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ABSTRACT

STATISTICAL INFERENCE OF GENETIC FORCES USING A POISSON

RANDOM FIELD MODEL WITH NON-CONSTANT POPULATION SIZE

by

Jianbo Xu

Dr. Amei Amei, Examination Committee Chair
Associate Professor of Statistics

University of Nevada, Las Vegas, USA

The fidelity of DNA sequence data makes it a perfect platform for quantitatively an-

alyzing and interpreting evolutionary progress. By comparing the information between

intraspecific polymorphism with interspecific divergence in two sibling species, the well-

established Poisson Random Field theory offers a statistical framework with which various

genetic parameters such as natural selection intensity, mutation rate and speciation time

can be effectively estimated. A recently developed time-inhomogeneous PRF model has

reinforced the original method by removing the assumption of stationary site frequency,

but it preserves the condition that the two sibling species share same effective population

size with their ancestral species. This dissertation explores a relaxation of this biolog-

ically unrealistic assumption by hypothesizing that each of the two descendant species

experienced a sudden change in population size at the times of divergence from their

most recent common ancestor. Statistical inference of the various genetic parameters are

made under a hierarchical Bayesian framework and carried out with a multi-layer Markov

chain Monte Carlo sampling scheme. To meet the intensive computational demand, a R

program is integrated with C++ code and a parallel executing technique is designed to

run the program with multiple CPU cores.
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CHAPTER 1

INTRODUCTION

The structure of organisms and their active physiological processes are mainly based

on proteins. For most of existing creatures, the genetic information inherited from their

ancestors for the synthesis of proteins is contained in a threadlike double-helical molecule

named Deoxyribonucleic acid (DNA) in the cells (Griffiths et al. (2008)). DNA are poly-

mers (large molecules) consisting of fewer than a hundred to millions or even billions of

monomeric units called nucleotides. There are four types of nucleotides in DNA, denoted

by letters A, T, C, G and the two chains of the double helix hold together by comple-

mentary pairing of A with T and of G with C. DNA are organized into chromosomes

while the region or the segment of chromosomal DNA involved in the cells’ production of

proteins are called genes. The collection of all genes in an organism is called its genome.

The somatic cells of most plants and animals contain two copies of genome which means

their DNA are aligned in paired chromosomes. These creatures are called diploid. While

the cells of bacteria, algae and most fungi contain only one copy of genome and they are

called haploid.

The information in genes is used to control the production of proteins according to the

following two steps. First, one of the two strands in DNA acts as a template for generating

the messenger ribonucleic acid (mRNA) which is also a sequence of nucleotides. The

difference between mRNA and DNA is that the mRNA has nucleotide U instead of T. In

other words, DNA determines the sequence of nucleotides in mRNA in such a way that
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A in DNA will be paired with U in mRNA. This step is called transcription. Second, the

nucleotides in mRNA is read in consecutive triplets which correspond to certain amino

acids. The resulting string of amino acids, i.e. polypeptides, will then form proteins.

Each triplet in mRNA is called a codon. Since we have 43 = 64 possible codons but only

around 20 amino acids, multiple codons may lead to one amino acid. For instance, AUC,

AUU and AUA all encode the amino acid isoleucine. Thus a permanent alternation of

nucleotide at a site in DNA, referred as a mutation, may result in two cases. The new

codon still codes for the same amino acid and alternatively it yields a different one or

becomes a stop codon which functions as a sign of translation-termination. The former

case is called a silent site mutation (non-synonymous mutation) and the latter one is a

replacement site mutation (synonymous mutation). The majority of mutations at the first

and second positions of a codon are replacement mutations while mutations happened

at the third codon position usually result in silent mutations. For example, UUU is a

codon for encoding amino acid phenylalanine. If the first U is replaced by C, then CUU

encodes leucine but UUC still codes for the same amino acid as UUU does.

Mutations will give rise to alternate forms of genes, called alleles (Raineri (2001)).

The wild type allele refers to the nucleotide sequence of a gene which is characteristic of

most individuals of a species. It is also called the normal, standard, or reference allele

and usually designated by capital letter. The mutant type is represented by lower case

letter. While silent mutations have no impact on the fitness of neither an individual nor

its descendants due to the fact that they will not alter the structure of the polypeptide

chain, the severity of the effect of replacement mutations may vary case by case. Most of

the replacement mutations lead to critical changes in protein structure and functionality
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or even completely inactivate protein producing process and thus are detrimental to

the host, but a significant part shows mild effect and can be beneficial. The effect of

mutations at a gene is quantified by the fitness coefficient of the gene, ω, defined by the

expected relative number of living descendants of that gene in next generation (Ewens

(2003)). In a simplified situation where a gene is expressed by a single allele, we use A

for the wild type type allele and a the mutant. The fitness coefficient of the gene is define

as ω(A) = 1 and ω(a) = 1 + σ. In population genetics, for a haploid population of size

N the parameter σ can be scaled in terms of the effective population size N such that

σ ∼ γ

N
for large N and the γ is called the selection coefficient of the gene. Apparently, a

positive γ indicates an advantageous mutation and a negative γ means that the mutation

is deleterious. Neutral mutations are usually assumed to have zero γ values.

The field of population genetics is concerned with identifying and quantifying the

role of genetic forces such as mutation, selective effects and demographic forces in an

evolution history of certain genes in particular populations (Lewontin (1974)). Consider

a single DNA site in one species. If there is only one type of nucleotide at that site

across all individuals in a population, we say that the site is fixed or monomorphic at

that nucleotide. In contrast, the site is polymorphic if there exists more that one type

of nucleotide among different individuals. For a random sample come from two species

which are close relatives, such as humans and chimpanzees or the Drosophila species

melanogaster and simulans, if a DNA site is fixed at one nucleotide within one species

but the homologous site is fixed at a different nucleotide within the other species, then

we say that the site is a fixed difference. While if the site is polymorphic within at least

one of the two species, it is a polymorphism.
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With data collected from only one species, the corresponding statistical analysis is

usually not powerful enough to detect the selective effect unless the polymorphism is sub-

stantial (Sawyer and Hartl (1992)). Instead, since almost all species in existence have

arisen in evolution from ancestral species and somehow related, approaches compar-

ing site polymorphism and differences within and between two closely related daughter

species can be useful. We consider nucleotide sequences from a certain genetic locus and

a random sample of n1 individuals that is chosen from one species and another sample

of n2 individuals chosen from the other species. We assume that the two species have

diverged from their most recent common ancestor at a time t in the past. The infor-

mation gained can be seen as a n1 + n2 by l matrix of elements consisting of the four

nucleotides A, T, C, G if the sequences are aligned by corresponding DNA sites with

the length of each DNA sequence being l. We shall see no more than two letters in any

column since there are at most two types of nucleotides in the two populations under

the assumption that mutations are rare enough so they will occur at most once at a

site. McDonald and Kreitman (1991) proposed a statistical test of neutrality utilizing

the following two way contingency table in which the cell counts are summarized from

the matrix described above,

D P
S Fs Vs

R Fr Vr

Table 1.1. DPRS Table

Here Fs and Fr represent the total numbers of silent and replacement fixed differences
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whilst Vs and Vr denotes the numbers of silent and replacement polymorphisms, re-

spectively. This table is called McDonald-Kreitman table or DPRS table, where D is

abbreviation for fixed difference, P is for polymorphism, R is for replacement and S is

for silent.

One drawback of the McDonald-Kreitman table is its inability to distinguish legacy

polymorphisms from new polymorphisms (Amei and Sawyer (2010)). The legacy poly-

morphism refers to a polymorphic site at which the mutation occured before the daughter

species diverged from their common ancestor while the new polymorphism is a polymor-

phic site at which the mutation occured in one of the two daughter populations after

the divergence of the two species. Recall that we have assumed that mutations are suf-

ficiently rare so that once an alternation occurs we shall never see another at the same

site. Thus the feature of new polymorphism implies that the corresponding sites can only

be polymorphic in at most one sample of the two populations. However, legacy poly-

morphism may result in sites that are simultaneously polymorphic in both population

samples. Furthermore, due to the low starting population frequency of a new mutation

( 1
N

≈ 0 for large N , where N is the effective population size), most mutant nucleotides at

new polymorphic sites can not survive through reproduction under random mating as-

sumption, especially for the first several generations after the mutation. In other words,

for recently diverged two species, we have a relatively higher chance to see sites that are

polymorphic in both samples that are descendants of legacy polymorphic sites.

The facts described above are used to extend the McDonald-Kreitman table so that

the accuracy of estimating population parameters can be improved. The table shown

below is such an extension, designated by DOHRS table, where Ws,Wr are the numbers
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D O H
S Fs Os Bs

R Fr Or Br

Table 1.2. DOHRS Table

of sites that are polymorphic in only one sample and Bs, Br are the numbers of sites that

are polymorphic in both samples. This classification naturally implies Vs = Os+Bs, Vr =

Or +Br. To be clear and concise, we name a site as a F-site if it is a fixed difference, a

O-site if it is polymorphic in only one sample and a B-site if it is polymorphic in both

samples.

Under the assumption of neutral selective effect (γ = 0) on silent mutations, the null

hypothesis of the McDonald and Kreitman test (MK test) is that the ratio of replace-

ment to silent polymorphisms within species should be equal to the ratio of replacement

to silent fixed differences between species, i.e. Vr

Vs
= Kr

Ks
. The test was validated using

DNA sequences data of the alcohol dehydrogenase gene (Adh) locus in three species of

the Drosophila melanogaster species subgroup and showed an excess number of replace-

ment fixed differences which provided an evidence of positive selection. However the MK

test does not take into account the information of allele frequency spectrum of polymor-

phisms and hence lacks the power in detecting the strength and direction of selection

(Sawyer et al. (2007),Williamson et al. (2005)).

Sawyer and Hartl (1992) proposed a Poisson Random Field (PRF) model and showed

that under certain biological assumptions the distributions of those counts in Table

1.1 can be modeled as Poisson random variables with means depending on the popu-
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lation level site frequencies of mutant nucleotide. They showed that the means of those

Poisson counts are functions of genetic parameters such as speciation time, mutation

rate and selection coefficient and with proper sampling formulas, one will be able to

make statistical inference about selection and divergence of two closely related biolog-

ical species (See also Hartl et al. (1994),Sawyer (1994),Akashi (1999),Bustamante et al.

(2001), Amei and Sawyer (2012)). Contribution to multiple loci analysis had been made

by Bustamante et al. (2002). They designed a hierarchical Baysian model based on the

PRF theory and implemented it using Markov chain Monte Carlo (MCMC) simulation

to estimate various genetic parameters of interest.

Although the original PRF model had proposed a powerful and attractive approach

to analyzing and interpreting DNA site polymorphism within and between species, there

still exist potential improvements of the model by relaxing or even removing some artifi-

cial biological assumptions. One common criticism on the model is that alleles at different

loci are assumed at linkage equilibrium or free (in high level) of recombination, which

translates into the independence of nucleotide sites. Also for mathematical simplicity,

the distribution of site frequency spectrum is taken to be stationary after the divergence

of two species and thus the model is called a time-independent (time-equilibrium, time-

homogeneous) PRF model. Besides, the selective effects of replacement mutations within

any particular gene is assumed to be fixed and only varies from one gene to another. In

other words, γ remains a constant for each gene and this is called fixed effect assump-

tion. The original formulation also stipulates that another important factor impacting

on changes in mutant site frequency, i.e. the effective population size, stays as a constant

for both ancestral and daughter species involved in the analysis.
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Many authors have put effort on refining the basic PRF model with more general

biological settings. For instance, the likelihood ratio test (Hartl et al. (1994)) derived

from the PRF model lacks robustness against departures from the linkage equilibrium

assumption (Bustamante et al. (2001)). Zhu and Bustamante (2005) then proposed a

composite likelihood method to correct the bias of estimates using simulations with a

specified recombination rate. For relaxing the fixed effect assumption, Sawyer et al.

(2003) proposed a random effect model in which the selective intensity of arising muta-

tions within a given genetic locus was assumed to have Gaussian distribution with mean

(but not variance) changing between genes. Additional inference on a dataset of 91 genes

in two Drosophila species, D.melanogaster andD.simulans, was presented in Sawyer et al.

(2007) using this random effect model. Later, simulation studies suggested that the di-

vergence time tended to be overestimated with time-equilibrium models (Abel (2009)).

Amei and Sawyer (2010) then removed the assumption and built a time-dependent PRF

model by explicitly accounting for the time since the divergence of the two species into the

model by using diffusion approximation to discrete time discrete state Markov chains. A

strong precision of their model was verified on various simulated datasets and the appli-

cation of the model to the 91 Drosophila genes data yielded a more accurate estimate of

divergence time compared to the results of time-independent models (Amei and Sawyer

(2012)). However, the restrictive fixed effect setting was still preserved in Amei and

Sawyer’s time-dependent model. More recently, Zhou (2013) elaborated a sophisticated

time-dependent random effect framework simultaneously considering within-locus ran-

domness of selective effect and mutation-selection-drift disequilibrium after divergence.

However all models mentioned above ignored the change in effective population size
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over evolution process which can be a confounding factor in inferring natural selection

on DNA polymorphism patterns. Williamson et al. (2005) presented a population size

change model to simultaneously make statistical inference of selection and demographic

factor. Their model assumes that a species experienced an abrupt change from the ances-

tral population size to current size at some moment during the evolution. A maximum

likelihood approach incorporating the ratio of the two population sizes was applied to a

large dataset of 301 sequenced human genes collected from 90 individuals and the results

revealed strong proof of population expansion under common negative selection on re-

placement mutations. Boyko et al. (2008) extended Williamson’s approach to infer the

distribution of fitness effects given a non-stationary demographic history. However, their

studies are based on site frequency spectrum data from single population and simulation

results have shown that frequency spectrum polymorphism data may generate strongly

biased estimates of selection parameters even for minor deviation from the model assump-

tion of genic selection (Williamson et al. (2004)). Gutenkunst et al. (2009) proposed a

diffusion-based method to compare different demographic models based on the joint dis-

tribution of allele frequencies in multiple populations, but their model did not target at

inferring other genetic parameters such as mutation rate and selection coefficient.

In this dissertation, we explore a modified time-dependent Poisson Random Filed

model to depict the DNA site polymorphisms within and between two closely associated

species while accounting for the differences in their population sizes compared to that of

the ancestral species. We begin with a comprehensive set up of the time-dependent PRF

theory in Chapter 2. A non-constant population size time-inhomogeneous PRF model

and sampling formulas for multi-loci data are then presented in Chapter 3. A hierarchical

9



Baysian implementation of the model is introduced in the first part of Chapter 4. Numer-

ical evaluation of diffusion equations involved in our model is extremely computational

demanding and hence forces us to develop an efficient program. The related technique

details of linking R code with C++ as well as using a parallel scheme constitute the second

part of Chapter 4. Results of simulation studies and application to the 91 Drosophila

genes data mentioned above are discussed in Chapter 5 together with a second thought

on our setting given the discovered dependence between biased estimates of divergence

times and population size ratios.
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CHAPTER 2

POISSON RANDOM FIELD MODEL FOR SELECTION

2.1 Poisson Random Field

Methods of using stochastic processes to model the change of gene frequencies over

time have been developed for decades. A random field is a generalized stochastic pro-

cess, usually taking values in a Euclidean space and defined over a parameter space of

dimensionality at least one (Adler and Taylor (2007)). We start with the definition of

Poisson Random Field (PRF) as follows.

Definition 2.1. A random measure (X,F ,N ) on a measurable space (X,F) with mean

measure (X,F , µ) is a Poisson Random Field if

E

(
exp

(∫

X

f(x)N (dx)

))
= exp

(∫

X

(
ef(x) − 1

)
µ(dx)

)
(2.1)

for all bounded F -measurable functions f(x) on X with
∫
X
|f(x)|µ(dx) < ∞, where for

∀ A ⊆ X N (A) are random variables such that (X,F ,N ) is a measure with probability

one.

Now consider a special case of (2.1) on the set X = {0, 1, . . . , n}. We use a vector

N = (N0, N1, . . . , Nn) of length n+ 1 to define a random measure N (A) =
∑

i∈A Ni for

A ⊆ X , where N ′
is are independent Poisson random variables with means E(Ni) = ui.

Next let µ be a measure such that µ(A) =
∑

i∈A ui, thus E[N (A)] =
∑

i∈A ui = µ(A). It
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can be shown that

E

(
exp

(
n∑

i=0

ciNi

))
= exp

(
n∑

i=0

ui (e
ci − 1)

)
(2.2)

for any numbers ci, 0 ≤ i ≤ n. On the other side, if (2.2) is true for any set of ci’s, given

N = (N0, N1, . . . , Nn) is an arbitrary set of n + 1 random variables, then the Ni’s are

independent Poisson random variables with means E(Ni) = ui. In the following part of

this section, all results involving the PRF refer to the case defined above unless explicitly

specified.

Poisson random variables are frequently used in counting processes. Thus N =

(N0, N1, . . . , Nn) can be treated as a vector of counts, in which Ni represents the number

of objects at state i. Suppose that at a specific moment, all objects jump to some states in

a finite state space Y and transitions are mutually independent. For any object initially

at state i, it jumps to state j, j ∈ Y with probability pij and
∑

j∈Y pij = 1. Denote

Qj as the count of objects at state j ∈ Y after jumping. Then it has been shown that

(Amei and Sawyer (2010))

Lemma 2.1. Q = {Qj : j ∈ Y } is a set of independent Poisson random variables with

means E(Qj) =
∑

i∈X uipij.

If we simply let Y = X = {0, 1, . . . , N} and assume that transitions occur at discrete

time, then those objects actually move in a manner of independent time-homogenous

Markov chains according to the transition probabilities pij . The way of modelling is

inspired by the structure of chromosomes, which can be seen as strings of letters composed
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of nucleotides. For a haploid population of size N , suppose we have an alignment of

DNA sequences in which the rows are sequences for each individual and the columns

are corresponding sites of nucleotides. Objects mentioned above are in fact sites on

chromosomes. For a particular site, the state i ∈ {0, 1, . . . , N} refers to the number of

mutant nucleotides in the population, or equivalently, i
N

∈ SN = {0, 1
N
, . . . , N−1

N
, 1} refers

to the mutant frequency. The transitions described in Lemma 2.1 can be compared to

reproduction of individuals, but the source of change of gene frequencies also includes

mutation. So we need to extend the model further to cover possible arrivals of new

mutants.

Consider a PRF purely formed by immigrants, i.e., there is no pre-existing objects

at any state. Define Rl as the number of new immigrants joining the system at time

step l ≥ 1, which are assumed to be identical Poisson random variables with mean µ.

Due to the fact that mutations are so rare at site level that chance of multiple mutations

at the same site can be ignored, it will be reasonable to assign 1 as the initial state for

all immigrants. We assume that all objects in the system will move one step forward

independently according to pij . Let Ni,k be the number of objects at state i at step

k, which is counted right after the arrival of new immigrants but before any further

transition occurs. Using Lemma 2.1, it can be shown that (Amei and Sawyer (2010))

Lemma 2.2. At any step k ≥ 1, {Ni,k} is a set of independent Poisson random variables

with means E(Ni,k) = µ
∑k

l=0 p
(k−l)
1i , 0 ≤ i ≤ n,

where P(k−l) = [p
(k−l)
ij ](N+1)×(N+1) is the (k − l)th power of the transition matrix P =

[pij ](N+1)×(N+1), in particular, P(0) = I. So p
(k−l)
1i gives the transition probability that an

13



object with starting state 1 arrives state i using k − l steps.

2.2 Diffusion Approximation and Population results

We will apply the Moran’s second model to derive the transition probabilities pij for

mutant nucleotide frequency (Moran (1959)). It involves generation overlap in the sense

that an individual who died at a specific moment will be replaced by a randomly chosen

member in the population before the death (can be the same one). Hence the population

remains fixed at the haploid size of N and one generation is equivalent to N discrete

time steps. Let Xk be the number of mutant individuals at kth moment, since exactly

one individual will be replaced at each time step, transition of the states will only occur

in the following three ways: j → j − 1, j → j + 1, j → j. Without selection, transition

probabilities are trivial:

pj,j+1 = pj,j−1 =
N − j

N
·
j

N
,

pj,j = 1− pj,j+1 − pj,j−1, 1 ≤ j ≤ N − 1,

p0,0 = pN,N = 1.

Given the fitness coefficient ω = 1 + σ , then for 1 ≤ j ≤ N − 1,

pj,j+1 =
N − j

N

(1 + σ)j

(1 + σ)j + (N − j)
,

pj,j−1 =
j

N

N − j

(1 + σ)j + (N − j)
, (2.3)

pj,j = 1− pj,j+1 − pj,j−1.

Notice that 0 and 1 are traps or absorbing states since p0,0 = pN,N = 1, which represent

the loss of the mutant allele or its fixation at a site.
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Now consider a model including both the mutations happened before the diver-

gence of the two species and after the divergence. Assume that there are R0 popu-

lation polymorphic sites at time step 0 and Rl sites with new mutation appeared at

time step l ≥ 1. Under no repeated mutations assumption, sites represented by R0

and Rk are distinct from each other and can be modeled as Poisson random variables

with mean E(R0) = µ0, E(Rk) = µ. As mentioned before, the frequencies of mutant

nucleotide at those sites will follow independent Markov chains with transition proba-

bilities given in (2.3) if we assume that nucleotide sites evolve independently which is

equivalent to assume that sites are at linkage equilibrium. Processes recording the re-

lated frequencies are denoted by {Xa,k}(1 ≤ a ≤ R0, k ≥ 1) for initial polymorphic

sites and {Yb,l,k}(1 ≤ b ≤ Rl, 1 ≤ l ≤ k, k ≥ 1) for sites with new mutation at time

step l. Notice that the sample spaces of the two Markov chains Xa,k and Yb,l,k are

SN = {0, 1
N
, . . . , N−1

N
, 1} and Yb,l,l =

1
N

for any l ≥ 1.

The above described Markov chains are based on discrete time and discrete state

space. Whereas, in real world case, the population size of existing species and their

divergence time from ancestral species are large enough to be considered infinite. Using

diffusion approximation to discrete time discrete state Markov chains, it has been shown

that the processes Xa,k and Yb,l,k converge in distribution to a diffusion process Xt on

the open interval (0, 1) with 0 and 1 being absorbing states and the diffusion time t is

scaled in units of N generations ( k
N2 → t, since 1 generation equals N discrete Moran

time steps; see Amei and Sawyer (2010)).
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Specifically, given the following parameters scaled by the population size N ,

Nµ → θ, Nσ → γ,
k

N2
→ t, whenN → ∞,

they presented the distribution of mutant site polymorphisms and expected sites of fix-

ation of mutants as follows.

Theorem 2.1. For any function f(x) continuous on (0,1) with f(0) = f(1) = 0,

lim
N→∞

E

(
N−1∑

j=1

f(
j

N
)Nj,k

)

= lim
N→∞

(
R0∑

a=1

f(Xa,k) +
k∑

l=1

Rl∑

b=1

f(Yb,l,k)

)
(2.4)

=

∫ 1

0

∫ 1

0

p(t, x, y)f(y)dm(y)dδ(x)

+θ

∫ 1

0

s(1)− s(x)

s(1)− s(0)
(f(x)−

∫ 1

0

p(t, x, y)f(y)dm(y))dm(x),

where

s(x) =
1− e−γx

γ
; dm(x) =

eγx

x(1− x)
dx

are referred to as the scale function and speed measure of the corresponding diffusion

process (Karlin and Taylor (1981)). The p(t, x, y) in 2.4 is a transition density function

which is symmetric in the sense that p(t, x, y) = p(t, y, x) and dδ(x) is the limiting dis-

tribution of site frequencies at diffusion time 0, which we assume to be a Borel measure

defined on (0,1) (Amei and Sawyer (2010)).

Theorem 2.2. Given the assumptions in Theorem 2.1, the limiting expected number of

sites that have been saturated by the mutant nucleotide on diffusion time (0, t] is
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lim
N→∞

E(NN,k) = lim
N→∞

E

(
N−1∑

i=1

uip
(k)
iN + µ

k−1∑

l=0

p
(l)
1N

)

=

∫ 1

0

Px(T1 ≤ t)dδ(x) +
θ

s(1)

∫ t

0

P̃0(T1 ≤ u)du

=
1

s(1)

(∫ 1

0

s(x)dδ(x)−

∫ 1

0

∫ 1

0

p(t, x, y)s(y)dm(y)dδ(x) (2.5)

+θt− θ

∫ 1

0

∫ 1

0

q(u, 0+, y)s(y)2dm(y)du

)

where Ty = inf{t ≥ 0 : Xt = y} represents the hitting time of mutant frequency y,

P̃0(T1 ≤ u) = P0(T1 ≤ u|T1 < T0) corresponds to the dual process of Xt, X̃t = Xt|T1 < T0,

with q(t, x, y) = p̃(t, x, y) =
p(t, x, y)

s(x)s(y)
as its transition density∗.

Theorem 2.1 gives the weighted expected number of sites that are population poly-

morphic at diffusion time t, from which we can derive the limiting density of the PRF

as

λ(y|θ, γ, t) =

[∫ 1

0

p(t, x, y)dδ(x) + θ
s(1)− s(y)

s(1)− s(0)

− θ

∫ 1

0

s(1)− s(x)

s(1)− s(0)
p(t, x, y)dm(x)

]
dm(y) (2.6)

In other words, one can get the expected number of sites with mutant frequency y ∈

(y1, y2) ⊂ (0, 1) by integrating (2.6) over the range (y1, y2).

Since it is impractical to draw information from all individuals in the target species,

∗
q(u, 0+, y) = limx→0+ q(u, x, y)
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people use the above population level results to derive sampling formulas to calculate

means of the Poisson random variables Fs, Os, Bs, Fr, Or, Br (Amei and Sawyer (2010)).

Then the parameters such as the speciation time t, selection coefficient γ and mutation

rate θ can be analyzed through likelihood functions involving the observed counts.

In the above time-dependent PRF model, one of the key assumptions is the constant

population size N across the ancestral and two daughter species, which suggests the

divergence times t, the mutation rates θ and the selection coefficients γ are the same for

daughter species. In next chapter, we will loose this biologically unrealistic assumption by

proposing a non-constant population size model and also present corresponding sampling

formulas.
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CHAPTER 3

A PRF MODEL WITH NON-CONSTANT POPULATION

SIZE

3.1 Construction of The Model

We denote the effective population size of the ancestor species as Na and those of the

two daughter species as N1 and N2, respectively. Suppose that the population sizes of

the two daughter species are proportional to that of the ancestral species, that is

ν1 =
N1

Na

, ν2 =
N2

Na

, (3.1)

We also assume that the selection coefficient and the mutation rate at a legacy site

satisfies Naσ ∼ γ and Naµ ∼ θ for large Na. Then the mutation rates and the selection

coefficients at a single genetic locus in the two daughter species can be derived as

N1µ = ν1Naµ ∼ ν1θ, N2µ = ν2Naµ ∼ ν2θ,

and

N1σ = ν1Naσ ∼ ν1γ, N1σ = ν2Naσ ∼ ν2γ, for large Na

In the above expressions, µ is the aggregated nucleotide mutation rate per generation

and σ is the same selection coefficient per generation. The γ and θ are then called the

scaled selection coefficient and the scaled mutation rate.

Under the assumption of independent Moran time steps∗ k1 and k2, the diffusion

∗Discussion of this assumption will be presented in Chapter 5.
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times t1 and t2 satisfy

k1
N2

1

→ t1,
k2
N2

2

→ t2

as N1, N2 → ∞ respectively. Let α = αs = (t1, t2, θs, ν1, ν2) be a set of parameters

corresponding to a silent site mutation and α = αr = (t1, t2, γ, θr, ν1, ν2) be a set of pa-

rameters related to a replacement site mutation. Given a DNA alignment of n1 sequenced

genes from a single genetic locus in one species and n2 sequences from the orthologous

gene in a related species, the FOB counts in a single DOHRS table remain Poisson dis-

tributed with means calculated by formulas depending on αs and αr (Amei and Sawyer

(2010)). Each site counted in the sample is either a legacy polymorphic site or a new

polymorphic site and hence we need to measure the contribution made by the two types

of polymorphic sites individually. Meanwhile, a site that is monomorphic in a sample

can be due to a fixation at this site in the population or just due to random draws. We

will take this fact into account when we develop corresponding sampling formulas.

3.2 Contribution of Legacy Polymorphic Sites

By Theorem 2.1 and the first term in 2.6, the distribution of polymorphic site fre-

quencies in daughter species i (i = 1, 2) at diffusion time ti that are derived from legacy

polymorphic sites is a PRF with mean density

λLP (y|α) =

∫ 1

0

p(ti, x, y)dδ(x),
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Using Theorem 2.2, the expected number of sites that have become fixed at mutant

nucleotides and are descendants of legacy polymorphic sites is Poisson with mean

HLP (α) =

∫ 1

0

Px(T1,i ≤ ti)dδ(x),

where Ty,i is the hitting time of mutant frequency y for species i. Notice that the equi-

librium distribution dδ(x) = θ s(1)−s(x)
s(1)−s(0)

dm(x) appeared in λLP (y|α) and HLP (α) is free of

the genetic parameters corresponding to the daughter species since it is the mean density

of mutant frequencies in the ancestral species.

Suppose that a legacy polymorphic site in species i has not become fixed at either

of the two alleles at ti. In other words, the population mutant frequency at the site is

y ∈ (0, 1). For a random sample of size ni, the probability that the site is monomorphic at

the wild type nucleotide is (1−yi)
ni, the probability that it is monomorphic at the mutant

nucleotide is yni and the probability that the site contains both types of nucleotides is

1− yni − (1− yi)
ni.

For an arbitrary legacy polymorphic site with starting mutant frequency of x ∈ (0, 1),

we use g1(ni, x) to denote the probability that only the non-mutant nucleotide shows up

in the sample, g2(ni, x) to denote the probability that the site is polymorphic in the

sample and g3(ni, x) the probability that only the mutant nucleotide is present in the
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sample. Then these probabilities are given specifically as follows

g1(x, ni) = Px(T0,i < ti) +

∫ 1

0

p(ti, x, y)(1− y)nidmi(y)

= 1−
si(x)

si(1)
−

∫ 1

0

p(ti, x, y)

[
1− (1− y)ni −

si(y)

si(1)

]
dmi(y)

g2(x, ni) =

∫ 1

0

p(ti, x, y)[1− yni − (1− y)ni]dmi(y) (3.2)

g3(x, ni) = Px(T1,i < ti) +

∫ 1

0

p(ti, x, y)y
nidmi(y)

=
si(x)

si(1)
+

∫ 1

0

p(ti, x, y)

[
yni −

si(y)

si(1)

]
dmi(y)

Recall that for a single nucleotide site in a population of size N , the change of mutant

frequency is modeled by the discrete time and discrete state space Markov chains Xa,k

and Yb,l,k introduced in Chapter 2. For daughter species i, the state space of those Markov

chains depends on the effective population size Ni and becomes SNi
= {0, 1

Ni
, . . . , Ni−1

Ni
, 1}

instead of SN under constant population size assumption. With the modified genetic

parameters, chains modelling daughter species i converges weakly to the diffusion process

Xti on state space (0,1) with speed measure dmi(y) =
eνiγy

y(1− y)
dy and scale function

si(y) =
1− e−νiγy

νiγ
. Hence population size ratios ν1 and ν2 are implicitly implemented

into our model through dmi(y) and si(y), i = 1, 2.

Given a joint DNA sequence alignment sample of size n1+n2 from two closely related

species as described previously, we denote P1(x) as the probability that a legacy poly-

morphic site becomes a F-site in the sample, P2(x) as the probability that it becomes a
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O-site in the sample and P3(x) the probability that it becomes a B-site. Then

P1(x) = g1(x, n1)g3(x, n2) + g1(x, n2)g3(x, n1)

P2(x) = g2(x, n1) [g1(x, n2) + g3(x, n2)] + g2(x, n2) [g1(x, n1) + g3(x, n1)] (3.3)

= g2(x, n1) + g2(x, n2)− 2g2(x, n1)g2(x, n2)

P3(x) = g2(x, n1)g2(x, n2)

Let L1, L2, L3 be the number of F−, O−, B− sites in the sample which are derived

from legacy polymorphic sites, respectively. Then Lj(j = 1, 2, 3) are Poisson random

variables and integrating Pj(x) over the equilibrium density dδ(x) yields the means of

the Lj(j = 1, 2, 3). We denote these means using ΨLP,j(α, n1, n2), then

E(Lj) =ΨLP,j(α, n1, n2)

=

∫ 1

0

Pj(x)dδ(x)

= θ

∫ 1

0

Pj(x)
s(1)− s(x)

s(1)− s(0)
dm(x), j = 1, 2, 3.

(3.4)

3.3 Contribution of New Polymorphic Sites

For daughter species i, i = 1, 2, we can measure the proportion of new polymorphic

sites that are polymorphic at time ti and obtain the mean density of the corresponding

Poisson Random Field by the remaining terms of (2.6) except the first one, that is

λNP (y|α) = νiθ
si(1)− si(y)

si(1)− si(0)
− νiθ

∫ 1

0

si(1)− si(x)

si(1)− si(0)
p(ti, x, y)dmi(x)

= θ ·
νi

si(1)

[
si(1)− si(y)−

∫ 1

0

(si(1)− si(x))p(ti, x, y)dmi(x)

] (3.5)
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Since we have assumed no repeated mutations will occur at the same site, a new poly-

morphic site will be classified as a F-site in the n1 + n2 joint sample if either the site has

become fixed at the mutant nucleotide in species i during (0, ti] or by chance the sample

of species i only has the mutant nucleotide (i.e., ni draws) although the site has not

become fixed in the population of species i. The expected number of mutant fixations in

species i at time ti is a Poisson random variable. Its mean can be obtained by slightly

modifying the second part of Theorem 2.2, i.e.,

νiθ

si(1)

∫ 1

0

P̃ (T1,i < u)du

= θ ·
νi

si(1)

[
ti −

∫ ti

0

qi(u, 0+, y)s2i (y)dmi(y)du

]
,

(3.6)

where qi(u, 0+, y) = limx→0+
p(ti, x, y)

si(x)si(y)
.

Let ΨNP,1(α, ni) be the expected number of sites that are monomorphic in the sample of

species i,

ΨNP,1(α, ni) =
νiθ

si(1)

∫ 1

0

P̃ (T1,i < u)du+

∫ 1

0

λNP (y|α)ynidmi(y) (3.7)

Similarly, the number of polymorphic sites in the sample of species i at time ti due to

new polymorphism is Poisson distributed with the following mean, which we label as

ΨNP,2(α, ni),

ΨNP,2(α, ni) =

∫ 1

0

λNP (y|α)(1− yni − (1− y)ni)dmi(y) (3.8)

These sites make up the new polymorphism contribution to O-sites. And as mentioned

earlier, any B-site can not be an offspring of a new polymorphism.
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3.4 Sampling Formulas for The FOB Counts

Combining the contributions from the legacy and the new polymorphic sites together

gives the following theorem of the sampling formulas.

Theorem 3.1. For two daughter species with the effective population sizes N1 and N2

scaled as in (3.1), the sample counts Fs, Os, Bs, Fr, Or, Br in Table 1.2 are independently

distributed Poisson random variables with means

E(Fs) = ΨLP,1(αs, n1, n2) + ΨNP,1(αs, n1) + ΨNP,1(αs, n2)

E(Os) = ΨLP,2(αs, n1, n2) + ΨNP,2(αs, n1) + ΨNP,2(αs, n2)

E(Bs) = ΨLP,3(αs, n1, n2)

E(Fr) = ΨLP,1(αr, n1, n2) + ΨNP,1(αr, n1) + ΨNP,1(αr, n2)

E(Or) = ΨLP,2(αr, n1, n2) + ΨNP,2(αr, n1) + ΨNP,2(αr, n2)

E(Br) = ΨLP,3(αr, n1, n2)

(3.9)

Notice that all components of ΨLP,j(j = 1, 2, 3) and ΨNP,j(j = 1, 2) contain the scaled

mutation rate θs for a silent site and θr for a replacement site, we rewrite the means in

the following format uniformly for a synonymous or non-synonymous sites as follows

E(F ) = θΛ1(t1, t2, ν1, ν2, γ, n1, n2)

E(O) = θΛ2(t1, t2, ν1, ν2, γ, n1, n2)

E(B) = θΛ3(t1, t2, ν1, ν2, γ, n1, n2),

(3.10)
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in which

Λ1 =
1

s(1)

∫ 1

0

[g1(x, n1)g3(x, n2) + g1(x, n2)g3(x, n1)] (s(1)− s(x)) dm(x)

+
∑

i=1,2

νi
si(1)

[
ti −

∫ ti

0

∫ 1

0

qi(u, 0+, y)s2i (y)dmi(y)du

]

+
∑

i=1,2

νi
si(1)

∫ 1

0

[
si(1)− si(y)−

∫ 1

0

(si(1)− si(x))p(ti, x, y)dmi(x)

]
ynidmi(y)

Λ2 =
1

s(1)

∫ 1

0

[g2(x, n1) + g2(x, n2)− 2g2(x, n1)g2(x, n2)] (s(1)− s(x)) dm(x)

+
∑

i=1,2

νi
si(1)

[∫
(1− yni − (1− y)ni − g2(y, ni)) (si(1)− si(y))

]
dmi(y)

Λ3 =
1

s(1)

∫ 1

0

g2(x, n1)g2(x, n2) (s(1)− s(x)) dm(x)

(3.11)

Beware that γ = 0 for silent mutations although to be concise we merged the formulas

of silent and replacement mutations together.

It follows from Theorem 3.1 and equation (3.10) that likelihood function of entries in

a single DOHRS table can be expressed as

L(t1, t2, ν1, ν2, γ, θs, θr|Fs, Os, Bs, Fr, Or, Br)

= e−θsΛ1,s
(θsΛ1,s)

Fs

Fs!
e−θsΛ2,s

(θsΛ1,s)
Os

Os!
e−θsΛ3,s

(θsΛ1,s)
Bs

Bs!

· e−θrΛ1,r
(θrΛ1,s)

Fr

Fs!
e−θrΛ2,r

(θrΛ2,r)
Or

Or!
e−θrΛ3,r

(θrΛ3,r)
Br

Br!

(3.12)
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CHAPTER 4

MARKOV CHAIN MONTE CARLO IMPLEMENTATION

4.1 Hierarchical Baysian Model

Theoretically speaking, we can estimate the parameters αs and αr by maximizing the

likelihood function provided at the end of Chapter 3 using a single DOHRS table, which

is based on a single genetic locus. However genetic materials of two closely associated

species are usually identical to each other to a considerably large degree. For instance,

certain genes were found to be different by only 1.2% between humans and chimpanzees,

by 1.6% between humans and gorillas and by 1.8% between gorillas and chimpanzees ∗.

Thus not many loci have sufficient information to show statistical significance of poly-

morphism if analyzed individually. A more practical solution is to use a joint likelihood

which involves multiple genes. Furthermore, given the complexity of the likelihood func-

tion and the dimensionality of the parameter space, it is extremely difficult to achieve

analytical results. Instead, a hierarchical Baysian framework incorporated with a multi-

layer Markov chain Monte Carlo (MCMC) simulation scheme is implemented to obtain

both joint and marginal posterior distributions. (Bustamante et al. (2003))

Given the nature of mutation rates (it must be nonnegative) and also for mathematical

convenience, we choose gamma distribution as the prior distribution of θs and θr since

it is the conjugate prior of a Poisson distribution. Since selection coefficients may take

∗See http://www.berggorilla.org/
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values from the entire real number set, it is appropriate to model them as independently

and identically distributed normal random variables with unknown mean µγ and variance

σ2
γ . Then we pick a Gaussian hyper prior for µγ and an inverse-gamma hyper prior for

σ2
γ .

Unlike mutation rates and selection coefficients that vary from locus to locus, the

species-specific divergence times t1, t2 and population size ratios ν1, ν2 are seen as global

parameters. Based on our current knowledge, there is no known distribution which

matches the form of the partial likelihood that contains ti or νi, non-informative priors

are considered for these global parameters. In our case, proper candidates are uniform

distributions.

Detailed setup for priors and hyper priors are listed below.

ti ∼ U(0, tmax), i = 1, 2

νi ∼ U(0, νmax), i = 1, 2

θs ∼ Γ(as, bs)

θr ∼ Γ(ar, br)

γ ∼ φ(µγ, σ
2
γ)

µγ ∼ φ(µ0,
σ2
γ

n0
)

σ2
γ ∼ Γ−1(a0, b0)

(4.1)

where as, bs, ar, br, n0, a0, b0 are constants, φ(x|µ, σ2) = 1√
2πσ

e−
(x−µ)2

2σ2 is the probability

density function of a Gaussian distribution, Γ(x|a, b) = ba

Γ(a)
xa−1e−bx is the gamma density

function and Γ−1(x|a, b) = ba

Γ(a)
x−a−1e−

b
x is the inverse gamma density.
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Let Ng be the total number of genetic loci included in the analysis, ni,j(i = 1, 2; 1 ≤

j ≤ Ng) be the number of DNA sequences from jth locus of species i and h(µγ , σγ, t1, t2,

ν1, ν2, γ, θs, θr) denote the joint prior distribution. Under the conditions described in

(4.1), the posterior distribution is proportional to the following quantity

L(µγ , σγ, t1, t2, ν1, ν2, γ, θs, θr|Fs, Os, Bs, Fr, Or, Br)

× h(µγ, σγ , t1, t2, ν1, ν2, γ, θs, θr)

=

Ng∏

j=1

[
Pois1(t1, t2, ν1, ν2, θs,j|Fs,j, n1,j , n2,j)

× Pois2(t1, t2, ν1, ν2, θs,j|Os,j, n1,j, n2,j)

× Pois3(t1, t2, ν1, ν2, θs,j|Bs,j, n1,j , n2,j)

× Pois1(t1, t2, ν1, ν2, θs,j, γj|Fr,j, n1,j , n2,j)

× Pois2(t1, t2, ν1, ν2, θs,j, γj|Or,j, n1,j, n2,j)

× Pois3(t1, t2, ν1, ν2, θs,j, γj|Br,j, n1,j , n2,j)

× Φ(γj |µγ, σ
2
γ)Γ(θs,j|as, bs)Γ(θr,j|ar, br)

]

× Γ−1(σ2
γ |a0, b0)φ(µγ|µ0,

σ2
γ

n0
)

× U(t1|0, tmax)U(t2|0, tmax)U(ν1|0, νmax)U(ν2|0, νmax)

(4.2)

Obtaining a full target posterior distribution over a set of parameters is essential in

Baysian inference since the idea of MCMC sampling is that we estimate the expectation

of a parameter by taking average over samples drawn from its corresponding posterior

distribution. However computing the normalizing constant for our model and explicitly

giving out the full posterior distribution is intractable due to the high dimensionality

of the parameter space. Hence a multi-level MCMC sampling scheme is necessary to
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handle the analysis and such effort has been made by Bustamante et al. (2003). The

strategy used is Gibbs sampling, which is applicable when the joint posterior distribution

involving all parameters is not known explicitly or is difficult to sample from directly, but

the posterior conditional distribution of each parameter given data and other parameters

is known or at least easier to sample from. Here is a brief description of the Gibbs

sampling (Geman and Geman (1984)):

Algorithm 1

1. Given a known data vector X, an unknown parameter vector β = (β1, · · · , βn) and
joint prior distribution h(β). Sample an arbitrary initial value β(0) ∼ h(β).

2. For iteration t = 1, 2, · · · , update parameters sequentially one by one and sweep all
posterior conditional distributions, i.e.

β
(t)
1 ∼ p(β1|β

(t−1)
2 , · · · , β(t−1)

n ,X)

...

β
(t)
j ∼ p(βj|β

(t)
1 , · · · , β

(t)
j−1, β

(t−1)
j+1 , · · · , β(t−1)

n ,X)

...

β(t)
n ∼ p(βn|β

(t)
1 , · · · , β

(t)
n−1,X)

(4.3)

In fact, the posterior conditional distribution of βj is proportional to the joint
distribution of β with all other parameters taking values generated from previous
iteration, that is

β
(t)
j ∝ π(βj) = p(β

(t)
1 , · · · , β

(t)
j−1, βj, β

(t−1)
j+1 , · · · , β(t−1)

n ,X) (4.4)

Furthermore, any factor in π(βj) that is not a function of βj can be dropped out
to simplify the joint distribution.

Based on the form of the joint distribution π(βj), we update each parameter by one

of the following two sampling methods. First, if π(βj) matches the kernel of a well known

distribution such as Gamma or Gaussian, then we can derive the corresponding posterior
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conditional distribution and directly sample β
(t)
j from that distribution. This sampling

method is called a Gibbs-sampler. Otherwise if π(βj) does not have a closed form, we

choose a jumping distribution g(x|y) which is symmetric in the sense that g(x|y) = g(y|x)

and generate a candidate β ′
j from g(βj|β

(t−1)
j ). By comparing the posterior likelihoods,

accept this candidate as β
(t)
j with probability min{1,

π(β ′
j)

π(β
(t)
j )

}. This updating method is

called Metropolis algorithm. Next step is to examine the posterior conditional distribu-

tion of each parameter to determine the detailed updating strategies. In the following

we consider parameters at a specific locus, say locus j.

The parameter γj

In (4.2), we pull out the three Poisson mass functions related to replacement sites

and the Gaussian prior to obtain the density of γj,

π(γj) = Pois1(t1, t2, ν1, ν2, θs,j, γj|Fr,j, n1,j , n2,j)

× Pois2(t1, t2, ν1, ν2, θs,j, γj|Or,j, n1,j, n2,j)

× Pois3(t1, t2, ν1, ν2, θs,j, γj|Fr,j, n1,j , n2,j)Φ(γj|µγ, σ
2
γ)

∝ φ(γj|µγ, σ
2
γ) exp(−θr,jΛr,j)Λ

Fr,j

1,r,jΛ
Or,j

2,r,jΛ
Br,j

3,r,j

(4.5)

where Λ = Λs(t1, t2, ν1, ν2, n1, n2) = Λ1,s +Λ2,s +Λ3,s for silent sites, Λ = Λr(t1, t2, ν1, ν2,

γ, n1, n2) = Λ1,r + Λ2,r + Λ3,r for replacement sites. Per the discussion above, we use

Metropolis algorithm to update γj. The jumping distribution chosen is U(γj−hγ , γj+hγ)

with a proper random walk step size hγ. At the tth iteration, we

1. generate a random draw γ′
i from U(γ

(t−1)
j + hγ, γ

(t−1)
j + hγ), and then
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2. generate a random value u from U(0, 1) and set γ
(t)
j = γ′

j if u ≤
π(γ′

j)

π(γ
(t−1)
j )

, otherwise

let γ
(t)
j = γ

(t−1)
j .

The parameters θs,j and θr,j

The joint density of mutation rates θs,j and θr,j matches the kernel of Gamma distri-

bution and hence we are able to derive their posterior conditional distributions and use

the Gibbs sampler to draw updated values directly as follows

θs,j ∼ Γ(as + Fs,j +Os,j +Bs,j, bs + Λs)

θr,j ∼ Γ(ar + Fr,j +Or,j +Br,j, br + Λr)

(4.6)

The parameters t1 and t2

Global parameters t1 and t2 are involved in all Poisson mass functions across the Ng

genetic loci as well as their uniform priors. The densities are given by

π(ti) =

Ng∏

j=1

[
Pois1(t1, t2, ν1, ν2, θs,j|Fs,j, n1,j, n2,j)

× Pois2(t1, t2, ν1, ν2, θs,j|Os,j, n1,j, n2,j)

× Pois3(t1, t2, ν1, ν2, θs,j|Bs,j, n1,j , n2,j)

× Pois1(t1, t2, ν1, ν2, θs,j, γj|Fr,j, n1,j , n2,j)

× Pois2(t1, t2, ν1, ν2, θs,j, γj|Or,j, n1,j, n2,j)

× Pois3(t1, t2, ν1, ν2, θs,j, γj|Br,j, n1,j , n2,j)

]
· U(ti|0, tmax)

∝

Ng∏

j=1

{
exp [−(θs,jΛs,j + θr,jΛr,j)] · Λ

Fs,j

1,s,jΛ
Os,j

2,s,jΛ
Bs,j

3,s,jΛ
Fr,j

1,r,jΛ
Or,j

2,r,jΛ
Br,j

3,r,j

}

(4.7)
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Metropolis algorithms with uniform jumping distribution U(ti − ht, ti + ht) for species

i = 1 and 2 are applied to update the two parameters.
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The parameters ν1 and ν2

Similarly to the case of t1 and t2, the population size ratios ν1 and ν2 appear in all

Poisson terms. The corresponding densities are,

π(νi) =

N∏

j=1

[
Pois1(t1, t2, ν1, ν2, θs,j|Fs,j, n1,j, n2,j)

× Pois2(t1, t2, ν1, ν2, θs,j|Os,j, n1,j, n2,j)

× Pois3(t1, t2, ν1, ν2, θs,j|Bs,j, n1,j, n2,j)

× Pois1(t1, t2, ν1, ν2, θs,j, γj|Fr,j, n1,j, n2,j)

× Pois2(t1, t2, ν1, ν2, θs,j, γj|Or,j, n1,j , n2,j)

× Pois3(t1, t2, ν1, ν2, θs,j, γj|Br,j, n1,j, n2,j)

]
· U(νi|0, νmax)

∝

N∏

j=1

{
exp [−(θs,jΛs,j + θr,jΛr,j)] · Λ

Fs,j

1,s,jΛ
Os,j

2,s,jΛ
Bs,j

3,s,jΛ
Fr,j

1,r,jΛ
Or,j

2,r,jΛ
Br,j

3,r,j

}

(4.8)

Again, Metropolis algorithm is applicable to update νi and we still use a uniform jumping

distribution of U(νi − hν , νi + hν). Being ratios of population sizes, ν1 and ν2 are more

sensitive to numerical errors. In theory any factors irrelevant to νi can be cancelled out

when calculating the ratio
π(ν ′

i)

π(ν
(t−1)
i )

. However computer floating point arithmetic does

not do the cancellation therefore we want to remove redundant information from π(νi)

as much as possible. Notice that ΨNP,1(α, n1) and ΨNP,2(α, n1) in (3.9) are related to ν1

only, while ΨNP,1(α, n1) and ΨNP,2(α, n1) are related to ν2 only. Let
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ΨLP,1(α, n1, n2) = θΛ11, ΨNP,1(α, n1) = θΛ12, ΨNP,1(α, n2) = θΛ13

ΨLP,2(α, n1, n2) = θΛ21, ΨNP,2(α, n1) = θΛ22, ΨNP,2(α, n2) = θΛ23

(4.9)

Thus we have Λ1 = Λ11 + Λ12 + Λ13 and Λ2 = Λ21 + Λ22 + Λ23. Then the densities of ν1

and ν2 are further reduced as

π(ν1) ∝
N∏

j=1

{
exp [−θs,j(Λ11,s,j + Λ12,s,j + Λ21,s,j + Λ22,s,j + Λ3,s,j)

−θr,j(Λ11,r,j + Λ12,r,j + Λ21,r,j + Λ22,r,j + Λ3,r,j)]

· Λ
Fs,j

1,s,jΛ
Os,j

2,s,jΛ
Bs,j

3,s,jΛ
Fr,j

1,r,jΛ
Or,j

2,r,jΛ
Br,j

3,r,j

}

π(ν2) ∝
N∏

j=1

{
exp [−θs,j(Λ11,s,j + Λ13,s,j + Λ21,s,j + Λ23,s,j + Λ3,s,j)

−θr,j(Λ11,r,j + Λ13,r,j + Λ21,r,j + Λ23,r,j + Λ3,r,j)]

· Λ
Fs,j

1,s,jΛ
Os,j

2,s,jΛ
Bs,j

3,s,jΛ
Fr,j

1,r,jΛ
Or,j

2,r,jΛ
Br,j

3,r,j

}

(4.10)

The hyper parameters σ2

γ and µγ

The hyper parameter σ2
γ has an inverse-gamma posterior conditional distribution and

µγ is normally distributed given γi and σ2
γ , that is

σ2
γ ∼ Γ−1

(
a0 +

Ng

2
, b0 +

1

2

Ng∑

j=1

(γj − γ̄)2 +
Ngn0(γ̄ − µ0)

2

2(n0 +Ng)

)

µγ ∼ φ

(
n0µ0 +

∑
γj

n0 +Ng

,
σ2
γ

n0 +Ng

) (4.11)
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4.2 Numerical Evaluation and Parallel Computing

In order to evaluate the previously derived posterior densities π(·), our major task

is to calculate those complicated Λ functions numerically. A typical integral involved in

the density functions can be decribed as the following form,

∫ 1

0

∫ 1

0

f(x)p(t, x, y)dm(y)dm(x) (4.12)

If we let u(x, t) =
∫ 1

0
f(x)p(t, x, y)dm(y), then the above integral becomes

∫ 1

0

u(x, t)dm(x) =

∫ 1

0

u(x, t)
eγx

x(1− x)
dx (4.13)

and it can be calculated numerically by Gauss-Legendre(GL) quadrature (Press et al.

(1992)). The GL method approximate
∫ b

a
g(x)dx numerically using the formula

∫ b

a

g(x)dx =
n∑

j=1

b− a

2
wjf(

b− a

2
ηj +

b+ a

2
),

where ηj ∈ (−1, 1), j = 1, . . . , n are GL roots obtained by solving a polynomial equation

Pn(x) = 0 and wj are weights determined by

wj =
2

(1− ηj)2(P ′
n(ηj))

2
, j = 1, . . . , n

For our case a = 0, b = 1 and we use n = 20 roots to gain the balance between accuracy of

approximation and computation intensity. Thus by evaluating u(x, t) at a given diffusion

time t and spatial points xj =
1
2
ηj +

1
2
(j = 1, . . . , n), (4.12) can be calculated as
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∫ 1

0

u(x, t)dm(x) =
n∑

j=1

1

2
wju(xj, t)

eγxj

xj(1− xj)
(4.14)

It has been shown that u(x, t) is the solution of the following parabolic partial differential

equation (PDE) with associated initial and boundary conditions,

∂

∂t
u(x, t) = x(1 − x)

∂2

∂x2
u(x, t) + γx(1 − x)

∂

∂x
u(x, t)

u(x, 0) = f(x), u(0, t) = u(1, t) = 0 for 0 ≤ x ≤ 1, t > 0

(4.15)

The Crank-Nicolson (CrNi) method, one of finite difference methods, is suitable to calcu-

late (4.15) (See Crank and Nicolson (1947), Thomas (1995), Cebeci (2002)). The method

is implicit in the sense that a system of equations needs to be solved to get values

u(x1, s+ dt), . . . , u(xn, s+ dt) using the values u(x1, s), . . . , u(xn, s). The related system

of equations is in the following form




c[1] a[1] 0 · · · 0

b[2] c[2] a[2]
...

0 b[3] c[3]
. . .

...
. . .

. . . a[n− 1]
0 · · · b[n] c[n]







u(x1, s+ dt)
u(x2, s+ dt)
u(x3, s+ dt)

...
u(xn, s+ dt)



=




u(x1, s)
u(x2, s)
u(x3, s)

...
u(xn, s)




(4.16)

where arrays a[·], b[·], c[·] are coefficients depending on the scale function s(x) and the

speed measure dm(x). The matrix equation (4.16) can be solved through tridiago-

nal matrix algorithm and it is a special case of Gaussian Elimination method (Datta

(2010),Niyogi (2006)). Analyses have shown that in order to achieve solutions that are

stable and immune to oscillations, the ratio of time step dt and spatial step dx = xj+1−xj

37



should be small enough (See Charney et al.,Zhidkov (1969), Crank and Nicolson (1947)).

While using a constant jumping step dt across the time space, we evaluate u(x, t) at

nonuniform spatial points (x1, x2, . . . , xn) due to the GL routine. Hence to be safe, we

set the smallest increment dx to be x1 − x0 = x1 − 0 ≈ 0.0034 and then let dt = dx/2.

Starting from u(xj , 0) = f(xj), one needs to solve the equation (4.16) iteratively
t

dt

times to get u(xj , t) and hence the computing speed is directly associated with the input

divergence time parameter t.

The other type of integral in the new polymorphism components of Λ functions has

the following form

∫ t

0

∫ 1

0

q(u, 0+, y)s(y)2dm(y)du (4.17)

and it is slightly different from (4.12). Again if we let v(x, t) =
∫ 1

0
q(t, x, y)s(y)2dm(y)

then v(x, t) is a solution of some parabolic PDE similar to (4.15) and therefore CrNi

method can be applied for evaluation. For the outer layer of the integration 4.17, we

apply the composite rule and compute the integral as

∫ t

0

v(0+, u)du = dt ·

10∑

k=1

v(0+, tk) (4.18)

where dt =
t

10
, tk = k · dt. For the inner layer, a system of equations need to be solved

once we have the boundary values v(0+, tk), k = 1, . . . , 10. In other words, for any fixed

diffusion time t, we solve ten PDEs to evaluate (4.17). Consequently one can expect the

38



computation time required for solving (4.17) to be roughly ten times longer than the

time required for solving (4.12).

An open-source integrated software facility, R, is chosen to implement our MCMC

simulation. It not only provides a powerful environment for effective data storage, analy-

sis and visualization and but also serve as a simple, mature and expressive programming

language developed to support various statistical analyses. R is highly extensible through

add-on packages which are fundamental units of shareable functions, data, compiled

codes and documentation. There are over 5000 packages which can be easily downloaded

from Comprehensive R Achive Network (CRAN) (Venables et al. (2002)). Other features

such as extreme dynamism, name lookup with mutable environments and lazy evaluation

of function arguments are also available in R (Wickham (2014)). Due to these features,

users do not need much systematic planning before writing the code. However, the conve-

nience comes at a cost of overwhelming optimization task to the compiler which in return

limits the performance of R program. As for the extensibility, the other side of the story

is that a lot of R codes are poorly written since many R users and contributors do not

have formal training in programming or software development. Thus the performance in

computing speed is usually far from satisfactory especially when iterations and recursive

calls of multi-arguments functions are involved.

We initially coded our MCMC simulations using sole R language and a quick estima-

tion showed that it will take over 60 years to run a million iterations (which is a typical

requirement for our Markov chain to reach convergence). Hence we have to optimize

the program in order to reap performance gains. Benchmark test confirms that the most

time-consuming part in the simulation is to call the Λ functions repeatedly. This is antic-
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ipated since solving hundreds of PDEs using R would take an extremely long time. One

way to solve the issue of long iteration time is to write the Λ functions in other languages

like C or C++ to improve the computing performance. This is feasible because a key aspect

of the internal implementation of R is that the compiler and extension mechanism are

carried through C language.

Several add-on packages have been built to integrate R with C++. The packages rpp-

bind, RAbstraction and RObjects are all designed using C++ templates (Eddelbuettel

(2013)) but none of them have been formally released through CRAN. The Rserve

(Simon (2015)) package can establish a socket server to allow other programs such as

C++ or Java to use R facilities without invoking R session or linking R library but it is not

aimed at accelerating R program itself. The Rcpp (Eddelbuettel (2013)) package, which

was first released in November 2008, has become the most popular language extension

tool for R with over ninety CRAN packages depending on it as of November 2012. The

package enables R users to access, extend and modify R objects at the C++ level. It greatly

simplifies integrating C++ code with R by providing a flexible and extensible application

programming interface (API) which supports various tasks. Typically, existing R code

can be easily replaced with equivalent C++ code to achieve essentially better performance.

A recent update of Rcpp sets up a straightforward connection between C++ and R

by utilizing a feature called “attribute” (Allaire and François. (2015)). This feature is

named after an extension of C++ (see the FAQ of C++11 provided by Stroustrup). In

a C++ source file, one can simply declare the attribute [[Rcpp:export]] in front of a

function to be exported by using the name space Rcpp. Then by calling the sourceCpp()

function in a R session, the source file can be parsed and any functions marked with the
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[[Rcpp:export]] attribute are exported and made available to the current R environ-

ment just like a regular R function.

After rewriting the Λ functions using C++, the computing speed is boosted by almost

500 times comparing to the function coded in R. Nonetheless, it still takes several months

to have our MCMC chains running enough iterations. The full likelihood function (4.2)

and the updating strategies described in Section 4.1 suggest that the procedures of es-

timating Λ functions for any two different genetic loci do not communicate with each

other due to the model assumption of independence among genes and the feature that

parameters are updated one by one. For example, consider the two processes of updating

the selection coefficients γi and γj for loci i 6= j and one can find the following three

conditions are met

• The inputs: candidates γ′
i and γ′

j are generated independently.

• The outputs: updated γi and γj based on calculated Λ function values will not

replace each other.

• The input of one process does not depend on the output of the other.

The above fact is called Bernstein conditions (Bernstein (1966)) and it enables us to

implement parallel algorithms in the code to increase the speed further. A classic work

flow of a parallel program can be summarized as follows:

1. Set up a ‘manager’ process and p ‘worker’ processes. Initialize inputs required for

the workers.
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2. In an ideal case, the manager splits an incoming task into p independent subtasks

and send the subtasks to the workers so that each worker gets one.

3. The manager collects outputs from workers until all p subtasks get completed.

4. Loop through step 2-3 for any subsequent tasks.

5. Shut down all processes after finishing.

In practice, we often have more subtasks than the number of workers available due

to hardware restriction such as the number of CPU cores or the number of machines

connected. Hence the manager will send p subtasks at the beginning of step 2 and assign

the next remaining one to any worker that has completed a subtask and become idle.

Since R does not natively offer mechanisms to carry parallelism, a wide range of tools

and packages have been invented to compensate for the demand of high-performance com-

puting (Schmidberger et al. (2009)) †. Based on a message passing library specification

called Message Passing Interface (MPI), the package Rmpi pioneered the exploration by

porting low level MPI functions into R. Whereas, the complexity and expertise required

prevent a broader application of this package. The snow (Simple Network of Worksta-

tions) package furnishes an abstraction of lower level communication mechanisms so that

a collection of workstations or a cluster of computation nodes can be used to establish

the manager-worker structure. With the advent of modern technology, computers with

multiple CPU cores and/or multiple CPUs have become commonplace. The trend has

deep impacts on the landscape of parallel computing. The package multicore utilizes

† See also CRAN task view https://CRAN.R-project.org/view=HighPerformanceComputing
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such multiple cores systems for parallel execution of R programs but it has limited sup-

port for machines installed with Window operation system (OS). On top of snow and

multicore, the package parallel stands out by incorporating the functionalities of those

two packages and is capable of handling large chunks of computation on various OS plat-

forms. As a typical implementation, parallel offers parallelized replacements of apply,

lapply, sapply functions that R users are familiar with. Moreover, for people prefer

for loops, the foreach package (Weston (2015)) supplies a new looping framework that

can be seen as a cross-breed of the regular for loops and the family of apply functions.

It offers an operator foreach which automatically splits a looping task into pieces by

iterators and executes those tasks in parallel if the built-in %dopar% operator is specified.

The foreach loop returns a value without causing side effects as a for loop does and

results passing from multiple workers can be combined as a list, a vector or a matrix

by using .combine function in the package. It should be noted that foreach must be

used in conjunction with other packages through which a backend or a cluster can be

registered to enable parallel execution.

To parallelize our program, we choose a recently developed package doParallel,

which acts as an interface connecting foreach and parallel to start a cluster and

specify the number of cores used for executing tasks. Under both Unix and Window

OS, a cluster can be created via a simple script in R like (cl <- makeCluster(4);

registerDoParallel(cl)) in which the number 4 stands for the number of cores to be

used. By using four cores on a single machine, a trial run showed that the speed of a

single MCMC iteration is enhanced by three times compared to the sequentially executed

program.
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Specifically, we set up our parallel scheme as follows:

1. According to the number of genes Ng, create two Ng×9 matrices to store the Λ func-

tion values Λ·,s,j and Λ·,r,j. Draw random values of parameters (t1, t2, ν1, ν2, θs,j, θr,j, γj, µγ, σ
2
γ)

from priors and hyperpriors to initialize the Λ matrices.

2. Draw candidates γ′
j for j = 1, 2, · · · , Ng from the jumping distribution. Use the

foreach loop to calculate new values of Λ·,r,j in parallel. Update γj as well as Λ·,r,j

if γ′
j is accepted, otherwise return old values. Use .combine option in the loop to

combine results as updated Λ matrix and γ = (γ1, · · · , γNg
) vector so that they can

be used in next step.

3. Update θs,j and θr,j via Gibbs sampler using Λ matrices from previous step.

4. Draw candidates t′1. Calculate new Λ matrices using t′1. Substitute the old Λ

matrices with the new ones if t′1 is accepted. Update t2 similarly.

5. Update ν1 and ν2 using the similar routines of updating t1 and t2.

6. Update µγ and σ2
γ via Gibbs sampler using the Λ matrices from the previous step.

7. Loop through step 2-6 until specified number of iterations are done.

44



CHAPTER 5

RESULT AND DISCUSSION

5.1 Simulation Study Under Current Model Assumptions

Initially two datasets simulated with given parameter values are used as input data

to check the behavior of our model. The procedure for generating the simulated datasets

is outlined as below.

1. Specify values for global parameters (µγ, σγ , t1, t2, ν1, ν2). For the first dataset, we

set µγ = −5 to imitate the case where the majority of replacement mutations that

are observed are deleterious. As a comparison, we set µγ = 6 in the second dataset.

The rest of the parameters (σγ , t1, t2, ν1, ν2) are set to (3, 7, 3, 5, 3) and (3.5, 8, 4, 3, 1)

for dataset 1 and 2 respectively.

2. Generate random samples from appropriate distributions to get the number of

nucleotide sequences n1,j and n2,j, selection coefficient γj and two types of mutation

rates θs,j and θr,j for jth gene (j = 1, . . . , Ng, in our simulation study we set

Ng = 30). In particular, we draw n1,j and n2,j from discrete uniform distributions

on a list of consecutive integers (say 1 through 25), sample γj from the normal

distribution with mean µγ and standard deviation σγ and generate θs,j and θr,j

from continuous uniform distributions with given boundaries.

3. Generate the DOHRS Tables. At each gene, we numerically calculate means of the

Poisson distributed variables Fs, Os, Bs, Fr, Or and Br using the formulas (3.10)
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and (3.11). Then we draw sample counts from the corresponding Poisson distribu-

tions to formulate DOHRS table entries Fs,j, Os,j, Bs,j, Fr,j, Or,j and Br,j. Eventu-

ally the simulated dataset will be a Ng × 8 matrix of which each row consists of

Fs,j, Os,j, Bs,j, Fr,j, Or,j, Br,j, n1,j and n2,j.

After a burn-in period of 200,000 MCMC iterations, we take samples every 100 step

to reduce the autocorrelation. At the end of the iterations, 15,000 samples (1,500,000

iterations) were drawn for simulated dataset 1 and they were divided equally into 10

subchains. Similarly, 4,000 samples (400,000 iterations) were taken for simulated dataset

2 and formed 10 subchains with 400 samples each. To monitor the behavior of MCMC

outputs and track the convergence of the chains, we generated trace plots of estimated

values of each parameter and examined a variety of attributes. The recorded character-

istics for each of the 10 subchains include general summary statistics such as median,

mean and standard deviation as well as other diagnostic measures like Gelman-Rubin

(GR) statistic (Gelman and Rubin (1992)), lower and upper bound of highest posterior

density interval (HPD interval) with 95% coverage probability and autocorrelation func-

tion evaluated at lags 1, 5 and 10 respectively. These information are displayed through

Table 5.1 to Table 5.4. Besides, trace plots of the global parameters (µγ, σγ , t1, t2, ν1, ν2)

obtained from the 10th chain are shown in Figure 5.1 and 5.2.

For each model parameter, the GR method quantifies the convergence of multiple

Monte Carlo Markov chains by comparing the within-chain variation of estimates of the

parameter to the between-chain variation (see Gelman and Rubin (1992), Plummer et al.

(2015)). The related diagnostic statistic is called the potential scale reduction factor
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(PSRF) and defined based upon the ratio of the two variances described above. Any

PSRF value significantly exceeding one suggests poor convergence. For simulated dataset

1, we observe stationary distributions through trace plots and most point estimates of

PSRF are around 1.1 (hardly above 1.2) and hence the convergence of the chain is

validated. Whereas for simulated dataset 2, the chains suffer from slow mixing issue

and it is somewhat expected due to the fact we are not able to run the simulation long

enough (less than 106 iterations). The acceptance rates of proposed γj and t1 candidates

are substantially lower than normal range (< 0.1) and high autocorrelations also appeared

in the estimates of t1. These facts imply that corresponding chains are trapped in low

density regions.

Despite of the unsatisfactory convergence performance with regard to dataset 2, some

useful inference can still be made from the information collected. For both simulated

datasets, the orientation of selective effect is correctly detected. From the perspective

of posterior median, we obtained precise estimates of the mean µγ and the standard

deviation σγ of selection coefficient. Although the amplitudes of both parameters tend

to be underestimated by the model, most 95% HPD intervals still successfully capture

their true values. Another interesting discovery is that the proportion of the estimated

median of the first population size ratio to that of the second population size ratio,
ν̂1
ν̂2
,

is remarkably in line with the real value
ν1
ν2

across all chains for both datasets. Such

proportions are listed in Table 5.7 and Table 5.8. On the one hand, our model performs

accurately with respect to predicting the relative ratio of the effective population size of

one daughter species to that of the other. On the other hand, the current model lacks

power to catch the demographic change from the ancestor to the offspring due to the
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evidence that both ν1 and ν2 are substantially overestimated.

In addition, we are concerned with biased estimates of divergence times t1 and t2.

Notice that simulated dataset 1 resembles dataset 2 in a manner that they both describe

a situation where one daughter species experienced a longer evolution history (
t1
t2

> 1) and

also expanded into a larger population size (
ν1
ν2

> 1). For both datasets, the results reveal

a trend in underrating t1 while overrating t2. In order to investigate the logic behind

the above bias and see whether it is simply caused by chance or by some underlying

dependence between
t1
t2

and
ν1
ν2
, extra simulation was run on dataset 3 with parameters

(µγ, σγ , t1, t2, ν1, ν2) set to (−5, 3, 3, 7, 5, 3). The related outputs are organized into similar

Tables (5.5, 5.6, 5.9) and plot (Figure 5.3). The behavior of MCMC sampler mimics what

we have observed with dataset 1, which should not be a surprise since dataset 3 can be

treated as a revised version of dataset 1 in the sense that all parameters are the same

except that t1 and t2 are switched. However, no significant bias in evaluating divergence

times are found. This clue leads us to a second thought on the model assumptions,

particularly on the way we scaled the divergence times and the population size ratios.

Further discussions are presented in the next section.
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Chain No. median mean s.d. G.R. 95% HPD.I acf
L U 1 5 10

1

µγ -2.65 -3.27 2.29 -8.24 -0.67 0.92 0.8 0.69
σγ 1.41 1.78 1.3 0.39 4.71 0.9 0.77 0.65
t1 6.59 5.9 2.69 0.8 9.53 0.98 0.92 0.85
t2 4.33 5.26 3.53 0.48 11.56 0.98 0.92 0.84
ν1 15.8 15.08 3.57 8.3 20 0.9 0.71 0.6
ν2 11.95 12.09 3.55 4.99 18.36 0.89 0.64 0.53

2

µγ -3.17 -3.63 2.01 1.05 -7.52 -0.77 0.89 0.69 0.49
σγ 1.7 1.97 1.13 1.05 0.4 4.19 0.84 0.64 0.46
t1 7.28 6.83 2.02 1.03 2.27 10 0.97 0.89 0.81
t2 3.49 4.02 2.56 1.05 0.4 9.74 0.96 0.87 0.8
ν1 15.23 14.45 4 1 7.07 20 0.93 0.78 0.68
ν2 12.01 11.96 3.8 1 5.32 19.42 0.9 0.7 0.55

3

µγ -2.72 -3.19 1.82 1.03 -7.14 -0.71 0.87 0.62 0.44
σγ 1.47 1.76 1.08 1.02 0.33 3.87 0.83 0.58 0.39
t1 6.26 5.92 2.36 1.02 1.24 9.71 0.98 0.9 0.81
t2 4.77 5.21 2.98 1.02 0.62 11.02 0.97 0.89 0.81
ν1 15.74 15.32 3.22 1.03 8.98 19.99 0.87 0.65 0.51
ν2 12.68 12.54 3.33 1.02 5.99 18.61 0.86 0.56 0.43

4

µγ -3.26 -3.52 1.65 1.03 -6.61 -0.85 0.89 0.69 0.52
σγ 1.76 1.94 0.99 1.03 0.44 3.9 0.83 0.64 0.48
t1 4.78 5.07 2.65 1.17 0.89 9.72 0.99 0.94 0.9
t2 6.55 6.21 3.2 1.14 0.49 10.86 0.98 0.94 0.89
ν1 14.54 14.12 3.89 1.02 7.15 19.95 0.95 0.83 0.74
ν2 12.01 11.75 3.47 1.01 4.55 17.77 0.93 0.73 0.62

5

µγ -3.39 -3.8 2.02 1.03 -7.69 -0.87 0.92 0.8 0.67
σγ 1.83 2.04 1.12 1.03 0.35 4.11 0.87 0.75 0.63
t1 6.23 5.43 3.01 1.18 0.54 9.43 0.99 0.96 0.94
t2 4.76 5.91 3.86 1.16 0.52 11.83 0.99 0.96 0.93
ν1 15.05 14.77 3.51 1.03 8.42 19.99 0.94 0.79 0.66
ν2 11.71 11.77 3.51 1.02 5.75 19.57 0.94 0.78 0.62

Table 5.1. Simulated Dataset 1 Summary (Chains 1-5)
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Chain No. median mean s.d. G.R. 95% HPD.I acf
L U 1 5 10

6

µγ -4.39 -5.18 3.27 1.22 -11.79 -0.88 0.95 0.89 0.84
σγ 2.36 2.82 1.86 1.21 0.39 6.6 0.92 0.84 0.78
t1 2.16 2.44 1.47 1.3 0.27 5.47 0.97 0.87 0.76
t2 9.83 9.63 2.05 1.26 4.79 13.21 0.97 0.85 0.76
ν1 13.59 12.82 4.62 1.18 4.21 19.97 0.97 0.88 0.81
ν2 9.56 9.52 3.76 1.18 2.36 15.88 0.97 0.87 0.79

7

µγ -4.47 -4.95 2.51 1.18 -9.74 -1.13 0.92 0.83 0.73
σγ 2.39 2.71 1.5 1.17 0.44 5.42 0.87 0.79 0.7
t1 2.78 3.27 2.26 1.25 0.46 8.6 0.99 0.94 0.9
t2 9.31 8.88 3.15 1.22 1.2 13.73 0.98 0.93 0.87
ν1 11.37 11.61 4.39 1.15 5.18 19.96 0.97 0.88 0.77
ν2 7.98 8.51 3.84 1.16 2.55 16 0.97 0.87 0.78

8

µγ -2.42 -2.78 1.48 1.21 -6.13 -0.74 0.9 0.71 0.56
σγ 1.31 1.51 0.86 1.2 0.36 3.37 0.86 0.66 0.52
t1 4.92 4.99 2.37 1.21 0.56 8.97 0.99 0.95 0.9
t2 6.48 6.35 3.03 1.2 0.61 10.92 0.98 0.94 0.89
ν1 16.74 16.29 2.66 1.17 11.53 19.99 0.88 0.62 0.45
ν2 13.11 13.08 2.99 1.17 7.41 19.24 0.9 0.61 0.38

9

µγ -2.85 -3.38 1.92 1.19 -7.65 -0.75 0.92 0.78 0.64
σγ 1.55 1.83 1.08 1.18 0.29 4.1 0.86 0.71 0.57
t1 4.48 4.71 2.77 1.21 0.45 9.04 0.99 0.96 0.94
t2 6.87 6.69 3.65 1.2 0.66 12.43 0.99 0.96 0.94
ν1 14.61 14.15 3.81 1.15 7.75 19.98 0.95 0.81 0.71
ν2 11.29 11.18 3.91 1.14 4.39 18.14 0.96 0.82 0.72

10

µγ -3.03 -3.37 1.68 1.18 -6.65 -0.78 0.9 0.74 0.6
σγ 1.61 1.82 0.96 1.17 0.37 3.74 0.85 0.71 0.59
t1 4.28 4.15 1.78 1.2 0.82 7.25 0.98 0.9 0.79
t2 7.28 7.34 2.21 1.2 3.18 11.21 0.97 0.88 0.8
ν1 14.29 13.81 4.03 1.14 7.36 20 0.95 0.85 0.78
ν2 10.95 11.18 3.84 1.14 4.75 18.15 0.95 0.82 0.72

Table 5.2. Simulated Dataset 1 Summary (Chains 6-10)
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Figure 5.1. Trace Plot of Simulated Dataset 1
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Chain No. median mean s.d. G.R. 95% HPD.I acf
L U 1 5 10

1

µγ 5.02 5.35 1.37 3.36 8.03 0.79 0.71 0.68
σγ 3.19 3.29 0.92 1.73 5.02 0.69 0.64 0.57
t1 2.54 2.47 0.75 1.01 4.05 0.98 0.88 0.76
t2 18.18 19.21 3.94 13.2 27.17 0.92 0.74 0.46
ν1 5.27 5.25 1.3 2.96 7.57 0.97 0.88 0.75
ν2 1.77 1.85 0.58 0.94 2.83 0.98 0.89 0.79

2

µγ 4.19 4.34 0.9 1.63 2.9 6.28 0.62 0.52 0.52
σγ 2.63 2.72 0.62 1.49 1.64 3.89 0.52 0.48 0.4
t1 3.02 3.43 1.58 1.12 1.01 6.26 0.99 0.97 0.94
t2 17.34 17.92 5.58 1 7.2 28.92 0.95 0.83 0.71
ν1 5.47 5.83 1.38 1.36 4.01 8.88 0.97 0.88 0.8
ν2 1.81 1.78 0.57 1.91 0.66 2.72 0.94 0.78 0.66

3

µγ 3.25 3.29 0.6 2.15 2.12 4.34 0.49 0.49 0.45
σγ 2.03 2.11 0.46 1.79 1.36 2.96 0.45 0.38 0.39
t1 4.06 3.88 0.93 2.94 2.05 5.44 0.98 0.9 0.81
t2 19.49 21.22 7.57 1.14 10.05 36.32 0.93 0.74 0.53
ν1 7.11 7.47 1.52 1.37 5.36 10.29 0.98 0.92 0.87
ν2 1.73 1.75 0.64 1.25 0.55 2.88 0.92 0.69 0.53

4

µγ 2.49 2.51 0.58 2.7 1.55 3.55 0.71 0.63 0.6
σγ 1.48 1.56 0.44 2.35 0.86 2.42 0.69 0.63 0.56
t1 3.02 3.26 1.1 2.57 1.77 5.85 0.99 0.94 0.88
t2 20.71 30.02 22.7 1.1 8.56 86.42 0.99 0.94 0.86
ν1 11.48 10.49 2.57 3.71 5.21 13.71 0.98 0.93 0.87
ν2 2.87 2.86 1.99 2.95 0.15 6.33 0.99 0.96 0.92

5

µγ 3 3.03 0.44 2.57 2.11 3.83 0.36 0.29 0.27
σγ 1.82 1.85 0.34 2.23 1.26 2.48 0.25 0.15 0.09
t1 2.24 2.46 1.14 1.93 0.75 4.6 0.98 0.94 0.88
t2 19.78 20.26 4.76 1.07 10.81 30.07 0.9 0.6 0.44
ν1 8.91 8.92 1.16 3.21 6.43 10.95 0.94 0.75 0.52
ν2 3.24 3.01 0.89 2.34 0.91 4.25 0.97 0.84 0.75

Table 5.3. Simulated Dataset 2 Summary (Chains 1-5)
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Chain No. median mean s.d. G.R. 95% HPD.I acf
L U 1 5 10

6

µγ 2.78 2.92 0.74 2.37 1.61 4.23 0.77 0.69 0.7
σγ 1.87 1.95 0.53 2.05 1.14 2.97 0.65 0.61 0.57
t1 6.6 6.57 0.9 2.83 4.93 8.1 0.96 0.83 0.69
t2 7.76 8.74 5.22 1.36 1.19 19.9 0.92 0.65 0.59
ν1 6.29 6.29 1.39 3.05 4.19 8.77 0.98 0.92 0.85
ν2 2.05 2.04 0.83 2.13 0.2 3.44 0.87 0.58 0.46

7

µγ 4.56 4.38 1.05 2.24 2.26 6.05 0.72 0.7 0.6
σγ 2.87 2.85 0.7 1.96 1.59 4.24 0.59 0.56 0.5
t1 5.2 5.33 1.17 2.63 3.29 7.87 0.98 0.9 0.79
t2 12.25 13.91 7.65 1.25 1.81 31.2 0.94 0.77 0.63
ν1 4.68 4.76 0.84 3.08 3.6 6.51 0.97 0.88 0.77
ν2 1.25 1.35 0.62 2.15 0.46 2.69 0.89 0.62 0.49

8

µγ 2.81 3.04 0.83 2.27 1.92 4.91 0.8 0.78 0.72
σγ 1.8 1.97 0.62 1.99 1.08 3.4 0.71 0.69 0.66
t1 3.81 4.1 1.17 2.56 2.56 6.33 0.98 0.91 0.83
t2 17.9 17.91 5.94 1.24 6.75 28.82 0.9 0.75 0.59
ν1 8.51 7.99 2.26 3.01 4.13 11.46 0.99 0.95 0.9
ν2 2.13 2.18 0.88 2.03 0.7 3.77 0.94 0.79 0.66

9

µγ 2.09 2.16 0.58 2.42 1.21 3.26 0.73 0.7 0.59
σγ 1.4 1.41 0.38 2.11 0.71 2.1 0.61 0.57 0.58
t1 5.35 5.82 1.49 2.6 3.7 8.64 0.98 0.91 0.84
t2 12.03 11.86 7.43 1.38 0.69 28.59 0.95 0.8 0.63
ν1 9.01 8.9 1.29 2.93 6.59 11.24 0.96 0.86 0.76
ν2 2.64 2.58 1.04 1.83 0.58 4.56 0.9 0.61 0.35

10

µγ 1.26 1.27 0.21 2.67 0.9 1.69 0.33 0.36 0.32
σγ 0.8 0.82 0.17 2.34 0.55 1.15 0.34 0.31 0.28
t1 4.39 5.1 2.3 2.38 2.15 9.08 0.99 0.95 0.92
t2 12.45 10.7 5.7 1.37 0.47 18.52 0.97 0.91 0.85
ν1 17.17 15.68 3.69 4.46 9.67 20 0.99 0.94 0.9
ν2 7.13 6.78 2.23 2.93 2.13 10.71 0.96 0.82 0.65

Table 5.4. Simulated Dataset 2 Summary (Chains 6-10)
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Figure 5.2. Trace Plot of Simulated Dataset 2
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Chain No. median mean s.d. G.R. 95% HPD.I acf
L U 1 5 10

1

µγ -2.51 -2.98 1.78 -6.73 -0.69 0.87 0.65 0.5
σγ 1.44 1.76 1.15 0.3 4.18 0.83 0.6 0.47
t1 3.13 3.2 1.97 0.18 6.33 0.98 0.92 0.84
t2 7.18 6.93 3.35 0.67 12.26 0.98 0.91 0.83
ν1 14.1 13.71 3.46 6.13 19.22 0.99 0.97 0.95
ν2 7.73 7.61 2.15 3.43 11.43 0.98 0.92 0.85

2

µγ -2.12 -2.58 1.53 1.62 -5.68 -0.74 0.84 0.53 0.39
σγ 1.21 1.51 0.96 1.55 0.35 3.31 0.81 0.52 0.36
t1 2.73 2.91 1.86 1.04 0.28 6.14 0.98 0.89 0.79
t2 7.63 7.5 3.21 1.04 1.68 13.15 0.98 0.9 0.81
ν1 16.23 15.49 3.57 2.84 7.96 20 0.99 0.97 0.94
ν2 8.5 8.7 2.45 2.52 4.02 12.7 0.99 0.94 0.88

3

µγ -2.05 -2.44 1.52 1.25 -5.68 -0.54 0.86 0.59 0.43
σγ 1.17 1.44 0.97 1.22 0.27 3.46 0.81 0.54 0.38
t1 3.58 3.8 2.38 1.09 0.44 7.55 0.99 0.94 0.89
t2 6.14 5.98 3.6 1.08 0.17 10.88 0.98 0.94 0.89
ν1 14.64 14.37 3.27 1.71 8.68 19.72 0.99 0.97 0.94
ν2 9.34 9.71 2.86 1.61 4.55 15.24 0.99 0.96 0.93

4

µγ -2.27 -3.11 2.47 1.19 -8.56 -0.6 0.92 0.8 0.7
σγ 1.33 1.83 1.49 1.17 0.29 5.11 0.9 0.77 0.69
t1 2.72 3.16 1.91 1.07 0.15 6.81 0.98 0.89 0.8
t2 7.78 6.94 2.87 1.06 0.76 10.88 0.97 0.88 0.79
ν1 15 14.22 3.71 1.64 7.16 19.64 0.99 0.97 0.94
ν2 8.64 8.83 3.37 1.39 2.6 16.76 0.99 0.96 0.92

5

µγ -2.36 -2.96 2.09 1.13 -7.42 -0.65 0.9 0.7 0.56
σγ 1.36 1.77 1.31 1.11 0.28 4.47 0.86 0.64 0.5
t1 2.59 3.19 2.25 1.12 0.3 7.3 0.98 0.92 0.86
t2 7.49 6.97 3.51 1.12 0.36 11.77 0.98 0.93 0.87
ν1 12.78 13.5 3.3 1.44 7.96 19.44 0.99 0.96 0.93
ν2 8.32 8.96 3.1 1.27 4.15 16.82 0.99 0.96 0.91

Table 5.5. Simulated Dataset 3 Summary (Chains 1-5)
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Chain No. median mean s.d. G.R. 95% HPD.I acf
L U 1 5 10

6

µγ -2.04 -2.62 1.83 1.1 -6.64 -0.51 0.88 0.7 0.61
σγ 1.17 1.54 1.13 1.09 0.25 4.04 0.86 0.67 0.58
t1 4.03 3.94 2.39 1.12 0.39 7.51 0.99 0.95 0.91
t2 5.46 6.13 4.09 1.13 0.24 12.4 0.99 0.95 0.91
ν1 14.48 14.98 2.31 1.35 11.61 19.75 0.98 0.92 0.85
ν2 9.42 9.68 2.9 1.25 4.98 15.67 0.99 0.96 0.93

7

µγ -1.58 -1.97 1.22 1.13 -4.59 -0.49 0.84 0.57 0.36
σγ 0.92 1.16 0.79 1.12 0.25 2.82 0.81 0.53 0.32
t1 3.7 3.84 2.1 1.18 0.59 7.24 0.98 0.9 0.85
t2 6.01 5.77 3.18 1.19 0.57 10.5 0.98 0.9 0.84
ν1 16.75 16.42 2.32 1.31 12.28 19.98 0.99 0.94 0.88
ν2 10.39 10.91 2.81 1.26 6.92 17.4 0.99 0.95 0.92

8

µγ -1.84 -2.29 1.45 1.14 -5.41 -0.45 0.86 0.65 0.47
σγ 1.06 1.35 0.95 1.12 0.26 3.49 0.84 0.62 0.44
t1 4.67 4.54 2.12 1.2 0.31 7.52 0.98 0.92 0.85
t2 4.54 4.72 3.03 1.22 0.21 10 0.98 0.91 0.83
ν1 15.56 14.62 3.67 1.25 7.33 19.93 0.99 0.97 0.95
ν2 9.73 10.09 2.63 1.23 5.78 15.13 0.99 0.95 0.9

9

µγ -1.58 -1.92 1.14 1.15 -4.28 -0.59 0.83 0.52 0.31
σγ 0.91 1.14 0.75 1.13 0.24 2.64 0.79 0.5 0.31
t1 3.49 3.66 2.06 1.2 0.55 7.18 0.98 0.9 0.82
t2 6.17 5.88 2.86 1.22 0.53 9.86 0.98 0.91 0.83
ν1 16.04 15.92 2.47 1.24 11.43 19.92 0.99 0.94 0.89
ν2 11.31 11.5 2.58 1.26 6.24 16.32 0.99 0.95 0.91

10

µγ -2.21 -2.72 1.84 1.14 -6.61 -0.49 0.88 0.67 0.47
σγ 1.28 1.58 1.12 1.12 0.21 3.95 0.85 0.63 0.44
t1 2.78 3.23 2.55 1.18 0.18 7.54 0.99 0.96 0.91
t2 7.7 7.06 4.04 1.19 0.24 12.77 0.99 0.95 0.91
ν1 15.49 15.72 2.49 1.28 11.71 19.99 0.99 0.94 0.89
ν2 8.58 10.07 4.26 1.3 4.05 17.5 1 0.98 0.96

Table 5.6. Simulated Dataset 3 Summary (Chains 6-10)
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Figure 5.3. Trace Plot of Simulated Dataset 3

57



5.2 Further Discussion on A Model Assumption

Recall that the demographic change from the ancestor to the descendant in our model

is characterized by two ratios ν1 = N1

Na
and ν2 = N2

Na
, with N1 and N2 representing the

current effective population sizes of two daughter species. In the diffusion approxima-

tion to the discrete Markov chains which describe DNA site frequency distributions, the

divergence times are scaled by the haploid effective population sizes, that is

k1
N2

1

→ t1,
k2
N2

2

→ t2

as N1, N2 → ∞ respectively. In the above limits k1 and k2 are Moran time steps and

we assume that they are independent. This setup naturally indicates that t1 and t2 are

independent as well. However our simulation study demonstrates an evidence that the

estimated ratio of divergence times
t1
t2

tends to be less than one regardless of its true

value if
ν1
ν2

is set to be greater than one. Thus hidden connection may exist between the

two proportions.

It may be reasonable to assume that the Moran time steps k1 and k2 are correlated.

For mathematical simplicity, suppose that k = k1 = k2. The revised assumption yields

that

t1
t2

=
k

N2
1

/
k

N2
2

= (
N2

N1

)2 = (
ν2
ν1
)2 (5.1)

For all three simulated datasets analyzed in Section 5.1, we compare
t1
t2

to (
ν2
ν1
)2 using

posterior medians. Our conjecture in (5.1) is supported by the similarity between the

estimates
t̂1

t̂2
and (

ν̂2
ν̂1
)2 which are listed in Table 5.7, 5.8 and 5.9. Additional analysis

on datasets simulated with such revised assumption is required to reach further reliable

conclusion.
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Chain No. µγ σb t1 t2 ν1 ν2 ν1/ν2 t1/t2 (ν2
ν1
)2

1 -2.647 1.411 6.588 4.329 15.799 11.953 1.253 1.522 0.572
2 -3.168 1.701 7.275 3.493 15.227 12.007 1.205 2.083 0.622
3 -2.725 1.472 6.265 4.77 15.74 12.678 1.227 1.313 0.649
4 -3.264 1.761 4.784 6.549 14.545 12.005 1.195 0.73 0.681
5 -3.394 1.825 6.226 4.756 15.053 11.709 1.264 1.309 0.605
6 -4.389 2.356 2.158 9.826 13.588 9.559 1.356 0.22 0.495
7 -4.468 2.394 2.785 9.309 11.372 7.985 1.385 0.299 0.493
8 -2.416 1.312 4.915 6.482 16.74 13.11 1.235 0.758 0.613
9 -2.853 1.552 4.479 6.866 14.61 11.293 1.293 0.652 0.597
10 -3.03 1.608 4.277 7.279 14.293 10.951 1.247 0.588 0.587

true value -5 3 7 3 5 3 1.667 2.333 0.36

Table 5.7. Estimated Medians for Simulated Dataset 1

Chain NO. µγ σb t1 t2 ν1 ν2 ν1/ν2 t1/t2 (ν2
ν1
)2

1 5.024 3.185 2.538 18.184 5.272 1.765 2.818 0.14 0.112
2 4.192 2.635 3.02 17.34 5.473 1.807 3.166 0.174 0.109
3 3.252 2.034 4.063 19.489 7.106 1.734 4.374 0.208 0.06
4 2.488 1.477 3.017 20.712 11.483 2.875 3.592 0.146 0.063
5 2.998 1.816 2.242 19.776 8.908 3.242 2.89 0.113 0.132
6 2.782 1.87 6.603 7.763 6.293 2.05 3.147 0.851 0.106
7 4.561 2.873 5.197 12.25 4.682 1.248 3.776 0.424 0.071
8 2.81 1.802 3.81 17.898 8.508 2.128 3.652 0.213 0.063
9 2.093 1.398 5.349 12.03 9.009 2.636 3.263 0.445 0.086
10 1.262 0.798 4.393 12.45 17.172 7.131 2.252 0.353 0.172

true value 6 3.5 8 4 3 1 3 2 0.111

Table 5.8. Estimated Medians for Simulated Dataset 2
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Chain NO. µγ σb t1 t2 ν1 ν2 ν1/ν2 t1/t2 (ν2
ν1
)2

1 -2.509 1.439 3.133 7.185 14.096 7.734 1.801 0.436 0.301
2 -2.118 1.212 2.731 7.627 16.229 8.504 1.746 0.358 0.275
3 -2.045 1.17 3.578 6.14 14.645 9.344 1.536 0.583 0.407
4 -2.265 1.328 2.724 7.779 15.001 8.638 1.673 0.35 0.332
5 -2.358 1.358 2.59 7.491 12.785 8.325 1.513 0.346 0.424
6 -2.036 1.175 4.031 5.455 14.482 9.415 1.565 0.739 0.423
7 -1.58 0.917 3.701 6.014 16.749 10.389 1.551 0.615 0.385
8 -1.835 1.059 4.665 4.538 15.561 9.732 1.452 1.028 0.391
9 -1.577 0.909 3.49 6.168 16.044 11.314 1.425 0.566 0.497
10 -2.214 1.275 2.781 7.698 15.491 8.582 1.756 0.361 0.307

true value -5 3 3 7 5 3 1.667 0.429 0.36

Table 5.9. Estimated Medians for Simulated Dataset 3

5.3 Results on The Model Application to A Drosophila Genes Data

DNA sequence data from two well-known sibling species ofDrosophila,D.melanogaster

and D.simulans, had been applied to various PRF models to make statistical infer-

ence about selection and divergence (see Bustamante et al. (2002), Pröschel et al. (2006),

Sawyer et al. (2007), Amei and Sawyer (2012), Zhou (2013)). The dataset from Pröschel et al.

(2006) is analyzed in our case. It contains information of 91 autosomal genes (not from

sexual chromosomes) gathered from 12 D.melanogaster lines at Lake Kariba, Zimbabwe

and multiple protein-encoding alleles are provided for each of these genes. As a inter-

specific comparison, genes of one D.simulans line from Chapel Hill, North Carolina are

used to show DNA site polymorphisms. Similar to simulated datasets, FOB counts and

number of alleles are organized in a 91 × 8 matrix with D.melanogaster marked as the

first daughter species and D.simulans as the second species. It is noteworthy that the

sample counts of silent and replacement legacy polymorphisms (i.e. Bs and Br) are 0
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for all genes since the sample contains only one DNA alignment from D.simulans and

hence there is no sample polymorphism in the genes of D.simulans.

After dumping the initial 100,000 burn-in iterations, one MCMC draw was taken

from every 50 runs and 10 subchains of equal length were created using 8,000 thinned

samples. Summary reports of all global parameters are listed in Table 5.10, 5.11 and 5.12

for all 10 subchains and results from the last subchain are discussed as follows. Using

the diffusion time scale presented in Chapter 3, the posterior medians together with 95%

HPD credible intervals of global parameters are estimated to be 0.14 (0.04,0.29) for µγ,

0.27 (0.13,0.53) for σγ , 5.39 (2.1,6.6) for t1, 4.37 (0, 57.07) for t2, 13.79 (8.09, 17.49) for

ν1 and 4.24 (0,8.06) for ν2.

The result of µγ indicates that the average selective effect on genes involved is nearly

neutral with a slightly favorable trend. Study of the same dataset in Amei and Sawyer

(2012) paper yielded a comparable median of selection coefficient of 1.98 with 95% cred-

ible interval (0.89,3.37) while Sawyer et al. (2007) results revealed a relatively strong

negative selection on most non-synonymous mutations with µγ = −5.7. For more de-

tails, median estimates paired with corresponding 95% credible intervals of selection

coefficients for all 91 genes are increasingly sorted and visually displayed in Figure 5.4.

From the perspective of directional selection, there are 70 loci whose estimated values of

γ are greater than zero and 13 genes whose credible interval estimates of γ are completely

over zero. In other words, only 23% genes are subject to negative selection. The overall

range of the estimated selection coefficients is narrow with medians varying from -0.39

to 0.49, which is consistent with our estimates of µγ and σγ since we have assumed that

γ follows a Gaussian distribution depending on those two parameters.
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Using an estimated haploid effective population size of 0.645 × 106 for the ancestor

species (Sawyer and Hartl (1992)), the median estimates of t1 = 5.39, ν1 = 13.79, t2 =

4.37 and ν2 = 4.24, suggest that D.melanogaster and D.simulans had diverged respec-

tively 47.94 million years ago and 11.95 million years ago from their common ancestor.

Meanwhile, our estimates of the population size ratios indicate that D.melanogaster

has a larger population size compared to D.simulans while this result contradicts the

inference made in Aquadro et al. (1988) where they hypothesized that the higher level

of DNA variation observed within D.simulans was mainly determined by its larger pop-

ulation size (see also Capy and Gibert (2004)). However our estimates of ν2 and hence

the population size of D.simulans may be influenced by the fact that the sample size of

D.simulans in the study is one across all genes. Consequently our result is likely to be

an underestimate of the actual size.
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Chain No. median mean s.d. G.R. 95% HPD.I acf
L U 1 5 10

1

µγ 0.1 -0.06 0.4 -1.03 0.46 0.88 0.83 0.79
σγ 0.54 0.82 0.68 0.11 2.1 0.96 0.93 0.89
t1 2.17 3.1 1.97 0.66 6.22 0.98 0.95 0.9
t2 29.66 29.43 16.89 3.43 58.85 0.99 0.94 0.89
ν1 17.26 17.03 1.86 13.95 19.99 0.98 0.9 0.82
ν2 2.07 2.61 2.21 0 6.97 0.99 0.97 0.94

2

µγ 0.17 0.21 0.16 1.46 -0.01 0.54 0.64 0.52 0.43
σγ 0.41 0.55 0.38 1.98 0.12 1.32 0.93 0.88 0.87
t1 3.89 3.72 1.86 1.7 0.78 6.27 0.98 0.92 0.87
t2 5.52 7.7 6.58 1.73 0.01 20.08 0.98 0.92 0.87
ν1 12.27 12.76 3.76 4.21 6.48 19.99 0.99 0.98 0.96
ν2 3.85 4.49 2.4 1.56 1.37 10.72 0.99 0.93 0.86

3

µγ 0.22 0.23 0.13 1.21 0.04 0.55 0.57 0.44 0.33
σγ 0.51 0.55 0.19 1.55 0.22 0.91 0.84 0.68 0.59
t1 1.89 2.03 1.1 1.75 0.41 4.21 0.94 0.81 0.67
t2 10.53 10.36 4.57 1.59 2.06 20.22 0.97 0.9 0.82
ν1 14.99 14.34 3 2.11 7.59 18.73 0.99 0.94 0.88
ν2 5.64 5.83 1.52 1.45 2.98 8.98 0.97 0.87 0.75

4

µγ 0.24 0.28 0.17 1.14 0.03 0.64 0.7 0.58 0.51
σγ 0.48 0.55 0.26 1.33 0.13 1.01 0.89 0.8 0.71
t1 2.63 2.84 1.79 1.59 0.24 5.95 0.97 0.9 0.82
t2 5.52 6.4 4.2 1.62 0.37 14.03 0.96 0.87 0.78
ν1 12 10.73 3.62 1.83 4.37 16.11 0.99 0.97 0.95
ν2 5.13 5.92 3.95 1.49 0.01 14.08 0.99 0.96 0.93

5

µγ 0.12 0.12 0.04 1.22 0.04 0.21 0.51 0.29 0.22
σγ 0.22 0.22 0.06 1.49 0.11 0.33 0.76 0.55 0.5
t1 4.71 4.28 1.52 1.67 1.21 6.42 0.96 0.85 0.73
t2 1.51 2.02 1.56 1.79 0 4.8 0.94 0.81 0.7
ν1 14.49 14.79 2.64 1.67 10.64 19.86 0.99 0.95 0.91
ν2 14.03 13.62 3.08 2.21 7.85 18.97 0.98 0.92 0.84

Table 5.10. Estimation of Global Parameters (Drosophila Gene Data, Chains 1-5)
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Chain No. median mean s.d. G.R. 95% HPD.I acf
L U 1 5 10

6

µγ 0.64 0.7 0.7 1.78 -0.62 2.51 0.85 0.77 0.69
σγ 1.45 1.63 0.88 1.88 0.18 3.45 0.92 0.83 0.74
t1 3.9 3.48 1.84 1.68 0.54 5.91 0.97 0.91 0.84
t2 2.14 7.29 9.94 1.88 0 29.52 0.99 0.97 0.94
ν1 2.86 5.16 4.43 3.9 0.57 14.61 1 0.98 0.95
ν2 2.68 3.17 2.25 2.1 0.02 8.11 0.98 0.91 0.84

7

µγ 0.24 0.5 0.58 1.78 -0.02 1.62 0.84 0.76 0.71
σγ 0.46 0.99 1.01 1.9 0.16 3.12 0.97 0.9 0.82
t1 3.85 3.76 1.41 1.59 1.34 6.36 0.95 0.78 0.65
t2 3.19 3.89 2.72 1.89 0.03 9.79 0.91 0.7 0.58
ν1 5.89 7.98 5.59 3 0.8 16.68 1 0.98 0.97
ν2 3.51 4.52 3.38 1.89 0.02 10.77 0.99 0.97 0.94

8

µγ 0.14 0.14 0.06 1.78 0.04 0.26 0.58 0.42 0.36
σγ 0.26 0.27 0.08 1.92 0.13 0.44 0.83 0.66 0.6
t1 3.85 3.83 1.65 1.48 0.91 6.34 0.96 0.84 0.74
t2 3.66 4.64 4.08 1.9 0.02 14.97 0.95 0.77 0.59
ν1 13.03 13.3 2.17 2.72 9.17 17.21 0.99 0.93 0.85
ν2 9.82 9 4.97 1.99 0 15.49 0.99 0.97 0.95

9

µγ 0.11 0.12 0.05 1.78 0.03 0.23 0.64 0.44 0.38
σγ 0.2 0.22 0.07 1.93 0.11 0.36 0.86 0.72 0.63
t1 4.05 3.82 1.64 1.41 0.88 6.32 0.96 0.82 0.69
t2 2.51 2.59 1.64 1.9 0 5.36 0.94 0.77 0.63
ν1 16.65 16.15 2.72 2.47 11.34 19.99 0.99 0.95 0.89
ν2 12.72 13.29 3.16 1.97 8.11 18.79 0.99 0.95 0.91

10

µγ 0.14 0.15 0.07 1.77 0.04 0.29 0.56 0.44 0.38
σγ 0.27 0.3 0.12 1.92 0.13 0.53 0.87 0.73 0.62
t1 5.39 4.92 1.3 1.39 2.1 6.6 0.95 0.83 0.72
t2 4.37 12.94 18.69 1.57 0 57.07 0.99 0.95 0.91
ν1 13.79 13.17 2.48 2.32 8.09 17.49 0.99 0.93 0.87
ν2 4.24 3.82 2.69 1.97 0 8.06 0.99 0.95 0.9

Table 5.11. Estimation of Global Parameters (Drosophila Gene Data, Chains 6-10)
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Chain NO. µγ σb t1 t2 ν1 ν2 ν1/ν2 t1/t2 (ν2
ν1
)2

1 0.097 0.536 2.172 29.662 17.26 2.07 8.317 0.073 0.014
2 0.168 0.413 3.886 5.517 12.27 3.853 3.043 0.704 0.099
3 0.216 0.513 1.888 10.528 14.992 5.639 2.661 0.179 0.141
4 0.239 0.482 2.635 5.524 11.996 5.13 2.287 0.477 0.183
5 0.117 0.218 4.713 1.506 14.491 14.033 1.098 3.129 0.938
6 0.642 1.455 3.897 2.138 2.86 2.676 1.379 1.823 0.875
7 0.241 0.464 3.851 3.191 5.885 3.511 1.665 1.207 0.356
8 0.138 0.258 3.852 3.656 13.027 9.817 1.339 1.054 0.568
9 0.115 0.199 4.048 2.508 16.651 12.724 1.21 1.614 0.584
10 0.138 0.268 5.393 4.368 13.785 4.239 3.335 1.235 0.095

Table 5.12. Estimated Medians for Drosophila Gene Data
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Figure 5.4. selection coefficient γ of 91 genes sorted by estimated medians
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Figure 5.5. selection coefficient γ of male-biased, female-biased and unbiased subgroup
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The genes in Pröschel et al. (2006) data were classified into three subgroups according

to the level of genic expressions and they are groups of male-biased, female-biased and

sex-unbiased genes. Analogous to Figure 5.4, estimates of selection coefficient are plotted

separately in Figure 5.5 for the three subgroups. The graph suggests that sex-biased genes

are more significantly subject to adaptive selection. In detail, all male-biased genes are

under negative selection with a clear uniformity of intensity which matches the result

obtained from Amei and Sawyer’s time-dependent PRF model. Though this can be due

to strong linkage among genes (Amei and Sawyer (2012)). While the selective effect on

female-biased genes has a moderate variation with median estimates of scaled selection

coefficients ranging from -0.46 to 0.70. In contrast, sex-unbiased genes are almost under

neutral selection with a small variation between -0.42 and 0.29.

5.4 Final Remark

The classic PRF theory of Sawyer and Hartl offered a powerful approach to analyzing

and interpreting intraspecific and interspecific DNA sequence polymorphism and diver-

gence. For mathematical simplification, the original model assumes mutation-selection-

drift equilibrium, leans on independence or linkage equilibrium between nucleotide sites,

posits constant selection coefficient on mutations within a single genetic locus and ignores

population size change over evolution history. Possible or maybe inevitable departures

from these biologically unrealistic assumptions can diminish the accuracy of the model.

Remarkable extensions had been made to account for such limitations. For example,

Amei and Sawyer (2010) introduced a time-inhomogeneous PRF model to overcome the
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issue of overestimating speciation time in time-independent models. Williamson et al.

(2005) developed a population growth model using the PRF theory to infer both selec-

tion and demographic history of one species without touching interspecific comparison.

The purpose of this thesis is to relax the constant population size assumption imposed

on the time-dependent PRF model. Inspired by Williamson’s idea, we postulate that at

the time of the divergence of two sibling species from the most recent common ancestor,

each descendant species experienced a sudden population size change from the ancestral

size Na to the current size Ni(i = 1, 2, respectively) and quantify such change by intro-

ducing two ratios ν1 =
N1

Na

and ν2 =
N2

Na

. Assuming independent population sizes makes

it possible to model the divergence times t1 and t2 for the two daughter species sepa-

rately. In order to estimate the distribution of selective effects and population size ratio

parameters simultaneously, we derive sample configuration formulas based on population

level results and implement a multi-layer Markov chain Monte Carlo simulation scheme

under a hierarchical Bayesian structure. The main barrier on the road of making reliable

inference is the unbearable long time required for the convergence of the Markov chains

due to massive computation on solving PDEs. Our solution is linking C++ code to R and

running the program parallel on multiple CPU cores. The developed model is validated

using multiple simulated datesets and we find that the model is precise in estimating

mean and variation of selection coefficients as well as predicting the relative population

size alternation
ν1
ν2
. However both ν1 and ν2 tend to be overrated and it potentially leads

to biased estimates of t1 and t2. In order to explore the unclarified dependence between

divergence times and population size ratios, we propose a different way of parameteriza-

tion. Additional simulation study is required to tackle this issue. Finally we present a
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real data example and compare the results with those from previous studies.

Our model still preserves some restrictive conditions. For instance, the assumption of

linkage equilibrium between sites may be questioned when reduced combination within

genes is at present (Sawyer et al. (2007)). Allowing randomness in selective effect on

nucleotide substitutions within a gene is definitely appealing though fixed effect model is

robust with respect to divergence time estimate (Amei and Sawyer (2012), Zhou (2013)).

Challenging the model against alternative conditions can be meaningful future attempt.
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