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ABSTRACT 

Modeling Mortality Rates for Leukemia between Men and Women in the United States 

By 

Blessed Quansah 

 

Dr. Chih-Hsiang Ho, Examination Committee Chair 

Professor of Mathematical Sciences 

University of Nevada, Las Vegas 

Leukemia related deaths increased dramatically over the last forty years. Leukemia is a 

malignant disease or cancer of the bone marrow and blood. It is characterized by the 

uncontrolled accumulation of blood cells. Leukemia is divided into two categories: myelogenous 

or lymphocytic, each of which can be acute or chronic. The terms, myelogenous or lymphocytic 

denote the cell type involved. 

In this thesis, the proposed modeling techniques are applied to leukemia deaths data from 

the Surveillance Epidemiology and End Results (SEER). In particular, annual deaths data from 

1969 to 2007 are used in the data analysis, which includes three major parts: 1) male and female 

death rate comparisons using the conditional test (Przyborowski and Wilenski, 1940); 2) 

development of the empirical recurrence rate (Ho, 2008) and the empirical recurrence rates ratio 

time series; and 3) the Autoregressive Integrated Moving Average (ARIMA) model: selection, 

validation, and forecasting for the leukemia death rates and ratio.        
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          CHAPTER 1 

INTRODUCTION 

Leukemia is cancer of the human blood cells. It starts in the bone marrow, the soft tissue 

inside most bones. Bone marrow is where blood cells are made. When you have leukemia, the 

bone marrow starts to make a lot of abnormal white blood cells, called leukemia cells. The 

leukemia leukocytes, do not work like the normal white blood cells (leukocytes), instead they 

grow faster and fail to stop growing than normal leukocytes. Over time, leukemia cells can 

crowd out the normal white blood cells. The abundance of leukemia leukocytes can lead to 

serious problems such as anemia, bleeding, and infections. Leukemia cells can also spread to 

other organs and cause swelling or pain. The four main types of leukemia are as follows: 

• Acute lymphoblastic (ALL) is the most common leukemia in children.  
 
Adults can also get it. 
 

• Acute myelogenous leukemia (AML) affects both children and adults. 
 

• Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults,  
 

Who are mostly older than 55years. Children almost never get it. 
 

• Chronic myelogenous leukemia (CML) occurs mostly in adults. 
 

Experts do not know the causes of leukemia, but some factors are known to increase the 

risk of some types of leukemia. One is more likely to develop leukemia if exposed to large 

amounts of radiation, certain chemicals at work such as benzene, chemotherapy to treat another 

cancer, Down syndrome or other genetic problems, and cigarette smoke. However few people 

who have these risk factors develop leukemia. Most people who acquire leukemia do not have 

any known risk factors (National Institute of Health, 2011). 
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The following report presents detailed data from 1969 to 2007 on death rates according to 

a number of social, demographic, and medical characteristics. This data provides information on 

mortality patterns among residents of the United States by variables such as age, sex, and marital 

status. 

 In 2007, a total of 2,423,712 resident deaths were registered in the United States. The five 

leading causes of death in 2007 were: 

1. Heart disease 
 

2. Malignant neoplasm (cancer) 
 

3. Cerebrovascular disease 
 

4. Chronic lower respiratory disease 
 

5. Accidents (unintentional  injuries) 
 

With 77.9 being the current Life expectancy a continuing increasing is seen based on data 

from 2006 and 2007. Life expectancy increased for the total population, including both the black 

and white populations. Both black and white males and females experienced an increase in life 

expectancy in 2007 compared with 2006. Rates for the top three leading causes for death: heart 

disease, cancer, and stroke, continued a decreasing trend. The difference in mortality rates 

between men and women increased slightly in 2007 from 2006 (National Cancer for Health 

Statistics, 2010). 

In this study, the proposed modeling techniques are applied to the leukemia deaths data 

from the SEER. First, the data of deaths will be divided into two, based on the gender, as 

follows: 1) Male deaths, and 2) Female deaths. In particular, annual data from 1969-2007 are 

used in the data analysis, which includes three major parts: 1) leukemia deaths rates comparisons 

using the conditional test (Przyborowski and Wilenski, 1940); 2) development of the empirical 
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recurrence rate (Ho, 2008) and the empirical recurrence rates ratio time series; and 3) the 

Autoregressive Integrated Moving Average (ARIMA) model selection: validation, and 

forecasting for the Leukemia death rates and ratio.        

Death rate comparisons using the conditional test and the empirical recurrence rate time 

series will be presented in Chapter 2. The fundamental tools of ARIMA are introduced in chapter 

3. Chapter 4 illustrates the ARIMA modeling techniques using the empirical recurrence rates 

ratio generated from annual leukemia deaths data. Chapter 5 concludes our work. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



 

   4 

 

CHAPTER 2 
 

THEORY AND METHOD FOR POINT PROCESSES 

2.1 Leukemia Data 

Statistics for deaths that occurred in the United States during the period 1969 to 2007 are 

obtained from Surveillance Epidemiology and End Results (SEER) Program 

(www.seer.cancer.gov). From 2003 to 2007 the median age of death for leukemia was 74 years 

of age. Approximately 3.0% died under age 20; 3.1% between 20 and 34; 3.3% between 35 and 

44; 6.4% between 45 and 54; 12.6% between 55 and 64; 21.6% between 65 and 74; 31.6% 

between 75 and 84; and 18.4% 85+ years of age. (www.revolutionhealth.com) 

 In the data set, the year 1969 is the time origin𝑡𝑡0, and 2007 is the present time 0. There 

were 709,534 leukemia related deaths during the past 39 years (Appendix Table 1).By using the 

raw data, we construct a line plot to observe any possible trends (Figure 2.1). It is clear from the 

line plots that the number of deaths due to leukemia is increasing for male and leveling off for 

female in the last five years. 

 

Figure 2.1 Annual leukemia related deaths data in the United States between 1969 and 2007. 

 

http://www.seer.cancer.gov/�
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2.2 Poisson Process 

To reveal hidden characteristics of the leukemia data, we employ a point process to 

investigate the data and then conduct a conditional test to support our claim. A point process is a 

stochastic model that describes the occurrences of events. These occurrences are thought of as 

points on the time axis. Let N(t) be the random variable that denotes the number of events in the 

interval (0, t]. The intensity function of the process is defined as 𝜆𝜆(𝑡𝑡) = lim∆𝑡𝑡→0
𝑃𝑃(𝑁𝑁(𝑡𝑡 ,𝑡𝑡+∆𝑡𝑡]=1)

∆𝑡𝑡
.A 

counting process N(t) is called a Poisson process, if and only if it satisfies the three conditions: 

(1) N(0) = 0; (2) the random variables N(a, b] and N(c, d] are independent, for any a < b≤ c < d; 

and (3) for any a < b, N(a, b] has the Poisson distribution with mean dxxb
a∫ )(λ . If λ(t) is 

constant over 𝑡𝑡, the process is referred to as a homogeneous Poisson process (HPP). For an HPP, 

λ  is treated as the rate of occurrences. 

 

2.3 The Conditional Test. 

The problem of hypothesis testing about two Poisson means is will be addressed. The 

usual conditional test (C-test) and a test based on estimated p-values (E-test) are considered. The 

exact properties of the tests are evaluated numerically. Numerical studies indicate that the E-test 

is almost exact because its size seldom exceeds the nominal level, and it is more powerful than 

the C-test. Power calculations for both tests are outlined below. 

Let X and Y be respectively independent samples, from Poisson(λ1)  and Poisson(λ2) 

processes, the joint distribution of X and Y:  

f(x, y)= �λ1
x e−λ1

x!
� �λ2

y e−λ2

y!
� =λ1

xλ2
y

x!y!
e−(λ1+λ2) 

Note that  

                                          X + Y = S ~ Poisson(λ1 + λ2), 
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                                               X = 0, 1, 2, 3… 

                                               Y = 0, 1, 2, 3 … 

The well- known method of testing the difference between two Poisson means is the conditional 

test (Przyborowski and Wilenski, 1940). The conditional distribution of X given X + Y = S 

follows a binomial distribution whose success probability is a function of the ratio  λ1
λ2

 = ρ. 

Considering the conditional distribution, X given S = s > 0, the probability function: 

f(x ∣ S = s) =   P(X=x,   X + Y = s)
P(X + Y = s)

 

                    = 
e−λ1λ1

x

x ! .e−λ2 λ1
s−x

(s−x )!

e−(λ1+λ2)(λ1+λ2)s
S!

 

                                       =�𝑠𝑠𝑥𝑥� �
𝜆𝜆1

𝜆𝜆1+𝜆𝜆2
�
𝑥𝑥
� 𝜆𝜆2
𝜆𝜆1+𝜆𝜆2

�
𝑠𝑠−𝑥𝑥

 

                                                                 =�𝑠𝑠𝑥𝑥� �
1

1+𝜌𝜌
�
𝑥𝑥
� 𝜌𝜌

1+𝜌𝜌
�
𝑠𝑠−𝑥𝑥

 ~ Binomial�𝑠𝑠, 1
1+𝜌𝜌

� 

Let  1
1+ρ

 = p, then to test the equality of two Poisson means is to test the following hypothesis: 

H0: p = 1 
 2

 Vs H1: p ≠1
2
 

Which is equivalent to 

        Ho: ρ =1   Vs     H1: ρ ≠ 1. 

It can be generalized as follows for comparison of leukemia deaths: 

         Ho  : p ≤ poVs  H1: p>  po  

where0 <  p0< 1. And it is equivalent to  

               Ho : ρ ≥  ρo     Vs   H1: ρ < ρo  

where  ρo =
   1−po

p0
. 

The conditional test rejectsHo , when X = k is observed, whenever 

P-value = P(X ≥ k ∣ S = s) = ∑ �s
i�

s
i=k po

i(1− po)s−i  ≤ α, 
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where α is the level of significance. Of course normal approximation can be implemented for the  

above binomial test for large number of s. 

2.4 Conditional test for leukemia deaths. 

In this thesis, I will divide the number of leukemia deaths into two main groups: female 

and male. For each death group, I will assume that the number of deaths follows a homogeneous 

Poisson process. Let λ1 be the death rate of the male group, andλ2 that of the female group. For 

the conditional test, 

ρ12 = λ2  
λ1

   and  p12 = 1
1+ρ12

  , 

Then the hypothesis for death rates between any two groups is equal to a reference value: 

Ho   :  ρ12   ≥ρ12
0        Vs        H1 : ρ12< ρ12

o  

whereρ12
o  is a known reference ratio from female and male leukemia death rates and the 

corresponding Binomial (Conditional) test is  

Ho: p12 ≤  p12
o    Vs    H1 : p12 > p12

o , 

Where 0 <   p12 
o < 1 and p12

o    =  1
  1+ρ12

0 . 

           Define the average leukemia death rates ratio from the male and female groups as a 

reference ratio ρ12
o , throughout the entire observation period. That is, we wish to test whether the 

rate ratio of the male leukemia deaths is significantly lower than the female group. In other 

words, if the death rate ratio (ρ12), is significantly higher than that of the reference value  ρ12
o  , 

male has a higher death rate. Let the reference value,ρ12
o  for the female death rate be 1, while p12

0  

= 0.5. The cumulated number of female death rate from 1969 to 2007 is 314,456 while that of 

men is 395,078. So the total number is 709,534. Based on the conditional test, p-value = 

P(X ≥ 395078|S = 709,534) 

=∑ �709534
k �(0.5)k(1− 0.5)709534−k709534

k=395078 ≈ 0 
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The null hypothesis is rejected, that is, males are more likely to die from leukemia than female. 

A 95% one-sided confidence interval for 𝑝𝑝12 is [0.5562236078, 1]. 

2.5 Empirical Recurrence Rates. 

A time series empirical recurrence rates are developed in order to monitor the deaths rates 

of the individual groups that is male and female. 

Let 1, , nt t  be the time of the n -ordered leukemia deaths during an observation period

)0,( 0t , where 0t is the time-origin and0 is the present time. If h  is the time-step, then a discrete 

time series { }z  is generated sequentially at equidistant time intervals ,ot h+ 0 2 ,t h+ , 0 ,t h+ 

, 0t Nh+ (= 0 = present time). z is regarded as the observation at time t 0( )t h= +  , for the 

leukemia deaths to be modeled. A key parameter desired by the modelers is the recurrence rate of 

the targeted leukemia deaths data. Therefore, a time series of the empirical recurrence rates (Ho, 

2008) is generated as follows: 

𝑧𝑧𝑙𝑙 =
𝑛𝑛𝑙𝑙
𝑙𝑙ℎ

=
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑜𝑜 𝑙𝑙𝑛𝑛𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛𝑙𝑙𝑡𝑡 𝑑𝑑𝑛𝑛𝑡𝑡𝑡𝑡ℎ𝑠𝑠 𝑙𝑙𝑛𝑛 (𝑡𝑡𝑡𝑡 , 𝑡𝑡𝑡𝑡 + 𝑙𝑙ℎ)

𝑙𝑙ℎ
 

where =1, 2…N. Note that z  evolves over time and is simply the maximum likelihood 

estimator (MLE) of the mean, if the underlying process observed in 0(t , 0 )t h+   is a 

homogeneous Poisson process. The time-plot of the empirical recurrence rate (ERR-plot), offers 

the possibility of further insights into the data. ERR plots for male and female leukemia deaths 

within the study period with time-step h = 1year.If we start at timeT , the value ,T kz + 1k ≥ needs 

to be predicted based on the sample observation 1( , , )Tz z of an ERR time series. In a regression 

modeling, let X  denote the time index, z be the response values, and then use the fitted 

regression model to obtain T kz + .ERR plots for male and female leukemia deaths within the study 

period with time-step h = 1year are shown in Figure 2.2.It is clear that the death rate for male and 
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female are rising approximately at the same rate. To enable us compare the leukemia death rates 

ratio between men and women we introduce empirical recurrence rates ratio chapter 3.

 

Figure 2.2 ERR plots for male and female leukemia deaths within the study period with time-

step h = 1year. 
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CHAPTER 3 
 

THEORY AND METHOD FOR ARIMA MODELS 
 

3.1 Empirical Recurrence Rates Ratio 
 

We produce an empirical recurrence rates ratio time series for the leukemia deaths rates 

ratio as follows: The C-test examines the relationship of two means of homogenous Poisson 

processes, which have constant expected values. Motivated by the ideas of the C-test and the 

empirical recurrence rate developed by Ho (2008), the empirical recurrence rates ratio time series 

for the leukemia deaths rates ratio is produced as follows: 

Let 𝑡𝑡1,𝑡𝑡2, …, 𝑡𝑡𝑛𝑛be the time of the n-ordered leukemia deaths during an observation period (t0, 

t0+Nh) from the past to the present. Then a discrete time series {dl} is generated sequentially 

as 𝑡𝑡0 + ℎ, 𝑡𝑡0 + 2ℎ,…,𝑡𝑡0 + 𝑙𝑙ℎ,…,𝑡𝑡0 + 𝑁𝑁ℎ (= the present time). h represents the time step. Let Xij 

be the number of leukemia deaths in 𝑙𝑙𝑡𝑡ℎ  group at 𝑗𝑗𝑡𝑡ℎ  lag, where 𝑙𝑙 = 1, 2 and 𝑗𝑗 = 1, 2, … , N; and 

the Empirical Recurrence Rates Ratio (ERRR) is defined as follows: 

𝑑𝑑𝑙𝑙 =
∑ 𝑋𝑋1𝑗𝑗
𝑙𝑙
𝑗𝑗=1

∑ (𝑋𝑋1𝑗𝑗+𝑋𝑋2𝑗𝑗 )𝑙𝑙
𝑗𝑗=1

 ,  𝑙𝑙 = 1,2, … , N. 

Both the ERR and ERRR offer the possibility of developing a model, monitoring and 

predicting leukemia death rate ratios. Moreover, if both of the targeted processes are 

homogeneous Poisson processes, then the ERRR is the maximum likelihood estimator (MLE) of 

p, and the MLE of 𝜌𝜌 can be obtained by the invariance property of the MLE. 
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3.2 ARIMA Models 

 Since the 1970s, primarily due to the work of Box and Jenkins (1976), a class of mixed 

autoregressive (AR) and moving average (MA) models originally proposed by Yule (1927) and 

Slutsky (1937), have been useful in representing the serial dependent relationship of many time 

series encountered in practice. Autoregressive integrated moving average (ARIMA) models 

allow us not only to uncover the hidden patterns in the data, but also to generate forecasts and 

predict a variable’s future values from its past values. 

 A branch of the ARIMA model known as the autoregression refers to a special kind of 

regression analysis aimed at analysis of time series. It rests on autoregressive models – that is, 

models where the dependent variable is the current value and the independent variable is 

previous p-values of the time series. The p is called “the order of the autoregression”. 

The moving average (MA) model is another form of ARIMA model in which the time series 

is described as a linear function of its prior errors plus a noise term. 

Given a time series of data𝑥𝑥𝑡𝑡  the ARMA model is a tool for understanding and perhaps 

predicting future value in this series. The model consists of two parts, an autoregressive (AR) 

part and a moving average (MA) part. The model is usually referred to as the ARMA (p,q) model 

where p is the order of the autoregressive part and q is the order of the moving average part. 

 

3.2.1 Autoregressive model of order p, AR(p) 

An autoregressive model of order p is of the form 𝑥𝑥𝑡𝑡 = 𝜙𝜙1𝑥𝑥𝑡𝑡−1 + 𝜙𝜙2𝑥𝑥𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝑤𝑤𝑡𝑡 . 

Where  𝑥𝑥𝑡𝑡  is stationary, 𝜙𝜙1,𝜙𝜙2, …,𝜙𝜙𝑝𝑝  are constants (𝜙𝜙𝑝𝑝 ≠ 0) and 𝑤𝑤𝑡𝑡  is a Gaussian white noise 

series with mean zero and variance 𝜎𝜎𝑤𝑤2  . The mean of 𝑥𝑥𝑡𝑡  is zero. If the mean, μ, of  𝑥𝑥𝑡𝑡  is not zero, 

replace 𝑥𝑥𝑡𝑡by 𝑥𝑥𝑡𝑡 − 𝜇𝜇; that is  

𝑥𝑥𝑡𝑡 − 𝜇𝜇 = 𝜙𝜙1(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) + 𝜙𝜙2(𝑥𝑥𝑡𝑡−2 − 𝜇𝜇) + ⋯+ 𝜙𝜙𝑝𝑝(𝑥𝑥𝑡𝑡−𝑝𝑝 − 𝜇𝜇) + 𝑤𝑤𝑡𝑡  
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The autoregressive operator is defined to be 𝜙𝜙(𝐵𝐵) = 1 −𝜙𝜙1𝐵𝐵 − 𝜙𝜙2𝐵𝐵2 −⋯− 𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝 . 

 

3.2.2 Moving average model of order q, MA(q) 

The moving average model of order q is defined to be                                                                                                 

𝑥𝑥𝑡𝑡 = 𝑤𝑤𝑡𝑡 + 𝜃𝜃1𝑤𝑤𝑡𝑡−1 + 𝜃𝜃2𝑤𝑤𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑞𝑞𝑤𝑤𝑡𝑡−𝑞𝑞 . 

Where there are q lags in the moving average and 𝜃𝜃1,𝜃𝜃2,…,𝜃𝜃𝑞𝑞  (𝜃𝜃𝑞𝑞 ≠ 0) are parameters. The 

noise  𝑤𝑤𝑡𝑡  is assumed to be Gaussian white noise. The moving average operator is                                            

𝜃𝜃(𝐵𝐵) = 1 + 𝜃𝜃1𝐵𝐵 + 𝜃𝜃2𝐵𝐵2 + ⋯+ 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞 . 

 

                    3.2.3 Autoregressive Moving average model of order p, q. ARMA(p, q) 

A sequence,{𝑤𝑤𝑡𝑡}, of uncorrelated random variables, each with zero mean and variance 𝜎𝜎2, is 

referred to as white noise. This is indicated by the notation 

{𝑤𝑤𝑡𝑡}~WN(0,𝜎𝜎2). 

 

 The general ARMA models are a combination of the AR operators and MA operators.  

A time series {𝑥𝑥𝑡𝑡 ; 𝑡𝑡 = 0, ±1, ±2, … } is ARMA if it is stationary and  

𝑥𝑥𝑡𝑡 = 𝜙𝜙1𝑥𝑥𝑡𝑡−1 + ⋯+  𝜙𝜙𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝑤𝑤𝑡𝑡 + 𝜃𝜃1𝑤𝑤𝑡𝑡−1 + ⋯+ 𝜃𝜃𝑞𝑞𝑤𝑤𝑡𝑡−𝑞𝑞  

where 𝜙𝜙𝑝𝑝 ≠ 0,𝜃𝜃𝑞𝑞 ≠ 0. The parameter p and q are called the autoregressive and the moving 

average orders, respectively. 

The following are the problems for ARMA(p, q): 

(1) Parameter redundant models: A model is parameter redundant if it can be  

reparameterized in terms of a smaller number of parameters than the size of its defining  
 
parameter set, so that using classical inference it would not be possible to estimate all  
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the original parameters. One approach to removing parameter redundancy is to include  
 

covariates in a model, that set parameters to be appropriate functions of covariates. 

(2) Stationary AR models that depend on the future: To overcome this problem of future- 

dependent model, we formally introduce the concept of causality. An ARMA (p,q) model  

is causal if and only if φ(z) ≠ 0 for |z| ≤ 1. 

(3) MA models that are not unique:  To address the problem of uniqueness we choose the 

model that allows an infinite autoregressive representation. 

  The introduction of correlation as a phenomenon that may be generated through  

lagged linear relations leads to proposing the autoregressive (AR) and autoregressive moving  

average (ARMA) models. Adding nonstationary models to the mix leads to the autoregressive  

integrated moving average (ARIMA) models popularized in the landmark work by Box and  

Jenkins (1970). 

 

 

3.2.4 Stationary Time Series 

A stationary process is a stochastic process whose joint probability distribution does not 

change when shifted in time or space. As a result, parameters such as the mean and variance, if 

they exist, also do not change over time or position. A weak stationary time series, xt , is a finite 

variance process such that 

         (i) the mean value function, ut  is constant and does not depend on time t, and  

         (ii) the covariance function, γ(s, t) depends on s and t only through their difference |s − t|. 

Stationarity is used as a tool in time series analysis, where the raw data are often  
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transformed to become stationary; most data are often seasonal and/or dependent and are  

therefore nonstationary. 

 

Although the theoretical autocorrelation functions are useful for describing the properties of  

the data, most of the analysis must be performed using sampled points 𝑥𝑥1, 𝑥𝑥2,…𝑥𝑥𝑛𝑛  that are   

available for estimating the mean, autocovariance, and autocorrelation functions. From the point  

of view of classical statistics, this poses a problem because we will typically not have iid copies  

of𝑥𝑥𝑡𝑡  that are available for estimating the covariance and correlation functions. In the usual  

situation of only one realization, however, the assumption of stationarity becomes critical. 

 

3.3 Data Transformation 

 In statistics, data transformation refers to the application of a deterministic mathematical 

function to each point in a data set that is, each data point ziis replaced with the transformed 

value yi = f (zi), where f is a function. Transformations are applied so that the data appear to more 

closely meet the assumptions of a statistical inference procedure that is to be applied or to 

improve the interpretability or appearance of graphs.  

Nearly always, the function that is to be used to transform the data is invertible and 

generally is continuous. The transformation is usually applied to a collection of comparable 

measurements. We will introduce three common transformations that are called Box-Cox, 

differencing and subtracting the mean as follows.  

3.3.1 Box-Cox Transformation 

In statistics, the power transform is from a family of functions that are applied to create a  

rank-preserving transformation of data using power functions. This is a useful data processing 

technique used to stabilize variance, make the data more normal distribution-like, improve the  
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correlation between variables and other data stabilization procedures. The Box–Cox 

transformation, by statisticians George E.P. Box and David Cox, is one particular way of  

parameterising a power transform that has advantageous properties. 

If the original observations are nYYYY ,... , , 321 , the Box-Cox transformation λf converts 

them to )(),...( ),( 21 nYfYfYf λλλ , where: 
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Here, λ = 1
1 2( , )λ λ . In practice we could choose 2λ  such that 2 0y λ+ >  for any y. So, researchers 

could only view 1λ  as the model parameter. This transformation is useful when the variability of 

the data increases or decreases with the level. By suitable choice ofλ , the variability can be 

made nearly constant. For instance, positive data whose standard deviation increases linearly 

with level, the variability can be stabilized by choosing λ = 0 (Brockwell et al., 2002). 

3.3.2 Differencing 

In the case that the time series data at hand has a trend in it, we should first difference the 

data to remove the trend and then consider the autocorrelation function for the differenced data 

for signs of seasonality at the seasonal lags. Differencing is an important technique to transform 

data, to control autocorrelation, and to achieve stationary time series. The first difference is 

denoted as: 

1 (1 )t t t tX X X B X−∇ = − = −  
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where B is the backshift operator. We may extend the notion further and define the differences of 

order d as: 

 
(1 )d d

t tX B X∇ = −  
Usually, single differencing is used to remove linear trends and double differencing is used 

to remove quadratic trend. We can eliminate seasonality and trend of period d by introducing the 

lag d difference operator d∇ :  

.)1( t
d

dtttd XBXXX −=−=∇ −  

This operator should not be confused with the operator (1 )dB− (Ho, 2010a). Normally, the 

correct amount of differencing is the lowest order of differencing that yields a time series which 

fluctuates around a well-defined mean value and whose autocorrelation function (ACF) plot 

decays rapidly to zero, either from above or below.  Thus, at every stage of differencing, we 

check the plots of sample autocorrelation function (ACF) and the sample partial autocorrelation 

function (PACF)to see where the ACF/PACF “cuts off” the bounds 1.96 / n± .  

A time plot of the data will typically suggest whether any differencing is needed after the  

first differencing. However, over differencing may introduce dependence where none exist. In  

addition to the time plot, the sample ACF can help in indicating whether differencing is needed.  

The sample ACF will not decay to zero as fast as h increases. Thus a slow decay  

is an indication that differencing  may be needed.  

It is desirable to find a sample ACF that decays fairly rapidly. We say that a series is 

stationary if the sample ACF has very few significant spikes at very small lags and then cuts off 

drastically or dies down very quickly. If the samples ACF decay slowly, the series still has some 

trend. If the ACF has periodicity, the series has seasonality. If this occurs we should do some 

more differencing of the data before continuing. The Behavior of the ACF and PACF for ARMA 

models are summarized in table 3.1(Shumway and Stoffer, 2006). 
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Table 3.1 Behavior of the ACF and PACF for  ARMA models. 
 AR(p) MA(q) ARMA(p, q) 

ACF Tails off Cuts off after lag q Tails off 

PACF Cuts off after lag p Tails off Tails off 

 

3.3.3 Subtracting the Mean 

The term, ARMA model, is used in the programITSM2000 (Brockwell et al., 2002) to 

denote a zero-mean ARMA process. Therefore, the sample mean of the data should be small 

before modeling. Once the apparent deviations from stationary of the data have been removed, 

the sample mean of the transformed data should be subtracted from each observation. The search  

for a fitted ARMA model for a mean-corrected data set then follows. 

 

3.4 Model Diagnostics 

  Model diagnostics is understood as a more or less formal check of properties that certain 

residuals should have under certain assumptions that the data were generated by the model which 

is under investigation. In this thesis we will check the residual ACF/PACF of the models that we 

develop. Also, the models need to pass the test for randomness of the residuals. After the model 

diagnostics process, further predictions and comparisons can be done.  

 

3.4.1 The Sample ACF /PACF of the Residuals 

  The residuals autocorrelation function is the basic model checking tool in time series 

analysis, but it is useless when its distribution is incorrectly approximated because of parameter 

estimation or because an unnoticed higher serial dependence have not been taken into account. 

 The sample autocorrelations of an independent and identically distributed (iid) 
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sequence 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛  are approximately iid with distribution N(0, 1
𝑛𝑛
). We can therefore test 

whether or not the observed residuals are consistent with iid noise by examining the sample 

correlations of the residuals and rejecting the iid noise hypothesis if more than two or three out 

of 40 fall outside the bounds ±1.96√𝑛𝑛 or if one falls far outside the bounds (Brockwell et al, 

2002). 

3.4.2 Tests for Randomness of the Residuals 

 A popular test, formulated by Ljung and Box (1978), called the Ljung-Box Test, is 

commonly used to check whether the residuals of a fitted model are observed values of 

independent and identically distributed random variables in ARIMA modeling.  It is referred to 

as a portmanteau test, since it is based on the autocorrelation plot and tests the overall 

independence based on a few lags. Then, the definition of Ljung-Box test is as follows: 

:0H  The sequence data are iid 

:aH  The sequence data are not iid 

 And use the test statistic as: 

2

1

1 ˆ)()2()ˆ(ˆ
k

m
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1

ˆˆˆˆ , the estimated autocorrelation at lag k , 

𝑛𝑛 = sample size, 

   𝑛𝑛 = number of lags being tested (As a rule of thumb, the sample ACF and PACF are good 

estimates of the ACF and PACF of a stationary process for lags up to about a third of the sample 

size (Brockwell and Davis, 2002) where naa ˆ,...,ˆ1 are the residuals after a model has been fitted to 

a series nzz ,...,1 . If no model is being fitted, then naa ˆ,...,ˆ1 are the “mean corrected” series of 

nzz ,...,1 .  
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If the sample size n is large, the distribution of )ˆ(ˆ rQ  is roughly 2
qpm −−χ under the null 

hypothesis, where 𝑛𝑛 − 𝑝𝑝 − 𝑞𝑞 is the degree freedom of Chi-square distribution, and 𝑝𝑝 + 𝑞𝑞 is the 

number of parameters of the fitted model. The null hypothesis will be rejected, if 𝒬𝒬� >

𝜒𝜒1−𝛼𝛼 ;𝑛𝑛−𝑝𝑝−𝑞𝑞
2  at level α. Thus, the sequence data are not independent, or their autocorrelations are 

significantly different from zero. 

3.4.3 AIC, BIC and AICC Statistics 

We develop a small sample criterion (AICC) for the selection of the order of vector 

autoregressive model. AICC is an approximate unbiased estimator of the Kullback-Lieber 

information. Furthermore, AICC provides better model order choices than the Akaike 

information criterion (AIC) in small sample, but it should be used as a rough guide. The final 

decision is largely based on maximum likelihood estimation. Some other Model selection 

statistics, such as the BIC statistic, are available in ITSM 2000. The BIC statistic (Schwarz, 

1978) is a Bayesian modification of the AIC statistic. The BIC statistics evaluated at the same 

time as the AICC, and it is used in the same way as the AICC. Each information statistic is 

defined as follows: 

 

Where is the error variance, the error variance in this case is defined as 

𝜎𝜎�𝜖𝜖
2 =

1
𝑛𝑛
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One may point out from probability theory, that 𝜎𝜎�𝜖𝜖2 is a biased estimator for the true variance, σ2, 

and  is the number of parameters estimated in the model, including a constant term. 

The second term in all three equations is a consequence for increasing r. Hence, if we want to 

minimize the values of these criteria, we should minimize the number of parameters. Therefore, 

the best model is the model that adequately describes data and has the fewest parameters. 

3.5 Forecasting 

 This thesis outlines the practical steps which need to be undertaken to use autoregressive  

integrated moving average (ARIMA) time series models for forecasting death rates of male and  

female. The emphasis is on forecast performance which suggests more focus on minimizing    

death rates forecast errors than on maximizing in-sample “goodness of fit.”  Practical issues in  

ARIMA time series forecasting are illustrated.  The candidate ARIMA models will be used to  

predict future values of the time series from the past values. The forecasting function 𝑧𝑧𝑡𝑡 = 

𝑜𝑜(𝑧𝑧𝑡𝑡−1, … , 𝑧𝑧1) + 𝑡𝑡𝑡𝑡has the minimum mean square error. The first part of the above equation  

𝑜𝑜(𝑧𝑧𝑡𝑡−1, … 𝑧𝑧1)is a function of the past values of the series and it should be determined by the  

data. The second part , called noise part, is a sequence of iid variables. 

Predictions will be achieved by forecasting the residuals and then inverting the 

transformations adopted to arrive at forecasts of the original series. Also, we will observe which 

model is the best fitting model by comparing the prediction from the training set with the 

prediction set. Then, I will combine the training sample and the prediction set as a full data set to 

forecast death rates ratio for the predicted set, based on the same techniques as before. 
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CHAPTER 4 
 

ANNUAL LEUKEMIA RELATED DEATHS DATA ANALYSIS 
 

4.1 ERRR-plots 

Since there are 709,534 Leukemia related deaths in the 39 years of study, which indicates 

there is approximately 18,194 Leukemia related deaths in every year. We choose h = 1year as the 

time-step and we will try to predict leukemia-related deaths with h = 1year. Figure 4.1 shows 

ERRR plots with time-step h=1year which show a continuous decline from lag 1 to lag 33 and 

then rises a little from lag 34 to lag 39. 

 

Figure 4.1ERRR plots with time-steps h=1year.   
 

 

4.2 Data Splitting. 

 In some cases, researchers might want to separate several time series contained in one 

data set into different data sets: training sample and prediction set. Training sample is used to 

develop a model for prediction. Prediction set is used to evaluate the reasonableness and 

predictive ability of the selected model (one round of cross validation). 

 Cross–validation, sometimes called rotation estimation, is a technique for assessing how 

the results a statistical analysis will generalize to an independent data set. It is mainly used in 
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settings where the goal is prediction, and one wants to estimate how accurately a predictive 

model will perform in practice. Multiple rounds of cross-validation are performed using different 

partitions, and the validation results are averaged over the rounds. The application in this regard 

will be detailed in Section 4.3 and 4.4. 

4.3 ARIMA Modeling with h = 1year. 

 We use the ITSM2000 software to model the ERRR data. The data set with time-step h = 

1year has 39 lags in total. At first, we use the technique described in Section 4.2 to split the data 

into two sets: training sample and prediction set. In this case, our training sample is the original 

data set excluding the last 3 ERRRs, which is the prediction set (Figure 4.2).  

 

 

Figure 4.2 ERRR plots of the Training Sample and prediction set with h = 1year. 

These three ERRR values in the prediction set, representing the number of leukemia-

related deaths in three years, will be used to compare to those of the one to three-step predictions 

produced by a candidate model. Of course, the size of a prediction set is quite flexible as long as 

the prediction set fits a common goal of model selection. Then, we focus on the training sample 

set and plot the sample ACF and PACF to observe the data set (Figure 4.3). From the plot of 

sample ACF, we find that the spikes die slowly and have periodicity. This indicates non-
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stationary behavior. As mentioned in Section 2.4, this data has trend and seasonality. Thus, 

differencing is considered.  
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4.3.1 Training Sample modeling 

(a) 

 

(b) 

 

(c) 

 

Figure 4.3a, Time-plot; b, Sample ACF; c, Sample PACF of the Training Sample with h =  

1year.  

Applying the differencing operator∇on the training sample, we take a difference at lag 2. Figure 

4.4 tells us that the stationarity has almost been achieved. So we do further difference at lag1 



 

   25 

 

(a) 

 

(b) 

 

(c) 

 

Figure 4.4 a, Time-plot; b, Sample ACF; c, Sample PACF of a lag-1 differenced Training 

Sample with h = 1 year. 

Then we subtract the sample mean from each observation of the differenced series to generate a 

stationary zero-mean time series (Figure 4.5) 
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(a) 

 

(b) 

 

(c)  

 

Figure 4.5 a, Time-plot; b, Sample ACF; c, Sample PACF of the twice-differenced  

training sample with h = 1 year. 
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We feel that the ACF and the PACF is tailing off. These suggest that an MA (2) should 

be considered. Indeed, our initial model selection process concludes that the estimated model is:  

ARMA Model:  
X(t) = Z(t) + .08686 Z(t-1) - .5965 Z(t-2) 
 
WN Variance = .000001 
 
MA Coefficients 
       .086863      -.596466 
 
Standard Error of MA Coefficients 
       .139721       .139721 
 
(Residual SS)/N = .00000107669 
 
AICC = -.352068E+03    
BIC  = -.355605E+03    
 
-2Log(Likelihood) = -.358896E+03 
 
 
 

Note that Xt represents a twice-differenced stationary zero-mean time series and the error term Zt 

represents a white noise process.  

A set of diagnostic plots (Figure 4.6) is produced by the ITSM2000 package, consisting of 

the plot of the residuals, its ACF and its PACF for the MA (2) model in which all the spikes lies 

within the boundary line. The AICC statistic is.352068E+03 and the Ljung-Box test is not 

significant (p-value = .88320), indicating that the residuals are white noise. The numerical values 

of the actual ERRRs in the prediction set and the predicted ERRRs by the model MA (2) with 

their counterparts are shown in Table 4.1. 
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(a) 

 

(b)

 

(c) 

 

Figure 4.6 Diagnostics for the MA (2) fitted and twice-differenced Training Sample. 

Residual a, Time-plot; b, Sample ACF; c, Sample PACF. 
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Table 4.1The numerical values of the actual ERRRs in the prediction set and the predicted  

ERRRs and their confidence intervals using the MA (2) based on the training sample. 

 

Year 

 

        Annual    ERRR 

 

   Confidence interval 

Actual Prediction Lower Bound Upper bound 

 
 

                 2005 
 
0.55623 

 
0.55624 

 
 
      0.55460 

 
 

   0.55789 

 
       2006 

 
0.55649 

 
0.55664 

 
      0.55421 

 
    0.55907 

 
       2007 

 
0.55681 

 
0.55712 

 
      0.55369 

 
    0.556057 

 

 We list the ratios of (estimated coefficients)/(1.96×standard error) for each coefficient, 

calculated from the output of an MA (2) model, shown in Section 3.2. The ratios are:  

MA Coefficients 

       .086868      -.596464 

Standard Error of MA Coefficients 

       .139722       .139722 

 
 Note that the ratio at lag1 of MA(2) in absolute value is less than 1, which indicates the  
 
corresponding coefficient is nonzero. We keep the corresponding coefficient.  
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Table 4.2 The numerical values of the predicted ERRRs and their confidence intervals using the 
MA (2) based on the full data set.  

 

Year 

 

        Annual    ERRR 

 

   Confidence interval 

 

Prediction 
Lower Bound Upper bound 

 
2008 

 
                  0.55730 

 
 
      0.55567 

 
 

   0.55893 

 
  2009                           0.55786 

 
      0.555546 

 
  0.56026 

 
 2010 

 
                           0.55850 

 
      0.55511 

 
    0.56188 

 
 

Table 4.2 shows numerical values of the predicted ERRRs and their confidence intervals  
 

using the MA (2) whilst Figure 4.7 depicts the confidence intervals for the predicted values based  
 
on the full data set.  
 

 

Figure 4.7 ERRR plot with Prediction intervals. 

 

Comparisons of the results with the prediction set model are defined in Table 4.3. The predicted  
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values are very similar, indicating that this model is acceptable. Figure 4.8 shows a comparison of  

three forecasted ERRRs with the prediction set which appears to be moving in the same direction 

from lag 1 to lag 3 for both the predicted and the actual ERRR values. 

 

Figure 4.8 Comparison of  three forecasted ERRRs with the prediction set.  

Figure 4.9 depicts the complete Data (training sample and prediction set) with three predicted 

values appended to the training Sample for model validation; Inset: Comparison of three ERRRs with 

Prediction set 

Figure 4.9 The complete Data (Training Sample and Prediction set) with three appended to training 

Sample for model validation; Inset: Comparison of three ERRRs with prediction set 
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0.5564
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4.3.2 Full-Data Forecasting 

Finally, we use the full ERRR time series to forecast the probable number of leukemia related 

deaths in the future. This yields the best-fitted MA (2) model for the mean-corrected and twice-

differenced value atlag1 (same as before).The estimated MLE: 

ARMA Model:  
X(t) = Z(t) + .08003 Z(t-1) - .6162 Z(t-2) 

WN Variance = .982271E-06 

MA Coefficients 

       .080027      -.616228 

Standard Error of MA Coefficients 

       .209105       .143766 

(Residual SS)/N = .982271E-06 

 

The AICC statistic is -0.388089E+03, and the Ljung-Box test is significant (p-value = .80782). 

Then, we check the ratios as follows:  

MA Coefficients 

       .080027      -.616228 

Standard Error of MA Coefficients 

       .209105       .143766 
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4.3.2 ARIMA Models 

The training samples with 36 lags are shown in Figure 4.2 above. The plots of sample ACF 

and PACF on the training sample (Figure 4.3) indicate non stationary behavior. No differencing 

is considered.  This is also a suggestion of the AR(2) model. The estimated (MLE) model is: 

ARMA Model:  

X(t) = .7194 X(t-1) + .2658 X(t-2) 

  + Z(t) 

WN Variance = .000004 

AR Coefficients 

     .719426       .265804 

Standard Error of AR Coefficients 

 .366896       .367090 

(Residual SS)/N = .00000377443 

AICC = -.337258E+03    

BIC  = -.333769E+03    

 

 

The AICC statistic is -0.337258E+03 The Ljung-Box statistic is 5.3557 and the p-value is 

.99934, which indicates that the residuals are approximately white noise. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.10a, ERRR plots after Box-Cox transformation at λ = 0; b, sample ACF; c, Sample 

       PACF of the full data with h= 1year. 

The plots of the training sample (including 36 lags) and its sample ACF and PACF in (Figure 
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4.10b, c) show nonstationarity and periodicity since some of the spikes extend beyond the 

required boundaries from lag 0 to lag7 and from lag 17 to lag 26 in the case of the ACF and at 

lag 0 in the case of the PACF. Therefore, the Box-Cox transformation will be employed to 

remove the trend and seasonality. Since the plot shows decreasing variability, we consider the 

Box-Cox transformation to stabilize the variability. After the λ=0 Box-Cox transformation. The 

actual and the predicted value based on the Training Sample using AR(2) are shown in Table 4.3. 

Table 4.3 Numerical of the Actual and the Predicted based on the Training Sample using AR(2) 

Actual  Prediction Lower Bound Upper Bound 

0.55623 0.55595 0.55413 0.55778 

0.55649 0.55602 0.55377 0.55828 

0.55681 0.55608 0.55341 0.55878 

 

A plot of the ERRR values and their prediction intervals are shown in Figure 4.11 in which the 

predicted values seems to be leveling off from lag 36 to lag 39.  

 

Figure 4.11 ERRR plot with prediction intervals using AR(2) 
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Another model to be considered based on the training sample is ARMA(1,1). Figure 4.12 shows 

a, an ERRR plot after first differencing at lag 1; b, sample ACF; c, Sample PACF based on the 

training sample with h = 1year, its ACF and PACF indicates a stationarity behavior. 

(a) 

 

(b) 

 

(c) 

 

Figure 4.12a, ERRR plot after first differencing at lag 1; b, Sample ACF; c, Sample PACF 

based on the training Sample with h = 1year. 

Figure 4.13 depicts a, ERRR plot after twice-differencing at lag 1; b, Sample ACF; b, Sample 
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PACF. The MLE is as shown below: 

 
ARMA Model: 

X(t) = - .9016 X(t-1) 
     + Z(t) + .9999 Z(t-1) 
 
WN Variance = .000001 
 
AR Coefficients 
      -.901582 
 
Standard Error of AR Coefficients 
       .074359 
 
MA Coefficients 
       .999883 
 
Standard Error of MA Coefficients 
       .002626 
 
(Residual SS)/N = .00000103425 
 
AICC = -.364283E+03    
BIC  = -.371031E+03    

 

The AICC statistic is -0.36428E+03 The Ljung-Box statistic is 6.9634and the p-value = .99680, 

which indicates that the residuals are approximately white noise. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.13 a, ERRR plot after twice-differencing at lag 1; b, Sample ACF; b, Sample PACF 

 
The plots of the training sample and its sample ACF and PACF in (Figure 4.10) show  

 
nonstationarity and periodicity. Therefore, the Box-Cox transformation, and differencing will be  
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employed to remove the trend and seasonality. Since the plot shows decreasing variability, we  
 
consider the Box-Cox transformation to stabilize the variability. After the λ=1Box-Cox  
 
transformation, we see that the trend still exists. We then take the differencing twice at  
 
lag 1. Figures 4.12 and 4.13 tell us the series has reached stationarity. ARMA(1, 1) is then  
 
considered as a fitting model for the training sample. The Actual and the Predicted ERRRs with  
 
their confidence intervals based on the training sample using ARMA(1, 1) are shown in table  
 
4.4.Figure 4.14 depicts ERRR plots with prediction intervals using ARMA(1, 1) with the  
 
predicted values rising  from lag 36 to lag 39.Figure 4.15 shows a, Rescaled Residual-plots; b,  
 
Residual ACF; c, Residual PACF using ARMA(1, 1), this tells us that stationarity has  
 
been achieved. 
 
Table 4.4 Numerical values of the Actual and the Predicted ERRRs with their confidence 
intervals based on the Training Sample using ARMA(1, 1) 

Actual Prediction Lower Bound Upper Bound 

0.55623 0.55623 0.55495 0.55788 

0.55649 0.55673 0.55291 0.55055 

0.55681 0.55763 0.55098 0.56375 

 

Figure 4.14 depicts the ERRR values, the predicted values and their confidence intervals using 

ARMA(1, 1) based on the training sample. 

 

Figure 4.14 ERRR plots with prediction intervals using ARMA(1, 1). 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.15a, Rescaled Residual-plots; b, Residual ACF; c, Residual PACF with using 

ARMA(1, 1). 

The Actual ERRR values and the three models predictions, that is MA(2), ARMA(1,1), and 

AR(2) are then plotted  and compared to find  which of the three predictions is closer to the 

actual ERRR values. Table 4.5 shows the actual values and the models predicted values and 

figure 4.16 displays the actual ERRR values and the predicted values by the three models. There 

is an upward trend from lag 1 to lag 3 with the MA(2) prediction much closer to the actual 
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ERRRs 

Table 4.5Actualand Model predicted values for MA (2), ARMA (1, 1) and AR (2) 
Actual MA(2) ARMA(1,1) AR(2) 

0.55623 0.55624 0.55623 0.55595 

0.55649 0.55664 0.55673 0.55602 

0.55681 0.55712 0.55763 0.55608 

 

 

Figure 4.16 Comparison of the models with the actual values based on the training sample. 

 

 

4.3.3 More ARIMA Models 

We extend the same techniques from the training sample to the full data to confirm our 

results. The data set with the time-step h = 1years has39 lags. The training sample with 36 lags 

and the prediction set with 3 lags are shown in Figure 4.2 above. The plots of sample ACF and 

PACF on the training sample (Figure 4.3) indicate nonstationary behavior. Thus no differencing 

is considered.  This is also a suggestion of the AR (2) model. The estimated (MLE) model is: 

0.555

0.5555
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ARMA Model 
X(t) = .7056 X(t-1) + .2817 X(t-2) 
     + Z(t) 
 
WN Variance = .000004 
 
AR Coefficients 
       .705584       .281745 
 
Standard Error of AR Coefficients 
       .357722       .357757 
 
(Residual SS)/N = .00000351228 
 
AICC = -.368929E+03    
 
BIC  = -.365232E+03    

 

 

The AICC statistic is -0.368929E+03. The Ljung-Box statistic is 5.3557 and the p-value is 

0.9953, which indicates that the residuals are approximately white noise. Figure 4.17 shows a, 

ERRR plots after Box-Cox transformation at λ = 0; b, sample ACF; c, sample PACF of the full 

data with h= 1year. This indicates nonstationary in its ACF and PACF as some of the spikes falls 

outside its boundaries. Figure 4.18 shows ERRR plot with prediction intervals using AR(2), the 

prediction values is leveling off from lag 36 to lag 39.Table 4.6 displays the numerical values of 

the predicted ERRRs with their confidence intervals using AR(2). Figure4.19is a, residual-plot; 

b, residual ACF; c, residual PACF of the full data with h = 1year. This figure indicates 

stationarity. 
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(a) 

(b) 

 

(c) 

 

 

Figure 4.17 a, ERRR plots after Box-Cox transformation at λ = 0; b, Sample ACF; c, Sample 

PACF of the full data with h= 1year. 
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Table 4.6 The numerical values of the Predicted ERRRs with their confidence intervals using 
AR(2). 

Prediction Lower Bound Upper Bound 

0.55677 0.55494 0.55861 

0.55683 0.55460 0.55908 

0.55687 0.55422 0.55953 

 

 

Figure 4.18 ERRR plot with Prediction intervals using AR(2) 
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(a) 

 

(b) 

 

(c) 

 

Figure4.19 a, Residual-plot; b, Residual ACF; c, Residual PACF of the full data with h = 1year. 
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Twice-differencing the full data set at lag1, the AICC statistic is -.399986E+03, the Ljung - Box 

statistic is 6.9192 and the p-value is 0.99694, which indicates that the residuals are 

approximately white noise. This is also a suggestion of the ARMA (1, 1) model. Figure 4.20 

shows a, ERRR plots after differencing at lag 1; b, sample ACF; c, sample PACF of the full data 

with h = 1year, while Figure 4.21isa, ERRR plots after twice-differencing at lag 1; b, Sample 

ACF; c, sample PACF of the full data with h = 1year. Figure 4.22 is an ERRR plot with 

prediction intervals Using ARMA(1, 1). There is an upward trend from lag 36 to lag 39.Table 7 

shows the numerical values of the predicted ERRR with their confidence intervals using 

ARMA(1,1). Figure 4.23 depicts a, residual-plot; b, residual ACF; c, residual PACF of the full 

data with h = 1year. The estimated (MLE) model is:  

ARMA Model 
X(t) = - .6858 X(t-1) 
     + Z(t) + .6121 Z(t-1) 
 
WN Variance = .985063E-06 
 
AR Coefficients 
      -.685763 
 
Standard Error of AR Coefficients 
       .745346 
 
MA Coefficients 
       .612102 
 
Standard Error of MA Coefficients 
       .749744 
 

(Residual SS)/N = .985063E-06 

AICC = -.399986E+03    

BIC  = -.410756E+03   
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(a) 

 

(b) 

 

(c) 

 

 

Figure 4.20 a, ERRR plots after differencing at lag 1; b, Sample ACF; c, Sample PACF of the 

full data with h= 1year. 
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(a) 

 

(b) 

 

(c)  

 

 

Figure 4.21 a, ERRR plots after twice-differencing at lag 1; b, Sample ACF; c, Sample PACF of 

the full data with h = 1year.  
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Table 4.7 The numerical values of the predicted ERRRs with their confidence intervals using  
 
ARMA(1, 1). 

Prediction Lower Bound Upper Bound 

0.55729 0.55566 0.55892 

0.55792 0.55437 0.56146 

0.55870 0.55278 0.56461 

 

 

Figure 4.22 ERRR plot with prediction intervals Using ARMA(1, 1) 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.23a, Residual-plot; b, Residual ACF; c, Residual PACF of the full data with h = 1year. 
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 Figure 4.24 depicts the temporal trends. All the results point to the same directions: male  

are more likely to die from leukemia than their female counterparts confirming the results of our 

finding based on the training sample as before. Table 4.8 shows predicted values of the three 

models based on the full data. 

 
Table 4.8   Predicted value of the three models based on the full data 

Year MA(2) ARMA(1,1) AR(2) 

2008 0.55730 0.55729 0.55677 

2009 0.55786 0.55792 0.55683 

2010 0.55850 0.55870 0.55687 

 

 

 

Figure4.24  Comparison of the three models based on the full model 

 

 

0.5555

0.556

0.5565

0.557

0.5575

0.558

0.5585

0.559

1 2 3

ARMA(1,1)

AR(2)

MA(2)



 

   52 

 

CHAPTER 5 

CONCLUSIONS 

Coupled with the conditional test (Przyborowski and Wilenski, 1940), the empirical 

recurrence rates ratio extended from the empirical recurrence rate (Ho, 2008), which allows us to 

apply the well-known ARIMA modeling techniques to compare and forecast leukemia related 

death rates ratio in the United States of America based on the  39 years mortality data. The ERR 

and ERRR not only smooth and explain deaths rates modeled by a stochastic process, but also 

operate as a link between a classical time series and a point process.  

 We split the leukemia ERRR time series into a training sample and a prediction set. The 

training sample is used to develop the candidate models. For time-step h = 1year, we used the 

last three  ERRRs as a prediction set to make model comparisons by checking the predictive 

ability of the candidate models developed from the training sample. Before modeling, we must 

make sure the ARMA process is stationary. After taking twice difference at lag 1, an MA (2) 

model yields predictions that are  the closest to the actual values, therefore we conclude that 

MA(2) is the best of the three resulting models .  

The limitation to this paper is the fact that the data used in the write up has a present 

value of 2007, instead of a more current value of 2011. In addition we could not use the 

empirical recursive rates (ERR) values to predict future counts of the leukemia deaths for the 

male and female. 

 The application of ARIMA models for long-term leukemia prediction will further 

facilitate the research in the areas monitoring the occurrence of death rates of other disease,  such 

as pneumonia and influenza, diabetes, accidents and their adverts effects, teen pregnancy, 

suicide, as well as other disease of interest. Therefore this research will be beneficial to other 

researchers in this vital field of study. 
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APPENDIX 

Table 1A: Leukemia Deaths in the United States. (www.seer.cancer.gov) 

Years Counts 
       Male Female       Total 

1969 8,256 6,193 14,449 
1970 8,128 6,364 14,492 
1971 8,205 6,263 14,468 
1972 8,325 6,292 14,617 
1973 8,262 6,215 14,477 
1974 8,230 6,344 14,574 
1975 8,382 6,372 14,754 
1976 8,556 6,500 15,056 
1977 8,609 6,717 15,326 
1978 8,682 6,708 15,390 
1979 9,019 7,140 16,159 
1980 9,325 7,383 16,708 
1981 9,201 7,241 16,442 
1982 9,376 7,509 16,885 
1983 9,447 7,561 17,008 
1984 9,392 7,849 17,241 
1985 9,563 7,927 17,490 
1986 9,685 7,851 17,536 
1987 9,487 7,953 17,440 
1988 9,831 7,910 17,741 
1989 10,142 8,264 18,406 
1990 10,290 8,435 18,725 
1991 10,286 8,817 19,103 
1992 10,705 8,712 19,417 
1993 10,872 8,834 19,706 
1994 10,948 8,885 19,833 
1995 11,347 8,976 20,323 
1996 11,265 9,229 20,494 
1997 11,379 9,105 20,484 
1998 11,297 9,172 20,469 
1999 11,543 9,528 21,071 
2000 11,803 9,594 21,397 
2001 11,894 9,638 21,532 
2002 12,058 9,523 21,581 
2003 12,104 9,504 21,608 
2004 12,051 9,421 21,472 
2005 12,273 9,443 21,716 
2006 12,426 9,590 22,016 
2007 12,434 9,494 21,928 

January 1969-December 2007 
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Table 2A: ERRR with Time step h= 1year 

Time-step 
Count 

            ERRR                            Total                            Male 
1969 14449 8256 0.571389 
1970 14492 8128 0.566117 
1971 14468 8205 0.566449 
1972 14617 8325 0.567228 
1973 14477 8262 0.567921 
1974 14574 8230 0.567383 
1975 14754 8382 0.567489 
1976 15056 8556 0.567591 
1977 15326 8609 0.566911 
1978 15390 8682 0.566621 
1979 16159 9019 0.565784 
1980 16708 9325 0.565075 
1981 16442 9201 0.564618 
1982 16885 9376 0.563881 
1983 17008 9447 0.563259 
1984 17241 9392             0.561972 
1985 17490 9563 0.560971 
1986 17536 9685 0.560433 
1987 17440 9487 0.559478 
1988 17741 9831              0.559181 
1989 18406 10142 0.558735 
1990 18725 10290 0.558250 
1991 19103 10286 0.557240 
1992 19417 10705             0.556948 
1993 19706 10872 0.556698 
1994 19833 10948 0.556484 
1995 20323 11347 0.556567 
1996 20494 11265 0.556269 
1997 20484 11379 0.556237 
1998 20469 11297 0.556065 
1999 21071 11543 0.555741 
2000 21397 11803 0.555583 
2001 21532 11894 0.555464 
2002 21581 12058 0.555581 
2003 21608 12104 0.555741 
2004 21472 12051 0.555924 
2005 21716 12273 0.556225 
2006 22016 12426 0.556487 
2007 21928 12434 0.556813 

January 1969- December 2007 
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Table 3A. ERR with a Time-step h = 1year. 

Count Number of male ERR (in 1 yr.) Number of 
Female ERR (in 1 yr.) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

8,256 
8,128 
8,205 
8,325 
8,262 
8,230 
8,382 
8,556 
8,609 
8,682 
9,019 
9,325 
9,201 
9,376 
9,447 
9,392 
9,563 
9,685 
9,487 
9,831 
10,142 
10,290 
10,286 
10,705 
10,872 
10,948 
11,347 
11,265 
11,379 
11,297 
11,543 
11,803 
11,894 
12,058 
12,104 
12,051 
12,273 
12,426 
12,434 

8256 
8192 

8196.333333 
8228.5 
8235.2 

8234.333333 
8255.428571 

8293 
8328.111111 

8363.5 
8423.090909 

8498.25 
8552.307692 
8611.142857 
8666.866667 
8712.1875 

8762.235294 
8813.5 

8848.947368 
8898.05 

8957.285714 
9017.863636 

9073 
9141 

9210.24 
9277.076923 
9353.740741 

9422 
9489.482759 
9549.733333 
9614.032258 
9682.4375 

9749.454545 
9817.352941 
9882.685714 
9942.916667 
10005.89189 
10069.57895 
10130.20513 

6,193 
6,364 
6,263 
6,292 
6,215 
6,344 
6,372 
6,500 
6,717 
6,708 
7,140 
7,383 
7,241 
7,509 
7,561 
7,849 
7,927 
7,851 
7,953 
7,910 
8,264 
8,435 
8,817 
8,712 
8,834 
8,885 
8,976 
9,229 
9,105 
9,172 
9,528 
9,594 
9,638 
9,523 
9,504 
9,421 
9,443 
9,590 
9,494 

6193 
6278.5 

6273.333333 
6278 

6265.4 
6278.5 

6291.857143 
6317.875 

6362.222222 
6396.8 

6464.363636 
6540.916667 
6594.769231 
6660.071429 
6720.133333 
6790.6875 

6857.529412 
6912.722222 
6967.473684 

7014.6 
7074.095238 
7135.954545 
7209.043478 
7271.666667 

7334.16 
7393.807692 
7452.407407 
7515.857143 
7570.655172 
7624.033333 
7685.451613 
7745.09375 
7802.454545 
7853.058824 
7900.228571 
7942.472222 
7983.027027 
8025.315789 
8062.974359 

January 1969-December 2007 
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Notation and acronyms 
NHPP                            Non homogeneous Poisson process 

HPP                                Homogeneous Poisson process 

M(t)                                Mean function of an NHPP 

λ(t)                                  Intensity  function of an NHPP 

ARIMA                          Autoregressive integrated  moving Average 

ARMA                           Autoregressive   moving average 

MLE                              Maximum likelihood  estimator 

ERRR                             Empirical recursive rates ratio 

AR                                 Autoregressive   

MA                                Moving Average 

{zl}                                A discrete time series 

B                                    Backshift Operator 

Lag                                Time  separation   or time step 

SAFC                            Sample  autocorelated function 

SPACF                          Sample partial autocorelated 

ITSM                            Time series  computing package 

AIC                              Akaike mode information  formation criterion 

BIC                               Schwartz model selection information Criterion 

AICC                            Estimated  corrected version  of AIC 
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