
UNLV Theses, Dissertations, Professional Papers, and Capstones 

May 2018 

Notes on Linear Divisible Sequences and Their Construction: A Notes on Linear Divisible Sequences and Their Construction: A 

Computational Approach Computational Approach 

Sean Trendell 
trendel2@unlv.nevada.edu 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Mathematics Commons 

Repository Citation Repository Citation 
Trendell, Sean, "Notes on Linear Divisible Sequences and Their Construction: A Computational Approach" 
(2018). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3336. 
https://digitalscholarship.unlv.edu/thesesdissertations/3336 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by 
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3336&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/3336?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3336&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu


NOTES ON LINEAR DIVISIBLE SEQUENCES AND THEIR CONSTRUCTION: A

COMPUTATIONAL APPROACH

by

Sean Trendell

Bachelor of Science - Computer Mathematics
Keene State College

2005

A thesis submitted in partial fulfillment of
the requirements for the

Master of Science - Mathematical Sciences

Department of Mathematical Sciences
College of Sciences

The Graduate College

University of Nevada, Las Vegas
May 2018



Copyright © 2018 by Sean Trendell
All Rights Reserved



 

ii 
 

  

  

 

Thesis Approval 

The Graduate College 

The University of Nevada, Las Vegas 

        

April 4, 2018 

This thesis prepared by  

Sean Trendell 

entitled  

Notes on Linear Divisible Sequences and Their Construction: A Computational Approach 

is approved in partial fulfillment of the requirements for the degree of 

Master of Science – Mathematical Sciences 

Department of Mathematical Sciences 

                
Peter Shiue, Ph.D.    Kathryn Hausbeck Korgan, Ph.D. 
Examination Committee Chair     Graduate College Interim Dean 

 

Derrick DuBose, Ph.D. 
Examination Committee Member 

        

Arthur Baragar, Ph.D. 
Examination Committee Member 

 

Yi-Tung Chen, Ph.D. 
Graduate College Faculty Representative 

 



ABSTRACT

NOTES ON LINEAR DIVISIBLE SEQUENCES AND THEIR
CONSTRUCTION: A COMPUTATIONAL APPROACH

by

Sean Trendell

Dr. Pete Shiue, Examination Committee Chair
Professor of Mathematical Sciences

University of Nevada, Las Vegas, USA

In this Masters thesis, we examine linear divisible sequences. A linear divisible sequence is any sequence

{an}n≥0 that can be expressed by a linear homogeneous recursion relation that is also a divisible sequence.

A sequence {an}n≥0 is called a divisible sequence if it has the property that if n|m, then an|am. A sequence

of numbers {an}n≥0 is called a linear homogeneous recurrence sequence of order m if it can be written in

the form

an+m = p1an+m−1 + p2an+m−2 + · · ·+ pm−1an+1 + pman, n ≥ 0,

for some constants p1, p2, ..., pm with pm 6= 0 and initial conditions a0, a1, ..., am−1. We focus on taking

products, powers, and products of powers of second order linear divisible sequences in order to construct

higher order linear divisible sequences. We hope to find a pattern in these constructions so that we can

easily form higher order linear divisible sequence.
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CHAPTER 1

INTRODUCTION

In this thesis we examine the construction of higher order linear divisible sequences. A linear divisible

sequence is any sequence of numbers {an}n≥0 that can be expressed as a linear homogeneous recurrence

relation that is also a divisible sequence. We also look at polynomial linear divisible sequences. A polyno-

mial linear divisible sequence is any sequence of polynomials {an(x)}n≥0 that can be expressed as a linear

homogeneous recurrence relation that is also a divisible sequence. For the rest of this thesis, we will define

{an} to mean {an}n≥0 and {an(x)} to mean {an(x)}n≥0.

A sequence of numbers {an} is called a divisibility sequence if it has the property that whenever n|m,

then an|am. Our definition of divides in the integral domain states that if R is an integral domain and

a, b ∈ R, then we say a|b if there exists k ∈ R such that ak = b. Thus, if {an} is a sequence of elements of

the ring of integers Z, then an|am means there is a k ∈ Z such that ank = am. A sequence of polynomials

{an(x)} is a divisibility sequence if it has the property that whenever n|m, then an(x)|am(x). This would

mean there exists a polynomial k(x) such that an(x)k(x) = am(x).

In [2] we get a good history on divisible sequences. The concept of divisibility sequences were first

discussed by Lucas [12] in 1878. However the term divisibility sequence first appeared in the 1930s in works

by Hall [7], Lehmer [11], and Ward [15]. More recent works on divisibility sequence can be seen in works by

Bézivin, Pethö, and Van Der Poorten [1]; Silverman [14]; as well as He and Shiue [9]. Also in the bibliography

in [5], one can find an extensive list of works on recurrence sequences, including divisibility sequences. In

fact, Lehmer [11] did a lot of work with non-integer sequences such as un+2 =
√
`un+1 + bun for u0 = 0,

u1 = 1 where `, b ∈ Z and gcd(`, b) = 1.
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A sequence of numbers {an} is called a linear homogeneous recurrence sequence of order m if

an+m = p1an+m−1 + p2an+m−2 + · · ·+ pm−1an+1 + pman, (1.1)

for any n ≥ 0, constants p1, p2, ..., pm with pm 6= 0, and initial conditions a0, a1, ..., am−1. Since equation

(1.1) is linear, we know that if the sequences {an} and {bn} are recurrence sequences that satisfy equation

(1.1) and c is a non-zero constant, then the sequence {can + bn} also satisfies equation (1.1).

Suppose we have a solution to (1.1) that is the geometric series {an} where an = αn for some α. Then

we have

αn+m = an+m = p1α
n+m−1 + p2α

n+m−2 + · · ·+ pm−1α
n+1 + pmα

n, n ≥ 0.

Moving everything to one side and dividing by αn, we get

Pm(α) = αm − p1αm−1 − p2αm−2 − · · · − pm−1α− pm = 0. (1.2)

Thus, the sequence {an} where an = αn satisfies equation (1.1) if and only if α is a solution to equation

(1.2). Equation (1.2) is called the characteristic equation and its roots are called characteristic roots.

Suppose the characteristic equation (1.2) has m distinct roots, {αk}mk=1, then αnk is a solution to the

recurrence relation for all k. Therefore, the sequence {an} satisfies the recurrence relation if and only if

an+m = A1α
n
1 +A2α

n
2 + · · ·+Am−1α

n
m−1 +Amα

n
m, (1.3)

for all n. The constants {Ak} depend on the {pk} and the initial conditions.

Suppose the characteristic equation (1.2) has i ≤ m distinct roots, {αk}ik=1 with each αk having multi-

plicity jk, k = 1, 2, . . . , i. Then, for each αk, we know αnk , nαnk , n2αnk , . . ., njk−1αnk are all solutions to the

recurrence relation. Therefore, the sequence {an} satisfies the recurrence relation if and only if

an = (A1,0 +A1,1n+A1,2n
2 + · · ·+A1,j1−1n

j1−1)αn1

+ (A2,0 +A2,1n+A2,2n
2 + · · ·+A2,j2−1n

j2−1)αn2

...

+ (Ai,0 +Ai,1n+Ai,2n
2 + · · ·+Ai,ji−1n

ji−1)αni ,

(1.4)

for all n. The constants {Ak,j} is depend on the {pk} and the initial conditions.
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Both equations (1.3) and (1.4) are called the general solution of a recurrence relation, where equation

(1.3) is a special case of equation (1.4). They can be seen in many combinatorics books, including in Chen

and Koh [3] on page 235, and are proven in Roberts and Tesmam [13] on pages 362-363. Thus, if we know

the roots of our characteristic equation, then we can rewrite it as

Pm(x) = (x− α1)(x− α2) · · · (x− αm−1)(x− αm) = 0 (1.5)

if the roots are all distinct, and as

Pm(x) = (x− α1)j1(x− α2)j2 · · · (x− αi)ji = 0 (1.6)

if we only have i ≤ m distinct roots.

A sequence of polynomials {an(x)} is called a linear homogeneous recurrence relation of order m if it can

be written in the form

an+m(x) = p1(x)an+m−1(x) + p2(x)an+m−2(x) + · · ·+ pm−1(x)an+1(x) + pm(x)an(x), n ≥ 0, (1.7)

for some polynomials p1(x), p2(x), ..., pm(x) with pm(x) 6= 0 and initial conditions a0(x), a1(x), ..., am−1(x).

We can find the characteristic equation and general forms of the linear homogeneous recurrence relation of

a polynomial sequence in the same manner as we did for sequences of numbers.

We start off our study of linear divisible sequences by examining second order linear divisible sequences in

Chapter 2. In Chapters 3 through 5, we construct higher order linear divisible sequences by taking various

products and powers of second order linear divisible sequences. In Chapter 6, we take various products

and powers of second order polynomial linear divisible sequences to construct higher order linear divisible

sequences.
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CHAPTER 2

SECOND ORDER LINEAR DIVISIBLE SEQUENCES

A sequence of numbers {an} is called a second order linear homogeneous recurrence relation if it satisfies

the equation

an+2 = pan−1 + qan, n ≥ 0, (2.1)

for constant p, non-zero constant q, and initial conditions a0 and a1. If we let α and β be roots of the

polynomial x2 − px − q = 0, where α and β satisfy α + β = p and αβ = −q, then the general solution of

{an} is

an =

{(
a1−βa0
α−β

)
αn −

(
a1−αa0
α−β

)
βn, if α 6= β;

na1α
n−1 − (n− 1)a0α

n, if α = β.
(2.2)

This formula can be seen in many papers including He and Shiue [8].

A sequence of polynomial {an(x)} is called a second order linear homogeneous recurrence relation if it

satisfies the equation

an+2(x) = p(x)an−1(x) + q(x)an(x), n ≥ 0, (2.3)

for polynomials p(x), non-zero polynomial q(x), and initial conditions a0(x) and a1(x). If we let α(x) and

β(x) be roots of the polynomial t2 − p(x)t− q(x) = 0, where α(x) and β(x) satisfy α(x) + β(x) = p(x) and

α(x)β(x) = −q(x), then the general solution of {an(x)} is

an =

{(
a1(x)−β(x)a0(x)

α(x)−β(x)

)
αn(x)−

(
a1(x)−α(x)a0(x)

α(x)−β(x)

)
βn(x), if α(x) 6= β(x);

na1(x)αn−1(x)− (n− 1)a0(x)αn(x), if α(x) = β(x).
(2.4)

Again this formula can be seen in many papers including He and Shiue [8].

Next, we examine under what conditions the sequence generated by a second order linear homogeneous

recurrence relation is a linear divisible sequence.

4



Theorem 2.1. Let {an} be sequence of elements in an integral domain R, defined by a second order linear

homogeneous recurrence relation of the form (2.1), such that p, q ∈ R and an arbitrary a1 ∈ R. Then {an}

is a divisible sequence if a0 = 0.

Proof. Let {an} be sequence of numbers in an integral domain R, defined by a second order linear homo-

geneous recurrence relation of the form (2.1), such that p, q ∈ R and an arbitrary a1 ∈ R. Then, {an} has

characteristic equation x2− px− q = 0 with roots α and β, such that α+ β = p and αβ = −q. Then, R, the

integral domain our sequence is in, is dependent on α, β, a1, and a0.

Let a0 = 0 and n|m, meaning there exists an integer j such that nj = m. By substituting 0 in for a0 in

equation (2.2), it becomes

an =

{(
a1
α−β

)
(αn − βn), if α 6= β;

na1α
n−1, if α = β.

(2.5)

Case 1: Let α 6= β. Then from equation (2.5) we have

am
an

=

(
a1
α−β

)
(αm − βm)(

a1
α−β

)
(αn − βn)

=
αm − βm

αn − βn

=
(αn)

j − (βn)
j

αn − βn
.

Our next step is to show (αn)j−(βn)j

αn−βn is in our integral domain R. To do this we will use the following

Girard-Waring identities that can be found in many works, including the work by He and Shiue[10], and

proven in works like Comtet [4] and Gould [6]:

xn + yn =
∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
(x+ y)n−2k(xy)k (2.6)

and

xn+1 − yn+1

x− y
=

∑
0≤k≤[n/2]

(−1)k
(
n− k
k

)
(x+ y)n−2k(xy)k. (2.7)

It is important to note that n
n−k

(
n−k
k

)
from equation (2.6) is an integer when n and k are integers because

n

n− k

(
n− k
k

)
=

n(n− k)!

(n− k)k!(n− 2k)!

=
n(n− k − 1)!(n− k)

(n− k)k!(n− 2k)!

=
n(n− k − 1)!

k!(n− 2k)!

5



=
((n− k) + k)(n− k − 1)!

k!(n− 2k)!

=
(n− k)! + (k(n− k − 1)!)

k!(n− 2k)!

=
(n− k)!

k!(n− 2k)!
+
k(n− k − 1)!

k!(n− 2k)!

=
(n− k)!

k!(n− 2k)!
+

k(n− k − 1)!

k(k − 1)!(n− 2k)!

=
(n− k)!

k!(n− 2k)!
+

(n− k − 1)!

(k − 1)!(n− 2k)!

=

(
n− k
k

)
+

(
n− k − 1

k − 1

)
.

Thus by equation (2.7) we have

(αn)
j − (βn)

j

αn − βn
=

∑
0≤k≤[(j−1)/2]

(−1)k
(
j − k − 1

k

)
(αn + βn)

j−2k−1
(αnβn)

k
(2.8)

and by equation (2.6) we have

αn + βn =
∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k
k

)
(α+ β)n−2k(αβ)k. (2.9)

Since, α + β = p and αβ = −q, we know (α + β)n−2k ∈ R and (αβ)k ∈ R because integral domains are

closed. Thus, by equation (2.9), we know αn + βn ∈ R. Then since, αnβn = (−q)n, we know (αnβn)
k ∈ R,

and since, αn + βn ∈ R, we know (αn + βn)
j−2k−1 ∈ R. Thus, by equation (2.8), we know (αn)j−(βn)j

αn−βn ∈ R.

Thus, am
an
∈ R, meaning {an} is a divisible sequence when α 6= β.

Case 2: Let α = β. Note that α = β only happens when x2− px− q = 0 is a perfect square trinomial, which

happens when p2 + 4q = 0. Thus we have 2α = p and α2 = −q. Then from equation (2.5), we have

am
an

=
ma1α

m−1

na1αn−1

=
nja1α

nj−1

na1αn−1

= jαnj−n.

Since our characteristic equation is monic, and its discriminate is zero, we know α ∈ R. Since, α ∈ R, we

know jαnj−n ∈ R. Thus, aman ∈ R, meaning {an} is a divisible sequence when α = β.

Therefore, if a0 = 0, then {an} is a divisible sequence.
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Note that, if R is an intergral domain, then R(x) an integral domain. Thus, by Theorem 2.1, any

sequence of polynomials that can be defined by (2.3) with coefficients in an integral domain R and an

arbitrary a1(x) ∈ R(x) is a polynomial linear divisible sequence if a0(x) = 0.

By substituting 0 in for a0(x) in equation (2.4), it becomes

an(x) =

{(
a1(x)

α(x)−β(x)

)
(αn(x)− βn(x)), if α(x) 6= β(x);

na1(x)αn−1(x), if α(x) = β(x).
(2.10)

Based on equation (2.5), we can define many second order linear divisible sequences by one of the following

sequences {
Wn(a1, α, β) = a1

αn − βn

α− β

}
(2.11)

where a1, α, and β are non-zero constants with α 6= β, or

{
Wn(a1, α, β) = na1α

n−1} (2.12)

where a1, α, and β are non-zero constants with α = β. These sequence can be represented by the second

order linear homogeneous recurrence relation, Wn+2 = (α+β)Wn+1−αβWn with initial conditions W1 = a1

and W0 = 0.

Based on equation (2.10), we can also define many second order polynomial linear divisible sequences by

one of the following sequences

{
Wn (a1(x), α(x), β(x)) = a1(x)

(α(x))
n − (β(x))

n

α(x)− β(x)

}
(2.13)

where a1(x), α(x), and β(x) are non-zero polynomials with α(x) 6= β(x), or

{
Wn(a1(x), α(x), β(x)) = na1(x) (α(x))

n−1
}

(2.14)

where a1(x), α(x), and β(x) are non-zero constants with α(x) = β(x). These sequence can be represented by

the second order linear homogeneous recurrence relation, Wn+2(x) = (α(x)+β(x))Wn+1(x)−α(x)β(x)Wn(x)

with initial conditions W1(x) = a1(x) and W0(x) = 0.

We now come up with some second order linear divisible sequences and second order polynomial linear

divisible sequences in the form {Wn(a1, α, β)} and {Wn(a1(x), α(x), β(x))} respectively. We will be using

some of these sequence in our examples throughout this thesis.
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Example 2.1. First, we define the sequence
{
Wn

(
1, 1+

√
5

2 , 1−
√
5

2

)}
. Then we see α+β = 1+

√
5

2 + 1−
√
5

2 = 1

and αβ =
(

1+
√
5

2

)(
1−
√
5

2

)
= −1. Thus,

{
Wn

(
1, 1+

√
5

2 , 1−
√
5

2

)}
is the second order linear divisible sequence

defined by Wn+2 = Wn+1 +Wn with W0 = 0 and W1 = 1. This is the Fibonacci sequence, {Fn}.

Example 2.2. Next, we define the sequence
{
Wn

(
1, 1 +

√
2, 1−

√
2
)}

. Then we see α + β =
(
1 +
√

2
)

+(
1−
√

2
)

= 2 and αβ =
(
1 +
√

2
) (

1−
√

2
)

= −1. Thus,
{
Wn

(
1, 1 +

√
2, 1−

√
2
)}

is the second order linear

divisible sequence defined by Wn+2 = 2Wn+1 + Wn with W0 = 0 and W1 = 1. This is the Pell number

sequence, {Pn}.

Example 2.3. Next, we define the sequence {Wn(1, 2, 1)}. Then we see α + β = 3 and αβ = 2. Thus,

{Wn(1, 2, 1)} is the second order linear divisible sequence defined by Wn+2 = 3Wn+1 − 2Wn with W0 = 0

and W1 = 1. This is the Mersenne number sequence, {Mn}.

Example 2.4. Next, we define the sequence {Wn(1, 1, 1)}. Then we see α + β = 2 and αβ = 1. Thus,

{Wn(1, 1, 1)} is the second order linear divisible sequence defined byWn+2 = 2Wn+1 − 1Wn with W0 = 0

and W1 = 1. This is the sequence of natural numbers including zero which we will denote as {Nn}.

Example 2.5. Next, we define the sequence {Wn( 1,
√

2,
√

3 )}. Then we see α+β =
√

2+
√

3 and αβ =
√

6.

Thus, {Wn( 1,
√

2,
√

3 )} is the second order linear divisible sequence defined byWn+2 =
(√

2 +
√

3
)
Wn+1 −

√
6Wn with W0 = 0 and W1 = 1. Note that this is a linear divisible sequence in the integral domain

Z
(√

2,
√

3
)
.

Example 2.6. [10] Next, we consider {an} to be a geometric sequence. Then {Sn}, the sequence of partial

sums of {an}, is a linear divisible sequence. If a is the first term of the sequence and r is the ratio of the

terms, then Sn = a 1−rn
1−r , which is in the form of {Wn(a, 1, r)}, is a linear divisible sequence. Thus {Sn}, can

be written as the second order linear divisible sequence defined by Sn+2 = (1 + r)Sn+1− rSn for S1 = a and

S0 = 0. Note that {Sn} is a sequence of integers when a and r are integers.

Example 2.7. Next, we define the sequence
{
Wn

(
1, x+

√
x2+4
2 , x−

√
x2+4
2

)}
. Then α(x)+β(x) = x+

√
x2+4
2 +

x−
√
x2+4
2 = x and α(x)β(x) =

(
x+
√
x2+4
2

)(
x−
√
x2+4
2

)
= −1. Thus,

{
Wn

(
1, x+

√
x2+4
2 , x−

√
x2+4
2

)}
is the

second order polynomial linear divisible sequence defined by Wn+2 = xWn+1+Wn with W0 = 0 and W1 = 1.

This is a sequence known as the Fibonacci polynomials, {Fn(x)}.

8



Example 2.8. Next, we define the sequence
{
Wn

(
1, x+

√
x2 + 4, x−

√
x2 + 4

)}
. Then α(x) + β(x) =

x+
√
x2 + 4 + x−

√
x2 + 4 = 2x and α(x)β(x) =

(
x+
√
x2 + 4

) (
x−
√
x2 + 4

)
= −1. Thus,{

Wn

(
1, x+

√
x2 + 4, x−

√
x2 + 4

)}
is the second order polynomial linear divisible sequence defined by

Wn+2 = 2xWn+1 + Wn with W0 = 0 and W1 = 1. This is the sequence of Chebyshev polynomials of

the second kind that are denoted {Un(x)}.

Example 2.9. Next, we define the sequence {Wn (1, x, 1)}. Then α(x) + β(x) = x + 1 and α(x)β(x) = x.

Thus, {Wn (1, x, 1)} is the second order polynomial linear divisible sequence defined byWn+2 = (x+1)Wn+1−

xWn with W0 = 0 and W1 = 1 which is the sequence known as repunits base x. This is also the sequence

{0, 1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3, . . .}.

Example 2.10. Next, we define the sequence {Wn (1, x, x)}. Then α(x) + β(x) = 2x and α(x)β(x) = x2.

Thus, {Wn (1, x, x)} is the second order polynomial linear divisible sequence defined by Wn+2 = 2xWn+1 −

x2Wn with W0 = 0 and W1 = 1.

9



CHAPTER 3

PRODUCTS OF SECOND ORDER LINEAR DIVISIBLE SEQUENCES

Here we start our construction of higher order linear divisible sequence. We construct these higher order

linear divisible sequences by taking various products and powers of second order linear divisible sequences.

These products and powers are defined term by term. This type of construction was started by He and Shiue

in [9]. Throughout the rest of this thesis we will use {wn} to represent the sequence constructed by taking

these product and powers of second order linear divisible sequences.

In this chapter, we discuss taking products of multiple distinct second order linear divisible sequences.

We start with the results of He and Shiue in [9] where they examined multiplying two distinct second order

linear divisible sequences. We then move on to the product of three distinct second order linear divisible

sequences and the product of four distinct second order linear divisible sequences. We define this product

term by term; thus, {wn} is the sequence {a01a02 · · · a0i , a11a12 · · · a1i , a21a22 · · · a2i , . . .}. It is important to

note that the product of divisible sequences is a divisible sequence.

Since we are multiplying linear homogeneous recurrence relations, it is important to show what this

multiplication produces. When we multiply two linear homogeneous recurrence relations term by term, we

construct a new linear homogeneous recurrence relation. We show this by multiplying the general forms of

the two linear homogeneous recurrence relations. Then, we show that the product is in the general form of

a new linear homogeneous recurrence relation.

Theorem 3.1. If {an} and {bn} are linear homogeneous recurrence sequences, then the sequence of term by

term products {wn = anbn} is a linear homogeneous recurrence sequence.

Proof. Let {an} be a linear homogeneous recurrence sequence of order m1 with s ≤ m1 distinct roots

α1, α2, . . . , αs with multiplicities j1, j2, . . . , js. Then, by equation (1.4), we know each element of {an} can
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be expressed as

an =
(
A1,0 +A1,1n+ · · ·+A1,j1−1n

j1−1
)
αn1

+
(
A2,0 +A2,1n+ · · ·+A2,j2−1n

j2−1
)
αn2

...

+
(
As,0 +As,1n+ · · ·+As,js−1n

js−1
)
αns .

Let {bn} be a linear homogeneous recurrence sequence of orderm2 with t ≤ m2 distinct roots β1, β2, . . . , βt

with multiplicities k1, k2, . . . , kt. Then, by equation (1.4), we know each element of {bn} can be expressed as

bn =
(
B1,0 +B1,1n+ · · ·+B1,k1−1n

k1−1
)
βn1

+
(
B2,0 +B2,1n+ · · ·+B2,k2−1n

k2−1
)
βn2

...

+
(
Bt,0 +Bt,1n+ · · ·+Bt,kt−1n

kt−1
)
βnt .

Since we are multiplying term by term we know that each element of {wn} can be expressed as

wn =
(
A1,0 +A1,1n+ · · ·+A1,j1−1n

j1−1
) (
B1,0 +B1,1n+ · · ·+B1,k1−1n

k1−1
)

(α1β1)
n

+
(
A2,0 +A2,1n+ · · ·+A2,j2−1n

j2−1
) (
B1,0 +B1,1n+ · · ·+B1,k1−1n

k1−1
)

(α2β1)
n

...

+
(
As,0 +As,1n+ · · ·+As,js−1n

js−1
) (
B1,0 +B1,1n+ · · ·+B1,k1−1n

k1−1
)

(αsβ1)
n

+
(
A1,0 +A1,1n+ · · ·+A1,j1−1n

j1−1
) (
B2,0 +B2,1n+ · · ·+B2,k2−1n

k2−1
)

(α1β2)
n

...

+
(
As,0 +As,1n+ · · ·+As,js−1n

js−1
) (
Bt,0 +Bt,1n+ · · ·+Bt,kt−1n

kt−1
)

(αsβt)
n
.

Distributing the above we get

wn =
(
A1,0

(
B1,0 +B1,1n+ · · ·+B1,k1−1n

k1−1
)

+A1,1n
(
B1,0 +B1,1n+ · · ·+B1,k1−1n

k1−1
)

+

· · ·+A1,j1−1n
j1−1

(
B1,0 +B1,1n+ · · ·+B1,k1−1n

k1−1
))

(α1β1)
n
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+
(
A2,0

(
B1,0 +B1,1n+ · · ·+B1,k1−1n

k1−1
)

+A2,1n
(
B1,0 +B1,1n+ · · ·+B1,k1−1n

k1−1
)

+

· · ·+A2,j2−1n
j2−1

(
B1,0 +B1,1n+ · · ·+B1,k1−1n

k1−1
))

(α2β1)
n

...

+
(
As,0

(
B1,0 +B1,1n+ · · ·+B1,k1−1n

k1−1
)

+As,1n
(
B1,0 +B1,1n+ · · ·+B1,k1−1n

k1−1
)

+

· · ·+As,js−1n
js−1

(
B1,0 +B1,1n+ · · ·+B1,k1−1n

k1−1
))

(αsβ1)
n

+
(
A1,0

(
B2,0 +B2,1n+ · · ·+B2,k2−1n

k2−1
)

+A1,1n
(
B2,0 +B2,1n+ · · ·+B2,k2−1n

k2−1
)

+

· · ·+A1,j1−1n
j1−1

(
B2,0 +B2,1n+ · · ·+B2,k2−1n

k2−1
))

(α1β2)
n

...

+
(
As,0

(
Bt,0 +Bt,1n+ · · ·+Bt,kt−1n

kt−1
)

+As,1n
(
Bt,0 +Bt,1n+ · · ·+Bt,kt−1n

kt−1
)

+

· · ·+As,js−1n
js−1

(
Bt,0 +Bt,1n+ · · ·+Bt,kt−1n

kt−1
))

(αsβt)
n
.

Distributing again we get

wn =
(
A1,0B1,0 +A1,0B1,1n+ · · ·+A1,0B1,k1−1n

k1−1 +A1,1B1,0n+A1,1B1,1n
2 + · · ·+A1,1B1,k1−1n

k1+

· · ·+A1,j1−1B1,0n
j1−1 +A1,j1−1B1,1n

j1 + · · ·+A1,j1−1B1,k1−1n
j1+k1−2

)
(α1β1)

n

+
(
A2,0B1,0 +A2,0B1,1n+ · · ·+A2,0B1,k1−1n

k1−1 +A2,1B1,0n+A2,1B1,1n
2 + · · ·+A2,1B1,k1−1n

k1+

· · ·+A2,j2−1B1,0n
j2−1 +A2,j2−1B1,1n

j2 + · · ·+A2,j2−1B1,k1−1n
j2+k1−2

)
(α2β1)

n

...

+
(
As,0B1,0 +As,0B1,1n+ · · ·+As,0B1,k1−1n

k1−1 +As,1B1,0n+As,1B1,1n
2 + · · ·+As,1B1,k1−1n

k1+

· · ·+As,j1−1B1,0n
j1−1 +As,j1−1B1,1n

j1 + · · ·+As,js−1B1,k1−1n
js+k1−2

)
(αsβ1)

n

+
(
A1,0B2,0 +A1,0B2,1n+ · · ·+A1,0B2,k2−1n

k2−1 +A1,1B2,0n+A1,1B2,1n
2 + · · ·+A1,1B2,k2−1n

k2+

· · ·+A1,j1−1B2,0n
j1−1 +A1,j1−1B2,1n

j1 + · · ·+A1,j1−1B2,k2−1n
j1+k2−2

)
(α1β2)

n

...

+
(
As,0Bt,0 +As,0Bt,1n+ · · ·+As,0Bt,kt−1n

k1−1 +As,1Bt,0n+As,1Bt,1n
2 + · · ·+As,1Bt,kt−1n

k1+

· · ·+As,js−1Bt,0n
j1−1 +As,js−1Bt,1n

j1 + · · ·+As,js−1B1,kt−1n
js+kt−2

)
(αsβt)

n
.
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Now by combining like terms in each parentheses based of powers of n, we get

wn =
(
A1,0B1,0 + (A1,0B1,1 +A1,1B1,0)n+ (A1,0B1,2 +A1,1B1,1 +A1,2B1,0)n2+

· · ·+A1,j1−1B1,k1−1n
j1+k1−2

)
(α1β1)

n

+
(
A2,0B1,0 + (A2,0B1,1 +A2,1B1,0)n+ (A2,0B1,2 +A2,1B1,1 +A2,2B1,0)n2+

· · ·+A2,j2−1B1,k1−1n
j2+k1−2

)
(α2β1)

n

...

+
(
As,0B1,0 + (As,0B1,1 +As,1B1,0)n+ (As,0B1,2 +As,1B1,1 +As,2B1,0)n2+

· · ·+As,js−1B1,k1−1n
js+k1−2

)
(αsβ1)

n

+
(
A1,0B2,0 + (A1,0B2,1 +A1,1B2,0)n+ (A1,0B2,2 +A1,1B2,1 +A1,2B2,0)n2+

· · ·+A1,j1−1B2,k2−1n
j1+k2−2

)
(α1β2)

n

...

+
(
As,0Bt,0 + (As,0Bt,1 +As,1Bt,0)n+ (As,0Bt,2 +As,1Bt,1 +As,2Bt,0)n2+

· · ·+As,js−1Bt,kt−1n
js+kt−2

)
(αsβt)

n
.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as a

linear homogeneous recurrence relation whose characteristic function has roots α1β1, . . . , αsβ1, α2β1, . . . , αsβt

with multiplicities at least j1+k1−1, . . . , js+k1−1, j1+k2−1, . . . , js+kt−1. Therefore, the sequence of term

by term products of two linear homogeneous recurrence relations can be expressed as a linear homogeneous

recurrence relation.

Next, we look at the equations created by multiplying a finite number of second order linear divisible

sequences. Let {an1
}, {an2

}, . . ., {ani
} be second order linear divisible sequences that satisfy equation (2.1)

with a0i = 0 for all i. Then {ani
} has a characteristic equation x2 − pix− qi = 0 with roots αi and βi such

that αi + βi = pi and αiβi = −qi. Since each {ani} has a0i = 0, they can be expressed using equation (2.5).

Since the order of multiplication does not matter, for simplicity, we will say all sequences with double roots
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will be written first. This means that if there is one sequence in our product with a double root, we will call

that sequence {an1
}. If there are two sequences with double roots in our product we will call them sequences

{an1
} and {an2

}. Then the sequence {wn = an1
an2
· · · ani

} has one of the following expressions depending

on how many of the characteristic equations have distinct roots.

wn =



i∏
k=1

(
a1k

αk−βk

)
(αnk − βnk ), if αk 6= βk for all k ≤ i;(

i∏
k=2

(
a1k

αk−βk

)
(αnk − βnk )

)(
na11α

n−1
1

)
, if α1 = β1 and αk 6= βk

for 2 ≤ k ≤ i;(
i∏

k=3

(
a1k

αk−βk

)
(αnk − βnk )

)(
2∏

m=1
na1mα

n−1
m

)
, if αm = βm for m = 1, 2 and

αk 6= βk for 3 ≤ k ≤ i ;
...(
i∏

k=`+1

(
a1k

αk−βk

)
(αnk − βnk )

)( ∏̀
m=1

na1mα
n−1
m

)
, if αm = βm for 1 ≤ m ≤ ` and

αk 6= βk for `+ 1 ≤ k ≤ i;
...(
i∏

k=i−1

(
a1k

αk−βk

)
(αnk − βnk )

)(
i−2∏
m=1

na1mα
n−1
m

)
, if αm = βm for 1 ≤ m ≤ i− 2

αk 6= βk for k = i− 1, i;((
a1i

αi−βi

)
(αni − βni )

)( i−1∏
m=1

na1mα
n−1
m

)
, if αm = βm for 1 ≤ m ≤ i− 1,

and αi 6= βi;
i∏

m=1
na1mα

n−1
m , if αm = βm, for all m ≤ i.

(3.1)

Next we will prove some common equalities that will be used throughout this type of construction.

Lemma 3.2. If x2−px−q = 0 is a quadratic equation with roots α and β such that α+β = p and αβ = −q

then

(a) α2 + β2 = p2 + 2q.

(b) α4 + β4 = (p2 + 2q)2 − 2q2.

(c) α2 + αβ + β2 = p2 + q.

(d) α2 − αβ + β2 = p2 + 3q.

(e) α4 − α2β2 + β4 = (p2 + 2q)2 − 3q2.
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(f) α8 + β8 = ((p2 + 2q)2 − 2q2)2 − 2q4.

Proof. Let x2 + px+ q = 0 be a quadratic equation with roots α and β such that α+ β = p and αβ = −q.

Thus, we have

(a) α2 + β2 = (α+ β)2 − 2αβ = p2 + 2q.

(b) α4 + β4 = (α2 + β2)2 − 2α2β2 = (p2 + 2q)2 − 2q2.

(c) α2 + αβ + β2 = (α+ β)2 − 2αβ + αβ = (α+ β)2 − αβ = p2 + q.

(d) α2 − αβ + β2 = (α+ β)2 − 2αβ − αβ = (α+ β)2 − 3αβ = p2 + 3q.

(e) α4 − α2β2 + β4 = (α2 + β2)2 − 2α2β2 − α2β2 = (α2 + β2)2 − 3α2β2 = (p2 + 2q)2 − 3q2.

(f) α8 + β8 = (α4 + β4)2 − 2α4β4 = ((p2 + 2q)2 − 2q2)2 − 2q4.

3.1

Product of Two Distinct Second Order Linear Divisible Sequences

In this section we will multiply two distinct second order linear divisible sequences in order to come

up with a single higher order linear divisible sequence. This multiplication constructs a fourth order linear

divisible sequence.

Theorem 3.3. [9] Let {an} and {bn} be distinct second order linear divisible sequences that can be defined by

(2.1) with initial conditions a0 = b0 = 0 and a1, b1 arbitrary. Suppose the sequence {an} has a characteristic

equation x2−p1x−q1 = 0 with roots α1 and β1, such that α1+β1 = p1 and α1β1 = −q1, and the sequence {bn}

has a characteristic equation x2−p2x−q2 = 0 with roots α2 and β2, such that α2 +β2 = p2 and α2β2 = −q2.

Then {wn = anbn} is a linear divisible sequence that satisfies the fourth order linear homogeneous recurrence

relation

wn+4 = p1p2wn+3 +
(
p21q2 + p22q1 + 2q1q2

)
wn+2 + p1p2q1q2wn+1 − q21q22wn (3.2)

for n ≥ 0 with initial conditions w3 = a3b3, w2 = a2b2, w1 = a1b1, and w0 = a0b0 = 0.
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Proof. Let {an} and {bn} be distinct second order linear divisible sequences that can be defined by (2.1) with

initial conditions a0 = b0 = 0 and a1, b1 arbitrary. Let the sequence {an} have the characteristic equation

x2−p1x− q1 = 0 with roots α1 and β1, such that α1 +β1 = p1 and α1β1 = −q1, and the sequence {bn} have

the characteristic equation x2− p2x− q2 = 0 with roots α2 and β2, such that α2 + β2 = p2 and α2β2 = −q2.

Case 1: Let both characteristic functions have distinct roots, meaning α1 6= β1 and α2 6= β2. Then from

equation (3.1), we have

wn = anbn

=

(
a1

α1 − β1

)
(αn1 − βn1 )

(
b1

α2 − β2

)
(αn2 − βn2 )

=

(
a1b1

(α1 − β1)(α2 − β2)

)
((α1α2)n − (α1β2)n − (α2β1)n + (β1β2)n) .

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as a

linear homogeneous recurrence relation whose characteristic equation has roots α1α2, α1β2, α2β1, and β1β2

each with a multiplicity of at least one. We will let each of them have multiplicity one since that means

we will have four roots, which is how many characteristic roots we need for a fourth order linear divisible

sequence. Thus, the characteristic equation is

(x−α1α2) (x−α1β2) (x−β1α2) (x−β1β2) = x4−(α1α2+α1β2+α2β1+β1β2)x3

+
(
α2
1α2β2+α1β1α

2
2+2α1α2β1β2+α1β1β

2
2 +α2β

2
1β2
)
x2

−
(
α2
1α

2
2β1β2+α2

1α2β1β
2
2 +α1α

2
2β

2
1β2+α1α2β

2
1β

2
2

)
x+α2

1α
2
2β

2
1β

2
2 .

Looking at the coefficient of x3, which becomes the coefficient of wn+3 in equation (3.2), we have

α1α2 + α1β2 + α2β1 + β1β2 = α1 (α2 + β2) + β1 (α2 + β2)

= (α2 + β2) (α1 + β1)

= p1p2.

Looking at the coefficient of x2, which becomes the coefficient of wn+2 in equation (3.2), we have

α2
1α2β2+α1β1α

2
2+2α1α2β1β2+α1β1β

2
2 +α2β

2
1β2 = α1β1

(
α2
2+β2

2

)
+α2β2

(
α2
1+β2

1

)
+2α1α2β1β2

=−q1
(
p22+2q2

)
−q2

(
p21+2q1

)
+2q1q2
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=−p22q1−2q1q2−p21q2−2q1q2+2q1q2

=−
(
p22q1+p21q2+2q1q2

)
.

Looking at the coefficient of x, which becomes the coefficient of wn+1 in equation (3.2), we have

α2
1α

2
2β1β2 + α2

1α2β1β
2
2 + α1α

2
2β

2
1β2 + α1α2β

2
1β

2
2 = α1α2β1β2 (α1α2 + α1β2 + β1α2 + β1β2)

= α1α2β1β2 (α2 + β2) (α1 + β1)

= p1p2q1q2.

Looking at the constant, which becomes the coefficient of wn in equation (3.2), we have

α2
1α

2
2β

2
1β

2
2 = q21q

2
2 .

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (3.2).

Case 2: Let one characteristic function have duplicate roots and the other have distinct roots. WLOG we

can say the characteristic function of {an} has the duplicate root, meaning α1 = β1 and α2 6= β2. Then from

equation (3.1), we have

wn = anbn

=

(
na1b1
α2 − β2

)
(αn2 − βn2 )αn−11

=

(
na1b1

α1(α2 − β2)

)
((α1α2)n − (α1β2)n)

=

(
na1b1

α1(α2 − β2)

)
(α1α2)n −

(
na1b1

α1(α2 − β2)

)
(α1β2)n.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed

as a linear homogeneous recurrence relation whose characteristic equation has roots α1α2 and α1β2 each

with a multiplicity of at least two. We will let each of them have multiplicity two since that means we will

have four roots, which is how many characteristic roots we need for a fourth order linear divisible sequence.

Thus, if the roots of the characteristic equation of {wn = anbn} are α1α2, α1α2, α1β2, and α1β2, then the

characteristic equation is

(x−α1α2) (x−α1β2) (x−α1α2) (x−α1β2) .
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At this point, this case becomes the same as case 1 by simply replacing β1 with α1 throughout. This works

because, in this case, α1 + α1 = p1 and α1α1 = −q1.

Case 3: Let both characteristic functions have duplicate roots, meaning α1 = β1 and α2 = β2. Then from

equation (3.1), we have

wn = anbn = n2a1b1α
n−1
1 αn−12 =

n2a1b1
α1α2

(α1α2)n.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as a

linear homogeneous recurrence relation whose characteristic equation has the root α1α2 with a multiplicity

of at least three. We will let it have multiplicity four since that means we will have four roots, which is

how many characteristic roots we need for a fourth order linear divisible sequence. Thus, if the roots of the

characteristic equation of {wn = anbn} are α1α2, α1α2, α1α2, and α1α2, then the characteristic equation is

(x−α1α2) (x−α1α2) (x−α1α2) (x−α1α2) .

At this point, this case becomes the same as case 1 by simply replacing β1 with α1 and β2 with α2 throughout.

This works because, in this case, α1 + α1 = p1, α1α1 = −q1, α2 + α2 = p2, and α2α2 = −q2.

Therefore, when we multiply two distinct second order linear divisible sequences, we can construct a fourth

order linear divisible sequence defined by recurrence relation (3.2). It is easy to see from our definition of

{wn = anbn} that w3 = a3b3, w2 = a2b2, w1 = a1b1, and w0 = a0b0 = 0.

Note that in He and Shiue [9] they only proved case 1 from Theorem 3.3. We prove the other cases here

so that we can see that the recurrence relation (3.2) still works when the roots of one or more characteristic

equations are the same.

Also note that in case one we chose the multiplicity of the roots to be one as that was the simplest

multiplicity to work with. It may be that if we let one or more of the roots have a higher multiplicity, we

could have constructed a different linear homogeneous recurrence relation that works for the same sequence.

For example if we had let all the roots have multiplicity two then our characteristic equation would have

been
∏4
i=1(x− ri)2. This would have constructed a different linear homogeneous recurrence relation that is

of order eight.
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In later cases we chose multiplicities in such a way to show the linear homogeneous recurrence relation

we constructed in case one works when one or more of the sequences have duplicate roots. Again, we may

be able to come up with different linear homogeneous recurrence relations by choosing multiplicities that are

higher or lower that would work in these cases.

We will be choosing the multiplicities of roots in the same manner in future constructions in this thesis.

In those cases, we may also create different linear homogeneous recurrence relations by making a different

choice for the multiplicities of roots.

Next, we have examples that take the product of two second order linear divisible sequences to construct

fourth order linear divisible sequences.

Example 3.1. Using the Fibonacci sequence and the sequence of natural numbers including zero, we define

the sequence {wn = FnNn}. Then, by Theorem 3.3, we get a fourth order linear divisible sequence that

satisfies the recurrence relation

wn+4 = 2wn+3 + wn+2 − 2wn+1 − wn,

for n ≥ 0. The table below shows some terms of the sequence {wn = FnNn}.

n wn n wn n wn n wn n wn n wn n wn

0 0 3 6 6 48 9 306 12 1728 15 9150 18 46512

1 1 4 12 7 91 10 550 13 3029 16 15792 19 79439

2 2 5 25 8 168 11 976 14 5278 17 27149 20 135300

Table 3.1: Terms of the sequence {wn = FnNn}

Example 3.2. Using the Pell number sequence and the sequence of natural numbers including zero, we

define the sequence {wn = PnNn}. Then, by Theorem 3.3, we get a fourth order linear divisible sequence

that satisfies the recurrence relation

wn+4 = 4wn+3 − 2wn+2 − 4wn+1 − wn,

for n ≥ 0. The table below shows some terms of the sequence {wn = PnNn}.
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n wn n wn n wn n wn n wn n wn n wn

0 0 3 15 6 420 9 8865 12 166320 15 2925375 18 49395780

1 1 4 48 7 1183 10 23780 13 434993 16 7533312 19 125877071

2 4 5 145 8 3264 11 63151 14 1130948 17 19323713 20 319888560

Table 3.2: Terms of the sequence {wn = PnNn}

Example 3.3. Using the Mersenne number sequence and the sequence of natural numbers including zero,

we define the sequence {wn = MnNn}. Then, by Theorem 3.3, we get a fourth order linear divisible sequence

that satisfies the recurrence relation

wn+4 = 6wn+3 − 13wn+2 + 12wn+1 − 4wn,

for n ≥ 0. The table below shows some terms of the sequence {wn = PnNn}.

n wn n wn n wn n wn n wn n wn n wn

0 0 3 21 6 378 9 4599 12 49140 15 491505 18 4718574

1 1 4 60 7 889 10 10230 13 106483 16 1048560 19 9961453

2 6 5 155 8 2040 11 22517 14 229362 17 2228207 20 20971500

Table 3.3: Terms of the sequence {wn = MnNn}

3.2

Product of Three Distinct Second Order Linear Divisible Sequences

In this section we will multiply three distinct second order linear divisible sequences in order to come

up with a single higher order linear divisible sequence. This multiplication constructs an eighth order linear

divisible sequences.

Theorem 3.4. Let {an}, {bn}, and {cn} be distinct second order linear divisible sequences that can be

defined by (2.1) with initial conditions a0 = b0 = c0 = 0 and a1, b1, c1 arbitrary. Suppose the sequence {an}

has a characteristic equation x2−p1x−q1 = 0 with roots α1 and β1, such that α1 +β1 = p1 and α1β1 = −q1,

the sequence {bn} has a characteristic equation x2−p2x−q2 = 0 with roots α2 and β2, such that α2+β2 = p2

and α2β2 = −q2, and the sequence {cn} has a characteristic equation x2 − p3x − q3 = 0 with roots α3 and

β3, such that α3 + β3 = p3 and α3β3 = −q3. Then {wn=anbncn} is a linear divisible sequence that satisfies
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as the eighth order linear homogeneous recurrence relation

wn+8 =p1p2p3wn+7 +
(
p22p

2
3q1 + p21p

2
3q2 + p21p

2
2q3 + 2p23q1q2 + 2p22q1q3 + 2p21q2q3 + 4q1q2q3

)
wn+6

+
(
p1p2p

3
3q1q2 + p1p

3
2p3q1q3 + p31p2p3q2q3 + 5p1p2p3q1q2q3

)
wn+5

−
(
p41q

2
2q

2
3 + p42q

2
1q

2
3 + p43q

2
1q

2
2 − p21p22p23q1q2q3 + 4p21q1q

2
2q

2
3 + 4p22q

2
1q2q

2
3 + 4p23q

2
1q

2
2q3 + 6q21q

2
2q

2
3

)
wn+4

+ q1q2q3
(
p1p2p

3
3q1q2 + p1p

3
2p3q1q3 + p31p2p3q2q3 + 5p1p2p3q1q2q3

)
wn+3

+ q21q
2
2q

2
3

(
p22p

2
3q1 + p21p

2
3q2 + p21p

2
2q3 + 2p23q1q2 + 2p22q1q3 + 2p21q2q3 + 4q1q2q3

)
wn+2

− p1p2p3q31q32q33wn+1 − q41q42q43wn
(3.3)

for n ≥ 0 with initial conditions wi = aibici for 0 ≤ i ≤ 7.

Proof. Let {an}, {bn}, and {cn} be distinct second order linear divisible sequences that can be defined by

(2.1) with initial conditions a0 = b0 = c0 = 0 and a1, b1, c1 arbitrary. Let the sequence {an} have the

characteristic equation x2− p1x− q1 = 0 with roots α1 and β1, such that α1 + β1 = p1 and α1β1 = −q1, the

sequence {bn} have the characteristic equation x2−p2x−q2 = 0 with roots α2 and β2, such that α2+β2 = p2

and α2β2 = −q2, and the sequence {cn} have the characteristic equation x2 − p3x − q3 = 0 with roots α3

and β3, such that α3 + β3 = p3 and α3β3 = −q3.

Case 1: Let each characteristic function have distinct roots, meaning α1 6= β1, α2 6= β2, and α3 6= β3. Then

from equation (3.1) we have

wn =anbncn

=

(
a1b1c1

(α1 − β1)(α2 − β2)(α3 − β3)

)
(αn1 − βn1 )(αn2 − βn2 )(αn3 − βn3 )

=

(
a1b1c1

(α1 − β1)(α2 − β2)(α3 − β3)

)
((α1α2)n − (α1β2)n − (α2β1)n + (β1β2)n) (αn3 − βn3 )

=

(
a1b1c1

(α1 − β1)(α2 − β2)(α3 − β3)

)
((α1α2α3)n − (α1α2β3)n − (α1β2α3)n + (α1β2β3)n

−(β1α2α3)n + (β1α2β3)n + (β1β2α3)n − (β1β2β3)n) .

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as

a linear homogeneous recurrence relation whose characteristic equation has roots r1 =α1α2α3, r2 =α1α2β3,

r3 =α1β2α3, r4 =α1β2β3, r5 =β1α2α3, r6 =β1α2β3, r7 =β1β2α3, and r8 =β1β2β3 each with a multiplicity

of at least one. We will let each of them have multiplicity one since that means we will have eight roots,
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which is how many characteristic roots we need for an eighth order linear divisible sequence. Thus, the

characteristic equation is

8∏
i=1

(x− ri) = x8−

 ∑
1≤i≤8

ri

x7+. . .+(−1)k

 ∑
1≤i1<···<ik≤8

ri1 · · · rik

x8−k, for k ≤ 8.

Looking at the coefficient of x7, which becomes the coefficient of wn+7 in equation (3.3), we have

∑
1≤i≤8

ri =α1α2α3 + α1α2β3 + α1β2α3 + α1β2β3 + β1α2α3 + β1α2β3 + β1β2α3 + β1β2β3

=α1 (α2α3 + α2β3 + α3β2 + β2β3) + β1 (α2α3 + α2β3 + α3β2 + β2β3)

= (α1 + β1) (α2α3 + α2β3 + α3β2 + β2β3)

= (α1 + β1) (α2 (α3 + β3) + β2 (α3 + β3))

= (α1 + β1) (α2 + β2) (α3 + β3)

=p1p2p3.

Looking at the coefficient of x6, which becomes the coefficient of wn+6 in equation (3.3), we have

∑
1≤i<j≤8

rirj =α1α
2
2α

2
3β1 + α2

1α2α
2
3β2 + α2α

2
3β

2
1β2 + α1α

2
3β1β

2
2 + α2

1α
2
2α3β3 + α2

2α3β
2
1β3 + α2

1α3β
2
2β3

+ α3β
2
1β

2
2β3 + α1α

2
2β1β

2
3 + α2

1α2β2β
2
3 + α2β

2
1β2β

2
3 + α1β1β

2
2β

2
3 + 2α1α2α

2
3β1β2

+ 2α1α
2
2α3β1β3 + 2α2

1α2α3β2β3 + 2α2α3β
2
1β2β3 + 2α1α3β1β

2
2β3 + 2α1α2β1β2β

2
3

+ 4α1α2α3β1β2β3

=α1β1
(
α2
2α

2
3 + α2

2β
2
3 + α2

3β
2
2 + β2

2β
2
3

)
+ α2β2

(
α2
1α

2
3 + α2

1β
2
3 + α2

3β
2
1 + β2

1β
2
3

)
+ α3β3

(
α2
1α

2
2 + α2

1β
2
2 + α2

2β
2
1 + β2

1β
2
2

)
+ 2α1α2β1β2

(
α2
3 + β2

3

)
+ 2α1α3β1β3

(
α2
2 + β2

2

)
+ 2α2α3β2β3

(
α2
1 + β2

1

)
+ 4α1α2α3β1β2β3

=α1β1
(
α2
2 + β2

2

) (
α2
3 + β2

3

)
+ α2β2

(
α2
1 + β2

1

) (
α2
3 + β2

3

)
+ α3β3

(
α2
1 + β2

1

) (
α2
2 + β2

2

)
+ 2α1α2β1β2

(
α2
3 + β2

3

)
+ 2α1α3β1β3

(
α2
2 + β2

2

)
+ 2α2α3β2β3

(
α2
1 + β2

1

)
+ 4α1α2α3β1β2β3

=− q1
(
p22 + 2q2

) (
p23 + 2q3

)
− q2

(
p21 + 2q1

) (
p23 + 2q3

)
− q3

(
p21 + 2q1

) (
p22 + 2q2

)
+ 2q1q2

(
p23 + 2q3

)
+ 2q1q3

(
p22 + 2q2

)
+ 2q2q3

(
p21 + 2q1

)
− 4q1q2q3

=− p22p23q1 − p21p23q2 − p21p22q3 − 2p23q1q2 − 2p22q1q3 − 2p21q2q3 − 4q1q2q3.
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Looking at the coefficient of x5, which becomes the coefficient of wn+5 in equation (3.3), we have

∑
1≤i<j<k≤8

rirjrk =α2
1α

2
2α

3
3β1β2 + α1α

2
2α

3
3β

2
1β2 + α2

1α2α
3
3β1β

2
2 + α1α2α

3
3β

2
1β

2
2 + α2

1α
3
2α

2
3β1β3

+ α1α
3
2α

2
3β

2
1β3 + α3

1α
2
2α

2
3β2β3 + α2

2α
2
3β

3
1β2β3 + α3

1α2α
2
3β

2
2β3 + α2α

2
3β

3
1β

2
2β3

+ α2
1α

2
3β1β

3
2β3 + α1α

2
3β

2
1β

3
2β3 + α2

1α
3
2α3β1β

2
3 + α1α

3
2α3β

2
1β

2
3 + α3

1α
2
2α3β2β

2
3

+ α2
2α3β

3
1β2β

2
3 + α3

1α2α3β
2
2β

2
3 + α2α3β

3
1β

2
2β

2
3 + α2

1α3β1β
3
2β

2
3 + α1α3β

2
1β

3
2β

2
3

+ α2
1α

2
2β1β2β

3
3 + α1α

2
2β

2
1β2β

3
3 + α2

1α2β1β
2
2β

3
3 + α1α2β

2
1β

2
2β

3
3

+ 4α2
1α

2
2α

2
3β1β2β3 + 4α1α

2
2α

2
3β

2
1β2β3 + 4α2

1α2α
2
3β1β

2
2β3 + 4α1α2α

2
3β

2
1β

2
2β3

+ 4α2
1α

2
2α3β1β2β

2
3 + 4α1α

2
2α3β

2
1β2β

2
3 + 4α2

1α2α3β1β
2
2β

2
3 + 4α1α2α3β

2
1β

2
2β

2
3

= (α1 + β1) (α2 + β2) (α3 + β3)
(
α1α2α

2
3β1β2 + α1α

2
2α3β1β3 + α2

1α2α3β2β3

+α1α2α3β1β2β3 + α2α3β
2
1β2β3 + α1α3β1β

2
2β3 + α1α2β1β2β

2
3

)
= (α1 + β1) (α2 + β2) (α3 + β3)

(
α1α2β1β2

(
α2
3 + β2

3

)
+ α1α3β1β3

(
α2
2 + β2

2

)
+α2α3β2β3

(
α2
1 + β2

1

)
+ α1α2α3β1β2β3

)
=p1p2p3

(
q1q2

(
p23 + 2q3

)
+ q1q3

(
p22 + 2q2

)
+ q2q3

(
p21 + 2q1

)
− q1q2q3

)
=p1p2p

3
3q1q2 + p1p

3
2p3q1q3 + p31p2p3q2q3 + 5p1p2p3q1q2q3.

Looking at the coefficient of x4, which becomes the coefficient of wn+4 in equation (3.3), we have

∑
1≤i1<···<i4≤8

ri1 · · · ri4 =α2
1α

2
2α

4
3β

2
1β

2
2 + α2

1α
2
2β

2
1β

2
2β

4
3 + α2

1α
4
2α

2
3β

2
1β

2
3 + α2

1α
2
3β

2
1β

4
2β

2
3 + α4

1α
2
2α

2
3β

2
2β

2
3

+ α2
2α

2
3β

4
1β

2
2β

2
3 + α1α2α3β

3
1β

3
2β

3
3 + α1α2α

3
3β

3
1β

3
2β3 + α1α

3
2α3β

3
1β2β

3
3

+ α3
1α2α3β1β

3
2β

3
3 + α3

1α
3
2α

3
3β1β2β3 + α1α

3
2α

3
3β

3
1β2β3 + α3

1α2α
3
3β1β

3
2β3

+ α3
1α

3
2α3β1β2β

3
3 + 2α2

1α
3
2α

3
3β

2
1β2β3 + 2α3

1α
2
2α

3
3β1β

2
2β3 + 2α1α

2
2α

3
3β

3
1β

2
2β3

+ 2α2
1α2α

3
3β

2
1β

3
2β3 + 2α3

1α
3
2α

2
3β1β2β

2
3 + 2α1α

3
2α

2
3β

3
1β2β

2
3 + 2α3

1α2α
2
3β1β

3
2β

2
3

+ 2α1α2α
2
3β

3
1β

3
2β

2
3 + 2α2

1α
3
2α3β

2
1β2β

3
3 + 2α3

1α
2
2α3β1β

2
2β

3
3 + 2α1α

2
2α3β

3
1β

2
2β

3
3

+ 2α2
1α2α3β

2
1β

3
2β

3
3 + 4α2

1α
2
2α

3
3β

2
1β

2
2β3 + 4α2

1α
3
2α

2
3β

2
1β2β

2
3 + 4α3

1α
2
2α

2
3β1β

2
2β

2
3

+ 4α1α
2
2α

2
3β

3
1β

2
2β

2
3 + 4α2

1α2α
2
3β

2
1β

3
2β

2
3 + 4α2

1α
2
2α3β

2
1β

2
2β

3
3 + 8α2

1α
2
2α

2
3β

2
1β

2
2β

2
3

=α2
1α

2
2β

2
1β

2
2

(
α4
3 + β4

3

)
+ α2

1α
2
3β

2
1β

2
3

(
α4
2 + β4

2

)
+ α2

2α
2
3β

2
2β

2
3

(
α4
1 + β4

1

)
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+ α1α2α3β1β2β3
(
α2
1α

2
2α

2
3 + α2

2α
2
3β

2
1 + α2

1α
2
3β

2
2 + α2

3β
2
1β

2
2 + α2

1α
2
2β

2
3 + α2

2β
2
1β

2
3

+α2
1β

2
2β

2
3 + β2

1β
2
2β

2
3

)
+ 2α2

1α2α3β
2
1β2β3

(
α2
2α

2
3 + α2

2β
2
3 + α2

3β
2
2 + β2

2β
2
3

)
+ 2α1α

2
2α3β1β

2
2β3

(
α2
1α

2
3 + α2

1β
2
3 + α2

3β
2
1 + β2

1β
2
3

)
+ 2α1α2α

2
3β1β2β

2
3

(
α2
1α

2
2 + α2

1β
2
2 + α2

2β
2
1 + β2

1β
2
2

)
+ 4α2

1α
2
2α3β

2
1β

2
2β3

(
α2
3 + β2

3

)
+ 4α2

1α2α
2
3β

2
1β2β

2
3

(
α2
2 + β2

2

)
+ 4α1α

2
2α

2
3β1β

2
2β

2
3

(
α2
1 + β2

1

)
+ 8α2

1α
2
2α

2
3β

2
1β

2
2β

2
3

=α2
1α

2
2β

2
1β

2
2

(
α4
3 + β4

3

)
+ α2

1α
2
3β

2
1β

2
3

(
α4
2 + β4

2

)
+ α2

2α
2
3β

2
2β

2
3

(
α4
1 + β4

1

)
+ α1α2α3β1β2β3

(
α2
1 + β2

1

) (
α2
2 + β2

2

) (
α2
3 + β2

3

)
+ 2α2

1α2α3β
2
1β2β3

(
α2
2 + β2

2

) (
α2
3 + β2

3

)
+ 2α1α

2
2α3β1β

2
2β3

(
α2
1 + β2

1

) (
α2
3 + β2

3

)
+ 2α1α2α

2
3β1β2β

2
3

(
α2
1 + β2

1

) (
α2
2 + β2

2

)
+ 4α2

1α
2
2α3β

2
1β

2
2β3

(
α2
3 + β2

3

)
+ 4α2

1α2α
2
3β

2
1β2β

2
3

(
α2
2 + β2

2

)
+ 4α1α

2
2α

2
3β1β

2
2β

2
3

(
α2
1 + β2

1

)
+ 8α2

1α
2
2α

2
3β

2
1β

2
2β

2
3

=q21q
2
2

((
p23 + 2q3

)2 − 2q23

)
+ q21q

2
3

((
p22 + 2q2

)2 − 2q22

)
+ q22q

2
3

((
p21 + 2q1

)2 − 2q21

)
− q1q2q3

(
p21 + 2q1

) (
p22 + 2q2

) (
p23 + 2q3

)
+ 2q21q2q3

(
p22 + 2q2

) (
p23 + 2q3

)
+ 2q1q

2
2q3
(
p21 + 2q1

) (
p23 + 2q3

)
+ 2q1q2q

2
3

(
p21 + 2q1

) (
p22 + 2q2

)
− 4q21q

2
2q3
(
p23 + 2q3

)
− 4q21q2q

2
3

(
p22 + 2q2

)
− 4q1q

2
2q

2
3

(
p21 + 2q1

)
+ 8q21q

2
2q

2
3

=p41q
2
2q

2
3 + p42q

2
1q

2
3 + p43q

2
1q

2
2 − p21p22p23q1q2q3 + 4p21q1q

2
2q

2
3 + 4p22q

2
1q2q

2
3 + 4p23q

2
1q

2
2q3

+ 6q21q
2
2q

2
3 .

When 1 ≤ i1 < · · · < i5 ≤ 8, we can show that ri1 · · · ri5 = α1α2α3β1β2β3(rirjrk) where ri, rj , rk ∈

{ri1 , . . . , ri5}. For each ri1 · · · ri5 , there exists rs, rt ∈ {ri1 , . . . , ri5}, such that rsrt = α1α2α3β1β2β3. This

means ri1 · · · ri5 = rsrt(rirjrk) = α1α2α3β1β2β3(rirjrk). For example, if we take r1 · · · r5, then we can see

that r4r5 = α1α2α3β1β2β3, which means r1 · · · r5 = α1α2α3β1β2β3(r1r2r3).

Thus, looking at the coefficient of x3, which becomes the coefficient of wn+3 in equation (3.3), we have

∑
1≤i1<···<i5≤8

ri1 · · · ri5 =α1α2α3β1β2β3

 ∑
1≤i<j<k≤8

rirjrk


=− q1q2q3

(
p1p2p

3
3q1q2 + p1p

3
2p3q1q3 + p31p2p3q2q3 + 5p1p2p3q1q2q3

)
.

Since we calculated
∑

1≤i<j<k≤8 rirjrk as the coefficient of x5, above we can just replace it here.
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When 1 ≤ i1 < · · · < i6 ≤ 8, we can show that ri1 · · · ri6 = α2
1α

2
2α

2
3β

2
1β

2
2β

2
3(rirj) where ri, rj ∈

{ri1 , . . . , ri6}. For each ri1 · · · ri6 , there exists rs1 , . . . , rs4 ∈ {ri1 , . . . , ri6}, such that

rs1 · · · rs4 = α2
1α

2
2α

2
3β

2
1β

2
2β

2
3 . This means ri1 · · · ri6 = rs1 · · · rs4(rirj) = α2

1α
2
2α

2
3β

2
1β

2
2β

2
3(rirj). For example if

we take r1 · · · r6 we can see that r3r4r5r6 = α2
1α

2
2α

2
3β

2
1β

2
2β

2
3 , which means r1 · · · r6 = α2

1α
2
2α

2
3β

2
1β

2
2β

2
3(r1r2).

Thus, looking at the coefficient of x2, which becomes the coefficient of wn+2 in equation (3.3), we have

∑
1≤i1<···<i6≤8

ri1 · · · ri6 =α2
1α

2
2α

2
3β

2
1β

2
2β

2
3

 ∑
1≤i<j≤8

rirj


=q21q

2
2q

2
3

(
−p22p23q1 − p21p23q2 − p21p22q3 − 2 p23q1q2 − 2 p22q1q3 − 2 p21q2q3 − 4 q1q2q3

)
.

Since we calculated
∑

1≤i<j≤8 rirj as the coefficient of x6 above, we can just replace it here.

When 1 ≤ i1 < · · · < i7 ≤ 8, we can show that ri1 · · · ri7 = α3
1α

3
2α

3
3β

3
1β

3
2β

3
3(ri) where ri ∈ {ri1 , . . . , ri7}.

For each ri1 · · · ri7 , there exists rs1 , . . . , rs6 ∈ {ri1 , . . . , ri7}, such that rs1 · · · rs6 = α3
1α

3
2α

3
3β

3
1β

3
2β

3
3 . This

means ri1 · · · ri7 = rs1 · · · rs6(ri) = α3
1α

3
2α

3
3β

3
1β

3
2β

3
3(ri). For example, if we take r1 · · · r7, we can see that

r2 · · · r7 = α3
1α

3
2α

3
3β

3
1β

3
2β

3
3 , which means r1 · · · r7 = α3

1α
3
2α

3
3β

3
1β

3
2β

3
3(r1).

Thus, looking at the coefficient of x, which becomes the coefficient of wn+1 in equation (3.3), we have

∑
1≤i1<···<i7≤8

ri1 · · · ri7 =α3
1α

3
2α

3
3β

3
1β

3
2β

3
3

 ∑
1≤i≤8

ri


=− p1p2p3q31q32q33 .

Since we calculated
∑

1≤i≤8 rirj as the coefficient of x7 above, we can just replace it here.

Looking at the constant, which becomes the coefficient of wn in equation (3.3), we have

∑
1≤i1<···<i8≤8

ri1 · · · ri8 = α4
1α

4
2α

4
3β

4
1β

4
2β

4
3 = q41q

4
2q

4
3 .

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (3.3).

Case 2: Let one characteristic function have duplicate roots and the other two have distinct roots. WLOG

we can say the characteristic function of {an} has the duplicate root, meaning α1 = β1 , α2 6= β2, and

α3 6= β3. Then, from equation (3.1), we have

wn =anbncn
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=

(
na1b1c1

(α2 − β2) (α3 − β3)

)
(αn2 − βn2 ) (αn3 − βn3 )αn−11

=

(
na1b1c1

(α2 − β2) (α3 − β3)

)
((α2α3)

n − (α2β3)
n − (α3β2)

n
+ (β2β3)

n
)αn−11

=

(
na1b1c1

α1 (α2 − β2) (α3 − β3)

)
((α1α2α3)

n − (α1α2β3)
n − (α1α3β2)

n
+ (α1β2β3)

n
) .

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as

a linear homogeneous recurrence relation whose characteristic equation has roots α1α2α3, α1α2β3, α1β2α3,

and α1β2β3 each with a multiplicity of at least two. We will let each of them have multiplicity two since

that means we will have eight roots, which is how many characteristic roots we need for an eighth order

linear divisible sequence. Thus, if the roots of the characteristic equation of {wn = anbncn} are r1 =α1α2α3,

r2 =α1α2β3, r3 =α1β2α3, r4 =α1β2β3, r5 =α1α2α3, r6 =α1α2β3, r7 =α1β2α3, and r8 =α1β2β3, then the

characteristic equation is

8∏
i=1

(x− ri) = x8−

 ∑
1≤i≤8

ri

x7+. . .+(−1)k

 ∑
1≤i1<···<ik≤8

ri1 · · · rik

x8−k, for k ≤ 8.

At this point, this case becomes the same as case 1 by simply replacing β1 with α1 throughout. This works

because, in this case, α1 + α1 = p1 and α1α1 = −q1.

Case 3: Let two characteristic functions have duplicate roots and the other one have distinct roots. WLOG

we can say the characteristic functions of {an} and {bn} have the duplicate root, meaning α1 = β1 , α2 = β2,

and α3 6= β3. Then, from equation (3.1), we have

wn =anbncn

=

(
n2a1b1c1
(α3 − β3)

)
(αn3 − βn3 )αn−11 αn−12

=

(
n2a1b1c1

α1α2 (α3 − β3)

)
((α1α2α3)

n − (α1α2β3)
n
)

=

(
n2a1b1c1

α1α2 (α3 − β3)

)
(α1α2α3)

n −
(

n2a1b1c1
α1α2 (α3 − β3)

)
(α1α2β3)

n
.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as

a linear homogeneous recurrence relation whose characteristic equation has roots α1α2α3 and α1α2β3 each

with a multiplicity of at least three. We will let each of them have multiplicity four since that means we

will have eight roots, which is how many characteristic roots we need for an eighth order linear divisible
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sequence. Thus, if the roots of the characteristic equation of {wn = anbncn} are r1 =α1α2α3, r2 =α1α2β3,

r3 =α1α2α3, r4 =α1α2β3, r5 =α1α2α3, r6 =α1α2β3, r7 =α1α2α3, and r8 =α1α2β3, then the characteristic

equation is

8∏
i=1

(x− ri) = x8−

 ∑
1≤i≤8

ri

x7+. . .+(−1)k

 ∑
1≤i1<···<ik≤8

ri1 · · · rik

x8−k, for k ≤ 8.

At this point, this case becomes the same as case 1 by simply replacing β1 with α1 and β2 with α2 throughout.

This works because, in this case, α1 + α1 = p1, α1α1 = −q1, α2 + α2 = p2, and α2α2 = −q2.

Case 4: Let each characteristic functions have duplicate roots, meaning α1 = β1, α2 = β2, and α3 = β3.

Then, from equation (3.1), we have

wn = anbncn = n3a1b1c1α
n−1
1 αn−12 αn−13 =

n3a1b1c1
α1α2α3

(α1α2α3)n.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as a

linear homogeneous recurrence relation whose characteristic equation has the root α1α2α3 with a multiplicity

of at least four. We will let it have multiplicity eight since that means we will have eight roots, which is

how many characteristic roots we need for an eighth order linear divisible sequence. Thus, if the roots of

the characteristic equation of {wn = anbncn} are r1 = α1α2α3, r2 = α1α2α3, r3 = α1α2α3, r4 = α1α2α3,

r5 =α1α2α3, r6 =α1α2α3, r7 =α1α2α3, and r8 =α1α2α3, then the characteristic equation is

8∏
i=1

(x− ri) = x8−

 ∑
1≤i≤8

ri

x7+. . .+(−1)k

 ∑
1≤i1<···<ik≤8

ri1 · · · rik

x8−k, for k ≤ 8.

At this point, this case becomes the same as case 1 by simply replacing β1 with α1, β2 with α2, and β3 with

α3 throughout. This works because, in this case, α1 + α1 = p1, α1α1 = −q1, α2 + α2 = p2, α2α2 = −q2,

α3 + α3 = p3, and α3α3 = −q3.

Therefore, when we multiply three distinct second order linear divisible sequences, we can construct a

eighth order linear divisible sequence defined by recurrence relation (3.3). It is easy to see from our definition

of {wn = anbncn} that wi = aibici for 0 ≤ i ≤ 7

Next, we have an example that takes the product of three second order linear divisible sequences in order

to construct an eighth order linear divisible sequence.
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Example 3.4. Using the Fibonacci sequence, Pell number sequence and Mersenne number sequences we

define a sequence {wn = FnPnMn}. Then, by Theorem 3.4, we get an eighth order linear divisible sequence

that satisfies the linear homogeneous recurrence relation

wn+8 = 6wn+7 + 27wn+6 − 66wn+5 − 253wn+4 − 132wn+3 + 108wn+2 + 48wn+1 − 16wn,

for n ≥ 0. The table below shows some terms of the sequence {wn = FnPnMn}.

n wn n wn n wn n wn n wn

0 0 5 4495 10 133798170 15 3898134346750 20 113458232405776500

1 1 6 35280 11 1045912603 16 30454847443440 21 886399585423924390

2 6 7 279019 12 8172964800 17 237932181378643 22 6925050871102681014

3 70 8 2184840 13 63860418883 18 1858866142205520 23 54102376390964996119

4 540 9 17113390 14 498941217762 19 14522530081665223 24 422678043468647366400

Table 3.4: Terms of the sequence {wn = FnPnMn}

3.3

Product of Four Distinct Second Order Linear Divisible Sequences

In this section, we will multiply four distinct second order linear divisible sequences in order to come up

with a single higher order linear divisible sequence. This multiplication constructs a sixteenth order linear

divisible sequence.

Theorem 3.5. Let {an}, {bn}, {cn}, and {dn}be distinct second order linear divisible sequences that can

be defined by (2.1) with initial conditions a0 = b0 = c0 = d0 = 0 and a1, b1, c1, d1 arbitrary. Suppose the

sequence {an} has a characteristic equation x2 − p1x− q1 = 0 with roots α1 and β1, such that α1 + β1 = p1

and α1β1 = −q1, the sequence {bn} has a characteristic equation x2−p2x−q2 = 0 with roots α2 and β2, such

that α2 + β2 = p2 and α2β2 = −q2, the sequence {cn} has a characteristic equation x2 − p3x − q3 = 0 with

roots α3 and β3, such that α3+β3 = p3 and α3β3 = −q3, and the sequence {dn} has a characteristic equation

x2 − p4x − q4 = 0 with roots α4 and β4, such that α4 + β4 = p4 and α4β4 = −q4. Then, {wn = anbncndn}

is a linear divisible sequence that satisfies the sixteenth order linear homogeneous recurrence relation

wn+16 =p1p2p3p4wn+15 +
(
p22p

2
3p

2
4q1 + p21p

2
3p

2
4q2 + p21p

2
2p

2
4q3 + p21p

2
2p

2
3q4 + 2p23p

2
4q1q2 + 2p22p

2
4q1q3

+ 2p21p
2
4q2q3 + 2p22p

2
3q1q4 + 2p21p

2
3q2q4 + 2p21p

2
2q3q4 + 4p24q1q2q3 + 4p23q1q2q4 + 4p22q1q3q4
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+4p21q2q3q4 + 8q1q2q3q4
)
wn+14 +

(
p1p2p

3
3p

3
4q1q2 + p1p

3
2p3p

3
4q1q3 + p31p2p3p

3
4q2q3 + p1p

3
2p

3
3p4q1q4

+ p31p2p
3
3p4q2q4 + p31p

3
2p3p4q3q4 + 5p1p2p3p

3
4q1q2q3 + 5p1p2p

3
3p4q1q2q4 + 5p1p

3
2p3p4q1q3q4

+5p31p2p3p4q2q3q4 + 19p1p2p3p4q1q2q3q4
)
wn+13 −

(
p43p

4
4q

2
1q

2
2 + p42p

4
4q

2
1q

2
3 + p41p

4
4q

2
2q

2
3 + p42p

4
3q

2
1q

2
4

+ p41p
4
3q

2
2q

2
4 + p41p

4
2q

2
3q

2
4 − p21p22p23p44q1q2q3 − p21p22p43p24q1q2q4 − p21p42p23p24q1q3q4 − p41p22p23p24q2q3q4

+ 4p23p
4
4q

2
1q

2
2q3 + 4p22p

4
4q

2
1q2q

2
3 + 4p21p

4
4q1q

2
2q

2
3 + 4p43p

2
4q

2
1q

2
2q4 + 4p42p

2
4q

2
1q

2
3q4 + 4p41p

2
4q

2
2q

2
3q4

+ 4p22p
4
3q

2
1q2q

2
4 + 4p21p

4
3q1q

2
2q

2
4 + 4p42p

2
3q

2
1q3q

2
4 + 4p41p

2
3q

2
2q3q

2
4 + 4p21p

4
2q1q

2
3q

2
4 + 4p41p

2
2q2q

2
3q

2
4

+ 6p44q
2
1q

2
2q

2
3 + 6p43q

2
1q

2
2q

2
4 + 6p42q

2
1q

2
3q

2
4 + 6p41q

2
2q

2
3q

2
4 − 9p21p

2
2p

2
3p

2
4q1q2q3q4 + 16p23p

2
4q

2
1q

2
2q3q4

+ 16p22p
2
4q

2
1q2q

2
3q4 + 16p21p

2
4q1q

2
2q

2
3q4 + 16p22p

2
3q

2
1q2q3q

2
4 + 16p21p

2
3q1q

2
2q3q

2
4 + 16p21p

2
2q1q2q

2
3q

2
4

+24p24q
2
1q

2
2q

2
3q4 + 24p23q

2
1q

2
2q3q

2
4 + 24p22q

2
1q2q

2
3q

2
4 + 24p21q1q

2
2q

2
3q

2
4 + 28q21q

2
2q

2
3q

2
4

)
wn+12

+
(
p31p

3
2p

3
3p

3
4q1q2q3q4 − p1p2p33p54q21q22q3 − p1p32p3p54q21q2q23 − p31p2p3p54q1q22q23 − p1p2p53p34q21q22q4

− p1p52p3p34q21q23q4 − p51p2p3p34q22q23q4 − p1p32p53p4q21q2q24 − p31p2p53p4q1q22q24 − p1p52p33p4q21q3q24
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for n ≥ 0 with initial conditions wi = aibicidi for 0 ≤ i ≤ 15.

Proof. Let {an}, {bn}, {cn}, and {dn}be distinct second order linear divisible sequences that can be defined

by (2.1) with initial conditions a0 = b0 = c0 = d0 = 0 and a1, b1, c1, d1 arbitrary. Let the sequence {an}

have the characteristic equation x2 − p1x − q1 = 0 with roots α1 and β1, such that α1 + β1 = p1 and

α1β1 = −q1, the sequence {bn} have the characteristic equation x2−p2x−q2 = 0 with roots α2 and β2, such

that α2 + β2 = p2 and α2β2 = −q2, the sequence {cn} have the characteristic equation x2 − p3x − q3 = 0

with roots α3 and β3, such that α3 +β3 = p3 and α3β3 = −q3, and the sequence {dn} have the characteristic

equation x2 − p4x− q4 = 0 with roots α4 and β4, such that α4 + β4 = p4 and α4β4 = −q4.

Case 1: Let each characteristic function have distinct roots, meaning α1 6= β1, α2 6= β2, α3 6= β3, and

α4 6= β4. Then, by equation (3.1), we have

wn =anbncndn

=

(
a1b1c1d1

(α1−β1)(α2−β2)(α3−β3)(α4−β4)

)
(αn1 − βn1 )(αn2 − βn2 )(αn3 − βn3 )(αn4 − βn4 )
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=

(
a1b1c1d1

(α1−β1)(α2−β2)(α3−β3)(α4−β4)

)
((α1α2)n − (α1β2)n − (α2β1)n + (β1β2)n) (αn3 − βn3 )(αn4 − βn4 )

=

(
a1b1c1d1

(α1−β1)(α2−β2)(α3−β3)(α4−β4)

)
((α1α2α3)n − (α1α2β3)n − (α1β2α3)n + (α1β2β3)n

−(β1α2α3)n + (β1α2β3)n + (β1β2α3)n − (β1β2β3)n) (αn4 − βn4 )

=

(
a1b1c1d1

(α1−β1)(α2−β2)(α3−β3)(α4−β4)

)
((α1α2α3α4)n − (α1α2α3β4)n − (α1α2β3α4)n + (α1α2β3β4)n

− (α1β2α3α4)n + (α1β2α3β4)n + (α1β2β3α4)n − (α1β2β3β4)n − (β1α2α3α4)n + (β1α2α3β4)n

+(β1α2β3α4)n − (β1α2β3β4)n + (β1β2α3α4)n − (β1β2α3β4)n − (β1β2β3α4)n + (β1β2β3β4)n) .

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed

as a linear homogeneous recurrence relation whose characteristic equation has roots r1 = α1α2α3α4, r2 =

α1α2α3β4, r3 = α1α2β3α4, r4 = α1α2β3β4, r5 = α1β2α3α4, r6 = α1β2α3β4, r7 = α1β2β3α4, r8 = α1β2β3β4,

r9 = β1α2α3α4, r10 = β1α2α3β4, r11 = β1α2β3α4, r12 = β1α2β3β4, r13 = β1β2α3α4, r14 = β1β2α3β4,

r15 = β1β2β3α4, and r16 = β1β2β3β4 each with a multiplicity of at least one. We will let each of them have

multiplicity one since that means we will have sixteen roots, which is how many characteristic roots we need

for an sixteenth order linear divisible sequence. Thus, the characteristic equation is

16∏
i=1

(x− ri) = x16 −

 ∑
1≤i≤16

ri

x15 + · · ·+ (−1)k

 ∑
1≤i1<···<ik≤16

ri1 · · · rik

x16−k, fork ≤ 16.

Looking at the coefficient of x15, which becomes the coefficient of wn+15 in equation (3.4), we have

∑
1≤i≤16

ri =α1α2α3α4 + α1α2α3β4 + α1α2β3α4 + α1α2β3β4 + α1β2α3α4 + α1β2α3β4 + α1β2β3α4

+ α1β2β3β4 + β1α2α3α4 + β1α2α3β4 + β1α2β3α4 + β1α2β3β4 + β1β2α3α4 + β1β2α3β4

+ β1β2β3α4 + β1β2β3β4

=α1 (α2α3α4 + α3α4β2 + α2α4β3 + α4β2β3 + α2α3β4 + α3β2β4 + α2β3β4 + β2β3β4)

+ β1 (α2α3α4 + α3α4β2 + α2α4β3 + α4β2β3 + α2α3β4 + α3β2β4 + α2β3β4 + β2β3β4)

= (α1 + β1) (α2α3α4 + α3α4β2 + α2α4β3 + α4β2β3 + α2α3β4 + α3β2β4 + α2β3β4 + β2β3β4)

= (α1 + β1) (α2 (α3α4 + α4β3 + α3β4 + β3β4) + β2 (α3α4 + α4β3 + α3β4 + β3β4))

= (α1 + β1) (α2 + β2) (α3α4 + α4β3 + α3β4 + β3β4)

= (α1 + β1) (α2 + β2) (α3 (α4 + β4) + β3 (α4 + β4))
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= (α1 + β1) (α2 + β2) (α3 + β3) (α4 + β4)

=p1p2p3p4.

For the coefficient of x14 through x8, we will only be showing the final form of the coefficient. All the

multiplication of the roots, grouping of the terms, factoring of the groups, substitution and simplifying of

the coefficient was done with Sage, a computer algebra program. The outcome from Sage can be found in

the appendix. Note that because of how Sage works, we denote α1 as a1, β1 as b1, p1 as p1, and q1 as q1

inside Sage. Other subscripts are denoted in the same manner.

Looking at the coefficient of x14, which becomes the coefficient of wn+14 in equation (3.4), we have

∑
1≤i<j≤16

rirj =−
(
p22p

2
3p

2
4q1 + p21p

2
3p

2
4q2 + p21p

2
2p

2
4q3 + p21p

2
2p

2
3q4 + 2p23p

2
4q1q2 + 2p22p

2
4q1q3

+ 2p21p
2
4q2q3 + 2p22p

2
3q1q4 + 2p21p

2
3q2q4 + 2p21p

2
2q3q4 + 4p24q1q2q3 + 4p23q1q2q4

+4p22q1q3q4 + 4p21q2q3q4 + 8q1q2q3q4
)
.

Looking at the coefficient of x13, which becomes the coefficient of wn+13 in equation (3.4), we have

∑
1≤i<j<k≤16

rirjrk =p1p2p
3
3p

3
4q1q2 + p1p

3
2p3p

3
4q1q3 + p31p2p3p

3
4q2q3 + p1p

3
2p

3
3p4q1q4

+ p31p2p
3
3p4q2q4 + p31p

3
2p3p4q3q4 + 5p1p2p3p

3
4q1q2q3 + 5p1p2p

3
3p4q1q2q4

+ 5p1p
3
2p3p4q1q3q4 + 5p31p2p3p4q2q3q4 + 19p1p2p3p4q1q2q3q4.

Looking at the coefficient of x12, which becomes the coefficient of wn+12 in equation (3.4), we have

∑
1≤i1<···<i4≤16

ri1 · · · ri4 =p43p
4
4q

2
1q

2
2 + p42p

4
4q

2
1q

2
3 + p41p

4
4q

2
2q

2
3 + p42p

4
3q

2
1q

2
4 + p41p

4
3q

2
2q

2
4 + p41p

4
2q

2
3q

2
4

− p21p22p23p44q1q2q3 − p21p22p43p24q1q2q4 − p21p42p23p24q1q3q4 − p41p22p23p24q2q3q4

+ 4p23p
4
4q

2
1q

2
2q3 + 4p22p

4
4q

2
1q2q

2
3 + 4p21p

4
4q1q

2
2q

2
3 + 4p43p

2
4q

2
1q

2
2q4 + 4p42p

2
4q

2
1q

2
3q4

+ 4p41p
2
4q

2
2q

2
3q4 + 4p22p

4
3q

2
1q2q

2
4 + 4p21p

4
3q1q

2
2q

2
4 + 4p42p

2
3q

2
1q3q

2
4 + 4p41p

2
3q

2
2q3q

2
4

+ 4p21p
4
2q1q

2
3q

2
4 + 4p41p

2
2q2q

2
3q

2
4 + 6p44q

2
1q

2
2q

2
3 + 6p43q

2
1q

2
2q

2
4 + 6p42q

2
1q

2
3q

2
4 + 6p41q

2
2q

2
3q

2
4

− 9p21p
2
2p

2
3p

2
4q1q2q3q4 + 16p23p

2
4q

2
1q

2
2q3q4 + 16p22p

2
4q

2
1q2q

2
3q4 + 16p21p

2
4q1q

2
2q

2
3q4

+ 16p22p
2
3q

2
1q2q3q

2
4 + 16p21p

2
3q1q

2
2q3q

2
4 + 16p21p

2
2q1q2q

2
3q

2
4 + 24p24q

2
1q

2
2q

2
3q4

+ 24p23q
2
1q

2
2q3q

2
4 + 24p22q

2
1q2q

2
3q

2
4 + 24p21q1q

2
2q

2
3q

2
4 + 28q21q

2
2q

2
3q

2
4 .
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Looking at the coefficient of x11, which becomes the coefficient of wn+11 in equation (3.4), we have

∑
1≤i1<···<i5≤16

ri1 · · · ri5 =p31p
3
2p

3
3p

3
4q1q2q3q4 − p1p2p33p54q21q22q3 − p1p32p3p54q21q2q23 − p31p2p3p54q1q22q23

− p1p2p53p34q21q22q4 − p1p52p3p34q21q23q4 − p51p2p3p34q22q23q4 − p1p32p53p4q21q2q24

− p31p2p53p4q1q22q24 − p1p52p33p4q21q3q24 − p51p2p33p4q22q3q24 − p31p52p3p4q1q23q24

− p51p32p3p4q2q23q24 − 5p1p2p3p
5
4q

2
1q

2
2q

2
3 − 5p1p2p

5
3p4q

2
1q

2
2q

2
4 − 5p1p

5
2p3p4q

2
1q

2
3q

2
4

− 5p51p2p3p4q
2
2q

2
3q

2
4 − 9p1p2p

3
3p

3
4q

2
1q

2
2q3q4 − 9p1p

3
2p3p

3
4q

2
1q2q

2
3q4

− 9p31p2p3p
3
4q1q

2
2q

2
3q4 − 9p1p

3
2p

3
3p4q

2
1q2q3q

2
4 − 9p31p2p

3
3p4q1q

2
2q3q

2
4

− 9p31p
3
2p3p4q1q2q

2
3q

2
4 − 31p1p2p3p

3
4q

2
1q

2
2q

2
3q4 − 31p1p2p

3
3p4q

2
1q

2
2q3q

2
4

− 31p1p
3
2p3p4q

2
1q2q

2
3q

2
4 − 31p31p2p3p4q1q

2
2q

2
3q

2
4 − 63p1p2p3p4q

2
1q

2
2q

2
3q

2
4 .

Looking at the coefficient of x10, which becomes the coefficient of wn+10 in equation (3.4), we have

∑
1≤i1<···<i6≤16

ri1 · · · ri6 =p21p
2
2p

4
3p

4
4q

2
1q

2
2q3q4 + p21p

4
2p

2
3p

4
4q

2
1q2q

2
3q4 + p41p

2
2p

2
3p

4
4q1q

2
2q

2
3q4 + p21p

4
2p

4
3p

2
4q

2
1q2q3q

2
4

+ p41p
2
2p

4
3p

2
4q1q

2
2q3q

2
4 + p41p

4
2p

2
3p

2
4q1q2q

2
3q

2
4 − p22p23p64q31q22q23 − p21p23p64q21q32q23

− p21p22p64q21q22q33 − p22p63p24q31q22q24 − p21p63p24q21q32q24 − p62p23p24q31q23q24 − p61p23p24q32q23q24

− p21p62p24q21q33q24 − p61p22p24q22q33q24 − p21p22p63q21q22q34 − p21p62p23q21q23q34 − p61p22p23q22q23q34

− 2p23p
6
4q

3
1q

3
2q

2
3 − 2p22p

6
4q

3
1q

2
2q

3
3 − 2p21p

6
4q

2
1q

3
2q

3
3 − 2p63p

2
4q

3
1q

3
2q

2
4 − 2p62p

2
4q

3
1q

3
3q

2
4

− 2p61p
2
4q

3
2q

3
3q

2
4 − 2p22p

6
3q

3
1q

2
2q

3
4 − 2p21p

6
3q

2
1q

3
2q

3
4 − 2p62p

2
3q

3
1q

2
3q

3
4 − 2p61p

2
3q

3
2q

2
3q

3
4

− 2p21p
6
2q

2
1q

3
3q

3
4 − 2p61p

2
2q

2
2q

3
3q

3
4 − 4p64q

3
1q

3
2q

3
3 − 4p63q

3
1q

3
2q

3
4 − 4p62q

3
1q

3
3q

3
4 − 4p61q

3
2q

3
3q

3
4

+ 5p21p
2
2p

2
3p

4
4q

2
1q

2
2q

2
3q4 + 5p21p

2
2p

4
3p

2
4q

2
1q

2
2q3q

2
4 + 5p21p

4
2p

2
3p

2
4q

2
1q2q

2
3q

2
4

+ 5p41p
2
2p

2
3p

2
4q1q

2
2q

2
3q

2
4 − 6p22p

2
3p

4
4q

3
1q

2
2q

2
3q4 − 6p21p

2
3p

4
4q

2
1q

3
2q

2
3q4 − 6p21p

2
2p

4
4q

2
1q

2
2q

3
3q4

− 6p22p
4
3p

2
4q

3
1q

2
2q3q

2
4 − 6p21p

4
3p

2
4q

2
1q

3
2q3q

2
4 − 6p42p

2
3p

2
4q

3
1q2q

2
3q

2
4 − 6p41p

2
3p

2
4q1q

3
2q

2
3q

2
4

− 6p21p
4
2p

2
4q

2
1q2q

3
3q

2
4 − 6p41p

2
2p

2
4q1q

2
2q

3
3q

2
4 − 6p21p

2
2p

4
3q

2
1q

2
2q3q

3
4 − 6p21p

4
2p

2
3q

2
1q2q

2
3q

3
4

− 6p41p
2
2p

2
3q1q

2
2q

2
3q

3
4 − 12p23p

4
4q

3
1q

3
2q

2
3q4 − 12p22p

4
4q

3
1q

2
2q

3
3q4 − 12p21p

4
4q

2
1q

3
2q

3
3q4

− 12p43p
2
4q

3
1q

3
2q3q

2
4 − 12p42p

2
4q

3
1q2q

3
3q

2
4 − 12p41p

2
4q1q

3
2q

3
3q

2
4 − 12p22p

4
3q

3
1q

2
2q3q

3
4

− 12p21p
4
3q

2
1q

3
2q3q

3
4 − 12p42p

2
3q

3
1q2q

2
3q

3
4 − 12p41p

2
3q1q

3
2q

2
3q

3
4 − 12p21p

4
2q

2
1q2q

3
3q

3
4
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− 12p41p
2
2q1q

2
2q

3
3q

3
4 + 12p21p

2
2p

2
3p

2
4q

2
1q

2
2q

2
3q

2
4 − 24p44q

3
1q

3
2q

3
3q4 − 24p43q

3
1q

3
2q3q

3
4

− 24p42q
3
1q2q

3
3q

3
4 − 24p41q1q

3
2q

3
3q

3
4 − 31p22p

2
3p

2
4q

3
1q

2
2q

2
3q

2
4 − 31p21p

2
3p

2
4q

2
1q

3
2q

2
3q

2
4

− 31p21p
2
2p

2
4q

2
1q

2
2q

3
3q

2
4 − 31p21p

2
2p

2
3q

2
1q

2
2q

2
3q

3
4 − 46p23p

2
4q

3
1q

3
2q

2
3q

2
4 − 46p22p

2
4q

3
1q

2
2q

3
3q

2
4

− 46p21p
2
4q

2
1q

3
2q

3
3q

2
4 − 46p22p

2
3q

3
1q

2
2q

2
3q

3
4 − 46p21p

2
3q

2
1q

3
2q

2
3q

3
4 − 46p21p

2
2q

2
1q

2
2q

3
3q

3
4

− 60p24q
3
1q

3
2q

3
3q

2
4 − 60p23q

3
1q

3
2q

2
3q

3
4 − 60p22q

3
1q

2
2q

3
3q

3
4 − 60p21q

2
1q

3
2q

3
3q

3
4 − 56q31q

3
2q

3
3q

3
4 .

Looking at the coefficient of x9, which becomes the coefficient of wn+9 in equation (3.4), we have

∑
1≤i1<···<i7≤16

ri1 · · · ri7 =p1p
3
2p

3
3p

5
4q

3
1q

2
2q

2
3q4 + p31p2p

3
3p

5
4q

2
1q

3
2q

2
3q4 + p31p

3
2p3p

5
4q

2
1q

2
2q

3
3q4 + p1p

3
2p

5
3p

3
4q

3
1q

2
2q3q

2
4

+ p31p2p
5
3p

3
4q

2
1q

3
2q3q

2
4 + p1p

5
2p

3
3p

3
4q

3
1q2q

2
3q

2
4 + p51p2p

3
3p

3
4q1q

3
2q

2
3q

2
4 + p31p

5
2p3p

3
4q

2
1q2q

3
3q

2
4

+ p51p
3
2p3p

3
4q1q

2
2q

3
3q

2
4 + p31p

3
2p

5
3p4q

2
1q

2
2q3q

3
4 + p31p

5
2p

3
3p4q

2
1q2q

2
3q

3
4 + p51p

3
2p

3
3p4q1q

2
2q

2
3q

3
4

− p1p2p3p74q31q32q33 − p1p2p73p4q31q32q34 − p1p72p3p4q31q33q34 − p71p2p3p4q32q33q34

+ 2p1p2p
3
3p

5
4q

3
1q

3
2q

2
3q4 + 2p1p

3
2p3p

5
4q

3
1q

2
2q

3
3q4 + 2p31p2p3p

5
4q

2
1q

3
2q

3
3q4

+ 2p1p2p
5
3p

3
4q

3
1q

3
2q3q

2
4 + 2p1p

5
2p3p

3
4q

3
1q2q

3
3q

2
4 + 2p51p2p3p

3
4q1q

3
2q

3
3q

2
4

+ 2p1p
3
2p

5
3p4q

3
1q

2
2q3q

3
4 + 2p31p2p

5
3p4q

2
1q

3
2q3q

3
4 + 2p1p

5
2p

3
3p4q

3
1q2q

2
3q

3
4

+ 2p51p2p
3
3p4q1q

3
2q

2
3q

3
4 + 2p31p

5
2p3p4q

2
1q2q

3
3q

3
4 + 2p51p

3
2p3p4q1q

2
2q

3
3q

3
4

− 3p1p2p3p
5
4q

3
1q

3
2q

3
3q4 − 3p1p2p

5
3p4q

3
1q

3
2q3q

3
4 − 3p1p

5
2p3p4q

3
1q2q

3
3q

3
4

− 3p51p2p3p4q1q
3
2q

3
3q

3
4 + 3p31p

3
2p

3
3p

3
4q

2
1q

2
2q

2
3q

2
4 + 14p1p

3
2p

3
3p

3
4q

3
1q

2
2q

2
3q

2
4

+ 14p31p2p
3
3p

3
4q

2
1q

3
2q

2
3q

2
4 + 14p31p

3
2p3p

3
4q

2
1q

2
2q

3
3q

2
4 + 14p31p

3
2p

3
3p4q

2
1q

2
2q

2
3q

3
4

+ 24p1p2p
3
3p

3
4q

3
1q

3
2q

2
3q

2
4 + 24p1p

3
2p3p

3
4q

3
1q

2
2q

3
3q

2
4 + 24p31p2p3p

3
4q

2
1q

3
2q

3
3q

2
4

+ 24p1p
3
2p

3
3p4q

3
1q

2
2q

2
3q

3
4 + 24p31p2p

3
3p4q

2
1q

3
2q

2
3q

3
4 + 24p31p

3
2p3p4q

2
1q

2
2q

3
3q

3
4

+ 26p1p2p3p
3
4q

3
1q

3
2q

3
3q

2
4 + 26p1p2p

3
3p4q

3
1q

3
2q

2
3q

3
4 + 26p1p

3
2p3p4q

3
1q

2
2q

3
3q

3
4

+ 26p31p2p3p4q
2
1q

3
2q

3
3q

3
4 + 43p1p2p3p4q

3
1q

3
2q

3
3q

3
4 .

Looking at the coefficient of x8, which becomes the coefficient of wn+8 in equation (3.4), we have

∑
1≤i1<···<i8≤16

ri1 · · · ri8 =p84q
4
1q

4
2q

4
3 + p83q

4
1q

4
2q

4
4 + p82q

4
1q
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3q

4
4 + p81q

4
2q
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3q

4
4 + p42p
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4q
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4

+ p41p
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4 + p41p
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4 + p21p
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6
4q
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2q

3
3q4
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+ p21p
2
2p

6
3p

2
4q
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2q3q
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4 + p21p
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3
4 + p61p
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+ 2p21p
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4 + 2p41p
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+ 2p21p
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2
3q
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4 + 2p41p
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2
4q
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3
2q
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4 + 2p41p
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2
4q
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3
3q
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4

+ 4p22p
4
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1q
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4 + 4p21p
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1q

4
2q
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4 + 4p42p
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4q
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2
1q
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+ 4p21p
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4 + 4p41p
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1q

3
2q
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4 + 4p42p

4
3p
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4 + 4p41p
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+ 4p41p
4
2p

2
4q

2
1q

2
2q

4
3q

3
4 + 4p21p

4
2p

4
3q

3
1q

2
2q

2
3q

4
4 + 4p41p

2
2p

4
3q

2
1q

3
2q

2
3q

4
4 + 4p41p

4
2p

2
3q

2
1q

2
2q

3
3q

4
4

+ 4p43p
4
4q

4
1q

4
2q

2
3q

2
4 + 4p42p

4
4q

4
1q

2
2q

4
3q

2
4 + 4p41p

4
4q

2
1q

4
2q

4
3q

2
4 + 4p42p

4
3q

4
1q

2
2q

2
3q

4
4

+ 4p41p
4
3q

2
1q

4
2q

2
3q

4
4 + 4p41p

4
2q

2
1q

2
2q

4
3q

4
4 + 8p64q

4
1q

4
2q

4
3q4 + 8p63q

4
1q

4
2q3q

4
4 + 8p62q

4
1q2q

4
3q

4
4

+ 8p61q1q
4
2q

4
3q

4
4 + 16p22p

2
3p

4
4q

4
1q

3
2q

3
3q

2
4 + 16p21p

2
3p

4
4q

3
1q

4
2q

3
3q

2
4 + 16p21p

2
2p

4
4q

3
1q

3
2q

4
3q

2
4

+ 16p22p
4
3p

2
4q

4
1q

3
2q

2
3q

3
4 + 16p21p

4
3p

2
4q

3
1q

4
2q

2
3q

3
4 + 16p42p

2
3p

2
4q

4
1q

2
2q

3
3q

3
4

+ 16p41p
2
3p

2
4q

2
1q

4
2q

3
3q

3
4 + 16p21p

4
2p

2
4q

3
1q

2
2q

4
3q

3
4 + 16p41p

2
2p

2
4q

2
1q

3
2q

4
3q

3
4

+ 16p21p
2
2p

4
3q

3
1q

3
2q

2
3q

4
4 + 16p21p

4
2p

2
3q

3
1q

2
2q

3
3q

4
4 + 16p41p

2
2p

2
3q

2
1q

3
2q

3
3q

4
4

+ 16p23p
4
4q

4
1q

4
2q

3
3q

2
4 + 16p22p

4
4q

4
1q

3
2q

4
3q

2
4 + 16p21p

4
4q

3
1q

4
2q

4
3q

2
4 + 16p43p

2
4q

4
1q

4
2q

2
3q

3
4

+ 16p42p
2
4q

4
1q

2
2q

4
3q

3
4 + 16p41p

2
4q

2
1q

4
2q

4
3q

3
4 + 16p22p

4
3q

4
1q

3
2q

2
3q

4
4 + 16p21p

4
3q

3
1q

4
2q

2
3q

4
4

+ 16p42p
2
3q

4
1q

2
2q

3
3q

4
4 + 16p41p

2
3q

2
1q

4
2q

3
3q

4
4 + 16p21p

4
2q

3
1q

2
2q

4
3q

4
4 + 16p41p

2
2q

2
1q

3
2q

4
3q

4
4

+ 18p21p
2
2p

2
3p

4
4q

3
1q

3
2q

3
3q

2
4 + 18p21p

2
2p

4
3p

2
4q

3
1q

3
2q

2
3q

3
4 + 18p21p

4
2p

2
3p

2
4q

3
1q

2
2q

3
3q

3
4

+ 18p41p
2
2p

2
3p

2
4q

2
1q

3
2q

3
3q

3
4 + 82p21p

2
2p

2
3p

2
4q

3
1q

3
2q

3
3q

3
4 + 36p44q

4
1q

4
2q

4
3q

2
4 + 36p43q

4
1q

4
2q

2
3q

4
4

+ 36p42q
4
1q

2
2q

4
3q

4
4 + 36p41q

2
1q

4
2q

4
3q

4
4 + 64p22p

2
3p

2
4q

4
1q

3
2q

3
3q

3
4 + 64p21p

2
3p

2
4q

3
1q

4
2q

3
3q

3
4

+ 64p21p
2
2p

2
4q

3
1q

3
2q

4
3q

3
4 + 64p21p

2
2p

2
3q

3
1q

3
2q

3
3q

4
4 + 64p23p

2
4q

4
1q

4
2q

3
3q

3
4 + 64p22p

2
4q

4
1q

3
2q

4
3q

3
4

+ 64p21p
2
4q

3
1q

4
2q

4
3q

3
4 + 64p22p

2
3q

4
1q

3
2q

3
3q

4
4 + 64p21p

2
3q

3
1q

4
2q

3
3q

4
4 + 64p21p

2
2q

3
1q

3
2q

4
3q

4
4

+ 80p24q
4
1q

4
2q

4
3q

3
4 + 80p23q

4
1q

4
2q

3
3q

4
4 + 80p22q

4
1q

3
2q

4
3q

4
4 + 80p21q

3
1q

4
2q

4
3q

4
4 + 70q41q

4
2q

4
3q

4
4 .

When 1 ≤ i1 < · · · < i9 ≤ 16, we can show that ri1 · · · ri9 = α1α2α3α4β1β2β3β4(rj1· · · rj7) where

rj1 , . . . , rj7 ∈ {ri1 , . . . , ri9}. For each ri1 · · · ri9 , there exists rs, rt ∈ {ri1 , . . . , ri9}, such that

rsrt = α1α2α3α4β1β2β3β4. This means ri1 · · · ri9 = rsrt(rj1· · · rj7) = α1α2α3α4β1β2β3β4(rj1· · · rj7). For
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example, if we take r1 · · · r9, we can see that r8r9 = α1α2α3α4β1β2β3β4, which means

r1 · · · r9 = α1α2α3α4β1β2β3β4(r1 · · · r7).

Thus, looking at the coefficient of x7, which becomes the coefficient of wn+7 in equation (3.4), we have

∑
1≤i1<···<i9≤16

ri1 · · · ri9 =α1α2α3α4β1β2β3β4

 ∑
1≤j1<···<j7≤16

rj1 · · · rj7


=q1q2q3q4

(
p1p

3
2p

3
3p

5
4q

3
1q

2
2q

2
3q4 + p31p2p

3
3p

5
4q

2
1q

3
2q

2
3q4 + p31p

3
2p3p

5
4q

2
1q

2
2q

3
3q4

+ p1p
3
2p

5
3p

3
4q

3
1q

2
2q3q

2
4 + p31p2p

5
3p

3
4q

2
1q

3
2q3q

2
4 + p1p

5
2p

3
3p

3
4q

3
1q2q

2
3q

2
4

+ p51p2p
3
3p

3
4q1q

3
2q

2
3q

2
4 + p31p

5
2p3p

3
4q

2
1q2q

3
3q

2
4 + p51p

3
2p3p

3
4q1q

2
2q

3
3q

2
4

+ p31p
3
2p

5
3p4q

2
1q

2
2q3q

3
4 + p31p

5
2p

3
3p4q

2
1q2q

2
3q

3
4 + p51p

3
2p

3
3p4q1q

2
2q

2
3q

3
4

− p1p2p3p74q31q32q33 − p1p2p73p4q31q32q34 − p1p72p3p4q31q33q34 − p71p2p3p4q32q33q34

+ 2p1p2p
3
3p

5
4q

3
1q

3
2q

2
3q4 + 2p1p

3
2p3p

5
4q

3
1q

2
2q

3
3q4 + 2p31p2p3p

5
4q

2
1q

3
2q

3
3q4

+ 2p1p2p
5
3p

3
4q

3
1q

3
2q3q

2
4 + 2p1p

5
2p3p

3
4q

3
1q2q

3
3q

2
4 + 2p51p2p3p

3
4q1q

3
2q

3
3q

2
4

+ 2p1p
3
2p

5
3p4q

3
1q

2
2q3q

3
4 + 2p31p2p

5
3p4q

2
1q

3
2q3q

3
4 + 2p1p

5
2p

3
3p4q

3
1q2q

2
3q

3
4

+ 2p51p2p
3
3p4q1q

3
2q

2
3q

3
4 + 2p31p

5
2p3p4q

2
1q2q

3
3q

3
4 + 2p51p

3
2p3p4q1q

2
2q

3
3q

3
4

− 3p1p2p3p
5
4q

3
1q

3
2q

3
3q4 − 3p1p2p

5
3p4q

3
1q

3
2q3q

3
4 − 3p1p

5
2p3p4q

3
1q2q

3
3q

3
4

− 3p51p2p3p4q1q
3
2q

3
3q

3
4 + 3p31p

3
2p

3
3p

3
4q

2
1q

2
2q

2
3q

2
4 + 14p1p

3
2p

3
3p

3
4q

3
1q

2
2q

2
3q

2
4

+ 14p31p2p
3
3p

3
4q

2
1q

3
2q

2
3q

2
4 + 14p31p

3
2p3p

3
4q

2
1q

2
2q

3
3q

2
4 + 14p31p

3
2p

3
3p4q

2
1q

2
2q

2
3q

3
4

+ 24p1p2p
3
3p

3
4q

3
1q

3
2q

2
3q

2
4 + 24p1p

3
2p3p

3
4q

3
1q

2
2q

3
3q

2
4 + 24p31p2p3p

3
4q

2
1q

3
2q

3
3q

2
4

+ 24p1p
3
2p

3
3p4q

3
1q

2
2q

2
3q

3
4 + 24p31p2p

3
3p4q

2
1q

3
2q

2
3q

3
4 + 24p31p

3
2p3p4q

2
1q

2
2q

3
3q

3
4

+ 26p1p2p3p
3
4q

3
1q

3
2q

3
3q

2
4 + 26p1p2p

3
3p4q

3
1q

3
2q

2
3q

3
4 + 26p1p

3
2p3p4q

3
1q

2
2q

3
3q

3
4

+26p31p2p3p4q
2
1q

3
2q

3
3q

3
4 + 43p1p2p3p4q

3
1q

3
2q

3
3q

3
4

)
.

Since we calculated
∑

1≤j1<···<j7≤16 rj1 · · · rj7 as the coefficient of x9 above, we can just replace it here.

When 1 ≤ i1 < · · · < i10 ≤ 16, we can show that ri1 · · · ri10 = α2
1α

2
2α

2
3α

2
4β

2
1β

2
2β

2
3β

2
4(rj1 · · · rj6) where

rj1 , . . . , rj6 ∈ {ri1 , . . . , ri10}. For each ri1 · · · ri10 , there exists rs1 , . . . , rs4 ∈ {ri1 , . . . , ri10}, such that rs1 · · · rs4

= α2
1α

2
2α

2
3α

2
4β

2
1β

2
2β

2
3β

2
4 . This means ri1 · · · ri10 = rs1 · · · rs4(rj1 · · · rj6) = α2

1α
2
2α

2
3α

2
4β

2
1β

2
2β

2
3β

2
4(rj1 · · · rj6).

For example, if we take r1 · · · r10, then we can see that r7r8r9r10 = α2
1α

2
2α

2
3α

2
4β

2
1β

2
2β

2
3β

2
4 , which means

39



r1 · · · r10 = α2
1α

2
2α

2
3α

2
4β

2
1β

2
2β

2
3β

2
4(r1 · · · r6).

Thus, looking at the coefficient of x6, which becomes the coefficient of wn+6 in equation (3.4), we have

∑
1≤i1<···<i10≤16

ri1 · · · ri10 =α2
1α

2
2α

2
3α

2
4β

2
1β

2
2β

2
3β

2
4

 ∑
1≤j1<···<j6≤16

rj1 · · · rj6


=q21q

2
2q

2
3q

2
4

(
p21p

2
2p

4
3p

4
4q

2
1q

2
2q3q4 + p21p

4
2p

2
3p

4
4q

2
1q2q

2
3q4 + p41p

2
2p

2
3p

4
4q1q

2
2q

2
3q4
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4
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4
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2
4q
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1q2q3q

2
4 + p41p
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2
4q1q

2
2q3q

2
4 + p41p

4
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2
3p

2
4q1q2q

2
3q

2
4 − p22p23p64q31q22q23

− p21p23p64q21q32q23 − p21p22p64q21q22q33 − p22p63p24q31q22q24 − p21p63p24q21q32q24

− p62p23p24q31q23q24 − p61p23p24q32q23q24 − p21p62p24q21q33q24 − p61p22p24q22q33q24

− p21p22p63q21q22q34 − p21p62p23q21q23q34 − p61p22p23q22q23q34 − 2p23p
6
4q

3
1q

3
2q

2
3 − 2p22p
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3
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3 − 2p63p

2
4q

3
1q

3
2q

2
4 − 2p62p
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3
1q

3
3q

3
4 − 4p61q

3
2q

3
3q

3
4 + 5p21p
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2
3p
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3
4 − 6p21p

4
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− 12p23p
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2
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4
4q
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3
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4
4q

2
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3
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3
3q4 − 12p43p

2
4q

3
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3
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2
4

− 12p42p
2
4q

3
1q2q

3
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2
4 − 12p41p

2
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3
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3
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2
4 − 12p22p

4
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2
2q3q

3
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4
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2
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3
2q3q

3
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− 12p42p
2
3q
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1q2q

2
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3
4 − 12p41p

2
3q1q

3
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2
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3
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4
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2
1q2q
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3
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2
2q1q

2
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3
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3
4
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2
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2
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2
4q

2
1q

2
2q

2
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2
4 − 24p44q

3
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3
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3
3q4 − 24p43q

3
1q

3
2q3q

3
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3
1q2q

3
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3
4

− 24p41q1q
3
2q

3
3q

3
4 − 31p22p

2
3p

2
4q

3
1q

2
2q

2
3q

2
4 − 31p21p

2
3p

2
4q

2
1q

3
2q

2
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2
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2
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2
4q
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2
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2
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− 31p21p
2
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2
3q

2
1q

2
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2
3q

3
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2
4q

3
1q

3
2q

2
3q

2
4 − 46p22p

2
4q

3
1q

2
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3
3q

2
4 − 46p21p

2
4q

2
1q

3
2q

3
3q

2
4

− 46p22p
2
3q

3
1q

2
2q

2
3q

3
4 − 46p21p

2
3q

2
1q

3
2q

2
3q

3
4 − 46p21p

2
2q

2
1q

2
2q

3
3q

3
4 − 60p24q

3
1q

3
2q

3
3q

2
4

−60p23q
3
1q

3
2q

2
3q

3
4 − 60p22q

3
1q

2
2q

3
3q

3
4 − 60p21q

2
1q

3
2q

3
3q

3
4 − 56q31q

3
2q

3
3q

3
4 ).

Since we calculated
∑

1≤j1<···<j6≤16 rj1 · · · rj6 as the coefficient of x10 above, we can just replace it here.
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When 1 ≤ i1 < · · · < i11 ≤ 16, we can show that ri1 · · · ri11 = α3
1α

3
2α

3
3α

3
4β

3
1β

3
2β

3
3β

3
4(rj1 · · · rj5) where

rj1 , . . . , rj5 ∈ {ri1 , . . . , ri11}. For each ri1 · · · ri11 , there exists rs1 , . . . , rs6 ∈ {ri1 , . . . , ri11}, such that rs1 · · · rs6

= α3
1α

3
2α

3
3α

3
4β

3
1β

3
2β

3
3β

3
4 . This means ri1 · · · ri11 = rs1 · · · rs6(rj1 · · · rj5) = α3

1α
3
2α

3
3α

3
4β

3
1β

3
2β

3
3β

3
4(rj1 · · · rj5). For

example, if we take r1 · · · r11, then we can see that r6r7r8r9r10r11 = α3
1α

3
2α

3
3α

3
4β

3
1β

3
2β

3
3β

3
4 , which means

r1 · · · r11 = α3
1α

3
2α

3
3α

3
4β

3
1β

3
2β

3
3β

3
4(r1 · · · r5).

Thus, looking at the coefficient of x5, which becomes the coefficient of wn+5 in equation (3.4), we have

∑
1≤i1<···<i11≤16

ri1 · · · ri11 =α3
1α

3
2α

3
3α

3
4β

3
1β

3
2β

3
3β

3
4

 ∑
1≤j1<···<j5≤16

rj1 · · · rj5


=q31q

3
2q

3
3q

3
4

(
p31p

3
2p

3
3p

3
4q1q2q3q4 − p1p2p33p54q21q22q3 − p1p32p3p54q21q2q23

− p31p2p3p54q1q22q23 − p1p2p53p34q21q22q4 − p1p52p3p34q21q23q4 − p51p2p3p34q22q23q4

− p1p32p53p4q21q2q24 − p31p2p53p4q1q22q24 − p1p52p33p4q21q3q24 − p51p2p33p4q22q3q24

− p31p52p3p4q1q23q24 − p51p32p3p4q2q23q24 − 5p1p2p3p
5
4q

2
1q

2
2q

2
3 − 5p1p2p

5
3p4q

2
1q

2
2q

2
4

− 5p1p
5
2p3p4q

2
1q

2
3q

2
4 − 5p51p2p3p4q

2
2q

2
3q

2
4 − 9p1p2p

3
3p

3
4q

2
1q

2
2q3q4 − 9p1p

3
2p3p

3
4q

2
1q2q

2
3q4

− 9p31p2p3p
3
4q1q

2
2q

2
3q4 − 9p1p

3
2p

3
3p4q

2
1q2q3q

2
4 − 9p31p2p

3
3p4q1q

2
2q3q

2
4

− 9p31p
3
2p3p4q1q2q

2
3q

2
4 − 31p1p2p3p

3
4q

2
1q

2
2q

2
3q4 − 31p1p2p

3
3p4q

2
1q

2
2q3q

2
4

−31p1p
3
2p3p4q

2
1q2q

2
3q

2
4 − 31p31p2p3p4q1q

2
2q

2
3q

2
4 − 63p1p2p3p4q

2
1q

2
2q

2
3q

2
4

)
.

Since we calculated
∑

1≤j1<···<j5≤16 rj1 · · · rj5 as the coefficient of x11 above, we can just replace it here.

When 1 ≤ i1 < · · · < i12 ≤ 16, we can show that ri1 · · · ri12 = α4
1α

4
2α

4
3α

4
4β

4
1β

4
2β

4
3β

4
4(rj1 · · · rj4) where

rj1 , . . . , rj4 ∈ {ri1 , . . . , ri12}. For each ri1 · · · ri12 , there exists rs1 , . . . , rs8 ∈ {ri1 , . . . , ri12}, such that rs1 · · · rs8

= α4
1α

4
2α

4
3α

4
4β

4
1β

4
2β

4
3β

4
4 . This means ri1 · · · ri12 = rs1 · · · rs8(rj1 · · · rj4) = α4

1α
4
2α

4
3α

4
4β

4
1β

4
2β

4
3β

4
4(rj1 · · · rj4). For

example, if we take r1 · · · r12, then we can see that r5 · · · r12 = α4
1α

4
2α

4
3α

4
4β

4
1β

4
2β

4
3β

4
4 , this means r1 · · · r12 =

α4
1α

4
2α

4
3α

4
4β

4
1β

4
2β

4
3β

4
4(r1 · · · r4).

Thus, looking at the coefficient of x4, which becomes the coefficient of wn+4 in equation (3.4), we have

∑
1≤i1<···<i12≤16

ri1 · · · ri12 =α4
1α

4
2α

4
3α

4
4β

4
1β

4
2β

4
3β

4
4

 ∑
1≤j1<···<j4≤16

rj1 · · · rj4


=q41q

4
2q

4
3q

4
4

(
p43p

4
4q

2
1q

2
2 + p42p

4
4q

2
1q

2
3 + p41p

4
4q

2
2q

2
3 + p42p

4
3q

2
1q

2
4 + p41p

4
3q

2
2q

2
4 + p41p

4
2q

2
3q

2
4

− p21p22p23p44q1q2q3 − p21p22p43p24q1q2q4 − p21p42p23p24q1q3q4 − p41p22p23p24q2q3q4
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+ 4p23p
4
4q

2
1q

2
2q3 + 4p22p

4
4q

2
1q2q

2
3 + 4p21p

4
4q1q

2
2q

2
3 + 4p43p

2
4q

2
1q

2
2q4 + 4p42p

2
4q

2
1q

2
3q4

+ 4p41p
2
4q

2
2q

2
3q4 + 4p22p

4
3q

2
1q2q

2
4 + 4p21p

4
3q1q

2
2q

2
4 + 4p42p

2
3q

2
1q3q

2
4 + 4p41p

2
3q

2
2q3q

2
4

+ 4p21p
4
2q1q

2
3q

2
4 + 4p41p

2
2q2q

2
3q

2
4 + 6p44q

2
1q

2
2q

2
3 + 6p43q

2
1q

2
2q

2
4 + 6p42q

2
1q

2
3q

2
4 + 6p41q

2
2q

2
3q

2
4

− 9p21p
2
2p

2
3p

2
4q1q2q3q4 + 16p23p

2
4q

2
1q

2
2q3q4 + 16p22p

2
4q

2
1q2q

2
3q4 + 16p21p

2
4q1q

2
2q

2
3q4

+ 16p22p
2
3q

2
1q2q3q

2
4 + 16p21p

2
3q1q

2
2q3q

2
4 + 16p21p

2
2q1q2q

2
3q

2
4 + 24p24q

2
1q

2
2q

2
3q4

+24p23q
2
1q

2
2q3q

2
4 + 24p22q

2
1q2q

2
3q

2
4 + 24p21q1q

2
2q

2
3q

2
4 + 28q21q

2
2q

2
3q

2
4

)
.

Since we calculated
∑

1≤j1<···<j4≤16 rj1 · · · rj4 as the coefficient of x12 above, we can just replace it here.

When 1 ≤ i1 < · · · < i13 ≤ 16, we can show that ri1 · · · ri13 = α5
1α

5
2α

5
3α

5
4β

5
1β

5
2β

5
3β

5
4(rirjrk) where

ri, rj , rk ∈ {ri1 , . . . , ri13}. For each ri1 · · · ri13 , there exists rs1 , . . . , rs10 ∈ {ri1 , . . . , ri13}, such that rs1 · · · rs10

= α5
1α

5
2α

5
3α

5
4β

5
1β

5
2β

5
3β

5
4 . This means ri1 · · · ri13 = rs1 · · · rs10(rirjrk) = α5

1α
5
2α

5
3α

5
4β

5
1β

5
2β

5
3β

5
4(rirjrk). For

example, if we take r1 · · · r13, then we can see that r4 · · · r13 = α5
1α

5
2α

5
3α

5
4β

5
1β

5
2β

5
3β

5
4 , which means r1 · · · r13 =

α5
1α

5
2α

5
3α

5
4β

5
1β

5
2β

5
3β

5
4(r1r2r3).

Thus, looking at the coefficient of x3, which becomes the coefficient of wn+3 in equation (3.4), we have

∑
1≤i1<···<i13≤16

ri1 · · · ri13 =α5
1α

5
2α

5
3α

5
4β

5
1β

5
2β

5
3β

5
4

 ∑
1≤i<j<k≤16

rirjrk


=q51q

5
2q

5
3q

5
4

(
p1p2p

3
3p

3
4q1q2 + p1p

3
2p3p

3
4q1q3 + p31p2p3p

3
4q2q3 + p1p

3
2p

3
3p4q1q4

+ p31p2p
3
3p4q2q4 + p31p

3
2p3p4q3q4 + 5p1p2p3p

3
4q1q2q3 + 5p1p2p

3
3p4q1q2q4

+5p1p
3
2p3p4q1q3q4 + 5p31p2p3p4q2q3q4 + 19p1p2p3p4q1q2q3q4

)
.

Since we calculated
∑

1≤i<j<k≤16 rirjrk as the coefficient of x13 above, we can just replace it here.

When 1 ≤ i1 < · · · < i14 ≤ 16, we can show that ri1 · · · ri14 = α6
1α

6
2α

6
3α

6
4β

6
1β

6
2β

6
3β

6
4(rirj) where

ri, rj ∈ {ri1 , . . . , ri14}. For each ri1 · · · ri14 , there exists rs1 , . . . , rs12 ∈ {ri1 , . . . , ri14}, such that rs1 · · · rs12 =

α6
1α

6
2α

6
3α

6
4β

6
1β

6
2β

6
3β

6
4 . This means ri1 · · · ri14 = rs1 · · · rs12(rirj) = α6

1α
6
2α

6
3α

6
4β

6
1β

6
2β

6
3β

6
4(rirj). For exam-

ple, if we take r1 · · · r14, then we can see that r3 · · · r14 = α6
1α

6
2α

6
3α

6
4β

6
1β

6
2β

6
3β

6
4 , which means r1 · · · r14 =

α6
1α

6
2α

6
3α

6
4β

6
1β

6
2β

6
3β

6
4(r1r2).

Thus, looking at the coefficient of x2, which becomes the coefficient of wn+2 in equation (3.4), we have

∑
1≤i1<···<i14≤16

ri1 · · · ri14 =α6
1α

6
2α

6
3α

6
4β

6
1β

6
2β

6
3β

6
4

 ∑
1≤i<j≤16

rirj


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=− q61q62q63q64
(
p22p

2
3p

2
4q1 + p21p

2
3p

2
4q2 + p21p

2
2p

2
4q3 + p21p

2
2p

2
3q4 + 2p23p

2
4q1q2

+ 2p22p
2
4q1q3 + 2p21p

2
4q2q3 + 2p22p

2
3q1q4 + 2p21p

2
3q2q4 + 2p21p

2
2q3q4 + 4p24q1q2q3

+4p23q1q2q4 + 4p22q1q3q4 + 4p21q2q3q4 + 8q1q2q3q4
)
.

Since we calculated
∑

1≤i<j≤16 rirj as the coefficient of x14 above, we can just replace it here.

When 1 ≤ i1 < · · · < i15 ≤ 16, we can show that ri1 · · · ri15 = α7
1α

7
2α

7
3α

7
4β

7
1β

7
2β

7
3β

7
4(ri) where ri ∈

{ri1 , . . . , ri15}. For each ri1 · · · ri15 , there exists an rs1 , . . . , rs14 ∈ {ri1 , . . . , ri15}, such that rs1 · · · rs14 =

α7
1α

7
2α

7
3α

7
4β

7
1β

7
2β

7
3β

7
4 . This means ri1 · · · ri15 = rs1 · · · rs14(ri) = α7

1α
7
2α

7
3α

7
4β

7
1β

7
2β

7
3β

7
4(ri). For example, if we

take r1 · · · r15, then we can see that r2 · · · r15 = α7
1α

7
2α

7
3α

7
4β

7
1β

7
2β

7
3β

7
4 , which means

r1 · · · r15 = α7
1α

7
2α

7
3α

7
4β

7
1β

7
2β

7
3β

7
4(r1).

Thus, looking at the coefficient of x, which becomes the coefficient of wn+1 in equation (3.4), we have

∑
1≤i1<···<i15≤16

ri1 · · · ri15 =α7
1α

7
2α

7
3α

7
4β

7
1β

7
2β

7
3β

7
4

 ∑
1≤i≤16

ri

 = p1p2p3p4q
7
1q

7
2q

7
3q

7
4

Since we calculated
∑

1≤i≤16 ri as the coefficient of x15 above, we can just replace it here.

Looking at the constant, which becomes the coefficient of wn in equation (3.4), we have

∑
1≤i1<···<i16≤16

ri1 · · · ri16 = α8
1α

8
2α

8
3α

8
4β

8
1β

8
2β

8
3β

8
4 = q81q

8
2q

8
3q

8
4 .

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (3.4).

Case 2: Let one characteristic function have duplicate roots and the other three have distinct roots. WLOG

we can say the characteristic function of {an} has the duplicate root, meaning α1 = β1 , α2 6= β2, α3 6= β3,

and α4 6= β4. Then, from equation (3.1), we have

wn =anbncndn

=

(
na1b1c1d1

(α2 − β2)(α3 − β3)(α4 − β4)

)
(αn2 − βn2 )(αn3 − βn3 )(αn4 − βn4 )αn−11

=

(
na1b1c1d1

α1(α2 − β2)(α3 − β3)(α4 − β4)

)
((α1α2α3α4)n − (α1α2α3β4)n − (α1α2β3α4)n + (α1α2β3β4)n

−(α1β2α3α4)n + (α1β2α3β4)n + (α1β2β3α4)n − (α1β2β3β4)n) .

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed

as a linear homogeneous recurrence relation whose characteristic equation has roots α1α2α3α4, α1α2α3β4,
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α1α2β3α4, α1α2β3β4, α1β2α3α4, α1β2α3β4, α1β2β3α4, and α1β2β3β4 each with a multiplicity of at least

two. We will let each of them have multiplicity two since that means we will have sixteen roots, which is

how many characteristic roots we need for a sixteenth order linear divisible sequence. Thus, if the roots of

the characteristic equation of {wn = anbncndn} are r1 = α1α2α3α4, r2 = α1α2α3β4, r3 = α1α2β3α4, r4 =

α1α2β3β4, r5 = α1β2α3α4, r6 = α1β2α3β4, r7 = α1β2β3α4, r8 = α1β2β3β4, r9 = α1α2α3α4, r10 = α1α2α3β4,

r11 = α1α2β3α4, r12 = α1α2β3β4, r13 = α1β2α3α4, r14 = α1β2α3β4, r15 = α1β2β3α4, and r16 = α1β2β3β4,

then the characteristic equation is

16∏
i=1

(x− ri) = x16 −

 ∑
1≤i≤16

ri

x15 + · · ·+ (−1)k

 ∑
1≤i1<···<ik≤16

ri1 · · · rik

x16−k, fork ≤ 16.

At this point, this case becomes the same as case 1 by simply replacing β1 with α1 throughout. This works

because, in this case, α1 + α1 = p1 and α1α1 = −q1.

Case 3: Let two characteristic functions have duplicate roots and the other two have distinct roots. WLOG

we can say the characteristic functions of {an} and {bn} have the duplicate roots, meaning α1 = β1 , α2 = β2,

α3 6= β3, and α4 6= β4. Then, from equation (3.1), we have

wn =anbncndn

=

(
n2a1b1c1d1

(α3 − β3)(α4 − β4)

)
(αn3 − βn3 )(αn4 − βn4 )αn−11 αn−12

=

(
n2a1b1c1d1

α1α2(α3 − β3)(α4 − β4)

)
((α1α2α3α4)n − (α1α2α3β4)n − (α1α2β3α4)n + (α1α2β3β4)n) .

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed

as a linear homogeneous recurrence relation whose characteristic equation has roots α1α2α3α4, α1α2α3β4,

α1α2β3α4, and α1α2β3β4 each with a multiplicity of at least three. We will let each of them have multiplicity

four since that means we will have sixteen roots, which is how many characteristic roots we need for a

sixteenth order linear divisible sequence. Thus, if the roots of the characteristic equation of {wn=anbncndn}

are r1 = α1α2α3α4, r2 = α1α2α3β4, r3 = α1α2β3α4, r4 = α1α2β3β4, r5 = α1α2α3α4, r6 = α1α2α3β4, r7 =

α1α2β3α4, r8 =α1α2β3β4, r9 =α1α2α3α4, r10 =α1α2α3β4, r11 =α1α2β3α4, r12 =α1α2β3β4, r13 =α1α2α3α4,

r14 =α1α2α3β4, r15 =α1α2β3α4, and r16 =α1α2β3β4, then the characteristic equation is

16∏
i=1

(x− ri) = x16 −

 ∑
1≤i≤16

ri

x15 + · · ·+ (−1)k

 ∑
1≤i1<···<ik≤16

ri1 · · · rik

x16−k, fork ≤ 16.
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At this point, this case becomes the same as case 1 by simply replacing β1 with α1 and β2 with α2 throughout.

This works because, in this case, α1 + α1 = p1, α1α1 = −q1, α2 + α2 = p2, and α2α2 = −q2.

Case 4: Let three characteristic functions have duplicate roots and the other have distinct roots. WLOG we

can say the characteristic functions of {an}, {bn}, and {cn} have the duplicate roots, meaning α1 = β1 ,

α2 = β2, α3 = β3, and α4 6= β4. Then, from equation (3.1), we have

wn =anbncndn

=

(
n3a1b1c1d1
(α4 − β4)

)
(αn4 − βn4 )αn−11 αn−12 αn−13

=

(
n3a1b1c1d1

α1α2α3(α4 − β4)

)
((α1α2α3α4)n − (α1α2α3β4)n) .

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as

a linear homogeneous recurrence relation whose characteristic equation has roots α1α2α3α4 and α1α2α3β4

each with a multiplicity of at least four. We will let each of them have multiplicity eight since that means

we will have sixteen roots, which is how many characteristic roots we need for a sixteenth order linear

divisible sequence. Thus, if the roots of the characteristic equation of {wn = anbncndn} are r1 = α1α2α3α4,

r2 = α1α2α3β4, r3 = α1α2α3α4, r4 = α1α2α3β4, r5 = α1α2α3α4, r6 = α1α2α3β4, r7 = α1α2α3α4,

r8 = α1α2α3β4, r9 = α1α2α3α4, r10 = α1α2α3β4, r11 = α1α2α3α4, r12 = α1α2α3β4, r13 = α1α2α3α4,

r14 = α1α2α3β4, r15 = α1α2α3α4, and r16 = α1α2α3β4, then the characteristic equation is

16∏
i=1

(x− ri) = x16 −

 ∑
1≤i≤16

ri

x15 + · · ·+ (−1)k

 ∑
1≤i1<···<ik≤16

ri1 · · · rik

x16−k, fork ≤ 16.

At this point, this case becomes the same as case 1 by simply replacing β1 with α1, β2 with α2, and β3 with

α3 throughout. This works because, in this case, α1 + α1 = p1, α1α1 = −q1, α2 + α2 = p2, α2α2 = −q2,

α3 + α3 = p3, and α3α3 = −q3.

Case 5: Let each characteristic functions have duplicate roots, meaning α1 = β1 , α2 = β2, α3 = β3, and

α4 = β4. Then, from equation (3.1), we have

wn = anbncndn = n4a1b1c1d1α
n−1
1 αn−12 αn−13 αn−14 =

n4a1b1c1d1
α1α2α3α4

(α1α2α3α4)n.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed

as a linear homogeneous recurrence relation whose characteristic equation has the root α1α2α3α4 with a
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multiplicity of at least five. We will let it have multiplicity sixteen since that means we will have sixteen roots,

which is how many characteristic roots we need for a sixteenth order linear divisible sequence. Thus, if the

roots of the characteristic equation of {wn = anbncndn} are r1 = α1α2α3α4, r2 = α1α2α3α4, r3 = α1α2α3α4,

r4 = α1α2α3α4, r5 = α1α2α3α4, r6 = α1α2α3α4, r7 = α1α2α3α4, r8 = α1α2α3α4, r9 = α1α2α3α4,

r10 = α1α2α3α4, r11 = α1α2α3α4, r12 = α1α2α3α4, r13 = α1α2α3α4, r14 = α1α2α3α4, r15 = α1α2α3α4, and

r16 = α1α2α3α4, then the characteristic equation is

16∏
i=1

(x− ri) = x16 −

 ∑
1≤i≤16

ri

x15 + · · ·+ (−1)k

 ∑
1≤i1<···<ik≤16

ri1 · · · rik

x16−k, fork ≤ 16.

At this point, this case becomes the same as case 1 by simply replacing β1 with α1, β2 with α2, and β3 with

α3 throughout. This works because, in this case, α1 + α1 = p1, α1α1 = −q1, α2 + α2 = p2, α2α2 = −q2,

α3 + α3 = p3, α3α3 = −q3, α4 + α4 = p4, and α4α4 = −q4.

Therefore, when we multiply four distinct second order linear divisible sequences we can construct a

sixteenth order linear divisible sequence defined by recurrence relation (3.4). It is easy to see from our

definition of {wn = anbncndn} that wi = aibicidi for 0 ≤ i ≤ 15

Next, we have an example that takes the product of four second order linear divisible sequences to

construct a sixteenth order linear divisible sequence.

Example 3.5. Using the Fibonacci sequence, Pell number sequence, Mersenne number sequences, and the

sequence of natural numbers including zero we define a sequence {wn = FnPnMnNn}. Then, by Theorem

3.5, we get a sixteenth order linear divisible sequence that satisfies the recurrence relation

wn+16 =12wn+15 + 18wn+14 − 456wn+13 − 443wn+12 + 6336wn+11 + 11106wn+10 − 27468wn+9

− 87873wn+8 − 54936wn+7 + 44424wn+6 + 50688wn+5 − 7088wn+4 − 14592wn+3

+ 1152wn+2 + 1536wn+1 − 256wn,

for n ≥ 0. The table below shows some terms of the sequence {wn = FnPnMnNn}.
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n wn n wn n wn n wn

0 0 7 1953133 14 6985177048668 21 18614391293902412190

1 1 8 17478720 15 58472015201250 22 152351119164258982308

2 12 9 154020510 16 487277559095040 23 1244354656992194910737

3 210 10 1337981700 17 4044847083436931 24 10144273043247536793600

4 2160 11 11505038633 18 33459590559699360 25 82554933399852260719375

5 22475 12 98075577600 19 275928071551639237 26 670763926581706461658908

6 211680 13 830185445479 20 2269164648115530000 27 5441936114229817195931490

Table 3.5: Terms of the sequence {wn = FnPnMnNn}
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CHAPTER 4

POWERS OF SECOND ORDER LINEAR DIVISIBLE SEQUENCES

In this chapter, we will look at taking powers of a single second order linear divisible sequence. We start

with the work done by He and Shiue in [9] where they squared a single second order linear divisible sequence

and cubed a single second order linear divisible sequence. We then move on to the forth, fifth, and sixth

powers of a single second order linear divisible sequence. We take these powers term by term; thus, {wn} is

the sequence
{
aj0, a

j
1, a

j
2, . . .

}
.

We start with looking at what the powers of the general forms of second order linear divisible sequences

will look like. Let {an} be a second order linear divisible sequences that satisfies equation (2.1) with a0 = 0.

Then {an} has a characteristic function x2−px−q = 0 with roots α and β such that α+β = p and αβ = −q.

Since {an} is a second order divisible sequences it can be expressed by equation (2.5). Then the sequence

{wn = ajn} has one of the following expressions depending on weather the roots of the characteristic equation

of {an} are distinct or not.

wn =


(

a1
α−β

)j
(αn − βn)

j
, if α 6= β;

njaj1
(
αn−1

)j
, if α = β.

(4.1)

4.1

Square of a Second Order Linear Divisible Sequences

In this section, we will square a second order linear divisible sequence in order to come up with a single

higher order linear divisible sequence. This squaring constructs a third order linear divisible sequences.

Theorem 4.1. [9] Let {an} be a second order linear divisible sequence that can be defined by (2.1) with

initial condition a0 = 0 and a1 arbitrary. Suppose that the sequence {an} has a characteristic equation

x2− px− q = 0 with roots α and β, such that α+ β = p and αβ = −q. Then
{
wn = a2n

}
is a linear divisible
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sequence that satisfies the third order linear homogeneous recurrence relation

wn+3 =
(
p2 + q

)
wn+2 + q

(
p2 + q

)
wn+1 − q3wn (4.2)

for n ≥ 0 with initial conditions w2 = a22, w1 = a21, and w0 = a20 = 0.

Proof. Let {an} be a second order linear divisible sequence that can be defined by (2.1) with initial condition

a0 = 0 and a1 arbitrary. Let the sequence {an} have the characteristic equation x2 − px− q = 0 with roots

α and β, such that α+ β = p and αβ = −q.

Case 1: Let the characteristic function have distinct roots, meaning α 6= β. Then, by equation (4.1), we have

wn = a2n

=

(
a1

α− β

)2

(αn − βn)2

=

(
a21

(α− β)2

)((
α2
)n − 2 (αβ)

n
+
(
β2
)n)

.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as

a linear homogeneous recurrence relation whose characteristic equation has roots α2, αβ, and β2 each with

a multiplicity of at least one. We will let each of them have multiplicity one since that means we will have

three roots, which is how many characteristic roots we need for a third order linear divisible sequence. Thus,

the characteristic equation is

(
x− α2

)
(x− αβ)

(
x− β2

)
= x3 −

(
α2 + αβ + β2

)
x2 +

(
α3β + α2β2 + αβ3

)
x− α3β3.

Looking at the coefficient of x2, which becomes the coefficient of wn+2 in equation (4.2), we have

α2 + αβ + β2 = α2 + 2αβ + β2 − αβ

= (α+ β)
2 − αβ

= p2 + q.

Looking at the coefficient of x, which becomes the coefficient of wn+1 in equation (4.2), we have

α3β + α2β2 + αβ3 = αβ
(
α2 + αβ + β2

)
= αβ

(
α2 + 2αβ + β2 − αβ

)
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= αβ
(

(α+ β)
2 − αβ

)
= q

(
p2 + q

)
.

Looking at the constant, which becomes the coefficient of wn in equation (4.2), we have

α3β3 = (αβ)
3

= (−q)3 = −q3.

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (4.2).

Case 2: Let the characteristic function have a duplicate root, meaning α = β. Then, by equation (4.1), we

have

wn = a2n = n2a21
(
α2
)n−1

=
n2a21
α2

(
α2
)n
.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as

a linear homogeneous recurrence relation whose characteristic equation has the root α2 with a multiplicity

of at least three. We will let it have multiplicity three since that means we will have three roots, which is

how many characteristic roots we need for a third order linear divisible sequence. Thus, if the roots of the

characteristic equation of
{
wn = a2n

}
are α2, α2, and α2, then the characteristic equation is

(
x− α2

) (
x− α2

) (
x− α2

)
.

At this point, this case becomes the same as case 1 by simply replacing β with α throughout. This works

because, in this case, α+ α = p and αα = −q.

Therefore, when we take the square of a second order linear divisible sequence, we can construct a

third order linear divisible sequence defined by recurrence relation (4.2). It is easy to see by how we define

{wn = a2n} that w2 = a22, w1 = a21, and w0 = a20 = 0.

Note that in He and Shiue [9] they only proved case 1 from Theorem 4.1. The second case is proven here

so that we can see that the recurrence relation (4.2) still works when the roots of the characteristic equation

are the same.

Next, we have examples that square second order linear divisible sequences to construct third order linear

divisible sequences.
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Example 4.1. [9]Using the Fibonacci sequence, we define the sequence
{
wn = F 2

n

}
. Then, by Theorem 4.1,

we get a third order linear divisible sequence that satisfies the recurrence relation

wn+3 = 2wn+2 + 2wn+1 − wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = F 2

n

}
.

n wn n wn n wn n wn n wn n wn n wn

0 0 3 4 6 64 9 1156 12 20736 15 372100 18 6677056

1 1 4 9 7 169 10 3025 13 54289 16 974169 19 17480761

2 1 5 25 8 441 11 7921 14 142129 17 2550409 20 45765225

Table 4.1: Terms of the sequence
{
wn = F 2

n

}

Example 4.2. [9] Using the Pell number sequence, we define the sequence
{
wn = P 2

n

}
. Then, by Theorem

4.1, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+3 = 5wn+2 + 5wn+1 − wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = P 2

n

}
.

n wn n wn n wn n wn n wn n wn n wn

0 0 3 25 6 4900 9 970225 12 192099600 15 38034750625 18 7530688524100

1 1 4 144 7 28561 10 5654884 13 1119638521 16 221682772224 19 43892069261881

2 4 5 841 8 166464 11 32959081 14 6525731524 17 1292061882721 20 255821727047184

Table 4.2: Terms of the sequence
{
wn = P 2

n

}

Example 4.3. [9] Using the Mersenne number sequence, we define the sequence
{
wn = M2

n

}
. Then, by

Theorem 4.1, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+3 = 7wn+2 − 14wn+1 + 8wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = M2

n

}
.

n wn n wn n wn n wn n wn n wn n wn

0 0 3 49 6 3969 9 261121 12 16769025 15 1073676289 18 68718952449

1 1 4 225 7 16129 10 1046529 13 67092481 16 4294836225 19 274876858369

2 9 5 961 8 65025 11 4190209 14 268402689 17 17179607041 20 1099509530625

Table 4.3: Terms of the sequence
{
wn = M2

n

}

Example 4.4. Using the sequence of natural numbers including zero, we define the sequence
{
wn = N2

n

}
.
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Then, by Theorem 4.1, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+3 = 3wn+2 − 3wn+1 + wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = N2

n

}
.

n wn n wn n wn n wn n wn n wn n wn

0 0 3 9 6 36 9 81 12 144 15 225 18 324

1 1 4 16 7 49 10 100 13 169 16 256 19 361

2 4 5 25 8 64 11 121 14 196 17 289 20 400

Table 4.4: Terms of the sequence
{
wn = N2

n

}

4.2

Cube of a Second Order Linear Divisible Sequences

In this section we will cube a second order linear divisible sequence in order to come up with a single

higher order linear divisible sequence. This cubing constructs a fourth order linear divisible sequences.

Theorem 4.2. [9] Let {an} be a second order linear divisible sequence that can be defined by (2.1) with initial

condition a0 = 0 and a1 arbitrary. Suppose the sequence {an} has a characteristic equation x2 − px− q = 0

with roots α and β, such that α + β = p and αβ = −q. Then
{
wn = a3n

}
is a linear divisible sequence that

satisfies the fourth order linear homogeneous recurrence relation

wn+4 = p
(
p2 + 2q

)
wn+3 + q

(
p2 + q

) (
p2 + 2q

)
wn+2 − pq3

(
p2 + 2q

)
wn+1 − q6wn (4.3)

for n ≥ 0 with initial conditions w3 = a33, w2 = a32, w1 = a31, and w0 = a30 = 0.

Proof. Let {an} be a second order linear divisible sequence that can be defined by (2.1) with initial condition

a0 = 0 and a1 arbitrary. Let the sequence {an} have the characteristic equation x2 − px− q = 0 with roots

α and β, such that α+ β = p and αβ = −q.

Case 1: Let the characteristic function have distinct roots, meaning α 6= β. Then, by equation (4.1), we have

wn = a3n

=

(
a1

α− β

)3

(αn − βn)3

=

(
a31

(α− β)3

)((
α3
)n − 3

(
α2β

)n
+ 3

(
αβ2

)n − (β3
)n)

.
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Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as a

linear homogeneous recurrence relation whose characteristic equation has roots α3, α2β, αβ2, and β3 each

with a multiplicity of at least one. We will let each of them have multiplicity one since that means we will

have four roots, which is how many characteristic roots we need for a fourth order linear divisible sequence.

Thus, the characteristic equation is

(
x− α3

) (
x− α2β

) (
x− αβ2

) (
x− β3

)
= x4 −

(
α3 + α2β + αβ2 + β3

)
x3 +

(
α5β + α4β2 + 2α3β3 + α2β4 + αβ5

)
x2

−
(
α6β3 + α5β4 + α4β5 + α3β6

)
x+ α6β6.

Looking at the coefficient of x3, which becomes the coefficient of wn+3 in equation (4.3), we have

α3 + α2β + αβ2 + β3 = (α+ β)
3 − 3α2β − 3αβ2 + α2β + αβ2

= (α+ β)
3 − 2α2β − 2αβ2

= (α+ β)
3 − 2αβ (α+ β)

= p3 + 2pq

= p
(
p2 + 2q

)
.

Looking at the coefficient of x2, which becomes the coefficient of wn+2 in equation (4.3), we have

α5β + α4β2 + 2α3β3 + α2β4 + αβ5 = αβ
(
α4 + α3β + 2α2β2 + αβ3 + β4

)
= αβ

((
α2 + β2

)2 − 2α2β2 + α3β + 2α2β2 + αβ3
)

= αβ
((
α2 + β2

)2
+ αβ

(
α2 + β2

))
= αβ

((
(α+ β)

2 − 2αβ
)2

+ αβ
(

(α+ β)
2 − 2αβ

))
= −q

((
p2 + 2q

)2 − q (p2 + 2q
))

= −q
(
p4 + 4p2q + 4q2 − p2q − 2q2

)
= −q

(
p4 + 3p2q + 2q2

)
= −q

(
p2 + 2q

) (
p2 + q

)
.
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Looking at the coefficient of x, which becomes the coefficient of wn+1 in equation (4.3), we have

α6β3 + α5β4 + α4β5 + α3β6 = α3β3
(
α3 + α2β + αβ2 + β3

)
= α3β3

(
(α+ β)

3 − 3α2β − 3αβ2 + α2β + αβ2
)

= α3β3
(

(α+ β)
3 − 2α2β − 2αβ2

)
= α3β3

(
(α+ β)

3 − 2αβ (α+ β)
)

= −q3
(
p3 + 2pq

)
= −pq3

(
p2 + 2q

)
.

Looking at the constant, which becomes the coefficient of wn in equation (4.3), we have

α6β6 = (αβ)
6

= (−q)6 = q6.

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (4.3).

Case 2: Let the characteristic function have a duplicate root, meaning α = β. Then, by equation (4.1,) we

have

wn = a3n = n3a31
(
α3
)n−1

=
n3a31
α3

(
α3
)n
.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as

a linear homogeneous recurrence relation whose characteristic equation has the root α3 with a multiplicity

of at least four. We will let it have multiplicity four since that means we will have four roots, which is

how many characteristic roots we need for a fourth order linear divisible sequence. Thus, if the roots of the

characteristic equation of
{
wn = a3n

}
are α3, α3, α3, and α3, then the characteristic equation is

(
x− α3

) (
x− α3

) (
x− α3

) (
x− α3

)
.

At this point, this case becomes the same as case 1 by simply replacing β with α throughout the proof of

that case. This works because, in this case, α+ α = p and αα = −q.

Therefore, when we take the cube of a second order linear divisible sequence, we can construct a fourth

order linear divisible sequence defined by recurrence relation (4.3). It is easy to see by how we define

{wn = a3n} that w3 = a33, w2 = a32, w1 = a31, and w0 = a30 = 0.
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Note that in He and Shiue [9] they only proved case 1 from Theorem 4.2. The second case is proven here

so that we can see that the recurrence relation (4.3) still works when the roots of the characteristic equation

are the same.

Next, we have examples that cube second order linear divisible sequences to construct forth order linear

divisible sequences.

Example 4.5. [9] Using the Fibonacci sequence, we define the sequence
{
wn = F 3

n

}
. Then, by Theorem

4.2, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+4 = 3wn+3 + 6wn+2 − 3wn+1 − wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = F 3

n

}
.

n wn n wn n wn n wn n wn n wn n wn

0 0 3 8 6 512 9 39304 12 2985984 15 226981000 18 17253512704

1 1 4 27 7 2197 10 166375 13 12649337 16 961504803 19 73087061741

2 1 5 125 8 9261 11 704969 14 53582633 17 4073003173 20 309601747125

Table 4.5: Terms of the sequence
{
wn = F 3

n

}

Example 4.6. [9] Using the Pell number sequence, we define the sequence
{
wn = P 3

n

}
. Then, by Theorem

4.2, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+4 = 12wn+3 + 30wn+2 − 12wn+1 − wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = P 3

n

}
.

n wn n wn n wn n wn

0 0 6 343000 12 2662500456000 18 20665790754720461000

1 1 7 4826809 13 37464224551181 19 290789743095511170029

2 8 8 67917312 14 527161643971768 20 4091722194091837090752

3 125 9 955671625 15 7417727240640625 21 57574900460381326407125

4 1728 10 13447314152 16 104375343011770368 22 810140328639430175106712

5 24389 11 189218084021 17 1468672529408250769 23 11399539501412404337235241

Table 4.6: Terms of the sequence
{
wn = P 3

n

}

Example 4.7. [9] Using of the Mersenne sequence, we define the sequence
{
wn = M3

n

}
. Then, by Theorem

4.2, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+4 = 15wn+3 − 70wn+2 + 120wn+1 − 64wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = M3

n

}
.
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n wn n wn n wn n wn

0 0 6 250047 12 68669157375 18 18014192351838207

1 1 7 2048383 13 549554511871 19 144114363443707903

2 27 8 16581375 14 4397241253887 20 1152918206075109375

3 343 9 133432831 15 35181150961663 21 9223358842721533951

4 3375 10 1070599167 16 281462092005375 22 73786923518292656127

5 29791 11 8577357823 17 2251748274470911 23 590295599252498284543

Table 4.7: Terms of the sequence
{
wn = M3

n

}
Example 4.8. Using the sequence of natural numbers including zero, we define the sequence

{
wn = N3

n

}
.

Then, by Theorem 4.2, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+4 = 4wn+3 − 6wn+2 + 4wn+1 − wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = N3

n

}
.

n wn n wn n wn n wn n wn n wn n wn

0 0 3 27 6 216 9 729 12 1728 15 3375 18 5832

1 1 4 64 7 343 10 1000 13 2197 16 4096 19 6859

2 8 5 125 8 512 11 1331 14 2744 17 4913 20 8000

Table 4.8: Terms of the sequence
{
wn = N3

n

}

4.3

Fourth Power of a Second Order Linear Divisible Sequences

In this section, we will find the fourth power a second order linear divisible sequence in order to come up

with a single higher order linear divisible sequence. Raising a second order linear divisible sequences to the

fourth power constructs a fifth order linear divisible sequence.

Theorem 4.3. Let {an} be a second order linear divisible sequence that can be defined by (2.1) with initial

condition a0 = 0 and a1 arbitrary. Suppose the sequence {an} has a characteristic equation x2 − px− q = 0

with roots α and β, such that α + β = p and αβ = −q. Then
{
wn = a4n

}
is a linear divisible sequence that

satisfies the fifth order linear homogeneous recurrence relation

wn+5 =
(
p4 + 3 p2q + q2

)
wn+4 +

(
p6q + 5 p4q2 + 7 p2q3 + 2 q4

)
wn+3

−
(
p6q3 + 5 p4q4 + 7 p2q5 + 2 q6

)
wn+2 −

(
p4q6 + 3 p2q7 + q8

)
wn+1 + q10wn

(4.4)

for n ≥ 0 with initial conditions w4 = a44, w3 = a43, w2 = a42, w1 = a41, and w0 = a40 = 0.

Proof. Let {an} be a second order linear divisible sequence that can be defined by (2.1) with initial condition

56



a0 = 0 and a1 arbitrary. Let the sequence {an} have the characteristic equation x2 − px− q = 0 with roots

α and β, such that α+ β = p and αβ = −q.

Case 1: Let the characteristic function have distinct roots, meaning α 6= β. Then, by equation (4.1), we have

wn = a4n

=

(
a1

α− β

)4

(αn − βn)4

=

(
a41

(α− β)4

)((
α4
)n − 4

(
α3β

)n
+ 6

(
α2β2

)n − 4
(
αβ3

)n
+
(
β4
)n)

.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as a

linear homogeneous recurrence relation whose characteristic equation has roots α4, α3β, α2β2, αβ3, and β4

each with a multiplicity of at least one. We will let each of them have multiplicity one since that means we

will have five roots, which is how many characteristic roots we need for a fifth order linear divisible sequence.

Thus, the characteristic equation is

(
x− α4

) (
x− α3β

) (
x− α2β2

) (
x− αβ3

) (
x− β4

)
= x5 −

(
α4 + α3β + α2β2 + αβ3 + β4

)
x4 +

(
α7β + α6β2 + 2α5β3 + 2α4β4 + 2α3β5 + α2β6 + αβ7

)
x3

−
(
α9β3 + α8β4 + 2α7β5 + 2α6β6 + 2α5β7 + α4β8 + α3β9

)
x2

+
(
α10β6 + α9β7 + α8β8 + α7β9 + α6β10

)
x− α10β10

Looking at the coefficient of x4, which becomes the coefficient of wn+4 in equation (4.4), we have

α4 + α3β + α2β2 + αβ3 + β4 =
((
α2 + β2

)2
+ α3β − α2β2 + αβ3

)
=
((
α2 + β2

)2
+ αβ

(
α2 − αβ + β2

))
=

((
(α+ β)

2 − 2αβ
)2

+ αβ
(

(α+ β)
2 − 3αβ

))
=
((
p2 + 2 q

)2 − q (p2 + 3 q
))

= p4 + 3p2q + q2.

Looking at the coefficient of x3, which becomes the coefficient of wn+3 in equation (4.4), we have

α7β + α6β2 + 2α5β3 + 2α4β4 + 2α3β5 + α2β6 + αβ7 =
(
α4 + α3β + α2β2 + αβ3 + β4

) (
α2 + β2

)
αβ
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= −
((
p2 + 2 q

)2 − q (p2 + 3 q
)) (

p2 + 2 q
)
q

= −
(
p6q + 5p4q2 + 7p2q3 + 2q4

)
.

Looking at the coefficient of x2, which becomes the coefficient of wn+2 in equation (4.4), we have

α9β3 + α8β4 + 2α7β5 + 2α6β6 + 2α5β7 + α4β8 + α3β9 =
(
α4 + α3β + α2β2 + αβ3 + β4

) (
α2 + β2

)
α3β3

= −
((
p2 + 2 q

)2 − q (p2 + 3 q
)) (

p2 + 2 q
)
q3

= −
(
p6q3 + 5p4q4 + 7p2q5 + 2q6

)
.

Looking at the coefficient of x, which becomes the coefficient of wn+1 in equation (4.4), we have

α10β6 + α9β7 + α8β8 + α7β9 + α6β10 =
(
α4 + α3β + α2β2 + αβ3 + β4

)
α6β6

=
((
p2 + 2 q

)2 − q (p2 + 3 q
))
q6

= p4q6 + 3p2q7 + q8.

Looking at the constant, which becomes the coefficient of wn in equation (4.4), we have

α10β10 = q10.

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (4.4).

Case 2: Let the characteristic function have a duplicate root, meaning α = β. Then, by equation (4.1), we

have

wn = a4n = n4a41
(
α4
)n−1

=
n4a41
α4

(
α4
)n
.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as a

linear homogeneous recurrence relation whose characteristic equation has the root α4 with a multiplicity of

at least five. We will let it have multiplicity five since that means we will have five roots, which is how many

characteristic roots we need for a fifth order linear divisible sequence. Thus, if the roots of the characteristic

equation of
{
wn = a4n

}
are α4, α4, α4, α4, and α4, then the characteristic equation is

(
x− α4

) (
x− α4

) (
x− α4

) (
x− α4

) (
x− α4

)
.
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At this point, this case becomes the same as case 1 by simply replacing β with α throughout. This works

because, in this case, α+ α = p and αα = −q.

Therefore, when we take the fourth power of a second order linear divisible sequence, we can construct

a fifth order linear divisible sequence defined by recurrence relation (4.4). It is easy to see by how we define

{wn = a4n} that w4 = a44, w3 = a43, w2 = a42, w1 = a41, and w0 = a40 = 0.

Next, we have examples that take the fourth pour given second order linear divisible sequences to con-

struct fifth order linear divisible sequences.

Example 4.9. Using the Fibonacci sequence, we define the sequence
{
wn = F 4

n

}
. Then, by Theorem 4.3,

we get a third order linear divisible sequence that satisfies the recurrence relation

wn+5 = 5wn+4 + 15wn+3 − 15wn+2 − 5wn+1 + wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = F 4

n

}
.

n wn n wn n wn n wn n wn

0 0 5 625 10 9150625 15 138458410000 20 2094455819300625

1 1 6 4096 11 62742241 16 949005240561 21 14355614096087056

2 1 7 28561 12 429981696 17 6504586067281 22 98394841894789441

3 16 8 194481 13 2947295521 18 44583076827136 23 674408281676875201

4 81 9 1336336 14 20200652641 19 305577005139121 24 4622463123273547776

Table 4.9: Terms of the sequence
{
wn = F 4

n

}

Example 4.10. Using the Pell number sequence, we define the sequence
{
wn = P 4

n

}
. Then, by Theorem

4.3, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+5 = 29wn+4 + 174wn+3 − 174wn+2 − 29wn+1 + wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = P 4

n

}
.

n wn n wn n wn n wn

0 0 5 707281 10 31977713053456 15 1446642255105937890625

1 1 6 24010000 11 1086301020364561 16 49143251500917865906176

2 16 7 815730721 12 36902256320160000 17 1669423908780535158363841

3 625 8 27710263296 13 1253590417707067441 18 56711269647011436280810000

4 20736 9 941336550625 14 42585171923327362576 19 1926513744089758912159658161

Table 4.10: Terms of the sequence
{
wn = P 4

n

}
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Example 4.11. Using the Mersenne number sequence, we define the sequence
{
wn = M4

n

}
. Then, by

Theorem 4.3, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+5 = 31wn+4 − 310wn+3 + 1240wn+2 − 1984wn+1 + 1024wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = M4

n

}
.

n wn n wn n wn n wn

0 0 5 923521 10 1095222947841 15 1152780773560811521

1 1 6 15752961 11 17557851463681 16 18445618199572250625

2 81 7 260144641 12 281200199450625 17 295138898083176775681

3 2401 8 4228250625 13 4501401006735361 18 4722294425687923097601

4 50625 9 68184176641 14 72040003462430721 19 75557287266811285340161

Table 4.11: Terms of the sequence
{
wn = M4

n

}

Example 4.12. Using the sequence of natural numbers including zero, we define the sequence
{
wn = N4

n

}
.

Then, by Theorem 4.3, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+5 = 5wn+4 − 10wn+3 + 10wn+2 − 5wn+1 + wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = N4

n

}
.

n wn n wn n wn n wn n wn n wn n wn

0 0 3 81 6 1296 9 6561 12 20736 15 50625 18 104976

1 1 4 256 7 2401 10 10000 13 28561 16 65536 19 130321

2 16 5 625 8 4096 11 14641 14 38416 17 83521 20 160000

Table 4.12: Terms of the sequence
{
wn = N4

n

}

4.4

Fifth Power of a Second Order Linear Divisible Sequences

In this section, we will find the fifth power of a second order linear divisible sequence in order to come

up with a single higher order linear divisible sequence. Raising a second order linear divisible sequences to

the fifth power constructs a sixth order linear divisible sequence.

Theorem 4.4. Let {an} be a second order linear divisible sequence that can be defined by (2.1) with initial

condition a0 = 0 and a1 arbitrary. Suppose the sequence {an} has a characteristic equation x2 − px− q = 0

with roots α and β, such that α + β = p and αβ = −q. Then
{
wn = a5n

}
is a linear divisible sequence that
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satisfies the sixth order linear homogeneous recurrence relation

wn+6 =
(
p5 + 4p3q + 3pq2

)
wn+5 +

(
p8q + 7p6q2 + 16p4q3 + 13p2q4 + 3q5

)
wn+4

−
(
p9q3 + 8p7q4 + 22p5q5 + 23p3q6 + 6pq7

)
wn+3

−
(
p8q6 + 7p6q7 + 16p4q8 + 13p2q9 + 3q10

)
wn+2

+
(
p5q10 + 4p3q11 + 3pq12

)
wn+1 + q15wn

(4.5)

for n ≥ 0 with initial conditions wi = a5i for 0 ≤ i ≤ 5.

Proof. Let {an} be a second order linear divisible sequence that can be defined by (2.1) with initial condition

a0 = 0 and a1 arbitrary. Let the sequence {an} have the characteristic equation x2 − px− q = 0 with roots

α and β, such that α+ β = p and αβ = −q.

Case 1: Let the characteristic function have distinct roots, meaning α 6= β. Then, by equation (4.1), we have

wn = a5n

=

(
a1

α− β

)5

(αn − βn)5

=

(
a51

(α− β)5

)((
α5
)n − 5

(
α4β

)n
+ 10

(
α3β2

)n − 10
(
α2β3

)n
+ 5

(
αβ4

)n − (β5
)n)

.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed

as a linear homogeneous recurrence relation whose characteristic equation has roots r1 = α5, r2 = α4β,

r3 = α3β2, r4 = α2β3, r5 = αβ4, and r6 = β5 each with a multiplicity of at least one. We will let each of

them have multiplicity one since that means we will have six roots, which is how many characteristic roots

we need for a sixth order linear divisible sequence. Thus, the characteristic equation is

6∏
i=1

(x− ri) = x6 −

 ∑
1≤i≤6

ri

x5 + · · ·+ (−1)k

 ∑
1≤i1<···<ik≤6

ri1 · · · rik

x6−k, for k ≤ 6.

Looking at the coefficient of x5, which becomes the coefficient of wn+5 in equation (4.5), we have

∑
1≤i≤6

ri = α5 + α4β + α3β2 + α2β3 + αβ4 + β5

=
(
α2 + αβ + β2

) (
α2 − αβ + β2

)
(α+ β)

=
(
p2 + q

) (
p2 + 3q

)
p

= p5 + 4p3q + 3pq2.
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Looking at the coefficient of x4, which becomes the coefficient of wn+4 in equation (4.5), we have

∑
1≤i<j≤6

rirj = α9β + α8β2 + 2α7β3 + 2α6β4 + 3α5β5 + 2α4β6 + 2α3β7 + α2β8 + αβ9

=
(
α4 + α3β + α2β2 + αβ3 + β4

) (
α2 + αβ + β2

) (
α2 − αβ + β2

)
αβ

= −
((
p2 + 2q

)2 − q (p2 + 3q
)) (

p2 + q
) (
p2 + 3q

)
q

= −
(
p8q + 7p6q2 + 16p4q3 + 13p2q4 + 3q5

)
.

Looking at the coefficient of x3, which becomes the coefficient of wn+3 in equation (4.5), we have

∑
1≤i<j<k≤6

rirjrk = α12β3 + α11β4 + 2α10β5 + 3α9β6 + 3α8β7 + 3α7β8 + 3α6β9 + 2α5β10 + α4β11 + α3β12

=
(
α4 + α3β + α2β2 + αβ3 + β4

) (
α2 − αβ + β2

) (
α2 + β2

)
(α+ β)α3β3

= −
((
p2 + 2q

)2 − q (p2 + 3q
)) (

p2 + 3q
) (
p2 + 2q

)
pq3

= −
(
p9q3 + 8p7q4 + 22p5q5 + 23p3q6 + 6pq7

)
.

Looking at the coefficient of x2, which becomes the coefficient of wn+2 in equation (4.5), we have

∑
1≤i1<···<i4≤6

ri1 · · · ri4 = α14β6 + α13β7 + 2α12β8 + 2α11β9 + 3α10β10 + 2α9β11 + 2α8β12 + α7β13 + α6β14

=
(
α4 + α3β + α2β2 + αβ3 + β4

) (
α2 + αβ + β2

) (
α2 − αβ + β2

)
α6β6

=
((
p2 + 2q

)2 − q (p2 + 3q
)) (

p2 + q
) (
p2 + 3q

)
q6

= p8q6 + 7p6q7 + 16p4q8 + 13p2q9 + 3q10.

Note here for x4, x3, and x2, we are using the result for α4 + α3β + α2β2 + αβ3 + β4 that was shown in

Theorem 4.3. Looking at the coefficient of x, which becomes the coefficient of wn+1 in equation (4.5), we

have

∑
1≤i1<···<i5≤6

ri1 · · · ri5 = α15β10 + α14β11 + α13β12 + α12β13 + α11β14 + α10β15

=
(
α2 + αβ + β2

) (
α2 − αβ + β2

)
(α+ β)α10β10

=
(
p2 + q

) (
p2 + 3q

)
pq10

= p5q10 + 4p3q11 + 3pq12.
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Looking at the constant, which becomes the coefficient of wn in equation (4.5), we have

∑
1≤i1<···<i6≤6

ri1 · · · ri6 = α15β15 = −q15.

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (4.5).

Case 2: Let the characteristic function have a duplicate root, meaning α = β. Then, by equation (4.1), we

have

wn = a5n = n5a51
(
α5
)n−1

=
n5a51
α5

(
α5
)n
.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as a

linear homogeneous recurrence relation whose characteristic equation has the root α5 with a multiplicity of

at least six. We will let it have multiplicity six since that means we will have six roots, which is how many

characteristic roots we need for a sixth order linear divisible sequence. Thus, if the roots of the characteristic

equation of
{
wn = a5n

}
are α5, α5, α5, α5, α5, and α5, then the characteristic equation is

(
x− α5

) (
x− α5

) (
x− α5

) (
x− α5

) (
x− α5

) (
x− α5

)
.

At this point, this case becomes the same as case 1 by simply replacing β with α throughout. This works

because, in this case, α+ α = p and αα = −q.

Therefore, when we take the fifth power of a second order linear divisible sequence, we can construct a

sixth order linear divisible sequence defined by recurrence relation (4.5). It is easy to see by how we define

{wn = a5n} that wi = a5i for 0 ≤ i ≤ 5

Next, we have examples that take the fifth power of second order linear divisible sequences to construct

sixth order linear divisible sequences.

Example 4.13. Using the Fibonacci sequence, we define the sequence
{
wn = F 5

n

}
. Then, by Theorem 4.4,

we get a third order linear divisible sequence that satisfies the recurrence relation

wn+6 = 8wn+5 + 40wn+4 − 60wn+3 − 40wn+2 + 8wn+1 + wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = F 5

n

}
.
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n wn n wn n wn n wn

0 0 6 32768 12 61917364224 18 115202670521319424

1 1 7 371293 13 686719856393 19 1277617458486664901

2 1 8 4084101 14 7615646045657 20 14168993617568728125

3 32 9 45435424 15 84459630100000 21 157136551895768914976

4 243 10 503284375 16 936668172433707 22 1742671044798615789551

5 3125 11 5584059449 17 10387823949447757 23 19326518128014212635057

Table 4.13: Terms of the sequence
{
wn = F 5

n

}
Example 4.14. Using the Pell number sequence, we define the sequence

{
wn = P 5

n

}
. Then, by Theorem

4.4, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+6 = 70wn+5 + 1015wn+4 − 2436wn+3 − 1015wn+2 + 70wn+1 + wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = P 5

n

}
.

n wn n wn n wn

0 0 7 137858491849 14 3440115358310231003614432

1 1 8 11305787424768 15 282131405802035537119140625

2 32 9 927216502365625 16 23138215390680160640336658432

3 3125 10 76043001641118368 17 1897615793447837728625436062449

4 248832 11 6236454157912944701 18 155627633278025253556161610100000

5 20511149 12 511465272597417600000 19 12763363544592758576779160719364549

6 1680700000 13 41946388966896183643301 20 1046751438289866781164861609994042368

Table 4.14: Terms of the sequence
{
wn = P 5

n

}

Example 4.15. Using the Mersenne number sequence, we define the sequence
{
wn = M5

n

}
. Then, by

Theorem 4.4, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+6 = 63wn+5 − 1302wn+4 + 11160wn+3 − 41664wn+2 + 645126wn+1 + 32768wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = M5

n

}
.

n wn n wn n wn

0 0 7 33038369407 14 1180231376725002502143

1 1 8 1078203909375 15 37773167607267111108607

2 243 9 34842114263551 16 1208833588708967444709375

3 16807 10 1120413075641343 17 38684150510660063165284351

4 759375 11 35940921946155007 18 1237916427633109224574418943

5 28629151 12 1151514816750309375 19 39613703469254688357136990207

6 992436543 13 36870975646169341951 20 1267644555610660532401787109375

Table 4.15: Terms of the sequence
{
wn = M5

n

}

Example 4.16. Using the sequence of natural numbers including zero, we define the sequence
{
wn = N5

n

}
.
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Then, by Theorem 4.4, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+6 = 6wn+5 − 15wn+4 + 20wn+3 − 15wn+2 + 6wn+1 − wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = N5

n

}
.

n wn n wn n wn n wn n wn n wn n wn

0 0 3 243 6 7776 9 59049 12 248832 15 759375 18 1889568

1 1 4 1024 7 16807 10 100000 13 371293 16 1048576 19 2476099

2 32 5 3125 8 32768 11 161051 14 537824 17 1419857 20 3200000

Table 4.16: Terms of the sequence
{
wn = N5

n

}

4.5

Sixth Power of a Second Order Linear Divisible Sequences

In this section we will find find the sixth power a second order divisible sequence in order to come up

with a single higher order linear divisible sequence. Raising a second order linear divisible sequences to the

sixth power constructs a seventh order linear divisible sequence.

Theorem 4.5. Let {an} be a second order linear divisible sequence that can be defined by (2.1) with initial

condition a0 = 0 and a1 arbitrary. Suppose the sequence {an} has a characteristic equation x2 − px− q = 0

with roots α and β, such that α + β = p and αβ = −q. Then
{
wn = a6n

}
is a linear divisible sequence that

satisfies the seventh order linear homogeneous recurrence relation

wn+7 =
(
p6 + 5p4q + 6p2q2 + q3

)
wn+6 +

(
p10q + 9p8q2 + 29p6q3 + 40p4q4 + 22p2q5 + 3q6

)
wn+5

−
(
p12q3 + 11p10q4 + 46p8q5 + 90p6q6 + 81p4q7 + 28p2q8 + 3q9

)
wn+4

−
(
p12q6 + 11p10q7 + 46p8q8 + 90p6q9 + 81p4q10 + 28p2q11 + 3q12

)
wn+3

+
(
p10q10 + 9p8q11 + 29p6q12 + 40p4q13 + 22p2q14 + 3q15

)
wn+2

+
(
p6q15 + 5p4q16 + 6p2q17 + q18

)
wn+1 − q21wn

(4.6)

for n ≥ 0 with initial conditions wi = a6i for 0 ≤ i ≤ 6.

Proof. Let {an} be a second order linear divisible sequence that can be defined by (2.1) with initial condition

a0 = 0 and a1 arbitrary. Let the sequence {an} have the characteristic equation x2 − px− q = 0 with roots

α and β, such that α+ β = p and αβ = −q.
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Case 1: Let the characteristic function have distinct roots, meaning α 6= β. Then, by equation (4.1), we have

wn = a5n

=

(
a1

α− β

)6

(αn − βn)6

=

(
a51

(α− β)5

)((
α6
)n − 6

(
α5β

)n
+ 15

(
α4β2

)n − 20
(
α3β3

)n
+ 15

(
α2β4

)n − 6
(
αβ5

)n
+
(
β6
)n)

.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed

as a linear homogeneous recurrence relation whose characteristic equation has roots r1 = α6, r2 = α5β,

r3 = α4β2, r4 = α3β3, r5 = α2β4, r6 = αβ5, and r7 = β6 each with a multiplicity of at least one. We

will let each of them have multiplicity one since that means we will have seven roots, which is how many

characteristic roots we need for a seventh order linear divisible sequence. Thus, the characteristic equation

is
7∏
i=1

(x− ri) = x7 −

 ∑
1≤i≤7

ri

x6 + · · ·+ (−1)k

 ∑
1≤i1<···<ik≤7

ri1 · · · rik

x7−k, for k ≤ 7.

Looking at the coefficient of x6, which becomes the coefficient of wn+6 in equation (4.6), we have

∑
1≤i≤7

ri = α6 + α5β + α4β2 + α3β3 + α2β4 + αβ5 + β6

=
(
α2 + β2

) (
α4 − α2β2 + β4

)
+ αβ

(
α4 + α3β + α2β2 + αβ3 + β4

)
=
(
p2 + 2q

) ((
p2 + 2q

)2 − 3q2
)
− q

((
p2 + 2 q

)2 − q (p2 + 3 q
))

= p6 + 5p4q + 6p2q2 + q3.

Looking at the coefficient of x5, which becomes the coefficient of wn+5 in equation (4.6), we have

∑
1≤i<j≤7

rirj = α11β + α10β2 + 2α9β3 + 2α8β4 + 3α7β5 + 3α6β6 + 3α5β7 + 2α4β8 + 2α3β9 + α2β10 + αβ11

=
(
α6 + α5β + α4β2 + α3β3 + α2β4 + αβ5 + β6

) (
α2 + αβ + β2

) (
α2 − αβ + β2

)
αβ

= −
((
p2 + 2q

) ((
p2 + 2q

)2 − 3q2
)
− q

((
p2 + 2 q

)2 − q (p2 + 3 q
))) (

p2 + q
) (
p2 + 3q

)
q

= −
(
p10q + 9p8q2 + 29p6q3 + 40p4q4 + 22p2q5 + 3q6

)
.

Looking at the coefficient of x4, which becomes the coefficient of wn+4 in equation (4.6), we have

∑
1≤i<j<k≤7

rirjrk = α15β3 + α14β4 + 2α13β5 + 3α12β6 + 4α11β7 + 4α10β8 + 5α9β9 + 4α8β10 + 4α7β11
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+ 3α6β12 + 2α5β13 + α4β14 + α3β15

=
(
α6 + α5β + α4β2 + α3β3 + α2β4 + αβ5 + β6

) (
α4 + α3β + α2β2 + αβ3 + β4

)
×
(
α2 − αβ + β2

)
α3β3

= −
((
p2 + 2q

) ((
p2 + 2q

)2 − 3q2
)
− q

((
p2 + 2 q

)2 − q (p2 + 3 q
)))

×
((
p2 + 2 q

)2 − q (p2 + 3 q
)) (

p2 + 3q
)
q3

= −
(
p12q3 + 11p10q4 + 46p8q5 + 90p6q6 + 81p4q7 + 28p2q8 + 3q9

)
.

Looking at the coefficient of x3, which becomes the coefficient of wn+3 in equation (4.6), we have

∑
1≤i1<···<i4≤7

ri1 · · · ri4 = α18β6 + α17β7 + 2α16β8 + 3α15β9 + 4α14β10 + 4α13β11 + 5α12β12

+ 4α11β13 + 4α10β14 + 3α9β15 + 2α8β16 + α7β17 + α6β18

=
(
α6 + α5β + α4β2 + α3β3 + α2β4 + αβ5 + β6

) (
α4 + α3β + α2β2 + αβ3 + β4

)
×
(
α2 − αβ + β2

)
α6β6

=
((
p2 + 2q

) ((
p2 + 2q

)2 − 3q2
)
− q

((
p2 + 2 q

)2 − q (p2 + 3 q
)))

×
((
p2 + 2 q

)2 − q (p2 + 3 q
)) (

p2 + 3q
)
q6

= p12q6 + 11p10q7 + 46p8q8 + 90p6q9 + 81p4q10 + 28p2q11 + 3q12.

Looking at the coefficient of x2, which becomes the coefficient of wn+2 in equation (4.6), we have

∑
1≤i1<···<i5≤7

ri1 · · · ri5 = α20β10 + α19β11 + 2α18β12 + 2α17β13 + 3α16β14 + 3α15β15 + 3α14β16

+ 2α13β17 + 2α12β18 + α11β19 + α10β20

=
(
α6 + α5β + α4β2 + α3β3 + α2β4 + αβ5 + β6

) (
α2 + αβ + β2

)
×
(
α2 − αβ + β2

)
α10β10

=
((
p2 + 2q

) ((
p2 + 2q

)2 − 3q2
)
− q

((
p2 + 2 q

)2 − q (p2 + 3 q
))) (

p2 + q
)

×
(
p2 + 3q

)
q10

= p10q10 + 9p8q11 + 29p6q12 + 40p4q13 + 22p2q14 + 3q15.

67



Looking at the coefficient of x, which becomes the coefficient of wn+1 in equation (4.6), we have

∑
1≤i1<···<i6≤7

ri1 · · · ri6 = α21β15 + α20β16 + α19β17 + α18β18 + α17β19 + α16β20 + α15β21

=
(
α6 + α5β + α4β2 + α3β3 + α2β4 + αβ5 + β6

)
α15β15

= −
((
p2 + 2q

) ((
p2 + 2q

)2 − 3q2
)
− q

((
p2 + 2 q

)2 − q (p2 + 3 q
)))

q15

= −
(
p6q15 + 5p4q16 + 6p2q17 + q18

)
Looking at the constant, which becomes the coefficient of wn in equation (4.6), we have

∑
1≤i1<···<i6≤7

ri1 · · · ri7 = α21β15 = −q21.

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (4.6).

Case 2: Let the characteristic function have a duplicate root, meaning α = β. Then, by equation (4.1), we

have

wn = a6n = n6a61
(
α6
)n−1

=
n6a61
α6

(
α6
)n
.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as

a linear homogeneous recurrence relation whose characteristic equation has the root α6 with a multiplicity

of at least seven. We will let it have multiplicity seven since that means we will have seven roots, which is

how many characteristic roots we need for a seventh order linear divisible sequence. Thus, if the roots of the

characteristic equation of
{
wn = a6n

}
are α6, α6, α6, α6, α6, α6, and α6, then the characteristic equation is

(
x− α6

) (
x− α6

) (
x− α6

) (
x− α6

) (
x− α6

) (
x− α6

) (
x− α6

)
.

At this point, this case becomes the same as case 1 by simply replacing β with α throughout. This works

because, in this case, α+ α = p and αα = −q.

Therefore, when we take the sixth power of a second order linear divisible sequence, we can construct a

seventh order linear divisible sequence defined by recurrence relation (4.6). It is easy to see by how we define

{wn = a6n} that wi = a6i for 0 ≤ i ≤ 6.
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Next, we have examples that take the sixth power of second order linear divisible sequences to construct

seventh order linear divisible sequences.

Example 4.17. Using the Fibonacci sequence, we define the sequence
{
wn = F 6

n

}
. Then, by Theorem 4.5,

we get a third order linear divisible sequence that satisfies the recurrence relation

wn+7 = 13wn+6 + 104wn+5 − 260wn+4 − 260wn+3 + 104wn+2 + 13wn+1 − wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = F 6

n

}
.

n wn n wn n wn n wn

0 0 6 262144 12 8916100448256 18 297683700627089391616

1 1 7 4826809 13 160005726539569 19 5341718593932745951081

2 1 8 85766121 14 2871098559212689 20 95853241822852445765625

3 64 9 1544804416 15 51520374361000000 21 1720016697051086543327296

4 729 10 27680640625 16 924491486192068809 22 30864446874428284248737761

5 15625 11 496981290961 17 16589354847268067929 23 553840029994503291482828449

Table 4.17: Terms of the sequence
{
wn = F 6

n

}

Example 4.18. Using the Pell number sequence, we define the sequence
{
wn = P 6

n

}
. Then, by Theorem

4.5, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+7 = 169wn+6 + 5915wn+5 − 34307wn+4 − 34307wn+3 + 5915wn+2 + 169wn+1 − wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = P 6

n

}
.

n wn n wn n wn

0 0 6 117649000000 12 7088908678200207936000000

1 1 7 23298085122481 13 1403568121221313200888494761

2 64 8 4612761269305344 14 277899398875017080933981045824

3 15625 9 913308254830140625 15 55022677416541980626660400390625

4 2985984 10 180830257902579479104 16 10894212228824721394610989562855424

5 594823321 11 35803483320578215528441 17 2156998998638429219913518292389091361

Table 4.18: Terms of the sequence
{
wn = P 6

n

}

Example 4.19. Using the Mersenne number sequence, we define the sequence
{
wn = M6

n

}
. Then, by

Theorem 4.5, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+7 = 127wn+6 − 5334wn+5 + 94488wn+4 − 755904wn+3 + 2731008wn+2 − 4161536wn+1 + 2097152wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = M6

n

}
.
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n wn n wn n wn

0 0 6 62523502209 12 4715453174592516890625

1 1 7 4195872914689 13 302010161517773079920641

2 729 8 274941996890625 14 19335730644885715992608769

3 117649 9 17804320388674561 15 1237713382987321429695725569

4 11390625 10 1146182576381093889 16 79220909236042181489028890625

5 887503681 11 73571067223779299329 17 5070370291582725139136985169921

Table 4.19: Terms of the sequence
{
wn = M6

n

}
Example 4.20. Using the sequence of natural numbers including zero, we define the sequence

{
wn = N6

n

}
.

Then, by Theorem 4.5, we get a third order linear divisible sequence that satisfies the recurrence relation

wn+7 = 7wn+6 − 21wn+5 + 35wn+4 − 35wn+3 + 21wn+2 − 7wn+1 + wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = N6

n

}
.

n wn n wn n wn n wn n wn n wn n wn

0 0 3 729 6 46656 9 531441 12 2985984 15 11390625 18 34012224

1 1 4 4096 7 117649 10 1000000 13 4826809 16 16777216 19 47045881

2 64 5 15625 8 262144 11 1771561 14 7529536 17 24137569 20 64000000

Table 4.20: Terms of the sequence
{
wn = N6

n

}
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CHAPTER 5

PRODUCTS OF POWERS

In this chapter, we will be multiplying second order linear divisible sequence sequence that have been

raised to powers. First, we will look at taking the product of the square of a second order linear di-

visible sequence sequence times a different second order linear divisible sequence sequence not raised to

any power. Second, we will look at the product of the squares of two distinct second order linear divis-

ible sequence sequence. This product is defined term by term; thus, the sequence {wn} is the sequence{
ak101a

k2
02
· · · aki0i , a

k1
11
ak212 · · · a

ki
1i
, ak121a

k2
22
· · · aki2i , . . .

}
.

5.1

Product of the Square of a Second Order Times a Second Order

In this section, we look at multiplying the square of one second order linear divisible sequence by a

different second order linear divisible sequence in order to come up with a single higher order linear divisible

sequence. This multiplication constructs a sixth order linear divisible sequences.

Theorem 5.1. Let {an} and {bn} be distinct second order linear divisible sequences that can be defined by

(2.1) with initial conditions a0 = b0 = 0 and a1, b1 arbitrary. Suppose the sequence {an} has a characteristic

equation x2−p1x−q1 = 0 with roots α1 and β1, such that α1+β1 = p1 and α1β1 = −q1, and the sequence {bn}

has a characteristic equation x2−p2x−q2 = 0 with roots α2 and β2, such that α2 +β2 = p2 and α2β2 = −q2.

Then
{
wn = a2nbn

}
is a linear divisible that satisfies the sixth order linear homogeneous recurrence relation

wn+6 =
(
p21p2 + p2q1

)
wn+5 +

(
p41q2 + p21p

2
2q1 + 4p21q1q2 + p22q

2
1 + 3q21q2

)
wn+4

−
(
p41p2q1q2 + 2p21p2q

2
1q2 − 2p2q

3
1q2 − p22p2q31

)
wn+3 −

(
p41q

2
1q

2
2 + p21p

2
2q

3
1q2

+4p21q
3
1q

2
2 + p22q

4
1q2 + 3q41q

2
2

)
wn+2 +

(
p21p2q

4
1q

2
2 + p2q

5
1q

2
2

)
wn+1 + q61q

3
2wn.

(5.1)
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for n ≥ 0 and initial conditions wi = a2i bi for 0 ≤ i ≤ 5.

Proof. Let {an} and {bn} be distinct second order linear divisible sequences that can be defined by (2.1) with

initial conditions a0 = b0 = 0 and a1, b1 arbitrary. Let the sequence {an} have the characteristic equation

x2−p1x− q1 = 0 with roots α1 and β1, such that α1 +β1 = p1 and α1β1 = −q1, and the sequence {bn} have

the characteristic equation x2− p2x− q2 = 0 with roots α2 and β2, such that α2 + β2 = p2 and α2β2 = −q2.

Case 1: Let both characteristic functions have distinct roots, meaning α1 6= β1 and α2 6= β2. Then, by using

a combination of equations (3.1) and (4.1), we have

wn = a2nbn

=

(
a1

α1 − β1

)2

(αn1 − βn1 )2
(

b1
α2 − β2

)
(αn2 − βn2 )

=

(
a21b1

(α1 − β1)2(α2 − β2)

)((
α2
1

)n − 2 (α1β1)
n

+
(
β2
1

)n)
(αn2 − βn2 )

=

(
a21b1

(α1 − β1)2(α2 − β2)

)((
α2
1α2

)n − 2 (α1α2β1)
n

+
(
α2β

2
1

)n − (α2
1β2
)n

+ 2 (α1β1β2)
n −

(
β2
1β2
)n)

.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as

a linear homogeneous recurrence relation whose characteristic equation has roots r1 = α2
1α2, r2 = α1α2β1,

r3 = α2β
2
1 , r4 = α2

1β2, r5 = α1β1β2, and r6 = β2
1β2 each with a multiplicity of at least one. We will let

them have multiplicity one since that means we will have six roots, which is how many characteristic roots

we need for a sixth order linear divisible sequence. Thus, the characteristic equation is

6∏
i=1

(x− ri) = x6 −

 ∑
1≤i≤6

ri

x5 + · · ·+ (−1)k

 ∑
1≤i1<···<ik≤6

ri1 · · · rik

x6−k, for k ≤ 6.

Looking at the coefficient of x5, which becomes the coefficient of wn+5 in equation (5.1), we have

∑
1≤i≤6

ri = α2
1α2 + α1α2β1 + α2β

2
1 + α2

1β2 + α1β1β2 + β2
1β2

=
(
α2
1 + β2

1 + α1β1
)

(α2 + β2)

=
(

(α1 + β1)
2 − α1β1

)
(α2 + β2)

=
(
p21 + q1

)
p2

= p21p2 + p2q1.
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Looking at the coefficient of x4, which becomes the coefficient of wn+4 in equation (5.1), we have

∑
1≤i<j≤6

rirj = α3
1α

2
2β1 + α2

1α
2
2β

2
1 + α1α

2
2β

3
1 + α4

1α2β2 + 2α3
1α2β1β2 + 3α2

1α2β
2
1β2 + 2α1α2β

3
1β2

+ α2β
4
1β2 + α3

1β1β
2
2 + α2

1β
2
1β

2
2 + α1β

3
1β

2
2

=
(
α2
1α2β2 + α2β

2
1β2 + α1α

2
2β1 + α1β1β

2
2 + α1α2β1β2

) (
α2
1 + α1β1 + β2

1

)
=
(
α2β2

(
α2
1 + β2

1

)
+ α1β1

(
α2
2 + β2

2

)
+ α1α2β1β2

) (
α2
1 + β2

1 + α1β1
)

=
(
−q2

(
p21 + 2q1

)
− q1

(
p22 + 2q2

)
+ q1q2

) (
p21 + q1

)
= −

(
p41q2 + p21p

2
2q1 + 4p21q1q2 + p22q

2
1 + 3q21q2

)
Looking at the coefficient of x3, which becomes the coefficient of wn+3 in equation (5.1), we have

∑
1≤i<j<k≤6

rirjrk = α3
1α

3
2β

3
1 + α5

1α
2
2β1β2 + 2α4

1α
2
2β

2
1β2 + 3α3

1α
2
2β

3
1β2 + 2α2

1α
2
2β

4
1β2 + α1α

2
2β

5
1β2

+ α5
1α2β1β

2
2 + 2α4

1α2β
2
1β

2
2 + 3α3

1α2β
3
1β

2
2 + 2α2

1α2β
4
1β

2
2 + α1α2β

5
1β

2
2 + α3

1β
3
1β

3
2

=
(
α4
1α2β2 + α2β

4
1β2 + α2

1α
2
2β

2
1 + α2

1β
2
1β

2
2 + 2α3

1α2β1β2 + 2α2
1α2β

2
1β2 + 2α1α2β

3
1β2
)

× (α2 + β2)α1β1

=
(
α2β2

(
α4
1 + β4

1

)
+ α2

1β
2
1

(
α2
2 + β2

2

)
+ 2α1α2β1β2

(
α2
1 + β2

1 + α1β1
))

(α2 + β2)α1β1

= −
(
−q2

((
p21 + 2q1

)2 − 2q21

)
+ q21

(
p22 + 2q2

)
+ 2q1q2

(
p21 + q1

))
p2q1

= p41p2q1q2 + 2p21p2q
2
1q2 − 2p2q

3
1q2 − p22p2q31 .

Looking at the coefficient of x2, which becomes the coefficient of wn+2 in equation (5.1), we have

∑
1≤i1<···<i4≤6

ri1 · · · ri4 = α5
1α

3
2β

3
1β2 + α4

1α
3
2β

4
1β2 + α3

1α
3
2β

5
1β2 + α6

1α
2
2β

2
1β

2
2 + 2α5

1α
2
2β

3
1β

2
2 + 3α4

1α
2
2β

4
1β

2
2

+ 2α3
1α

2
2β

5
1β

2
2 + α2

1α
2
2β

6
1β

2
2 + α5

1α2β
3
1β

3
2 + α4

1α2β
4
1β

3
2 + α3

1α2β
5
1β

3
2

=
(
α2
1α2β2 + α2β

2
1β2 + α1α

2
2β1 + α1β1β

2
2 + α1α2β1β2

) (
α2
1 + α1β1 + β2

1

)
α2
1α2β

2
1β2

=
(
α2β2

(
α2
1 + β2

1

)
+ α1β1

(
α2
2 + β2

2

)
+ α1α2β1β2

) (
α2
1 + β2

1 + α1β1
)
α2
1β

2
1α2β2

= −
(
−q2

(
p21 + 2q1

)
− q1

(
p22 + 2q2

)
+ q1q2

) (
p21 + q1

)
q21q2

= p41q
2
1q

2
2 + p21p

2
2q

3
1q2 + 4p21q

3
1q

2
2 + p22q

4
1q2 + 3q41q

2
2 .
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Looking at the coefficient of x, which becomes the coefficient of wn+1 in equation (5.1), we have

∑
1≤i1<···<i5≤6

ri1 · · · ri5 = α6
1α

3
2β

4
1β

2
2 + α5

1α
3
2β

5
1β

2
2 + α4

1α
3
2β

6
1β

2
2 + α6

1α
2
2β

4
1β

3
2 + α5

1α
2
2β

5
1β

3
2 + α4

1α
2
2β

6
1β

3
2

=
(
α2
1 + β2

1 + α1β1
)

(α2 + β2)α4
1β

4
1α

2
2β

2
2

=
(
p21 + q1

)
p2q

4
1q

2
2

= p21p2q
4
1q

2
2 + p2q

5
1q

2
2 .

Looking at the constant, which becomes the coefficient of wn in equation (5.1), we have

∑
1≤i1<···<i5≤6

ri1 · · · ri5 = α6
1α

3
2β

6
1β

3
2 = −q61q32 .

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (5.1).

Case 2: Let the characteristic function of {an} have duplicate roots and the characteristic function of {bn}

have distinct roots, meaning α1 = β1 and α2 6= β2. Then, by using a combination of equations (3.1) and

(4.1), we have

wn = a2nbn

=

(
n2a21b1
α2 − β2

)
(αn2 − βn2 )

(
α2
1

)n−1
=

(
n2a21b1

α2
1(α2 − β2)

)((
α2
1α2

)n − (α2
1β2
)n)

=

(
n2a21b1

α2
1(α2 − β2)

)(
α2
1α2

)n − ( n2a21b1
α2
1(α2 − β2)

)(
α2
1β2
)n
.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as

a linear homogeneous recurrence relation whose characteristic equation has roots α2
1α2 and α2

1β2 each with

a multiplicity of at least three. We will let them have multiplicity three since that means we will have six

roots, which is how many characteristic roots we need for a sixth order linear divisible sequence. Thus, if

the roots of the characteristic equation of
{
wn = a2nbn

}
are r1 = α2

1α2, r2 = α2
1α2, r3 = α2

1α2, r4 = α2
1β2,

r5 = α2
1β2, and r6 = α2

1β2, then the characteristic equation is

6∏
i=1

(x− ri) = x6 −

 ∑
1≤i≤6

ri

x5 + · · ·+ (−1)k

 ∑
1≤i1<···<ik≤6

ri1 · · · rik

x6−k, for k ≤ 6.
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At this point, this case becomes the same as case 1 by simply replacing β1 with α1 throughout. This works

because, in this case, α1 + α1 = p1 and α1α1 = −q1.

Case 3: Let the characteristic function of {an} have distinct roots and the characteristic function of {bn}

have duplicate roots, meaning α1 6= β1 and α2 = β2. Then, by using a combination of equations (3.1) and

(4.1), we have

wn = a2nbn

=

(
na21b1

(α1 − β1)2

)
(αn1 − βn1 )

2
(α2)

n−1

=

(
na21b1

α2(α1 − β1)2

)((
α2
1α2

)n − 2
(
α1α2β

2
1

)n
+
(
α2β

2
1

)n)
.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as

a linear homogeneous recurrence relation whose characteristic equation has roots α2
1α2, α1α2β1, and α2β

2
1

each with a multiplicity of at least two. We will let them have multiplicity two since that means we will have

six roots, which is how many characteristic roots we need for a sixth order linear divisible sequence. Thus, if

the roots of the characteristic equation of
{
wn = a2nbn

}
are r1 = α2

1α2, r2 = α1α2β1, r3 = α2β
2
1 , r4 = α2

1α2,

r5 = α1α2β1, and r6 = α2β
2
1 , then the characteristic equation is

6∏
i=1

(x− ri) = x6 −

 ∑
1≤i≤6

ri

x5 + · · ·+ (−1)k

 ∑
1≤i1<···<ik≤6

ri1 · · · rik

x6−k, for k ≤ 6.

At this point, this case becomes the same as case 1 by simply replacing β2 with α2 throughout. This works

because, in this case, α2 + α2 = p2 and α2α2 = −q2.

Case 4: Let both characteristic functions have duplicate roots, meaning α1 = β1 and α2 = β2. Then, by

using a combination of equations (3.1) and (4.1), we have

wn = a2nbn = n3a21b1
(
α2
1

)n−1
αn−12 =

n3a21b1
α2
1α2

(
α2
1α2

)n
.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as a

linear homogeneous recurrence relation whose characteristic equation has the root α2
1α2 with a multiplicity

of at least six. We will let it have multiplicity six since that means we will have six roots, which is how many

characteristic roots we need for a sixth order linear divisible sequence. Thus, if the roots of the characteristic
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equation of
{
wn = a2nbn

}
are r1 = α2

1α2, r2 = α2
1α2, r3 = α2

1α2, r4 = α2
1α2, r5 = α2

1α2, and r6 = α2
1α2, then

the characteristic equation is

6∏
i=1

(x− ri) = x6 −

 ∑
1≤i≤6

ri

x5 + · · ·+ (−1)k

 ∑
1≤i1<···<ik≤6

ri1 · · · rik

x6−k, for k ≤ 6.

At this point, this case becomes the same as case 1 by simply replacing β1 with α1 and β2 with α2 throughout.

This works because, in this case, α1 + α1 = p1, α1α1 = −q1, α2 + α2 = p2, and α2α2 = −q2.

Therefore, when we multiply the square one second order linear divisible sequence by a different second

order linear divisible sequence, we can construct a sixth order linear divisible sequence defined by recurrence

relation (5.1). It is easy to see by how we define {wn = a2nbn} that wi = a2i bi for 0 ≤ i ≤ 5.

Next, we have examples that take the square of a second order linear divisible sequences and multiplies

it by a different second order linear divisible sequence to construct sixth order linear divisible sequences.

Example 5.1. Using the Fibonacci sequence and the Pell number sequence, we define the sequence{
wn = F 2

nPn
}

. Then, by Theorem 5.1, we get a sixth order linear divisible sequence that satisfies the

recurrence relation

wn+6 = 4wn+5 + 16wn+4 − 6wn+3 + 16wn+2 + 4wn+1 + wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = F 2

nPn
}

.

n wn n wn n wn n wn n wn n wn n wn

0 0 3 20 6 4480 9 1138660 12 287400960 15 72568802500 18 18323243845760

1 1 4 108 7 28561 10 7193450 13 1816564229 16 458669938608 19 115811947027949

2 2 5 725 8 179928 11 45474461 14 11481464878 17 2899021855801 20 731988596166300

Table 5.1: Terms of the sequence
{
wn = F 2

nPn
}

Example 5.2. Using the Pell number sequence and the Fibonacci sequence, we define the sequence{
wn = P 2

nFn
}

. Then, by Theorem 5.1, we get a sixth order linear divisible sequence that satisfies the

recurrence relation

wn+6 = 5wn+5 + 40wn+4 + 21wn+3 − 40wn+2 + 5wn+1 + wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = P 2

nFn
}

.
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n wn n wn n wn n wn n wn

0 0 5 4205 10 311018620 15 23201197881250 20 1730633983474199760

1 1 6 39200 11 2933358209 16 218800896185088 21 16320905155410328850

2 4 7 371293 12 27662342400 17 2063422826705437 22 153915816638460784604

3 50 8 3495744 13 260875775393 18 19459299146274400 23 1451517453316876370977

4 432 9 32987650 14 2460200784548 19 183512741583924461 24 13688670604054528051200

Table 5.2: Terms of the sequence
{
wn = P 2

nFn
}

Example 5.3. Using the Fibonacci sequence and the Mersenne number sequence, we define the sequence{
wn = F 2

nMn

}
. Then, by Theorem 5.1, we get a sixth order linear divisible sequence that satisfies the

recurrence relation

wn+6 = 6wn+5 + 2wn+4 − 33wn+3 + 4wn+2 + 24wn+1 − 8wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = F 2

nMn

}
.

n wn n wn n wn n wn n wn n wn n wn

0 0 3 28 6 4032 9 590716 12 84913920 15 12192600700 18 1750343491008

1 1 4 135 7 21463 10 3094575 13 444681199 16 63842165415 19 9164935742407

2 3 5 775 8 112455 11 16214287 14 2328499407 17 334284658039 20 47988270804375

Table 5.3: Terms of the sequence
{
wn = F 2

nMn

}

Example 5.4. Using the Mersenne number sequence and the Fibonacci sequence, we define the sequence{
wn = M2

nFn
}

. Then, by Theorem 5.1, we get a sixth order linear divisible sequence that satisfies the

recurrence relation

wn+6 = 7wn+5 + 7wn+4 − 66wn+3 − 28wn+2 + 112wn+1 + 64wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = M2

nFn
}

.

n wn n wn n wn n wn n wn

0 0 5 4805 10 57559095 15 654942536290 20 7438181974678125

1 1 6 31752 11 372928601 16 4239003354075 21 48140971199703746

2 9 7 209677 12 2414739600 17 27435832444477 22 311575058462033199

3 98 8 1365525 13 15632548073 18 177569773128216 23 2016556621114666993

4 675 9 8878114 14 101187813753 19 1149260144840789 24 13051430164267840800

Table 5.4: Terms of the sequence
{
wn = M2

nFn
}

Example 5.5. Using the Pell number sequence and the Mersenne number sequence, we define the sequence{
wn = P 2

nMn

}
. Then, by Theorem 5.1, we get a sixth order linear divisible sequence that satisfies the
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recurrence relation

wn+6 = 15wn+5 − 25wn+4 − 159wn+3 − 50wn+2 + 60wn+1 − 8wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = P 2

nMn

}
.

n wn n wn n wn n wn

0 0 6 308700 12 786647862000 18 1974117281773146300

1 1 7 3627247 13 9170959125511 19 23012041317103803847

2 12 8 42448320 14 106911059557692 20 268248267438500962800

3 175 9 495784975 15 1246284673729375 21 3126932447247755029975

4 2160 10 5784946332 16 14527980477699840 22 36450204475983625105692

5 26071 11 67467238807 17 169351843030124191 23 424894771592145805342927

Table 5.5: Terms of the sequence
{
wn = P 2

nMn

}

Example 5.6. Using the Mersenne number sequence and the Pell number sequence, we define the sequence{
wn = M2

nPn
}

. Then, by Theorem 5.1, we get a sixth order linear divisible sequence that satisfies the

recurrence relation

wn+6 = 14wn+5 − 35wn+4 − 84wn+3 + 140wn+2 + 224wn+1 + 64wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = M2

nPn
}

.

n wn n wn n wn n wn

0 0 6 277830 12 232418686500 18 188579236500070290

1 1 7 2725801 13 2244981506741 19 1821089148272187221

2 18 8 26530200 14 21682106022798 20 17586026022895357500

3 245 9 257204185 15 209393718262225 21 169825852089472725965

4 2700 10 2488645962 16 2022146329489200 22 1639984283429427377622

5 27869 11 24055989869 17 19527870347827249 23 15837092972393610747769

Table 5.6: Terms of the sequence
{
wn = M2

nPn
}

5.2

Product of the Squares of Two Second Order

In this section, we look at multiplying the squares of two distinct second order linear divisible sequences

in order to come up with a single higher order linear divisible sequence. This multiplication constructs a

ninth order linear divisible sequences.

Theorem 5.2. Let {an} and {bn} be distinct second order linear divisible sequences that can be defined by

(2.1) with initial conditions a0 = b0 = 0 and a1, b1 arbitrary. Suppose the sequence {an} has a characteristic
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equation x2−p1x−q1 = 0 with roots α1 and β1, such that α1+β1 = p1 and α1β1 = −q1, and the sequence {bn}

has a characteristic equation x2−p2x−q2 = 0 with roots α2 and β2, such that α2 +β2 = p2 and α2β2 = −q2.

Then
{
wn = a2nb

2
n

}
is a linear divisible sequence that satisfies the ninth order linear homogeneous recurrence

relation

wn+9 =
(
p21p

2
2 + p21q2 + p22q1 + q1q2

)
wn+8 +

(
p21p

4
2q1 + p41p

2
2q2 + p42q

2
1 + p41q

2
2 + 6p21p

2
2q1q2

+5p22q
2
1q2 + 5p21q1q

2
2 + 4q21q

2
2

)
wn+7 +

(
p41p

4
2q1q2 − p62q31 − p61q32 + 2p21p

4
2q

2
1q2 + 2p41p

2
2q1q

2
2

+4p21p
2
2q

2
1q

2
2 − 5p42q

3
1q2 − 5p41q1q

3
2 − 7p22q

3
1q

2
2 − 7p21q

2
1q

3
2 − 4q31q

3
2

)
wn+6 −

(
p61q1q

4
2 + p62q

4
1q2

+ p61p
2
2q1q

3
2 + p21p

6
2q

3
1q2 + p41p

4
2q

2
1q

2
2 + 7p21p

4
2q

3
1q

2
2 + 7p41p

2
2q

2
1q

3
2 + 6p42q

4
1q

2
2 + 6p41q

2
1q

4
2

+17p21p
2
2q

3
1q

3
2 + 11p22q

4
1q

3
2 + 11p21q

3
1q

4
2 + 6q41q

4
2

)
wn+5 + q1q2

(
p61q1q

4
2 + p62q

4
1q2 + p61p

2
2q1q

3
2

+ p21p
6
2q

3
1q2 + p41p

4
2q

2
1q

2
2 + 7p21p

4
2q

3
1q

2
2 + 7p41p

2
2q

2
1q

3
2 + 6p42q

4
1q

2
2 + 6p41q

2
1q

4
2 + 17p21p

2
2q

3
1q

3
2

+11p22q
4
1q

3
2 + 11p21q

3
1q

4
2 + 6q41q

4
2

)
wn+4 − q31q32

(
p41p

4
2q1q2 − p62q31 − p61q32 + 2p21p

4
2q

2
1q2

+2p41p
2
2q1q

2
2 + 4p21p

2
2q

2
1q

2
2 − 5p42q

3
1q2 − 5p41q1q

3
2 − 7p22q

3
1q

2
2 − 7p21q

2
1q

3
2 − 4q31q

3
2

)
wn+3

− q51q52
(
p21p

4
2q1 + p41p

2
2q2 + p42q

2
1 + p41q

2
2 + 6p21p

2
2q1q2 + 5p22q

2
1q2 + 5p21q1q

2
2 + 4q21q

2
2

)
wn+2

− q71q72
(
p21p

2
2 + p21q2 + p22q1 + q1q2

)
wn+1 − q91q92wn (5.2)

for n ≥ 0 and initial conditions wi = a2i b
2
i for 0 ≤ i ≤ 8.

Proof. Let {an} and {bn} be distinct second order linear divisible sequences that can be defined by (2.1) with

initial conditions a0 = b0 = 0 and a1, b1 arbitrary. Let the sequence {an} have the characteristic equation

x2−p1x−q1 = 0 with roots α1 and β1, such that α1 +β1 = p1, and α1β1 = −q1, and the sequence {bn} have

the characteristic equation x2− p2x− q2 = 0 with roots α2 and β2, such that α2 + β2 = p2 and α2β2 = −q2.

Case 1: Let both characteristic functions have distinct roots, meaning α1 6= β1 and α2 6= β2. Then, by using

a combination of equations (3.1) and (4.1), we have

wn =a2nb
2
n

=

(
a1

α1 − β1

)2

(αn1 − βn1 )2
(

b1
α2 − β2

)2

(αn2 − βn2 )2

=

(
a21b

2
1

(α1 − β1)2(α2 − β2)2

)((
α2
1

)n − 2 (α1β1)
n

+
(
β2
1

)n)((
α2
2

)n − 2 (α2β2)
n

+
(
β2
2

)n)
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=

(
a21b1

(α1 − β1)2(α2 − β2)

)((
α2
1α

2
2

)n − 2
(
α2
1α2β2

)n
+
(
α2
1β

2
2

)n − 2
(
α1α

2
2β1
)n

+ 4 (α1α2β1β2)
n

−2 (α1β1β2)
2

+
(
α2
2β

2
1

)n − 2
(
α2β

2
1β2
)n

+
(
β2
1β

2
2

)n)
.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as

a linear homogeneous recurrence relation whose characteristic equation has roots r1 = α2
1α

2
2, r2 = α2

1α2β2,

r3 = α2
1β

2
2 , r4 = α1α

2
2β1, r5 = α1α2β1β2, r6 = α1β1β

2
2 , r7 = α2

2β
2
1 , r8 = α2β

2
1β2, and r9 = β2

1β
2
2 . We

will let each of them have multiplicity one since that means we will have nine roots, which is how many

characteristic roots we need for a ninth order linear divisible sequence. Thus, the characteristic equation is

9∏
i=1

(x− ri) = x9 −

 ∑
1≤i≤9

ri

x8 + · · ·+ (−1)k

 ∑
1≤i1<···<ik≤9

ri1 · · · rik

x9−k, for k ≤ 9.

Looking at the coefficient of x8, which becomes the coefficient of wn+8 in equation (5.2), we have

∑
1≤i≤9

ri =α2
1α

2
2 + α2

1α2β2 + α2
1β

2
2 + α1α

2
2β1 + α1α2β1β2 + α1β1β

2
2 + α2

2β
2
1 + α2β

2
1β2 + β2

1β
2
2

=
(
α2
1 + α1β1 + β2

1

) (
α2
2 + α2β2 + β2

2

)
=(p21 + q1)(p22 + q2)

=p21p
2
2 + p21q2 + p22q1 + q1q2.

Looking at the coefficient of x7, which becomes the coefficient of wn+7 in equation (5.2), we have

∑
1≤i<j≤9

rirj =α3
1α

4
2β1 + α2

1α
4
2β

2
1 + α1α

4
2β

3
1 + α4

1α
3
2β2 + 2α3

1α
3
2β1β2 + 3α2

1α
3
2β

2
1β2 + 2α1α

3
2β

3
1β2 + α3

2β
4
1β2

+ α4
1α

2
2β

2
2 + 3α3

1α
2
2β1β

2
2 + 4α2

1α
2
2β

2
1β

2
2 + 3α1α

2
2β

3
1β

2
2 + α2

2β
4
1β

2
2 + α4

1α2β
3
2 + 2α3

1α2β1β
3
2

+ 3α2
1α2β

2
1β

3
2 + 2α1α2β

3
1β

3
2 + α2β

4
1β

3
2 + α3

1β1β
4
2 + α2

1β
2
1β

4
2 + α1β

3
1β

4
2

=
(
α2
1 + α1β1 + β2

1

) (
α2
2 + α2β2 + β2

2

) (
α1α

2
2β1 + α2

1α2β2 + α2β
2
1β2 + α1β1β

2
2

)
=
(
α2
1 + α1β1 + β2

1

) (
α2
2 + α2β2 + β2

2

) (
α1β1

(
α2
2 + β2

)
+ α2β2

(
α2
1 + β2

2

))
=(p21 + q1)(p22 + q2)(−q1(p22 + 2q2)− q2(p21 + 2q1))

=− (p21p
4
2q1 + p41p

2
2q2 + p42q

2
1 + p41q

2
2 + 6p21p

2
2q1q2 + 5p22q

2
1q2 + 5p21q1q

2
2 + 4q21q

2
2).

Looking at the coefficient of x6, which becomes the coefficient of wn+6 in equation (5.2), we have

∑
1≤i<j<k≤9

rirjrk =α6
1α

3
2β

3
2 + α3

2β
6
1β

3
2 + α3

1α
6
2β

3
1 + α3

1β
3
1β

6
2 + α5

1α
5
2β1β2 + α1α

5
2β

5
1β2 + α5

1α2β1β
5
2
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+ α1α2β
5
1β

5
2 + 2α5

1α
4
2β1β

2
2 + 2α1α

4
2β

5
1β

2
2 + 2α5

1α
2
2β1β

4
2 + 2α1α

2
2β

5
1β

4
2 + 2α4

1α
5
2β

2
1β2

+ 2α2
1α

5
2β

4
1β2 + 2α4

1α2β
2
1β

5
2 + 2α2

1α2β
4
1β

5
2 + 3α5

1α
3
2β1β

3
2 + 3α1α

3
2β

5
1β

3
2 + 3α3

1α
5
2β

3
1β2

+ 3α3
1α2β

3
1β

5
2 + 4α4

1α
4
2β

2
1β

2
2 + 4α2

1α
4
2β

4
1β

2
2 + 4α4

1α
2
2β

2
1β

4
2 + 4α2

1α
2
2β

4
1β

4
2 + 6α4

1α
3
2β

2
1β

3
2

+ 6α2
1α

3
2β

4
1β

3
2 + 6α3

1α
4
2β

3
1β

2
2 + 6α3

1α
2
2β

3
1β

4
2 + 8α3

1α
3
2β

3
1β

3
2

=α3
2β

3
2

(
α4
1 − α2

1β
2
1 + β4

1

) (
α2
1 + β2

1

)
+ α3

1β
3
1

(
α4
2 − α2

2β
2
2 + β4

2

) (
α2
2 + β2

2

)
+ α1α2β1β2

(
α4
1 + β4

1

) (
α4
2 + β4

2

)
+ 2α1α

2
2β1β

2
2

(
α4
1 + β4

1

) (
α2
2 + β2

2

)
+ 2α2

1α2β
2
1β2

(
α4
2 + β4

2

) (
α2
1 + β2

1

)
+ 3α1α

3
2β1β

3
2

(
α4
1 + β4

1

)
+ 3α3

1α2β
3
1β2

(
α4
2 + β4

2

)
+ 4α2

1α
2
2β

2
1β

2
2

(
α2
1 + β2

1

) (
α2
2 + β2

2

)
+ 6α2

1α
3
2β

2
1β

3
2

(
α2
1 + β2

1

)
+ 6α3

1α
2
2β

3
1β

2
2

(
α2
2 + β2

2

)
+ 8α3

1α
3
2β

3
1β

3
2

=− q32
((
p21 + 2q1

)2 − 3q21

) (
p21 + 2q1

)
− q31

((
p22 + 2q2

)2 − 3q2

) (
p22 + 2q2

)
+ q1q2

((
p21 + 2q1

)2 − 2q21

)((
p22 + 2q2

)2 − 2q22

)
− 2q1q

2
2

((
p21 + 2q1

)2 − 2q21

) (
p22 + 2q2

)
− 2q21q2

((
p22 + 2q2

)2 − 2q22

) (
p21 + 2q1

)
+ 3q1q

3
2

((
p21 + 2q1

)2 − 2q21

)
+ 3q31q2

((
p22 + 2q2

)2 − 2q22

)
+ 4q21q

2
2

(
p21 + 2q1

) (
p22 + 2q2

)
− 6q21q

3
2

(
p21 + 2q1

)
− 6q31q

2
2

(
p22 + 2q2

)
+ 8q31q

3
2

=p41p
4
2q1q2 − p62q31 − p61q32 + 2p21p

4
2q

2
1q2 + 2p41p

2
2q1q

2
2 + 4p21p

2
2q

2
1q

2
2 − 5p42q

3
1q2 − 5p41q1q

3
2

− 7p22q
3
1q

2
2 − 7p21q

2
1q

3
2 − 4q31q

3
2 .

Looking at the coefficient of x5, which becomes the coefficient of wn+5 in equation (5.2), we have

∑
1≤i1<···<i4≤9

ri1 · · · ri4 =α7
1α

5
2β1β

3
2 + α1α

5
2β

7
1β

3
2 + α7

1α
4
2β1β

4
2 + α1α

4
2β

7
1β

4
2 + α7

1α
3
2β1β

5
2 + α1α

3
2β

7
1β

5
2

+ α5
1α

7
2β

3
1β2 + α4

1α
7
2β

4
1β2 + α3

1α
7
2β

5
1β2 + α5

1α2β
3
1β

7
2 + α4

1α2β
4
1β

7
2 + α3

1α2β
5
1β

7
2

+ α6
1α

6
2β

2
1β

2
2 + α2

1α
6
2β

6
1β

2
2 + α6

1α
2
2β

2
1β

6
2 + α2

1α
2
2β

6
1β

6
2 + 3α6

1α
5
2β

2
1β

3
2 + 3α2

1α
5
2β

6
1β

3
2

+ 3α6
1α

3
2β

2
1β

5
2 + 3α2

1α
3
2β

6
1β

5
2 + 3α5

1α
6
2β

3
1β

2
2 + 3α3

1α
6
2β

5
1β

2
2 + 3α5

1α
2
2β

3
1β

6
2

+ 3α3
1α

2
2β

5
1β

6
2 + 4α6

1α
4
2β

2
1β

4
2 + 4α2

1α
4
2β

6
1β

4
2 + 4α4

1α
6
2β

4
1β

2
2 + 4α4

1α
2
2β

4
1β

6
2

+ 7α5
1α

5
2β

3
1β

3
2 + 7α3

1α
5
2β

5
1β

3
2 + 7α5

1α
3
2β

3
1β

5
2 + 7α3

1α
3
2β

5
1β

5
2 + 8α5

1α
4
2β

3
1β

4
2

+ 8α3
1α

4
2β

5
1β

4
2 + 8α4

1α
5
2β

4
1β

3
2 + 8α4

1α
3
2β

4
1β

5
2 + 10α4

1α
4
2β

4
1β

4
2
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=α1α
3
2β1β

3
2

(
α4
1 − α2

1β
2
1 + β4

1

) (
α2
1 + β2

1

) (
α2
2 + α2β2 + β2

2

)
+ α3

1α2β
3
1β2

(
α4
2 − α2

2β
2
2 + β4

2

) (
α2
2 + β2

2

) (
α2
1 + α1β1 + β2

1

)
+ α2

1α
2
2β

2
1β

2
2

(
α4
1 + β4

1

) (
α4
2 + β4

2

)
+ 3α2

1α
3
2β

2
1β

3
2

(
α4
1 + β4

1

) (
α2
2 + β2

2

)
+ 3α3

1α
2
2β

3
1β

2
2

(
α4
2 + β4

2

) (
α2
1 + β2

1

)
+ 4α2

1α
4
2β

2
1β

4
2

(
α4
1 + β4

1

)
+ 4α4

1α
2
2β

4
1β

2
2

(
α4
2 + β4

2

)
+ 7α3

1α
3
2β

3
1β

3
2

(
α2
1 + β2

1

) (
α2
2 + β2

2

)
+ 8α3

1α
4
2β

3
1β

4
2

(
α2
1 + β2

1

)
+ 8α4

1α
3
2β

4
1β

3
2

(
α2
2 + β2

2

)
+ 10α4

1α
4
2β

4
1β

4
2

=q1q
3
2

((
p21 + 2q1

)2 − 3q21

) (
p21 + 2q1

) (
p22 + q2

)
+ q31q2

((
p22 + 2q2

)2 − 3q22

) (
p22 + 2q2

) (
p21 + q1

)
+ q21q

2
2

((
p21 + 2q1

)2 − 2q21

)((
p22 + 2q2

)2 − 2q22

)
− 3q21q

3
2

((
p21 + 2q1

)2 − 2q21

) (
p22 + 2q2

)
− 3q31q

2
2

((
p22 + 2q2

)3 − 2q22

) (
p21 + 2q1

)
+ 4q21q

4
2

((
p21 + 2q1

)2 − 2q21

)
+ 4q41q

2
2

((
p22 + 2q2

)2 − 2q22

)
+ 7q31q

3
2

(
p21 + 2q1

) (
p22 + 2q2

)
− 8q31q

4
2

(
p21 + 2q1

)
− 8q41q

3
2

(
p22 + 2q2

)
+ 10q41q

4
2

=p61q1q
4
2 + p62q

4
1q2 + p61p

2
2q1q

3
2 + p21p

6
2q

3
1q2 + p41p

4
2q

2
1q

2
2 + 7p21p

4
2q

3
1q

2
2 + 7p41p

2
2q

2
1q

3
2

+ 6p42q
4
1q

2
2 + 6p41q

2
1q

4
2 + 17p21p

2
2q

3
1q

3
2 + 11p22q

4
1q

3
2 + 11p21q

3
1q

4
2 + 6q41q

4
2 .

When 1 ≤ i1 < · · · < i5 ≤ 9, we can show that ri1 · · · ri5 = α1α2β1β2(rj1 · · · rj4) where rj1 , . . . , rj4 ∈

{ri1 , . . . , ri5}. If r5 = α1α2β1β2 is one of the roots in ri1 · · · ri5 , then we have ri1 · · · ri5 = α1α2β1β2(rj1 · · · rj4)

where rj1 , . . . , rj4 ∈ {ri1 , . . . , ri5} and rj1 , . . . , rj4 6= r5. For example, r1r2r3r4r5 = α1α2β1β2(r1r2r3r4). If

r5 = α1α2β1β2 is not one of the roots in ri1 · · · ri5 , then there exists rs, rt ∈ {ri1 , . . . , ri5}, such that

rsrt = α2
1α

2
2β

2
1β

2
2 = α1α2β1β2r5. This means ri1 · · · ri5 = α1α2β1β2(rirjrkr5) where ri, rj , rk ∈ {ri1 , . . . , ri5}

and ri, rj , rk 6= r5. For example, in r1r2r3r4r6 we can see r4r6 = α2
1α

2
2β

2
1β

2
2 = α1α2β1β2r5, which means

r1r2r3r4r6 = α1α2β1β2(r1r2r3r5).

Thus, looking at the coefficient of x4, which becomes the coefficient of wn+4 in equation (5.2), we have

∑
1≤i1<···<i5≤9

ri1 · · · ri5 =α1α2β1β2

 ∑
1≤j1<···<j4≤9

rj1 · · · rj4


=q1q2

(
p61q1q

4
2 + p62q

4
1q2 + p61p

2
2q1q

3
2 + p21p

6
2q

3
1q2 + p41p

4
2q

2
1q

2
2 + 7p21p

4
2q

3
1q

2
2

+7p41p
2
2q

2
1q

3
2 + 6p42q

4
1q

2
2 + 6p41q

2
1q

4
2 + 17p21p

2
2q

3
1q

3
2 + 11p22q

4
1q

3
2 + 11p21q

3
1q

4
2 + 6q41q

4
2

)
.
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Since we calculated
∑

1≤j1<···<j4≤9 rj1 · · · rj4 as the coefficient of x5 above, we can just replace it here.

When 1 ≤ i1 < · · · < i6 ≤ 9, we can show that ri1 · · · ri6 = α3
1α

3
2β

3
1β

3
2(rirjrk) where ri, rj , rk ∈

{ri1 , . . . , ri6}. If r5 = α1α2β1β2 is one of the roots, then there exists rs, rt ∈ {ri1 , . . . , ri6} with rs, rt 6= r5,

such that rsrt = α2
1α

2
2β

2
1β

2
2 . This means ri1 · · · ri6 = rsrtr5(rirjrk) = α3

1α
3
2β

3
1β

3
2(rirjrk) where ri, rj , rk ∈

{ri1 , . . . , ri6} and ri, rj , rk 6= r5. For example, in r1 · · · r6 we can see r4r6 = α2
1α

2
2β

2
1β

2
2 , which means

r1 · · · r6 = α3
1α

3
2β

3
1β

3
2(r1r2r3). If r5 = α1α2β1β2 is not one of the roots in ri1 · · · ri6 , then there exists

rs1 , . . . , rs4 ∈ {ri1 , . . . , ri6}, such that rs1 · · · rs4 = α4
1α

4
2β

4
1β

4
2 = α3

1α
3
2β

3
1β

3
2r5. This means ri1 · · · ri6 =

rs1 · · · rs4(rirj) = α3
1α

3
2β

3
1β

3
2(rirjr5) where ri, rj ∈ {ri1 , . . . , ri6} and ri, rj 6= r5. For example, in r1r2r3r4r6r7

we can see r3r4r6r7 = α4
1α

4
2β

4
1β

4
2 = α3

1α
3
2β

3
1β

3
2r5, which means r1r2r3r4r6r7 = α3

1α
3
2β

3
1β

3
2(r1r2r5).

Thus looking at the coefficient of x3, which becomes the coefficient of wn+3 in equation (5.2), we have

∑
1≤i1<···<i6≤9

ri1 · · · ri6 =α3
1α

3
2β

3
1β

3
2

 ∑
1≤i<j<k≤9

rirjrk


=q31q

3
2

(
p41p

4
2q1q2 − p62q31 − p61q32 + 2p21p

4
2q

2
1q2 + 2p41p

2
2q1q

2
2 + 4p21p

2
2q

2
1q

2
2 − 5p42q

3
1q2

−5p41q1q
3
2 − 7p22q

3
1q

2
2 − 7p21q

2
1q

3
2 − 4q31q

3
2

)
.

Since we calculated
∑

1≤i<j<k≤9 rirjrk as the coefficient of x6 above, we can just replace it here.

When 1 ≤ i1 < · · · < i7 ≤ 9, we can show that ri1 · · · ri7 = α5
1α

5
2β

5
1β

5
2(rirj) where ri, rj ∈ {ri1 , . . . , ri7}.

If r5 = α1α2β1β2 is one of the roots, then there exists rs1 , . . . , rs4 ∈ {ri1 , . . . , ri7} with rs1 , . . . , rs4 6= r5, such

that rs1 · · · rs4 = α4
1α

4
2β

4
1β

4
2 . This means ri1 · · · ri7 = α5

1α
5
2β

5
1β

5
2(rirj) where ri, rj ∈ {ri1 , . . . , ri7} and ri, rj 6=

r5. For example, in r1 · · · r7 we can see r3r4r6r7 = α4
1α

4
2β

4
1β

4
2 , which means r1 · · · r7 = α5

1α
5
2β

5
1β

5
2(r1r2). If

r5 = α1α2β1β2 is not one of the roots in ri1 · · · ri7 , then there exists rs1 , . . . , rs6 ∈ {ri1 , . . . , ri7}, such

that rs1 · · · rs6 = α6
1α

6
2β

6
1β

6
2 = α5

1α
5
2β

5
1β

5
2r5. This means ri1 · · · ri7 = rs1 · · · rs6(ri) = α5

1α
5
2β

5
1β

5
2(rir5) where

ri ∈ {ri1 , . . . , ri7} and ri 6= r5. For example, in r1r2r3r4r6r7r8 we can see r2r3r4r6r7r8 = α6
1α

6
2β

6
1β

6
2 =

α5
1α

5
2β

5
1β

5
2r5, which means r1r2r3r4r6r7r8 = α5

1α
5
2β

5
1β

5
2(r1r5).

Thus looking at the coefficient of x2,which becomes the coefficient of wn+2 in equation (5.2), we have

∑
1≤i1<···<i7≤9

ri1 · · · ri7 =α5
1α

5
2β

5
1β

5
2

 ∑
1≤i<j≤9

rirj


=− q51q52

(
p21p

4
2q1 + p41p

2
2q2 + p42q

2
1 + p41q

2
2 + 6p21p

2
2q1q2 + 5p22q

2
1q2 + 5p21q1q

2
2 + 4q21q

2
2

)
.

Since we calculated
∑

1≤i<j≤9 rirj as the coefficient of x7 above we can just replace it here.
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When 1 ≤ i1 < · · · < i8 ≤ 9 we can show that ri1 · · · ri8 = α7
1α

7
2β

7
1β

7
2(ri) where ri ∈ {ri1 , . . . , ri8}. If r5 =

α1α2β1β2 is one of the roots, then there exists rs1 , . . . , rs6 ∈ {ri1 , . . . , ri8}, such that rs1 · · · rs6 = α6
1α

6
2β

6
1β

6
2 .

This means ri1 · · · ri8 = α7
1α

7
2β

7
1β

7
2(ri) where ri ∈ {ri1 , . . . , ri8} and ri 6= r5. For example in r1 · · · r8 we can

see r2r3r4r6r7r8 = α6
1α

6
2β

6
1β

6
2 , which means r1 · · · r8 = α7

1α
7
2β

7
1β

7
2(r1). If r5 = α1α2β1β2 is not one of the

roots, then we have r1r2r3r4r6r7r8r9 = α8
1α

8
2β

8
1β

8
2 = α7

1α
7
2β

7
1β

7
2r5.

Thus looking at the coefficient of x which becomes the coefficient of wn+1 in equation (5.2), we have

∑
1≤i1<···<i8≤9

ri1 · · · ri8 =α7
1α

7
2β

7
1β

7
2

 ∑
1≤i≤9

ri


=q71q

7
2

(
p21p

2
2 + p21q2 + p22q1 + q1q2.

)
.

Since we calculated
∑

1≤i≤9 ri as the coefficient of x8 above we can just replace it here.

Looking at the constant, which becomes the coefficient of wn in equation (5.2), we have

∑
1≤i1<···<i8≤9

ri1 · · · ri8 = α9
1α

9
2β

9
1β

9
2 = q91q

9
2 .

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (5.2).

Case 2: Let one characteristic function have duplicate roots and the other have distinct roots. WLOG we

can say the characteristic function of {an} has the duplicate root, meaning α1 = β1 and α2 6= β2. Then, by

using a combination of equations (3.1) and (4.1), we have

wn =a2nb
2
n

=

(
na1b1
α2 − β2

)2

(αn2 − βn2 )
2 (
α2
1

)n−1
=

(
n2a21b

2
1

α2
1(α2 − β2)2

)((
α2
1α

2
2

)n − 2
(
α2
1α2β2

)n
+
(
α2
1β

2
2

)n)
.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as a

linear homogeneous recurrence relation whose characteristic equation has roots α2
1α

2
2, α2

1α2β2, and α2
1β

2
2 each

with a multiplicity of at least three. We will let each of them have multiplicity three since that means we will

have nine roots, which is how many characteristic roots we need for a ninth order linear divisible sequence.

Thus, if the roots of the characteristic equation of
{
wn = a2nb

2
n

}
are r1 = α2

1α
2
2, r2 = α2

1α2β2, r3 = α2
1β

2
2 ,
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r4 = α2
1α

2
2, r5 = α2

1α2β2, r6 = α2
1β

2
2 , r7 = α2

1α
2
2, r8 = α2

1α2β2, and r9 = α2
1β

2
2 , then the characteristic

equation is

9∏
i=1

(x− ri) = x9 −

 ∑
1≤i≤9

ri

x8 + · · ·+ (−1)k

 ∑
1≤i1<···<ik≤9

ri1 · · · rik

x9−k, for k ≤ 9.

At this point, this case becomes the same as case 1 by simply replacing β1 with α1 throughout. This works

because, in this case, α1 + α1 = p1 and α1α1 = −q1.

Case 3: Let both characteristic functions have duplicate roots, meaning α1 = β1 and α2 = β2. Then, by

using a combination of equations (3.1) and (4.1), we have

wn = a2nb
2
n = n4a21b

2
1

(
α2
1

)n−1 (
α2
2

)n−1
=
n4a21b

2
1

α2
1α

2
2

(
α2
1α

2
2

)n
.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed

as a linear homogeneous recurrence relation whose characteristic equation has the root α2
1α

2
2 each with a

multiplicity of at least nine. We will let it have multiplicity nine since that means we will have nine roots,

which is how many characteristic roots we need for a ninth order linear divisible sequence. Thus, if the roots

of the characteristic equation of
{
wn = a2nb

2
n

}
are r1 = α2

1α
2
2,r2 = α2

1α
2
2, r3 = α2

1α
2
2, r4 = α2

1α
2
2, r5 = α2

1α
2
2,

r6 = α2
1α

2
2, r7 = α2

1α
2
2, r8 = α2

1α
2
2, and r9 = α2

1α
2
2,then the characteristic equation is

9∏
i=1

(x− ri) = x9 −

 ∑
1≤i≤9

ri

x8 + · · ·+ (−1)k

 ∑
1≤i1<···<ik≤9

ri1 · · · rik

x9−k, for k ≤ 9.

At this point, this case becomes the same as case 1 by simply replacing β1 with α1 and β2 with α2 throughout.

This works because, in this case since, α1 + α1 = p1, α1α1 = −q1, α2 + α2 = p2, and α2α2 = −q2.

Therefore, when we multiply the square two second order linear divisible sequence, we can construct a

ninth order linear divisible sequence defined by recurrence relation (5.2). It is easy to see by how we define

{wn = a2nb
2
n} that wi = a2i b

2
i for 0 ≤ i ≤ 8.

Next, we have examples that take the square of second order linear divisible sequences and multiplies it

by the square of a different second order linear divisible sequence to construct ninth order linear divisible

sequences.
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Example 5.7. Using the Fibonacci sequence and the Pell number sequence, we define the sequence{
wn = F 2

nP
2
n

}
. Then, by Theorem 5.2, we get a ninth order linear divisible sequence that satisfies the

recurrence relation

wn+9 = 10wn+8 + 90wn+7 − 117wn+6 − 520wn+5 + 520wn+4 + 117wn+3 − 90wn+2 − 10wn+1 + wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = F 2

nP
2
n

}
.

n wn n wn n wn n wn

0 0 6 313600 12 3983377305600 18 50282828993973049600

1 1 7 4826809 13 60784055666569 19 767266772562388171441

2 4 8 73410624 14 927495695774596 20 11707738898202961376400

3 100 9 1121580100 15 14152730707562500 21 178648627831121459592100

4 1296 10 17106024100 16 215956484534681856 22 2726003028483778956121444

5 21025 11 261068880601 17 3295286254248582889 23 41596135659701726163087889

Table 5.7: Terms of the sequence
{
wn = F 2

nP
2
n

}

Example 5.8. Using the Fibonacci sequence and the Mersenne number sequence, we define the sequence{
wn = F 2

nM
2
n

}
. Then, by Theorem 5.2, we get a ninth order linear divisible sequence that satisfies the

recurrence relation

wn+9 = 14wn+8 − 14wn+7 − 305wn+6 + 588wn+5 + 1176wn+4 − 2440wn+3 − 448wn+2 + 1792wn+1 − 512wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = F 2

nM
2
n

}
.

n wn n wn n wn n wn

0 0 6 254016 12 347722502400 18 458840293763310144

1 1 7 2725801 13 3642383701009 19 4805056665579338809

2 9 8 28676025 14 38147805784881 20 50319301058697515625

3 196 9 301855876 15 399514947136900 21 526951070751957203716

4 2025 10 3165750225 16 4183896310472022 22 5518305860421069987489

5 24025 11 33190645489 17 43815024413829769 23 57788463091283012018401

Table 5.8: Terms of the sequence
{
wn = F 2

nM
2
n

}

Example 5.9. Using the Fibonacci sequence and the sequence of natural numbers including zero, we define

the sequence
{
wn = F 2

nN
2
n

}
. Then, by Theorem 5.2, we get a ninth order linear divisible sequence that

satisfies the recurrence relation

wn+9 = 6wn+8 − 6wn+7 − 19wn+6 + 24wn+5 + 24wn+4 − 19wn+3 − 6wn+2 + 6wn+1 − wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = F 2

nN
2
n

}
.
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n wn n wn n wn n wn

0 0 6 2304 12 2985984 18 2163366144

1 1 7 8281 13 9174841 19 6310554721

2 4 8 28224 14 27857284 20 18306090000

3 36 9 93636 15 83722500 21 52838377956

4 144 10 302500 16 249387264 22 151820888164

5 625 11 958441 17 737068201 23 434427310321

Table 5.9: Terms of the sequence
{
wn = F 2

nN
2
n

}
Example 5.10. Using the Pell number sequence and the Mersenne number sequence, we define the sequence{
wn = P 2

nM
2
n

}
. Then, by Theorem 5.2, we get a ninth order linear divisible sequence that satisfies the

recurrence relation

wn+9 =35wn+8 − 245wn+7 − 923wn+6 + 6090wn+5 + 12180wn+4 − 7384wn+3 − 7840wn+2

+ 4480wn+1 − 512wn,

for n ≥ 0. The table below shows some terms of the sequence
{
wn = P 2

nM
2
n

}
.

n wn n wn n wn n wn

0 0 6 19448100 12 3221322994890000 18 517501026595857890520900

1 1 7 460660369 13 75119326197060601 19 12064914106020402007532089

2 36 8 10824321600 14 1751523888733668036 20 281278427029326147068010000

3 1225 9 253346122225 15 40837009904090430625 21 6557649508678076708867101225

4 32400 10 5918000097636 16 952091200606059014400 22 152883201984231546731679272676

5 808201 11 138105437837929 17 22197115417801407838561 23 3564275255241275447720314832689

Table 5.10: Terms of the sequence
{
wn = P 2

nM
2
n

}

Example 5.11. Using the Pell number sequence and the sequence of natural numbers including zero, we

define the sequence
{
wn = P 2

nN
2
n

}
. Then, by Theorem 5.2, we get a ninth order linear divisible sequence

that satisfies the recurrence relation

wn+9 = 15wn+8 − 60wn+7 − 28wn+6 + 330wn+5 + 330wn+4 − 28wn+3 − 60wn+2 + 15wn+1 − wn

for n ≥ 0. The table below shows some terms of the sequence
{
wn = P 2

nN
2
n

}
.

n wn n wn n wn n wn

0 0 6 176400 12 27662342400 18 2439943081808400

1 1 7 1399489 13 189218910049 19 15845037003539041

2 16 8 10653696 14 1279043378704 20 102328690818873600

3 225 9 78588225 15 8557818890625 21 657547887222360225

4 2304 10 565488400 16 56750789689344 22 4206157487042799376

5 21025 11 3988048801 17 373405884106369 23 26794595833640213569

Table 5.11: Terms of the sequence
{
wn = P 2

nN
2
n

}
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Example 5.12. Using the Mersenne number sequence and the sequence of natural numbers including zero,

we define the sequence
{
wn = M2

nN
2
n

}
. Then, by Theorem 5.2, we get a ninth order linear divisible sequence

that satisfies the recurrence relation

wn+9 = 21wn+8−189wn+7 +955wn+6−2982wn+5 +5964wn+4−7640wn+3 +6048wn+2−2688wn+1 +512wn

for n ≥ 0. The table below shows some terms of the sequence
{
wn = M2

nN
2
n

}
.

n wn n wn n wn n wn

0 0 6 142884 12 2414739600 18 22264940593476

1 1 7 790321 13 11338629289 19 99230545871209

2 36 8 4161600 14 52606927044 20 439803812250000

3 441 9 21150801 15 241577165025 21 1939536661709241

4 3600 10 104652900 16 1099478073600 22 8514613985411556

5 24025 11 507015289 17 4964906434849 23 37225056794837521

Table 5.12: Terms of the sequence
{
wn = M2

nN
2
n

}
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CHAPTER 6

POLYNOMIAL LINEAR DIVISIBLE SEQUENCES

In this chapter, we construct higher order polynomial linear divisible sequences. We construct these by

taking products, powers, and products of powers of polynomial linear divisible sequence in the same manner

we did for constructing higher order linear divisible sequences.

6.1

Products of Polynomial Linear Divisible Sequences

Like we did for second order linear divisible sequences, we can talk about the products of second order

polynomial linear divisible sequences. Again we define this product term by term; thus, {wn(x)} is the

sequence {a01(x)a02(x) · · · a0i(x), a11(x)a12(x) · · · a1i(x), a21(x)a22(x) · · · a2i(x), . . .}.

If we multiply two distinct second order polynomial linear divisible sequences, then we construct a forth

order polynomial linear divisible sequence.

Theorem 6.1. [9] Let {an(x)} and {bn(x)} be distinct second order polynomial linear divisible sequences

that can be defined by (2.3) with initial conditions a0(x) = b0(x) = 0 and a1(x), b1(x) arbitrary. Suppose

the sequence {an(x)} has a characteristic equation t2 − p1(x)t− q1(x) = 0 with roots α1(x) and β1(x), such

that α1(x)+β1(x) = p1(x) and α1(x)β1(x) = −q1(x), and the sequence {bn(x)} has a characteristic equation

t2−p2(x)t−q2(x) = 0 with roots α2(x) and β2(x), such that α2(x)+β2(x) = p2(x) and α2(x)β2(x) = −q2(x).

Then {wn(x) = an(x)bn(x)} is a polynomial linear divisible sequence that satisfies the fourth order linear

homogeneous recurrence relation

wn+4(x) =p1(x)p2(x)wn+3(x) +
(
p21(x)q2(x) + p22(x)q1(x) + 2q1(x)q2(x)

)
wn+2(x)

+ p1(x)p2(x)q1(x)q2(x)wn+1(x)− q21(x)q22(x)wn(x)

(6.1)
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for n ≥ 0 with initial conditions w3(x) = a3(x)b3(x), w2(x) = a2(x)b2(x), w1(x) = a1(x)b1(x), and w0(x) =

a0(x)b0(x).

If we multiply three distinct second order polynomial linear divisible sequences, then we construct a

eighth order polynomial linear divisible sequence.

Theorem 6.2. Let {an(x)}, {bn(x)}, and {cn(x)} be distinct second order polynomial linear divisible se-

quences that can be defined by (2.3) with initial conditions a0(x) = b0(x) = c0(x) = 0 and a1(x), b1(x),

c1(x) arbitrary. Suppose the sequence {an(x)} has a characteristic equation t2 − p1(x)t − q1(x) = 0 with

roots α1(x) and β1(x), such that α1(x) + β1(x) = p1(x) and α1(x)β1(x) = −q1(x), the sequence {bn(x)} has

a characteristic equation t2 − p2(x)t − q2(x) = 0 with roots α2(x) and β2(x), such that α2(x) + β2(x) =

p2(x) and α2(x)β2(x) = −q2(x), and the sequence {cn(x)} has a characteristic equation t2 − p3(x)t −

q3(x) = 0 with roots α3(x) and β3(x), such that α3(x) + β3(x) = p3(x) and α3(x)β3(x) = −q3(x). Then

{wn(x) = an(x)bn(x)cn(x)} is a polynomial linear divisible sequence that satisfies the eighth order linear

homogeneous recurrence relation

wn+8(x) = p1(x)p2(x)p3(x)wn+7(x) +
(
p22(x)p23(x)q1(x) + p21(x)p23(x)q2(x) + p21(x)p22(x)q3(x)

+2p23(x)q1(x)q2(x) + 2p22(x)q1(x)q3(x) + 2p21(x)q2(x)q3(x) + 4q1(x)q2(x)q3(x)
)
wn+6(x)

+
(
p1(x)p2(x)p33(x)q1(x)q2(x) + p1(x)p32(x)p3(x)q1(x)q3(x) + p31(x)p2(x)p3(x)q2(x)q3(x)

+5p1(x)p2(x)p3(x)q1(x)q2(x)q3(x))wn+5(x)−
(
p41(x)q22(x)q23(x) + p42(x)q21(x)q23(x)

+ p43(x)q21(x)q22(x)− p21(x)p22(x)p23(x)q1(x)q2(x)q3(x) + 4p21(x)q1(x)q22(x)q23(x)

+4p22(x)q21(x)q2(x)q23(x) + 4p23(x)q21(x)q22(x)q3(x) + 6q21(x)q22(x)q23(x)
)
wn+4(x)

+ q1(x)q2(x)q3(x)
(
p1(x)p2(x)p33(x)q1(x)q2(x) + p1(x)p32(x)p3(x)q1(x)q3(x)

+p31(x)p2(x)p3(x)q2(x)q3(x) + 5p1(x)p2(x)p3(x)q1(x)q2(x)q3(x)
)
wn+3(x)

+ q21(x)q22(x)q23(x)
(
p22(x)p23(x)q1(x) + p21(x)p23(x)q2(x) + p21(x)p22(x)q3(x)

+2p23(x)q1(x)q2(x) + 2p22(x)q1(x)q3(x) + 2p21(x)q2(x)q3(x) + 4q1(x)q2(x)q3(x)
)
wn+2(x)

− p1(x)p2(x)p3(x)q31(x)q32(x)q33(x)wn+1(x)− q41(x)q42(x)q43(x)wn(x) (6.2)

for n ≥ 0 with initial conditions wi(x) = ai(x)bi(x)ci(x) for 0 ≤ i ≤ 7.
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If we multiply three distinct second order polynomial linear divisible sequences, then we construct a

sixteenth order polynomial linear divisible sequence.

Theorem 6.3. Let {an(x)}, {bn(x)}, {cn(x)}, and {dn(x)}be distinct second order polynomial linear divisible

sequences that can be defined by (2.3) with initial conditions a0(x) = b0(x) = c0(x) = d0(x) = 0 and a1(x),

b1(x), c1(x), d1(x) arbitrary. Suppose the sequence {an(x)} has a characteristic equation t2 − p1(x)t −

q1(x) = 0 with roots α1(x) and β1(x), such that α1(x) + β1(x) = p1(x) and α1(x)β1(x) = −q1(x), the

sequence {bn(x)} has a characteristic equation t2 − p2(x)t − q2(x) = 0 with roots α2(x) and β2(x), such

that α2(x) + β2(x) = p2(x) and α2(x)β2(x) = −q2(x), the sequence {cn(x)} has a characteristic equation

t2−p3(x)t−q3(x) = 0 with roots α3(x) and β3(x), such that α3(x)+β3(x) = p3(x) and α3(x)β3(x) = −q3(x),

and the sequence {dn(x)} has a characteristic equation t2− p4(x)t− q4 = 0 with roots α4(x) and β4(x), such

that α4(x) + β4(x) = p4(x) and α4(x)β4(x) = −q4(x). Then {wn(x) = an(x)bn(x)cn(x)dn(x)} is a sixteenth

order polynomial linear divisible sequence with initial conditions wi(x) = ai(x)bi(x)ci(x)di(x) for 0 ≤ i ≤ 15.

Note that the linear homogeneous recurrence relation constructed here is similar to recurrence relation

(3.4) by replacing pki with pki (x), qki with qki (x), and wn+j with wn+j(x) for 1 ≤ i ≤ 4, 1 ≤ k ≤ 8, and

0 ≤ j ≤ 16. For this reason the recurrence relation is not reproduced here due to length.

The proofs of Theorems 6.1, 6.2, and 6.3 are similar to the proofs of Theorems 3.3, 3.4, and 3.5 respec-

tively.

6.2

Powers of Polynomial Linear Divisible Sequences

Like we did for second order linear divisible sequences, we can talk about the powers of second order

polynomial linear divisible sequences. Again we define these powers term by term; thus, {wn(x)} is the

sequence
{
ak0(x), ak1(x), ak2(x), . . .

}
.

If we square a second order polynomial linear divisible sequences, then we construct a third order poly-

nomial linear divisible sequence.

Theorem 6.4. [9] Let {an(x)} be a second order polynomial linear divisible sequence that can be defined by

(2.3) with initial condition a0(x) = 0 and a1(x) arbitrary. Suppose the sequence {an(x)} has a characteristic
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equation t2 − p(x)t − q(x) = 0 with roots α(x) and β(x), such that α(x) + β(x) = p(x) and α(x)β(x) =

−q(x). Then
{
wn(x) = a2n(x)

}
is a polynomial linear divisible sequence that satisfies the third order linear

homogeneous recurrence relation

wn+3(x) =
(
p2(x) + q(x)

)
wn+2(x) + q(x)

(
p2(x) + q(x)

)
wn+1(x)− q3(x)wn(x) (6.3)

for n ≥ 0 with initial conditions w2(x) = a22(x), w1(x) = a21(x), and w0(x) = a20(x).

If we cube a second order polynomial linear divisible sequences, then we construct a forth order polynomial

linear divisible sequence.

Theorem 6.5. Let {an(x)} be a second order polynomial linear divisible sequence that can be defined by

(2.3) with initial condition a0(x) = 0 and a1(x) arbitrary. Suppose the sequence {an(x)} has a characteristic

equation t2 − p(x)t − q(x) = 0 with roots α(x) and β(x), such that α(x) + β(x) = p(x) and α(x)β(x) =

−q(x). Then
{
wn(x) = a3n(x)

}
is a polynomial linear divisible sequence that satisfies the fourth order linear

homogeneous recurrence relation

wn+4(x) =p(x)
(
p2(x) + 2q(x)

)
wn+3(x) + q(x)

(
p2(x) + q(x)

) (
p2(x) + 2q(x)

)
wn+2(x)

− p(x)q3(x)
(
p2(x) + 2q(x)

)
wn+1(x)− q6(x)wn(x)

(6.4)

for n ≥ 0 with initial conditions w3(x) = a33(x), w2(x) = a32(x), w1(x) = a31(x), and w0(x) = a30(x).

If we take the forth power of a second order polynomial linear divisible sequences, then we construct a

fifth order polynomial linear divisible sequence.

Theorem 6.6. Let {an(x)} be a second order polynomial linear divisible sequence that can be defined by

(2.3) with initial condition a0(x) = 0 and a1(x) arbitrary. Suppose the sequence {an(x)} has a characteristic

equation t2 − p(x)t − q(x) = 0 with roots α(x) and β(x), such that α(x) + β(x) = p(x) and α(x)β(x) =

−q(x). Then
{
wn(x) = a4n(x)

}
is a polynomial linear divisible sequence that satisfies the fifth order linear

homogeneous recurrence relation

wn+5(x) =
(
p4(x) + 3p2(x)q(x) + q2(x)

)
wn+4(x) +

(
p6(x)q(x) + 5p4(x)q2(x) + 7p2(x)q3(x)

+2q4(x)
)
wn+3(x)−

(
p6(x)q3(x) + 5p4(x)q4(x) + 7p2(x)q5(x) + 2q6(x)

)
wn+2(x)

−
(
p4(x)q6(x) + 3p2(x)q7(x) + q8(x)

)
wn+1(x) + q10(x)wn(x)

(6.5)

for n ≥ 0 with initial conditions w4(x) = a44(x), w3(x) = a43(x), w2(x) = a42(x), w1(x) = a41(x), and

w0(x) = a40(x).
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If we take the fifth power of a second order polynomial linear divisible sequences, then we construct a

sixth order polynomial linear divisible sequence.

Theorem 6.7. Let {an(x)} be a second order polynomial linear divisible sequence that can be defined by

(2.3) with initial condition a0(x) = 0 and a1(x) arbitrary. Suppose the sequence {an(x)} has a characteristic

equation t2 − p(x)t − q(x) = 0 with roots α(x) and β(x), such that α(x) + β(x) = p(x) and α(x)β(x) =

−q(x). Then
{
wn(x) = a5n(x)

}
is a polynomial linear divisible sequence that satisfies the sixth order linear

homogeneous recurrence relation

wn+6(x) =
(
p5(x) + 4p3(x)q(x) + 3p(x)q2(x)

)
wn+5(x) +

(
p8(x)q(x) + 7p6(x)q2(x) + 16p4(x)q3(x)

+13p2(x)q4(x) + 3q5(x)
)
wn+4(x)−

(
p9(x)q3(x) + 8p7(x)q4(x) + 22p5(x)q5(x)

+23p3(x)q6(x) + 6p(x)q7(x)
)
wn+3(x)−

(
p8(x)q6(x) + 7p6(x)q7(x) + 16p4(x)q8(x)

+13p2(x)q9(x) + 3q10(x)
)
wn+2(x) +

(
p5(x)q10(x) + 4p3(x)q11(x) + 3p(x)q12(x)

)
wn+1(x)

+ q15(x)wn(x)

(6.6)

for n ≥ 0 with initial conditions wi(x) = a5i (x) for 0 ≤ i ≤ 5.

If we take the sixth power of a second order polynomial linear divisible sequences, then we construct a

seventh order polynomial linear divisible sequence.

Theorem 6.8. Let {an(x)} be a second order polynomial linear divisible sequence that can be defined by

(2.3) with initial condition a0(x) = 0 and a1(x) arbitrary. Suppose the sequence {an(x)} has a characteristic

equation t2 − p(x)t − q(x) = 0 with roots α(x) and β(x), such that α(x) + β(x) = p(x) and α(x)β(x) =

−q(x). Then
{
wn(x) = a6n(x)

}
is a polynomial linear divisible sequence that satisfies the seventh order

93



linear homogeneous recurrence relation

wn+7(x) =
(
p6(x) + 5p4(x)q + 6p2(x)q2(x) + q3(x)

)
wn+6(x) +

(
p10(x)q + 9p8(x)q2(x)

+29p6(x)q3(x) + 40p4(x)q4(x) + 22p2(x)q5(x) + 3q6(x)
)
wn+5(x)−

(
p12(x)q3(x)

+11p10(x)q4(x) + 46p8(x)q5(x) + 90p6(x)q6(x) + 81p4(x)q7(x) + 28p2(x)q8(x)

+3q9(x)
)
wn+4(x)−

(
p12(x)q6(x) + 11p10(x)q7(x) + 46p8(x)q8(x) + 90p6(x)q9(x)

+81p4(x)q10(x) + 28p2(x)q11(x) + 3q12(x)
)
wn+3(x) +

(
p10(x)q10(x) + 9p8(x)q11(x)

+29p6(x)q12(x) + 40p4(x)q13(x) + 22p2(x)q14(x) + 3q15(x)
)
wn+2(x) +

(
p6(x)q15(x)

+5p4(x)q16(x) + 6p2(x)q17(x) + q18(x)
)
wn+1(x)− q21(x)wn(x)

(6.7)

for n ≥ 0 with initial conditions wi(x) = a6i (x) for 0 ≤ i ≤ 6.

The proofs for Theorems 6.4, 6.5, 6.6, 6.7, and 6.8 are similar to the proofs of Theorems 4.1, 4.2, 4.3,

4.4, and 4.5 respectively.

6.3

Products of Powers of Polynomial Linear Divisible Sequences

Like we did for second order linear divisible sequences, we can talk about the products of powers of

second order polynomial linear divisible sequences. Again we define these products of powers term by term:

thus, {wn(x)} is the sequence
{
ak101 (x)ak202 (x) · · · aki0i (x), ak111 (x)ak212 (x) · · · aki1i (x), ak121 (x)ak222 (x) · · · aki2i (x), . . .

}
.

If we square a second order polynomial linear divisible sequences and multiply it by a different second

order polynomial linear divisible sequences, then we construct a sixth order polynomial linear divisible

sequence.

Theorem 6.9. Let {an(x)} and {bn(x)} be distinct second order polynomial linear divisible sequences that

can be defined by (2.3) with initial conditions a0(x) = b0(x) = 0 and a1(x), b1(x) arbitrary. Suppose the

sequence {an(x)} has a characteristic equation t2− p1(x)t− q1(x) = 0 with roots α1(x) and β1(x), such that

α1(x) + β1(x) = p1(x) and α1(x)β1(x) = −q1(x), and the sequence {bn(x)} has a characteristic equation

t2−p2(x)t−q2(x) = 0 with roots α2(x) and β2(x), such that α2(x)+β2(x) = p2(x) and α2(x)β2(x) = −q2(x).

Then {wn(x) = a2n(x)bn(x)} is a polynomial linear divisible sequence that satisfies the sixth order linear
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homogeneous recurrence relation

wn+6(x) =
(
p21(x)p2(x) + p2(x)q1(x)

)
wn+5(x) +

(
p41(x)q2(x) + p21(x)p22(x)q1(x) + 4p21(x)q1(x)q2(x)

+p22(x)q21(x) + 3q21(x)q2(x)
)
wn+4(x)−

(
p41(x)p2(x)q1(x)q2(x) + 2p21(x)p2(x)q21(x)q2(x)

−2p2(x)q31(x)q2(x)− p22(x)p2(x)q31(x)
)
wn+3(x)−

(
p41(x)q21(x)q22(x) + p21(x)p22(x)q31(x)q2(x)

+4p21(x)q31(x)q22(x) + p22(x)q41(x)q2(x) + 3q41(x)q22(x)
)
wn+2(x) +

(
p21(x)p2(x)q41(x)q22(x)

+p2(x)q51(x)q22(x)
)
wn+1(x) + q61(x)q32(x)wn(x).

(6.8)

for n ≥ 0 and initial conditions wi(x) = a2i (x)bi(x) for 0 ≤ i ≤ 5.

If we square a second order polynomial linear divisible sequences and multiply it by the square a different

second order polynomial linear divisible sequences, then we construct a ninth order polynomial linear divisible

sequence.

Theorem 6.10. Let {an(x)} and {bn(x)} be distinct second order polynomial linear divisible sequences that

can be defined by (2.3) with initial conditions a0(x) = b0(x) = 0 and a1(x), b1(x) arbitrary. Suppose the

sequence {an(x)} has a characteristic equation t2− p1(x)t− q1(x) = 0 with roots α1(x) and β1(x), such that

α1(x) + β1(x) = p1(x) and α1(x)β1(x) = −q1(x), and the sequence {bn(x)} has a characteristic equation

t2 − p2(x)t− q2(x) = 0 with roots α2(x) and β2(x), such that α2(x) + β2(x) = p2(x) and α2(x)β2 = −q2(x).

Then
{
wn(x) = a2n(x)b2n(x)

}
is a polynomial linear divisible sequence that satisfies the ninth order linear

homogeneous recurrence relation

wn+9(x) =
(
p21(x)p22(x)+p21(x)q2(x)+p22(x)q1(x)+q1(x)q2(x)

)
wn+8(x)+

(
p21(x)p42(x)q1(x)

+p41(x)p22(x)q2(x)+p42(x)q21(x)+p41(x)q22(x)+6p21(x)p22(x)q1(x)q2(x)+5p22(x)q21(x)q2(x)

+5p21(x)q1(x)q22(x)+4q21(x)q22(x)
)
wn+7(x)+

(
p41(x)p42(x)q1(x)q2(x)−p62(x)q31(x)−p61(x)q32(x)

+2p21(x)p42(x)q21(x)q2(x)+2p41(x)p22(x)q1(x)q22(x)+4p21(x)p22(x)q21(x)q22(x)−5p42(x)q31(x)q2(x)

−5p41(x)q1(x)q32(x)−7p22(x)q31(x)q22(x)−7p21(x)q21(x)q32(x)−4q31(x)q32(x)
)
wn+6(x)

−
(
p61(x)q1(x)q42(x)+p62(x)q41(x)q2(x)+p61(x)p22(x)q1(x)q32(x)+p21(x)p62(x)q31(x)q2(x)

+p41(x)p42(x)q21(x)q22(x)+7p21(x)p42(x)q31(x)q22(x)+7p41(x)p22(x)q21(x)q32(x)+6p42(x)q41(x)q22(x)

+6p41(x)q21(x)q42(x)+17p21(x)p22(x)q31(x)q32(x)+11p22(x)q41(x)q32(x)+11p21(x)q31(x)q42(x)
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+6q41(x)q42(x)
)
wn+5(x)+q1(x)q2(x)

(
p61(x)q1(x)q42(x)+p62(x)q41(x)q2(x)+p61(x)p22(x)q1(x)q32(x)

+p21(x)p62(x)q31(x)q2(x)+p41(x)p42(x)q21(x)q22(x)+7p21(x)p42(x)q31(x)q22(x)+7p41(x)p22(x)q21(x)q32(x)

+6p42(x)q41(x)q22(x)+6p41(x)q21(x)q42(x)+17p21(x)p22(x)q31(x)q32(x)+11p22(x)q41(x)q32(x)

+11p21(x)q31(x)q42(x)+6q41(x)q42(x)
)
wn+4(x)−q31(x)q32(x)

(
p41(x)p42(x)q1(x)q2(x)−p62(x)q31(x)

−p61(x)q32(x)+2p21(x)p42(x)q21(x)q2(x)+2p41(x)p22(x)q1(x)q22(x)+4p21(x)p22(x)q21(x)q22(x)

−5p42(x)q31(x)q2(x)−5p41(x)q1(x)q32(x)−7p22(x)q31(x)q22(x)−7p21(x)q21(x)q32(x)

−4q31(x)q32(x)
)
wn+3(x)−q51(x)q52(x)

(
p21(x)p42(x)q1(x)+p41(x)p22(x)q2(x)+p42(x)q21(x)+p41(x)q22(x)

+6p21(x)p22(x)q1(x)q2(x)+5p22(x)q21(x)q2(x)+5p21(x)q1(x)q22(x)+4q21(x)q22(x)
)
wn+2(x)

−q71(x)q72(x)
(
p21(x)p22(x)+p21(x)q2(x)+p22(x)q1(x)+q1(x)q2(x)

)
wn+1(x)−q91(x)q92(x)wn(x) (6.9)

for n ≥ 0 and initial conditions wi(x) = a2i (x)b2i (x) for 0 ≤ i ≤ 8.

The proofs of Theorems 6.9 and 6.10 are similar to the proofs of Theorems 5.1 and 5.2 respectively.
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CHAPTER 7

CONCLUSION

The main reason to continue the examination of constructions started by He and Shiue in [9] was to look

for a pattern in terms of the ps and qs from the second order linear divisible sequences we were multiplying.

The reason to look for a pattern is so that in the future we would not have to go through this entire

construction process each time. Based on the constructions, I did not see any evidence of a pattern in

multiplying distinct second order linear divisible sequences at this time. I also did not see any evidence

when taking a power of a single second order linear divisible sequences at this time.

While there was no pattern that worked for every coefficient of either the product of multiple second

order linear divisible sequences or for the powers of a single second order linear divisible sequence there are

other things that we can learn from our constructions.

There was one pattern that did become clear as we worked on these constructions. That pattern tells us

the order of the linear divisible sequence that is the result of the construction. It is important to note that

the order of the linear divisible sequences was dependent on our choice of the multiplicities of the roots.

Theorem 7.1. Let {an1} , {an2} , . . . , {ani} be distinct second order linear divisible sequences that can be

defined by (2.1) with initial conditions a0i = 0 and a1i arbitrary for all i. Suppose the sequence {ani
} has

characteristic x2 − pix − qi = 0 with roots αi and βi, such that αi + βi = pi and αiβi = −qi. Then we can

construct a linear divisible sequence
{
wn = aj1n1

aj2n2
· · · ajini

}
that has the order (j1 + 1)(j2 + 1) · · · (ji + 1).

Proof. It is sufficient to show this for the product of two second order linear divisible sequences. Let {an} and

{bn} be distinct second order linear divisible sequences that can be defined by (2.1) with initial conditions

a0 = b0 = 0 and a1, b1 arbitrary. Let the sequence {an} have the characteristic equation x2 − p1x− q1 = 0

with roots α1 and β1, such that α1 +β1 = p1 and α1β1 = −q1, and the sequence {bn} have the characteristic

97



equation x2 − p2x− q2 = 0 with roots α2 and β2, such that α2 + β2 = p2 and α2β2 = −q2.

Next, we show that
{
ajn
}

can be expressed a linear homogeneous recursion relation of order j + 1 and{
bkn
}

can be expressed a linear homogeneous recursion relation of order k + 1. Let α1 6= β1 and α2 6= β2.

Then, by equation (4.1), we have

ajn =

(
aj1

(α1 − β1)
j

)
(αn1 − βn1 )

j
=

(
aj1

(α1 − β1)
j

)(
j∑
s=0

(−1)
s
(
αj−s1 βs1

)n)

and

bkn =

(
bk1

(α2 − β2)
k

)
(αn2 − βn2 )

k
=

(
bk1

(α2 − β2)
k

)(
k∑
t=0

(−1)
t (
αk−t2 βt2

)n)

From the Binomial Theorem we know, (αn1 − βn1 )
j

is a polynomial with j + 1 terms and (αn2 − βn2 )
k

is a

polynomial with k + 1 terms. Next, Looking at the product wn = anbn we get

wn =

(
aj1b

k
1

(α1 − β1)
j

(α2 − β2)
k

)(
j∑
s=0

(−1)
s
(
αj−s1 βs1

)n)( k∑
t=0

(−1)
t (
αk−t2 βt2

)n)

=

(
aj1b

k
1

(α1 − β1)
j

(α2 − β2)
k

)(
j∑
s=0

k∑
t=0

(−1)
s+t
(
αj−s1 βs1α

k−t
2 βt2

)n)
.

Since the above equations is in the form of equation (1.4), we know the sequence {wn = anbn} can be

expressed as a linear homogeneous recurrence relation whose characteristic equation has the roots αj1α
k
2 ,

αj−11 β1α
k
2 , . . ., αj1α

k
2 , . . ., βj1β

k
2 each with a multiplicity of at least one. It is important to note when working

out the double summation there will be no like terms. Thus, since we are multiplying a polynomial with

j + 1 term by a polynomial with k + 1 terms we know our double summation becomes a polynomial with

(j + 1)(k + 1) terms. So, if we let all of the roots have multiplicity one then, we know the characteristic

equation of {wn} has (j + 1)(k + 1) roots and thus is of degree (j + 1)(k + 1). Therefore, {wn = anbn}can

be expressed as a linear homogeneous recurrence relation of order (j + 1)(k + 1).

Note there is no need to check the situation when one or more sequences have duplicate roots since we

only want to show that we can construct a linear divisible sequence with a specific order.

Theorem 7.2. Let {an1
(x)} , {an2

(x)} , . . . , {ani
(x)} be distinct second order polynomial linear divisible

sequences that can be defined by (2.3) with initial conditions a0i(x) = 0 and a1i(x) arbitrary for all i.

Suppose the sequence {ani(x)} has characteristic t2 − pi(x)t − qi(x) = 0 with roots αi(x) and βi(x), such
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that αi(x) + βi(x) = pi(x) and αi(x)βi(x) = −qi(x). Then we can construct a polynomial linear divisible

sequence
{
wn = aj1n1

(x)aj2n2
(x) · · · ajini

(x)
}

that has the order (j1 + 1)(j2 + 1) · · · (ji + 1).

This means that if we were looking to construct a linear divisible sequence of a particular order, we would

know how it would be constructed. The table below shows what products of second order linear divisible

sequences we could take to construct a linear divisible sequence of a specific order for some smaller orders.

A similar table could be constructed for polynomial linear divisible sequences.

order products order products

3
{
a2n

}
18

{
a17n

}
,
{
a8nbn

}
,
{
a5nb

2
n

}
,
{
a2nb

2
ncn

}
4

{
a3n

}
, {anbn} 19

{
a18n

}
5

{
a4n

}
20

{
a19n

}
,
{
a9nbn

}
,
{
a4nb

3
n

}
,
{
a4nbncn

}
6

{
a5n

}
,
{
a3nbn

}
21

{
a20n

}
,
{
a6nb

2
n

}
7

{
a6n

}
22

{
a21n

}
,
{
a10n bn

}
8

{
a7n

}
,
{
a4nbn

}
, {anbncn} 23

{
a22n

}
9

{
a8n

}
,
{
a2nb

2
n

}
24

{
a23n

}
,
{
a11n bn

}
,
{
a7nb

2
n

}
,
{
a5nb

3
n

}
,{

a5nbncn
}
,
{
a2nbncndn

}
10

{
a9n

}
,
{
a5nbn

}
25

{
a24n

}
,
{
a4nb

4
n

}
11

{
a10n

}
26

{
a25n

}
,
{
a12n bn

}
12

{
a11n

}
,
{
a6nbn

}
,
{
a3nb

2
n

}
,
{
a2nbncn

}
27

{
a26n

}
,
{
a8nb

2
n

}
,
{
a2nb

2
nc

2
n

}
13

{
a12n

}
28

{
a27n

}
,
{
a13n bn

}
,
{
a6nb

3
n

}
,
{
a6nbncn

}
14

{
a13n

}
,
{
a7nbn

}
29

{
a28n

}
15

{
a14n

}
,
{
a4nb

2
n

}
30

{
a29n

}
,
{
a14n bn

}
,
{
a9nb

2
n

}
,
{
a5nb

4
n

}
,
{
a5nb

2
ncn

}
16

{
a15n

}
,
{
a7nbn

}
,
{
a3nb

3
n

}
,

31
{
a30n

}{
a3nbncn

}
, {anbncndn}

17
{
a16n

}
32

{
a31n

}
,
{
a15n bn

}
,
{
a7nb

3
n

}
,
{
a7nbncn

}
,{

a3nb
3
ncn

}
,
{
a3nbncndn

}
, {anbncndnen}

Table 7.1: Products of second order linear divisible sequences to make a specific order

It is important to note that the orders we calculated in this thesis was dependent on choosing a multiplicity

of one in the case when all of our second order linear divisible sequences had distinct roots. By letting the

multiplicity be different, we would construct linear homogeneous recurrence relation of different orders.

Constructing these linear homogeneous recurrence relation and comparing them to the ones constructed in

this thesis is left for future work.

Another observation is that any coefficient that is the sum of the product of more then half of the roots

of the characteristic equation is the product of one of the coefficients that is the sum of the products of less

then half of the roots of the characteristic equation times every q from each second order linear divisible

sequence to some power. For example, in the proof Theorem 3.5 we showed that the coefficient of x4, which
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becomes the coefficient of wn+4, is equal to the coefficient of x12, which becomes the coefficient of wn+12,

times all four of the q’s to the fourth power. Note that in this case the coefficient of x4 is the sum of the

products of twelve of the roots, and the coefficient of x12 is the sum of the products of four of the roots. So

we can see this pattern is a result of certain facts. The first is the fact that
(
n
k

)
=
(
n

n−k
)
. The second fact is

that if we have an even number of roots, then we have matching pairs of roots whose product is the product

of q’s to some power, and if we have an odd number of roots, then there is one root that is the product of

q’s to some power and the rest of the roots are matching pairs whose product is the product of q’s to some

power. This is helpful that if we ever do further construction of this type we only have to work out half of

the coefficients.

The next thing that stands out is that if you take the product of multiple distinct second order linear

divisible sequence, then each coefficient appears to have its own pattern. This pattern is based off the number

of the roots the characteristic equation that are being multiplied. We say that these coefficients appear to

have a patter here because, we are not positive if all coefficients have a pattern. The reason for this is just

lack of examples. For example, we only have one example of a coefficient that is the product of seven roots

of a characteristic function, and one example is not enough to establish a pattern. One pattern that we do

see right away is that the coefficient that is the sum of the roots of the characteristic equation is a product

of all the p’s from our second order liner divisible sequences. There is also a clear pattern in the coefficients

that are the sum of the products of two of the roots of the characteristic equation. These patterns are helpful

in that if we ever do further constructions of this type we can reduce the amount of coefficients we have to

construct. The proof of these patterns is left for future work.

When taking powers of a single second order linear divisible sequence no patterns were evident. The

main things that came out are some equalities that became helpful in future proofs. For example, in proof

of Theorem 4.3, we showed that if α+ β = p and αβ = −q, then

α4+α3β+α2β2+αβ3+β4 =p4+3p2q+q2.

This equality was used in the proofs of some theorems that followed Theorem 4.3. So much that came out

of these constructions was saving time in future constructions. Also we did see an easy way to construct

a higher order LDS by taking any power of a second order LDS that can be defined by(2.1) where the
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characteristic equation has a duplicate root.

Theorem 7.3. Let {an} be a distinct second order linear divisible sequence that can be defined by (2.1)

with initial condition a0 = 0 and a1 arbitrary. Suppose the sequence {an} has a characteristic equation

x2 − px − q = 0 with the duplicate root α, such that α + α = p and α2 = −q. Then
{
wn = akn

}
is a linear

divisible sequence that satisfies the k + 1 order linear homogeneous recurrence relation

wn+k+1 =

k+1∑
j=1

(−1)j−1
(
k + 1

j

)(
αk
)j
wn+k+1−j (7.1)

for n ≥ 0 with initial conditions wi = aki , for 0 ≤ i ≤ k.

Proof. Let {an} be a distinct second order linear divisible sequence that can be defined by (2.1) with initial

condition a0 = 0 and a1 arbitrary. Let the sequence {an} has a characteristic equation x2− px− q = 0 with

the duplicate root α, such that α+ α = p and α2 = −q. Then, by equation (4.1), we have

wn = akn = nkak1((α)n−1)k = nkak1
(
αk
)n−1

=
nkak1
αk

(
αk
)n
.

Since the above equation is in the form of equation (1.4), we know the sequence {wn} can be expressed as

a linear homogeneous recurrence relation whose characteristic equation has the root αk with a multiplicity

of at least k + 1. We will let it have multiplicity k + 1 since that means we will have k + 1 roots, which is

how many characteristic roots we need for a k + 1 order linear divisible sequence Thus, if we let αk have

multiplicity k + 1, then the characteristic function become

(
x− αk

)k+1
=

k+1∑
j=0

(
k + 1

j

)
xk+1−j (−αk)j = xk+1 +

k+1∑
j=1

(−1)j
(
k + 1

j

)
xk+1−j (αk)j .

Therefore, when we take the kth power of a second order linear divisible sequence, we can construct a

k + 1 order linear divisible sequence defined by recurrence relation (7.1). It is easy to see by how we define

wn = akn that wi = aki , for 0 ≤ i ≤ k.

While we did not come up with a pattern, the linear homogeneous recursion relations we constructed are

still useful. In He and Shiue[9], they showed that certain well know fourth order linear divisible sequences

are actually represented by the linear homogeneous recursion relation (3.2). Thus, these well know fourth

order linear divisible sequences are the product of two distinct second order linear divisible sequences. We
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can now do the same thing with each of the linear homogeneous recursion relations that we constructed.

So we could check if eighth order linear divisible sequences are the products of three distinct second order

linear divisible sequences, or if ninth order linear divisible sequences are the products of the squares of two

different second order linear divisible sequences. This is left for future work. One other possibility for future

work is to see if the recurrence relations we constructed work for sequences that could be defined by (2.1)

or (2.3) that are not divisible to also construct higher order sequences.
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APPENDIX: COEFFICIENTS PRODUCT FOUR SEQUENCES

Factoring, susbsitition of varibles, and simplification of the coefficent of x14 from the characteristic

polynomial in Theorem 3.5 can be found online at:

https://www.pdf-archive.com/2017/10/17/coefficient-x14/coefficient-x14.pdf

Factoring, susbsitition of varibles, and simplification of the coefficent of x13 from the characteristic

polynomial in Theorem 3.5 can be found online at:

https://www.pdf-archive.com/2017/10/17/coefficient-x13/coefficient-x13.pdf

Factoring, susbsitition of varibles, and simplification of the coefficent of x12 from the characteristic

polynomial in Theorem 3.5 can be found online at:

https://www.pdf-archive.com/2017/10/17/coefficient-x12/coefficient-x12.pdf

Factoring, susbsitition of varibles, and simplification of the coefficent of x11 from the characteristic

polynomial in Theorem 3.5 can be found online at:

https://www.pdf-archive.com/2017/10/17/coefficient-x11/coefficient-x11.pdf

Factoring, susbsitition of varibles, and simplification of the coefficent of x10 from the characteristic

polynomial in Theorem 3.5 can be found online at:

https://www.pdf-archive.com/2017/10/17/coefficient-x10/coefficient-x10.pdf

Factoring, susbsitition of varibles, and simplification of the coefficent of x9 from the characteristic poly-

nomial in Theorem 3.5 can be found online at:

https://www.pdf-archive.com/2017/10/17/coefficient-x9/coefficient-x9.pdf

Factoring, susbsitition of varibles, and simplification of the coefficent of x8 from the characteristic poly-

nomial in Theorem 3.5 can be found online at:

https://www.pdf-archive.com/2017/10/17/coefficient-x8/coefficient-x8.pdf
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