xi =

[
xi
x2
i

]
.

Then the measurement equation can be expressed as a linear equation of Xi:

zi = A+DXi + υi (3.38)

where D =
[
B C

]
. If we can �nd a linear transition equation for the new Variable

Xi, then we can estimate the parameters by using the standard Kalman �lter. It is

easy to get

x2
i = (E + Fxi−1 + εi)

2 = E2 + 2(E + εi)Fxi−1 + F 2x2
i−1 + 2Eεi + ε2i (3.39)

Thus the transition equation of Xi satis�es

Xi = α + βiXi−1 + ηi (3.40)

where

α =

[
E
E2

]
, βi =

[
F 0

2(E + εi)F F 2

]
, ηi =

[
εi

2Eεi + ε2i

]
.
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Now equations (3.40) and (3.38) form a linear state-space model, on which the stan-

dard Kalman �lter could be applied. The following theorem shows the �rst two

conditional moments of Xi.

Theorem 3.1. The �rst two conditional moments of Xi in the transition equation

(3.40) are given by

E [Xi | Xi−1] = α + βXi−1 (3.41)

Var [Xi | Xi−1] = P x
i|i−1(Xi−1) (3.42)

where

β =

[
F 0

2EF F 2

]
, P x

i|i−1(Xi−1) =

[
Q 2Q(E + Fxi−1)
2Q(E + Fxi−1) Q(E + Fxi−1)2 + 2Q2

]
.

Proof. It follows from transition equation (3.40) that

E [Xi | Xi−1] = Ei−1[α + βiXi−1 + εi]

= α + Ei−1[βi]Xi−1

= α + βXi−1.

Since Ei−1[εki ] = 0 when i is odd, the variance can be calculated according to equation

((3.39)).

Vari−1[x2
i ] = Vari−1[(E2 + 2Exi−1 + F 2x2

i−1) + (2Eεi + 2Fxi−1εi + ε2i )]

= Vari−1[(2E + 2Fxi−1)εiεi + ε2i ]

= 4(E + F x
i−1)2Vari−1[εi] + Vari−1[ε2i ]

= 4(E + F x
i−1)2Q+ 2Q2.
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To �nd Vari−1[Xi], we only need to compute Covi−1[xi, x
2
i ] that equals

Covi−1[xi, x
2
i ] = Covi−1[εi, 2(E + Fxi−1)εi + ε2i ]

= 2(E + Fxi−1)Vari−1[εi, εi] + Covi−1[εi, ε
2
i ]

= 2(E + Fxi−1)Q+ Ei−1[ε3i ]− Ei−1[εi]Ei−1[ε2i ]

= 2(E + Fxi−1)Q.

Finally, the conditional covariance matrix

Vari−1[Xi] =

[
Q 2Q(E + Fxi−1)
2Q(E + Fxi−1) Q(E + Fxi−1)2 + 2Q2

]
.

Next, we need to derive the �rst two unconditional moments of Xi to initialize

Kalman �lter.

Theorem 3.2. The unconditional expectation µ and covariance matrix Σ of Xi are

given as follows:

µ = (I − β)−1α (3.43)

Vec[Σ] = (I4 − β ⊗ β)−1Vec[P x(µ)] (3.44)

. where Vec[·] is the vectorization of a matrix, i.e., a linear transformation which

converts the matrix into a column vector and

P x(µ) =

[
Q 2Q(E + V )
2Q(E + V ) Q(E2 +W ) + 2Q2

]
V = [F, 0]µ

W = [2EF, F 2]µ.
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Proof. By applying the law of total expectation and Theorem 3.1, we have the un-

conditional mean µ

µ = lim
i→∞

E[Xi | X0]

= lim
i→∞

E0 [E1 [E2 [· · ·Ei−1 [Xi]]]]

...

= lim
i→∞

E0 [E1 [E2 [· · ·Ei−2 [α + βXi−1]]]]

= lim
i→∞

(I + β + β2 + · · ·+ βi−1)α + βiαX0

=(I − β)−1α.

Next, the unconditional variance Σ can be derived by using we use law of total variance

as well as Theorem 3.1.

Var[Xi] =E [Vari−1[Xi]] + Var [Ei−1[Xi]]

=E
[
P x
i|i−1(Xi−1)

]
+ Var [α + βXi−1]

=P x
i|i−1 (E[Xi−1]) + βVar[Xi−1]βT

=P x(µ) + βVar[Xi−1]βT

Let i→∞, we have the following matrix equation

Σ = P x(µ) + βΣβT

whose solution can be expressed as follows

Vec[Σ] = (I4 − β ⊗ β)−1Vec[P x(µ)]
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Now with the above two theorems, we can use the standard Kalman �lter to esti-

mate parameters in the quadratic model. The corresponding algorithm is as follows.

Step 1: Initializing the state vector. We initialize the state vector by the un-

conditional mean and variance:

X0|0 = E [X0] = µ

P x
0|0 = Var [X0] = Σ

where µ and Σ are de�ned in Theorem 3.2.

Step 2: Forecasting the measurement equation. Suppose we have optimal es-

timate Xi−1|i−1 = E [Xi−1| | Fi−1] with P x
i−1|i−1 = Var [Xi−1| | Fi−1] available at

time i − 1, then the conditional forecast of the measurement equation has the

following form:

zi|i−1 = E [zi | Fi−1] = A+BE [Xi | Fi−1] = A+BXi−1|i−1.

The associated conditional variance is given by,

P z
i|i−1 = Var [zi | Fi−1] = BVar [Xi | Fi−1]BT +R = BP x

i|i−1B
T +R.

Step 3: Updating the inference about the state vector. The error between the

observed data and the conditional prediction is

ζi = zi − zi|i−1

and the updating conditional expectation is de�ned as

E [Xi | Fi] = E [Xi | Fi−1] +Kiζi = Xi|i−1 +Kiζi,
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where the Kalman gain is

Ki = Var [Xi | Fi−1]BTVar [zi | Fi−1]−1 = P x
i|i−1B

TP z
i|i−1

−1.

The conditional variance of the stated system is updated as follows:

P x
i|i = Var [Xi | Fi] = (I −KiB)P x

i|i−1.

Step 4: Constructing the likelihood function. The quasi-log-likelihood function

has the following form

L(θ) = −nN ln(2π)

2
− 1

2

N∑
i=1

(
ln(det(P x

i|i−1)) + ζTi P
x
i|i−1

−1ζi
)
.

As seen above, the quadratic Kalman �lter algorithm is identical to the standard

Kalman �lter algorithm once we convert the linear-quadratic state-space model to

linear state-space model. Since the Xi is not normally distributed, we construct the

quasi-log-likelihood function using the �rst two moments rather than building the

log-likelihood function.

3.4 Numerical Results

3.4.1 Simulation results

This subsection is devoted to apply the above theoretical discussion of Kalman �lter

to the Vasicek and CIR models, and the extended Kalman �lter, unscented Kalman

�lter and quadratic Kalman �lter to quadratic model. We �rst place the one-factor

Vasicek, CIR and quadratic models into state-space form, then simulate various term

structure outcomes using known parameters, and further proceed to estimate the
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model parameters. This simulation procedure is intended to show how e�ective these

estimation techniques work in terms of identifying parameters. In particular, a se-

quence of steps are followed in the simulation:

1. The �rst step is to simulate the underlying state variable paths. The state vari-

ables are simulated from the discretized solution to their attendant stochastic

di�erential equations. In the estimation, we start with an arbitrary set of param-

eters for each term structure sample path and construct monthly observations

over a 10-year time horizon with maturities ranged from 1-month to 10-years.

Actually, to achieve a better approximation of the underlying stochastic pro-

cesses that govern the state variables, we simulate the state variables daily over

the 10-year period, but we only use the monthly observations in the data. Fi-

nally, to be consistent to our discussion in above sections, we assume that the

zero-coupon rates are observed with a normally distributed independent error

term.

2. We proceed to employ the multi-start optimization solver of MATLAB to �nd

the optimal parameter set. The actual optimization problem in our models does

not have constraints on the parameter values, but we impose the lower and

upper bound to make sure that the optimal parameter set found is reasonable;

for instance, we constraint θ ∈ [0, 1] in Vasicek model since θ is the long term

interest rate and it does not make any sense it is negative or over 1.

3. We simulate a sample path for the term structure of interest rates and apply

the estimation algorithm 500 times. This may not be a su�cient number of
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simulations, but the procedure is rather time consuming and the results do

demonstrate the accuracy of the approach.

The following tables summarize the estimation results of application the Kalman

�lter to the Vasicek and CIR models and the extended Kalman �lter, unscented

Kalman �lter and quadratic Kalman �lter to the quadratic model. We compare the

true values (TV) and the mean estimate (ME) over the 500 simulations and the

standard deviation (SD) of the estimates are also shown in these tables.

Table 3.1: Parameter Estimation for the Vasicek and CIR Models

Model Vasicek CIR

Parameters TV ME SD TV ME SD

θ 0.06 0.06002 8.74× 10−4 0.10 0.10 1.33× 10−5

κ 0.05 0.05 0 0.10 0.10 2.08× 10−5

σ 0.02 0.02001 7.60× 10−4 0.025 0.02504 1.97× 10−4

Table 3.2: Parameter Estimation for the Quadratic Model

Method EKF UKF QKF

Parameters TV ME SD ME SD ME SD

θ 0.22 0.217 0.031 0.220 3.64× 10−3 0.219 9.07× 10−3

κ 0.2 0.196 0.028 0.200 3.45× 10−3 0.200 7.03× 10−3

σ 0.1 0.098 0.022 0.100 3.79× 10−3 0.101 9.19× 10−3

Table 3.1 summarizes the estimation results of the Vasicek and CIR models by

Kalman �lter. In both instances, 500 estimations were performed using 1-month, 3-

month, 6-month, 2-year, 5-year and 10-year zero rates. Table 3.1 shows that Kalman
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�lter works well for the Vasicek and CIR models. In particular, it estimates the

parameter set closely to the mean-reversion, long term interest rate and volatility

parameters. Moreover, the standard errors are quite small.

Table 3.2 displays the results of three Kalman �lter variations - EKF, UKF, and

QKF for the quadratic model. It shows that all three methods work well on estimating

parameters. However, EKF's mean is less closed to the �true value� and it has a larger

standard errors compared to UKF and QKF in both relative and absolute terms.

Among these three estimation techniques, UKF's performance is encouraging, and

the mean estimates of all parameters are extremely closed to the �true� values with

small standard errors. The special estimator�QKF also works very well. The mean

estimates of QKF is close to the �true value�. QKF outperforms EKF in identifying all

three parameters, although its performance is slightly inferior to UKF's. Overall, we

may conclude that both UKF and QKF are reasonable and encouraging estimation

techniques for the quadratic interest rate model.

3.4.2 Actual results

In this section, we apply the proposed estimation techniques to U.S. Treasury zero-

coupon yield curve data ranging from January 1970 to December 2000. The sample

consists of monthly yield observations with maturities of 1,3, 6, 9, 12, 15, 18, 21,

24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months. These data are constructed by

Diebold and Li [22] based on end-of-month Center for Research Security Prices(CRSP)

government bond �les. Figure 3.2 displays the evolution of the actual U.S. Treasury

zero-coupon yield curve and Table 3.3 gives the statistics of the data set. The zero-

71



coupon rates incorporated into our estimation include six observations with 1-month,

6-month, 1-year, 2-year, 5-year, and 10-year terms to maturity. We shall assume these

zero-coupon rate data are observed with independent normally distributed errors.

Figure 3.2: U.S. Treasury Zero-coupon Yield Rate Curve

We follow the similar steps to �nd the optimal estimation of the parameter set as

ones in the simulation. However, instead of computing the standard deviations for

the estimates, we compute the standard errors from the Fisher information matrix.

In particular, if ψ is used to denote the vector of standard errors for 3 parameters,

then we calculate each individual standard error as follows:

ψi =
√
H−1
ii

for i = 1, 2, 3 where H is the Hessian matrix. Table 3.4 summarizes the estimation

results for the Vasicek and CIR models. The results of identifying parameters of

quadratic interest rate model estimated by EKF, UKF, and QKF are shown in Table

3.5. The results of estimation from the actual data are consistent to the results of

estimation from simulated data.
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Table 3.3: The Descriptive Statistics of U.S. Treasury Zero-
coupon Yield Rates from January 1980 to December 1989

Maturity Mean Std. dev. Minimum Maximum

1-month 0.0856 0.7903 0.1616 0.392

6-month 0.0927 0.7985 0.1648 0.0530

1-year 0.0952 0.6934 0.1582 0.0544

2-year 0.0982 0.6036 0.1565 0.0583

5-year 0.1021 0.4826 0.1582 0.0664

10-year 0.1040 0.4105 0.1494 0.0709

Table 3.4: The Estimated Parameters for the Vasicek and CIR Models

Parameters
Vasicek CIR

Estimate Std. Error Estimate Std. Error

θ 0.153 0.0074 0.153 0.0087

κ 0.115 0.0110 0.010 0.0129

σ 0.039 0.0033 0.104 0.0081

Table 3.5: The Estimated Parameters for the Quadratic Model

Parameters
EKF UKF QKF

Estimate Std. Error Estimate Std. Error Estimate Std. Error

θ 0.511 0.0073 0.510 0.0068 0.511 0.0156

κ 0.119 0.0123 0.122 0.0120 0.123 0.0080

σ 0.079 0.0062 0.076 0.0057 0.255 0.0050
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CHAPTER 4

EMPIRICAL TESTS

In this chapter, we use the empirical estimation results in �3.4.2 to compare a variety

of term structure models. We �rst compare the in-sample �t and out-sample forecast-

ing properties of the Vasicek, CIR, and quadratic models with constant parameters,

which has been extensively studies in literature. However, to our knowledge, there is

no empirical result of out-sample forecasting between constant parameter term struc-

ture models and time-dependent parameter models and among the time-dependent

parameter models, i.e. the extended models. We review and compare three models:

the extended Vasicek model, the extended CIR model, and the quadratic model with

time-dependent parameters.

4.1 Calibration of the A�ne Models

In �3.2 , we have considered the a�ne models with constant parameters. It is known

that the model with constant parameters can not capture the whole yield curve. To

overcome this drawback, one needs to allow one or more parameters to be time-

dependent. Here we only consider the simplest case that θ is a function of time t, i.e.,
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the following model

dr(t) = κ(θ(t)− r(t))dt+ σrν(t)dWt (4.1)

under the risk-neutral measure. It is called the Hull-White model or the extended

CIR model when ν = 0 or ν = 1
2
. As usual, the zero-coupon bond is given by

P (t, T ) = P (rt, t, T ) = e−a(t,T )−b(t,T )rt , (4.2)

where a(t, T ) and b(t, T ) are the solutions of di�erential equations

at(t, T ) + κθ(t)(t)b(t, T )− 1− 2ν

2
σ2b(t, T )2 = 0, 0 ≤ t < T, (4.3)

bt(t, T )− κb(t, T )− νσ2b(t, T )2 + 1 = 0, 0 ≤ t < T, (4.4)

with the �nal conditions

a(T, T ) = 0, (4.5)

b(T, T ) = 0. (4.6)

Since κ and σ are constant, we can obtain by solving equation (4.4) with the �nal

condition (4.6)

b(t, T ) =


1
κ

(
1− e−κ(T−t)) , for the HW model,
2(eγ(T−t)−1)

(γ+κ)(eγ(T−t)−1)+2γ
, for the ECIR model,

where γ =
√
κ2 + 2σ2.

Now assume that we observe the short rate r0 and the yield curve y(T ) at current

time (t = 0) for all maturities T ∈ [0, T ∗], where T ∗ is a given positive number. By

(4.2), we have

e−a(0,T )−b(0,T )r0 = e−Ty(T ),
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which leads to

a(0, T ) = Ty(T )− b(0, T )r0.

Next, we need the inverse problem to determine θ(t) and a(t, T ) by equation (4.3),

the �nal condition (4.6) and the known function a(0, T ).

The Hull-White model: The inverse problem can solved analytically to get ([32])

θ(t) =
∂a(0, t)

∂t
+

1

κ

(
∂2a(0, t)

∂t2
+ g(t)

)
,

a(t, T ) = a(0, T )− a(0, t)− b(t, T )
∂a(0, t)

∂t
+

1

2
b2(t, T )g(t),

g(t) =

(
∂b(0, t)

∂t

)2 ∫ t

0

(
σ

∂b(0,s)
∂s

)2

ds.

The ECIR model: We have from (4.3)

∫ T

t

θ(s)b(s, T )ds = −a(t, T )

κ
, 0 ≤ t ≤ T.

Letting t = 0, we obtain the following integral equation for θ ([16])

∫ T

0

θ(s)b(s, T )ds = −a(0, T )

κ
, 0 ≤ T ≤ T ∗.

This is a Volterra integral equation of the �rst kind. Di�erentiating the above equation

twice, we get the following Volterra integral equation of the second kind:

θ(T ) +

∫ T

0

θ(s)
∂2b(s, T )

∂T 2
ds = −1

κ

∂2a(0, T )

∂T 2
, 0 ≤ T ≤ T ∗. (4.7)

By Theorem 3.1 of [42], equation (4.7) has a unique solution of θ(t) if ∂2b(s,T )
∂T 2 and

∂2a(0,T )
∂T 2 are continuous. As suggested in [69], the block-by-block method in section

7.6 of [42] can be used to solve this integral equation accurately and e�ciently.
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To simplify the notation, we make the following substitutions before we outline

the block-by-block method. Let

K(s, T ) =
∂2b(s, T )

∂T 2
, f(T ) = −1

κ

∂2a(0, T )

∂T 2
.

Then equation (4.7) can be rewritten as

θ(T ) +

∫ T

0

θ(s)K(s, T )ds = f(T ), 0 ≤ T ≤ T ∗. (4.8)

Let the step size be h = T/M and time partition be tm = mh for m = 0, 1, · · · ,M

with the half points tm+h/2 = tm + h/2 for m = 0, 1, · · · ,M − 1. Denote θm the ap-

proximation of θ(tm). Then the block-by-block method can be formulated as follows:

for m = 0, 1, · · · ,M/2− 1, compute θ2m+1 and θ2m+2 by
amθ2m+1 + bmθ2m+2 = pm

cmθ2m+1 + dmθ2m+2 = qm

(4.9)

where

am = 1 +
h

2
K(t2m+1, t2m+1/2) +

h

6
K(t2m+1, t2m+1),

bm = − h

12
K(t2m+1, t2m+1/2),

cm =
4h

3
K(t2m+2, t2m+1),

dm = 1 +
h

2
K(t2m+2, t2m+2),

pm = h(t2m+1) +
h

6
K(t2m+1, t2m)θ2m − θh4K(t2m+1, t0)θ0 − h

3

2m∑
i=0

wm,iK(T2m+1, ti),

qm = h(t2m+2)− h

3

2m∑
i=0

wm,iK(T2m+2, ti),

{wm,0, wm,1, · · · , wm,m−1, wm,m} = {1, 4, 2, · · · , 2, 4, 1}.

The Simpson's rule is applied to solve the numerical integration in the above block-

by-block method. System (4.9) has a unique solution when h is small enough. Fur-
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thermore, the error estimate has been shown in [42] that

max
1≤m≤M

|θ(tm)− θm| ≤ Ch4

for su�ciently smooth functions K(t, s) and h(t) and some constant C independent

of h.

Remark 4.1. Recall that the bond price (4.2) can also be given in terms of the

forward rate fTt :

P (t, T ) = e−
R T
t fst ds.

Then we can determine the yield y(T ) by the forward rate f(T ) = fT0 :

y(T ) =
1

T

∫ T

t

f(s)ds.

4.2 Calibration of the Quadratic Model

The calibration of the quadratic model (2.2) is to determine one or more time-

dependent parameters by the observed market data such as the current yield curve

(or forward rate curve), forward rate volatility curve, etc. Here we only consider the

simplest case: determine α(t) when σ and β are known constants.

Since x(t) is the real independent variable, the T -maturity zero-coupon bond price

is a function of x = x(t) instead of r(t), denoted by P (x(t), t;T ). As usual, we know

that P (x, t;T ) is the solution of the fundamental partial di�erential equation

Pt +
1

2
σ(t)2Pxx + (α(t)− β(t)x)Px − 1

2
x2P = 0, −∞ < x <∞, 0 ≤ t < T

subject to the �nal condition

P (x, T ;T ) = 1.
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It is known that the bond price P (x, t;T ) takes the following form:

P (x, t;T ) = e−a(t,T )−b(t,T )x− 1
2
c(t,T )x2

.

Here a(t, T ), b(t, T ), and c(t, T ) are the solution of the following �nal value problem

of a system of ordinary di�erential equations:

at(t, T )− γ(t)b2(t, T ) + α(t)b(t, T ) + γ(t)c(t, T ) = 0, (4.10)

bt(t, T )− (2γ(t)c(t, T ) + β(t)) b(t, T ) + α(t)c(t, T ) = 0, (4.11)

ct(t, T )− 2γ(t)c2(t, T )− 2β(t)c(t, T ) + 1 = 0, (4.12)

a(T, T ) = b(T, T ) = c(T, T ) = 0, (4.13)

for 0 ≤ t ≤ T , where γ(t) = 1
2
σ(t)2. When α, β and σ are constant, we can solve the

above system to get ([35])

a(t, T ) = c1τ + c2 (h(τ) (2βeµτ + c3)− c4)− 1

2
log(2µh(τ)), (4.14)

b(t, T ) =
α

µ
(eµτ − 1)2 h(τ), (4.15)

c(t, T ) =
(
e2µτ − 1

)
h(τ), (4.16)

where

h(τ) =
(
(µ+ β)e2µτ + µ− β)−1

, τ = T − t, µ =
√
σ2 + β2,

c1 =
1

2

(
α2

µ2
− σ2

µ− β
)
, c2 =

α2

µ3
, c3 =

σ2 − β2

µ+ β
, c4 =

2β + µ

2(β + µ)
.

Let

b(0, T ) + c(0, T )x0 = f(T ), (4.17)

a(0, T ) + b(0, T )x0 +
1

2
c(0, T )x2

0 = g(T ), (4.18)
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where f(T ) can be determined by the current term structure of sport or forward rate

volatilities and g(T ) can be determined by the current term structure of interest rates

or forward rates.

As pointed out in [35], constant σ can be determined by σ(0) = fT (0, 0)/x(0),

where x(0) can be determined by the current interest rate r(0) and f(0, 0) the current

forward-rate volatility. In order to determine constant parameters β, we need to

know more information from the current term structure. Suppose f(T ) in (4.17) and

gTT (0, 0) in (4.18) are known. It follows from (4.10)�(4.13) that

β(0) = −cTT (0, 0)

2
,

1

2
σ2(0) = aTT (0, 0).

Thus, β can be solved by

β(0) =
2gTT (0)− 2fTT (0)x0 − σ2(0)

2x0

Once constants β = β(0) and σ = σ(0) are determined, c(t, T ) can be analytically

solved from (4.12) and (4.13):

c(t, T ) =
(
e2µτ − 1

)
h(τ),

where

τ = T − t, µ =
√
σ2 + β2, h(τ) =

(
(µ+ β)e2µτ + µ− β)−1

.

With c(t, T ), bT (0, T ) and bTT (0, T ) can be solved from (4.17). By using formula

(8.12) in [35], α(t) can be recovered as follows:

α(t) = (cT (0, t))1.5(cT (0, t)bTT (0, t)− cTT (0, t)bT (0, t))
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By Theorem 8.1 in [35], when the term structure of the forward rate f(t, T ) is known

at time t with maturity T , we have the following analytic formulas for a(t, T ) and

b(t, T ):

b(t, T ) = c(t, T )
√
cT (0, t)

(
b(0, T )− b(0, t)
c(0, T )− c(0, t) −

bT (0, t)

cT (0, t)

)
, (4.19)

a(t, T ) = a(0, T )− a(0, t)− ã(c(t, T ), b(t, T ),
bT (0, t)√
cT (0, t)

, σ2c(t, T )), (4.20)

where

bT (t, T ) = −cT (0, T )x(0) +
√
cT (t, T )(2f(t, T )− σ2c(t, T )),

aT (t, T ) =
1

2

(
bT (t, T )2

cT (t, T )
+ σ2c(t, T )

)
,

ã(x, y, z, w) =
1

2
ln(1 + xw) +

xz2 + 2yz − wy2

2(1 + wx)
.

4.3 Forward Curve Representation

In last section, we calibrate the Hull-White, extended CIR, and quadratic models

to the current term structure. To determine θ(t) in the Hull-White and extended

CIR models and α(t) in the quadratic model, we need to know the volatility σ, the

speed of adjustment κ in the Hull-White and extended CIR models and β in the

quadratic model. Constant parameters σ, κ or β can be determined by Kalman �lter

and its variations. Besides the constant parameters, we need to provide the current

instantaneous interest rate and forward interest rate f(t) observed from the current

term structure. However, not only the instantaneous interest rate cannot be observed

from the market, but also the treasury yield data described in Section 3.4 is not a

smooth function but a set of discrete points at any time t. So we need to construct a

smooth function of time t to model the forward curve f(t) and set the instantaneous
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interest rate r(t) = f(t, t). The Nelson-Siegel-Svensson model is popular among

practitioners for modeling the yield curve. The model is �rst proposed by Nelson and

Siegel ([59]) and extended by Svensson ([64]). The Nelson-Siegel-Svensson model is

widely used by the central banks ([30]) and market practitioners ([29]) and extensively

studied in academia ([28, 21, 22]). We shall look into the original formulation of Nelson

and Siegel and the extension of Svensson.

Let ft(τ) be the forward rate at time t for maturity τ . The Nelson and Siegel

model for the forward rate curve is given by:

ft(τ) = β1 + β2 exp(−τ/λ) + β3λ exp(−τ/λ). (4.21)

The Nelson-Siegel forward rate curve can be viewed as a constant plus a polynomial

times an exponential decay term. The relationship between the yield curve y(τ) and

the forward rate at time t satis�es

y(τ) =
1

τ

∫ τ

0

ft(s)ds.

Then the corresponding yield curve is

y(τ) = β1 + β2

[
1− exp(−τ/λ)

τ/λ

]
+ β3

[
1− exp(−τ/λ)

τ/λ
− exp(−τ/λ)

]
In the above equation, the yield y for a particular maturity is the sum of several

components. Now let us interpret these components. The parameter λ controls the

exponential decay rate; small values of λ lead to fast decay and can better �t the curve

at short maturities, while large values of λ slow the decay and can better �t the curve

at long maturities. β1 is independent of time to maturity, and it is often interpreted

as the long-term yield level, i.e. limτ→∞ f(τ) = β1. Constant β2 is weighted by an
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Figure 4.1: Factor loadings in Nelson-Siegel model with λ = 5.

exponential decay function of time to maturity with unity for τ = 0 and decaying

to zero as τ growing. Hence it may be viewed as a short-term factor. The decay

function loading on β3 is zero at τ = 0, increases and then decreases back to zero as

τ grows. It adds a hump to the curve and may be viewed as a medium-term factor.

Figure 4.1 displays the three factor loadings with λ = 5. To guarantee the yield

obtained from Nelson-Siegel model is nonnegative, we add the following constraints

on the parameters

β1 > 0, β2 + β3 > 0, λ > 0.

The Nelson-Siegel-Svensson model adds a second hump term to the Nelson-Siegel

model. The forward rate at time t for maturity is given by

ft(τ) = β1 + β2 exp(−τ/λ1) + β3λ1 exp(−τ/λ1) + β4λ2 exp(−τ/λ2) (4.22)

83



Accordingly, the Nelson-Siegel-Svensson yield curve is formulated as

y(τ) = β1 + β2

[
1− exp(−τ/λ1)

τ/λ1

]
+ β3

[
1− exp(−τ/λ1)

τ/λ1

− exp(−τ/λ1)

]
+ β4

[
1− exp(−τ/λ2)

τ/λ2

− exp(−τ/λ2)

]
. (4.23)

The two parameters λ2 and β4 are analogous to λ1 and β3 determining the decay rate

and the magnitude and direction of the second hump respectively. Hence, we need to

estimate six parameters: β1, β2, β3, β4, λ1, and λ2 subject to constraints

β1 > 0, β1 + β2 > 0, λ1 > 0 λ2 > 0.

Generally, the parameters of the models can be estimated by minimizing the di�erence

between the model rates y and observed rates yO. An optimization problem can be

stated as

min
β,λ

∑(
y − yO)2

subject to the constraints given above.

Next, we shall estimate the parameters in Nelson-Siegel and Nelson-Siegel-Svensson

models by the treasury yield data described in Section 3.4.2. To solve the constraint

optimization problem, we again apply multi-start optimization solver of MATLAB to

�nd the optimal parameters in these two models.

We �rst estimate the parameters in Nelson-Siegel and Nelson-Siegel-Svensson

models on the observed yield at four dates: 3/31/1989, 7/31/1989/, 5/30/1997, and

8/31/1998 and then plot �tted yield curves together with with actual yields in Fig-

ure 4.2. Apparently, both the Nelson-Siegel model and Nelson-Siegel-Svensson model
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are capable of replicating a variety of yield curve shapes: upward sloping, downward

sloping, humped and inverted humped. However, both models have di�culties at

dispersed yield data. The root mean square error of in sample �t of NS and NSS

models is presented in Table 4.1. Overall, the error indicates a good �t and Nelson-

Siegel-Svesson model �ts better than Nelson- Siegel model does. Thus we will use

Nelson-Siegel-Svesson model to �t current yield and forward curves.

Table 4.1: RMSE of In Sample Fit NS vs NSS

Date 3/31/1989 7/31/1989 5/30/1997 8/31/1998

NS 0.0568 0.0517 0.0437 0.0688

NSS 0.0256 0.0214 0.0157 0.0217
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Figure 4.2: NS and NNS �tted yield curves
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4.4 Calibration to the Current Term Structure

In this section, we shall calibrate the models in previous sections to the current term

structure. We assume the current date is 31 January 1990 with the current yield data

given in Table 4.2 and the past ten years' (January 1980 to December 1989) yield

data are available. The parameter estimation results in Tables 3.4 and 3.5 are used to

compare the in-sample �t of the Vasicek, CIR, and quadratic models with constant

parameters. Then we also use these estimated parameters together with the current

yield data to calibrate the Hull-white, extended CIR, and quadratic models with

time-varying parameters. Furthermore, the out-of-sample forecasting performance of

all these models will be shown and compared in Tables 4.5 and 4.6.

Table 4.2: Observed yields on 31 January 1990

M 1 3 6 9 12 15 18 21 24

r 7.648 37.922 7.964 7.996 8.081 8.145 8.202 8.169 8.103

M 30 36 48 60 72 84 96 108 120

r 8.211 8.172 8.220 8.250 8.303 8.218 8.308 8.338 8.279

M : Maturities in months, r: spot rates in percentage.

Table 4.3: NSS estimation results on 31 January 1990

β1 β2 β3 β4 λ1 λ2

0.0775 0.0039 0.0141 −0.0162 17.5766 0.0438
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Figure 4.3 shows the models' in-sample �t performances of recovering the observed

yield rates of four di�erent dates. The left column �gures compare the Vasicek model

and CIR model and the right column �gures compare the quadratic model estimated

by extended Kalman �lter, unscented Kalman �lter, and quadratic Kalman �lter.

Table 4.4 shows the in-sample �t root mean square errors of Vasicek model, CIR

model, and quadratic model from January 1980 to December 1989 with di�erent

maturities. Table 4.4 demonstrates that all models in general �t the data well. Figure

4.3 shows that the quadratic model estimated by quadratic Kalman �lter captures the

yield rate's movements better than the rest models in randomly selected dates. Table

4.5 and 4.6 present and compare the out-of-sample within one year forecasting root

mean square errors of models with time-independent parameters and time-dependent

parameters respectively. Figure 4.4 shows the models' in-sample �t performances

of forecasting the yield rates of three randomly selected dates in the same manner

as Figure 4.3. Figures 4.6 � 4.7 compare out-of-sample forecasting performance of

the time-dependent models to the corresponding time-independent models. Both

the time-dependent models and time-independent models generates very similar root

mean square errors and the time-dependent models do not have an obvious advantage

over the time-independent models in our testing period.
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Table 4.4: In-sample �t RMSE: January 1980 � December 1989

Maturity Vasicek CIR Quadratic

1-month 0.005 0.005 0.005

3-month 0.009 0.010 0.009

6-month 0.011 0.014 0.011

9-month 0.012 0.014 0.013

1-year 0.013 0.014 0.013

1.25-year 0.014 0.014 0.015

1.5-year 0.015 0.014 0.015

1.75-year 0.015 0.015 0.015

2-year 0.015 0.014 0.015

2.5-year 0.015 0.013 0.015

3-year 0.015 0.013 0.015

4-year 0.015 0.012 0.015

5-year 0.015 0.012 0.014

6-year 0.015 0.011 0.015

7-year 0.014 0.011 0.014

8-year 0.014 0.011 0.014

9-year 0.014 0.011 0.014

10-year 0.014 0.010 0.014

88



Table 4.5: Out-of-sample forecasting RMSE: January 1990 � December 1991�I

Maturity Vasicek CIR Quadratic

1-month 0.003 0.007 0.006

3-month 0.003 0.010 0.010

6-month 0.003 0.011 0.012

9-month 0.002 0.011 0.013

1-year 0.002 0.011 0.014

1.25-year 0.002 0.012 0.015

1.5-year 0.002 0.011 0.016

1.75-year 0.002 0.011 0.016

2-year 0.001 0.010 0.015

2.5-year 0.001 0.009 0.016

3-year 0.001 0.008 0.016

4-year 0.002 0.007 0.015

5-year 0.002 0.005 0.015

6-year 0.003 0.004 0.015

7-year 0.004 0.003 0.015

8-year 0.004 0.002 0.014

9-year 0.005 0.002 0.014

10-year 0.006 0.003 0.014
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Table 4.6: Out-of-sample forecasting RMSE: January 1990 � December 1991�II

Maturity Hull-White Extended CIR Quadratic

1-month 0.004 0.010 0.003

3-month 0.005 0.009 0.003

6-month 0.005 0.006 0.004

9-month 0.005 0.007 0.004

1-year 0.007 0.006 0.003

1.25-year 0.006 0.008 0.005

1.5-year 0.010 0.007 0.005

1.75-year 0.009 0.006 0.005

2-year 0.008 0.006 0.004

2.5-year 0.005 0.007 0.005

3-year 0.005 0.006 0.006

4-year 0.005 0.005 0.006

5-year 0.006 0.007 0.007

6-year 0.006 0.008 0.007

7-year 0.007 0.009 0.004

8-year 0.007 0.010 0.005

9-year 0.008 0.011 0.006

10-year 0.010 0.009 0.006
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Figure 4.3: In-sample �t comparison: Vasicek, CIR, and Quadratic
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CHAPTER 5

A CLASS OF ONE-FACTOR MODELS

5.1 Introduction

Let X(t) follow the following Ornstein-Uhlenbeck process:

dX(t) = (φ(t)− ψ(t)X(t))dt+ σ(t)dW (t),

where φ(t), ψ(t) and σ(t) are some known functions of t and W (t) is a standard

Brownian motion under the risk-neutral measure. Then a class of one-factor models

of the short interest rate process is given by

r(t) = ζ(X(t))

where ζ(x) is an invertible function ζ(x) on (−∞,+∞). Especially, for ζ(x) = x

and ζ(x) = ex, we have the Hull-White model ([32]) and the Black-Karasinski model

([11]), respectively. It should be pointed out that ζ(x) can chosen to be a bounded

function from R = (−∞,+∞) to (0, 1), for example,

ζ(x) =
1

2

(
1 +

2

π
arctan(x)

)
or ζ(x) =

ex

1 + ex
.

In this way, the interest rates will not take unrealistic values greater than 1.

Let us consider a zero-coupon bond with face value $1 and maturity date T . By

the Fundamental Theorem of Asset Pricing, the bond price P (x, t;T ) is the solution
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of the following �nal value problem:

Pt +
1

2
σ(t)2Pxx + (φ(t)− ψ(t)x)Px − ζ(x)P = 0, x ∈ R, 0 ≤ t ≤ T, (5.1)

P (x, T ;T ) = 1, x ∈ R, . (5.2)

5.2 Homotopy Perturbation Method

Homotopy perturbation method (HPM) is a popular technique to �nd an approxi-

mated series solutions of nonlinear problems. The homotopy perturbation method

was initially proposed by He [46, 47, 48]. The essential idea of this method is to

introduce a homotopy parameter p. When p = 0, we have a simple equation which

admits an analytic solution. As p grows to 1, the homotopy goes though a sequence of

deformations, the solution for each of which is close to the one at the previous stage

of deformation. When p = 1, the homotopy takes the original form of the equation

and the �nal stage of deformation gives the desired solution. One of the the most

attractive features of homotopy perturbation method is that a few perturbation terms

are su�cient to obtain a reasonably accurate solution.

To illustrate the basic idea of He's homotopy perturbation method, we consider

the following nonlinear di�erential equation

A(u)− f(r) = 0, r ∈ Σ (5.3)

with boundary conditions

B

(
u,
du

dn

)
= 0, r ∈ Γ, (5.4)

where A is a general di�erential operator, B is a boundary operator, u is a known

analytic function, and Γ is the boundary of the domain Σ. The operator A can be
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divided into linear part L and nonlinear part N . Therefore, equation 5.3 can be

rewritten as follows

L(u) +N(u)− f(r) = 0. (5.5)

Consider the following homotopy w(r, p) : Σ× [0, 1]→ R:

H(w, p) = (1− p)[L(w)− L(u0)] + p[A(w)− f(r)] = 0, (5.6)

where r ∈ Γ and p ∈ [0, 1] is an homotopy parameter, u0 is an initial approximation

of 5.3, which satis�es the boundary conditions. It is apparent that equation (5.6)

becomes the original nonlinear equation (5.3) for p = 1, while it is the following

linear equation for p = 0:

H(w, 0) = L(w)− L(u0) = 0. (5.7)

The changing process of p from 0 to 1 deforms H(w, p) from L(w)−L(u0) to A(w)−

f(r). In topology, L(w) − L(u0) and A(w) − f(r) are called homotopic. If the

embedding parameter p is considered as a �small parameter�, applying the classical

perturbation technique, we can assume the solution of equation (5.6) can be given by

the power series of p:

w = w0 + pw1 + p2w2 + · · · . (5.8)

Then the solution u of the original nonlinear equation can be obtained by letting

p→ 1:

u = lim
p→1

w = w0 + w1 + w2 + · · ·

The convergence of the above series has been proved by He [49].
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5.3 A HPM for bond prices

In this section, we apply a variable transformation to PDE (5.1). Let X̄(t) be the

expected value of X(t), then X̄(t) := E{X(t)|X(0) = 0} and X̄ satis�es the deter-

ministic process

dX̄

dt
= φ(t)− ψ(t)X̄,

X̄(0) = 0.

The above ordinary di�erential equation can be easily solve and its solution is

X̄(t) = λ(t)

∫ t

0

φ(τ)

λ(τ)
dτ

where λ(t) = e−
R t
0 ψ(τ)dτ .

Let us introduce a new state variable Y such that X(t) = X̄(t) + λ(t)Y (t). The

interest rate r now becomes a function of y, i.e. r = f(X̄(t) + λ(t)y). Following Itó's

lemma, it is easy to justify that Y is a martingale that follows the process

dY =
σ(t)

λ(t)
dW,

Y (0) = 0.

The zero-coupon bond pricing problem becomes

P (y, t, T ) = E
{
e−

R T
t r(τ,Y (τ))dτ

∣∣Y (t) = y
}
.

By Feynman-Kac Theorem, zero-coupon bond price P (y, t, T ) can be solve from the

the following partial di�erential equation:

Pt +
1

2

(
σ(t)

λ(t)

)2

Pyy − rP = 0,

P (y, T, T ) = 1, ∀y ∈ R.
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Since the bond price P is always positive, we can express P (y, t, T ) = e−h(y,t,T ) for

some function h(y, t, T ). It is not di�cult to see that h solves the following nonlinear

problem:

ht +
1

2

(σ
λ

)2

(hyy − h2
y) + r = 0, x ∈ R, 0 ≤ t < T, (5.9)

h(y, T, T ) = 0, ∀y ∈ R. (5.10)

The homotopy of the above problem with the embedding parameter q is as follows:

∂h

∂t
− ∂h0

∂t
= q

(
1

2

(σ
λ

)2

(h2
y − hyy)− r −

∂h0

∂t

)
. (5.11)

Assume that the solution of equation (5.9) has a power series expansion of q:

h = h0 + qh1 + q2h2 + · · · (5.12)

Substituting (5.12) into equation (5.11) and combining terms of the same power of q

gives:

q0 :
∂h0

∂t
− ∂h0

∂t
= 0,

q1 :
∂h1

∂t
=

1

2

(σ
λ

)2
(

(
∂h0

∂y
)2 − ∂2h0

∂y2

)
− r − ∂h0

∂t
,

q2 :
∂h2

∂t
=

1

2

(σ
λ

)2
(

(
∂h1

∂y
)2 − ∂2h1

∂y2

)
,

q3 :
∂h3

∂s
=

1

2

(σ
λ

)2
(

(
∂h2

∂y
)2 − ∂2h2

∂y2

)
,

...

All the linear equations above can be solved, and we get all the solutions.

h0 = 0,

h1 = R(y, t, T ),

h2 =
1

2

∫ T

t

ν(τ)
(
Ryy(y, τ, T )−Ry(y, τ, T )2

)
dτ,
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h3 =
1

4

∫ T

t

[∫ T

τ

ν(τ)ξ(y, u, T )du−
(∫ T

τ

ν(τ)η(y, u, T )du

)2
]
dτ

...

where

R(y, t, T ) =

∫ T

t

r(y, τ)dτ,

ν(τ) =

(
σ(τ)

λ(τ)

)2

,

ξ(y, u, T ) = Ryyyy(y, u, T )− 2Ryy(y, u, T )2 − 2Ry(y, u, T )Ryyy(y, u, T ),

η(y, u, T ) = Ryyy(y, u, T )− 2Ry(y, u, T )Ryy(y, u, T ).

5.4 Examples

Case I. The Hull-White model. In this case, we have

λ(t) = e−ψt,

X̄(t) = e−ψt
∫ t

0

eψτφ(τ)dτ,

r(y, t) = e−ψt(y +

∫ t

0

eψτφ(τ)dτ),

R(y, t, T ) =

∫ T

t

e−ψτ
(
y +

∫ τ

0

eψuφ(u)du

)
dτ,

Ry(y, t, T ) = −(e−ψT − e−ψt),
∂iR(y, t, T )

∂yi
= 0, for i ≥ 2.

Then we can obtain by simple calculation

h0 = 0,

h1 =
1

ψ
(e−ψT − e−ψt)y +

∫ T

t

(
e−ψτ

∫ τ

0

eψuφ(u)du

)
dτ,
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h2 =
σ2

2

∫ T

t

(
e−ψ(T−s) − 1

)2
ds =

1

2ψ
(1− e−2ψτ )− 2

ψ
(1− e−ψτ ) + τ,

hi = 0, for i ≥ 2

where τ = T − t. Therefore,

h = h0 + h1 + h2 =
1

ψ
(e−ψT − e−ψt)y

+

∫ T

t

(
e−ψτ

∫ τ

0

eψuφ(u)du

)
dτ +

1

2ψ
(1− e−2ψτ )− 2

ψ
(1− e−ψτ ) + τ,

which will give us the exact solution of Hull-White model if y is replaced in terms of

x.

Case II. The Black-Karasinski model (BKM). In this case, we have

λ(t) = e−ψt,

X̄(t) = e−ψt
∫ t

0

eψτφ(τ)dτ,

r(y, t) = ex̄(t)+λ(t)y,

R(y, t, T ) =

∫ T

t

ex̄(τ)+λ(τ)ydτ,

∂iR(y, t, T )

∂yi
=

∫ T

t

λ(τ)iex̄(τ)+λ(τ)ydτ, for i ≥ 1.

Then we can obtain

h0 = 0,

h1 =

∫ T

t

r(y, τ)dτ,

h2 =
σ2

2

∫ T

t

e2ψτ

[∫ T

τ

e−2ψur(y, u)du−
(∫ T

τ

e−ψur(y, u)du

)2
]
dτ,

h3 =
σ4

4

∫ T

t

e2ψτ
(
ha3(y, τ, T ) + hb3(y, τ, T )

)
dτ

...
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where

ha3(y, τ, T ) =

∫ T

τ

e2ψu
(
w4(u, T, y)− 2 (w2(u, T, y))2 − 2w1(u, T, y)w3(u, T, y)

)
du,

hb3(y, τ, T ) =

(∫ T

τ

e2ψu (w3(u, T, y)− 2w1(u, T, y)w2(u, T, y)) du

)2

,

wj(u, T, y) =

∫ T

u

e−jψsr(y, s)ds, j = 1, 2, 3, 4.

When ψ is also a constant, we have the following results by some tedious calculations:

λ(t) = e−ψt,

X̄(t) =
φ

ψ
(1− e−ψt),

r(y, t) = ee
−ψty+

φ(1−eψt)
ψ ,

h1(y, t, T ) =

∫ T

t

ee
−ψτy+

φ(1−eψτ )
ψ dτ,

h2(y, t, T ) =
σ2

2

∫ T

t

e2ψτI2(y, τ, T )dτ,

h3(y, t, T ) =
σ4

4

∫ T

t

e2ψτ

(∫ T

τ

e2ψuIa3 (y, u, T )du+

(∫ T

τ

e2ψuIb3(y, u, T )du

)2
)
dτ,

where

I2(y, τ, T ) = −

(
e
e−ψT (φ(eψT−1)+ψy)

ψ − e e
−ψτ (φ(eψτ−1)+ψy)

ψ

)2

(φ− yψ)2
+

eφ/ψ

(φ− yψ)2[
ee
−ψT (y−ψ/ψ)−ψT (φ+ ψ(eψT − y)

)
ee
−ψτ (y−ψ/ψ)−ψτ (φ+ ψ(eψτ − y)

)]
,

Ia3 (y, u, T ) =
e
e−ψT (φ(eψT−1)+ψy)

ψ − e e
−ψu(φ(eψu−1)+ψy)

ψ

φ− yψ
−2eφ/ψ(1 + (φ− ψy))

(φ− yψ)4

(
e
e−ψT (φ(eψT−1)+ψy)

ψ − e e
−ψu(φ(eψu−1)+ψy)

ψ

)
[
ee
−ψT (y−φ/ψ)−2ψT

(
φ2 + 2φψ(eψT − y)

)
+ ψ2

(
2e2ψT − 2eψTy + y2

)
−ee−ψu(y−φ/ψ)−2ψu

(
φ2 + 2φψ(eψu − y)

)
+ ψ2

(
2e2ψu − 2eψuy + y2

)]
,
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Ib3(y, u, T ) = −
2eφ/ψ

(
e
e−ψT (φ(eψT−1)+ψy)

ψ − e e
−ψu(φ(eψu−1)+ψy)

ψ

)
(φ− ψy)3[

ee
−ψT (y−φ/ψ)−ψT (φ+ ψ(eψT − y)

)− ee−ψu(y−φ/ψ)−ψu (φ+ ψ(eψu − y)
)]

+
eφ/ψ

(φ− ψy)3

[
ee
−ψT (y−φ/ψ)−2ψT

(
φ2 + 2φψ(eψT − y)

)
+ ψ2(2e2ψT − 2eψTy + y2)ee

−ψu(y−φ/ψ)−2ψu

(
φ2 + 2φψ(eψu − y)

)
+ ψ2(2e2ψu − 2eψuy + y2)

]
.

Case III. ζ(x) = ex

1+ex
. In this case, we have

λ(t) = e−ψt,

X̄(t) = e−ψt
∫ t

0

eψτφ(τ)dτ,

r(y, t) =
eX̄(t)+λ(t)y

1 + eX̄(t)+λ(t)y,

R(y, t, T ) =

∫ T

t

eX̄(τ)+λ(τ)y

1 + eX̄(τ)+λ(τ)y
dτ,

∂R(y, t, T )

∂y
=

∫ T

t

λ(τ)eX̄(τ)+λ(τ)y

1 + eX̄(τ)+λ(τ)y
dτ,

∂2R(y, t, T )

∂y2
=

∫ T

t

−λ(τ)2eX̄(τ)+λ(τ)y
(
eX̄(τ)+λ(τ)y − 1

)(
1 + eX̄(τ)+λ(τ)y

)3 dτ,

∂3R(y, t, T )

∂y3
=

∫ T

t

λ(τ)3eX̄(τ)+λ(τ)y
(
e2(X̄(τ)+λ(τ)y) − 4eX̄(τ)+λ(τ)y + 1

)(
1 + eX̄(τ)+λ(τ)y

)3 dτ,

∂4R(y, t, T )

∂y4
=

∫ T

t

−λ(τ)4eX̄(τ)+λ(τ)yp
(
eX̄(τ)+λ(τ)y

)(
1 + eX̄(τ)+λ(τ)y

)4 dτ,

p(z) = z3 − 11z2 − 11z − 1.

Then we can obtain

h0 = 0,

h1 =

∫ T

t

r(y, τ)dτ,
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h2 =
σ2

2

∫ T

t

e2ψτ

∫ T

τ

λ(u)2eX̄(τ)+λ(u)y
(
1− eX̄(u)+λ(u)y

)
1 + eX̄(u)+λ(u)y

du

(∫ T

τ

λ(u)eX̄(u)+λ(u)y

1 + eX̄(u)+λ(u)y
du

)2
 dτ,

...

Case IV. ζ(x) = 1
2

(
1 + 2

π
arctan(x)

)
. In this case,we have

λ(t) = e−ψt,

X̄(t) = e−ψt
∫ t

0

eψτφ(τ)dτ,

r(y, t) =
1

2

(
1 +

2

π
arctan(X̄(t) + λ(t)y)

)
,

R(y, t, T ) =
1

2

∫ T

t

(
1 +

2

π
arctan(X̄(τ) + λ(τ)y)

)
dτ,

∂R(y, t, T )

∂y
=

1

π

∫ T

t

λ(τ)

1 + (X̄(τ) + λ(τ)y)2
dτ,

∂2R(y, t, T )

∂y2
= − 2

π

∫ T

t

λ(τ)2(X̄(τ) + λ(τ)y)

(1 + (X̄(τ) + λ(τ)y)2)2
dτ,

∂3R(y, t, T )

∂y3
=

1

π

∫ T

t

6λ(τ)3(X̄(τ) + λ(τ)y)2 − 2λ(τ)3

(1 + (X̄(τ) + λ(τ)y)2)3
dτ,

∂4R(y, t, T )

∂y4
=

1

π

∫ T

t

24λ(τ)4(X̄(τ) + λ(τ)y)
(
1− (X̄(τ) + λ(τ)y)2

)
(1 + (X̄(τ) + λ(τ)y)2)3

dτ.

Then we have

h0 = 0,

h1 =

∫ T

t

r(y, τ)dτ =
1

2

∫ T

t

(
1 +

2

π
arctan(X̄(τ) + λ(τ)y)

)
dτ,

h2 =
σ2

2

∫ T

t

e2ψτ

[
− 2

π

∫ T

τ

λ(u)2(X̄(u) + λ(u)y)

(1 + (X̄(u) + λ(u)y)2)2
du]

−
(

1

π

∫ T

τ

λ(u)

1 + (X̄(u) + λ(u)y)2
du

)2
]
dτ,

...
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5.5 Numerical Tests

In this section, we shall test the numerical accuracy of the homotopy perturbation

method (HPM) compared to the binomial tree method (BIN). The parameters for

the three models (the Black-Karasinski model, Case III and Case IV) are ψ = 0.04,

σ = 0.06, r0 = 0.06, F = $100, and φ = −0.08, −0.16, −0.08, respectively. Table

5.1, 5.2, and 5.3 display the bond prices, yield rates and the errors between the two

methods for various maturities. Here the errors are the maximum absolute errors

for interest rates r = 0.01, 0.02, . . . , 0.2. The step size for the binomial method is

1.0e−6. The results in the tables show that HPM with a few terms can produce very

accurate approximations of the bond prices. Hence, we may be able to estimate the

model parameters by combining the HPM with the Kalman �lter method in Chapter

3, which will be our future work.

Table 5.1: Numerical Comparison for BKM

Maturity
Bond ($) Yield (%)

BIN HPM Error (×10−3) BIN HPM Error (×10−4)

T = 0.25 95.1312 95.1264 4.7126 19.9654 19.9853 1.9816

T = 0.5 90.5150 90.5080 7.0095 19.9309 19.9463 1.5489

T = 1 81.9864 81.9865 0.1208 19.8617 19.8616 0.0147

T = 2 67.4036 67.4044 0.7189 19.7236 19.7230 0.0533

T = 5 38.0718 38.0707 1.1170 19.3139 19.3145 0.0587
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Table 5.2: Numerical Comparison for Case III

Maturity
Bond ($) Yield (%)

BIN HPM Error (×10−3) BIN HPM Error (×10−4)

T = 0.25 95.1715 95.1670 4.4550 19.7959 19.8146 1.8724

T = 0.5 90.6672 90.6612 5.9979 19.5949 19.6081 1.3231

T = 1 82.5288 82.5317 2.8300 19.2022 19.1988 0.3429

T = 2 69.1382 69.1459 7.6990 18.4531 18.4476 0.5568

T = 5 43.8846 43.8935 8.9027 16.4721 16.4681 0.4057

Table 5.3: Numerical Comparison for Case IV

Maturity
Bond ($) Yield (%)

BIN HPM Error (×10−3) BIN HPM Error (×10−4)

T = 0.25 95.1437 95.1387 4.9908 19.9126 19.9336 2.0983

T = 0.5 90.5623 90.5542 8.0189 19.8265 19.8442 1.7710

T = 1 82.1533 82.1497 3.5576 19.6583 19.6627 0.4331

T = 2 67.9269 67.9164 10.4833 19.3369 19.3446 0.7717

T = 5 39.6953 39.6609 34.3502 18.4788 18.4961 1.7314
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CHAPTER 6

CONCLUSION

In this dissertation, we have studied a front-�xing �nite element method for American

put option on zero-coupon bond under quadratic term structure model. We also

employed the e�cient algorithm to solve the two-boundary complimentary system

resulting from discretizing the partial di�erential equations. The numerical results

are presented and compared to the ordinary �nite element method as well as trinomial

tree approach. Our numerical results show that the front-�xing element method

outperform both the �nite di�erence method and trinomial tree method in terms of

accurate approximations of early exercise interest rates.

Next, we have applied the Kalman �lter to estimate the parameters in the a�ne

models and the CIR model while extended Kalman �lter and unscented Kalman

�lter were used to estimate the quadratic short rate model. Due to the second order

polynomial form of yield in the quadratic model, we have proposed a variation of

Kalman �lter which reduces the non-linearity by increasing one more dimension.

Monte Carlo simulation results show that all these Kalman �lter related estimators

did a �ne job in estimating the parameters. We further calibrate both time invariant

Vasiceck model, CIR model and the quadratic model and the time varying parameters
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in extended Vasiceck model, extended CIR model and quadratic short rate model

with time-varying parameters to the Treasury zero-coupon yield data. Numerical

results show that models with time varying parameters did a better job of both

in-sample �tting and out-of-sample �tting than models with invariant parameters.

Among models with time-varying parameters, quadratic short rate model outperforms

the a�ne models due to its ability to capture the non-linearity in the data.

We also have studied a general one-factor model which allows that the short

rates only take realistic value in (0, 1). Homotopy perturbation methods (HPM) are

employed to solve the partial di�erential equations resulting from the zero-coupon

bond pricing. The numerical accuracy of the HPM is compared to the binomial

approach for pricing zero-coupon bonds and yield rates under the arti�cial parameters.

The test results show that the accuracy of the HPM is very good. Our future work is to

combine the HPM and the unscented Kalman �lter to estimate the model parameters

by �tting it with treasury yield data.
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