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ABSTRACT

NOTES ON LINEAR DIVISIBLE SEQUENCES AND THEIR
CONSTRUCTION: A COMPUTATIONAL APPROACH

by
Sean Trendell
Dr. Pete Shiue, Examination Committee Chair

Professor of Mathematical Sciences
University of Nevada, Las Vegas, USA

In this Masters thesis, we examine linear divisible sequences. A linear divisible sequence is any sequence
{an}n>0 that can be expressed by a linear homogeneous recursion relation that is also a divisible sequence.
A sequence {ay, }r>0 is called a divisible sequence if it has the property that if n|m, then a,|a,,. A sequence
of numbers {a, }n>0 is called a linear homogeneous recurrence sequence of order m if it can be written in
the form

Untm = P1antm—1 + P20ntm—2 + - + Pm—10ny1 + Pman, 120,
for some constants pi,pa, ..., pm with p,, # 0 and initial conditions ag,aq,...,a,—1. We focus on taking
products, powers, and products of powers of second order linear divisible sequences in order to construct

higher order linear divisible sequences. We hope to find a pattern in these constructions so that we can

easily form higher order linear divisible sequence.

iii
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CHAPTER 1

INTRODUCTION

In this thesis we examine the construction of higher order linear divisible sequences. A linear divisible
sequence is any sequence of numbers {a,},>0 that can be expressed as a linear homogeneous recurrence
relation that is also a divisible sequence. We also look at polynomial linear divisible sequences. A polyno-
mial linear divisible sequence is any sequence of polynomials {a,(z)},>0 that can be expressed as a linear
homogeneous recurrence relation that is also a divisible sequence. For the rest of this thesis, we will define
{an} to mean {a,},>0 and {a,(x)} to mean {a,(z)},>0.

A sequence of numbers {a,} is called a divisibility sequence if it has the property that whenever n|m,
then anla;,. Our definition of divides in the integral domain states that if R is an integral domain and
a,b € R, then we say alb if there exists k € R such that ak = b. Thus, if {a,} is a sequence of elements of
the ring of integers Z, then a,|a,, means there is a k € Z such that a,k = a,,. A sequence of polynomials
{an(x)} is a divisibility sequence if it has the property that whenever n|m, then a,(x)|am,(x). This would
mean there exists a polynomial k(z) such that a,(z)k(x) = an,(2).

In [2] we get a good history on divisible sequences. The concept of divisibility sequences were first
discussed by Lucas [12] in 1878. However the term divisibility sequence first appeared in the 1930s in works
by Hall [7], Lehmer [11], and Ward [15]. More recent works on divisibility sequence can be seen in works by
Bézivin, Petho, and Van Der Poorten [1]; Silverman [14]; as well as He and Shiue [9]. Also in the bibliography
in [5], one can find an extensive list of works on recurrence sequences, including divisibility sequences. In
fact, Lehmer [11] did a lot of work with non-integer sequences such as up4o = \/Zunﬂ + bu,, for ug = 0,

u; = 1 where £,b € Z and ged(4,b) = 1.



A sequence of numbers {a, } is called a linear homogeneous recurrence sequence of order m if
Ap+m = P1On+m—1 +p2an+m72 + -+ Pm—10n+1 + PmQn, (11)

for any n > 0, constants pi, pa, ..., With p,, # 0, and initial conditions ag, a1, ..., a,,—1. Since equation
(1.1) is linear, we know that if the sequences {a,} and {b,} are recurrence sequences that satisfy equation
(1.1) and c is a non-zero constant, then the sequence {ca,, + by} also satisfies equation (1.1).

Suppose we have a solution to (1.1) that is the geometric series {a,} where a,, = ™ for some «. Then
we have

n+m n+m—1

a = G = P1Y +p204n+mf? +

ot pmord™ 4 ppa, n > 0.
Moving everything to one side and dividing by a”, we get

2

P () =a™m —pra™ = pra™ 2 — o —p1— P = 0. (1.2)

Thus, the sequence {a,} where a,, = o™ satisfies equation (1.1) if and only if « is a solution to equation
(1.2). Equation (1.2) is called the characteristic equation and its roots are called characteristic roots.
Suppose the characteristic equation (1.2) has m distinct roots, {ay}7r,, then o} is a solution to the

recurrence relation for all k. Therefore, the sequence {a,} satisfies the recurrence relation if and only if
Apym = Ala? + AZCVS +-+ Amflanmfl + Ama;lw (13)

for all n. The constants {Ax} depend on the {p;} and the initial conditions.
Suppose the characteristic equation (1.2) has i < m distinct roots, {ak}};zl with each aj having multi-

2

plicity jk, k = 1,2,...,4. Then, for each ay, we know af, nai, n?af, ..., n’*~1a} are all solutions to the

recurrence relation. Therefore, the sequence {a,} satisfies the recurrence relation if and only if

Ay = (Al,O + Al,ln + A1,2n2 4+ 4 Ale_lnjl_l)oz?

+ (Ag g+ Agan+ Agon® + -+ + Ay j,_1n?* Hal
(1.4)

+ (Ao + Ajan+ Ajon® + -+ + A j,n? " Hal,

for all n. The constants {Ag_ ;} is depend on the {py} and the initial conditions.



Both equations (1.3) and (1.4) are called the general solution of a recurrence relation, where equation
(1.3) is a special case of equation (1.4). They can be seen in many combinatorics books, including in Chen
and Koh [3] on page 235, and are proven in Roberts and Tesmam [13] on pages 362-363. Thus, if we know

the roots of our characteristic equation, then we can rewrite it as
Po(z)=(z—a1)(@—az) (2 —am_1)(@ —am) =0 (1.5)
if the roots are all distinct, and as
Po(z) = (2 —a1) (x — )2 - (x — )7 =0 (1.6)

if we only have i < m distinct roots.
A sequence of polynomials {a,(z)} is called a linear homogeneous recurrence relation of order m if it can

be written in the form

antm(T) = P1(T)antm—1(2) + p2(T)anim—2(®) + - + pm-1(2)an11(x) + pm(x)an(z),n > 0, (1.7)

for some polynomials py (), p2(x), ..., pm(x) With p,,(z) # 0 and initial conditions ag(z), a1 (x), ..., am—1(z).
We can find the characteristic equation and general forms of the linear homogeneous recurrence relation of
a polynomial sequence in the same manner as we did for sequences of numbers.

We start off our study of linear divisible sequences by examining second order linear divisible sequences in
Chapter 2. In Chapters 3 through 5, we construct higher order linear divisible sequences by taking various
products and powers of second order linear divisible sequences. In Chapter 6, we take various products
and powers of second order polynomial linear divisible sequences to construct higher order linear divisible

sequences.



CHAPTER 2

SECOND ORDER LINEAR DIVISIBLE SEQUENCES

A sequence of numbers {a, } is called a second order linear homogeneous recurrence relation if it satisfies
the equation

Unt2 = Pan_1 + qa,, n >0, (2.1)

for constant p, non-zero constant ¢, and initial conditions ag and a;. If we let a and 8 be roots of the

polynomial 22 — pr — ¢ = 0, where o and 3 satisfy o + 8 = p and a8 = —¢, then the general solution of
{an} is

naja" !t — (n —1)aga™, ifa=p.

a1 —pfa n_ [a1—aa n : .
an:{( a—ﬁo)o‘ ( la—BO)”B , o f (2.2)
This formula can be seen in many papers including He and Shiue [8].

A sequence of polynomial {a,(x)} is called a second order linear homogeneous recurrence relation if it

satisfies the equation

anta(r) = p(z)an—1(z) + q(x)an(x), n >0, (2:3)

for polynomials p(x), non-zero polynomial g(z), and initial conditions a¢(z) and ai(z). If we let a(z) and
B(z) be roots of the polynomial t* — p(z)t — q(z) = 0, where a(x) and B(z) satisfy a(x) + B(x) = p(z) and
a(z)B(z) = —q(z), then the general solution of {a,(x)} is
o () ) () 7, a2
nay (z)a" " (z) — (n = ag(z)a" (x), if o) = ().
Again this formula can be seen in many papers including He and Shiue [8].
Next, we examine under what conditions the sequence generated by a second order linear homogeneous

recurrence relation is a linear divisible sequence.



Theorem 2.1. Let {a,} be sequence of elements in an integral domain R, defined by a second order linear
homogeneous recurrence relation of the form (2.1), such that p,q € R and an arbitrary a; € R. Then {a,}

is a divisible sequence if ag = 0.

Proof. Let {a,} be sequence of numbers in an integral domain R, defined by a second order linear homo-
geneous recurrence relation of the form (2.1), such that p,q € R and an arbitrary a; € R. Then, {a,} has
characteristic equation 22 — pxz — ¢ = 0 with roots o and 3, such that a« + 8 = p and a8 = —¢. Then, R, the
integral domain our sequence is in, is dependent on «, 3, a1, and ag.

Let ag = 0 and n|m, meaning there exists an integer j such that nj = m. By substituting 0 in for ag in

equation (2.2), it becomes

() =, ez s
! naja™ 1, if a = 0.

Case 1: Let a # 8. Then from equation (2.5) we have

am _ (%) 0 = 8™
o (Gg) (- 8
a™ — pm

o — Bn
@y = ()

- an_ﬁn

(2.5)

(o) (")

P is in our integral domain R. To do this we will use the following

Our next step is to show
Girard-Waring identities that can be found in many works, including the work by He and Shiue[10], and
proven in works like Comtet [4] and Gould [6]:

D DI () [ER O R e (26)

0<k<[n/2]

and
xn-i—l _ yn+1

S DIRC (g [ERAVES TR (27)

Ty 0<k<[n/2]

It is important to note that - (";k) from equation (2.6) is an integer when n and k are integers because

n (n—k n(n — k)!
n—k< k )_ (n — k)k!(n — 2k)!
~nn—k—1)Y(n—k)
 (n—k)k!(n — 2k)!
nin—k—1)!
kl(n — 2k)!




_ (n—k)+k)(n—Fk—1)

kl(n — 2k)!
=k + (k(n—k—1))
B kl(n — 2k)!

(n—k)! kE(n—k—1)!
kl(n — 2k)! El(n — 2k)!
(n—k)! k(n—k—1)!
kl(n —2k)!  k(k—1)!(n— 2k)!
(n—k)! (n—k—-1)!
(n—2k)!  (k—1)(n—2k)!

)

Thus by equation (2.7) we have

e (f:) = > (j o 1) (o + 877 (™) (2:8)

0<k<[(j—1)/2]

and by equation (2.6) we have

n n __ _1\k n n—k n—2k k
D M (e [l (2.9
0<k<[n/2]
Since, a + 8 = p and a8 = —¢, we know (a + 3)"2* € R and (a)¥ € R because integral domains are

closed. Thus, by equation (2.9), we know o™ + "™ € R. Then since, a"" = (—q)", we know (a"ﬂ")k €R,
and since, o™ + 8" € R, we know (a” 4+ ")’ "**"! ¢ R. Thus, by equation (2.8), we know @Y=" g

DL"*B”

Thus, %= € R, meaning {a,} is a divisible sequence when o # f3.

n

Case 2: Let o = 3. Note that a = 3 only happens when z? — pr — ¢ = 0 is a perfect square trinomial, which

happens when p? + 4¢ = 0. Thus we have 2a = p and o? = —q. Then from equation (2.5), we have

A maya™m 1
an, najoan—1
nja; ™t
najan—1
— jami,

Since our characteristic equation is monic, and its discriminate is zero, we know o € R. Since, a € R, we

know ja™~" € R. Thus, ‘;—n € R, meaning {a,} is a divisible sequence when o = .

Therefore, if ag = 0, then {a, } is a divisible sequence. O



Note that, if R is an intergral domain, then R(x) an integral domain. Thus, by Theorem 2.1, any
sequence of polynomials that can be defined by (2.3) with coefficients in an integral domain R and an
arbitrary a;(z) € R(x) is a polynomial linear divisible sequence if ag(z) = 0.

By substituting 0 in for ag(z) in equation (2.4), it becomes

0.(@) = {(a(g;(i;(x)) (a"(x) = B"(2). it alz) # Bla); .10)

nay (x)a" (), if a(z) = B(x).
Based on equation (2.5), we can define many second order linear divisible sequences by one of the following

sequences

{Wn(al,a,ﬂ) _ alo‘;_gn} (2.11)

where a1, «, and 8 are non-zero constants with « # 3, or
{Walar, a,8) = naza™ '} (2.12)

where a1, «, and 8 are non-zero constants with « = 3. These sequence can be represented by the second
order linear homogeneous recurrence relation, Wy, 19 = (a+ 8)W,, 11 — afW,, with initial conditions W7 = a;
and Wy = 0.

Based on equation (2.10), we can also define many second order polynomial linear divisible sequences by

one of the following sequences

{Wa @) a@). 50) = () @0 (2.13)

where a1 (z), a(z), and 5(z) are non-zero polynomials with a(z) # 3(z), or

(W@ (@), al@), B()) = nay (@) (a2))" '} (2.14)

where a1 (), a(x), and S(x) are non-zero constants with a(x) = (z). These sequence can be represented by
the second order linear homogeneous recurrence relation, Wy, 1o2(z) = (a(z)+6(2)) Whi1(2) —a(z) B(x) W (2)
with initial conditions Wi (z) = aq(x) and Wy(z) = 0.

We now come up with some second order linear divisible sequences and second order polynomial linear
divisible sequences in the form {W, (a1, «, 8)} and {W,(a1(z), a(z), B(x))} respectively. We will be using

some of these sequence in our examples throughout this thesis.



S
S

Example 2.1. First, we define the sequence {Wn (1, 1+\/5, 1_2‘/5) } Then we see a+f = 1+2 + 1_2 =1

and aff = (HT\/B) (1*7‘/5> = —1. Thus, {Wn (1, 1+2‘/5, 1*2\/3)} is the second order linear divisible sequence

defined by W,,10 = Wy, + W,, with Wy = 0 and Wy = 1. This is the Fibonacci sequence, {F,}.

Example 2.2. Next, we define the sequence {Wn (1, 1+ \/5, 1-— \/ﬁ)} Then we see a + 8 = (1 + \/?) +
(1 — \/5) =2and af = (1 + \/i) (1 — ﬁ) = —1. Thus, {Wn (1, 14++v2,1— \/5)} is the second order linear
divisible sequence defined by W, 1o = 2W,, 11 + W,, with Wy = 0 and W; = 1. This is the Pell number

sequence, {P,}.

Example 2.3. Next, we define the sequence {W,,(1,2,1)}. Then we see « + 8 = 3 and a8 = 2. Thus,
{W,(1,2,1)} is the second order linear divisible sequence defined by W, 1o = 3W,,11 — 2W,, with Wy =0

and Wiy = 1. This is the Mersenne number sequence, {M,,}.

Example 2.4. Next, we define the sequence {W,,(1,1,1)}. Then we see « + 8 = 2 and af = 1. Thus,
{W,(1,1,1)} is the second order linear divisible sequence defined byW, 1o = 2W, 11 — 1W,, with Wy = 0

and Wy = 1. This is the sequence of natural numbers including zero which we will denote as { N, }.

Example 2.5. Next, we define the sequence {W, (1, \/5, \/3)} Then we see a+ 3 = v2++v/3 and a8 = /6.
Thus, {W,,(1,v2,v/3)} is the second order linear divisible sequence defined byW,, ;o = (\/§ + \/3) Woa1 —
V6W,, with Wy = 0 and W; = 1. Note that this is a linear divisible sequence in the integral domain

Z(V2,V3).

Example 2.6. [10] Next, we consider {a,} to be a geometric sequence. Then {S,}, the sequence of partial

sums of {a,}, is a linear divisible sequence. If a is the first term of the sequence and r is the ratio of the

17,,,’”
1—r

terms, then S,, = a , which is in the form of {W,,(a,1,7)}, is a linear divisible sequence. Thus {S,}, can
be written as the second order linear divisible sequence defined by S, 12 = (1+7)S,+1 — S, for S; = a and

So = 0. Note that {S,} is a sequence of integers when a and r are integers.

Example 2.7. Next, we define the sequence {Wn (17 shverid 2 ;2+4) } Then a(z)+f(z) = TV 4

Tyt V;2+4 =z and a(z)8(z) = (m+V;2+4> (m_v2952+4) = —1. Thus, {Wn (1, 9”+V2“”2+4, r_v2”2+4>} is the

second order polynomial linear divisible sequence defined by W, 1o = aW,, 11 +W,, with Wy = 0 and Wy = 1.

This is a sequence known as the Fibonacci polynomials, {F,(x)}.



Example 2.8. Next, we define the sequence {W, (1,2 + V22 +4,2 — V2?2 +4)}. Then a(z) + B(z) =
4+ Ve +4+z— Va2 +4 =22 and a(z)B(z) = (z + V22 +4) (z — Va2 +4) = —1. Thus,

{Wn (l,x—i— Va2 + 4,z — \/m)} is the second order polynomial linear divisible sequence defined by
Wito = 22Wyhy1 + W, with Wy = 0 and W; = 1. This is the sequence of Chebyshev polynomials of

the second kind that are denoted {U,(z)}.

Example 2.9. Next, we define the sequence {W,, (1,z,1)}. Then a(z) + f(z) = v+ 1 and a(x)5(z) = =.
Thus, {W,, (1, 2,1)} is the second order polynomial linear divisible sequence defined by W, 1o = (z4+1)W,, 41—
zW,, with Wy = 0 and W; = 1 which is the sequence known as repunits base x. This is also the sequence

{0, ,1+2,1+x+221+x+22+23.. .}

Example 2.10. Next, we define the sequence {W,, (1,z,2)}. Then a(z) + B(z) = 2x and a(x)B(z) = x2.
Thus, {W,, (1,z,x)} is the second order polynomial linear divisible sequence defined by W,, 12 = 2eW,, 1 —

22W,, with Wy = 0 and W, = 1.



CHAPTER 3

PRODUCTS OF SECOND ORDER LINEAR DIVISIBLE SEQUENCES

Here we start our construction of higher order linear divisible sequence. We construct these higher order
linear divisible sequences by taking various products and powers of second order linear divisible sequences.
These products and powers are defined term by term. This type of construction was started by He and Shiue
in [9]. Throughout the rest of this thesis we will use {w, } to represent the sequence constructed by taking
these product and powers of second order linear divisible sequences.

In this chapter, we discuss taking products of multiple distinct second order linear divisible sequences.
We start with the results of He and Shiue in [9] where they examined multiplying two distinct second order
linear divisible sequences. We then move on to the product of three distinct second order linear divisible
sequences and the product of four distinct second order linear divisible sequences. We define this product
term by term; thus, {w,} is the sequence {ag, ao, - - - ap,, a1,a1, - - - a1,,a2,as, - - - as,, ...}. It is important to
note that the product of divisible sequences is a divisible sequence.

Since we are multiplying linear homogeneous recurrence relations, it is important to show what this
multiplication produces. When we multiply two linear homogeneous recurrence relations term by term, we
construct a new linear homogeneous recurrence relation. We show this by multiplying the general forms of
the two linear homogeneous recurrence relations. Then, we show that the product is in the general form of

a new linear homogeneous recurrence relation.

Theorem 3.1. If {a,} and {b,} are linear homogeneous recurrence sequences, then the sequence of term by

term products {w, = a,b,} is a linear homogeneous recurrence sequence.

Proof. Let {a,} be a linear homogeneous recurrence sequence of order m; with s < m; distinct roots

aq,Qo, ..., as with multiplicities j1, ja,...,js. Then, by equation (1.4), we know each element of {a,} can
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be expressed as

an = (Ao +Aan+ -+ Ay jn ) ol

+ (AQ)O + A271n + -+ A2,j271nj271) Oz;

n

+ (AS,O + ASJTL + -+ Asyjs_lnjfl) oy

Let {b,,} be a linear homogeneous recurrence sequence of order ms with ¢ < my distinct roots 51, B2, . .., Bt

with multiplicities ki, ko, .. ., k;. Then, by equation (1.4), we know each element of {b,} can be expressed as

bp = (Bio+ Bian+---+ Bl,kl—lnklil) By

+ (BQ,() + Bgyln + -+ Bg7k2_1nk271) BS

+ (Bro + Ban+ -+ By, an™ ) B
Since we are multiplying term by term we know that each element of {w,} can be expressed as

wy, = (A0 +Arin+ -+ Ay j_n? ) (Bro + Bian+ - + By ) (aaBr)"

+ (Az,o + A n+--+ Ag,jrlnjrl) (B1,0 +Bian+--+ Bl,klflnkl_l) (aaBy)"

+ (AS,O + As,ln + -+ Asﬁjsflnjs_l) (BI,O + Bl,ln + .o+ Blﬁklflnkl_l) (asﬂl)n

+ (Ao 4+ Avan+ -+ Ay oan? ) (B 4+ Boan+ -+ + Bz,krlnkrl) (o1 f2)"

+ (Asp + ASJTL +--+ As7js_1nj571) (Bt70 +DBgan+---+ Bt,kt—lnktil) (asﬂt)n .

Distributing the above we get
wy, = (A1,0 (B1o + Bian+--- + Bl,kl—lnklil) + Ayan (Bio + Bian+4 -+ Bl,kl—lnklil) +
o Ay T (B 4+ Bian+ o+ By —in™ ) (anpr)”
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+ (AQ’() (Bl,O +DBian+---+ Bl’klflnkl_l) + Ag,ln (Bl,O +Bian+---+ BLklflnkl_l) +

s A2,j271nj2_1 (B1,0 +Bian+---+ Bl,klflnkl_l)) (azB)"

+ (AS70 (Bl,O + Bl,ln +--+ Bl,kl,lnklfl) + As_rln (Bl,O + Bl’l'fL +---+ Blﬁklflnklil) +
R A57js_1’nj571 (Bl,O + Bl,ln + -+ Bl,kl—lnklil)) (asﬂl)n
+ (A1 (B2,o + Baan+ -+ Bajy—1n® 1) + Ay in (Boyg + Baan+ -+ + Ba,—n™ 1) +

R A17j1_1nj171 (3270 + B271n R BQ,kQ—lnl@il)) (a162)n

+ (As0 (Bro + Bean+ -+ + Byg,—1n™ ") + Agin (Byo + Bian + -+ + By j,—1n™ 1) +

cee 4 As,jﬁ—lnjs_l (Bt,o + Bt,ln —+ -4 BtJ“_]_nkt_l)) (asﬂt)n .

Distributing again we get

Wy, = (AI,OBI,O + Al’oBl’ln + -+ A1,0B1’]€1,1nk1_1 + Al’lBLOn + A1’1B1’1TL2 + -+ A1,1B1’]€1,1nk1+
s A1,j171B1,0nj1_1 + A1,j171B1,1nj1 + -+ Al,jllel,klfln-jﬁ'kl_z) (a1 81)"
+ (AQ,OBLO + A oBiain+ -+ Az,oBl,klfﬂlklil + Ay 1Bion+ 142,131,1712 +-+ AQ,lBl,klflnkl'F

o1 - ;. +k; —2 n
e+ A2,j2—1B1,onJ2 + A27j2_1Bl71n32 4+ A27j2_1Bl,kl_an2 1 ) (CVQBl)

+ (As,08170 + A370B1,1TL + -+ As7oBl7k1_1nk171 + AS71B170’H, + As713171n2 +-- As,lBl,kl—lnkl+
s As,jl—lBLonjrl + As,j1—131,1nj1 4+ 4 As,js—lBl,kl—lnj5+k172) (s Br)"
+ (A1,0B2o + A1 oBaan+ -+ + A10Baj,—1m*2 7 + Ay 1 Bagn + A1 1 Boan® + -+ Ay 1By g, 1n™+

1 —1 j j1+ko—2 n
s Arg 1 Baon” T+ Ay Baan! - Ay m1Ba g1 ) (00 Ba)

+ (As,0Bro + AsoBiin+ -+ + Ag0Bi g1 4+ A 1 Byon + A1 Bian® 4 -+ Ag 1By g, an™

_— , T .
vt Agjoo1Bron® T+ Ay 1 Bean®t 4 -+ Ag 1By 17 TR T2 (asBy)

12



Now by combining like terms in each parentheses based of powers of n, we get

wy, = (A1,0B1,0 + (A1,0B1,1 + A11B1o) n+ (A1,0B12 + A1,1B11 + A12B1 ) n?+
oo+ Ay 1By g —an? TR T2) (e B1)"
+ (AQ,OBLO + (A20B11 + A2 1Big)n+ (AsgBia+ Az 1 Biy + AsaBi o) n+

oot Ao o1 By gy —an?? T2 (o)

+ (As0B10 + (As 0B + As1Bro) n+ (AsoBi2 + As1Big + As2Big) n’+
R Asyjslel’klflnjerkl_Q) (Oésﬁl)n
+ (A1,0B2,0 + (A1,0Bo1 + A11Bag) n+ (A1,0Boa + A11Ba1 4+ A1 2Bao) n’+

ot Ap g1 Ba ey TR T2 (g Bo)”

+ (AS,OBt,O + (As,0Bi,1 + As1Bio)n+ (AsoBia + A1 Bi 1 + As 2By o) n?+

R AS,js—lBt,kt—lnjs+kt72) (asﬁt)n .

Since the above equation is in the form of equation (1.4), we know the sequence {w, } can be expressed as a
linear homogeneous recurrence relation whose characteristic function has roots a; 81, . . ., @581, as 1, . . ., as Bt
with multiplicities at least j1+k1—1,...,js+k1—1,71+ko—1,...,js+k;—1. Therefore, the sequence of term
by term products of two linear homogeneous recurrence relations can be expressed as a linear homogeneous

recurrence relation. O

Next, we look at the equations created by multiplying a finite number of second order linear divisible
sequences. Let {an, }, {an,}, - -, {an,} be second order linear divisible sequences that satisfy equation (2.1)
with ap, = 0 for all 4. Then {a,,} has a characteristic equation 2?2 — p;x — ¢; = 0 with roots «; and f; such
that «; + f; = p; and «;5; = —¢;. Since each {a,,} has ag, = 0, they can be expressed using equation (2.5).

Since the order of multiplication does not matter, for simplicity, we will say all sequences with double roots

13



will be written first. This means that if there is one sequence in our product with a double root, we will call
that sequence {a,, }. If there are two sequences with double roots in our product we will call them sequences
{an,} and {a,,}. Then the sequence {w, = an, an, - an,} has one of the following expressions depending

on how many of the characteristic equations have distinct roots.

I1 (afljﬁk) (a = B1), if o, # By, for all k < i;

< II (azikﬁk) (af — ﬂ,?)) (nalla?_l) , if oy = B1 and ay # Bk
for 2 <k <i;
i 2
(H (aZi’“ﬂJ (af — B,?)) <m111 nalmoz?n_l) ) if = B, for m =1,2 and
ag # B for 3 <k <i;

i ¢
( I (a:i"ﬂk) (af — /3’,?)) ( 11 nalmaﬁl1> , if = B for 1 <m < £ and
Wy, = k=0+1 m=1

ag # B for £ +1 < k < 4;

i i—2
(k I (a:ikﬁk) (af — ,’;)) ( H1 nalma?n_l) , oy, =0nforl<m<i—2
=i—1 m=
ag # P for k=1—1,1;

i1
((Q‘Eﬁ) (a? — 5;)) ( I nalma:;l) : if Q= B for 1 <m <i—1,
m=1
and a; # By;
H nay, o=t if aypy = B, for all m <.
m=1

Next we will prove some common equalities that will be used throughout this type of construction.

Lemma 3.2. If 2 —px —q = 0 is a quadratic equation with roots o and B such that a+ B = p and a8 = —q

then

(a) o® +B* =p* +2q.

(b) o* + B* = (P* +29)* — 2¢*.

(c) &® +af+pB*=p*+q.

(d) o* —af + % =p® + 3q.

(e) a* —a?B? 4 B* = (p* 4+ 2¢)* — 3¢>.
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(f) of + 8% = ((p* +29)* — 2¢°)? — 2¢*.

Proof. Let x? + px + ¢ = 0 be a quadratic equation with roots o and 8 such that o + 8 = p and a8 = —q.

Thus, we have
(a) o® +B% = (a+B)* — 208 = p* + 2q.
(b) a*+ B = (a? + B%)* — 2a28% = (p* + 2¢)* — 2¢>.
() a®+af+p>=(a+p)?-208+af=(a+pB)—af=p’+q
(d) a® —aB+ %= (a+B)?—2aB —af = (a+ B)? — 3a8 = p* + 3¢.
(e) a* —a?B% + p* = (a® + 7)* — 2075 — a?f% = (a® + 37)* = 3a®B% = (p* + 2¢9)* — 3¢>.

(6) a® +5° = (a' +B1)2 208" = (57 +20) — 26°)* ~ 24",

3.1
Product of Two Distinct Second Order Linear Divisible Sequences

In this section we will multiply two distinct second order linear divisible sequences in order to come
up with a single higher order linear divisible sequence. This multiplication constructs a fourth order linear

divisible sequence.

Theorem 3.3. [9] Let {a,} and {b,} be distinct second order linear divisible sequences that can be defined by
(2.1) with initial conditions ag = bg = 0 and ay, by arbitrary. Suppose the sequence {a,} has a characteristic
equation x> —p1x—q; = 0 with roots oy and B1, such that a;+F1 = py and a1 81 = —qy, and the sequence {b, }
has a characteristic equation £2 —pax — g = 0 with roots ay and Ba, such that as+ Po = py and asfs = —qs.
Then {w, = a,by,} is a linear divisible sequence that satisfies the fourth order linear homogeneous recurrence
relation

Wnga = P1P2Wn+s + (PIa2 + D301 + 20142) Wnta + P1P2q1G2Wnt1 — 1G5 Wn (3.2)

for n > 0 with initial conditions ws = agbz, we = asby, w1 = a1by, and wy = agbg = 0.
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Proof. Let {a,} and {b,} be distinct second order linear divisible sequences that can be defined by (2.1) with
initial conditions ag = by = 0 and a1, by arbitrary. Let the sequence {a,} have the characteristic equation
22 —px —q; = 0 with roots a; and 31, such that a; + 81 = p; and a1 8; = —q1, and the sequence {b,,} have

the characteristic equation 22 — paz — g9 = 0 with roots o and S35, such that as + B2 = pe and asBs = —¢o.

Case 1: Let both characteristic functions have distinct roots, meaning a; # 1 and as # (2. Then from

equation (3.1), we have

Wp = anbn

ay b1

(505 )@= () a3 - )

a1b1 n __ o n__ a n n
N ((al—ﬁl)(az—ﬂ2)>((o‘lo‘2) (@12)" = (a2B)"™ + (B12)") -

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as a
linear homogeneous recurrence relation whose characteristic equation has roots aqas, aq 2, asf1, and 815
each with a multiplicity of at least one. We will let each of them have multiplicity one since that means
we will have four roots, which is how many characteristic roots we need for a fourth order linear divisible

sequence. Thus, the characteristic equation is

(r—a1a2) (x—a1f) (z—Pro) (= B12) = &' — (craz+0n fo+ Py 451 B2) 2°
+ (afagfa+a1 fra5+2a10261 B2 +a1 B1 55+ 257 f2) 4
- (a%agﬁlﬂﬁa%%ﬂlﬁg+0410435%52+0410425%5§) z+aia3 3765

Looking at the coefficient of 2%, which becomes the coefficient of w,, 3 in equation (3.2), we have

aras + o fa + asfi + B1f2 = aq (ag + B2) + Bi (a2 + B2)
= (a2 + f2) (o1 + 1)

= P1pP2-
Looking at the coefficient of 22, which becomes the coefficient of w,, o in equation (3.2), we have
afasfr+on fros 42010081 Ba+ o1 f1 B3+ Bt o = a1 By (a5 +53) +azfs (af +57) +2a102B1 B
=—q1 (P3+2g2) — a2 (i +2q1) +2q1¢2
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=301 —2q142— D142 —201¢2+ 2012

=— (P31 +pig2+2q142) -

Looking at the coefficient of z, which becomes the coefficient of w,, 1 in equation (3.2), we have

afa3f1 P + afazfi B3 + 0103 f7 By + a1z B = ar0nfifa (araz + a1 fa + Braz + 1)
= aya2f1 P2 (2 + B2) (cu + f1)

= P1P24192-
Looking at the constant, which becomes the coefficient of w,, in equation (3.2), we have
afas 183 = 4id3-

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (3.2).

Case 2: Let one characteristic function have duplicate roots and the other have distinct roots. WLOG we
can say the characteristic function of {a,} has the duplicate root, meaning a; = 1 and ag # 3. Then from

equation (3.1), we have

Wy, = anbn
nalbl n ny n—1
=|——)(af — B
<a2 . ﬁQ) ( 2 52) 1

— (o) (@)~ (@)

na1b naib

~ (et oo - (e ) (oo
Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed
as a linear homogeneous recurrence relation whose characteristic equation has roots ajas and a8 each
with a multiplicity of at least two. We will let each of them have multiplicity two since that means we will
have four roots, which is how many characteristic roots we need for a fourth order linear divisible sequence.
Thus, if the roots of the characteristic equation of {w,, = a,b,} are ayas, ajas, a1fs, and a1, then the
characteristic equation is

(r—ar12) (x—a1f2) (x—aras) (x—a182) .

17



At this point, this case becomes the same as case 1 by simply replacing 8, with « throughout. This works

because, in this case, a1 + a1 = p; and a1 = —q;.

Case 3: Let both characteristic functions have duplicate roots, meaning oy = 1 and ay = 3. Then from

equation (3.1), we have

2 n—1 _n—1 n
Wy, = apby, = na1bial ™ ay T = (a1a2)™.

Since the above equation is in the form of equation (1.4), we know the sequence {w, } can be expressed as a
linear homogeneous recurrence relation whose characteristic equation has the root ayas with a multiplicity
of at least three. We will let it have multiplicity four since that means we will have four roots, which is
how many characteristic roots we need for a fourth order linear divisible sequence. Thus, if the roots of the

characteristic equation of {w, = anb,} are ajaa, ayas, ajas, and ajas, then the characteristic equation is
(x—aqaz) (z—ajas) (T—aran) (T—ajas) .

At this point, this case becomes the same as case 1 by simply replacing 5; with a; and S with as throughout.

This works because, in this case, a3 + a1 = p1, a1 = —q1, a2 + g = p2, and as = —¢qo.

Therefore, when we multiply two distinct second order linear divisible sequences, we can construct a fourth
order linear divisible sequence defined by recurrence relation (3.2). It is easy to see from our definition of

{wn, = anby} that w3 = asbs, wy = azbs, w1 = a1by, and wy = agby = 0. O

Note that in He and Shiue [9] they only proved case 1 from Theorem 3.3. We prove the other cases here
so that we can see that the recurrence relation (3.2) still works when the roots of one or more characteristic
equations are the same.

Also note that in case one we chose the multiplicity of the roots to be one as that was the simplest
multiplicity to work with. It may be that if we let one or more of the roots have a higher multiplicity, we
could have constructed a different linear homogeneous recurrence relation that works for the same sequence.
For example if we had let all the roots have multiplicity two then our characteristic equation would have
been H?Zl(x —7;)%. This would have constructed a different linear homogeneous recurrence relation that is

of order eight.
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In later cases we chose multiplicities in such a way to show the linear homogeneous recurrence relation
we constructed in case one works when one or more of the sequences have duplicate roots. Again, we may
be able to come up with different linear homogeneous recurrence relations by choosing multiplicities that are
higher or lower that would work in these cases.

We will be choosing the multiplicities of roots in the same manner in future constructions in this thesis.
In those cases, we may also create different linear homogeneous recurrence relations by making a different
choice for the multiplicities of roots.

Next, we have examples that take the product of two second order linear divisible sequences to construct

fourth order linear divisible sequences.

Example 3.1. Using the Fibonacci sequence and the sequence of natural numbers including zero, we define
the sequence {w, = F,,N,}. Then, by Theorem 3.3, we get a fourth order linear divisible sequence that

satisfies the recurrence relation

Wn44 = 2wn+3 + Wnyo — 2wn+1 — Wn,

for n > 0. The table below shows some terms of the sequence {w,, = F,,N,}.

n|w, [N | wn | N | wn n Wn, n Wn n Wn, n Wn,

0 0 3 6 6 48 9 | 306 | 12 | 1728 | 15 9150 18 | 46512
1 1 4112 | 7 91 10 | 550 | 13 | 3029 | 16 | 15792 | 19 79439
2 2 5 | 25 | 8| 168 | 11 | 976 | 14 | 5278 | 17 | 27149 | 20 | 135300

Table 3.1: Terms of the sequence {w,, = F,,N,}

Example 3.2. Using the Pell number sequence and the sequence of natural numbers including zero, we
define the sequence {w,, = P,N,}. Then, by Theorem 3.3, we get a fourth order linear divisible sequence

that satisfies the recurrence relation

Wn44 = 4wn+3 - 2wn+2 - 4'wn-ﬁ—l — Wp,

for n > 0. The table below shows some terms of the sequence {w,, = P,,N,}.
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n|wy, | N | wy, | N W, n Wn, n W, n Wn, n Wn,
0 0 3 15 6 420 9 8865 12 166320 15 2925375 18 49395780
1 1 4 48 7 | 1183 | 10 | 23780 | 13 434993 16 7533312 19 | 125877071
2 4 5 | 145 | 8 | 3264 | 11 | 63151 | 14 | 1130948 | 17 | 19323713 | 20 | 319888560

Table 3.2: Terms of the sequence {w,, = P, N, }

Example 3.3. Using the Mersenne number sequence and the sequence of natural numbers including zero,
we define the sequence {w,, = M,, N, }. Then, by Theorem 3.3, we get a fourth order linear divisible sequence

that satisfies the recurrence relation

W44 = 6wn+3 - 13wn+2 + 12wn+1 - 4wna

for n > 0. The table below shows some terms of the sequence {w,, = P,,Ny,}.

n | wy | n| wpy n Wn, n Wn, n Wn, n Wn, n Wn,

0 0 3 21 6 378 9 4599 12 49140 15 491505 18 4718574
1 1 4 60 7 889 10 | 10230 | 13 | 106483 | 16 | 1048560 | 19 9961453
2 6 5 | 155 | 8 | 2040 | 11 | 22517 | 14 | 229362 | 17 | 2228207 | 20 | 20971500

Table 3.3: Terms of the sequence {w, = M, N, }

3.2

Product of Three Distinct Second Order Linear Divisible Sequences

In this section we will multiply three distinct second order linear divisible sequences in order to come
up with a single higher order linear divisible sequence. This multiplication constructs an eighth order linear

divisible sequences.

Theorem 3.4. Let {a,}, {b.}, and {c,} be distinct second order linear divisible sequences that can be
defined by (2.1) with initial conditions ag = by = ¢o = 0 and ay, by, ¢1 arbitrary. Suppose the sequence {ay}
has a characteristic equation x2 —pix—q1 = 0 with roots a1 and By, such that oy + 1 = p1 and o181 = —q1,
the sequence {b,} has a characteristic equation x> —pax —qa = 0 with roots ay and Pa, such that as+ B2 = pa
and asfla = —qa, and the sequence {c,} has a characteristic equation 2% — psx — g3 = 0 with roots a3 and

Bs, such that az + B3 = p3 and asfs = —qs. Then {w, =a,b,cn} is a linear divisible sequence that satisfies
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as the eighth order linear homogeneous recurrence relation

Wit =p1P2p3Wnt7 + (P3P3G1 + PIP3G2 + PiP3as + 205¢142 + 2P5q103 + 210203 + 4¢14203) Wnts
+ (P1P2P3q1G2 + PLP3P3G1G3 + DPiP2p3q2qs + 5P1P2p3qiqaqs) Wats
— (P1BE + P30T + PAG B — PIPIP31a2as + AP 1G5 @5 + AP35 0203 + AP35 a5 + 6414503 ) Wnta

+ q142q3 (P1P2P301G2 + P1PIP3A1G3 + PYP2p3a2qs + 5P1P2p3q142G3) Wns

+ 41345 (P3p3qr + Pip3ae + Pip3as + 2030142 + 23q1a3 + 2P 2qs + 4q10243) Whto

— P1D2P3q; 45 g3 Wn 11 — 1 G303 Wn
for n > 0 with initial conditions w; = a;b;c; for 0 <i < 7.

Proof. Let {a,}, {b,}, and {c,} be distinct second order linear divisible sequences that can be defined by
(2.1) with initial conditions ag = by = ¢y = 0 and aq, by, ¢1 arbitrary. Let the sequence {a,} have the
characteristic equation z? — p;x — q; = 0 with roots a; and 31, such that a; 4+ 81 = p; and a13; = —qi, the
sequence {b, } have the characteristic equation 2% —pox — go = 0 with roots ag and B2, such that as+ 82 = pa
and g2 = —qa, and the sequence {c,} have the characteristic equation 22 — p3x — g3 = 0 with roots az

and (3, such that ag + 83 = p3 and a3f3 = —q;.

Case 1: Let each characteristic function have distinct roots, meaning oy # 81, as # B2, and ag # (3. Then

from equation (3.1) we have

wn::anbncn

arbicy

((a1 — fB1)(a2 — B2)(az — B3)

) (o — B0 — B3) (0% — B2)
a1b101

((041 — B1)(az2 — B2)(as — Bs)

aibicy

N ((041 = B1)(ag — B2)(az — B3)
—(Braza3)"™ + (Brazfs)™ + (B1f2a3)™ — (B18283)") .

) (e102)" — (@282)" — (asBr)" + (BuB2)") (0 — B)

) ((razaz)”™ — (a1a2fB3)" — (a1 B2a3)™ + (a18203)"

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as
a linear homogeneous recurrence relation whose characteristic equation has roots r; = ayasag, ro = fs,
rg=ai P03, r4=0a182033, 15 = frazas, r¢ = frazfB3, r7 = B1 P20, and rg = 318283 each with a multiplicity

of at least one. We will let each of them have multiplicity one since that means we will have eight roots,
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which is how many characteristic roots we need for an eighth order linear divisible sequence. Thus, the

characteristic equation is

H(m—ri):xg— Zri T () Z iy oryy, | 2%, for k< 8.

i=1 1<i<8 1<iy < <ip<8

Looking at the coefficient of 27, which becomes the coefficient of w,, 7 in equation (3.3), we have

<Z< i =a10203 + a1a9fs + a1 faas + a1 BaBs + Brasas + Brasfs + BiBaas + B1B25s
o =ay (apagz + azf3 + azfe + B2f3) + 1 (aeas + a2f3 + asfz + B283)
= (a1 + A1) (a3 + afls + 3P + B2fs)
= (a1 + A1) (a2 (a3 + Bs) + B2 (a3 + f3))

= (a1 + 1) (a2 + B2) (a3 + B3)

=p1p2ps3-

Looking at the coefficient of 2°, which becomes the coefficient of w,, ¢ in equation (3.3), we have

Z i =a1050361 + atanasfa + asa3BiBe + a1l fs + adasasfBs + asasB B + atasBa b
1<i<j<8

+ a3 B3 Bs + 1058185 + f B85 + a3 B235 + a1 $135 B3 + 201 203 31 o
+ 201050381 B3 + 207 a3 B2Bs + 2000385 B2 s + 2000381 B3 B3 + 200100281 8233
+darazaz 152083

=181 (0303 + 383 + a3B5 + B3B3) + asB (afad + aiBs + a3ff + B163)
+ asfBs (a3 + aifs + a3B; + BLB3) + 2a1a251 B2 (0F + 53)
+ 201035183 (03 + B3) + 200036285 (of + B7) + daanas B1823

=181 (a5 + B3) (a3 + 53) + aafa (af + B7) (aF + B3) + asfs (af + B7) (a3 + 55)
+ 200025182 (03 + B3) + 201038183 (03 + B3) + 2a2a3B283 (0F + B7) + dayaoas By B2

=—q1 (P5 +2q2) (P3 + 2a3) — 2 (pT +21) (P3 + 243) — a3 (P} + 201) (P + 242)
+2q1q2 (3 + 243) + 29103 (3 + 242) + 24203 (PT + 201) — 4910243

= — p3p3q1 — PiP3ae — PIP3as — 2p301G2 — 2P5q1q3 — 2P10203 — 4G1G23-
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Looking at the coefficient of 2°, which becomes the coefficient of w,, 5 in equation (3.3), we have

Y mryry =aia3a3Bifs + ar03a3iBs + afaalBi By + arasalfiBs + atadal B
1<i<j<k<8

+ a10303 67 B3 + afaza3fafs + a3a3 By Bafs + afana3 B3 83 + asai 35 5
+ 0Fa3f1 83 Bs + cn a3 B85 Bs + aiadas B8] + cnaiasfiBE + afadas BBy
+ adas i B B3 + o s B3 B3 + o B3 B35 + afasfiBs B3 + anasBi B s
+ afa3 18265 + ana B3 B2 + i B35 + B3 B3 55
+ 4afa3a3 18265 + dar 00387 Bofs + daianal f1 83 Bs + daranal B1 55 B
+ dafadas 18265 + donajas i Ba 3 + Aot anas By B35 + daranas Bt B3 55

= (a1 + B1) (a2 + B2) (a3 + B3) (crasa3 1B + arasasBifBs + af asaszBafBs
o aoasBifBafs + azasfi Bafs + arasBi B3P + arazBiB2f33)

= (a1 + f1) (a2 + B2) (a3 + B3) (041042ﬁ1ﬁ2 (a§ + 53?) + ara3f183 (04§ + /83)
+agasBefs (af + B7) + arazasBiBafs)

=p1p2ps (@142 (P3 + 203) + q1as (P3 + 242) + 4203 (T + 201) — q14203)

ZP1P2P§Q1QQ + plpgp:zqwg + p%pzpsgz% + 5p1p2p341G293-

Looking at the coefficient of 2%, which becomes the coefficient of w,, 4 in equation (3.3), we have

Yo ririy =afa3alfiBE + afadSiBE 6] + afazad i8] + aladfi B 6E + afaalpl sy
1<iy <+ <ig<8
+ a503 816383 + araaas 37585 + arazal 8785 Bs + cnadas 87 Ba 53
+ aasas B B3B3 + afadad B1Bafs + a1l Bl fafs + atanald B B3 By
+ afajas B Bafs + 207030l 87 BaBs + 205 a3 B1 83 B3 + 201 050587 B3 B
+ 2ai sy BT B3 Bs + 205 A a3 B BaB3 + 2a1 iy BT Ba B3 + 20 a3 B B3 B3
+ 20000333 B3 83 + 207 a3 57 B2 33 + 20 e B B3 B3 + 2 azas 57 B3 B3
+ 20f a3 BiBa s + 4ad ajai Bi Bs Bs + 4ad abal B1 B35 + Ao adal i B3 B3
+4a10303 67 363 + dafarad ST 353 + datajas B3 63 + Satagaifi 3 63
=aia3 705 (o + B3) + afa3 B3 (o + B2) + ada3 B3 (af + A1)
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+ arasas B BaBs (afadal + a3a3 Bt + afa3fs + a3B 65 + afas B3 + a3Bih3

+aiB3 85 + BIB383) + 207 asas B Bafis (0303 + o3B3 + a3 03 + B363)

+ 200303183 83 (0f03 + of B3 + a3 87 + B153)

+ 201000351 8233 (afas + i3 + a3 87 + 51 83) + 4afasas 78565 (oF + B3)

+4afasa3 57 B3 (o + B3) + daraza3 15385 (of + B7) + 8afaia3 76353
=aia3 B85 (af + B5) + aia3fifs (a3 + B3) + a3a3B303 (af + f1)

+ arazasfiBeBs (af + B7) (a5 + B3) (oF + B3)

+ 205 a3 87 B2 33 (03 + B3) (0F + B3) + 2010503518385 (af + B7) (a3 + B3)

+ 201003 818285 (o + B7) (03 + B3) + dajazas B B3 Bs (oF + B3)

+4afasa3 B3 (03 + B3) + daraza3 15385 (of + BY) + 8afaiai i 6363
¢33 (03 + 205)" = 263) + @33 (03 + 262)" — 263) + ada3 (0% + 201)" — 247

— 1203 (P2 +2a1) (03 + 242) (% + 23) + 2470205 (D3 + 2¢2) (V3 + 23)

+2q103a3 (P} + 201) (P + 2a3) + 2014245 (PF + 2a1) (95 + 2¢2)

—44iq3qs (3 + 2a3) — 4470245 (P3 + 2¢2) — 455 (P} + 201) + 843 4543

=pla3a3 + P3aias + P3aias — PIPaP3qia2qs + Ap1q195a3 + AP3aia2a5 + 4p3aids g

2 2 2
+ 6479595.
When 1 <43 < -+ < i5 < 8, we can show that r;, ---r;, = araoasff283(rrjry) where 7,7, 7, €
{ri,y... 1 }. For each r;, ---r;, there exists rs, 7y € {ry,,...,r:. }, such that rery = ayasazfBB2f;. This

means r;, - - 1y = Tere(riTrR) = cranasfiBefs(rir;Ty). For example, if we take r1--- 75, then we can see
that r4r5 = ayasasfi fafs, which means r1 - - 15 = ayagasfiP283(r1rars).

Thus, looking at the coefficient of 23, which becomes the coefficient of w,, 13 in equation (3.3), we have

> ri e, =orazasBiBafs >

1<iy < <i5<8 1<i<j<k<8

= — q142q3 (P1P2P3q142 + P1P3P3q1G3 + PIP2p3d2q3 + DP1P2P3q1d2qs) -

Since we calculated >, o, ;<5 777k as the coefficient of x5, above we can just replace it here.
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When 1 < 43 < --+ < ig < 8, we can show that r;, -~ 7, = afa3a3fiBs53(rir;) where r;,r; €

{riy,-.- Tig}. For each r;, -- -7, there exists rs,,...,7rs, € {r,..., 74}, such that

‘s, = a%a%a%ﬁfﬂ%ﬂ%. This means r;, -+ 155 =15, - - 75, (1575) = a%a%a%ﬁfﬂ%ﬁg(mm). For example if

7"51 ..
we take rq -+ 76 we can see that r3ryrsrg = a2ada3 78362, which means 71 - --rg = a2a3a2BiB362(r1rs).
Thus, looking at the coefficient of 22, which becomes the coefficient of w,, 2 in equation (3.3), we have
2.2 202052092
E Tiy * - Tig =010503071 5503 Z 74T
1<y < <ig<8 1<i<j<8

=¢14545 (—P3p3q1 — PIP3a2 — PIP3as — 2P3¢1G2 — 2P3¢1q3 — 2P102q3 — 4 q1423) -

Since we calculated >, ;<5 7i7; as the coefficient of x5 above, we can just replace it here.

When 1 < iy < --- < iy <8, we can show that r;, ---r;, = a3a3a3B3p363(r;) where r; € {ri,,... 7 }.
For each r;, ---7;., there exists rg,,...,7ss € {Ti,,...,7i, }, such that ry, ---ry, = adadaipfiBss;. This
means 7y, T, = T, o Te (1) = afadaidfiB365(r;). For example, if we take 71 ---r7, we can see that
ro -7 = adadad BB 83, which means 7 - - -17 = adadad B3B3 83 ().

Thus, looking at the coefficient of x, which becomes the coefficient of w,, 1 in equation (3.3), we have

3 .3 3032323
Z Tiy - Tiq :a1a2a3ﬁ15253 Z Ti

1<y <+ <i7 <8 1<i<8
= — P1pap3¢iaads-
Since we calculated Y, ;.4 7i7; as the coefficient of 27 above, we can just replace it here.
Looking at the constant, which becomes the coefficient of w,, in equation (3.3), we have
4 4 4404 4 4
Z Tiy *+ Tig = Q10307 Bgﬁg = q41192Q3-
1< < <ig<8
Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (3.3).

Case 2: Let one characteristic function have duplicate roots and the other two have distinct roots. WLOG
we can say the characteristic function of {a,} has the duplicate root, meaning oy = 1 , as # B2, and

ag # B3. Then, from equation (3.1), we have

Wy, =apbpcy,

25



naibicy N o N
- <(O‘2 = PB2) (a3 — 53)) (af — B5) (a5 — ) o1 ™"

_ naibicy ara)” — (o N n my o1
~ () ((asaa)” — (2" — (aaf)” + (a0 o

_ naibicy aramoa)” — (a o " ona n o "
() (em0an)” — (@008 = (0109)" + (02 2085)").

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as
a linear homogeneous recurrence relation whose characteristic equation has roots ajasas, ajasfSs, a1 fas,
and ajf283 each with a multiplicity of at least two. We will let each of them have multiplicity two since
that means we will have eight roots, which is how many characteristic roots we need for an eighth order
linear divisible sequence. Thus, if the roots of the characteristic equation of {w,, = a,b,c,} are r1 =ajazas,
Ty = anaefs, T3 =y faag, T4 =123, 15 = a1apas, 16 = a1aef3, 17 = a1 P23, and 13 = a1 P23, then the
characteristic equation is

H(m—ri):mg— Z i | 2T )P Z iy oy, | 25, for k< 8.

i=1 1<i<8 1<iy < <i <8
At this point, this case becomes the same as case 1 by simply replacing 8, with « throughout. This works

because, in this case, a1 + a1 = p; and aya; = —q1.

Case 3: Let two characteristic functions have duplicate roots and the other one have distinct roots. WLOG
we can say the characteristic functions of {a,} and {b,} have the duplicate root, meaning oy = 1 , s = fa,

and ag # B3. Then, from equation (3.1), we have

Wn =0n, bncn

n2a1b161 > n n n—1_n—1
= Qg — [0 (67
<(043 . ﬁ3) ( 3 53 ) 1 2

2
B <m> ((craza3)" — (ra2fs)")

) 2
= <nalb101)) (ayagasz)”™ — <na1b101> (a102f33)" .

araz (az — B3 aras (az — fBs)
Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as
a linear homogeneous recurrence relation whose characteristic equation has roots ajasas and ajasf3 each
with a multiplicity of at least three. We will let each of them have multiplicity four since that means we

will have eight roots, which is how many characteristic roots we need for an eighth order linear divisible
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sequence. Thus, if the roots of the characteristic equation of {w, = apb,c,} are r1 = ajasas, re =aasfs,
r3=Q10003, T4 = 10903, Ts = Q1Q03, T = 10233, T7 = ajasasg, and rgs = ajasf3, then the characteristic
equation is

H(:z:fri):xsf Z i | 2 ()P Z iy, | 2% for k< 8.

i=1 1<i<8 1< < <ip<8
At this point, this case becomes the same as case 1 by simply replacing 5y with a; and s with ag throughout.

This works because, in this case, a; + a1 = p1, 11 = —q1, g + a2 = pa2, and azae = —qo.

Case 4: Let each characteristic functions have duplicate roots, meaning a; = B1, as = (o, and az = f3.

Then, from equation (3.1), we have

3
_ n’aibicy
oy 1= ———— (1 a03)™.
1 gy

Wy, = anbpcp = n3a1blcla?_1a§_1

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as a
linear homogeneous recurrence relation whose characteristic equation has the root a; asaig with a multiplicity
of at least four. We will let it have multiplicity eight since that means we will have eight roots, which is
how many characteristic roots we need for an eighth order linear divisible sequence. Thus, if the roots of
the characteristic equation of {w, = a,b,c,} are 11 = v1azas, ro = rasas, r3 = Qraeas, T4 = Q10a203,
5 =103, T =123, T =q1Q23, and rg=aiasag, then the characteristic equation is
8

H(m—ri):mg— Z i | 2T ()P Z iy oryy, | 257, for k< 8.

i=1 1<i<8 1<iy < <i <8
At this point, this case becomes the same as case 1 by simply replacing 8, with aq, 82 with as, and 83 with

ag throughout. This works because, in this case, a1 + a3 = p1, 11 = —q1, a2 + @y = P2, aas = —qo,

a3 + a3z = p3, and azaz = —qs.

Therefore, when we multiply three distinct second order linear divisible sequences, we can construct a
eighth order linear divisible sequence defined by recurrence relation (3.3). It is easy to see from our definition

of {w,, = apbpc,} that w; = a;b;c; for 0 <7 <7 O

Next, we have an example that takes the product of three second order linear divisible sequences in order

to construct an eighth order linear divisible sequence.
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Example 3.4. Using the Fibonacci sequence, Pell number sequence and Mersenne number sequences we
define a sequence {w,, = F,,P,M,}. Then, by Theorem 3.4, we get an eighth order linear divisible sequence

that satisfies the linear homogeneous recurrence relation

Wn48 = 6wn+7 + 27wn+6 — 66wn+5 - 25311)714,_4 — 132wn+3 + 108wn+2 + 48U}n+1 — 16wn,

for n > 0. The table below shows some terms of the sequence {w,, = F,, P, M, }.

n| wp | N Wy n W, n Wy, n Wn,

0 5 4495 10 133798170 15 3898134346750 20 113458232405776500

1 1 6 35280 11 1045912603 16 30454847443440 21 886399585423924390
2 7 279019 12 8172964800 17 237932181378643 22 6925050871102681014
3 70 8 2184840 13 | 63860418883 18 1858866142205520 | 23 | 54102376390964996119
4 | 540 | 9 | 17113390 | 14 | 498941217762 | 19 | 14522530081665223 | 24 | 422678043468647366400

Table 3.4: Terms of the sequence {w,, = F,, P, M,}

3.3
Product of Four Distinct Second Order Linear Divisible Sequences

In this section, we will multiply four distinct second order linear divisible sequences in order to come up
with a single higher order linear divisible sequence. This multiplication constructs a sixteenth order linear

divisible sequence.

Theorem 3.5. Let {an}, {bn}, {cn}, and {d,}be distinct second order linear divisible sequences that can
be defined by (2.1) with initial conditions ag = by = ¢g = dp = 0 and a1, b1, c1, di arbitrary. Suppose the
sequence {an} has a characteristic equation 22 —prx — q1 = 0 with roots a1 and By, such that o + 1 = p1
and o181 = —qi, the sequence {b,} has a characteristic equation x® —pax —qa = 0 with roots ay and PBa, such
that g + B2 = pa and azBa = —qa, the sequence {c,} has a characteristic equation x> — p3x — g3 = 0 with
roots aig and fs, such that as+ B3 = p3 and asfs = —qs, and the sequence {d,} has a characteristic equation
22 — pax — q4 = 0 with roots oy and Ba, such that ay + Ba = pa and asfs = —qq. Then, {wn, = apbpcndy}

s a linear divisible sequence that satisfies the sizteenth order linear homogeneous recurrence relation

Wit 16 =P1P2P3PaWn115 + (PIPADIQ1 + PIPAD3ae + Pip3pias + pipapiqs + 2p3piaiae + 203p3qias

+ 2p1piaeas + 2P3P3a104 + 203 P3a2qa + 2pTP343qa + AP3q10243 + 4P3¢10204 + 4P341G304
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+4p3G2q304 + 8014203¢4) Wyt1a + (P1P2P3PIA1G2 + P1PSP3PIG13 + PiP2p3piaeqs + P1DaPIPAG1 ¢
+ Pipapipageqs + PIP3P3PAG3qa + BP1P2P3PEG192a5 + BP1P2DIPAd1G2qs + 5P1P3P3PAq1 g3

+5p3Papspagaqsds + 19p1p2p3paq1G2q34s) Wat1s — (P3P1GIGE + Papidids + pipidids + papidids

+ PIP3G54; + PIP25q; — PIPSPAP1q10203 — PiPSP3PAq10204 — PiPaP3PAq1430s — PIP3PAP102430a
+ 4p3piai 433 + APIPIGI @ + PTI0G3 45 + APSPIGE 45 qs + APapidi G3qa + APIPIG G da

+ 4P3P3ai 243 + APPSR 43 + APSP3aTasd: + APIPS a5 as s + APPSR a3 d; + APID3eeaid;

+ 6pidi i3q3 + 6p3ai a3 i + 6psai 34 + 6p1a3 4545 — 9PTDAPADIq142430a + 16P3DI 0T 034304

+ 16p3piqia2q39a + 16piPiaq19543q4 + 16p3p3aia2q3qi + 16piP3q19593F + 16pTP3q14243 43
+24p3 g3 a3 qs + 24933 30303 + 2433 40 dR ] + 24P2 1 363 q] + 2803434303 ) Wns1o

+ (P} P3p3pia1a2a3q4 — P1P2P3PIAT G343 — PLPIPIDRGE 4203 — PID2psPia105a5 — PLP2P3PIG B3 da
— PIP3D3PIiG3qs — PID2P3Diq5950a — PAPAPAPAGT 4203 — PID2P3PAqid5ds — P1PYPAPAGTqads

— PiP2piPad33q; — PIPAPIPA1a3dE — PP3P3P1a2a5a; — BP1Dapspidid3q3 — 5P1pap3Padias s
— BP1P3P3Paqi 33 — BPIP2PsPads q3ds — IP1D2PAPIG: 450304 — IP1PEPIDIGT 42430

— 9P} P2p3Piq145 a5 qa — IPIDIPAPAG: 424303 — IPIP2PAPaq1 059345 — 9P PIP3PAq1420545

— 31p1p2pspiqi 43959 — 31p1p2pipadiarqsqs — 31p1Papspadiaedsqi — 31pipapspaqi 343 4;
—63p1p2p3paqi 343 as ) Wnr11 — (PID3PIPAGT 3934 + PIPIPIPAG; 420504 + PIPIPIPITI 4595 0a

+ PIPIPIPAG; 20345 + PIPIDAPIAIA5 a3 + PIPIPAPA14205 05 — PIPIDIT: 4595 — PIP3APST: 4545

— pip3pSaia3as — PaPSPAdi aai — PIPSPAGE d3ai — PIPAPAGE a3d: — PIPAPAGEA30E — PIPSPAGE 43 ds

— pip3pidsasa; — pIPapSaiasdi — PIPSPAGi asds — PiPaPAdaasds — 2P didb a3 — 2papSaias s

— 20 pSatasas — 20SPiaS a s — 2PSPid a3 a; — 20iPId A3 aE — 203pSai 5 ah — 2P PSaTdads

— 2p5p3aiasds — 20Sp3a5a3ds — 2piPSGi a3 ds — 203D A3 0s — APSA B @ — ApSaidsal — ApSaidids
— 4p0a3q343 + 5P PaPIPIaT a5 a3 s + SPIPAPAPAG; d5a30; + DPIPIPIPIdTa2a3ds
+ SpIPAPAPAQ1 4505 q; — OP3PAP1GI 45 a5 94 — OPIPAPIi 439504 — OPIP3PIGI 4503 da

— 6p3p3PIaTa3a3q; — BPIPIPIATaaasq; — 6P3P3PIaLa2q54s — OPIPAPIT1d5a3ds — BPIPIPIG: 124545
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— 6pIP3IPIL A543 q; — OPIPaP3aTa5q3ds — BPIPIPAT; 424503 — OPIPIPRI A5 q34s — 12P3p4ai a5 a5

— 12p3p3d3 d5q5qs — 12P3Did3 d5q5qs — 12p5p303a5a3q; — 12p5p303a2a503 — 12p1Piq1 450303

— 12030343 34305 — 1207 D343 450303 — 1205P305 020503 — 12p1P3q14505 03 — 12p3p5atq2a5 s

— 12p1p3q14545q; + 12pTP3P3Pid; d3a5 a3 — 24pid; Gy aias — 24p5a; 43 asq} — 24p3a; 424503

— 24plq14395q; — 31p3p3pidi d3a5q; — 31PIP3piai d3a3a; — 31PIPIPiai 43 45ds

— 31pip3p3ai daasds — A6p3piaiad a3as — 46papiaiasaia; — 46pipiatasasa; — 46p3pidiarasal

— 46pTP3q; 45348 — 46p3p3q; 33 qi — 60piaiara5q; — 60p3q a5 q34s — 60paai a3 qs
—60piqiasaias — 564534503 ) Tnir0 + (P1PIPIPAGT A5 a3as + DiP2PiDEdi B3 au

+ PIP3PIPIai 45450 + PAPIPIPIAL 454345 + DYP2DAPIAT G 434s + PAPSDAPIA1 12454

+ PYPapAPR a3 G3 05 + PAPIPSPRAT 2 @3 0s + PIPAPPAIa3 a5 qE + PAPAPAPAaT 45 434

+ PIP3PAPAaT 20545 + PIPIPIPAI 434545 — P1P2psPAqi a3 a3 — P1D2PIPadi a3l — P1PSPaPadiaads
— PPapspagsaids + 2p1papipiaiasa3qs + 201 P33Pt aiasas + 203 papspiai i aias

+ 2p1paP3PRa 43 43 + 2P1DapsPIqi 42034 + 20T PapsPiq145a3d: + 2D1PaP3PAd; 4343 d)

+ 208 PapiPadi 43 43q3 + 2p1PIPEPAaTa2a3 s + 20T P2piPaq1 a3 a5 q; + 2D PIPsPaataaai i

+ 2P P3PsPaqa3 a5 a;s — 3P1P2P3Piaidadsqs — 3p1P2piPaqidaasdi — 3p1p3P3Padia243ds

— 3PIpepaPaqiGa a5 qs + 3PiPAPIPIai a3 a3q; + AP papapidiasasas + 14pSpapipiai b a3 a;

+ 14pSpipspiai a3 a3ai + 14pipapipadi i3 4343 + 24p1p2pipi i 3 a3ai + 24p1p3pspidl a3 a5 q;

+ 24p3papspiaiaagiai + 24p1P3pIPadi a3 a3 45 + 24P3papipaaias a3 + 24Pt papspadi dadial

+ 26p1pap3Pidi 3305 + 26p1P2P3PAqs a5 q; + 26P1P3PsPad; 43 qad;s + 26pTPapspadids a3 al

+43p1p2p3Padi 3 343 ) Waro — (PRa1a3q3 + P3aiasqd + P3atasds + piasasds + Papipidi a3 a3 a;

+ PIP3PLa; 039545 + PIPIPAGE 45d5 a3 + PIPIP3aTasa3qs + PipapIPSdi db aas + PIPapSPididiasds

+ pIPSPIPAdi 02343 + PPIPIPI a1 dadsa; + 2piP3papidiaa3ai + 2pipapapidi 3 a3 as
4 2 2 4 2 2. 4 4 2 223+2p42422 +2p442222

+ 2pIP3IPIPIG G305 0s + 2PiDaPSPId a5 45 s P3PPI A5 a5 s 1PIPAPIG B35 s

+ 4pap3piai a3 a3ds + APIPaPidi 43 034: + APaPAPAdi BB a3 as + APIDIPIdi A5 3 a4
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+ AP PSP 434545 + APIPIPIG 43 45q5 + APSPIDIA G345 ds + APIPIDIGE 4345 ds

+ ApIPIPIaT 43934 + APTPIPSE G545 ds + APIPIDG G345 ds + APIPIDAG 4345 ds + APSDIdT 134545

+ Ap3pai B3 a3ds + APIPIaT a3 a3as + APap3ai B a3 ds + APIP3aiar a3t + Apipraidi a5 ds

+ 85t gaaias + 8pSqtaaasqt + 8pSatdiat + 8pSqidiaiat + 16papapiaid i g

+ 16p3p3piaiar a3z + 16pipapiaiad asas + 16papspaaiasa3ds + 16pipspiatas a3 ds

+ 16p3p3p3ai a5 aads + 16pip3piaias aids + 16pipapiaiasqsds + 16pipapiaids asds

+ 16p3p3p3aias a3t + 16pipap3aias aias + 16pipap3aias aids + 16p3piaias a3 as

+ 16p3piaiasasas + 16pipiaiasasa; + 16pspiatiasaias + 16pspiatasasas + 16p1pia; asdsds

+ 16p3p3qiasa3qs + 16pipiaiasa3at + 16psp3atiasasal + 16pipidiasdias + 16pTpad; a3qsds

+ 16pip3aiasaias + 18pipapipiaias aias + 18pipapspiaias a3ds + 18pipspinidias aids
+ 18p1p3PaPiadi 3 a3 qs + 82pTP3p3paidaasas + 36piaiasqad; + 36p3qiarasds + 36p3ai a3 a4y

+ 36p1a; 43 q34s + 64p3p3piai a5 a3 q; + 64pTpapiatasasas + 64pipIpidi ¢ asds

+ 643 P3P3aT B a3 ds + 64P3PIa1 a2 343 + 64papiaidsa3qi + 64pipidiasdsa} + 64p3piaiaasds

+ 64p;p3aT a2 g3 s + 64pipaaiasa3qs + 80piaiaaqsq} + 80p3aiarasds + 80p3ai a5 ds

+80piaia3aids + 7041 q30345) wats + q102a3qs (PLDAPIDRG B a3 qa + Pip2piniaidi 3 aa
+ PID3PsPIaT 54504 + PIPIPIPIG a3t + PIDap3Piai 3 asdl + PIapADiei 2 34l
+ PIpapipi L 34303 + PIPapspiai 23 aF + PIPAPsPini 34343 + PAPIPEPAai 33 dh
+ PIPIPAPAat 420343 + PIPAPAPA 3 A5 45 — P1papsPAdi a3 as — P1D2piPaqi a3 dl — P1PSPPadiaids
— P1P2P3Padyqads + 2p1P2PAPId G305 qa + 21 P3PPI 4345 qa + 203 P2p3Piai 43450
+ 2p1papiPRai 43 4sqs + 2P1PIPIPRAL 20505 + 2D PapsPRq1G3daas + 2P1PAPAPAGE G5 434
+ 2P} pap3padicr 4sqs + 2p1P3PEPAdT 20548 + 2D PapiPad1G5 4548 + 2D PaPsPadi G2 a3 s
+ 2P} PapsPaq145 4503 — 3P1P2P3PIqL G5 q3qa — 3P1P2P3PAq} 45q34s — 3P1PaP3Pad; 4205 4;
2 2 2 2 2 2

— 3P papspaqi s a3 qs + 3PPIPIPiaT a3 a5 q; + 14pipapapads a3 a3ds + 14pipepipiai i 43 a3

+ 14p3 p3pspiai a3 a3as + 4P p3piPaai a3 a3 d; + 24p1popiPid; 4393 d; + 24P PP3DAd; 4395 d;
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+ 24D} popspiai 3435 + 24P1PIPIPAG G345 45 + 245 PapiPadi 434545 + 24P Ppspadi 4345 ds
+ 26p1pap3Pidi 3 G305 + 26p1P2P3PaqT a5 a5 d; + 26D1P3PsPadi 45qads + 26pTpapspadids a3 al

+43p1P2p3Padi B G305 ) Wnrr — 1G53 05 (PIPIPIPLT; 454304 + PiPIPIPLT] 424504

+ PIPAPAPII 34304 + PIPAPAPIT; 020345 + PIDIPAPIAI45a34: + PIPIPAPIT1 42055

— p3p3pSdiasas — pIp3pSaiasas — pIP3PSaE a5 — PIPSPAGE 43dE — PIPSPAG 43ds — PIPAPAG; 4345

— P\D3PAG3 A3 0; — PiPSPAGi a3 s — PAPAPIGS 343 — PIDSPSE 4543 — PiPapSai A — PSPSPAGs 4 i
— 2P3D0GT 4505 — 2P3PS0 G545 — 2P 455 — 2P3PAaI 5 aE — 2P5PAd; 34 — 2P8Did 43 4;

— 2p5P3G7 4543 — 20TPSAI 548 — 2PSP3 a3 s — 20VD305 4548 — 2piPSAi g — 2P0 D3a5 45 4s
—4piqiaias — 45t a3qd — ApSaiaial — ApSa3 a3 al + SpIaPAPIi 35 qa + BPIPAPIPAdl G343 a

+ 5P paPaPIai 2345 + SPIPAPAPI a3 4347 — BPIPAPIGE a3 a3as — OPiPIPIGT A3 a3 da

— 6P} P3DIGT 454501 — OP3P3PIG; d5q3qi — BPTP3Padidrasdi — Opap3pia}q2a3ds — OpIPEPIQ1d5a543
— 6P} p3piaTa2a5q; — OpIPSPIQ1d5q5ds — OPTP3P3ai a5 4sds — OpipapAaT 423 qs — OpIPAP3 Q145 q54s
— 12p3p14i 434594 — 12P3P143 303 4a — 12DVPAGE 450304 — 12p5p307 454345 — 12p5piqi q24343

— 12p1pi01630345 — 12P3p347 630343 — 12DVP3G3 4503q3 — 12p5p3q7 420543 — 12p10301 454543

— 12p3p3a; 424503 — 1210301430503 + 12pTP3P3Pii (3 a5 43 — 24p4ds a3 a5 s — 24p5G5 a3 ql

— 24p3qia2q3qs — 24p1a19545q; — 31P3PAPidi G345 d; — 31PIPAPid G3a3ds — 31pIPIPia; 45 45d;

— 31pIp3p3ai a3 a3ds — A6p3pIai a3 a3as — 46papiai a3 aias — 46pipiatasasa; — 46p3padi a3 al
— A6pTp3ai 3 a3ds — 46pip3aias s — 60piaiasasa; — 60p3aiasasal — 60p3a; a3 asds

—60pT i g5q34; — 5643 450343) wnte + 4 45034 (PIPAPADIQ142030 — P1D2pP3PIai G a8

— PIDSP3PIGTa2q5 — PIP2P3PIdidaqs — PLP2P3PIqTdsqs — P1PaPaPIdidads — PiP2P3Pid3d5da

— PAPAPAPAG; 203 — PIP2PaPaq195; — P1PYPAPAG; 4303 — PP2PaPaq3q34s — PiPapsPadid3ds

— PYP3P3P4G203 a3 — DP1P2PIPIG 505 — BP1P2PIPAq A5 qs — SP1PIPIPAqi a3 qs — BPIPapspada s
— Op1P2PaPial G3a30s — IP1DEPPIG; 42034 — IS P2p3Di1 a3 a5 a4 — IP1PEDEPAaTa2a54]

— 9P pap3paq1 a5 a3q; — OPIPAP3PAq1 020505 — 31P1PapsPidi 439549a — 31P1Papapadi 45 434;
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—31p1p3P3padi 12503 — 31PiPapspaqid3a3d; — 63P1P2p3PAdi a3 q3ds ) Wats

— 41039345 (P3PLGT G5 + PIPIaTas + PIPAG5 a3 + PIPSAIqs + PIP3asds + PIPSG3q; — Pipap3PIa142a3

— PIP3P3PIqia2qs — PIPAPAPIq1G34s — PIPIPAPIq2q34a + AD3PIGT G305 + AD3P1d] 0245
+ 4pIp1a145a5 + APIPIGT G5 qa + APIPIG G5 qa + APIPIG B3 aa + ADIPIG 0205 + APTPS Q14543

+ 4p3p3aiasd; + ApIP3a5asd; + ApIpsq1a3d; + Apip3aeaidi + 6p1aias a3 + 6padiara; + 6psai a3 s

+ 6p1a3q5q7 — IPIPIPIPIq14203q4 + 16P3DIGE 5 G394 + 16p3D 05 0245qa + 16pTD3q1G5 G54

+ 16p3p3¢i 024303 + 16P1P30105034; + 16pTP3q102a505 + 24P3G5 459344 + 24P3¢5 454345

+24P3G @305 + 24P BB G + 28016 03437) Wnta + 47050345 (P1p2pipiarae + pip3pspiaias
3 3 3 3 3, .3 3,3 3

+ PiP2pP3P19293 + P1P2P3P4G144 + P1P2P3Paq2q4 + P1P2P3P4q3Ga + OP1P2P3D1q14293

+5p1P2P3Paq1 4204 + DP1PIP3P4G1G3G4 + BPiP2p3pad2q3ds + 19P1D2D3PAG1420304) Wits

+qa54545 (P3pspiar + PiP3pide + PiP3Pias + PIPapids + 203Pi0102 + 2P5P3q1qs + 2PTPid2ds

2.2 2 2 2 2 2 2 2 2

+ 2p5p5q1qs + 2p1P392qa + 2p1P2G394 + 4P1q192G3 + 4P5q1G2q4 + 4p3G19394 + 4p192434a

+8¢1243¢4) Wn 12 + P1D2P3Pad] 450544 Wn 11 — G5 450545 Wn (3.4)
for n > 0 with initial conditions w; = a;b;c;d; for 0 < i < 15.
Proof. Let {an}, {bn}, {cn}, and {d,}be distinct second order linear divisible sequences that can be defined
by (2.1) with initial conditions ag = by = ¢g = do = 0 and a1, b1, ¢1, di arbitrary. Let the sequence {a,}
have the characteristic equation 22 — p1z — ¢; = 0 with roots o; and 31, such that a; + 8 = p1 and
a1B1 = —q1, the sequence {b, } have the characteristic equation 22 — pox — g2 = 0 with roots as and 2, such
that ap + B2 = p2 and asB2 = —qo, the sequence {c,} have the characteristic equation z? — p3x — gz = 0
with roots ag and f3, such that as + 3 = ps and a3f83 = —gs, and the sequence {d,, } have the characteristic

equation z2 — pyx — q4 = 0 with roots ay and B4, such that ay + B4 = ps and By = —qu.
Case 1: Let each characteristic function have distinct roots, meaning ay # f1, as # P2, ag # P3, and
ay # B4. Then, by equation (3.1), we have

Wn, :anbncndn

arbicidy

- ((Oll51)(04252)(04353)(04454)

) (o — B7)(0f — B3)(af — B5) (o — B})
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o ( a1b101d1
-~ \ (1 —B1) (o2 —B2) (a3 —B3) (s — Ba)
a1b101d1

- ((al51)(0252)(04353)(04454)
—(Bragaz)” + (Braefs)" + (Bi1f2cs)™ — (B1P283)") (af — BY)

) (010)" — (01 a)" — (@aB1)" + (BuBo)™) (0 — B (o} — B})

> ((1aza3)™ — (araf3)"™ — (a1 B2a3)™ + (a18203)"

aibierdy

- ((0‘1—51)(02—ﬂ2)(043—53)(044—ﬁ4)
— (1 B2azaa)” + (a1 B2a384)" + (a1 B2B30)" — (a1 8283 84)" — (Brazazaa)” + (Brazasfa)”

) ((aragagas)™ — (arooagfa)” — (casfsas)”™ + (arasBsfa)"

+(BragBzas)" — (BrazfszB4)" + (B1B2azas)™ — (BifacsBa)"” — (B1B2B304)™ + (B1820384)") -

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed
as a linear homogeneous recurrence relation whose characteristic equation has roots ry = ajasasay, ro =
a1op03fy, T3 = aronfzay, T4 = a1aafB3B4, 15 = a1 faaza, 16 = a1Baa3fs, 7 = a1B2B304, T8 = 1828304,
rg = Pragazay, r10 = Bragazfy, r11 = fraefzas, T2 = BrasB3fa, ri3 = Bifeazay, T4 = P1B20384,
r15 = P1P20304, and r1g = B1P820384 each with a multiplicity of at least one. We will let each of them have
multiplicity one since that means we will have sixteen roots, which is how many characteristic roots we need

for an sixteenth order linear divisible sequence. Thus, the characteristic equation is

16
H(x —r) =% - E i | 2t (1) g iy ey, | 2197, fork < 16.
i=1 1<i<16 1<iy << <16

Looking at the coefficient of 21°, which becomes the coefficient of w,, ;15 in equation (3.4), we have

D ri =aragason + aragasfs + 0n0eBson + a1aafsfs + a1 frasas + o facsBa + o fafacus
1<i<16
+ 1520364 + Bragasay + Brasasfy + BroaeBaoy + BiaeBaBs + B Brazas + B Bras by
+ B152B30u + 12354
=aq (pazay + azasfla + a0y B3 + aufafs + aoasfy + asfafBa + e f3Bs + B25354)
+ b1 (azazay + azayfBe + oo fs + asfaffz + apasfs + asfBafs + azf384 + f28304)
= (a1 + f1) (2azay + agaufa + azay B3 + cufafs + aoasfs + asfaBa + a2 f3Ps + B2354)
= (a1 + B1) (a2 (azo + aafz + a3fBa + B3Ba) + B2 (s + aufs + asfy + B364))

= (a1 + B1) (a2 + B2) (a3 + B3 + azfBs + B34)

= (a1 + B1) (a2 + B2) (a3 (s + Ba) + B3 (s + Ba))
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= (a1 + B1) (a2 + B2) (a3 + B3) (a4 + Ba)

=p1pP2pP3pP4-

For the coefficient of !4 through %, we will only be showing the final form of the coefficient. All the
multiplication of the roots, grouping of the terms, factoring of the groups, substitution and simplifying of
the coefficient was done with Sage, a computer algebra program. The outcome from Sage can be found in
the appendix. Note that because of how Sage works, we denote a; as al, 81 as bl, p; as pl, and ¢; as ¢l
inside Sage. Other subscripts are denoted in the same manner.

Looking at the coefficient of 24, which becomes the coefficient of w, 114 in equation (3.4), we have

> riry =— (p3p3piq + PipEpiae + PIPapaas + Pipap3as + 2p3piaide + 2p3piaigs
1<i<j<16
+ 202p2qaqs + 2023 q1qa + 2032 qaqs + 203 D3q3qs + AP Q14203 + 4P301 G20

+4p3q19304 + 4pTq2q3qs + 8410243G4) -

Looking at the coefficient of #'3, which becomes the coefficient of w, 13 in equation (3.4), we have

> rirgre =pipapipiaiqe + p1p3pspiaqias + pipapspiaeds + p1p3PIPatica
1<i<j<k<16
+ Pipapipagaqs + PiPaP3P4G3qs + 5P1PaPaDiqq2qs + 5p1P2paPaqigags

+ Bp1PaP3Paqiqaqs + 5pipapapaqeqaqs + 19p1papapaqig2qaga.

Looking at the coefficient of #'?, which becomes the coefficient of w, 12 in equation (3.4), we have

> v T, =DIPIGIG + PAPIai Qs + PIPIGS G5 + Pap3aidl + PIPAGS A + PIPG3 QS
1<iy < <ig<16
— PIP3P3PIqia2a3 — PIPIP3PIq1a2qs — PIPAPIPIq1G39a — P1DIPAPIq2q344
+ AP3PLai 43 as + APIPIG 0205 + APTPIQ145 a5 + APSDIGE G5 aa + APSDIGE G da
+ 4ApIPia3a3as + P3PS 1203 + APTPITNA3q; + APaP3di s d; + AP1P3d5asd;
4 2 2 2

+ 4piP3a1434; + ApIP3a2a3ds + 6p1ai a3 a3 + 6padiasa; + 6p3aia3a; + 6piasasa;

— Op2p2pipaqiagqaqs + 16p2p2aa3asqs + 16p3pIaiaeqias + 16p3piqid3eia
+ 16p3p341a243q; + 16pIp3a1d5q3a; + 16pTp3q102454] + 24p3di a3 3 qa
+ 24p3Gi 50345 + 24P365 420345 + 24PT 1434545 + 28¢5 454345 -
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Looking at the coefficient of #!!, which becomes the coefficient of w, 11 in equation (3.4), we have

> ri e, =DIPAPADIG1G2030s — PAP2DADSGI G305 — PAPADSDI 0205 — PiP2pspi 10363
1<iy < <i5<16
— P1P2PIPIaTasas — PIPAPIPIATA3qa — DiP2P3Paq5d3qs — P1IPAPIPAGTad]
— PYP2PiPAi 3 G; — PLPIPAPAG 4345 — DID2PaPaq5asds — PiPIPsPad1a3d;
— PIP3P3PAq25q; — DP1D2P3PIAT A5 a5 — DP1D2PAPAdL G5 q; — DPIPAPsPAdi 3 s
— 5pYpapspaqsa3a; — IP1P2PIPAG; 4539 — IP1DAPIDAG: 02050
— 9pSpapspi 14303 qa — IP1DAPAPATE 020305 — P PpiPa1 4543 4]

— Op3PEP3Paq1a2a3 s — BLp1papspididaaaas — 31p1papipadiaiasds

— 31p1p3pspadt eeqiqs — 31pipapapaqiaiaiqs — 63p1papapadidaqad;.

Looking at the coefficient of z'°, which becomes the coefficient of w10 in equation (3.4), we have

> T, =DIDAPIPIG B3 sta + PIPIPAPICI 0203 0s + PIDAPIPI B30 + PIPIPIPICI 0204
1<iy<--<ig<16
+ PIP3PIPAGIa3 a3 + PIPADAPII42035 — PIPADST: 4595 — PIP3DSa; a5
— PIPIPIAT A5 a5 — PIPSPIAL a5 a; — PIPSPIATAaas — PSPIPIALas s — PSP3PIdad3d;

— PIPSPIAT5q; — PIPIPIA3d5q; — PIPSPSATA5ds — PIPSPIATA5ds — PIPIP3A5 5 qs

— 2p3p5aiasas — 2050545 a5as — 2piPSai a3 a3 — 2pSPId a4 — 2p5padidsa;
— 208 piasasa; — 205p5a5 a5ds — 2piPSai a3 ai — 2pSp3ai a3 ad — 205 P3daasds
— 20181 345 — 20 P35 B 48 — PS5 ds — ApSa a3 ds — PSS aE — 453 asdd
+ 5P PIPAPLG; 454304 + BPIPIPEPIAT A5 345 + DPIPIPADIE 1254
+ 5piPIPIPI N a3 4543 — OPIPAPIa a3 a5qs — BPIPIPIAT G a3 qs — ODIDADAGE 5345 q4
— 6p3p3pIdi a3 asq; — 6PIPPIaTdaasa; — 6pap3PIdia2a3q; — 6PIPIPII A3 a3ds
— 6pIPaPid; 120503 — OPIPIPIdIG5a5ds — BPIPIPSA; 4543ds — OPIPaP3ataadsds
— 6pIPaPI Qa3 a5 q; — 12P3P1ds a3 a5 as — 12P3D40E i3 a3 qa — 12DTD10 53 da

2.4 3 2 3
— 12p3pidiaaasa; — 12p3pidiaedias — 12p1piq145q5qs — 12p3p3d3a5q3ds

4 2 3 3 .2 3

— 12p1p343 d393q; — 12P3P3G5 020545 — 12p1P3q1daa5d;s — 12piP5d; 025 ds
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— 12p1P3 01034505 + 120TP3PAPIaE 34545 — 24P B a3as — 24343 B a3y

— 24p3qiq2q5q5 — 24p1q14345q; — 31P3PAPid; G345 — 31PIPAPId G345 ds

— 31pIp3piai 4345a; — 31pIPap3a; a3 a5ds — A6p3PIai b a3as — A6papiai a3 a3 s

— A6pipiaidaaia; — 46pap3aiasa3ds — 46pip3atasa3a; — 46pipaaiarasal

— 60p3aiasaias — 60p3aiasasqs — 60p3qi a3qsas — 60piai gy aias — 5643 q5a54;-

Looking at the coefficient of 2%, which becomes the coefficient of w,, ¢ in equation (3.4), we have

S v, =ppPIIE B + Dipapipiat i as + pipipspiai B3 aSas + p1p3papia 3 asd

1<i1 < <iy <16

+ PiP2paPIai 4393 4s + PAPSPAPAAT 420545 + DyP2PAPAq145450; + DIPaPaDaqtd2a54;

+ P D3Pspin 34543 + PIDSPIPaqi 543 + PIDSPIPaqi 234 + PIPAPIPaq1 4345 45

— P1P2P3PAT; G505 — P1D2P5Pads G5q3 — P1P5P3Paqs d5qs — Pip2psPadsdsds

+ 2p1popiPAa a3 a3 qa + 2D1P3PsPRG 3 aSqs + 203 Papspiat a3 di s

+ 2p1popiPidi b asai + 2p1P3PsPRa 23 a3 + 208 papspiards g3

+ 2p1P3PAPAGL 45934 + 2P P2pAPAdi G393y + 2P1PEPAPAGT 4245

+ 2P0 papipaqi 3 a3 4 + 203 P3pspaaiaadidl + 203 P3pspadi a3 aial

— 3P1P2PsPIq; 4305 qa — 3P1P2PAPAT; 30345 — 3P1P3P3PAd; 420345

— 3Py Papspaqidsqids + 3PIPIPAPIaT 34345 + 14p1PapAPR i B a3 da

+ 14ptpapipiaiaiasai + 14p3pipspidi a3 d3as + 14p3papipadi 34345

+ 24p1 papipiai a3 a3 q; + 24p1Papspidi a3 a3a; + 24pipapspiai 3 dias
+ 24p1P3pEPadi 434304 + 24D Papipadt 5034 + 24P P3pspadi 434543

+ 261 P2p3P G G5 a5 + 26D1D2DPad G5 a3 + 26p1D3P3Pad; da G5

+ 26p p2p3padi 434505 + A3p1P2D3Paqs 43455 -

Looking at the coefficient of 28, which becomes the coefficient of w,, g in equation (3.4), we have

Tiy o Tis =DRG103q5 + P3G1a3q4 + P3a1asql + Piasqsds + papapidiaa a3 a;

1<i1 <+ <ig <16

+ PIPSPIaT 420345 + PIPIPIG 34503 + PIPSDSd (3 a344 + PIPIPIPS AL a3 as
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2,2 3

+ PIP3PSPIG; d3asai + PIPSPIPIG 245 4; + PSPIPAPIN B a3 ds

+ 2pIp3pipidi a3 a3 a3

2 4 4

3.2

+ 4p3pspiaidiaia

2 4.4 3 2 4

+ 2pT PIPIPIG; 45454

+ 2pIP3PAPAE; 43455 + 2D 1DAPAPAGE a5 a4

+ 2p1P3IPIDIGE 4345 ds + 2D 1PaPAPAGE a5 q)

2 4,24 .4 2 3 2 4 2 4.3

;4 APIPIPIaiar 3 4s + APIPIPIaL 3 a3d;s + APIP3PLa; 43 45d;

2.3 4 2.4 .2 2 3 4 2.4 .2 3

+ AP PIPIai 3 a3 + APIPIPIG 43 a3a; + APSP3PIaL 4345 ds + APIPPIGE 4345 dh

+ 4pipIpiaida a3 ds

4.4 4

+ 4pTP2ap391959349a

IP3p3aiasa3at + Apipapsaiab a3 as + Apipap3aida aads

4 2 4 4 2 4 4.2 2 4

+ 4p3p1aiasa3as + Apapiai a5 a3ds + Apipiaiasaias + 4pap3aias a3 ds

4.4 2

+4pip3di a3 a3ds + 4pipadi a3 a3t + 8pSaidrasan + 8pSatarasal + 8pSaiaaaial

+ 8PS q1g393q; + 16p

4,2 4

SP3piaiasasa; + 16pipipidiasaia; + 16pip3pidiasasai

2,2 4 2

+ 16psp3piaidsaads + 16pTpapiaiara3qs + 16pspapadiasdsds

2,2 2 4

2.4 3

+ 16p1p3paaidaqads + 16pipapiqi a3 4sqs + 16pipapadi a3 dsqs

2,4

4.2 2 2

+ 16pTpap5ai a5 qads + 16pipapaqi a3 asqs + 16pipapadi a3 45 qs

4.4 2 3

+ 16p3p1q1 g2 q3d; + 16p3piaid5a3q; + 16pipiaiasq3q; + 16pspiaiasas al

2.4 2 4

4.2 2 4 4 3 3.4 2 4

+ 16p3p3ai G5 q3ds + 16pipiaidsa3qs + 16p3psaiasasas + 16pipadiasasds

+ 16p3p3qi a3 591 + 16p1D3a; 4394 + 16pTaqt a3 d544

2,24 3 3

2.2 4 3 4 243244+16p422344

1P241929344

2,2, 4 2,4 2 3.2 3

+ 18P pap3piai b a3 as + 18P papspiai a3 a3 + 18P pap3piai a5 a3 ds

2,22 2 3 3 33 4 4 4 4 2 4 4.4 2 4

+ 18P pPap3PIai a3 a3ds + 82pi AP a3 aids + 36piaidaq5d; + 36p3aidsasq]

2,22 4.3 3 3 3.4 3

+ 36p3aig5q5q1 + 36piaiasasas + 64p3p3piaidaaia; + 64pIpipid; s s as

3.3 4

2.4 .4 3 3 2,2 4 3 4.3

+ 64ppapiaias a3ds + 64pipap3aias il + 64p3piaidaaia; + 64papiatasas

+ 64p3piaias a3 ds

2 4 4 4 3

+ 64p3p3ai a3 a3 qi + 64pIP3d; 3 d3ad + 64pIP3aE a3z ad

2 4 4 4 4 4 4.4 4 4

+ 80p3qidsa3q; + 80p3aiasdias + 80p3aidagsds + 80piaiasqias + T0q1q3a54]-

When 1 < 47 < ---

TiryeeosTir €Ty, .

rsry = 10y 1P20304. This means r;, ---

., 7 }. For each ry, ---r;,, there exists rs,ry € {r;,, ..

< ig < 16, we can show that r;, -- -7, = oqasagasfiB2B384(rj--rj,) where

., T4y }, such that

Tig = TsTt(Tjy+ Tj;) = aragaszaafBiPaBsfa(rj, - -1j,). For
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example, if we take r1 - -+ 79, we can see that rgrg = ajasagay 82083084, which means

Ty Te = oy B3 Ba(ry - - 17).

Thus, looking at the coefficient of 27, which becomes the coefficient of w,,, 7 in equation (3.4), we have

Z Tiy * " Tig =01 0203003152354 Z Tj T
1<i1 < <ig<16 1<j1 < <jr<16
=1020301 (P1DSPIPIG 630304 + PiD2piPid 63 a3 aa + PIPIPsPIci 5 a5

+ PIPSPEPIG B asa + Pipappiai B3 asad + PipaPIPiq 23 4l

+ pip2P3Pi 3B aE + PIPdpspiai 3@ + Piripspini i a5 d;

+ PIP3PEPAaT G543 + PIPAPIPAa 254 + PIDAPIPai G345 43

— P1Pap3PAq; 4595 — P1P2P3PAGi 45 ds — P1PSPsPAdid3ds — DIP2PsPadsdds
+ 2p1popiPiai a3 a3 aa + 2p1P3PaDiai a3 aias + 2 papspiaids dias

+ 2p1p2P3PR a3 a3l + 2p1DapsPRat 420345 + 23 Papapia1d5aads

+ 2p1P3PAPAdi 459345 + 2D P2paPaqi G343y + 2P1PEPPAqT 42454

+ 2P} papiPa G334 + 20 PIPsPaat 234} + 20 PP G345 4

— 3p1P2P3Piq; 4305 qa — 3P1P2DAPAd; 3345 — 3P1P3D3PAd; 420545

— 3pYpopspaidsai s + 3pipapipiai a3 a3 a; + 14p papipidi a3 aa

+ 14p3papipiaias il + 14p3p3papiaiaaaial + 14p3p3pipadiaaaias

+ 24P PP R a3 243 + 24P P33P GE R aaal + 243 papapidiaaga s

+ 24p1 PIPIPAGE G5 a3 + 248 Papipadi 43 a3 dl + 241 P3Papadi 4345 ds
+ 26p1pap3pid; 43 430; + 26p1p2p3Paqt 45503 + 26p1P3P3PAdi a3 s ds

+26pipap3padi 34345 + 43p1P2p3Padi 45053 ) -

Since we calculated Zl§j1<---<j7§16 7;, -~ T, as the coefficient of 2% above, we can just replace it here.
When 1 < i < -++ < i19 < 16, we can show that r;, -7, = afadaiaifipsp383(r), -+ rj,) where

TjyyeoosTjg € {Tiys -y Tiyo b Foreachr;, -- -1y, thereexists ry,, ..., 75, € {7i,,...,Tio }, such that rg, -7y,

= afajafeiBip3A36T. This means ri -1y, = 1, o1 (v, 1) = afa3adadBBEAE(ry, - io)-

For example, if we take 7 ---710, then we can see that r-rsrorip = a?a2aa?f2625252, which means
pie, 05 7T8T9T10 1X 3y D1 P2 P34
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ri-- 10 = ojoda3ad B B3B3 (r - Te).
Thus, looking at the coefficient of 2°, which becomes the coefficient of w,, ¢ in equation (3.4), we have

2 2
Z Tiy * Tigo —041042043044 1ﬂ25354 Z T Tje

1<iy < <i10<16 1<j1 < <je<16
=41 030343 (PIPAPAPAEE B3 a3aa + PiPIDPADACT 420304 + PIPIDADINI B A5
+ PIPaPAPIaA2q34; + PIPIPIPAAI4303q; + PIDaPAPIGI0205 03 — PIPAPIT: G35
— PiPADSAI G5 a3 — PAPAPIGT 4503 — PAPSPAGE G3dh — PIPSPAGi G5 da
— PSPPI 345 — PSPPI a3 a; — PIPSPIGE 43dh — PPAPAdE g da
— PIDAPSAT 4503 — PAPSPSAiaa s — PIPAPAGE 45 4E — 2P3DSai a4 — 2P3PSai G543
— 2pTP8ai 345 — 2P5PA0T G54 — 2PSPAG 454; — 2PSPIda a5 4E — 2Pap8ai 4l
— 2pTP84i 34 — 209P54T G343 — 208P305 4308 — 2iPSdE 43 4E — 208P3as 43l

—Apiaia3as — WSalasal — A3 aial — ApSa3 a3 ad + Spipapapiaias 45 aa

+ 5P PIPIPIa; 454303 + BPIPaPaPIata2a3ds + SPIPIPIPI 455 q;

— 6p3P3piaT a3 0301 — OPTD3PIGT G345 94 — OPiP3PAGT 45450 — BP3P3DIdT a3 a3d;
— 6piP3piaia3asa; — Op3PIPIa 23 d; — OPIPAPAM 34545 — 6PIP3DIdi 0243 4;
— 6p1PEPIq145 4303 — OPTDAP3aT G5 s ds — OpiPaP3di d2a5 s — 6p1PED3 014543 4]
— 12p3pidi 3 a3 as — 1203p5 0 3 d3as — 12p3piaidbaian — 12p3p3didasal
3

— 12p3piaiaaqia; — 12p1Piddsdia; — 12p3p3di a3asqs — 12p1psdi daasds

— 12p3P3¢3 020545 — 12p1P3q1d5a5q; — 12p1p3d; a2 dads — 12p1P3q1 a5 s qs

+ 12pIP3p3Piai 54305 — 24Pt a5 a5q4 — 24p3ai a5 asdi — 24p3aia2q3ds

— 24piq1g3q5q; — 31papapidi a3a3ds — 31pIp3Piai b a3 q; — 31pIPapiaiasdsa;

— 3PP 43934 — A6P3PIai a3 as — 46papRdi 5 a3 a; — 46piPiaT a3 q:
— 46p3p3ai 3 a3ds — 46piP3ai a3 4i — 46pipaaiasasas — 60pidi a3asa;
—60p3ai a5 q543 — 60p3q5a5a5q3 — 60pTa; a3asas — 564 a5 a3 43 )

Since we calculated Zl<j1<~~<j6<16 7, -7, as the coefficient of z1° above, we can just replace it here.

6
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When 1 <4y < --- < iy3 < 16, we can show that r;, ---r;,, = afasadadfipspsBi(ry, -+ rj,) where

Tjys-eesTjs € {Tiys. .. Tiy, }. Foreachry, - -7y, , there exists r,, ..., 75s € {74,,..., 74y, }, such that rg, -7y

= afe3a3adfB3 8341, This means riy -+ iy, =1, 1ag(rjy -+ 7j5) = @fe5a303 B B3B3 BY (), -+ 7). For

example, if we take 71 ---7r11, then we can see that rgrrrgroriorin = ajagaisadfiBsBsB:, which means
— 3,3.3,3333333733
LTl = 04104204304451[32@@,54(7”1 o '7’5)~
Thus, looking at the coefficient of 2°, which becomes the coefficient of w,, ;5 in equation (3.4), we have
3
E Tiy o Tipy *041052@3@4 1525354 E Tji Ts

1<iy <--<i11 <16 1<j1 < <js<16

=¢}a5a34; (Pip3p3pia1a2a3qs — P1paPaPiaiasas — PiPapspiaiaed;

— PIPaPaPRqIGaqE — PIP2PIPIAiaaqs — PIDAPIDAT; dads — DiP2PIPIqaqaqs

— P1IPYPAPAGTa2GE — PiP2p3PAqia5ds — PIDADAPAG; 4303 — PIP2PaPadsasd;

— pYPIPsPAqi a3 q; — PIP3P3PA2a3ds — SP1P2P3DAG; 4595 — DP1P2PAPAd; 4545

— B5p1p3p3padia3a; — SpIP2p3Padsa3ds — IP1P2PAPAG; 454304 — IPLPAPIPIA 424504
— 9P popspiq1 433 q4 — IP1DAPAPAGT 424305 — P P2P3PAq1d5a3d;
— 9P P3P3p1q1a2a3 s — B1p1papspiaiasa3qe — 1p1papipadias asd;

—31p1p3papaqiaeial — 31pipopspaqiaadia; — 63p1papspadiasdial) -

i s ; 11 . .
Since we calculated 7y .. <1671~ Tjs as the coefficient of 2'" above, we can just replace it here.
. . _ 4
When 1 < 43 < -+ < i1z < 16, we can show that r;, -+ 7, = ajasaidaiBipsBiBi(ry, - rj,) where
Tjyy-eosTjs € {riyy ..., 7iy, . Foreachr;, ---r;,,, there exists rg,,...,rsg € {75,,...,7iy, }, such that rg, -7y

= a%a%a%aiﬁfﬁgﬁg‘ﬁi This means Tiy o Tigg = Tsy =" Tsg (T]i T Tj4) = aila%a%aﬁﬁfﬁ%ﬁ;ﬁfﬁﬁ(rjl e Tj4)' For

example, if we take rq ---rq9, then we can see that rg---r5 = a%a2a3a4ﬂ ﬂ263 1, this means r1 -+ 719 =
4 4, 4 4724043404
ajasazay BBy By Ba(re - ra).

Thus, looking at the coefficient of z#, which becomes the coefficient of w,, ;4 in equation (3.4), we have

4 4 4
Z riy - i, =0dagasal BBy B3 B Z Tj T

1<41 <+ <112<16 1<51<---<54<16
=q19505q1 (P3P1aias + Papidias + PIPias a3 + Papsdias + PIPSasas + Pipsasds

— PIP3P3IPIA10203 — PIP3PIPIq102q4 — PIP3P3PIq14304 — P1PAP3PIq24304
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+4p3piqi i as + APSPAGE 4243 + APTPI1G3 S + AD3PAGE 45 qa + AP3Diai s
+4pIPigs a3 aa + AP3P3G 424 + APTP301 G54 + ADap3di asd + APID3GE s dh
+4pipaqig3qi + APiP3 2 @343 + OPIG 505 + Op3di g3 q; + Opadiaidi + 6pids il
— OpIP3P3PIq19203qa + 16P3PIaTa5a3a4 + 16p3P3G5 20504 + 16pTPI 01050304

+ 16p3p3012q3q3 + 16pTP3q145 9345 + 16pTP3 01020303 + 24p501 4345 qa

+24p3¢343a34; + 24P303 420345 + 24T 1450345 + 2843434543 ) -

Since we calculated Zl<j1<---<j4<16 T4, -+ -1, as the coefficient of 2'2 above, we can just replace it here.

; ; — A5 BAB 535353535

When 1 < 43 < --- < 413 < 16, we can show that r; - -7, = oaa3a3a3P78306508; (rirjr,) where

Ti,75, 7% € {Tiy, ..., 75, }. For each vy, -+ 7y, there exists rq,, ..., 75, € {r5,,..., i}, such that rg, -+ 74,
A58 A5 ~535 353535 : _ — BB aBnB5 35353535

= ajada3ai By B36858;. This means ry - -1, = Ts - Tso(1irTh) = Qjada3ay By B;03063(rirry). For

example, if we take rq - - - 713, then we can see that 74 - - r13 = afajajal 57656583, which means r1 -+ - 113 =

ofagafal 78385 85 (rirars).

Thus, looking at the coefficient of 2%, which becomes the coefficient of w,, 3 in equation (3.4), we have

S r e, =aie3abal B 838583 > mrm
1<iy <+ <i13<16 1<i<j<k<16
=q1450343 (PLp2pipiaras + P1P3P3PiqLas + Pip2pspiaaqs + P1PIPIPaq1 s
3 3 3 3 3 3
+ P1P203D4G2q4 + D1D5P3P4G3q4 + OP1P2P3P1q19293 + SP1P2D3D4G1G2G4

+5p1P3P3Paq143G4 + DD P2p3Pagaqsqs + 19p1papspaqy qQQS(M) .

Since we calculated El<i<j<k<16 Tk as the coefficient of z® above, we can just replace it here.

When 1 < 43 < -+ < i34 < 16, we can show that r;, -+ 1, = aSaSa$a$B?BSAS6S(rir;) where

ri,7; € {ri;,..., 1, }. Foreach r;, ---r;,,, there exists vy ,...,rs,, € {r5,,..., 7, }, such that vy, ---ry, =
6,66 0 36 36 36 36 ~ _ — 646,66 36363636

afasafay Sy s B35 This means 7y, -1y, = 7o, -+ 7o, (i) = afasagalfyBsp56: (rir;). For exam-

ple, if we take 71 ---r14, then we can see that rg---ryy = a?agagagﬁlﬁﬂgﬁgﬂg, which means 71 ---7ry4 =

afagagad By B3 B5Ae (rira).

Thus, looking at the coefficient of 22, which becomes the coefficient of w,, 2 in equation (3.4), we have

6.6 6636363636
Z Tiy * " Tiyy =0 Q03057 5 0364 Z Tl

1<iy <+ <i14<16 1<i<j<16
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= — ¢¥¢54545 (P3P3PIqL + PiP3PiQe + PiPapias + Pipap3ds + 2P3P5q102
+ 202p2q1qs + 202 D2q2qs + 2032104 + 203 P2 qaqs + 202 Pag3qs + AP3q10203
+4p3¢142q4 + 4319394 + ApT2q3qs + 8910243G4) -

. . 14 . . .
Since we calculated -, ;-4 7i7; as the coefficient of 2% above, we can just replace it here.
When 1 < i3 < -+- < i15 < 16, we can show that 7, ---r;,. = oladalalB?BI8%41(r;) where r; €
{riys---s7i;s ;- For each 7, ---7;,,, there exists an ry,,...,7rs;, € {74,757}, such that ry - -7y, =

aza2a3a4/817[32ﬁ3ﬂ4 This means 7, - -7, = Ts, Vs, (1) = a1a2a3a451ﬁ25§64 (r;). For example, if we

take 71 - - - 715, then we can see that ro - - - r15 = afafalalB7 37 8781, which means

Ty = 0430420‘3@4515555@(7"1)

Thus, looking at the coefficient of x, which becomes the coefficient of w,, 1 in equation (3.4), we have

_ T T T TQ7a7Aa7AaT _ T0.T. 7
E , Tiy " Tiyy =0 Qo303 B9 838, E Ti | = P1P2P3P4491924934,
1<i1<---<115<16 1<i<16

Since we calculated ) r; as the coefficient of ' above, we can just replace it here.
1<:<16 )

Looking at the constant, which becomes the coefficient of w,, in equation (3.4), we have

8 8 8 878,888 _ 8 8 8
E Tiy 7”116—041@20430‘451525354 ‘11Q2Q3‘I4

1<d1 < <i16<16

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (3.4).

Case 2: Let one characteristic function have duplicate roots and the other three have distinct roots. WLOG
we can say the characteristic function of {a,} has the duplicate root, meaning oy = 31 , g # B2, ag # B3,

and a4 # B4. Then, from equation (3.1), we have

W, :anbncndn

— na’lblcldl n __ Aan n _ Qn n _ any,n—1

- ((ag — Ba)(as — Bs) (o — ﬁ4)> (ay — By )(ag — B3) (o) — B

o na1b101d1 n n n "
= (041 (ag — 52)(043 — 53)(044 — ,6’4)) ((ragazaq)™ — (1asasfy)™ — (arasBsas)™ 4+ (1asBs3064)

—(a1 faaza)” + (a1 PB20384)" + (a1 B28304)™ — (a1 B20384)") .

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed

as a linear homogeneous recurrence relation whose characteristic equation has roots ajasagay, ayasasfy,
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aragfay, arasfsfa, afeaszay, aifeasfy, a1Paf3ay, and ayfB28384 each with a multiplicity of at least
two. We will let each of them have multiplicity two since that means we will have sixteen roots, which is
how many characteristic roots we need for a sixteenth order linear divisible sequence. Thus, if the roots of
the characteristic equation of {w, = apb,c,d,} are r1 = ayasasay, 19 = arasasfy, 13 = arasfsay, r4 =
arazf3fs, rs = a1 faazay, 16 = a1 faazfa, rr = anfefsau, s = 128304, T9 = a1z, T10 = 1203y,
r11 = e f3ay, T12 = a102fB304, T13 = a1feazay, 114 = a1faasfBe, 115 = 128304, and 116 = 128304,

then the characteristic equation is

16
H(.T —r) =%~ g i | 24 (—D)F E i i, | 67, fork < 16.
i=1 1<i<16 1<iy < <ixg <16

At this point, this case becomes the same as case 1 by simply replacing 5; with a; throughout. This works

because, in this case, a1 + @1 = p; and vy = —qy.

Case 3: Let two characteristic functions have duplicate roots and the other two have distinct roots. WLOG
we can say the characteristic functions of {a, } and {b, } have the duplicate roots, meaning oy = 81 , ag = B2,

ag # B3, and ay # B4. Then, from equation (3.1), we have

W, :anbncndn

o ( n2a1b1c1d1
~ \ (a3 — f3)(a — Ba)

2
= ( A ) ((aragazaq)™ — (arazasfs)” — (araafzas)” + (a2 f364)") .
041042(

ag — B3)(as — Ba)

) (o — A1) = B)ar—tap!

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed
as a linear homogeneous recurrence relation whose characteristic equation has roots ajasagay, ayasasfy,
apaafsay, and agas B384 each with a multiplicity of at least three. We will let each of them have multiplicity
four since that means we will have sixteen roots, which is how many characteristic roots we need for a
sixteenth order linear divisible sequence. Thus, if the roots of the characteristic equation of {w, =a,bncnd,}
are T4 = 10030y, T2 = a1oeazfy, 13 = a1aef3ay, T4 = ay1aafB3B4, 5 = 1003y, T6 = a1020384, T7 =
a1 f3ay, Ts=a1anfB384, rg=a10a030y, T10= 010203084, T11 =Q1028304, T12 = 102304, T13 = 1020304,

14 =038y, T15 =100 P304, and r1g=a1as 354, then the characteristic equation is

16
H(sc — 1) =% - E i | 24 (=R E iy -, | #107F) fork < 16.
i=1 1<i<16 1<iy < <ixg <16
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At this point, this case becomes the same as case 1 by simply replacing 57 with a; and S with as throughout.

This works because, in this case, ay + a1 = p1, a1 = —q1, az + g = p2, and as = —¢qo.

Case 4: Let three characteristic functions have duplicate roots and the other have distinct roots. WLOG we
can say the characteristic functions of {a,}, {b,}, and {c,} have the duplicate roots, meaning ay = 3 ,

ag = fBo, ag = B3, and ay # B4. Then, from equation (3.1), we have

W, :anbn Cndn

n3a1b101d1 . ny _ n— n— n—
= (@44—@4)) (af = Bt ragtag ™!

- ( n3a1b101d1
arazag(ay — Ba)

) (@r00304)" — (a3 B5)").

Since the above equation is in the form of equation (1.4), we know the sequence {w, } can be expressed as
a linear homogeneous recurrence relation whose characteristic equation has roots ajasasay and ayasasfy
each with a multiplicity of at least four. We will let each of them have multiplicity eight since that means
we will have sixteen roots, which is how many characteristic roots we need for a sixteenth order linear
divisible sequence. Thus, if the roots of the characteristic equation of {w, = a,b,c,d,} are r1 = ayasazay,
re = aopasfy, T3 = aooagoy, T4 = oagasfy, Ts = aopasou, T6 = oqaeasfs, TT = 0azaso,
rg = Q1aasfly, To = Qraazay, r0 = a1aeazfy, T11 = Qrooazay, T2 = a1aeazfy, 13 = Q1oazay,

14 = a1anasfy, T15 = a1asasay, and rig = ajasagfy, then the characteristic equation is

16
H(x —r) =% - E i | 2t (=) E iy oy, | 2197F, fork < 16.
i=1 1<i<16 1<ig < <ip <16

At this point, this case becomes the same as case 1 by simply replacing 8, with ay, 82 with as, and 83 with
ag throughout. This works because, in this case, a1 + a1 = p1, 11 = —q1, a2 + Qg = P2, asas = —q9,

a3 + a3 = p3, and azaz = —qs.

Case 5: Let each characteristic functions have duplicate roots, meaning a; = 81 , as = B2, ag = (3, and
ay = B4. Then, from equation (3.1), we have

4 n—1_n—1_n—1_n—1 n4a1b1c1d1 n
Wy, = Apbpcpdy, =n"arbicrdio] ™ oy oy oy T = ————— (pagagag)”.
Qo3 tiy

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed

as a linear homogeneous recurrence relation whose characteristic equation has the root ajasazay with a
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multiplicity of at least five. We will let it have multiplicity sixteen since that means we will have sixteen roots,
which is how many characteristic roots we need for a sixteenth order linear divisible sequence. Thus, if the
roots of the characteristic equation of {w,, = a,b,c,d,} are r1 = a1asasay, ro = @13, T3 = Q1 0RO30y,
T4 = 1230y, Ts = 1020304, Te = Q1O20304, T7 = Q1Q20304, Ty = Q1Q20304, T9g = Q]QO20304,
T10 = (12030, T11 = Q1Q2030y, T12 = 102030y, T13 = 10030y, T14 = Q102030y, T15 = 0102030y, and

716 = Qi1 ioi3yy, then the characteristic equation is

16
H(x —r) =%~ E i | 2t (=) g iy ey, | 2107, fork < 16.
i=1 1<i<16 1<iy <+ <ip <16

At this point, this case becomes the same as case 1 by simply replacing 8; with ay, 82 with ag, and 3 with
o throughout. This works because, in this case, a; + o1 = p1, acp1 = —q1, a2 + ag = P2, asae = —qo,

a3 + a3 = p3, a3z = —q3, 04 + 4 = pa, and gy = —qu.

Therefore, when we multiply four distinct second order linear divisible sequences we can construct a
sixteenth order linear divisible sequence defined by recurrence relation (3.4). It is easy to see from our

definition of {w,, = axbnend,} that w; = a;b;¢;d; for 0 < i < 15 O

Next, we have an example that takes the product of four second order linear divisible sequences to

construct a sixteenth order linear divisible sequence.

Example 3.5. Using the Fibonacci sequence, Pell number sequence, Mersenne number sequences, and the
sequence of natural numbers including zero we define a sequence {w,, = F,, P, M,,N,,}. Then, by Theorem

3.5, we get a sixteenth order linear divisible sequence that satisfies the recurrence relation

Wpt16 =12Wp415 + 18wy 414 — 456wy 413 — 443w 412 + 6336w, 411 + 11106w,, 419 — 27468w), 49
— 87873wy4s — 4936wy, 7 + 44424w,, ¢ + 50688w,,+5 — 7088w, 44 — 14592w,, 43

+ 1152wy 42 + 1536w,41 — 256w,

for n > 0. The table below shows some terms of the sequence {w,, = F,, P, M,,N,}.
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n Wn n Wn n Wn, n Wn

0 7 1953133 14 6985177048668 21 18614391293902412190

1 1 8 17478720 15 58472015201250 22 152351119164258982308

2 12 9 154020510 16 487277559095040 23 1244354656992194910737
3 210 10 1337981700 17 4044847083436931 24 10144273043247536793600
4 2160 11 11505038633 18 33459590559699360 25 82554933399852260719375
5 22475 12 98075577600 19 275928071551639237 26 670763926581706461658908
6 211680 13 | 830185445479 | 20 | 2269164648115530000 | 27 | 5441936114229817195931490

Table 3.5: Terms of the sequence {w,, = F,, P, M, N, }
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CHAPTER 4

POWERS OF SECOND ORDER LINEAR DIVISIBLE SEQUENCES

In this chapter, we will look at taking powers of a single second order linear divisible sequence. We start
with the work done by He and Shiue in [9] where they squared a single second order linear divisible sequence
and cubed a single second order linear divisible sequence. We then move on to the forth, fifth, and sixth
powers of a single second order linear divisible sequence. We take these powers term by term; thus, {w,} is
the sequence {ag, a{, ag, .. }

We start with looking at what the powers of the general forms of second order linear divisible sequences
will look like. Let {a,} be a second order linear divisible sequences that satisfies equation (2.1) with ag = 0.
Then {a,} has a characteristic function 22 — pr —q = 0 with roots a and g such that a+ 3 = p and a8 = —q.
Since {ay} is a second order divisible sequences it can be expressed by equation (2.5). Then the sequence
{w,, = aJ,} has one of the following expressions depending on weather the roots of the characteristic equation

of {a,} are distinct or not.

Wy, = (aajB)j (O‘n_ﬂn)j, if a # 3;

= , (4.1)
n’aj (a”_l)J , if o = 8.

4.1
Square of a Second Order Linear Divisible Sequences

In this section, we will square a second order linear divisible sequence in order to come up with a single

higher order linear divisible sequence. This squaring constructs a third order linear divisible sequences.

Theorem 4.1. [9] Let {a,} be a second order linear divisible sequence that can be defined by (2.1) with
initial condition ag = 0 and ay arbitrary. Suppose that the sequence {a,} has a characteristic equation

22 — px —q = 0 with roots o and B, such that oo+ = p and af = —q. Then {wn = a%} is a linear divisible
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sequence that satisfies the third order linear homogeneous recurrence relation

Wnt3 = (P2 +q) Wnt2 + ¢ (P2 + ) Wnt1 — ¢ wy, (4.2)
for n > 0 with initial conditions wy = a3, wy = a?, and wo = a3 = 0.

Proof. Let {a,} be a second order linear divisible sequence that can be defined by (2.1) with initial condition
ap = 0 and a; arbitrary. Let the sequence {a,} have the characteristic equation 22 — pz — ¢ = 0 with roots

«a and f, such that o + 8 = p and aff = —q.

Case 1: Let the characteristic function have distinct roots, meaning o # 8. Then, by equation (4.1), we have

2
a1 n ny\2
= a” —
(525) @)
a% 2\ n 2\
~ (=5 ) (@) —2(8)" + (89)").
(a—B)

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as
a linear homogeneous recurrence relation whose characteristic equation has roots o2, a8, and 82 each with
a multiplicity of at least one. We will let each of them have multiplicity one since that means we will have

three roots, which is how many characteristic roots we need for a third order linear divisible sequence. Thus,

the characteristic equation is
(x - az) (z —af) (:c - 52) =3 — (a2 +af + 62) %+ (agﬁ +a?B? + aﬁ?’) z —a’B3.
Looking at the coefficient of 22, which becomes the coefficient of w,, 12 in equation (4.2), we have
a2+ af+p2=a’+2ab+ 5% —ap

=(a+p)’ —ap

=p’+q.
Looking at the coefficient of z, which becomes the coefficient of w,, 11 in equation (4.2), we have
BB+ a?B% +aB? =ap (a2 +af + 52)
=af (a2 +2af + 3% — a,B)
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= af ((a+5)° - ap)
=q(p*+aq).
Looking at the constant, which becomes the coefficient of w,, in equation (4.2), we have
8 = (aB)’ = (—)* = —¢".

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (4.2).

Case 2: Let the characteristic function have a duplicate root, meaning o = 8. Then, by equation (4.1), we

have

Since the above equation is in the form of equation (1.4), we know the sequence {w, } can be expressed as
a linear homogeneous recurrence relation whose characteristic equation has the root o? with a multiplicity
of at least three. We will let it have multiplicity three since that means we will have three roots, which is
how many characteristic roots we need for a third order linear divisible sequence. Thus, if the roots of the

2

characteristic equation of {wn = ai} are o2, a2, and o?, then the characteristic equation is

(z - a?) (z — a?) (z — a?).

At this point, this case becomes the same as case 1 by simply replacing § with « throughout. This works

because, in this case, a« + o = p and aa = —q.

Therefore, when we take the square of a second order linear divisible sequence, we can construct a
third order linear divisible sequence defined by recurrence relation (4.2). It is easy to see by how we define

{w, = a2} that wy = a3, w; = a2, and wy = a2 = 0. O

Note that in He and Shiue [9] they only proved case 1 from Theorem 4.1. The second case is proven here
so that we can see that the recurrence relation (4.2) still works when the roots of the characteristic equation
are the same.

Next, we have examples that square second order linear divisible sequences to construct third order linear

divisible sequences.
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Example 4.1. [9]Using the Fibonacci sequence, we define the sequence {wn = Ff} Then, by Theorem 4.1,

we get a third order linear divisible sequence that satisfies the recurrence relation
Wn43 = 2wn+2 + 2wn+1 — Wp,

for n > 0. The table below shows some terms of the sequence {wn = Fﬁ}

n| wy | N | wy, | n| wn n Wn, n Wn, n Wn, n Wn,

0 0 3 4 6 64 9 1156 | 12 20736 15 372100 18 6677056
1 1 4 9 7 | 169 | 10 | 3025 | 13 54289 16 974169 19 | 17480761
2 1 5 25 8 | 441 | 11 | 7921 | 14 | 142129 | 17 | 2550409 | 20 | 45765225

Table 4.1: Terms of the sequence {w, = F2}

Example 4.2. [9] Using the Pell number sequence, we define the sequence {wn = Pﬁ} Then, by Theorem

4.1, we get a third order linear divisible sequence that satisfies the recurrence relation

Wn43 = 5wn+2 + 5wn+1 — Wn,

for n > 0. The table below shows some terms of the sequence {wn = Pﬁ}

n|w, | n| wy | N Wnp n Wn n Wn n Wn, n Wn,

0 0 3 25 6 4900 9 970225 12 192099600 15 38034750625 18 7530688524100

1 1 4 | 144 | 7 28561 10 5654884 13 | 1119638521 | 16 221682772224 19 | 43892069261881
2 4 5 | 841 | 8 | 166464 | 11 | 32959081 | 14 | 6525731524 | 17 | 1292061882721 | 20 | 255821727047184

Table 4.2: Terms of the sequence {wn = PE}

Example 4.3. [9] Using the Mersenne number sequence, we define the sequence {wn = MEL} Then, by
Theorem 4.1, we get a third order linear divisible sequence that satisfies the recurrence relation

Wpt3 = TWpto — 14wp41 + 8wy,

for n > 0. The table below shows some terms of the sequence {wn = Mﬁ}

n|w, | n| wn | N Wnp n W, n W, n Wnp n W,

0 0 3 49 6 3969 9 261121 12 16769025 15 1073676289 18 68718952449

1 1 4 | 225 | 7 | 16129 | 10 | 1046529 | 13 | 67092481 16 | 4294836225 19 | 274876858369
2 9 5 | 961 | 8 | 65025 | 11 | 4190209 | 14 | 268402689 | 17 | 17179607041 | 20 | 1099509530625

Table 4.3: Terms of the sequence {wn = MTQL}

Example 4.4. Using the sequence of natural numbers including zero, we define the sequence {wn = N,QL}
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Then, by Theorem 4.1, we get a third order linear divisible sequence that satisfies the recurrence relation

Wn43 = 3wn+2 - 3wn+1 + W,

for n > 0. The table below shows some terms of the sequence {wn = Ng}

n | wp || wy | N | wn n Wn n Wn n W, n W,
0 0 3 9 6 | 36 9 81 12 | 144 | 15 | 225 | 18 | 324
1 1 4 16 7 49 | 10 | 100 | 13 | 169 | 16 | 256 | 19 | 361
2 4 5 25 | 8| 64 | 11 | 121 | 14 | 196 | 17 | 289 | 20 | 400

Table 4.4: Terms of the sequence {wn = N,QL}

4.2
Cube of a Second Order Linear Divisible Sequences

In this section we will cube a second order linear divisible sequence in order to come up with a single

higher order linear divisible sequence. This cubing constructs a fourth order linear divisible sequences.

Theorem 4.2. [9] Let {a,} be a second order linear divisible sequence that can be defined by (2.1) with initial
condition ag = 0 and a1 arbitrary. Suppose the sequence {a,} has a characteristic equation x> — pxr —q =0

with roots o and B3, such that o+ 8 = p and aff = —q. Then {wn = ai} s a linear divisible sequence that

satisfies the fourth order linear homogeneous recurrence relation
Wora = P (P? +29) Woys + ¢ (07 +q) (0° +20) war2 — pa® (P +29) w1 — ¢Pwn (4.3)
for n > 0 with initial conditions ws = a3, wy = a3, w1 = a3, and wo = a3 = 0.

Proof. Let {a,} be a second order linear divisible sequence that can be defined by (2.1) with initial condition
ag = 0 and a; arbitrary. Let the sequence {a, } have the characteristic equation #? — pxr — ¢ = 0 with roots

« and B, such that o+ 8 = p and aff = —q.

Case 1: Let the characteristic function have distinct roots, meaning o # 8. Then, by equation (4.1), we have




Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as a
linear homogeneous recurrence relation whose characteristic equation has roots a?, a3, a3?, and 32 each
with a multiplicity of at least one. We will let each of them have multiplicity one since that means we will
have four roots, which is how many characteristic roots we need for a fourth order linear divisible sequence.

Thus, the characteristic equation is

(¢ —a?) (& —a?B) (z - ap?) (z - #°)
:.’E4—(a3+a26+a62+63)$3+(0656+Oé4ﬁ2+20[363+06264+0465)$2

_ (QGBS +a564+a465+a356)x+a656.
Looking at the coefficient of 2%, which becomes the coefficient of w,, 3 in equation (4.3), we have

o +a?B+apf?+ 8 = (a+B)° —3a*8—3a% + a*B + af?
= (a+ B)* = 208 — 2082
= (a+8)" 208 (a +B)
=p® +2pq

=p(p* +29).
Looking at the coefficient of 22, which becomes the coefficient of w,, o in equation (4.3), we have
oz5ﬁ+oz4ﬁ2 +2(X3ﬁ3+a264+aﬁ5 — Oéﬁ (a4+0¢35+2a2ﬂ2—|—a,83+,84)
= af (a2 + ﬁ2)2 —2a%B% + a8 + 20232 + 0463>
:Oéﬁ (042+ﬂ2)2+a5 (042+,62)>

)2 — 2a5>2 +af ((a + 6)2 - 2a5>>
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—q (p" + 4p*q + 4¢° — p*q — 2¢°)
= —q (p" +3p’q +2¢°)

=—q(p*+29) (p*+q).
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Looking at the coefficient of z, which becomes the coefficient of w,,; in equation (4.3), we have

a6ﬁ3+a564+a455+a3ﬁ6:a3ﬁ3 (043+Oé25+0652+ﬁ3)

83 ((a+p) —3a2ﬂ—3aﬁ2+a2ﬁ+a[32)

(
o g ( (a+B)° - 2a2ﬂ—2aﬂ2)
=ao?p? ( (a+p) —2a5(a+6))

—¢* (9 + 2pq)

—pg® (* +29) -
Looking at the constant, which becomes the coefficient of w,, in equation (4.3), we have
a®8% = (ap)’ = ()" = ¢".
Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (4.3).

Case 2: Let the characteristic function have a duplicate root, meaning o = 3. Then, by equation (4.1,) we

have
wy, = a3 = nda} (08)" 7 = 2L (o).

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as
a linear homogeneous recurrence relation whose characteristic equation has the root o with a multiplicity
of at least four. We will let it have multiplicity four since that means we will have four roots, which is
how many characteristic roots we need for a fourth order linear divisible sequence. Thus, if the roots of the

3

characteristic equation of {wn = a;g’L} are o3, a3, 3, and a3, then the characteristic equation is

(z - 0?) (z - a®) (z — ) (z — o?).

At this point, this case becomes the same as case 1 by simply replacing 8 with « throughout the proof of

that case. This works because, in this case, @ + « = p and aa = —q.

Therefore, when we take the cube of a second order linear divisible sequence, we can construct a fourth
order linear divisible sequence defined by recurrence relation (4.3). It is easy to see by how we define

{w, = a2} that w3 = a3, wy = a3, w1 = a3, and wy = a3 = 0. O
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Note that in He and Shiue [9] they only proved case 1 from Theorem 4.2. The second case is proven here
so that we can see that the recurrence relation (4.3) still works when the roots of the characteristic equation
are the same.

Next, we have examples that cube second order linear divisible sequences to construct forth order linear

divisible sequences.

Example 4.5. [9] Using the Fibonacci sequence, we define the sequence {wn = F;rf} Then, by Theorem

4.2, we get a third order linear divisible sequence that satisfies the recurrence relation
Wn44 = 3wn+3 + 6wn+2 - 3wn+1 — Wn,

for n > 0. The table below shows some terms of the sequence {wn = F,f}

n|w, | n| wy | N Wy n Wy n W, n Wy, n W,

0 0 3 8 6 512 9 39304 12 2985984 15 226981000 18 17253512704
1 1 4 27 7 | 2197 | 10 | 166375 | 13 | 12649337 | 16 | 961504803 19 | 73087061741
2 1 5 | 125 | 8 | 9261 | 11 | 704969 | 14 | 53582633 | 17 | 4073003173 | 20 | 309601747125

Table 4.5: Terms of the sequence {wn = F,::’}

Example 4.6. [9] Using the Pell number sequence, we define the sequence {wn = PS} Then, by Theorem

4.2, we get a third order linear divisible sequence that satisfies the recurrence relation
Wpya = 12wy 13 + 30wWpy2 — 12W5 41 — Wy,

for n > 0. The table below shows some terms of the sequence {wn = PS}

n Wnp n Wnp n Wn n Wn

0 0 6 343000 12 2662500456000 18 20665790754720461000

1 1 7 4826809 13 37464224551181 19 290789743095511170029

2 8 8 67917312 14 527161643971768 20 4091722194091837090752

3 125 9 955671625 15 7417727240640625 21 57574900460381326407125
4 1728 10 13447314152 16 104375343011770368 22 810140328639430175106712
5 24389 11 189218084021 17 | 1468672529408250769 | 23 11399539501412404337235241

Table 4.6: Terms of the sequence {wn = P,:f}

Example 4.7. [9] Using of the Mersenne sequence, we define the sequence {wn = Mﬁ} Then, by Theorem

4.2, we get a third order linear divisible sequence that satisfies the recurrence relation
Wptqa = 10Wpy3 — 70wy, 42 + 120w, 41 — 64w,
for n > 0. The table below shows some terms of the sequence {wn = M;?}
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n Wn n Wn n Wn n Wn

0 0 6 250047 12 68669157375 18 18014192351838207

1 1 7 2048383 13 549554511871 19 144114363443707903
2 27 8 16581375 14 4397241253887 20 1152918206075109375
3 343 9 133432831 15 35181150961663 21 9223358842721533951
4 3375 10 1070599167 16 281462092005375 22 73786923518292656127
5 29791 11 8577357823 17 | 2251748274470911 23 | 590295599252498284543

Table 4.7: Terms of the sequence {wn = MS}

Example 4.8. Using the sequence of natural numbers including zero, we define the sequence {wn = NTZ’}

Then, by Theorem 4.2, we get a third order linear divisible sequence that satisfies the recurrence relation
Wn44 = 4wn+3 - 6wn+2 + 4wn+1 — Wn,

for n > 0. The table below shows some terms of the sequence {wn = Nﬁ}

n | wy, | n| wp n | wp n Wn, n Wn, n Wn, n Wn,
0 0 3 27 6 | 216 9 729 12 | 1728 | 15 | 3375 | 18 | 5832
1 1 4 64 7 | 343 | 10 | 1000 | 13 | 2197 | 16 | 4096 | 19 | 6859
2 8 5| 125 | 8 | 512 | 11 | 1331 | 14 | 2744 | 17 | 4913 | 20 | 8000

Table 4.8: Terms of the sequence {wn = Nf{}

4.3
Fourth Power of a Second Order Linear Divisible Sequences

In this section, we will find the fourth power a second order linear divisible sequence in order to come up
with a single higher order linear divisible sequence. Raising a second order linear divisible sequences to the

fourth power constructs a fifth order linear divisible sequence.

Theorem 4.3. Let {a,} be a second order linear divisible sequence that can be defined by (2.1) with initial
condition ag = 0 and a1 arbitrary. Suppose the sequence {a,} has a characteristic equation x> — pxr —q =0
with roots o and B3, such that « + 8 = p and aff = —q. Then {wn = afl} 18 a linear divisible sequence that

satisfies the fifth order linear homogeneous recurrence relation

Woys = (P +3p°¢+ @®) wnra + (PP + 50 + Tp*¢* +2¢") wygs
(4.4)
— (P°¢® + 50" + 7p°¢° +2¢°) wpia — (p"¢® +3P°¢" + ¢®) woi1 + ¢ Own

for n > 0 with initial conditions wy = aﬁ, w3y = a%, Wo = a%, wy] = a‘f, and wy = a‘é =0.
Proof. Let {ay} be a second order linear divisible sequence that can be defined by (2.1) with initial condition
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ap = 0 and a; arbitrary. Let the sequence {a,} have the characteristic equation 22 — px — ¢ = 0 with roots

a and 3, such that o + 8 = p and a8 = —q.

Case 1: Let the characteristic function have distinct roots, meaning o # 8. Then, by equation (4.1), we have

Wy = a

ay 4
n n\4
) @

- ((5)) ((@")" =4(a8)" +6(a?8%)" — 4 (aB®)" + (8)") .

I
N

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as a
linear homogeneous recurrence relation whose characteristic equation has roots a?, o8, o252, a3, and g*
each with a multiplicity of at least one. We will let each of them have multiplicity one since that means we
will have five roots, which is how many characteristic roots we need for a fifth order linear divisible sequence.

Thus, the characteristic equation is
(z—a) (z = a’8) (z = a*8?) (z — ap?®) (v — 8%)
:I’5 o (Ol4+0135+042ﬂ2 +0453+54) I4+ (O[7ﬂ+016ﬂ2 +2Ol5ﬂ3+2014ﬁ4+2013/85 +04256+Oé,87) .Td
— (agﬁg +a88* +2a78° +2a%8% +2a°87 + B8 + 01359) z2
4 (aloﬂﬁ +a967 +O(8ﬂ8 +a769 +a6610) T — O[10510
Looking at the coefficient of 2%, which becomes the coefficient of w,, 4 in equation (4.4), we have

a4 BB+’ + a4 5 = ((a? +3 +a36—a2,6’2+0z53)

((

(a —1—6 —l—aﬁ(aQ—aﬂ—l—ﬁQ))

< (a+B) —2aﬂ)2+aﬂ((a+ﬂ)2—3aﬁ>)
=((p2+2q) —q(p2+3q))

=p' +3p%¢ + ¢*.
Looking at the coefficient of 2%, which becomes the coefficient of w,, 3 in equation (4.4), we have
0476+O[6,82—|—2O[5,83+20[4ﬂ4+2043B5+OL256+0157 — (O[4+043/8+O[2,82+O£B3+B4) (a2+62) 06,8
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= - ((p2 +2q)" —q (p° +3q)) (P*+24)q
= — (P +5p'¢* + ¢ + 2¢") .
Looking at the coefficient of 22, which becomes the coefficient of w,, 12 in equation (4.4), we have
a?8% +aPBt+2a78% + 20885 + 20587 + a*8% + a?B° = (a4 + P8+ a3 + af’ +54) (a2 Jrﬁz) o g
= - ((p2 +2q)" —q (p° +3q)) (*+24q)¢°
_ (quS +5pq + T3 +2q6) .
Looking at the coefficient of z, which becomes the coefficient of w,,; in equation (4.4), we have
a'%8% + a®B87 + B8 +a78° + a®B0 = (a4+a3ﬂ+a2ﬂ2+aﬂ3+64) a8
= ((p2 +20)" —q (p° +3q)) ¢°
— 045 + 3027 + ¢
Looking at the constant, which becomes the coefficient of w,, in equation (4.4), we have

10 510 10
a”pr =q.

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (4.4).

Case 2: Let the characteristic function have a duplicate root, meaning o« = 3. Then, by equation (4.1), we

have

Since the above equation is in the form of equation (1.4), we know the sequence {w,, } can be expressed as a
linear homogeneous recurrence relation whose characteristic equation has the root o* with a multiplicity of
at least five. We will let it have multiplicity five since that means we will have five roots, which is how many
characteristic roots we need for a fifth order linear divisible sequence. Thus, if the roots of the characteristic

4 a4, o, o, and o?, then the characteristic equation is

equation of {wn = afL} are o

(z — o) (z — o) (z — o) (z — o) (z — o).
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At this point, this case becomes the same as case 1 by simply replacing 8 with « throughout. This works

because, in this case, a + a = p and aa = —q.

Therefore, when we take the fourth power of a second order linear divisible sequence, we can construct
a fifth order linear divisible sequence defined by recurrence relation (4.4). It is easy to see by how we define

{w, = a}} that wy = a}, w3 = a3, wy = a3, w; = af, and wy = a§ = 0. O

Next, we have examples that take the fourth pour given second order linear divisible sequences to con-

struct fifth order linear divisible sequences.

Example 4.9. Using the Fibonacci sequence, we define the sequence {wn = Fs} Then, by Theorem 4.3,

we get a third order linear divisible sequence that satisfies the recurrence relation
Wn 45 = 5wn+4 + 15wn+3 - 15wn+2 - 5wn+1 + W,

for n > 0. The table below shows some terms of the sequence {w, = F}.

n| wy, | N Wn n Wnp, n Wn n Wn

0 0 5 625 10 9150625 15 138458410000 20 2094455819300625
1 1 6 4096 11 62742241 16 949005240561 21 14355614096087056
2 1 7 28561 12 429981696 17 6504586067281 22 98394841894789441
3| 16 | 8 194481 13 | 2947295521 18 | 44583076827136 | 23 | 674408281676875201
4 | 81 | 9 | 1336336 | 14 | 20200652641 | 19 | 305577005139121 | 24 | 4622463123273547776

Table 4.9: Terms of the sequence {wn = F,‘f}
Example 4.10. Using the Pell number sequence, we define the sequence {w, = P;}. Then, by Theorem
4.3, we get a third order linear divisible sequence that satisfies the recurrence relation
Wnp+5 = 29wn+4 + 174wn+3 — 174wn+2 — 29wn+1 + Wy,

for n > 0. The table below shows some terms of the sequence {wn = Pﬁ}.

n W, n W, n Wn, n Wn,

0 0 5 707281 10 31977713053456 15 1446642255105937890625

1 1 6 24010000 11 1086301020364561 16 49143251500917865906176

2 16 7 815730721 12 36902256320160000 17 1669423908780535158363841
3 625 8 27710263296 13 1253590417707067441 18 56711269647011436280810000
4 | 20736 | 9 | 941336550625 | 14 | 42585171923327362576 | 19 | 1926513744089758912159658161

Table 4.10: Terms of the sequence {w, = P;}
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Example 4.11. Using the Mersenne number sequence, we define the sequence {wn = Mfl}

Theorem 4.3, we get a third order linear divisible sequence that satisfies the recurrence relation

Wnts = 31wy g — 310wy 43 + 1240w, 42 — 1984w, 41 + 1024w,,,

for n > 0. The table below shows some terms of the sequence {wn = Mﬁ}

n Wn n Wn, n Wn, n Wn
0 0 5 923521 10 1095222947841 15 1152780773560811521

1 1 6 15752961 11 17557851463681 16 18445618199572250625
2 81 7 260144641 12 281200199450625 17 295138898083176775681
3 2401 8 4228250625 13 | 4501401006735361 18 | 4722294425687923097601
4 | 50625 | 9 | 68184176641 | 14 | 72040003462430721 | 19 | 75557287266811285340161

Table 4.11: Terms of the sequence {wn = Mfl}

Then, by

Example 4.12. Using the sequence of natural numbers including zero, we define the sequence {wn = N;‘;}.

Then, by Theorem 4.3, we get a third order linear divisible sequence that satisfies the recurrence relation

Wpts = OWpta — 10Wp43 + 10wWp42 — DWpt1 + Wy,

for n > 0. The table below shows some terms of the sequence {wn = Nﬁ}.

n| w, | n| wpy n Wn, n Wn, n W, n W, n W,
0 0 3 81 6 | 1296 9 6561 12 | 20736 | 15 | 50625 | 18 | 104976
1 1 4 | 256 | 7 | 2401 | 10 | 10000 | 13 | 28561 | 16 | 65536 | 19 | 130321
2 16 5 | 625 | 8 | 4096 | 11 | 14641 | 14 | 38416 | 17 | 83521 | 20 | 160000

Fifth Power of a Second Order Linear Divisible Sequences

Table 4.12: Terms of the sequence {wn = Nf;}

4.4

In this section, we will find the fifth power of a second order linear divisible sequence in order to come

up with a single higher order linear divisible sequence. Raising a second order linear divisible sequences to

the fifth power constructs a sixth order linear divisible sequence.

Theorem 4.4. Let {a,} be a second order linear divisible sequence that can be defined by (2.1) with initial

condition ag = 0 and a1 arbitrary. Suppose the sequence {a,} has a characteristic equation x> — pxr —q =0

with roots o and B3, such that o+ 8 = p and aff = —q. Then {wn = ai} s a linear divisible sequence that
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satisfies the sixth order linear homogeneous recurrence relation
Wnye = (p° + 4p°q + 3pq®) wnys + (pq + T°¢% + 16p¢* + 13p*¢" + 3¢°) w44
— ("¢ +8p"q" +220°¢° + 23p°¢° + 6pq”) w3
— (p8¢° + 7p°¢" + 16p*¢® + 13p*¢° + 3¢"%) wnso
+ (p°¢"" + 4pq" + 3pg"?) wni1 + ¢"Pwn

for n > 0 with initial conditions w; = a? for 0 <1i <5,

Proof. Let {a,} be a second order linear divisible sequence that can be defined by (2.1) with initial condition
ap = 0 and a; arbitrary. Let the sequence {a,} have the characteristic equation 22 — pz — ¢ = 0 with roots

«a and (3, such that o + 8 = p and aff = —q.

Case 1: Let the characteristic function have distinct roots, meaning o # 8. Then, by equation (4.1), we have

5

(7 55) (@) =5 @) + 10 @) ~10(@28)" +5(a8)" - (57)").

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed
as a linear homogeneous recurrence relation whose characteristic equation has roots 11 = o, ro = o8,
rs = a>B%, ry = o283, 15 = aB?, and r¢ = $° each with a multiplicity of at least one. We will let each of
them have multiplicity one since that means we will have six roots, which is how many characteristic roots
we need for a sixth order linear divisible sequence. Thus, the characteristic equation is
H(w—ri):xﬁ— Z ri | 2 (=1)F Z i i, | 257K, for k < 6.
i=1 1<i<6 1<i) <<, <6
Looking at the coefficient of 2°, which becomes the coefficient of w,, 5 in equation (4.5), we have
Z ri:a5+a4ﬂ+a3ﬂ2+a263+a[34+[35
1<i<6
— (2 2 2 2
= (®+af+ ) (& —aB+ B?) (a+P)

=(p*+q) (PP +39)p

=p° + 4p°q + 3pg*.
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Looking at the coefficient of 2*, which becomes the coefficient of w,, 4 in equation (4.5), we have

Z rirj:a95+a852—|—2a753—|—2a6/34—|—3a565+2a4ﬁ6+2a3ﬁ7+a258+aﬁ9
1<i<j<6
= (a*+a’B+a?B*+ap® + ) (@® +af + %) (a® —aB + B7) o
=— ((p2 +2¢)" —q (p° +3q)) (P> +q) (»* +30) q

= — (p®q + p°¢* + 16p*¢® + 13p°¢* + 3¢°) .
Looking at the coefficient of 23, which becomes the coefficient of w,, 3 in equation (4.5), we have

Z ,rirj,rk:a1263+a1164+2a10ﬁ5+3a966+3a867+3a768+3a669+2a5/810+a4611_|_a3612
1<i<j<k<6
— (Oé4+0435+6¥2ﬁ2+0653+54) (042—045+ﬁ2) (a2+62) (Oé+,8)0(363

- ((p2 +2¢)° —q (p° + Sq)) (»* + 3q) (p* +29) po°

— (0"¢* +8p"q" +22p°¢" + 23p°¢° + 6pq”) -
Looking at the coefficient of 22, which becomes the coefficient of w,, 2 in equation (4.5), we have

Z ro iy = 0188 + Q1387 4 21288 4 2011 8° 4 310810 4 24981 + 208612 4 o413 + oS4l

1<d7 <+ <4 <6

= (a*+ B+ a2+ apB®+ BY) (o® + aB + B%) (& — af + %) a®p°

2

= ((p2 +2q)" —q(p* + 3q)> (®* +a) (0 +3q9) ¢°

= p*¢® + Tp°¢" + 16p*¢® + 13p%¢" + 3¢"°.
Note here for 2%, 23, and 22, we are using the result for o* + o?8 + o232 4+ o3> + B* that was shown in
Theorem 4.3. Looking at the coefficient of x, which becomes the coefficient of w41 in equation (4.5), we

have

Z riy Ty = QP10 4 M1l 4 013312 4 (12813 4 11514 4 (10815
1<iy <---<i5<6
_ (062+Oéﬁ+52) (0[2 _a5+ﬁ2) (Oé+ﬁ)0{10610
= (p*+q) (»* +3q) pg™°

_ p5q10 4 4p3q11 + 3pq12.
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Looking at the constant, which becomes the coefficient of w,, in equation (4.5), we have

15 915 15
> Tig o Tig = "B = —q7.

1< <+ <i6 <6

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (4.5).

Case 2: Let the characteristic function have a duplicate root, meaning o = 8. Then, by equation (4.1), we

have

Since the above equation is in the form of equation (1.4), we know the sequence {w, } can be expressed as a
linear homogeneous recurrence relation whose characteristic equation has the root o® with a multiplicity of
at least six. We will let it have multiplicity six since that means we will have six roots, which is how many
characteristic roots we need for a sixth order linear divisible sequence. Thus, if the roots of the characteristic

equation of {wn = afl} are a°, a°, a®, a®, a®, and aP, then the characteristic equation is

(z -0 (z-a®) (z— ) (z — o) (z — 0®) (x — ).

At this point, this case becomes the same as case 1 by simply replacing S with « throughout. This works

because, in this case, a + o = p and aa = —q.

Therefore, when we take the fifth power of a second order linear divisible sequence, we can construct a
sixth order linear divisible sequence defined by recurrence relation (4.5). It is easy to see by how we define

{w, = a3} that w; = a? for 0 <i <5 O

Next, we have examples that take the fifth power of second order linear divisible sequences to construct

sixth order linear divisible sequences.

Example 4.13. Using the Fibonacci sequence, we define the sequence {wn = Fg} Then, by Theorem 4.4,

we get a third order linear divisible sequence that satisfies the recurrence relation
Wny6 = SWnys + 40Wn 14 — 60wy 3 — 40Wpq2 + 8wy i1 + Wy,

for n > 0. The table below shows some terms of the sequence {wn = FS}
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n Wn n Wn n Wn, n Wn

0 6 32768 12 61917364224 18 115202670521319424

1 1 7 371293 13 686719856393 19 1277617458486664901

2 1 8 4084101 14 7615646045657 20 14168993617568728125
3 32 9 45435424 15 84459630100000 21 157136551895768914976
4 243 10 503284375 16 936668172433707 22 1742671044798615789551
5 3125 11 5584059449 17 10387823949447757 | 23 19326518128014212635057

Table 4.13: Terms of the sequence {wn = F;l’}

Example 4.14. Using the Pell number sequence, we define the sequence {wn = P;?} Then, by Theorem

4.4, we get a third order linear divisible sequence that satisfies the recurrence relation
Wpte = (0Wn45 + 1015wy, 14 — 2436w, 43 — 1015w, 12 + 70w, 41 + Wy,

for n > 0. The table below shows some terms of the sequence {w, = PJ}.

n Wn n Wn n Wn

0 7 137858491849 14 3440115358310231003614432

1 1 8 11305787424768 15 282131405802035537119140625

2 32 9 927216502365625 16 23138215390680160640336658432

3 3125 10 76043001641118368 17 1897615793447837728625436062449

4 248832 11 6236454157912944701 18 155627633278025253556161610100000

5 20511149 12 511465272597417600000 19 12763363544592758576779160719364549
6 1680700000 13 | 41946388966896183643301 20 1046751438289866781164861609994042368

Table 4.14: Terms of the sequence {wn = P;L’}

Example 4.15. Using the Mersenne number sequence, we define the sequence {wn = MS} Then, by
Theorem 4.4, we get a third order linear divisible sequence that satisfies the recurrence relation

Wnto = 63Wn 5 — 1302wy 4 g + 11160w,, 45 — 416641, 49 + 6451261w,,41 + 32768w,,

for n > 0. The table below shows some terms of the sequence {wn = M;?}

W, n Wn, n Wn,
0 7 33038369407 14 1180231376725002502143
1 8 1078203909375 15 37773167607267111108607
243 9 34842114263551 16 1208833588708967444709375
16807 10 1120413075641343 17 38684150510660063165284351

759375 11 35940921946155007 18 1237916427633109224574418943
28629151 12 1151514816750309375 19 39613703469254688357136990207
992436543 | 13 | 36870975646169341951 | 20 | 1267644555610660532401787109375

o|lu|ha|wlv~lol3

Table 4.15: Terms of the sequence {wn = M;?}

Example 4.16. Using the sequence of natural numbers including zero, we define the sequence {wn = NS}

64



Then, by Theorem 4.4, we get a third order linear divisible sequence that satisfies the recurrence relation

Wn46 = 6wn+5 — 15wn+4 + 20wn+3 — 15’LUn+2 + 6wn+1 — W,

for n > 0. The table below shows some terms of the sequence {wn = NS}

n | wyp | n Wn, n Wn n Wn n Wnp n W, n Wnp

0 3 243 6 7776 9 59049 12 | 248832 | 15 | 759375 18 | 1889568
1 1 4 | 1024 | 7 | 16807 | 10 | 100000 | 13 | 371293 | 16 | 1048576 | 19 | 2476099
2| 32 | 5| 3125 | 8 | 32768 | 11 | 161051 | 14 | 537824 | 17 | 1419857 | 20 | 3200000

Table 4.16: Terms of the sequence {wn = NS}

4.5
Sixth Power of a Second Order Linear Divisible Sequences

In this section we will find find the sixth power a second order divisible sequence in order to come up
with a single higher order linear divisible sequence. Raising a second order linear divisible sequences to the

sixth power constructs a seventh order linear divisible sequence.

Theorem 4.5. Let {a,} be a second order linear divisible sequence that can be defined by (2.1) with initial
condition ag = 0 and a1 arbitrary. Suppose the sequence {a,} has a characteristic equation x> — pxr —q =0
with roots o and B, such that o+ 8 = p and aff = —q. Then {wn = ag} s a linear divisible sequence that
satisfies the seventh order linear homogeneous recurrence relation
W7 = (p° + 50 ¢+ 6p°¢* + ¢*) wnie + (P00 + W% + 29p°¢° + 40p*¢* + 22p°¢° + 3¢%) wnys
( 123 4 11p10% 4 46p3° + 90pSq° + 81pq™ + 28p%¢® + 3q9) Wi
—(p 1206 1 11p10%7 + 46p°¢® + 90p°¢° + 81p*q'0 + 28p%¢"! +3q12) Wit s (4.6)
+( 10410 L g,8011 4 99,6412 4 40p%¢"3 4 22p%¢ 14+3q15) Wnso
+ (p6q15 1 5p1q"% + 6p2¢\7 + ¢ )wn+1 — ¢,

for n > 0 with initial conditions w; = ab for 0 <1i < 6.

Proof. Let {a,} be a second order linear divisible sequence that can be defined by (2.1) with initial condition

ap = 0 and a; arbitrary. Let the sequence {a,,} have the characteristic equation 22 — px — ¢ = 0 with roots

a and g, such that a4+ 8 = p and aff = —q.
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Case 1: Let the characteristic function have distinct roots, meaning o # 8. Then, by equation (4.1), we have

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed

67 ro = Oé55,

as a linear homogeneous recurrence relation whose characteristic equation has roots 1y = «
rg = a*p?, ry = o3B3, r5 = o8, 16 = af®, and r; = B each with a multiplicity of at least one. We
will let each of them have multiplicity one since that means we will have seven roots, which is how many
characteristic roots we need for a seventh order linear divisible sequence. Thus, the characteristic equation
is

7

H(x—ri):$7_ Z i x6+...+(_1)k Z Tiy oo Ty "k for k<T.

i=1 1<i<7 1<ty < <ip <7

Looking at the coefficient of 2°, which becomes the coefficient of w,, ¢ in equation (4.6), we have

Z ,ri:a6+a5/6+a462+a3ﬁ3+a264+aﬁ5+ﬁ6

1<i<7
:(a2+62) (a4_a262+64)+aﬂ(a4+a3ﬁ+a252+aﬁ3+ﬁ4)
= (p* +2q) ((p2 +2¢)° - 3q2) —q ((p2 +2¢)" —q (p° +3q))
=% +5p'q + 6p*¢” + ¢

Looking at the coefficient of 2%, which becomes the coefficient of wy, 15 in equation (4.6), we have

Z rir; = a''B+a'%8% +2a°8% + 208 + 308 + 3a°8° 4 30”87 + 2078 + 20787 + a?B'0 + oM
1<i<j<7
= (a®+a°B+a'B +a®B® + 2B + af® + %) (a® + aB + B?) (@® — aB + B%) af
=- ((p2 +2q) ((p2 +2¢)° - 3q2) ~q ((p2 +2¢)" —q(p° +3q))) (»* +4q) (P*+3q) q

=— (p"q+ 9°¢ + 29°¢° + 40p*¢* + 22p°¢° + 3¢°) .
Looking at the coefficient of z*, which becomes the coefficient of w,, 4 in equation (4.6), we have

Z Ty = Oél5ﬁ3+0614,84+2041365 +30¢12ﬁ6—|—4a11,87+4041058 +5a969 +4a8610+4a7611
1<i<j<k<7
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+3O[6ﬂ12+2Oé5ﬁ13+044514+043515
:(a6+a5ﬁ+a4/32—|—a353+a2ﬁ4+aﬁ5+ﬁ6) (a4+a3ﬁ+a252+a53+ﬁ4)

% (a2 —aﬂ+52) Oé3ﬂ3

(p +2q) (p +2q)2—3q2)—q((p2+2q)2—q(p2+3q)))
X(p +2q) fq(p2+3q))(p2+3q)q3
(p'%q

1263 L 11pl0%* 4 46p°¢° + 90pS¢° + 81pq7 + 28p%¢° + 3q9) )
Looking at the coefficient of 23, which becomes the coefficient of w,, 3 in equation (4.6), we have

Z riy s, = a8 B8 1+ a7 4+ 201968 1 301589 + 4ol 4 401341 4 5al2p1?
1<ip <--<ig <7

+4@11613+4a10614+3a9615+2a8ﬁ16+a7ﬁ17+a6ﬁls

— (Oé6+0456+06462+04363+042ﬁ4+06ﬁ5+ﬁ6) (a4+a36+a2ﬂ2+a53+64>
X (az—aﬁ—i—BQ) a8

2 2
= ((p2+2q) ((p2 +2q) —3q2> —q((p2 +2¢q) —q(p2+3q)))
2

x ((p2+2q) —q(p2+3q)) (p* +3q) ¢°

= p"2q% + 11p"%" + 46p°¢® + 90p°¢” + 81pq"* + 28p%¢"" + 3¢
Looking at the coefficient of 22, which becomes the coefficient of w,,,» in equation (4.6), we have

Z riy 1, = 20810 4 1981 4 2018512 1 201741 4 31041 4 3019815 4 3414416
1<i1 < <i5<7
+2a13B17+2a12ﬂ18+a11/819+a10520
_ (046+0é56+01462+053ﬁg+012,64+Oéﬁ5+66) (a2—|—aﬁ—|—62)
% (Oé2 _aﬁ+ﬁ2) alOﬁlO
2 2
= ((p2+2q) ((p2+2q) —3q2) —q ((p2+2q) —q(p2+3q))) (r* +q)

10 10+9p8 11+29p6 12+40p4 13+22p2 14+3q15
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Looking at the coefficient of z, which becomes the coefficient of w,,; in equation (4.6), we have

Z iy Tig = Ck21B15 + a20616 + 0419517 + Cv18618 + 0417519 + 0416520 + a15ﬁ21
1<iy <+ <ig<7
_ (a6+a5ﬁ+a452+a3ﬂ3+a254+aﬁ5+ﬁ6) 0&15515

- ((p2 +2q) ((p2 +29)° - 3q2) —q ((p2 +2q)° —q (P + 3q))) q"°

__ (p6q15 +5p%q"® + 6p%¢\T + q18)
Looking at the constant, which becomes the coefficient of w,, in equation (4.6), we have
Z riy e, = o181 = — gL,
1<i1 <+ <ig <7
Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (4.6).

Case 2: Let the characteristic function have a duplicate root, meaning o = 8. Then, by equation (4.1), we
have

6,6
wy, = a8 = n’a$ (ozﬁ)7171 = nazl (a®)".

Since the above equation is in the form of equation (1.4), we know the sequence {w, } can be expressed as
a linear homogeneous recurrence relation whose characteristic equation has the root o with a multiplicity
of at least seven. We will let it have multiplicity seven since that means we will have seven roots, which is
how many characteristic roots we need for a seventh order linear divisible sequence. Thus, if the roots of the

characteristic equation of {wn = ag} are b, a8, af, af, ab, o, and ab, then the characteristic equation is

(z - %) (z - a®) (z — ) (z — o) (2 — a®) (z — 0®) (z — o).

At this point, this case becomes the same as case 1 by simply replacing 8 with « throughout. This works

because, in this case, a + a = p and aa = —q.

Therefore, when we take the sixth power of a second order linear divisible sequence, we can construct a
seventh order linear divisible sequence defined by recurrence relation (4.6). It is easy to see by how we define

{w, = al} that w; = a% for 0 < i < 6. 0O
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Next, we have examples that take the sixth power of second order linear divisible sequences to construct

seventh order linear divisible sequences.

Example 4.17. Using the Fibonacci sequence, we define the sequence {wn = FS} Then, by Theorem 4.5,

we get a third order linear divisible sequence that satisfies the recurrence relation
Wp47 = 13Wp46 + 104wy 45 — 260w, 44 — 260wy, 43 + 104wy 42 + 13wp41 — Wy,

for n > 0. The table below shows some terms of the sequence {wn = FS}

n Wn, n Wn, n Wn n Wn

0 0 6 262144 12 8916100448256 18 297683700627089391616

1 1 7 4826809 13 160005726539569 19 5341718593932745951081

2 1 8 85766121 14 2871098559212689 20 95853241822852445765625

3 64 9 1544804416 15 51520374361000000 21 1720016697051086543327296
4 729 10 27680640625 16 924491486192068809 22 30864446874428284248737761
5 15625 11 496981290961 17 16589354847268067929 | 23 | 553840029994503291482828449

Table 4.17: Terms of the sequence {w, = F¢}
Example 4.18. Using the Pell number sequence, we define the sequence {wn = Pg}. Then, by Theorem
4.5, we get a third order linear divisible sequence that satisfies the recurrence relation
Wpy7 = 169wy 16 + 5915w, 45 — 34307Twy 44 — 34307Twy 43 + 5915wy, o + 169w, 11 — Wy,

for n > 0. The table below shows some terms of the sequence {wn = PS}.

n Wn n Wn, n Wn

0 0 6 117649000000 12 7088908678200207936000000

1 1 7 23298085122481 13 1403568121221313200888494761

2 64 8 4612761269305344 14 277899398875017080933981045824

3 15625 9 913308254830140625 15 55022677416541980626660400390625

4 2985984 10 180830257902579479104 16 10894212228824721394610989562855424
5 594823321 11 35803483320578215528441 17 | 2156998998638429219913518292389091361

Table 4.18: Terms of the sequence {wn = Pg}
Example 4.19. Using the Mersenne number sequence, we define the sequence {wn = MS} Then, by
Theorem 4.5, we get a third order linear divisible sequence that satisfies the recurrence relation
Wnt7 = 12TW0 46 — 5334wy 45 + 94488w,, 44 — 755904wy, 13 + 2731008w,, 2 — 4161536w,,4+1 + 2097152w,,,
for n > 0. The table below shows some terms of the sequence {wn = MS}

69



n Wn, n Wn, n Wn

0 0 6 62523502209 12 4715453174592516890625

1 1 7 4195872914689 13 302010161517773079920641

2 729 8 274941996890625 14 19335730644885715992608769

3 117649 9 17804320388674561 15 1237713382987321429695725569

4 11390625 10 1146182576381093889 16 79220909236042181489028890625

5 887503681 11 73571067223779299329 17 | 5070370291582725139136985169921

Table 4.19: Terms of the sequence {wn = MS}

Example 4.20. Using the sequence of natural numbers including zero, we define the sequence {wn = NS}.

Then, by Theorem 4.5, we get a third order linear divisible sequence that satisfies the recurrence relation
Wnt7 = (Wi — 21wpys5 + 3DWp44 — 35Wp43 + 21wy 4o — Twpy1 + Wy,

for n > 0. The table below shows some terms of the sequence {w, = NS}.

n| wy, | N Wn, n Wn, n Wn n Wn, n Wn, n Wnp,
0 3 729 6 46656 9 531441 12 | 2985984 | 15 | 11390625 | 18 | 34012224
1 1 4 4096 7 | 117649 | 10 | 1000000 | 13 | 4826809 | 16 | 16777216 | 19 | 47045881
2 | 64 | 5 | 15625 | 8 | 262144 | 11 | 1771561 | 14 | 7529536 | 17 | 24137569 | 20 | 64000000

Table 4.20: Terms of the sequence {w, = NS
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CHAPTER 5

PRODUCTS OF POWERS

In this chapter, we will be multiplying second order linear divisible sequence sequence that have been
raised to powers. First, we will look at taking the product of the square of a second order linear di-
visible sequence sequence times a different second order linear divisible sequence sequence not raised to
any power. Second, we will look at the product of the squares of two distinct second order linear divis-
ible sequence sequence. This product is defined term by term; thus, the sequence {w,} is the sequence

k1 ko ki k1 ko ki k1 ko ki
{a01a02-~-a0i,a11a12~--a1i,a21a22--~a2i,... .

5.1
Product of the Square of a Second Order Times a Second Order

In this section, we look at multiplying the square of one second order linear divisible sequence by a
different second order linear divisible sequence in order to come up with a single higher order linear divisible

sequence. This multiplication constructs a sixth order linear divisible sequences.

Theorem 5.1. Let {a,} and {b,} be distinct second order linear divisible sequences that can be defined by

(2.1) with initial conditions ag = bg = 0 and a1, by arbitrary. Suppose the sequence {a,} has a characteristic

equation 22 —prz—q1 = 0 with roots oy and B, such that a1 +51 = p1 and a1 81 = —q1, and the sequence {bn}

has a characteristic equation x% —pox — qo = 0 with roots as and Bo, such that as + Ba = pa and asfs = —qs.

Then {wn = a%bn} is a linear divisible that satisfies the sizth order linear homogeneous recurrence relation
Wnte = (PTP2 + o) Wais + (P1a2 + PIdar + 47102 + P3aT + 34742) Wnta

— (pip2q1a2 + 2PTp2aiae — 2p20i a2 — P3P2a}) wass — (Plaids + PiP3d; e (5.1)

PTG G + P30 @2 + 341 63) Wave + (PIP201 B + D203 63) War1 + @G Wn.
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for n > 0 and initial conditions w; = afbi for 0 <i<5.

Proof. Let {ay} and {b,} be distinct second order linear divisible sequences that can be defined by (2.1) with
initial conditions ag = by = 0 and a;, by arbitrary. Let the sequence {a,} have the characteristic equation
2?2 —prx — g1 = 0 with roots a; and 31, such that a; + 81 = p; and a1 81 = —q1, and the sequence {b,,} have

the characteristic equation z2 — pax — g2 = 0 with roots as and S35, such that as + B2 = ps and sBs = —¢o.

Case 1: Let both characteristic functions have distinct roots, meaning a; # 81 and ag # f2. Then, by using

a combination of equations (3.1) and (4.1), we have

Wy, = aibn

2
ai n n\2 bl n n
(041 — ,6’1> (af — B7) <a2 — 52> (g — B3)

B (<a1 - ﬁ)b(a = ﬂ2)> ()" ~2(aB)" + (8))") (0 — 55)

- ((a1 — ﬁf)ib@ - 52)> ((a?az)" —2(1a2f)" + (a2B?)" — (a2B2)" + 2 (18182)" — (ﬁfﬁg)") ,

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as
a linear homogeneous recurrence relation whose characteristic equation has roots r; = a%ag, ro = ayf,
r3 = of3, 14 = A2, 15 = a1B1f2, and g = B3B2 each with a multiplicity of at least one. We will let
them have multiplicity one since that means we will have six roots, which is how many characteristic roots
we need for a sixth order linear divisible sequence. Thus, the characteristic equation is

H(x—ri):xﬁ— Z i | 2 (1P Z i -, | 257K, for k < 6.

i=1 1<i<6 1<i) <<, <6

Looking at the coefficient of 2°, which becomes the coefficient of w,, 5 in equation (5.1), we have

Z T = ajag + ajanfi + asfi + aifa + a1B1 B + BB
1<i<6

(af + B + a1B1) (a2 + B2)

= ((a1 + 51)2 - Oélﬂl) (az + B2)
= (p% + q1) P2

= pip2 + pai.
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Looking at the coefficient of 2*, which becomes the coefficient of w,, 4 in equation (5.1), we have

Z riry = oz f + afa3 it + 10387 + afasfs + 20fasfi B + 3aiasfi Be + 20187 B2
1<i<j<6
+ agfi B2 + S8 + ol B3 + n 563
= (afa2Bs + a2ffifa + a3 B1 + a1 B185 + arasBifa) (af + a1 B + B7)
= (a2Ba (af + B1) + 1B (a3 + B3) + c1aaBiBa) (af + Bf + a1ph)

= (—¢ (M +2¢1) — a1 (V3 +2¢2) + @1¢2) (P +@1)

= — (plaz + ViP5 + 4pTqige + P37 + 34iqe)

Looking at the coefficient of 23, which becomes the coefficient of w,, 3 in equation (5.1), we have

Z TiTiTE = a?agﬁf + a?a%,@lﬂg + Qa%agﬁfﬁg + 304:1304%6?& + Za%agﬁfﬁg + alagﬁfﬁg
1<i<j<k<6
+ i 183 + 201 e BB + 3atan BB 4 2aTan i B3 + aras By B3 + of B By
= (afaaBs + 21 B2 + aia3 B} + aiBi B3 + 2051 B + 205027 B2 + 2010237 B2)
X (ag + B2) B
= (2B (a] + BY) + B} (a3 + B3) + 201008182 (af + BT + a1B1)) (a2 + B2) a1 B

=- (_QQ ((P% + 2(11)2 - 2Q%> +qi (95 + 2g2) + 20102 (PF + fh)) DP2q1

= pip2qiqo + 2PIP2aiae — 2p2Gi g2 — P3P24;-

Looking at the coefficient of 22, which becomes the coefficient of w,, o in equation (5.1), we have

Y v, = A5adBBs + aladBl B + afad B Ba + afas 8783 + 2030387 B3 + Batad B3
1<i1 <+ <14 <6
+ 2030367 63 + a3 87 B3 + afaa YB3 + atasBi B3 + afas 5753
= (afazfa + 2fifa + 103 B1 + 1 B185 + araaBife) (of + a1 By + B7) afasfifa
= (2f2 (oF + B7) + o1B1 (a3 + B3) + arazBiBa) (af + B7 + a1Br) o BT azfs
=— (=2 (P} +201) — 1 (P3 + 202) + 1 2) (P} + @) 2

= PIGi 5 + PIP3diae + 4pTaias + p3aiae + 3415
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Looking at the coefficient of z, which becomes the coefficient of w,,; in equation (5.1), we have

Z riy s Tis = 0SB 81 B3 + at a3 B B3 + afa3 BB + afas 8185 + atas By 55 + ajas BB
1<i1 < <i5<6
= (af 4+ 87 + 1) (az + B2) @i Bla3 B3
= (0} + q1) p2aias

= PIp2dids + P24143-
Looking at the constant, which becomes the coefficient of w,, in equation (5.1), we have

_ 6 30633 _ _ 6 3
Z Tiy o Ty = 00050705 = —q1¢5-
1<i1<--<i5<6

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (5.1).

Case 2: Let the characteristic function of {a,} have duplicate roots and the characteristic function of {b,}
have distinct roots, meaning «; = 1 and ag # 2. Then, by using a combination of equations (3.1) and

(4.1), we have

Wy, = a%bn
= (” aiby ) (af —B3) (a3)"
a2 — Ba 2 2 1

- ((_"ﬂ)) ((afos)" - (atee)")

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as
a linear homogeneous recurrence relation whose characteristic equation has roots aZas and a?3s each with
a multiplicity of at least three. We will let them have multiplicity three since that means we will have six
roots, which is how many characteristic roots we need for a sixth order linear divisible sequence. Thus, if
the roots of the characteristic equation of {wn = a%bn} are vy = a%ag, ro = a%ag, ry = a%ag, ry = a%ﬁg,
r5 = a? B, and 16 = o} 32, then the characteristic equation is

H(x—ri):xﬁ— Z ri | 2%+ (=) Z Ty eori, | 2878, for k < 6.

i=1 1<i<6 1<ty <<} <6
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At this point, this case becomes the same as case 1 by simply replacing 8, with « throughout. This works

because, in this case, a1 + a1 = p; and a1 = —q;.

Case 3: Let the characteristic function of {a,} have distinct roots and the characteristic function of {b,}
have duplicate roots, meaning a; # 1 and as = fB2. Then, by using a combination of equations (3.1) and

(4.1), we have

wy, = a2b,
2b B
B (M) (of = B7)" (o)™
2
- (OM) ((a%m)n — 2 (a0f)" + (0@6%)”) :

Since the above equation is in the form of equation (1.4), we know the sequence {w, } can be expressed as
a linear homogeneous recurrence relation whose characteristic equation has roots a?as, ajasfy, and as3?
each with a multiplicity of at least two. We will let them have multiplicity two since that means we will have
six roots, which is how many characteristic roots we need for a sixth order linear divisible sequence. Thus, if
the roots of the characteristic equation of {w, = a2b,} are riy = afag, ro = caafy, r3 = a2ff, r4 = ajay,
rs = 131, and rg = ogﬂi then the characteristic equation is

H(m—ri):xﬁ— Z ri | 2% 4 (=1)F Z iy oy, | 2578 for k < 6.

i=1 1<i<6 1<i1 <<, <6
At this point, this case becomes the same as case 1 by simply replacing Sz with as throughout. This works

because, in this case, as + a2 = py and asas = —¢qo.

Case 4: Let both characteristic functions have duplicate roots, meaning oy = 1 and ag = 2. Then, by

using a combination of equations (3.1) and (4.1), we have

2 3.2 2\yn—1 p_n’aibi 5

— — n—~L __

Wy, = a4, b, =n’aib; (ozl) ay = — (ozlag)
g o

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as a
linear homogeneous recurrence relation whose characteristic equation has the root a?as with a multiplicity
of at least six. We will let it have multiplicity six since that means we will have six roots, which is how many

characteristic roots we need for a sixth order linear divisible sequence. Thus, if the roots of the characteristic
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equation of {wn = aibn} are r; = 04%042, ro = a%ag, r3 = a%ag, r4 = a%a% ry = 04%042, and rg = a%ag, then
the characteristic equation is

H(w—ri):mﬁ— Z ri | 24 (—1)F Z iy i, | 257K, for k < 6.

i=1 1<i<6 1<i; < <i<6
At this point, this case becomes the same as case 1 by simply replacing 57 with a; and S with as throughout.

This works because, in this case, ay + a1 = p1, a1 = —q1, a2 + g = p2, and aae = —qo.

Therefore, when we multiply the square one second order linear divisible sequence by a different second
order linear divisible sequence, we can construct a sixth order linear divisible sequence defined by recurrence

relation (5.1). It is easy to see by how we define {w,, = a2b,} that w; = a?b; for 0 <i < 5. O

Next, we have examples that take the square of a second order linear divisible sequences and multiplies

it by a different second order linear divisible sequence to construct sixth order linear divisible sequences.

Example 5.1. Using the Fibonacci sequence and the Pell number sequence, we define the sequence

{wn, = F?P,}. Then, by Theorem 5.1, we get a sixth order linear divisible sequence that satisfies the

recurrence relation

Wn+6 = 4wn+5 + 16wn+4 - 6wn+3 + 16wn+2 + 4wn+1 + wp,

for n > 0. The table below shows some terms of the sequence {wn = F,%Pn}.

n|w, | n| wy | N Wy n W, n Wy n W, n W,

0 0 3 20 6 4480 9 1138660 12 287400960 15 72568802500 18 18323243845760
1 1 4 | 108 | 7 28561 10 | 7193450 13 1816564229 16 | 458669938608 19 | 115811947027949
2 2 5 | 725 | 8 | 179928 | 11 | 45474461 | 14 | 11481464878 | 17 | 2899021855801 | 20 | 731988596166300

Table 5.1: Terms of the sequence {wn = FﬁPn}

Example 5.2. Using the Pell number sequence and the Fibonacci sequence, we define the sequence
{wn = P,%Fn} Then, by Theorem 5.1, we get a sixth order linear divisible sequence that satisfies the

recurrence relation

Wn4+6 = 5U}n+5 + 4Own+4 + 21wn+3 - 4Own+2 + 5wn+1 + wp,

for n > 0. The table below shows some terms of the sequence {wn = PﬁFn}
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n| w, | n Wy n W n Wn, n Wn

0 0 5 4205 10 311018620 15 23201197881250 20 1730633983474199760

1 1 6 39200 11 2933358209 16 218800896185088 21 16320905155410328850
2 4 7 371293 12 27662342400 17 2063422826705437 22 153915816638460784604
3 50 8 3495744 13 | 260875775393 18 19459299146274400 | 23 1451517453316876370977
4 | 432 | 9 | 32987650 | 14 | 2460200784548 | 19 | 183512741583924461 | 24 | 13688670604054528051200

Table 5.2: Terms of the sequence {wn = Pan}

Example 5.3. Using the Fibonacci sequence and the Mersenne number sequence, we define the sequence
{wn, = F2M,}. Then, by Theorem 5.1, we get a sixth order linear divisible sequence that satisfies the
recurrence relation

Wni6 = 6Wny5 + 2wy 14 — 33Wn 3 + 4wy o + 24wy 1 — Swy,

for n > 0. The table below shows some terms of the sequence {wn = F,%Mn}

n|w, | n| wn | N W, n Wnp n W, n W, n Wnp

0 0 3 28 6 4032 9 590716 12 84913920 15 12192600700 18 1750343491008
1 1 4 | 135 | 7 21463 10 | 3094575 13 | 444681199 16 | 63842165415 19 | 9164935742407
2 3 5 | 775 | 8 | 112455 | 11 | 16214287 | 14 | 2328499407 | 17 | 334284658039 | 20 | 47988270804375

Table 5.3: Terms of the sequence {wn = F,%Mn}

Example 5.4. Using the Mersenne number sequence and the Fibonacci sequence, we define the sequence
{wn = MﬁFn} Then, by Theorem 5.1, we get a sixth order linear divisible sequence that satisfies the

recurrence relation
Wpt6 = Wpis + TWptq — 66wy 3 — 28w, 49 + 112w, 41 + 64w,

for n > 0. The table below shows some terms of the sequence {wn = M,%Fn}

n| w, | n Wnp n Wn, n Wn n Wn

0 0 5 4805 10 57559095 15 654942536290 20 7438181974678125

1 1 6 31752 11 372928601 16 4239003354075 21 48140971199703746

2 7 209677 12 2414739600 17 27435832444477 22 311575058462033199
3 98 8 | 1365525 | 13 15632548073 18 177569773128216 | 23 | 2016556621114666993
4 | 675 | 9 | 8878114 | 14 | 101187813753 | 19 | 1149260144840789 | 24 | 13051430164267840800

Table 5.4: Terms of the sequence {wn = M,QLFn}

Example 5.5. Using the Pell number sequence and the Mersenne number sequence, we define the sequence

{wn = P,%Mn} Then, by Theorem 5.1, we get a sixth order linear divisible sequence that satisfies the
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recurrence relation

Wpt6 = 10Wp45 — 20Wpyq — 159wy 43 — 50wy 12 4+ 60ws41 — 8wy,

for n > 0. The table below shows some terms of the sequence {wn = PTQLMn}
n W, n Wn, n Wn n Wn,
0 0 6 308700 12 786647862000 18 1974117281773146300
1 1 7 3627247 13 9170959125511 19 23012041317103803847
2 12 8 42448320 14 106911059557692 20 268248267438500962800
3 175 9 495784975 15 1246284673729375 21 3126932447247755029975
4 2160 10 5784946332 16 14527980477699840 22 36450204475983625105692
5 | 26071 11 | 67467238807 | 17 | 169351843030124191 | 23 | 424894771592145805342927

Example 5.6. Using the Mersenne number sequence and the Pell number sequence, we define the sequence

{wn, = M2P,}. Then, by Theorem 5.1, we get a sixth order linear divisible sequence that satisfies the

recurrence relation

Table 5.5: Terms of the sequence {wn = P,%Mn}

Wpt6 = 14Wp45 — 3DWpya — 84w 43 + 140wy 40 + 224wy 41 + 64w,

for n > 0. The table below shows some terms of the sequence {wn = M,%Pn}
n W n W n W n W
0 0 6 277830 12 232418686500 18 188579236500070290
1 1 7 2725801 13 2244981506741 19 1821089148272187221
2 18 8 26530200 14 21682106022798 20 17586026022895357500
3 245 9 257204185 15 209393718262225 21 169825852089472725965
4 2700 10 2488645962 16 2022146329489200 22 1639984283429427377622
5 27869 11 24055989869 17 19527870347827249 | 23 15837092972393610747769

In this section, we look at multiplying the squares of two distinct second order linear divisible sequences

in order to come up with a single higher order linear divisible sequence. This multiplication constructs a

Table 5.6: Terms of the sequence {wn = M,%Pn}

ninth order linear divisible sequences.

Theorem 5.2. Let {a,} and {b,} be distinct second order linear divisible sequences that can be defined by

(2.1) with initial conditions ag = bg = 0 and ay, by arbitrary. Suppose the sequence {an} has a characteristic

5.2
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equation 22 —prx—q1 = 0 with roots oy and B1, such that a1 +51 = p1 and a1 81 = —q1, and the sequence {bn}
has a characteristic equation £2 —pax —qo = 0 with roots aa and Ba, such that as+ Po = py and asfBs = —qs.
2

Then {wn = a%bn} 18 a linear divisible sequence that satisfies the ninth order linear homogeneous recurrence

relation

Wnto = (P1P5 + Pla2 + P31 + q1a2) Wnys + (PIP3G1 + PIP3G2 + P3aT + Pids + 6pIP3Q1G2
+5p3¢3 g2 + 5piq1a5 + 443 03) watr + (PIPsa1ae — PSGE — pSa5 + 2pip3aiae + 2p1P301 05
+4pip3aias — Bpadi e — Spiads — TP3dias — Tpiaids — 44a3) wets — (P01 ds + piaiae

+ pip3a1ds + PipSaiae + pipsaias + Tpipadias + Tpipsaids + 6p3aias + 6pidias

+17pip3aias + 11p3qias + 11piaias + 641qs) wats + q1qe (PSa105 + phatae + pSp3aids

+ pIPSaiae + pipsaias + Tpipadias + Tpipsaids + 6psaids + 6pidias + 17pipsaias
+11p3qias + 11piqiqs + 641q3) wnra — aias (PIP3@1a2 — PSGE — pias + 2pip3aien
+2p1P30105 + 4pip3aias — 5p3diae — Spiaids — TP3aias — TPiatds — 443a5) s

— ¢745 (pp3ar + Pipsae + P3ai + Pids + 6pip3aras + Bp3aiae + 5pia1a3 + 44765) wh2

— ¢} (PIp3 + Pige + P3q1 + 1q2) Wny1 — qfg5wn (5.2)
for n > 0 and initial conditions w; = a?b? for 0 <i<8.

Proof. Let {ay} and {b,} be distinct second order linear divisible sequences that can be defined by (2.1) with
initial conditions ag = by = 0 and a;, by arbitrary. Let the sequence {a,} have the characteristic equation
2% —p1x — ¢ = 0 with roots a1 and 31, such that a; + 1 = p1, and a1 31 = —q1, and the sequence {b,,} have

the characteristic equation 22 — pax — g2 = 0 with roots as and 3o, such that as + B2 = ps and 282 = —¢o.

Case 1: Let both characteristic functions have distinct roots, meaning a; # 51 and as # 2. Then, by using

a combination of equations (3.1) and (4.1), we have

wy, =aZb?

_ a 2 n n\2 bl 2 n n\2
<@1—51> (a7 = B7) (042—52) (a5 — B3)

- <(a1 — ,816;;?32 _ 52)2) ((a%)n —2(f1)" + (5%)”) ((a%)" —2(aaf2)" + (%)")
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2b n n n n n
= <(a1 — 5312(1&2 — 52)> ((a%a%) —2(afazfa)” + (aiB3)" — 2 (1a3B1)" + 4 (10251 2)

~2(1B182)” + (a383)" — 2 (a28382)" + (835)")

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as

a linear homogeneous recurrence relation whose characteristic equation has roots r; = a%a%, ro = OZ%CQBQ,

_ 232 _ 2 _ _ 2 _ 242 _ 2 _ 3242
r3 = aifs, ra = B, 15 = anefifBe, e = @118y, 7 = a3, 18 = a2fif, and 19 = Bif;. We
will let each of them have multiplicity one since that means we will have nine roots, which is how many

characteristic roots we need for a ninth order linear divisible sequence. Thus, the characteristic equation is

9

H(m—ri):xg— Z ri |28 (1P Z iy e, | 227K, for k< 9.

i=1 1<i<9 1<y << <9

Looking at the coefficient of 28, which becomes the coefficient of w,, s in equation (5.2), we have

Z T =ajas + aiasfBe + aifs + a1a3Bi + arasBi B + a1 B B3 + a3t + aaBiBe + B 53
1<i<9

= (Ot% + o181 + B%) (ag + asfBy + ﬂ;)

=P} + a1) (P53 + ¢2)

=pips + piae + P + 1o

Looking at the coefficient of 27, which becomes the coefficient of w,, 7 in equation (5.2), we have

S riry =atadfr + 0dadBi + a10f + alad s + 2080381 B + BatadBEBa + 2010365 B2 + ad B B
1<i<j<9
+afa3f3 4+ 3aiai B85 + 4ot BT 85 + 3anas B85 + a5 B 55 + ajaafl + 205 a1 5
+ 30T 37 B3 + 2010237 B3 + 2 Bi B3 + o} B1B; + ai BT By + o BBy
= (a% + a1+ 5%) (a% + afy + 55) (04104351 + O@Ozzﬁz + 0423f52 + 0115153)
=(af + a1+ B1) (03 + a2Be + B3) (a1p1 (a3 + B%) + a2z (of + 53))

=i + q1)(P3 + ¢2)(—1 (V3 + 2¢2) — q2(p} + 2q1))

= — (pip3qr + P1P3a2 + P3ai + plas + 6pIP3a1ae + 5p3aiqe + 5Piqids + 443 43).-

Looking at the coefficient of 2°, which becomes the coefficient of w,, ¢ in equation (5.2), we have

6. 343, 33633, 3 6433 33336 5 5 5 35 5 5
Z TiriTE =000y + ay BBy + ajas By + i By By + ajasBife + anagBiBe + ajasfiB;
1<i<j<k<9
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+ o103 B3 + 2050381 83 + 20100387 B3 + 205058183 + 2010587 B3 + 2030587 Ba
+ 2070581 B2 + 20187 B3 + 205 231 B3 + 3t ais 8185 + 3anai 8785 + 3aias 57 B
+3afaa 88 + 4alal BT 55 + datas Bl B3 + data3BBs + dala3BlB) + 6aiad sl
+6aia3f1 63 + 6atas 83 + 6aia3 i By + 8atas By
=a3f3 (af — aift + B1) (af + A7) + aiff (a3 — 363 + B) (a3 + 53)
+ 1B Be (af + B1) (a5 + B3) + 21038155 (af + B1) (o + 53)
+ 20787 B2 (3 + B3) (af + BT) + 3a1a3 155 (o] + B1) + 3aiaaffiBa (a3 + B3)
+ daja3 B B3 (a% + /Bf) (012 + 52) + 6aias B3 (011 + 51) + 6a3a3 ;85 ( 5+ /33)
+ 8ajas B3
=—q ((pf +2)% - 3qf) (r? +2q1) — ¢} ((p§ +2¢5)° — 3(12) (5 + 242)
+ 01 ((p +2q1)° - 2Qf) ((pg +2¢5)° — 2q§) - 2q143 ((p? +2¢,)° — 2qf) (p3 + 2¢0)
((
((

—647q5 (P35 + 292) + 8475

2
—2¢2q> ((p3 + 24)” — 2q§) (P +2q1) + 3q15 ((p? +2¢1) — 2Qf)

+3¢3q: (P +2¢2)° — 2q§> +4qiq5 (pT + 2q1) (93 + 2q2) — 6475 (p] + 2q1)

=pip3q1ge — PG — PYds + 2piP3di a2 + 2p1P3q145 + 4PiP3aias — Bpsdiae — Spiaids

— TP34ia5 — TPidias — Adias.

Looking at the coefficient of 2°, which becomes the coefficient of w,, 5 in equation (5.2), we have

Z ri i, =aias 8183 + a1038] B3 4+ alasfi By + a1ai 8] By + ajasfi By + aias bl B
1<i1 << <9

+ afal BB + ajal BB + el BT B + afas B BT + atas BB + afas B BT

+afas B3 + afas B85 + afas B8 + afas By B3 + 3afas B 65 + 3atas YB3
+ 3090587 85 + 3atas 87 B3 + 3aTas By B3 + 3atal i By + 3alas B B
+3ala3 8703 +4afay B, + datay 576y + dajas i B3 + dajaifi By
+Tata3f B3 + Talas 7 B; + Tajas 5763 + Tatas B7 B3 + 8alas 3y

+ 805 a3 87 B3 + 8atal B B3 + 8ajas B B3 + 100 a1 By
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=a10561 55 (ai — aifi + By) (o + B7) (ad + aafa + 53)
+ a3 Ba (o3 — 385 + B3) (o3 + B3) (of + anfr + f7)
+aia3 83 (al + B1) (o + B5) + 3aias 8765 (af + B1) (a3 + 53)
+3aia3 763 (ag + B3) (af + B7) +4aiay 76, (af + B1)
+4a10361 83 (ag + B7) + Taja3 i B3 (af + B7) (a3 + B3)
+8afay 78y (af + BY) + 8aias BB (af + B3) + 10atas i B
S ((p? +2q1)" — 3qf) (P} +2a1) (93 + q2)
+ 41 ((p§ +2¢)° - 3q§) (p3 +242) (0} + @)
+ 46 ((p +2¢,)° — QQf) ((p§ +2¢)° — 26@)
—3q3a3 (o} +201)” — 247 (6 + 202) — 3ala3 (03 +202)" — 263) (v} + 201)
+dg3ad (03 +201)" - 20}) + 4143 (93 + 202)° — 243)
+747g5 (P + 2q1) (P3 + 2q2) — 8aias (P} + 2a1) — 8qid5 (p5 + 2¢2) + 10¢1qs
=pYa14y + PSaiaz + PiPaaids + PIPSGTae + Pipadids + TPiP2aies + TPIPSATds
+6p3q1g3 + 6piaiay + 17pipsaias + 11p3aias + 11piaias + 641 4s.

When 1 <4 < --- < i5 <9, we can show that r;, ---r;, = cyasfiBa(rj, ---1;,) where rj,,...,7j, €
{riy, ..., 1ig}. 15 = apa B2 is one of the roots in r;, - - - r;,, then we have r;, - - - 75, = a1 Ba(rj, - - - 15,)
where 7j,,...,75, € {ri,,...,ri;} and rj,,...,7;, # r5. For example, rirorsrars = aqaaf1fa(rirarsrs). If
rs = aiazfif2 is not one of the roots in 7, -- -7, then there exists rs, 7 € {ry,...,r:}, such that
rere = 2038285 = ayaa B Bors. This means ry, - -7y, = a1 Bo(rirjrirs) where 15,1, € {15, ..., i}
and r;, 75,7, # 5. For example, in riror3rare we can see ryrg = a?a3BiB3 = ajagBifars, which means
T17mar3T4Te = 131 B2 (r1Tarars).

Thus, looking at the coefficient of 2*, which becomes the coefficient of w,, 14 in equation (5.2), we have

E Tiy ©Tiy =a10231 02 E Tj1 Ty

1<i1 < <i5<9 1<j1<---<ja<9

=q1g2 (5195 + PSatae + Pip3aids + pivSaias + pipsaias + TPipsdias

+7p1p3aias + 6p3aias + 6pidias + 1Tpipsaias + 11p3qias + 11piaias + 6qiqs) -
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Since we calculated Zl§j1<---<j4§9 r;, -+ 7j, as the coefficient of z° above, we can just replace it here.
When 1 < 43 < -+ < ig < 9, we can show that r;, -+ 1y, = a3a3B3p3(riryre) where ry,rj, 1) €
{Tiys- s 71} If rs = ayaafy P2 is one of the roots, then there exists rg,ry € {ry,,...,ri} with rg, 7 # 75,

such that 7,1y = aa3/3?35. This means 7, -1, = 5T (1iTiTE) = of a3 B3 B3 (rs rjrk) where ri, ;1) €

{riys...,rig} and 74, 7rj, 7 # r5. For example, in ry---rg we can see r4rg = ajaifB733, which means
ri-re = ajadB3Bs(rirars). If rs = ayaeBiBe is not one of the roots in 7y, -+ 7;4, then there exists

_ 4 40404 : _
ToyyerosTsy € {Tiys---yTig}, such that 7y, - 7s, = afa3BiBs = ada3Bifirs. This means ry, - 1y, =
Toy o Tsy(1iry) = aja3BiBe (ryrjrs) where ry,r; € {ry,, ..., 7} and 3,7 # r5. For example, in ri7ror3rarery

we can see r3rarely = 0/110/2161 ﬁg = alag’ﬁl 627“57 which means r17r9r3rarery = a1a251 52 (rirars).

Thus looking at the coefficient of 23, which becomes the coefficient of w,, ;3 in equation (5.2), we have

3
E Tiy * —04104251@ E ririTE
1<i < <ig<9 1<i<j<k<9

=¢}q5 (pipaaqiae — PSG; — PSas + 20ip3aian + 2p1P3qi a3 + ApIP3aids — Spadian

—5piavds — T3aias — Tpiaids — Adids) -

Since we calculated Zl<i<j<k<9 r;7;7E as the coeflicient of 2% above, we can just replace it here.

When 1 <y < -+ <i7 <9, we can show that 7, ---r;, = afa3B87B3(rir;) where ri,rj € {ri,,....ri, }.

If r5 = ap 51 B2 is one of the roots, then there exists ry,,...,rs, € {riy,..., 7, with rg,,...,rs, # rs, such
4 5

that rs, -+ 1r5, = afa3dBiBs. This means r;, -1 = afa3 875 (rir;) where 7,15 € {riy,...,ri, } and 14,75 #

r5. For example, in 71 --- 77 we can see r3ryrer7 = ajasif3, which means 71 ---r7 = ajadByB5(rire). If
r5 = opagf1f2 is not one of the roots in r;, ---7;,, then there exists rg,,...,7s, € {ri,...,7,}, such
that 7y, -+ 75, = aSa$B9BS = adadByB5rs. This means ry, -+ -1, = 1y, -7 (15) = a3ad By 55 (rirs) where
ri € {ri,,...,7,} and r; # r5. For example, in rirersrarersrs we can see rarsrarerirs = aSa$B9BS =
aja3B?B5rs, which means rirorsrarerors = afas B3B3 (rirs).

Thus looking at the coefficient of 22, which becomes the coefficient of w,, ;2 in equation (5.2), we have

Z Tiy - Tip =357 B Z T4

1<ip < <i7<9 1<i<j<9

= — 4{a5 (PIp2ar +DiD3az + P2di + Pids + 6pTP3aiaz + Bp3diaz + Spiards +44id3) -
Since we calculated ), ;.o 7;7; as the coefficient of z7 above we can just replace it here.
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When 1 <y < -+ < ig <9 we can show that r;, -7, = a]alB]B5(r;) where r; € {ri,,...,ri}. lf rs =
a1az3132 is one of the roots, then there exists rg,,...,7ss € {ri,,...,Tis}, such that rg, -7, = aa$§B¢35.
This means r;, - -y = o]l B7 8% (r;) where r; € {r;,,...,r;,} and r; # rs5. For example in ry - - - rg we can
see Tor3rarerrrs = aSa$B%BS, which means rq---1g = alalBIBI(r1). If 15 = ajazB1B2 is not one of the
roots, then we have ri7orsrarerorsrg = aSa8pSB8 = alal Bl Birs.

Thus looking at the coefficient of 2 which becomes the coefficient of w41 in equation (5.2), we have

7
Z Tiy * Tig =aja3 {63 Z T

1<iy < <ig<9 1<i<9
=qq3 (Pip3 + Pia2 + Poq1 + q1G2.) -
Since we calculated Y, ;.o 7; as the coefficient of 2% above we can just replace it here.
Looking at the constant, which becomes the coefficient of w,, in equation (5.2), we have

9
Z Tig o Tig = 0410‘2ﬂ152 = thz

1<ip < <ig<9

Thus, we see that all coefficients of the characteristic equation match their corresponding coefficients in

the linear homogeneous recurrence relation (5.2).

Case 2: Let one characteristic function have duplicate roots and the other have distinct roots. WLOG we
can say the characteristic function of {a,} has the duplicate root, meaning o; = 1 and as # fB2. Then, by

using a combination of equations (3.1) and (4.1), we have

wy, =a2b?
na1b1 2 2 1
n n 2\"—
=|—— ] (af — !
(O{Q . BZ) ( 2 62) ( 1)

= (M) ((a%a%) —2(afazfa)” + (aiB3) ) :

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as a
linear homogeneous recurrence relation whose characteristic equation has roots a2a3, a?as32, and o 33 each
with a multiplicity of at least three. We will let each of them have multiplicity three since that means we will
have nine roots, which is how many characteristic roots we need for a ninth order linear divisible sequence.

Thus, if the roots of the characteristic equation of {wn =a? } are r; = a2a3, o = alanfBe, T3 = a2p3,

84



ry = ala3, r5s = afazfa, 16 = aif3, r; = a2a3, s = alayBe, and rg = a?f3, then the characteristic

equation is
H(w—ri):mg— Z ri |24 (—1)F Z iy, | 227K, for k< 9.
i=1 1<i<9 1<y <+ <i <9
At this point, this case becomes the same as case 1 by simply replacing 81 with «y throughout. This works

because, in this case, a; + a1 = p1 and a1 = —q;.

Case 3: Let both characteristic functions have duplicate roots, meaning oy = f; and ag = 3. Then, by

using a combination of equations (3.1) and (4.1), we have

- — n*a?b?
Wy, = aib% = n%%b% (a?)n ! (a%)n ' QZ;; (a?a%)n.
105

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed
as a linear homogeneous recurrence relation whose characteristic equation has the root aZa3 each with a
multiplicity of at least nine. We will let it have multiplicity nine since that means we will have nine roots,

which is how many characteristic roots we need for a ninth order linear divisible sequence. Thus, if the roots

2

of the characteristic equation of {w, = a2b?} are ri = afaj,ry = ofa3, r3 = afa3, ry = aia3, rs = aja3,

re = a2a3, r7 = aja3, rg = ata3, and rg = aja3,then the characteristic equation is
H($—’I"i)=1‘9— Z ri | 24 (=1)F Z iy, | 227F, for k< 9.
i=1 1<i<9 1<i1 < <0 <9
At this point, this case becomes the same as case 1 by simply replacing 5; with a; and s with as throughout.

This works because, in this case since, a1 + a1 = p1, 11 = —q1, @z + @z = pa, and azay = —¢qo.

Therefore, when we multiply the square two second order linear divisible sequence, we can construct a
ninth order linear divisible sequence defined by recurrence relation (5.2). It is easy to see by how we define

{w, = a2b2} that w; = a?b? for 0 <i < 8. O

Next, we have examples that take the square of second order linear divisible sequences and multiplies it
by the square of a different second order linear divisible sequence to construct ninth order linear divisible

sequences.
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Example 5.7. Using the Fibonacci sequence and the Pell number sequence, we define the sequence

{w, = F2P2}. Then, by Theorem 5.2, we get a ninth order linear divisible sequence that satisfies the

recurrence relation
Wpt9 = 10Wn48 + 0wy 17 — 117wy 46 — 520wy 45 + 520wy 44 + 117wy 43 — 0wy 42 — 10wy 41 + Wiy,

for n > 0. The table below shows some terms of the sequence {w, = F2P2}.

n Wn, n Wn, n Wn, n Wn,
0 6 313600 12 3983377305600 18 50282828993973049600

1 1 7 4826809 13 60784055666569 19 767266772562388171441

2 8 73410624 14 927495695774596 20 11707738898202961376400
3 100 9 1121580100 15 14152730707562500 21 178648627831121459592100
4 1296 10 17106024100 16 215956484534681856 22 2726003028483778956121444
5 | 21025 | 11 | 261068880601 | 17 | 3295286254248582889 | 23 | 41596135659701726163087889

Table 5.7: Terms of the sequence {w, = F2P2}

Example 5.8. Using the Fibonacci sequence and the Mersenne number sequence, we define the sequence
{wn = F,%M,%} Then, by Theorem 5.2, we get a ninth order linear divisible sequence that satisfies the

recurrence relation
Wpyo = 14wy — 14wy, 47 — 305w, 16 + 588wy, 45 + 1176w, 44 — 2440w, 43 — 448wy 42 + 1792w, 11 — 512wy,

for n > 0. The table below shows some terms of the sequence {w, = FZM?2}.

n Wn n Wn n Wn, n Wn

0 6 254016 12 347722502400 18 458840293763310144

1 1 7 2725801 13 3642383701009 19 4805056665579338809

2 8 28676025 14 38147805784881 20 50319301058697515625
3 196 9 301855876 15 399514947136900 21 526951070751957203716
4 2025 10 3165750225 16 4183896310472022 22 5518305860421069987489
5 24025 11 33190645489 17 | 43815024413829769 | 23 | 57788463091283012018401

Table 5.8: Terms of the sequence {w, = FZM?2}

Example 5.9. Using the Fibonacci sequence and the sequence of natural numbers including zero, we define
the sequence {wn = Ffol} Then, by Theorem 5.2, we get a ninth order linear divisible sequence that

satisfies the recurrence relation
Wpt9 = 6Wp4s — 6Wpt7 — 19wy 46 + 24w 45 + 24w 44 — 19wy 43 — bWy 49 + 6wyt — Wy,

for n > 0. The table below shows some terms of the sequence {w, = FZN2}.
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Example 5.10. Using the Pell number sequence and the Mersenne number sequence, we define the sequence
{wn = PgM,%} Then, by Theorem 5.2, we get a ninth order linear divisible sequence that satisfies the

recurrence relation

n Wn n Wn n Wn, n Wn

0 0 6 2304 12 2985984 18 2163366144

1 1 7 8281 13 9174841 19 6310554721

2 4 8 28224 14 27857284 20 18306090000
3 36 9 93636 15 83722500 21 52838377956
4 144 10 | 302500 16 | 249387264 | 22 151820888164
5 625 11 958441 17 | 737068201 23 | 434427310321

Table 5.9: Terms of the sequence {wn = F2N?

Wn+9 :35’U)n+8 — 245wn+7 — 923U}n+6 + 6090wn+5 + 12180wn+4 — 7384’U}n+3 — 7840wn+2

+ 4480wn+1 — 512wn,

for n > 0. The table below shows some terms of the sequence {w, = P2M2}.

n Wn, n Wn, n W, n Wn,
0 6 19448100 12 3221322994890000 18 517501026595857890520900

1 1 7 460660369 13 75119326197060601 19 12064914106020402007532089

2 36 8 10824321600 14 1751523888733668036 20 281278427029326147068010000

3 1225 9 253346122225 15 40837009904090430625 21 6557649508678076708867101225
4 32400 10 5918000097636 16 952091200606059014400 22 152883201984231546731679272676
5 | 808201 | 11 | 138105437837929 | 17 | 22197115417801407838561 | 23 | 3564275255241275447720314832689

Example 5.11. Using the Pell number sequence and the sequence of natural numbers including zero, we

define the sequence {wn = PﬁNﬁ}. Then, by Theorem 5.2, we get a ninth order linear divisible sequence

Table 5.10: Terms of the sequence {w, = P2M?2}

that satisfies the recurrence relation

Wp49 = 10Wp48 — 60wn47 — 28Wny6 + 330wWp45 + 330wy 44 — 28wy 43 — 60w, 42 + 15WH41 — Wy

for n > 0. The table below shows some terms of the sequence {w, = PZN2}.
n Wn, n W n Wn, n Wn,
0 6 176400 12 27662342400 18 2439943081808400
1 1 7 1399489 13 189218910049 19 15845037003539041
2 16 8 10653696 14 1279043378704 20 102328690818873600
3 225 9 78588225 15 8557818890625 21 657547887222360225
4 2304 10 565488400 16 56750789689344 22 4206157487042799376
5 | 21025 | 11 | 3988048801 | 17 | 373405884106369 | 23 | 26794595833640213569

Table 5.11: Terms of the sequence {wn = P,fNTQL}
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Example 5.12. Using the Mersenne number sequence and the sequence of natural numbers including zero,
we define the sequence { Wy, = M,%NTQL} Then, by Theorem 5.2, we get a ninth order linear divisible sequence

that satisfies the recurrence relation
Wp+9 = 21wn+8 — 189wn+7 + 955wn+6 — 2982wn+5 + 5964wn+4 — 7640wn+3 + 6048wn+2 — 2688wn+1 + 512wn

for n > 0. The table below shows some terms of the sequence {w, = M2NZ2}.

n Wn, n Wn, n Wn, n Wn,
0 6 142884 12 2414739600 18 22264940593476
1 1 7 790321 13 11338629289 19 99230545871209
2 36 8 4161600 14 52606927044 20 439803812250000
3 441 9 21150801 15 241577165025 21 1939536661709241
4 3600 10 | 104652900 | 16 | 1099478073600 | 22 8514613985411556
5 | 24025 | 11 | 507015289 | 17 | 4964906434849 | 23 | 37225056794837521

Table 5.12: Terms of the sequence {wn = M,%N,%}
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CHAPTER 6

POLYNOMIAL LINEAR DIVISIBLE SEQUENCES

In this chapter, we construct higher order polynomial linear divisible sequences. We construct these by
taking products, powers, and products of powers of polynomial linear divisible sequence in the same manner

we did for constructing higher order linear divisible sequences.

6.1
Products of Polynomial Linear Divisible Sequences

Like we did for second order linear divisible sequences, we can talk about the products of second order
polynomial linear divisible sequences. Again we define this product term by term; thus, {w,(x)} is the
sequence {ag, (z)aog, (x) - - - ap, (x), a1, (x)a1, (z) - - - a1, (x), ag, (x)az, (z) - - - az, (x), ... }.

If we multiply two distinct second order polynomial linear divisible sequences, then we construct a forth

order polynomial linear divisible sequence.

Theorem 6.1. [9] Let {a,(z)} and {b,(x)} be distinct second order polynomial linear divisible sequences
that can be defined by (2.3) with initial conditions ag(x) = bo(z) = 0 and ay1(x), bi(x) arbitrary. Suppose
the sequence {a,(z)} has a characteristic equation t> — p1(x)t — q1(x) = 0 with roots a1(x) and Bi(z), such
that a1 (x) + B1(x) = p1(x) and aq(z)B1(x) = —qu(z), and the sequence {b,(x)} has a characteristic equation
t2 —pa(z)t —ga(x) = 0 with roots az(z) and B2(z), such that ag(x)+B2(z) = pa(x) and az(z)B2(z) = —q2(z).
Then {w,(x) = an(x)bn(z)} is a polynomial linear divisible sequence that satisfies the fourth order linear
homogeneous recurrence relation
wnta(x) =p1 (@)p2(2)wnys(z) + (pT(2)q2(2) + P3(2)q1 (x) + 2q1 (2)g2(2)) w2 ()

(6.1)
+ 1 (2)p2(2)q1 ()2 (2)wp41(x) — g3 (2) 63 (2)w (z)
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for n > 0 with initial conditions wz(x) = az(x)bs(x), wa(z) = az(x)ba(x), wi(z) = a1 ()b (), and we(z) =

ap(x)bo(x).

If we multiply three distinct second order polynomial linear divisible sequences, then we construct a

eighth order polynomial linear divisible sequence.

Theorem 6.2. Let {a,(z)}, {bn(2)}, and {c,(z)} be distinct second order polynomial linear divisible se-
quences that can be defined by (2.3) with initial conditions ag(x) = bo(z) = co(x) = 0 and a1(z), bi(x),
c1(z) arbitrary. Suppose the sequence {an(x)} has a characteristic equation t* — py(x)t — q1(x) = 0 with
roots ay (z) and B1(x), such that aq(z) + f1(z) = p1(x) and a1(x)B1(x) = —q1(x), the sequence {b,(x)} has
a characteristic equation t?> — py(x)t — q2(x) = 0 with roots as(x) and Ba(x), such that as(x) + Pfo(z) =
pa(x) and az(x)B2(x) = —qa(x), and the sequence {c,(x)} has a characteristic equation t> — ps(x)t —
g3(x) = 0 with roots as(x) and PB3(x), such that as(x) + Ps(x) = p3(x) and az(x)Bs3(x) = —qs(x). Then
{wn(z) = an(z)bp(x)cn(x)} is a polynomial linear divisible sequence that satisfies the eighth order linear

homogeneous recurrence relation

wnts (@) = p1(2)p2(2)ps (@) wni7(x) + (P3(2)P3()a1 () + pi(@)p3(2)g2(x) + pi (x)p3(x) g3 ()
+2p5 ()1 ()g2(x) + 2p3(2)q1 () g3 () + 29T (2)g2(2) g3 () + 4q1 (2)g2(2)g5(2) ) w6 ()
+ (p1(@)p2(2)p3 () a1 () g2 (x) + pr()p3 (2)p3(2) a1 (2)g3(x) + pi (2)p2(2)ps () g2 () g3 (x)
+5p1 (2)pa2(2)ps () q1 () g2 (2) g3 () wni5(x) — (p1(2)65 ()5 (x) + pa(2)q7 ()5 (z)
+p3(2)¢i (2)g3 () — pi(2)p3 (2)p3 (2) a1 () g2 () g3 () + 4p3 (2) g1 (2) g5 (2) g3 ()
+4p3(2)qi (2) a2 (2)q3 () + 4p3(2) 4 (2) 63 (2) g3 (x) + 647 ()43 ()43 (2)) wna(2)
+q1(2)g2(2)g3(x) (p1(2)p2(2)p3 (2) g1 ()g2(x) + p1 ()p5 (2)ps () g1 (2)ga ()
+p1 (@)p2(2)ps ()g2(2) a3 (2) + 5p1(2)p2(2)ps (2)q1 (2) 42 (2) g3 (2) ) wn3(x)
+ 47 (2)¢3 (2)d3 () (p3(2)p3(2) a1 (@) + Pt (2)p3(2) g2 (@) + pF (2)p3(2) s (2)
+2p5 (2)q1 (2)a2(2) + 203 (2) a1 (2)gs(2) + 2p7 (2)g2 () g3 () + 4q1(2)d2(2)g3(x)) wn2(2)

= p1(2)p2(2)p3(2)g7 ()03 (2) g5 (@) wnr1 () — g1 (2) g3 () g3 (x)w (2) (6.2)
for n > 0 with initial conditions w;(x) = a;(x)b;(x)c;(z) for 0 <i < 7.
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If we multiply three distinct second order polynomial linear divisible sequences, then we construct a

sixteenth order polynomial linear divisible sequence.

Theorem 6.3. Let {an(z)}, {bn(2)}, {cn(z)}, and {d,(z)}be distinct second order polynomial linear divisible
sequences that can be defined by (2.83) with initial conditions ag(x) = bo(z) = co(z) = do(z) = 0 and a;(zx),
bi(z), c1(x), di(x) arbitrary. Suppose the sequence {a,(x)} has a characteristic equation t> — py(z)t —
q1(z) = 0 with roots ai(x) and Bi(x), such that ar(z) + B1(x) = p1(z) and oy (x)bi(z) = —qi(x), the
sequence {b,(x)} has a characteristic equation t> — pa(2)t — qo(x) = 0 with roots as(x) and Bo(x), such
that az(x) + P2(x) = pa(z) and as(x)Ba(x) = —qa(x), the sequence {c,(x)} has a characteristic equation
t2 —p3(x)t—qs(x) = 0 with roots az(x) and B3(x), such that az(x)+B3(x) = p3(x) and asz(z)Bs(z) = —q3(x),
and the sequence {d,(x)} has a characteristic equation t* — py(x)t — q4 = 0 with roots ay(z) and Ba(z), such
that ay(z) + Ba(x) = pa(x) and as(x)Bs(z) = —qa(x). Then {wy(z) = an(x)bp(x)en(x)dn ()} is a sizteenth

order polynomial linear divisible sequence with initial conditions w;(x) = a;(x)b;(x)c;(z)d;(x) for 0 <i < 15.

Note that the linear homogeneous recurrence relation constructed here is similar to recurrence relation
(3.4) by replacing p¥ with p¥(x), ¢F with ¢F(z), and w4 ; with w,;(z) for 1 <i < 4,1 <k <8, and
0 < 7 < 16. For this reason the recurrence relation is not reproduced here due to length.

The proofs of Theorems 6.1, 6.2, and 6.3 are similar to the proofs of Theorems 3.3, 3.4, and 3.5 respec-

tively.

6.2
Powers of Polynomial Linear Divisible Sequences

Like we did for second order linear divisible sequences, we can talk about the powers of second order
polynomial linear divisible sequences. Again we define these powers term by term; thus, {w,(x)} is the
sequence {af(z),af(x),ak(x),...}.

If we square a second order polynomial linear divisible sequences, then we construct a third order poly-

nomial linear divisible sequence.

Theorem 6.4. [9] Let {a,(x)} be a second order polynomial linear divisible sequence that can be defined by

(2.3) with initial condition ag(x) = 0 and ay(x) arbitrary. Suppose the sequence {a,(x)} has a characteristic
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equation t> — p(x)t — q(x) = 0 with roots a(x) and B(x), such that a(x) + B(x) = p(r) and a(z)B(x) =
—q(z). Then {w,(x) =a2(x)} is a polynomial linear divisible sequence that satisfies the third order linear

homogeneous recurrence relation

wnt3(2) = (P*(2) + 4(2) w2 (@) + q(2) (0*(2) + ¢(2)) war1(2) = ¢ (@)wn (@) (6.3)
for n > 0 with initial conditions we(z) = a3(x), wi(z) = a?(z), and wo(z) = ad(z).

If we cube a second order polynomial linear divisible sequences, then we construct a forth order polynomial

linear divisible sequence.

Theorem 6.5. Let {a,(x)} be a second order polynomial linear divisible sequence that can be defined by
(2.3) with initial condition ag(x) = 0 and ay(x) arbitrary. Suppose the sequence {a,(x)} has a characteristic
equation t* — p(z)t — q(x) = 0 with roots a(x) and B(x), such that a(z) + B(z) = p(z) and a(z)B(z) =
—q(z). Then {wy(z) =a3(x)} is a polynomial linear divisible sequence that satisfies the fourth order linear

homogeneous recurrence relation
wnta(@) =p(2) (p°(2) + 2q(2)) wrs(x) + g(2) (P*(2) + q(2)) (P (2) + 2q(@)) wnr2(2)
(6.4)
—p(@)q’ (@) (P () + 2q(2)) wair (@) — ¢° (2)wn (x)
for n > 0 with initial conditions ws(x) = a3(z), we(z) = a3(x), wi(z) = a}(x), and wo(z) = ad(z).

If we take the forth power of a second order polynomial linear divisible sequences, then we construct a

fifth order polynomial linear divisible sequence.

Theorem 6.6. Let {a,(x)} be a second order polynomial linear divisible sequence that can be defined by
(2.8) with initial condition ag(z) = 0 and a1(x) arbitrary. Suppose the sequence {a,(x)} has a characteristic
equation t> — p(x)t — q(x) = 0 with roots a(x) and B(x), such that a(x) + B(z) = p(x) and a(z)B(x) =
—q(z). Then {wy(x) =ah(z)} is a polynomial linear divisible sequence that satisfies the fifth order linear
homogeneous recurrence relation

wats(@) = (p'(2) + 30 (2)a(2) + ¢*(2)) wara(@) + (1°(2)a(@) + 5p' (2)¢? (2) + Tp*(2)d’ (2)

+2¢*(z)) wnys(x) — (p°(2)¢* (2) + 5p* ()" () + TP*(2)¢° (x) + 2¢° (2)) wn 42(x) (6.5)

= (1"(@)d°(2) + 3p*(2)d" (2) + ¢°(2)) wnya(2) + ¢'%(x)wn(z)
for n > 0 with initial conditions wy(x) = af(x), wz(z) = aj(z), wa(r) = a3(x), wi(zx) = ai(x), and

wo(z) = aj(x).
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If we take the fifth power of a second order polynomial linear divisible sequences, then we construct a

sixth order polynomial linear divisible sequence.

Theorem 6.7. Let {a,(z)} be a second order polynomial linear divisible sequence that can be defined by
(2.8) with initial condition ag(z) =0 and a1(x) arbitrary. Suppose the sequence {a,(x)} has a characteristic
equation t> — p(x)t — q(x) = 0 with roots a(x) and B(x), such that a(x) + B(z) = p(x) and a(z)B(x) =
—q(z). Then {wy,(z) = a3 (x)} is a polynomial linear divisible sequence that satisfies the sizth order linear
homogeneous recurrence relation
waro(2) = (p°(2) + 4p° (2)9(2) + 3p(2)¢* () w5 (@) + (0°(2)a(@) + T (2)¢* (x) + 16p" (2)¢* ()
+13p%(2)q" () + 3¢°(2)) wnsa(z) — (0° ()¢’ (x) + 8p (2)q" (2) + 22p° (2)¢° ()
+23p° (2)¢° (z) + 6p(2)q" (2)) wnys(x) — (p°(2)¢®(x) + 7% (2)q" (z) + 16p* (2)¢* () (6.6)
+13p%(2)¢° () + 3¢ (%)) wa2(2) + (P°(2)q"* (2) + 4p°(x)g" (z) + 3p(a)q*?(x)) w1 (x)
+ ¢ (2)wn(2)

for n > 0 with initial conditions w;(z) = a?(x) for 0 < i < 5.

If we take the sixth power of a second order polynomial linear divisible sequences, then we construct a

seventh order polynomial linear divisible sequence.

Theorem 6.8. Let {a,(x)} be a second order polynomial linear divisible sequence that can be defined by
(2.3) with initial condition ag(x) = 0 and a1(x) arbitrary. Suppose the sequence {an(x)} has a characteristic
equation t> — p(x)t — q(x) = 0 with roots a(x) and B(x), such that a(z) + B(z) = p(x) and a(x)B(z) =

—q(z). Then {w,(z) = aS(z)} is a polynomial linear divisible sequence that satisfies the seventh order
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linear homogeneous recurrence relation
wnir(x) = (p°(2) + 5p*(2)q + 6p*(2)¢*(2) + ¢ (2)) wnys(x) + (p'0(2)q + Ip®(2)¢*(x)

+29p°% () ¢* (z) + 40p* (z)q* () + 22p*(2)¢° (x) + 3¢°(2)) wnys(z) — (P ()¢’ ()
+11p" (2)q" () + 46p°(2)¢° (x) + 90p° ()¢° () + 81p™ (2)¢" (x) + 28p* (x)¢" (x)
+3¢°(2)) wnya(z) — (P (2)¢°(x) + 11" (2)q" () + 46p®(z)q® (z) 4 90p° (x)¢° (x) (6.7)
+81p* (2)q'% () + 28p* (2)q" (2) + 3¢"* () wars(x) + (p'°(2)d" (2) + 9p*(2)q" (2)
+29p°(2)¢"* () + 40p* (2)"* () + 220° (2)"* (2) + 34" (2)) wnr2(2) + (P°(2)d"° (@)
+5p"(2)q "0 (2) + 6p° ()" (2) + ¢ (2)) wat1 () — ¢° (x)wn (@)

for n > 0 with initial conditions w;(x) = a$(z) for 0 <i < 6.

The proofs for Theorems 6.4, 6.5, 6.6, 6.7, and 6.8 are similar to the proofs of Theorems 4.1, 4.2, 4.3,

4.4, and 4.5 respectively.

6.3
Products of Powers of Polynomial Linear Divisible Sequences

Like we did for second order linear divisible sequences, we can talk about the products of powers of
second order polynomial linear divisible sequences. Again we define these products of powers term by term:
thus, {w,(x)} is the sequence {algi (a:)ag; (x)--- agj (z), a’fi (x)alfj () a’fz (x), agi (x)agi (x)--- a’;z (x),.. }

If we square a second order polynomial linear divisible sequences and multiply it by a different second
order polynomial linear divisible sequences, then we construct a sixth order polynomial linear divisible

sequence.

Theorem 6.9. Let {a,(x)} and {b,(x)} be distinct second order polynomial linear divisible sequences that
can be defined by (2.3) with initial conditions ag(z) = bo(x) = 0 and a1(x), bi(x) arbitrary. Suppose the
sequence {a,(x)} has a characteristic equation t*> — p1(x)t — q1(x) = 0 with roots oy (z) and B1(x), such that
a1(x) + B1(z) = pi(x) and aq(x)B1(x) = —qi1(z), and the sequence {b,(x)} has a characteristic equation
t2 —pa(x)t—qo(x) = 0 with roots as(x) and Ba(x), such that as(x)+Ba(x) = pa(x) and as(z)B2(z) = —qa(z).

Then {wy(z) = a2(x)b,(x)} is a polynomial linear divisible sequence that satisfies the sizth order linear
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homogeneous recurrence relation

wnto(z) = (T (2)p2() + p2()q1 (%)) wass (@) + (i ()g2 () + p(@)p5(@)ar (2) + 4pF (2)q1 () g2 (2)
+p3(2)dE () + 3¢5 (2)g2(2)) wara(x) — (P1(2)p2(2)q1 (2)g2(x) + 2pT (2)pa(2)qi (2)ga(x)
—2pa(2)q3 ()42 (%) — p3 (2)p2(2) 43 (2)) wars(x) — (p1(2)aF (2)q3 () + pT(2)p3(2)qi (x)ga(x)
+4pi (2)qi (2)g5 () + p3(2)qi (2)gz(2) + 3¢1 ()43 (2)) wra(2) + (pF (2)p2(2)qi (v)g3 ()

+p2(2) @3 ()65 (x)) w1 () + ¢ ()¢5 (2)wn (z).
(6.8)

for n >0 and initial conditions w;(x) = a?(x)b;(z) for 0 <i < 5.

If we square a second order polynomial linear divisible sequences and multiply it by the square a different
second order polynomial linear divisible sequences, then we construct a ninth order polynomial linear divisible

sequence.

Theorem 6.10. Let {a, ()} and {b,(x)} be distinct second order polynomial linear divisible sequences that
can be defined by (2.3) with initial conditions ag(z) = bo(xr) = 0 and a1(x), bi(x) arbitrary. Suppose the
sequence {a,(x)} has a characteristic equation t> — p1(x)t — q1(x) = 0 with roots oy (z) and B1(x), such that
ag(z) + f1(zr) = p1(x) and ar(x)pi(z) = —qu(z), and the sequence {b,(x)} has a characteristic equation
t2 — pa(z)t — qo(x) = 0 with roots as(x) and Ba(x), such that as(x) + Ba(x) = pa(z) and as(x)Bz = —qa(z).
Then {wy,(x) = a2 (x)b2(x)} is a polynomial linear divisible sequence that satisfies the ninth order linear

homogeneous recurrence relation

wnto(2) = (p(2)p3(2) +1 (2) g2 (2) +p3(2)q1 (2) + a1 (2)g2(2)) wis () + (pF ()03 () g1 (2)
+p1(2)p3(2) a2 () +p3 ()47 () +p1 (2) 43 () +6p1 (2)p3 (2)q1 (2) 42 () +5p3 () g7 () g2 ()
+5p1 (2)q1 ()¢5 () +447 (2)¢3 (%)) waiz () + (01 (2)p2 ()1 () g2 (x) —p3 () g} () —p7 () g5 ()
+2p (2)p3 () af () g2 () +2p7 (2)p3 (x) a1 ()63 (2) +4pT (2)p3 (2) a7 ()43 () — 5pa ()47 (2) g2 (@)
~5p1(2)q1 (2) g3 (x) = Tp3 ()¢} () g3 () — Tpi () g7 ()45 () — 447 (2)45 (7)) Wpss ()
— (1 (2)q1 ()2 () +p3 ()i (2)g2 () +% (2)p3 (2) a1 () g3 (x) +11 ()05 ()47 (2) g2 ()
+pi ()pa(2)qi (2)q3 () +TpT (2)p3(2)qi ()43 (x) + Tpi (2)p5 () g () g5 () +6p3 (2)q1 (2)g5 ()
+6p1 (2)di (2)az () +17pF (2)p3 (x)d} () g3 (x) +11p3 () g1 () g3 (2) +11p (2) 47 () g2 (@)
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4641 ()03 (2)) wis (2) +a1(2)g2(2) (17 (2)q1(2)g3 (2) +p3(2)q1 (2)g2 () +% (2)p3 () g1 (2) g3 ()
+p1(2)p5 (2)¢7 () g2 () +p1 (2)p3(2)4i (2) 45 () + TpT (2)p3 () g7 ()63 () +Tpi (2)p3 ()47 () g5 ()
+6p3()qi ()q3 () +6p1 ()47 (x)g3 () +17p% (2)p3 ()43 ()43 () +11p3 () g1 ()45 ()
H1pi(2)ai (2)gz () +64 ()43 (2)) wnta () =43 ()43 (2) (1 (2)p3(2)q1 () g2 (x) —p§ () g ()
—p1(2)a3 () +2p1 ()03 () g (2) g2 () +2p1 ()05 () g1 (2) 43 () +4p3 ()05 () g (2) g5 ()
—5p3()qi () gz () —5pi (€)1 () g3 (2) = Tp3 (2)q7 ()45 () = TpF (2) i ()43 ()

g} (2)¢5 (7)) was () = a7 ()65 (x) (pF(@)p3(x)qr (x) +pi (2)p5 (2)g2(x) +p3(2) g7 (2) +pi () g3 (@)
+6p1 (2)p3(2)q1 (%) g2 () +5p3 (2) i (2)g2(x) +5p] (2) a1 (2) 5 (x) +447 (2)43 (2)) war2(2)

—ai(2)g3 () (pF(2)p3 () +pi (@) @2(2) +P3(2) a1 (2) + 01 (2)42(2)) Wora () — 41 (2)g3 (2)wn () (6.9)
for n >0 and initial conditions w;(x) = a?(x)b?(x) for 0 <i < 8.

The proofs of Theorems 6.9 and 6.10 are similar to the proofs of Theorems 5.1 and 5.2 respectively.
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CHAPTER 7

CONCLUSION

The main reason to continue the examination of constructions started by He and Shiue in [9] was to look
for a pattern in terms of the ps and ¢s from the second order linear divisible sequences we were multiplying.
The reason to look for a pattern is so that in the future we would not have to go through this entire
construction process each time. Based on the constructions, I did not see any evidence of a pattern in
multiplying distinct second order linear divisible sequences at this time. I also did not see any evidence
when taking a power of a single second order linear divisible sequences at this time.

While there was no pattern that worked for every coefficient of either the product of multiple second
order linear divisible sequences or for the powers of a single second order linear divisible sequence there are
other things that we can learn from our constructions.

There was one pattern that did become clear as we worked on these constructions. That pattern tells us
the order of the linear divisible sequence that is the result of the construction. It is important to note that

the order of the linear divisible sequences was dependent on our choice of the multiplicities of the roots.

Theorem 7.1. Let {an,},{an,},...,{an,} be distinct second order linear divisible sequences that can be
defined by (2.1) with initial conditions ag, = 0 and a1, arbitrary for all i. Suppose the sequence {a,,} has
characteristic x> — p;x — q; = 0 with roots a; and B;, such that oy + B; = p; and o;f3; = —¢q;. Then we can

construct a linear divisible sequence {w, = ajl al2 ---aji } that has the order (j1 +1)(ja +1)--- (j; + 1).

niyn2

Proof. 1t is sufficient to show this for the product of two second order linear divisible sequences. Let {a,} and
{b,} be distinct second order linear divisible sequences that can be defined by (2.1) with initial conditions
ap = byp = 0 and aq, by arbitrary. Let the sequence {a,,} have the characteristic equation 22 —pix—q =0

with roots o and 1, such that oy + 81 = p; and oy 81 = —q1, and the sequence {b, } have the characteristic
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equation 2 — pex — g2 = 0 with roots as and S2, such that as + 82 = pa and B = —¢qo.
Next, we show that {afl} can be expressed a linear homogeneous recursion relation of order j + 1 and
{b,’i} can be expressed a linear homogeneous recursion relation of order k + 1. Let a1 # 51 and ag # [s.

Then, by equation (4.1), we have

" <<a1 —lmj) = <<a1 —lmf') (2:;(_1)8 (o4751) )

b — (zﬁ;ﬂ) (o — B3)F = (blfk> <i<—1>t (aé‘tﬁé)">
(Oé2 — 52) (aQ - BQ) t=0

From the Binomial Theorem we know, (af — A7) is a polynomial with j + 1 terms and (a2 — 82)" is a

and

polynomial with k + 1 terms. Next, Looking at the product w,, = a,b,, we get

_ albh ><J 1)° jss"><k t ktt")
n = - - - ay By —1)" (g™ "B
<(al_ﬂl)j(a2_ﬁ2)k 2D (ad781) D () (o57'8%)
al bk L& stt [ j—sgs k—tat)\"
o e SN0 (ol el ) )

s=0 t=0

Since the above equations is in the form of equation (1.4), we know the sequence {w,, = a,b,} can be

expressed as a linear homogeneous recurrence relation whose characteristic equation has the roots ofa%,
a]l_lﬁlo/g, e ak, .. By %5 each with a multiplicity of at least one. It is important to note when working

out the double summation there will be no like terms. Thus, since we are multiplying a polynomial with
7 + 1 term by a polynomial with k + 1 terms we know our double summation becomes a polynomial with
(j + 1)(k + 1) terms. So, if we let all of the roots have multiplicity one then, we know the characteristic
equation of {w,} has (j + 1)(k + 1) roots and thus is of degree (j + 1)(k + 1). Therefore, {w,, = a,b, }can

be expressed as a linear homogeneous recurrence relation of order (5 + 1)(k + 1). O

Note there is no need to check the situation when one or more sequences have duplicate roots since we

only want to show that we can construct a linear divisible sequence with a specific order.

Theorem 7.2. Let {an, (z)},{an,(x)},...,{an,(x)} be distinct second order polynomial linear divisible
sequences that can be defined by (2.3) with initial conditions ag,(x) = 0 and ay,(x) arbitrary for all i.

Suppose the sequence {an,(x)} has characteristic t* — p;(x)t — q;(z) = 0 with roots a;(x) and Bi(x), such
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that a;(x) + Bi(x) = pi(z) and a;(z)Bi(x) = —qi(x). Then we can construct a polynomial linear divisible

sequence {wy, = af! (x)ad2 (x)---afi (x)} that has the order (j1 + 1)(j2 +1)--- (ji + 1).

This means that if we were looking to construct a linear divisible sequence of a particular order, we would
know how it would be constructed. The table below shows what products of second order linear divisible
sequences we could take to construct a linear divisible sequence of a specific order for some smaller orders.

A similar table could be constructed for polynomial linear divisible sequences.

order products order products
; {on} | () (s, {abtak {abaen)
4 {ad}, {anbn} 19 {al®
: fon) 20 | {al?}, {adbu} {aab} {akbucal
6 {ai}v {aibn} 21 {Q%O}>7 {agb%}
7 {a$} 22 {a2'}, {al0b,}
8 {aﬁ}v {‘l%bn}a {anbnecn} 23 {a%Q}

{a?*}, {an'bn}, {afb}}, {alb?},

9 {a}}, {alb}} 24 {a3bnen}, {a2bucndn}

10 CARCDY: % {2}, {aibd)

T {al0} 2% {2}, {al2b, )

12 | (el ], {a%but (AT {@bncn} | 27 (&), (R}, (02022

13 {al2} 28 {27}, {al%b, ), {003}, {aCbnon}

14 {a}f’}, {aZLbn} 29 {a%s}

E {olT}. {ai2) 30| (a2}, {abibn}, {aa02), {a3oh}. (anten
16 {a}?}, {albn}, {adb}}, 31 {a30}

{a3bucn}, {anbncndn}

{a3'}, {aldbn}, {alb3}, {albncn},

1 16 2 o
7 {an } 3 {a%bicn}, {a%bncndn}, {anbncndnen}

Table 7.1: Products of second order linear divisible sequences to make a specific order

It is important to note that the orders we calculated in this thesis was dependent on choosing a multiplicity
of one in the case when all of our second order linear divisible sequences had distinct roots. By letting the
multiplicity be different, we would construct linear homogeneous recurrence relation of different orders.
Constructing these linear homogeneous recurrence relation and comparing them to the ones constructed in
this thesis is left for future work.

Another observation is that any coefficient that is the sum of the product of more then half of the roots
of the characteristic equation is the product of one of the coefficients that is the sum of the products of less
then half of the roots of the characteristic equation times every ¢ from each second order linear divisible

sequence to some power. For example, in the proof Theorem 3.5 we showed that the coefficient of z*, which
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becomes the coefficient of w,, 14, is equal to the coefficient of x'?, which becomes the coefficient of w,, 12,
times all four of the ¢’s to the fourth power. Note that in this case the coefficient of 2* is the sum of the
products of twelve of the roots, and the coefficient of 2'2 is the sum of the products of four of the roots. So
we can see this pattern is a result of certain facts. The first is the fact that (Z) = (nﬁk) The second fact is
that if we have an even number of roots, then we have matching pairs of roots whose product is the product
of ¢’s to some power, and if we have an odd number of roots, then there is one root that is the product of
q’s to some power and the rest of the roots are matching pairs whose product is the product of ¢’s to some
power. This is helpful that if we ever do further construction of this type we only have to work out half of
the coefficients.

The next thing that stands out is that if you take the product of multiple distinct second order linear
divisible sequence, then each coefficient appears to have its own pattern. This pattern is based off the number
of the roots the characteristic equation that are being multiplied. We say that these coefficients appear to
have a patter here because, we are not positive if all coefficients have a pattern. The reason for this is just
lack of examples. For example, we only have one example of a coefficient that is the product of seven roots
of a characteristic function, and one example is not enough to establish a pattern. One pattern that we do
see right away is that the coefficient that is the sum of the roots of the characteristic equation is a product
of all the p’s from our second order liner divisible sequences. There is also a clear pattern in the coefficients
that are the sum of the products of two of the roots of the characteristic equation. These patterns are helpful
in that if we ever do further constructions of this type we can reduce the amount of coefficients we have to
construct. The proof of these patterns is left for future work.

When taking powers of a single second order linear divisible sequence no patterns were evident. The
main things that came out are some equalities that became helpful in future proofs. For example, in proof

of Theorem 4.3, we showed that if « + 8 = p and af = —¢, then
Oé4-|-043[3+04252+0653+[34=p4+3p2q+q2.

This equality was used in the proofs of some theorems that followed Theorem 4.3. So much that came out
of these constructions was saving time in future constructions. Also we did see an easy way to construct

a higher order LDS by taking any power of a second order LDS that can be defined by(2.1) where the

100



characteristic equation has a duplicate root.

Theorem 7.3. Let {a,} be a distinct second order linear divisible sequence that can be defined by (2.1)
with initial condition ag = 0 and ay arbitrary. Suppose the sequence {a,} has a characteristic equation
2% — pxr — q = 0 with the duplicate root a, such that o + a = p and o® = —q. Then {wn = affb} is a linear

divisible sequence that satisfies the k + 1 order linear homogeneous recurrence relation

k+1 ] k41 .
wnsan =307 () @ ey (1)
=1

for n > 0 with initial conditions w; = af, for0<i<k.

Proof. Let {a,} be a distinct second order linear divisible sequence that can be defined by (2.1) with initial
condition ag = 0 and a; arbitrary. Let the sequence {a, } has a characteristic equation 2% — pxr — ¢ = 0 with

the duplicate root «, such that o + a = p and o = —q. Then, by equation (4.1), we have
w, = ak =n*af ()" H)* = nkal (o/’“)rk1 = (ak)n.

Since the above equation is in the form of equation (1.4), we know the sequence {w,} can be expressed as
a linear homogeneous recurrence relation whose characteristic equation has the root o with a multiplicity
of at least k + 1. We will let it have multiplicity k£ + 1 since that means we will have k + 1 roots, which is
how many characteristic roots we need for a k + 1 order linear divisible sequence Thus, if we let o have
multiplicity k£ + 1, then the characteristic function become
(z— k)" = ]il (k + 1)xk+1—j (=t} = 2h+1 4 Iil(_l)j <k+ 1) AT (k)
=0\ J = J

Therefore, when we take the kth power of a second order linear divisible sequence, we can construct a

k + 1 order linear divisible sequence defined by recurrence relation (7.1). It is easy to see by how we define

wn:aﬁthatwi:af,for()gigk. ]

While we did not come up with a pattern, the linear homogeneous recursion relations we constructed are
still useful. In He and Shiue[9], they showed that certain well know fourth order linear divisible sequences
are actually represented by the linear homogeneous recursion relation (3.2). Thus, these well know fourth

order linear divisible sequences are the product of two distinct second order linear divisible sequences. We
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can now do the same thing with each of the linear homogeneous recursion relations that we constructed.
So we could check if eighth order linear divisible sequences are the products of three distinct second order
linear divisible sequences, or if ninth order linear divisible sequences are the products of the squares of two
different second order linear divisible sequences. This is left for future work. One other possibility for future
work is to see if the recurrence relations we constructed work for sequences that could be defined by (2.1)

or (2.3) that are not divisible to also construct higher order sequences.
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APPENDIX: COEFFICIENTS PRODUCT FOUR SEQUENCES

Factoring, susbsitition of varibles, and simplification of the coefficent of z'* from
polynomial in Theorem 3.5 can be found online at:
https://www.pdf-archive.com/2017/10/17 /coefficient-x14/coeflicient-x14.pdf
Factoring, susbsitition of varibles, and simplification of the coefficent of '3 from
polynomial in Theorem 3.5 can be found online at:
https://www.pdf-archive.com/2017/10/17 /coefficient-x13/coeflicient-x13.pdf
Factoring, susbsitition of varibles, and simplification of the coefficent of x'? from
polynomial in Theorem 3.5 can be found online at:
https://www.pdf-archive.com/2017/10/17 /coefficient-x12/coeflicient-x12.pdf
Factoring, susbsitition of varibles, and simplification of the coefficent of z'! from
polynomial in Theorem 3.5 can be found online at:
https://www.pdf-archive.com/2017/10/17 /coefficient-x11/coefficient-x11.pdf
Factoring, susbsitition of varibles, and simplification of the coefficent of % from
polynomial in Theorem 3.5 can be found online at:

https://www.pdf-archive.com/2017/10/17 /coefficient-x10/coeflicient-x10.pdf

the

the

the

the

the

characteristic

characteristic

characteristic

characteristic

characteristic

Factoring, susbsitition of varibles, and simplification of the coefficent of x° from the characteristic poly-

nomial in Theorem 3.5 can be found online at:

https://www.pdf-archive.com/2017/10/17 /coefficient-x9/ coefficient-x9.pdf

Factoring, susbsitition of varibles, and simplification of the coefficent of 28 from the characteristic poly-

nomial in Theorem 3.5 can be found online at:

https://www.pdf-archive.com/2017/10/17 /coefficient-x8 / coefficient-x8.pdf
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