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ABSTRACT

Estimation of the Parameters in a Spatial Regressive-Autoregressive Model

Using Ord’s Eigenvalue Method

by

Sajib Mahmud Tonmoy

Examination Committee Chair: Dr. Petros Hadjicostas

In this thesis, we study one of Ord’s (1975) global spatial regression models.

Ord considered spatial regressive-autoregressive models to describe the interaction

between location and a response variable in the presence of several covariates. He also

developed a practical estimation method for the parameters of this regression model

using the eigenvalues of a weight matrix that captures the contiguity of locations.

We review the theoretical aspects of his estimation method and implement it in the

statistical package R.

We also implement Ord’s methods on the Columbus, Ohio, crime data set from the

year 1980, which involves the crime rate of each neighborhood of the city as a response

variable and the average income and average house value of each neighborhood as

covariates. We use different weight matrices that capture different “nearest neighbor”

notions and compare the results.
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CHAPTER 1

INTRODUCTION

Most regression models used in practice are typically “global”. That is, a response

variable is regressed against a set of explanatory variables and the parameters of the

fitted model are estimated using all the data simultaneously.

In a local regression, a regression model is fitted for each point separately and the

parameters of the model are estimated using the “nearby” points. It can be thought

of as a generalization of the moving average technique involving both a response and

a set of exploratory variables. Thus, in local regression methodology, the number of

regressions run is about equal to the number of data points. A geographically weighted

regression (see O’Sullivan and Unwin [10, Section 8.5]) is the most common example

of a local regression.

In this thesis, we study global regression models involving spatial data. The phrase

“spatial data” (or “geospatial data”) may refer to data that describe the absolute or

relative locations (e.g., longitude and latitude) of a geographical phenomenon, or

the qualitative and quantitative characteristics (attributes and variables) of spatial

features such as points, lines, polygons, polypolygons, surfaces, grids, and so on. For
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example, a house can be considered as a point, a road can be considered as a line,

a lake can be considered as a polygon, an archipelago of islands can be considered

as a polypolygon, the topography of a mountain can be considered as a surface, a

photograph can be considered as a grid, and so on.

Spatially referenced data can be represented as vector data or as raster data (see

Hijmans [6, Tutorial, Section 2] and O’Sullivan and Unwin [10, section 7.2]).

Vector data refer to spatial objects (countries, provinces, rivers, roads, houses etc.)

and they include information about their boundaries, information about their sizes,

and information about some of their “attributes”. Vector data can contain points,

lines, polygons, etc. (see the discussion above).

Raster data are commonly used to represent continuous phenomena. Continuous

spatial data are sometimes also known as fields (see Hijmans [6, Tutorial, Section 2]).

In a raster data set, we divide an area into a matrix of rectangular shaped cells,

where each cell may include aerial and satellite imagery. Unlike vector data, in raster

data we use the spatial extents (“bounding box”) of an area and the numbers of

rows and columns in which an area is subdivided to determine the size of the raster

cells (see again Hijmans [6, Tutorial, Section 2]). An extension of raster data is used

for continuous surfaces, that can be represented by triangulated irregular networks,

which consist of triangular facets (rather than rectangular cells). For example, data

sets that can be represented by raster data are data on temperature and elevation.

One very important aspect of spatial data is the coordinate reference system. For

geographical data, the natural coordinate reference system is an angular system which

is called the longitude and latitude system (which is a coordinate pair in degrees).
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Map projections are never absolutely accurate representations of the spherical Earth.

Thus, according to Hijmans [6, Tutorial, Section 2], a “basic way to record a location

is to provide a coordinate pair in degrees” and a (so-called) reference datum. Since

we cannot measure these angles accurately, we use a “datum” (a model of the shape

of the Earth) to estimate those angles. The most commonly used “datum” is WGS84,

which stands for “World Geodesic System, 1984”. Projections are used to transform

this three dimensional angular system to a two dimensional planar system.

In this thesis, we study one of Ord’s [9] global regression models for spatial data,

the spatial regressive-autoregressive linear model. This model can be used to describe

the interaction between location and a response variable in the presence of several

covariates (predictors). Ord [9] also developed a practical estimation method of the

parameters of this regression model. In this thesis, we review his estimation method

and implement it using the statistical package R.

The two general global spatial regression models Ord [9] considered are the fol-

lowing:

(a) Y = Xβ + ρWY + ε, where ε ∼ MVN(0, σ2In);

(b) Y = Xβ + U and U = ρWU + ε, where ε ∼ MVN(0, σ2In).

Here, X is an n × p design matrix, β is a p × 1 vector of (unknown) coefficients,

W is an n × n weight matrix, Y = (y1, . . . , yn)> is an n × 1 vector of responses,

ε = (ε1, . . . , εn)> is an n × 1 vector of iid random disturbance terms with unknown

variance σ2, U = (u1, . . . , un)> is a n × 1 vector of disturbance terms, and ρ is an

unknown parameter in the interval (−1, 1). In this thesis, we only study model (a).
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Model (a) is called a regressive-autoregressive spatial model. It is called regressive

because of the term Xβ and autoregressive because the vector of responses Y is

regressed against itself via the term WY, which is a spatial lag term. Model (b) is

called a Simultaneous Autoregressive (SAR) error model. Here, the error vector U

satisfies a first order autoregressive equation (U = ρWU + ε). This model can be

re-expressed as follows:

Y = Xβ + ρWY − ρWXβ + ε.

In some way, model (b) seems to be a variation of model (a).

In Chapter 2 of this thesis, following Ord [9], we first discuss the regressive-

autoregressive model (a) above for the special case X = 1n = (1, 1, . . . , 1)> and

β = α1>n ; i.e., when there is only an intercept β0 = α (we use Ord’s notation).

For this case, we first discuss the properties of the joint probability and conditional

models. The conditional model is a variation of the joint probability model, which

was developed in earlier decades by Bartlett [2] and Besag [3, 4].

For the special case β = α1>n , we then develop Ord’s eigenvalue method to esti-

mate the parameters of model (a) above. We use Jacobi’s formula for the derivative of

the determinant of a square matrix (see equation (2.23) later in the thesis) to find an

equation that is satisfied by the MLE of the parameter ρ (something that Ord [9] did

not do in his paper). We also develop an R code that implements Ord’s eigenvalue

method and use some hypothetical examples to validate our work.

In Chapter 2, we also explain how the weight matrix W can be chosen in prac-

tice (depending on what kind of spatial data we have) and why it has to be row-
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standardized in order for Ord’s eigenvalue method to provide reliable numerical esti-

mates of the MLE of the parameter ρ.

The general results for the estimation of the parameters in the general model

Y = Xβ + ρWY + ε, with ε ∼ MVN(0, σ2In), are given in Section 2.5 of the

thesis. They involve the well-known hat matrix H = X(X>X)−1X> of classical

linear regression. Some of the equations of that section appear in Ord [9], but the

equation satisfied by the MLE of the parameter ρ (see equation (2.35) in this thesis)

does not seem to be in that paper. It is clear, however, that this equation is known

to later authors; see Anselin [1, Chapter 12].

In Chapter 3 of the thesis, we implement Ord’s eigenvalue method (using our own

R code) to a real data set, the Columbus, Ohio, crime data, from 1980. This data

set originally appeared in Anselin [1, Chapter 12]. We use different weight matrices

W (based on natural contiguity and the mth nearest neighbour of each location) to

estimate the parameters of the model Y = Xβ+ρWY+ε. (Each such weight matrix

W has to be row-standardized first, otherwise, the numerical results of the estimation

of ρ are not reliable.)

We use the built-in R function lagsarlm from the R package spdep to check

our output from the R code we developed. The results (estimates of the parameters

obtained using the MLE method) agree to 4 decimal digits.

Due to time constraints, we did not develop the theory for the calculation of the

asymptotic standard errors of the MLE’s of the parameters. Thus, for the Columbus

crime data, we use the asymptotic standard errors obtained using the R function

lagsarlm when we compare different models with different weight matrices W; see
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Table 3.6 of this thesis. It seems that Anselin [1, Chapters 10 and 12] actually lists

the equations satisfied by the standard errors of the estimates of the parameters, but

we did not examine them in detail.

In Chapter 4, we conclude the thesis by discussing some possible future research

topics, such as the “Simultaneous Autoregressive (SAR)” error model, which is a

generalization of the model with equations Y = Xβ + U and U = ρWU + ε with

ε ∼ MVN(0, σ2In). As mentioned before, we do not examine this model in detail in

this thesis (due to time constraints).
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CHAPTER 2

ORD’S MODELS OF SPATIAL INTERACTION

Ord [9] considered autoregressive models to describe the interaction between location

and a response variable. He also developed practical estimation methods of the pa-

rameters. In this chapter, we examine his regressive-autoregressive models for spatial

regression.

2.1 Joint probability and conditional autoregres-

sive models

Suppose Y is a random (response) variable at location i. To describe the spatial

interaction between locations for the response variable Y , Ord [9] first considered the

following autoregressive model:

Yi = α + ρ
∑
j∈J(i)

wijYj + εi (i = 1, . . . , n). (2.1)

Here, ρ and α are parameters, and the εi’s (i = 1, . . . , n) are random disturbance

terms that are uncorrelated, have equal variances, and zero means. Also, {wij} is a
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set of non-negative weights (by convention, we use wii = 0). Here, wij represents the

“degree of interaction” of location i with the set of “neighboring” locations

J(i) = {i1, i2, . . . , imi
}.

We implicitly assume that wij = 0 when j 6∈ J(i). The set J(i) may include all

locations except location i. Note that

n⋃
i=1

J(i) ⊆ {1, 2, . . . , n}.

The usual assumption about ε1, . . . , εn is that they have a MVN(0, σ2In) dis-

tribution, i.e., they are independently and identically distributed with a N(0, σ2)

distribution.

Ord [9] mentions that the joint probability model (2.1) follows the general for-

mulation of models developed by Whittle [16, 17]. He also considered the following

conditional model, developed by Bartlett [2] and Besag [3, 4]:

E[Yi |Yj = yj, j ∈ J(i) ] = α + ρ
∑
k∈J(i)

wikyk (i = 1, . . . , n). (2.2)

The following lemma shows the relationship between models (2.1) and (2.2). It es-

sentially clarifies a statement by Ord [9, p. 120] about the relation between models

(2.1) and (2.2).

Lemma 2.1. 1) If equations (2.1) and (2.2) hold, then

E[εi |Yj = yj, j ∈ J(i)] = 0 (i = 1, . . . , n). (2.3)

2) If equations (2.1) and (2.3) hold, then equation (2.2) holds as well.
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Proof. 1) Assume equations (2.1) and (2.2) hold. Then, taking conditional expecta-

tion on both sides of equation (2.1), given {Yj = yj, j ∈ J(i)}, we get:

E[Yi|Yj = yj, j ∈ J(i)] = E[α + ρ
∑
k∈J(i)

wikYk + εi |Yj = yj, j ∈ J(i)]

= α + ρ
∑
k∈J(i)

wik E[Yk|Yj = yj, j ∈ J(i)]

+ E[εi|Yj = yj, j ∈ J(i)].

Since E[Yk|Yk = yk] = yk for k ∈ J(i), we can write the above equation as:

E[Yi|Yj = yj, j ∈ J(i)] = α + ρ
∑
k∈J(i)

wikyk + E[εi|Yj = yj, j ∈ J(i)] (i = 1, . . . , n).

(2.4)

Equating equations (2.2) and (2.4), we get equation (2.3), which proves the first part

of the lemma.

2) Assume equations (2.1) and (2.3) hold. We have seen above that (2.1) implies

(2.4). Substituting equation (2.3) into equation (2.4), we get:

E[Yi |Yj = yj, j ∈ J(i) ] = α + ρ
∑
k∈J(i)

wikyk (i = 1, . . . , n),

which is equation (2.2), and this proves the second part of the lemma.

Equation (2.3) shows the relationship between εi and Yj, j ∈ J(i), when both

models (2.1) and (2.2) hold. It can be proved that, if equation (2.3) holds, then εi

and Yj, where j ∈ J(i), are uncorrelated. We can explain this restriction using a time

series model example (see Ord [9, p. 120]).

Example (AR(1) time series model): Suppose the set of non-negative weights

9



{wij} is as follows:

wij =


1, if j = i− 1 (i ≥ 2),

0, elsewhere.

(2.5)

In this case, in equation (2.1), if i ≥ 2, we have J(i) = {i − 1} (only one neighbour

to location i), while J(1) = ∅. In addition, for i ≥ 2,

∑
j∈J(i)

wijYj =
∑

j∈{i−1}

wijYj = wi,i−1Yi−1 = Yi−1.

Also, for i ≥ 2, εi is uncorrelated with Yi−1, Yi−2, . . . , Y1. Thus, equation (2.1) reduces

to:

Yi = α + ρYi−1 + εi (i = 2, . . . , n). (2.6)

Equation (2.3) becomes a natural restriction because of the one-sided and time-

dependent nature of equation (2.6). Thus, for this time series model, equation (2.3)

becomes: E[εi |Yi−1 = yi−1] = 0 (i = 2, . . . , n).

Ord [9] says that equation (2.3) does not always hold, and as a result the Ordinary

Least Squares (OLS) estimators of the parameters α, ρ, and σ2 may not be consistent.

That is, when equation (2.3) does not hold and n is large, α̂OLS, ρ̂OLS, and σ̂2
OLS may

not necessarily converge in probability to the true values of the parameters α, ρ, and

σ2, respectively. This the reason why he suggests to use the ML method to estimate

the unknown parameters.

2.2 Matrix formulation of autoregresssive models

In Section 2.2.1, we give Ord’s matrix formulation of the joint probability model (2.1),

while in Section 2.2.2, we give some matrix properties of the conditional model (2.2).
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2.2.1 Matrix formulation of the joint probability model

Following Ord [9], model (2.1) can be written in matrix form as follows:

Y = α+ ρWY + ε. (2.7)

Here, α = (α, α, . . . , α)> is an n×1 vector of intercepts, W is an n×n weight matrix

whose (i, j)th element is wij, and Y = (y1, y2, . . . , yn)> and ε = (ε1, ε2, . . . , εn)> are

n× 1 vectors.

From equation (2.7), if E[Y] = µ, then taking expectation on both sides of (2.7),

we get:

E[Y] = E[α+ ρWY + ε] =⇒ E[Y] = α+ ρWE[Y] + 0

=⇒ µ = α+ ρWµ

=⇒ α = (I− ρW)µ.

If A = I − ρW, then we can write α = Aµ. Since α = (α, α, . . . , α)>, i.e., all

components of α are the same, the equation α = Aµ puts a restriction on the mean

vector µ = (µ1, µ2, . . . , µn)>.

Again, from equation (2.7), after plugging in the value of α, we get the following

expression for ε:

Y = (I− ρW)µ+ ρWY + ε =⇒ ε = Y − (I− ρW)µ− ρWY

=⇒ ε = (I− ρW)(Y − µ).

Since A = I− ρW, we can write ε = A(Y − µ).

11



2.2.2 Properties of the conditional model

When the conditional autoregressive model holds (see equations (2.2) and (2.3)), we

can prove some properties, which allow us later to find the MLE’s of the parameters

(see Lemma 2.5 in Section 2.4). The following result clarifies some statements made

by Ord [9, pp. 121–122] about the conditional autoregressive model.

Lemma 2.2. If equations (2.1) and (2.3) hold, then:

(a) E(ε>WY) = 0;

(b) Tr[W(I− ρW)−1] = 0 for all ρ which are not reciprocals of eigenvalues of W.

Proof. (a) Let U = (U1, . . . , Un)> = WY. Using the law of iterated expectation, we

get

E(ε>WY) = E

[
(ε1, ε2, . . . , εn)



U1

U2

...

Un


]

=
n∑
i=1

E(εiUi) =
n∑
i=1

E
[
E(εi Ui|Yj; j ∈ J(i))

]
. (2.8)

Now, Ui = (WY)i = (wi1, . . . , win)(Y1, . . . , Yn)> =
∑n

`=1wi`Y`. We know that wi` = 0

when ` /∈ J(i). Plugging the value of Ui in equation (2.8), we get:

E(ε>WY) =
n∑
i=1

E

[
E
(
εi
∑
`∈J(i)

wi`Y`|Yj; j ∈ J(i)
)]

=
n∑
i=1

E

[ ∑
`∈J(i)

wi`Y` E
(
εi|Yj; j ∈ J(i)

)]
.
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By equation (2.3),

E(ε>WY) =
n∑
i=1

E
( ∑
`∈J(i)

wi`Y` · 0
)

= 0.

(b) Assume ρ is not a reciprocal of an eigenvalue of W. Then

det(I− ρW) = (−ρ)n det(W − 1

ρ
I) 6= 0.

As a result, the matrix I− ρW is invertible. Then

ε = (I− ρW)(Y − µ) =⇒ Y = µ+ (I− ρW)−1ε.

Using part (a) we get:

0 = E(ε>WY) = E[ε>W(µ+ (I− ρW)−1ε)]

= E[ε>Wµ+ ε>W(I− ρW)−1ε]

= E[ε>Wµ] + E[ε>W(I− ρW)−1ε]

= E[ε>]Wµ+ Tr{E[ε>W(I− ρW)−1ε]}

= 0>Wµ+ E{Tr[ε>W(I− ρW)−1ε]}

= 0 + E{Tr[W(I− ρW)−1εε>]}

= Tr[W(I− ρW)−1E(εε>)]

= Tr[W(I− ρW)−1σ2I]

= σ2 Tr[W(I− ρW)−1]

=⇒ Tr[W(I− ρW)−1] = 0.

This completes the proof of part (b) of the lemma.
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Lemma 2.3. If W is either an upper or a lower triangular matrix, then equations

(2.2) and (2.3) hold, and thus (from Lemma 2.2),

E(ε>WY) = 0 and Tr[W(I− ρW)−1] = 0.

Proof. Let the weight matrix W be a lower triangular matrix. Then:

wij = 0 for 1 ≤ i < j ≤ n and J(i) ⊆ {1, 2, . . . , i− 1} for 2 ≤ i ≤ n.

Let us consider the autoregressive model from equation (2.1):

Yi = α + ρ
∑
j∈J(i)

wijYj + εi (i = 1, . . . , n).

In the conditional expectation E(εi|Yj, j ∈ J(i)) we condition on the values of some

of the random variables Y1, Y2, . . . , Yi−1. But the random variables Y1, Y2, . . . , Yi−1

depend on ε1, ε2, . . . , εi−1. Since the εk’s are independent with equal variances and

zero means, we get

E(εi|Yj, j ∈ J(i)) = E(εi) = 0.

Thus, equation (2.3) holds.

In addition,

E(Yi|Yj, j ∈ J(i)) = E(α + ρ
∑
j∈J(i)

wijYj + εi |Y`, ` ∈ J(i))

= α + ρ
∑
j∈J(i)

wijYj + E(εi|Y`, ` ∈ J(i))

= α + ρ
∑
j∈J(i)

wijYj.

Hence, equation (2.2) holds as well.
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2.3 The choice of weights in the weight matrix

An important and difficult step in spatial data analysis is to choose the weights wij

in the spatial weight matrix W based on the spatial influence among the different

geographical areas. The criteria for choosing the elements of the weight matrix W

depend on the problem under study and the investigator. We can measure this spatial

influence based on the length of shared border between geographical objects or based

on the “crow fly” distance (i.e., the distance from the most direct path between two

geographical centers). But the most commonly used approach is to choose weights

wij that are based on “adjacency” (nearest neighbors).

In Section 2.3.1, we explain how to choose the weights in a regular grid, while in

Section 2.3.2, we discuss how to choose the weights for an AR(1) time series model.

Also, in Section 2.3.3, we give some procedures for choosing weights for an irregular

lattice and in Section 2.3.4 we explain how to standardize a weight matrix.

2.3.1 Equally spaced locations

For equally spaced locations, we can set wij > 0 if and only if location j is a “neighbor”

of location i. In a regular grid, generally, we consider the following forms of connec-

tions to find the weight matrix: connections by rook’s moves, by bishop’s moves and

by queen’s moves (where a rook, a bishop, and a queen are common pieces in chess).

A location i in the center of a square of a regular grid is connected by a rook’s

move to the locations in the centers of all the squares that are directly above, below,

15
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A

7 8 9

4 5 6

1 2 3

B

7 8 9

4 5 6

1 2 3

C

Figure 2.1: Different connections on a rectangular grid: connected by rook’s
moves (A), queen’s move (B), and bishop’s moves (C) (see Sokal and Oden [14,
pp. 201 and 203])

to the left, or to the right of i in the grid. A queen’s move connects a square to all

the squares that are orthogonally or diagonally adjacent. A location i in a square of

a grid is connected by a bishop’s move to all the squares that are diagonally adjacent

to the square.

Figure 2.1 shows the connections for these three moves. In the figure, the numbers

1, . . . , 9 are the centers of the squares of a 3× 3 lattice. Graphs A, B, and C in the

figure show the different possible connections among the nine locations. Matrices

WA, WB and WC , in equations (2.9), (2.10), and (2.11) below, show the weight

matrices based on the rook’s, queen’s, and bishop’s moves, respectively. In these

three cases, location i is adjacent to location j if wij = 1, and not adjacent if wij = 0.
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WA = Wrook =

1 2 3 4 5 6 7 8 9



1 0 1 0 1 0 0 0 0 0

2 1 0 1 0 1 0 0 0 0

3 0 1 0 0 0 1 0 0 0

4 1 0 0 0 1 0 1 0 0

5 0 1 0 1 0 1 0 1 0

6 0 0 1 0 1 0 0 0 1

7 0 0 0 1 0 0 0 1 0

8 0 0 0 0 1 0 1 0 1

9 0 0 0 0 0 1 0 1 0

(2.9)

WB = Wqueen =

1 2 3 4 5 6 7 8 9



1 0 1 0 1 1 0 0 0 0

2 1 0 1 1 1 1 0 0 0

3 0 1 0 0 1 1 0 0 0

4 1 1 0 0 1 0 1 1 0

5 1 1 1 1 0 1 1 1 1

6 0 1 1 0 1 0 0 1 1

7 0 0 0 1 1 0 0 1 0

8 0 0 0 1 1 1 1 0 1

9 0 0 0 0 1 1 0 1 0

(2.10)

WC = Wbishop =

1 2 3 4 5 6 7 8 9



1 0 0 0 0 1 0 0 0 0

2 0 0 0 1 0 1 0 0 0

3 0 0 0 0 1 0 0 0 0

4 0 1 0 0 0 0 0 1 0

5 1 0 1 0 0 0 1 0 1

6 0 1 0 0 0 0 0 1 0

7 0 0 0 0 1 0 0 0 0

8 0 0 0 1 0 1 0 0 0

9 0 0 0 0 1 0 0 0 0

(2.11)

In order to illustrate the notation from Section 2.1, we show the elements of each

J(i) for case C above (connection by bishop’s moves). Recall that J(i) is set of all

neighbours of location i (and J(i) does not include location i). We have:

J(1) = {5}, J(2) = {4, 6}, J(3) = {5}, J(4) = {2, 8}, J(5) = {1, 3, 7, 9},
J(6) = {2, 8}, J(7) = {5}, J(8) = {4, 6}, J(9) = {5}.
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2.3.2 Weights for an AR(1) time series model

Recall that equation (2.1) refers to an autoregressive model that shows the interaction

of location i with its neighbors for variable Y :

Yi = α + ρ
∑
j∈J(i)

wijYj + εi (i = 1, . . . , n).

If the set of weights wij is defined by equation (2.5), then we get an AR(1) time series

model:

Yi = α + ρYi−1 + εi (i = 2, . . . , n).

For example, when n = 6, the weight matrix becomes

W =

1 2 3 4 5 6



1 0 0 0 0 0 0

2 1 0 0 0 0 0

3 0 1 0 0 0 0

4 0 0 1 0 0 0

5 0 0 0 1 0 0

6 0 0 0 0 1 0

2.3.3 Weights for an irregular lattice

In real world data, most of the time we have to deal with irregular lattice structures

of many locations. In the case of an irregular lattice, instead of using the connectivity

structures of a regular lattice (rook’s, bishop’s, or queen’s moves), we use the inverse of

18



the distances among locations. As an example, see Figure 2.2 and the corresponding

weight matrix W in equation (2.12).

1

2

3

4

5

d45
d42

d23

d31

d15
d53

d52 d21

d41 d43

Figure 2.2: An example of an irregular lattice with five locations

W =

1 2 3 4 5



1 0 1/d12 1/d13 1/d14 1/d15

2 1/d21 0 1/d23 1/d24 1/d25

3 1/d31 1/d32 0 1/d34 1/d35

4 1/d41 1/d42 1/d43 0 1/d45

5 1/d51 1/d52 1/d53 1/d54 0

(2.12)

Here, for the distances between locations, we have dij = dji for 1 ≤ i 6= j ≤ 5.

The relative values of the Euclidean distances dij among the five points in Fig-

ure 2.2 (with respect to some unit of measurement) are as follows:

d21 = 5.83, d23 = 2.83, d42 = 3.61, d52 = 7.00, d31 = 3.16,

d43 = 4.12, d53 = 5.39, d41 = 5.39, d15 = 3.61, d45 = 4.47.

Following Pace and Barry [11], we can create a weight matrix, Wm, using the

mth nearest neighbour to each location i. For fixed m ∈ {1, . . . , n− 1}, and for each
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i ∈ {1, . . . , n}, we let

d
(m)
(max,i) := mthorder statistic of the distances di,1, di,2, . . . , di,i−1, di,i+1, . . . , di,n.

(We use a modification of the notation in Pace and Barry [11] for the mth order

statistic. Thus, d
(1)
(max,i) is the smallest observation among the elements of the ith row

(excluding dii), d
(2)
(max,i) is the second smallest observation of those numbers, and so

on.) For 1 ≤ i, j ≤ n, define the (i, j)-th element of matrix Wm by

w
(m)
ij =


1, if dij ≤ d

(m)
(max,i) and i 6= j,

0, otherwise.

(2.13)

For m = 1, the distances from each location i to the first nearest neighbour are

as follows:

d
(1)
(max,1) = 3.16, d

(1)
(max,2) = 2.83, d

(1)
(max,3) = 2.83, d

(1)
(max,4) = 3.61, d

(1)
(max,5) = 3.61.

Then the corresponding weight matrix is as follows:

W1 =

1 2 3 4 5



1 0 0 1 0 0

2 0 0 1 0 0

3 0 1 0 0 0

4 0 1 0 0 0

5 1 0 0 0 0

(2.14)
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Also, for m = 2, the distances from each location i to the second nearest neighbour

are as follows:

d
(2)
(max,1) = 3.61, d

(2)
(max,2) = 3.61, d

(2)
(max,3) = 3.16, d

(2)
(max,4) = 4.12, d

(2)
(max,5) = 4.47.

Then the corresponding weight matrix is as follows:

W2 =

1 2 3 4 5



1 0 0 1 0 1

2 0 0 1 1 0

3 1 1 0 0 0

4 0 1 1 0 0

5 1 0 0 1 0

(2.15)

In a similar way, we can create the weight matrices W3, W4, and W5 for the cases

m = 3, m = 4, and m = 5, respectively.

2.3.4 Standardization of the weight matrix W

In all previous examples, the weight matrix W depends on the proximity of each

location to the other locations. Occasionally, we have to standardize the weight

matrix W, and create a new weight matrix S, using the following formula:

Sij =
wij∑n
`=1wi`

for 1 ≤ i, j ≤ n.

The above equation implies S1 = 1, where 1 is an n× 1 vector of 1’s.
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Example (Standardization of matrices Wqueen and W2): For a regular

lattice, for the queen’s moves in Figure 2.1, the corresponding weight matrix Wqueen,

in equation (2.10), can be standardized as follows:

Squeen =

1 2 3 4 5 6 7 8 9



1 0 0.333 0 0.333 0.333 0 0 0 0

2 0.2 0 0.2 0.2 0.2 0.2 0 0 0

3 0 0.333 0 0 0.333 0.333 0 0 0

4 0.2 0.2 0 0 0.2 0 0.2 0.2 0

5 0.125 0.125 0.125 0.125 0 0.125 0.125 0.125 0.125

6 0 0.2 0.2 0 0.2 0 0 0.2 0.2

7 0 0 0 0.333 0.333 0 0 0.333 0

8 0 0 0 0.2 0.2 0.2 0.2 0 0.2

9 0 0 0 0 0.333 0.333 0 0.333 0

For an irregular lattice, like in Section 2.3.3, the weight matrix W2 from equation

(2.15), can be standardized as follows:

S2 =

1 2 3 4 5



1 0 0 0.5 0 0.5

2 0 0 0.5 0.5 0

3 0.5 0.5 0 0 0

4 0 0.5 0.5 0 0

5 0.5 0 0 0.5 0

Root [13] gave the following reasons for using standardized weight matrices:

1.“Row standardization is used to create proportional weights in cases

where features have an unequal number of neighbors.”

2.“Use [if] you want comparable spatial parameters across different data

sets with different connectivity structures.”
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3.“Row-standardized weights increase the influence of links from observa-

tions with few neighbours.”

The following lemma states that the eigenvalues of a row standardized matrix

are less than or equal to 1 in absolute value. The result is related to the Perron-

Frobenius theorem about square matrices (see Marshall and Olkin [8, Chapter 9,

Section I]), but it is not exactly that theorem. The proof below is based on a similar

result in Matthews [7]. The result becomes important in Section 2.4.4, where we

explain how Ord’s eigenvalue method can be used to estimate the parameter ρ. (Here,

for a complex number λ = <(λ) + =(λ)i, with i =
√
−1, the modulus is ‖λ‖ =√

<(λ)2 + =(λ)2.)

Lemma 2.4. Let W be a row-standardized matrix with non-negative elements. Then

W has (possibly complex) eigenvalues λ1, . . . , λn such that ‖λi‖ ≤ 1 for i = 1, . . . , n,

and one of the eigenvalues is equal to 1.

Proof. Let W be a row-standardized matrix, that is, each row of W sums up to 1.

Then W1 = 1, which shows that 1 is an eigenvalue of W with 1 as an eigenvector.

Now, let λ be an eigenvalue of W and x be a corresponding non-zero (possibly

complex) eigenvector. Then Wx = λx. Equating the ith components of each side, we

get:

n∑
j=1

wijxj = λxi for i = 1, 2, . . . , n. (2.16)

Let xk be an entry of x such that

‖xk‖ = max{‖x1‖, ‖x2‖, . . . , ‖xn‖}.
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Note that ‖xk‖ > 0 because x is a non-zero eigenvector.

Now, for i = k, taking modulus on both sides of equation (2.16), we get:

‖λxk‖ = ‖λ‖ ‖xk‖ = ‖
n∑
j=1

wkjxj‖ ≤
n∑
j=1

wkj‖xj‖ ≤
n∑
j=1

wkj‖xk‖ = ‖xk‖

because wkj ≥ 0 and
∑n

j=1wkj = 1. Thus, ‖λ‖ ‖xk‖ ≤ ‖xk‖. Since ‖xk‖ > 0, we get

‖λ‖ ≤ 1.

2.4 Estimation using maximum likelihood

As Ord [9] states, if the conditional assumption (2.3) does not hold, then the OLS

estimators for the joint probability model Y = α + ρWY + ε are inconsistent.

This is the reason we need an alternative procedure to estimate the parameters. In

this section, we explain how to estimate the parameters α, σ2, and ρ in the model

Y = α+ ρWY + ε using the maximum likelihood method.

In Section 2.4.1, we explain a general estimation procedure for the parameters

using the MLE method, while in Section 2.4.2, we explain the estimation procedure

of ρ in the conditional probability model (2.2). Also, in Section 2.4.3, we discuss

Ord’s eigenvalue method for solving the MLE equations that we got in Section 2.4.1.

In particular, we use Lemma 2.4 to avoid singularities in MLE equations while using

Ord’s eigenvalue method for row-standardized matrices W. Finally, in Section 2.4.4,

we estimate the parameters α, σ2, and ρ by implementing Ord’s method using the R

programming language for the case of row-standardized weight matrices.
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2.4.1 General estimation procedure for the parameters

In the following theorem, we only require the weight matrix W to have non-negative

elements. In general, it does not have to be symmetric or row-standardized. Equa-

tions (2.17) and (2.18) appear in Ord [9], while equation (2.19) does not.

Theorem 2.1. Assume ε ∼ MVN(0, σ2I) and Y = α + ρWY + ε. If the MLEs of

the parameters α, σ2, and ρ exist, then they satisfy the following equations:

α̂ =
1>(I− ρ̂W)y

n
, (2.17)

σ̂2 =
1

n
y>(I− ρ̂W)>[I− 11>

n
](I− ρ̂W)y, (2.18)

and − σ̂2 Tr[(I− ρ̂W)−1W] + y>Wy − ρ̂y>W>Wy − α̂>Wy = 0. (2.19)

Proof. The proof of the theorem is divided into four parts: (a) description of the

likelihood equation, (b) estimation of α, (c) estimation of σ2, and (d) estimation of ρ.

(a) Description of the likelihood equation. We first reformulate equa-

tion (2.7). Since ε = (I− ρW)(Y − µ), we can solve for Y:

Y = µ+ (I− ρW)−1ε =⇒ Y = µ+ A−1ε.

Here, A = I− ρW. We also know that E[Y] = µ. In addition,

Cov(Y) = Cov(µ+ A−1ε) = A−1Cov(ε)(A−1)> =⇒ Cov(Y) = σ2(A>A)−1 = Σ.

Since ε ∼ MVN(0, σ2In), we have Y ∼ MVN(µ, σ2(A>A)−1). It follows that the

joint p.d.f of Y given α, σ2, and ρ is:

f(y;α, σ2, ρ) =
1

(2π)n/2(detΣ)1/2
exp [−1

2
(y − µ)>Σ−1(y − µ)]
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=
1

(2π)n/2[det(σ2(A>A)−1)]1/2
exp [− 1

2σ2
(y − µ)>(A>A)(y − µ)]

=
1

(2π)n/2σ2n/2(detA)−2/2
exp [− 1

2σ2
(y>A>Ay − y>A>Aµ− µ>A>Ay + µ>A>Aµ)]

=
det(A)

(2πσ2)n/2
exp [− 1

2σ2
(y>A>Ay − 2µ>A>Ay + µ>A>Aµ)].

Now, the log-likelihood from the above joint pdf of Y, given α, σ2, and ρ, is:

`(α, σ2, ρ|y) = ln(det A)− n

2
ln (2πσ2)− 1

2σ2
[y>A>Ay − 2µ>A>Ay + µ>A>Aµ].

Since α = Aµ, we have µ = A−1α. Plugging the value of µ in the above equation,

we get:

`(α, σ2, ρ|y) = ln (det A)− n

2
ln(2πσ2)− 1

2σ2
[y>A>Ay − 2(A−1α)>A>Ay

+ (A−1α)>A>A(A−1α)]

= ln (det A)− n

2
ln(2πσ2)− 1

2σ2
[y>A>Ay − 2α>(A>)−1A>Ay

+α>(A>)−1A>AA−1α]

= ln (det A)− n

2
ln(2πσ2)− 1

2σ2
(y>A>Ay − 2α>Ay +α>α). (2.20)

Let γ = Ay. Then we may re-write the log-likelihood as follows:

`(α, σ2, ρ|y) = ln (detA)− n

2
ln(2πσ2)− 1

2σ2

[
γ>γ − 2

(
α α · · · α

)


γ1

γ2

...

γn



+

(
α α · · · α

)


α

α

...

α


]
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= ln (detA)− n

2
ln(2πσ2)− 1

2σ2
[
γ>γ − 2(αγ1 + αγ2 + . . .+ αγn) + nα2

]
= ln (detA)− n

2
ln(2πσ2)− 1

2σ2
[
γ>γ − 2α1>γ + nα2

]
,

where 1 = (1, 1, . . . , 1)> is n× 1.

(b) Estimation of α. Taking the derivative of the log-likelihood function with

respect to α and setting that derivative equal to zero, we get the MLE of α:

∂`

∂α
= − 1

2σ2
(−21>γ + 2nα)

set
= 0 =⇒ α̂ =

1>(I− ρ̂W)y

n
.

(c) Estimation of σ2. Similarly, we can find the MLE of σ2 by taking derivative

of the log-likelihood function with respect to σ2 and setting that derivative equal to

zero:

∂`

∂σ2
= − n

2σ2
+

1

2σ4
(y>A>Ay − 2µ>A>Ay + µ>A>Aµ)

set
= 0

=⇒ 1

2σ4
(y − µ)>A>A(y − µ) =

n

2σ2

=⇒ σ̂2 =
1

n
(y − µ̂)>Â>Â(y − µ̂),

where Â = (I− ρ̂W) and µ̂ = Â−1α̂. The MLE of σ2 can then be re-written as:

σ̂2 =
1

n
(Ây − Âµ̂)>(Ây − Âµ̂)

=
1

n
(Ây − α̂)>(Ây − α̂)

=
1

n
(Ây − 1>Ây

n
1)>(Ây − 1>Ây

n
1)

=
1

n
(Ây − 11>

n
Ây)>(Ây − 11>

n
Ây)

=
1

n
(Ây)>[I− 11>

n
]>[I− 11>

n
](Ây)

Since I− 11>

n
is idempotent and symmetric, we have

σ̂2 =
1

n
y>(I− ρ̂W)>[I− 11>

n
](I− ρ̂W)y. (2.21)
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(d) Estimation of ρ. To find the MLE of ρ, we need to differentiate the log-

likelihood function with respect to ρ and set the derivative equal to zero:

∂`

∂ρ
=
∂ ln(det A)

∂ρ
− 0− 1

2σ2

[
y>

∂(A>A)

∂ρ
y − 2α>

∂A

∂ρ
y + 0

]
. (2.22)

From Jacobi’s formula, we know that

∂(det B(t))

∂t
= Tr[adj(B(t))

∂B(t)

∂t
], (2.23)

where adj(B(t)) is the adjugate of the matrix B(t), that is, the transpose of its cofactor

matrix. Therefore,

∂ ln(det A)

∂ρ
=

1

det A
× ∂

∂ρ
det A =

1

det A
Tr[adj(A)

∂A

∂ρ
],

Since 1
detA

is a scalar, we can write the above equation as follows:

∂ ln(det A)

∂ρ
= Tr[

1

det A
adj(A)

∂A

∂ρ
].

Again, we know B(t)−1 = 1
detB(t)

adj(B(t)). So, the above equation can be written as:

∂ ln(det A)

∂ρ
= Tr[A−1

∂A

∂ρ
] = Tr[(I− ρW)−1

∂(I− ρW)

∂ρ
] = −Tr[(I− ρW)−1W].

(2.24)

Also,

∂(A>A)

∂ρ
=
∂[(I− ρW)>(I− ρW)]

∂ρ

= −W>(I− ρW)− (I− ρW)>W

= −W> + ρW>W −W + ρW>W

= −(W> + W) + 2ρW>W.
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Also, ∂A
∂ρ

= ∂(I−ρW)
∂ρ

= −W.

Plugging the above expressions for ∂(detA)
∂ρ

, ∂(A>A)
∂ρ

, and ∂A
∂ρ

into equation (2.22)

and setting the derivative equal to zero, we get an equation for the MLE of ρ:

∂`

∂ρ
= −Tr[(I− ρ̂W)−1W] +

1

2σ̂2
[y>(W> + W)y]− ρ̂

σ̂2
y>W>Wy − 1

σ̂2
α̂>Wy

set
= 0

=⇒ − σ̂2 Tr[(I− ρ̂W)−1W] +
1

2
[y>W>y + y>Wy]− ρ̂y>W>Wy − α̂>Wy = 0

=⇒ − σ̂2 Tr[(I− ρ̂W)−1W] + y>Wy − ρ̂y>W>Wy − α̂>Wy = 0.

This completes the proof of the theorem.

Remark 2.1. In general, the system of equations (2.17)–(2.19) can have more than

one solution (α̂, σ̂2, ρ̂). In addition, in Theorem 2.1, we need to check that the 3× 3

matrix of second partial derivatives of the log-likelihood (with respect to the param-

eters) is negative definite at the MLE point. Due to time constraints, we did not

investigate that.

2.4.2 Estimation of the parameters in the conditional model

In general, it is very difficult to solve the equation (2.19) for ρ̂ explicitly. But if the

conditional assumption (2.3) holds, then we can get a closed form solution for ρ̂.

Lemma 2.5. If equation (2.3) holds, then the MLE of ρ becomes:

ρ̂ =

(
y>Wy − 1

n
y>11>Wy

)(
y>W>Wy − 1

n
y>W>11>Wy

)−1
=

y>
[
I− 1

n
11>

]
Wy

y>W>[I− 1
n
11>]Wy

. (2.25)
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Proof. Assume that equation (2.3) holds. From Lemma 2.2, part (b), in Section 2.2,

we have 1 Tr[W(I − ρ̂W)−1] = Tr[(I − ρ̂W)−1W] = 0. Plugging this value and the

value of α̂ from (2.17) into equation (2.19), we get:

y>Wy − ρ̂y>W>Wy −
[1>(I− ρ̂W)y

n

]>
1>Wy = 0

=⇒ y>Wy − ρ̂y>W>Wy − 1

n
y>(I− ρ̂W)>11>Wy = 0

=⇒ y>Wy − ρ̂y>W>Wy − 1

n
y>11>Wy +

1

n
ρ̂y>W>11>Wy = 0

=⇒ y>Wy − 1

n
y>11>Wy = ρ̂

[
y>W>Wy − 1

n
y>W>11>Wy

]
=⇒ ρ̂ =

[
y>Wy − 1

n
y>11>Wy

][
y>W>Wy − 1

n
y>W>11>Wy

]−1
=⇒ ρ̂ = {y>

[
I− 1

n
11>

]
Wy}{y>W>[I− 1

n
11>]Wy}−1.

This completes the proof of the lemma.

Example (AR(1) time series model): Consider the AR(1) time series model

Yi = α + ρYi−1 + εi for i = 2, . . . , n. From equation (2.5) in Section 2.1, the non-

negative weights {wij} are as follows:

wij =


1, if j = i− 1 (i ≥ 2),

0, elsewhere.

Using the corresponding weight matrix W, we can re-express equation (2.25) as:

ρ̂ =

∑n
i=2 yiyi−1 −

1
n

∑n
i=1 yi

∑n−1
j=1 yj∑n−1

i=1 y
2
i − 1

n
(
∑n−1

i=1 yi)
2

. (2.26)

1Strictly speaking, according to Lemma 2.2, the value of ρ̂ in equation (2.5) should not be the

reciprocal of an eigenvalue of the weight matrix W, but this seems unlikely in practice.
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Now, if the sample size n is large, then

n ≈ n− 1 and
1

n

n∑
i=1

yi

n−1∑
j=1

yj ≈
1

n− 1

n−1∑
i=1

yi

n∑
j=2

yj.

Let

ȳ(1) =
1

n− 1

n−1∑
i=1

yi and ȳ(2) =
1

n− 1

n∑
i=2

yi .

After some algebra, equation (2.26) for ρ̂ can be re-expressed approximately as:

ρ̂ ≈
∑n

i=2 yiyi−1 −
1

n−1
∑n−1

i=1 yi
∑n

j=2 yj∑n−1
i=1 y

2
i − 1

n−1(
∑n−1

i=1 yi)
2

=

∑n
i=2(yi−1 − ȳ(1))(yi − ȳ(2))∑n

i=2(yi−1 − ȳ(1))2
.

The last expression is an estimate of the (first order) autocorrelation of the time series

(Y1, Y2, . . . , Yn). Thus, for large n, the estimate of ρ we get from equation (2.25) is

approximately equal to an estimate of the (first order) autocorrelation.

2.4.3 Ord’s procedure for solving the MLE equations

The ML equations (2.17), (2.18), and (2.19) cannot be solved explicitly. However,

we can solve them numerically. But then the main difficulty arises when we try to

determine ρ̂, because equation (2.19) involves the inverse of the matrix I − ρ̂W. As

a result, when the sample size n is large, the computation of ρ̂ becomes more time-

consuming. To circumvent this difficulty, Ord [9] uses the eigenvalues of the weight

matrix W.

Lemma 2.6. If W has (possibly complex) eigenvalues λ1, λ2, . . . , λn, then

det(I− ρW) =
n∏
i=1

(1− ρλi), (2.27)

and

∂ ln det(I− ρW)

∂ρ
= −

n∑
i=1

λi
1− ρλi

. (2.28)

31



Proof. Since λ1, λ2, . . . , λn, are the eigenvalues of W, we can write

det(hI−W) =
n∏
i=1

(h− λi).

Then, from the above equation, we get:

det(hI−W) =
n∏
i=1

(h− λi) =⇒ hn det(I−Wh−1) = hn
n∏
i=1

(1− λih−1)

=⇒ det(I−Wh−1) =
n∏
i=1

(1− λih−1).

Let ρ = h−1, then we get:

det(I− ρW) =
n∏
i=1

(1− ρλi). (2.29)

This completes the proof of first part of this lemma.

Now, taking the natural log of equation (2.29) and differentiating with respect to

ρ, we get the following:

ln det(I− ρW) = ln(1− ρλ1) + ln(1− ρλ2) + . . .+ ln(1− ρλn)

=⇒ ∂ ln det(I− ρW)

∂ρ
= − λ1

1− ρλ1
− λ1

1− ρλ2
− . . .− λ1

1− ρλn
= −

n∑
i=1

λi
1− ρλi

.

This completes the proof of the second part of the lemma.

Remark 2.2. From equations (2.24) and (2.28) it follows that:

Tr[(I− ρW)−1W] =
n∑
i=1

λi
1− ρλi

. (2.30)

Remark 2.3. Equation (2.18) can be expressed as a polynomial in ρ̂ as follows:

σ̂2 = ρ̂2 y>[W> 1

n
(I− 11>

n
)W]y − 2ρ̂ y>[W> 1

n
(I− 11>

n
)]y + y>

1

n
(I− 11>

n
)y.
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Theorem 2.2. The MLE of the parameter ρ satisfies the following equation:

− ρ̂
2

n
[h1

n∑
i=1

λi
1− ρ̂λi

] + ρ̂ [−h1 +
2h2
n

n∑
i=1

λi
1− ρ̂λi

] + [h2−
h3
n

n∑
i=1

λi
1− ρ̂λi

] = 0, (2.31)

where λ1, . . . , λn are the eigenvalues of W and

h1 = y>[W>(I− 11>

n
)W]y;

h2 = y>[W>(I− 11>

n
)]y;

h3 = y>(I− 11>

n
)y.

Proof. The proof of the theorem follows from equations (2.17), (2.18), (2.19),

and (2.30).

2.4.4 An implementation of Ord’s method in R

When W is a row-standardized matrix, Lemma 2.4 in Section 2.3.4 guarantees that

W has no eigenvalues with absolute value in the interval (1,∞). As a result, if

|ρ| < 1, then 1 − ρλi 6= 0 for i = 1, . . . , n. Because, if 1 − ρλi = 0 for some i, then

|ρ| = | 1
λi
| ≥ 1, a contradiction.

This means, in equation (2.31), if we search for a solution for ρ such that |ρ| < 1,

we would not have any problem with the n denominators 1−ρλ1, 1−ρλ2, . . . , 1−ρλn

(since none of them would be equal to zero). In other words, when ρ is real, the

function on the LHS of equation (2.31) has no vertical asymptotes for all values of ρ

in the interval (−1, 1).
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We should also consider the case when the eigenvalues of weight matrix W are

complex. When an eigenvalue λi is complex, say λ = a + bi, where i =
√
−1, then

the conjugate λ̄i = a− bi is also an eigenvalue. In such a case, for ρ real, the part of

the LHS of equation (2.31) that involves λi and λ̄i becomes:

λi
1− ρλi

+
λ̄i

1− ρλ̄i
=

a+ bi

1− ρ(a+ bi)
+

a− bi
1− ρ(a− bi)

=
a+ bi

(1− ρa)− ρbi
+

a− bi
(1− ρa) + ρbi

=
2a− 2ρ(a2 + b2)

(1− ρa)2 + ρ2b2
.

This means that the LHS of equation (2.31) is real even if W has some complex

eigenavalues.

In the R program that appears in the appendix of this chapter (Section 2.6),

we implement Ord’s eigenvalue method for the model (2.7) in Section 2.2.1 with

independent normal errors. The program relies on Theorems 2.1 and 2.2. Also, the

results from the program are valid even when W has complex eigenvalues. The matrix

W, however, has to be row-standardized.

Note that the program does not apply to W’s that can be found in either Section

2.3.2 or 2.4.2, which are related to the conditional model (2.2). In such a case, W

may have a row of zeros, or more generally, the term
∑n

i=1
λi

1−ρλi is zero for all ρ with

|ρ| < 1. Instead, in this case, we may use Theorem 2.1 and Lemma 2.5.

2.4.5 Use of the R package spdep

In this section, we explain how to use the function lagsarlm of the R package spdep.

According to the online documentation of the function, it “provides maximum likeli-

hood estimation of spatial simultaneous autoregressive lag and spatial Durbin (mixed)
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models of the form”:

Y = Xβ + ρWY + ε.

In our case X = (1, . . . , 1)> and β = α = (α, . . . , α). The R code below explains

how one can use this function:

library(spdep)

lw=mat2listw(w, style="M")

data=data.frame(y)

autore=lagsarlm(y~1, data=data, lw, method="eigen", tol.solve=1.0e-30)

autore

autore$s2

In the next section, we use two hypothetical examples with row-standardized

weight matrices: one with a W that has real eigenvalues and another one with a

W that has complex eigenvalues. The purpose of these examples is to illustrate the

program described in Section 2.4.4 (that appears in the appendix, i.e., Section 2.6) and

to compare the results with those obtained by using the function lagsarlm described

above.

2.4.6 Some hypothetical examples

In this section, using two examples, we test the R program that is discussed in

Section 2.4.4 (and appears in the appendix of this chapter, i.e., Section 2.6).

Example 1. We first use a 9× 9 row-standardized weight matrix W from a rook

connectivity structure. We thus row-standardize the weight matrix in equation (2.9):
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W =

1 2 3 4 5 6 7 8 9



1 0 0.5 0 0.5 0 0 0 0 0

2 0.333 0 0.333 0 0.333 0 0 0 0

3 0 0.5 0 0 0 0.5 0 0 0

4 0.333 0 0 0 0.333 0 0.333 0 0

5 0 0.25 0 0.25 0 0.25 0 0.25 0

6 0 0 0.333 0 0.333 0 0 0 0.333

7 0 0 0 0.5 0 0 0 0.5 0

8 0 0 0 0 0.333 0 0.333 0 0.333

9 0 0 0 0 0 0.5 0 0.5 0

We also generate a random sample Y1, Y2, . . . , Y9 of size n = 9 from the Uniform(10, 100)

distribution. Under these assumptions about W and Y1, . . . , Yn, we implement Ord’s

eigenvalue method to estimate the parameters α, σ2, and ρ. The R program for this

hypothetical example appears in the appendix of this chapter (Section 2.6).

Partial R output for example 1

> y= matrix(runif(n,10,100))

> y

[,1]

[1,] 59.93222

[2,] 26.69796

[3,] 26.75263

[4,] 57.67429

[5,] 55.32099

[6,] 44.72922

[7,] 45.65528

[8,] 14.19529

[9,] 37.80421

>

> ordeigen(n, y, w)

$eigen

[,1]

[1,] -1.000000e+00

[2,] 1.000000e+00

[3,] 5.773503e-01

[4,] -5.773503e-01

[5,] -5.773503e-01

[6,] 5.773503e-01
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[7,] 4.338382e-18

[8,] -3.604462e-18

[9,] 0.000000e+00

$rho

[1] 0.01018761

> alpha(n, y, w, ordeigen(n,y,w)$rho)

[,1]

[1,] 40.55892

> sigma2(n, y, w, ordeigen(n,y,w)$rho)

[,1]

[1,] 223.6851

> loglik(n, y, w, ordeigen(n,y,w)$rho)

[,1]

[1,] -37.1167

>

> library(spdep)

> lw=mat2listw(w, style="M")

> data=data.frame(y)

> autore=lagsarlm(y~1, data=data, lw, method="eigen", tol.solve=1.0e-30)

> autore

Call:

lagsarlm(formula = y ~ 1, data = data, listw = lw, method = "eigen",

tol.solve = 1e-30)

Type: lag

Coefficients:

rho (Intercept)

0.01016997 40.55963401

Log likelihood: -37.1167

> autore$s2

[1] 223.6851

From the above output, we get the following results:

ρ̂ = 0.01018761, α̂ = 40.55892, σ̂2 = 223.6851, and log-likelihood = ` = −37.1167.

Up to 4 decimal points, the results of our R program agree with the results obtained

using the built-in R function lagsarlm from the package spdep.
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Figure 2.3: Plot of eq. (2.31) from Theorem 2.2, as a function of ρ, for Example 1.

In Figure 2.3, for this example, we graph the left-hand side of equation (2.31) as

a function of ρ to see where the MLE of ρ, i.e., ρ̂, is located in the interval (−1, 1).

Example 2. We next use the following 9× 9 row-standardized weight matrix W

that has complex eigenvalues:

W =

1 2 3 4 5 6 7 8 9



1 0 1 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0

5 0 0 0 1 0 0 0 0 0

6 0 0 0 0 0 0 1 0 0

7 0 0 0 0 0 1 0 0 0

8 0 0 0 0 0 0 0 0 1

9 0 0 0 0 0 0 0 1 0

Clearly, the above matrix is a permutation of the rows of the identity matrix I9. As

in the previous example, we generate a random sample Y1, Y2, . . . , Y9 of size n = 9
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from the Uniform(10, 100) distribution, and we implement Ord’s eigenvalue method to

estimate the parameters α, σ2, and ρ. The R program for this hypothetical example

appears again in the appendix of this chapter (Section 2.6).

Partial R output for example 2

> y= matrix(runif(n,10,100))

> y

[,1]

[1,] 99.51419

[2,] 13.73728

[3,] 33.76472

[4,] 72.56716

[5,] 56.00784

[6,] 45.92709

[7,] 47.57752

[8,] 98.88120

[9,] 97.98247

>

> ordeigen(n, y, w)

$eigen

[,1]

[1,] -0.5+0.8660254i

[2,] -0.5-0.8660254i

[3,] 1.0+0.0000000i

[4,] -1.0+0.0000000i

[5,] 1.0+0.0000000i

[6,] -1.0+0.0000000i

[7,] 1.0+0.0000000i

[8,] -1.0+0.0000000i

[9,] 1.0+0.0000000i

$rho

[1] 0.1120304

>

> alpha(n, y, w, ordeigen(n,y,w)$rho)

[,1]

[1,] 55.83942

> sigma2(n, y, w, ordeigen(n,y,w)$rho)

[,1]

[1,] 840.2854

> loglik(n, y, w, ordeigen(n,y,w)$rho)
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Figure 2.4: Plot of eq. (2.31) from Theorem 2.2, as a function of ρ, in Example 2.

[,1]

[1,] -43.11158

>

> library(spdep)

> lw=mat2listw(w, style="M")

> data=data.frame(y)

> autore=lagsarlm(y~1, data=data, lw, method="eigen", tol.solve=1.0e-30)

> autore

Call:

lagsarlm(formula = y ~ 1, data = data, listw = lw, method = "eigen",

tol.solve = 1e-30)

Type: lag

Coefficients:

rho (Intercept)

0.112031 55.839387

Log likelihood: -43.11158

> autore$s2

[1] 840.2853
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From the above output, we get the following results about the second example:

ρ̂ = 0.1120304, α̂ = 55.83942, σ̂2 = 840.2854, and log-likelihood = ` = −43.11158.

Again, up to 4 decimal points, our results agree with those obtained using the built-

in R function lagsarlm from the package spdep. Also, in Figure 2.4, we graph the

left-hand side of equation (2.31) as a function of ρ to see where the MLE of ρ, i.e., ρ̂,

is located in the interval (−1, 1).

2.5 A mixed regressive-autoregressive spatial model

If we consider variations in the mean level of Y, then we get the following mixed

regressive-autoregressive model that generalizes equation (2.7):

Y = Xβ + ρWY + ε. (2.32)

Here, X is an n × (p + 1) design matrix with all ones in its first column, β is the

vector of coefficients with dimension (p + 1) × 1, W is an n × n weight matrix, and

Y = (y1, y2, . . . , yn)> and ε = (ε1, ε2, . . . , εn)> are n× 1 matrices.

In general, the parameter ρ is unknown and we use the maximum likelihood

procedure to estimate it (see also Section 2.4.5). Theorems 2.3 and 2.4 below give the

ML equations for β, σ2, and ρ. Equations (2.33) and (2.34) in Theorem 2.3 appear

also in Section 4 of Ord [9]. The proofs of Theorem 2.3 and Theorem 2.4 are similar

to the proofs of Theorem 2.1 and Theorem 2.2, respectively, and hence we omit them.

Theorem 2.3. Assume ε ∼ MVN(0, σ2I) and Y = Xβ+ ρWY + ε. If the MLEs of
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the parameters β, σ2, and ρ exist, then they satisfy the following equations:

β̂ = (X>X)−1X>(I− ρ̂W)y, (2.33)

σ̂2 =
1

n
y>(I− ρ̂W)>(I−H)(I− ρ̂W)y, (2.34)

and − σ̂2 Tr[(I− ρ̂W)−1W] + y>Wy − ρ̂y>W>Wy − β̂
>
X>Wy = 0. (2.35)

Here, I−H is symmetric and idempotent, where H = X(X>X)−1X> is the usual hat

matrix in linear regression.

Theorem 2.4. The MLE of the parameter ρ satisfies the following equation:

− ρ̂
2

n
[h1

n∑
i=1

λi
1− ρ̂λi

] + ρ̂ [−h1 +
2h2
n

n∑
i=1

λi
1− ρ̂λi

] + [h2−
h3
n

n∑
i=1

λi
1− ρ̂λi

] = 0, (2.36)

where λ1, . . . , λn are the eigenvalues of W and

h1 = y>[W>(I−H)W]y;

h2 = y>[W>(I−H)]y;

h3 = y>(I−H)y.

Remark 2.4. For the mixed regressive-autoregressive model, the log-likelihood equa-

tion has the following form:

`(β, σ2, ρ; y) = ln (det(I− ρW))− n

2
ln(2πσ2)

− 1

2σ2
[y>(I− ρW)>(I− ρW)y − 2β>X>(I− ρW)y + β>X>Xβ].
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2.6 Appendix to Chapter 2

In this section, we give an R program for implementing Ord’s eigenvalue method for

the model (2.7) in Section 2.2.1 with independent normal errors. We also give the R

programs for running the two hypothetical examples in Section 2.4.6.

(a) R program for implementing Ord’s eigenvalue method

## The function "ordeigen" prints the eigenvalues of W, finds an

## estimate for the MLE of rho, and graphs the score function for rho.

ordeigen=function(n,y,w) {

uvec=matrix(rep(1,n))

I=diag(n)

h1=t(y)%*%t(w)%*%(I-(uvec%*%t(uvec)/n))%*%w%*%y

h2=t(y)%*%t(w)%*%(I-(uvec%*%t(uvec)/n))%*%y

h3=t(y)%*%(I-(uvec%*%t(uvec)/n))%*%y

## The following command prints the eigenvalues of W.

e=matrix(eigen(w)$values)

## The MLE of rho is a root of the function below. Notice that

## we use the R function Re to extract the real part of a

## complex number whose imaginary part is close to zero:

mle=function(x){

a1= -(x^2/n)*h1*sum(e/(1-x*e))

a2= x*(-h1+(2*h2/n)*sum(e/(1-x*e)))

a3= (h2-(h3/n)*sum(e/(1-x*e)))

aa= Re(a1+a2+a3)

return(aa)

}

## These commands are needed for graphing the above function mle()

## as a function of rho:

tt = seq(-0.99,0.99,.001)

yy=tt

for (i in 1:length(tt)){yy[i] = mle(tt[i])}
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plot(tt, yy, type="l", xlab="rho", ylab="equation for rho")

abline(h=0)

## Prints the estimate of the MLE of rho and the eigenvalues of W.

root<- uniroot(mle, c(-0.9999,0.9999))

list(eigen=e, rho=root$root)

}

######################################################################

## The function "alpha" prints the estimate of the MLE of the

## intercept term alpha.

alpha=function(n,y,w,v) {

uvec=matrix(rep(1,n))

I=diag(n)

a = 1/n*t(uvec)%*%(I-v*w)%*%y

return(a)

}

######################################################################

## The function "sigma2" prints the estimate of the error variance,

## i.e., the estimate of the sigma-squared term.

sigma2= function(n,y,w,v){

uvec=matrix(rep(1,n))

I=diag(n)

b=1/n*t(y)%*%t(I-v*w)%*%(I-uvec%*%t(uvec)/n)%*%(I-v*w)%*%y

return(b)

}

######################################################################

## The function "loglik" calculates the value of the

## maximized log-likelihood.

loglik= function(n,y,w,v) {

uvec=matrix(rep(1,n))

I=diag(n)

a1 = log(det(I-v*w))-n/2*log(2*pi*sigma2(n,y,w,v))

a2 = -1/(2*sigma2(n,y,w,v))

a3 = t(y)%*%t(I-v*w)%*%(I-v*w)%*%y

a4 = - 2*alpha(n,y,w,v)*t(uvec)%*%(I-v*w)%*%y + n*(alpha(n,y,w,v))^2

aa = a1+a2*(a3+a4)
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return(aa)

}

(b) R code for Example 1 in Section 2.4.6

## This is hypothetical example 1: W has real eigenvalues.

## Sample size

n=9

## Data generated randomly from a uniform distribution.

y= matrix(runif(n,10,100))

y

## Row-standardized weight matrix W for a 3 x 3 grid with

## rook connectivity structure (that is, W is 9 x 9).

w= matrix(c(

0, 1/2, 0, 1/2, 0, 0, 0, 0, 0,

1/3, 0, 1/3, 0, 1/3, 0, 0, 0, 0,

0, 1/2, 0, 0, 0, 1/2, 0, 0, 0,

1/3, 0, 0, 0, 1/3, 0, 1/3, 0, 0,

0, 1/4, 0, 1/4, 0, 1/4, 0, 1/4, 0,

0, 0, 1/3, 0, 1/3, 0, 0, 0, 1/3,

0, 0, 0, 1/2, 0, 0, 0, 1/2, 0,

0, 0, 0, 0, 1/3, 0, 1/3, 0, 1/3,

0, 0, 0, 0, 0, 1/2, 0, 1/2, 0),

nrow=9,ncol=9,byrow=TRUE)

## For the hypothetical example, we calculate the estimates

## of the MLEs of rho, alpha, and sigma-squared along with

## the value of the maximized log-likelihood. In addition,

## we plot the graph of the equation for rho and print

## the eignenvalues of W.

ordeigen(n, y, w)

alpha(n, y, w, ordeigen(n,y,w)$rho)

sigma2(n, y, w, ordeigen(n,y,w)$rho)

loglik(n, y, w, ordeigen(n,y,w)$rho)

(c) R code for Example 2 in Section 2.4.6

## Hypothetical example 2: matrix W has complex eigenvalues.

## Sample size
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n=9

## Data generated randomly from a uniform distribution.

y= matrix(runif(n,10,100))

y

## Row-standardized weight matrix W of dimension 9 x 9

## with complex eigenvalues

w= matrix(c(

0,1,0,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,0,

1,0,0,0,0,0,0,0,0,

0,0,0,0,1,0,0,0,0,

0,0,0,1,0,0,0,0,0,

0,0,0,0,0,0,1,0,0,

0,0,0,0,0,1,0,0,0,

0,0,0,0,0,0,0,0,1,

0,0,0,0,0,0,0,1,0

),

nrow=9,ncol=9,byrow=TRUE)

## For the hypothetical example, we calculate the estimates

## of the MLEs of rho, alpha, and sigma-squared along with

## the value of the maximized log-likelihood. In addition,

## we plot the graph of the equation of rho and print

## the eignenvalues of W.

ordeigen(n, y, w)

alpha(n, y, w, ordeigen(n,y,w)$rho)

sigma2(n, y, w, ordeigen(n,y,w)$rho)

loglik(n, y, w, ordeigen(n,y,w)$rho)

46



CHAPTER 3

IMPLEMENTATION OF ORD’S METHOD TO

THE COLUMBUS, OHIO, DATA SET

In Chapter 2 of this thesis, we developed Ord’s [9] eigenvalue method for estimating

the parameters of a mixed regressive-autoregressive model, but we only applied it to

some simple hypothetical data. In this chapter, we implement Ord’s method to real

world data.

3.1 The Columbus, Ohio, spatial data set

In this section, we describe the Columbus, Ohio, crime data from 1980. This data set

originally appeared in Table 12.1 of Anselin [1, p. 187–190]. The data set concerns

49 contiguous neighborhoods in Columbus, Ohio. The neighborhood list corresponds

to a list of census tracts created by the US Census Bureau. Essentially, census tracts

are small and stable subdivisions of a county or an equivalent entity of a USA state,

and they usually have between 1200 and 8000 residents [15].

From the data set, we use three variables: CRIME, HOUSE, and INC. For each

neighborhood, the CRIME variable represents the total number of burglaries and

vehicle thefts per 1000 households, while the HOUSE and INC variables represent

the housing value and household income in thousand dollars, respectively.
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From the description of the data set, it is not clear whether the HOUSE and

INC variables represent the total or the average housing value and household income,

respectively, for each neighborhood. But it seems more logical to assume that these

variables are considering the average housing value and the average household income

for each neighborhood, respectively.

In the dataset, the X and Y variables represent the coordinates of the neigh-

borhood. It is not stated in the description of the data what exactly (X, Y ) are for

each neighborhood, but most probably they are the relative coordinates (with respect

to some origin) of the geographical center of each neighborhood. We will use these

coordinates to construct different weight matrices for our spatial regression model as

described in Section 2.3.3 of the thesis.

In the R package spdep, the old name of the data set is oldcol while the current

name of the data frame is COL.OLD [12]. The data set has 49 rows and 22 columns

that contain information about the 49 neighborhoods in Columbus, OH.

The data set also includes the COL.nb object, which includes the neighbourhood

list. From this object, we may find out the bordering neighbourhoods of each of the

49 neighbourhood. This allows us to create a contiguity weight matrix for these 49

Colombus neighbourhoods.

Using different weight matrices, we implement Ord’s eigenvalue method to esti-

mate the parameters of a mixed regressive-autoregressive model between the response

variable CRIME and the predictors HOVAL (housing value in $1000) and INC (house-

hold income in $1000).
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3.2 An R program for estimating Ord’s model

In the following R program, we implement Ord’s eigenvalue method to the mixed

regressive-autoregressive model

Y = Xβ + ρWY + ε, where ε ∼ MVN(0, σ2I). (3.1)

The program relies on Theorems 2.3 and 2.4, and it is more general than the R

program in Section 2.4.4 because it takes into account the values of the covariates.

Note, also, that the program is valid even when W has complex eigenvalues. The

formula for the corresponding log-likelihood (that we implement in the program)

appears in Remark 2.4.

## The function "ordeigen" prints the eigenvalues of W, finds an

## estimate for the MLE of rho, and graphs the equation for rho.

ordeigen=function(n,y,x,w) {

I=diag(n)

H= x%*%solve(t(x)%*%x)%*%t(x)

h1=(t(y)%*%t(w)%*%(I-H)%*%w%*%y)

h2=(t(y)%*%t(w)%*%(I-H)%*%y)

h3=(t(y)%*%(I-H)%*%y)

## printing the eigenvalues of W:

e=matrix(eigen(w)$values)

mle=function(m){

a1= -(m^2/n)*h1*sum(e/(1-m*e))

a2= m*(-h1+(2*h2/n)*sum(e/(1-m*e)))

a3= (h2-(h3/n)*sum(e/(1-m*e)))

aa= Re(a1+a2+a3)

return(aa)

}

## graphing the function mle() as a function of rho:

tt = seq(-0.99,0.99,.001)

yy=tt

for (i in 1:length(tt)){yy[i] = mle(tt[i])}
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plot(tt, yy, type="l", xlab="rho", ylab="equation for rho")

abline(h=0)

## printing the estimate of the MLE of rho:

root<- uniroot(mle, c(-0.9999,0.9999))

list(eigen=e, rho=root$root)

}

################################################################

## The function "beta" prints the MLEs of the coefficients.

beta=function(n,y,x,w,v) {

I=diag(n)

a=solve(t(x)%*%x)%*%t(x)%*%(I-v*w)%*%y

return(a)

}

################################################################

## The function "sigma2" prints the estimate of the error variance,

## i.e., the estimate of the sigma-squared term.

sigma2= function(n,y,x,w,v){

I=diag(n)

H= x%*%solve(t(x)%*%x)%*%t(x)

b=1/n*t(y)%*%t(I-v*w)%*%(I-H)%*%(I-v*w)%*%y

return(b)

}

################################################################

## The function "loglik" calculates the value of the

## maximized log-likelihood.

loglik= function(n,y,x,w,v) {

I=diag(n)

a1 = log(det(I-v*w))-n/2*log(2*pi*sigma2(n,y,x,w,v))

a2 = -1/(2*sigma2(n,y,x,w,v))

a3 = t(y)%*%t(I-v*w)%*%(I-v*w)%*%y

a4 = - 2*t(beta(n,y,x,w,v))%*%t(x)%*%(I-v*w)%*%y

a5 = t(beta(n,y,x,w,v))%*%t(x)%*%x%*%beta(n,y,x,w,v)

aa = a1+a2*(a3+a4+a5)

return(aa)

}
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3.3 Spatial regression using natural neighborhood

contiguity

In this section, we use the modified R program from Section 3.2 of this thesis on

the Columbus, OH, crime data from 1980 in order to estimate the parameters of the

model Y = Xβ + ρWY + ε (where ε ∼ MVN(0, σ2I)). We use a weight matrix W

that can be obtained using the natural contiguity of the neighborhoods. For example,

neighborhood 1 of Columbus is contiguous to the neighborhoods 2, 5, and 6, while

neighborhood 2 is contiguous to the neighborhoods 1, 3, 6, and 7, and so on. A

complete list of neighborhood contiguity can be found in Table 12.2 of Anselin [1,

p. 190].

For this data set, X is a 49× 3 design matrix with all ones in its first column, β

is a 3× 1 vector of coefficients, W is a 49× 49 weight matrix, and Y and ε are 49× 1

matrices.

The R commands needed to read the Columbus data, create the W matrix, and

apply the program from Section 3.2 for the estimation of the parameters, along with

some necessary explanations, appear in the appendix of this chapter (Section 3.6).

Below we give some of the output of these R commands. At the beginning of the

output, we have the 49 eigenvalues λi of W.

Partial output for the R program in Section 3.6

> ordeigen(n, y, x, w)

$eigen

[,1]

[1,] 1.000000e+00

[2,] 9.683166e-01

[3,] 9.392775e-01
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[4,] 8.783334e-01

[5,] 8.400875e-01

[6,] 7.616861e-01

[7,] 6.930989e-01

[8,] -6.509666e-01

[9,] -6.017333e-01

[10,] 5.804820e-01

[11,] -5.637252e-01

[12,] 5.523933e-01

[13,] 5.138516e-01

[14,] -5.060598e-01

[15,] -5.000000e-01

[16,] -4.919854e-01

[17,] -4.864307e-01

[18,] -4.612340e-01

[19,] -4.468910e-01

[20,] 4.298413e-01

[21,] -4.241157e-01

[22,] -4.041236e-01

[23,] -3.944806e-01

[24,] -3.777849e-01

[25,] -3.454928e-01

[26,] -3.435605e-01

[27,] 3.416926e-01

[28,] -3.211139e-01

[29,] 3.040721e-01

[30,] -2.930730e-01

[31,] -2.896441e-01

[32,] 2.751662e-01

[33,] -2.622402e-01

[34,] -2.500000e-01

[35,] -2.283925e-01

[36,] -2.211569e-01

[37,] 1.974175e-01

[38,] -1.878548e-01

[39,] -1.675348e-01

[40,] 1.564255e-01

[41,] -1.444632e-01

[42,] 1.097787e-01

[43,] -9.236810e-02

[44,] -8.041567e-02

[45,] 6.003855e-02

[46,] -5.978906e-02

[47,] -3.330931e-02

[48,] 2.798021e-02
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[49,] 3.722489e-18

$rho

[1] 0.4310229

> beta(n, y, x, w, ordeigen(n,y,x,w)$rho)

[,1]

[1,] 45.0792665

[2,] -1.0316161

[3,] -0.2659263

> sigma2(n, y, x, w, ordeigen(n,y,x,w)$rho)

[,1]

[1,] 95.4945

> loglik(n, y, x, w, ordeigen(n,y,x,w)$rho)

[,1]

[1,] -182.3904

>

> library(spdep)

> lw=mat2listw(w, style="M")

> data(oldcol)

> data2=data.frame(COL.OLD)

> autore=lagsarlm(CRIME ~ INC + HOVAL, data=data2,lw, method="eigen",

tol.solve=1.0e-30)

> autore

Call:

lagsarlm(formula = CRIME ~ INC + HOVAL, data = data2, listw = lw,

method = "eigen", tol.solve = 1e-30)

Type: lag

Coefficients:

rho (Intercept) INC HOVAL

0.4310232 45.0792499 -1.0316157 -0.2659263

Log likelihood: -182.3904

> autore$s2

[1] 95.4945

> summary(autore)

Call:lagsarlm(formula = CRIME ~ INC + HOVAL, data = data2, listw = lw,

method = "eigen", tol.solve = 1e-30)

Residuals:
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Min 1Q Median 3Q Max

-37.68585 -5.35636 0.05421 6.02013 23.20555

Type: lag

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 45.079250 7.177347 6.2808 3.369e-10

INC -1.031616 0.305143 -3.3808 0.0007229

HOVAL -0.265926 0.088499 -3.0049 0.0026570

Rho: 0.43102, LR test value: 9.9736, p-value: 0.001588

Asymptotic standard error: 0.11768

z-value: 3.6626, p-value: 0.00024962

Wald statistic: 13.415, p-value: 0.00024962

Log likelihood: -182.3904 for lag model

ML residual variance (sigma squared): 95.494, (sigma: 9.7721)

Number of observations: 49

Number of parameters estimated: 5

AIC: 374.78, (AIC for lm: 382.75)

LM test for residual autocorrelation

test value: 0.31954, p-value: 0.57188

Using both our R program (that uses the theory of Chapter 2 of this thesis) and

the built-in R function lagsarlm, we get the following results (rounded to 3 decimal

digits):

ρ̂ = 0.431, β̂ = (45.079,−1.032,−0.266)>,

σ̂2 = 95.495, and log-likelihood = ` = −182.390.

From the output of the built-in R function lagsarlm, we may also get some

summary statistics for the fitted model. The above partial R output shows the

following asymptotic standard errors of the estimates of the parameters (except for

the asymptotic standard error of σ̂2):

ASE(β̂0) = 7.1773, ASE(β̂1) = 0.3051, ASE(β̂2) = 0.0885, and ASE(ρ̂) = 0.1177.
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In this thesis, due to time constraints, we did not develop the theory of the calculation

of the asymptotic standard errors of the estimates of the parameters in model (3.1).

3.4 Spatial regression using nearest neighbours

Following Pace and Barry [11], in this section, we use weight matrices Wm that are

based on the mth nearest neighbour to each location i (as described in Section 2.3.3

of this thesis).

Since the census tracts are very close to each other and the data has been collected

on a small geographical area, we can assume that the surface area in Colombus, Ohio,

is approximately flat. Therefore, instead of using the spherical distance formula, we

may use the Euclidean distance formula to find the distances between every two census

tracts (neighborhoods).

Suppose (xi, yi) and (xj, yj) are the coordinates of (the geographical centers of)

neighborhoods i and j, respectively. If we assume dij is the Euclidean distance be-

tween neighborhoods i and j, then dij =
√

(xi − xj)2 + (yi − yj)2.

For each m ≥ 1 and 1 ≤ i, j ≤ n, we define the (i, j)-th element of matrix Wm by

w
(m)
ij =


1, if dij ≤ d

(m)
(max,i) and i 6= j,

0, otherwise.

Here, d
(m)
(max,i) := mth order statistic of the distances di,1, di,2, . . . , di,i−1, di,i+1, . . . , di,n.

(Recall that di,i = 0.)

The above condition on the (i, j)-th element of matrix Wm yields a weight of 1 for

the census tracts j (with j 6= i) that are within the mth nearest neighbour of location
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i, and 0 for census tracts j whose distance to location i is more than dm(max,i). (The

diagonal elements of Wm are of course 0.)

Each of the matrices Wm must be row-standardized (as described in Section 2.3.4):

W̃m =
(
w̃

(m)
ij

)n
i,j=1

, where w̃
(m)
ij =

w
(m)
ij∑n

`=1w
(m)
i`

for 1 ≤ i, j ≤ n.

This is the weight matrix we need to use in the R program given in Section 3.2 of

this thesis when we want to utilize mth nearest neighbours to create a weight matrix.

For the Columbus, Ohio, crime data, we may use the coordinates of the neighbor-

hoods (the X and Y variables in the data set) to calculate the distances from each

location i to the neighborhood locations. For example, when m = 3, the distances

from each location i to the third nearest neighbour are as follows:

d
(3)
(max,1) = 3.828, d

(3)
(max,2) = 3.385, d

(3)
(max,3) = 2.624, . . . , d

(3)
(max,49) = 3.444.

An R program for creating the row-standardized weight matrix W̃m, which is

based on mth nearest neighbor, appears in the appendix of this chapter (Section 3.6).

Essentially, in the R program given in Section 3.2, instead of using the row-standardized

weight matrix that is based on natural neighborhood contiguity (see Section 3.3), we

may now use the matrices W̃m.

Table 3.2 shows the “nearby” neighborhoods for each of the first five neighbor-

hoods (out of the 49) in Columbus according to various criteria, that is, different

weight matrices W̃. For each census tract i ∈ {1, 2, 3, 4, 5}, we list the “nearby”

neighborhoods according to the W̃ for natural contiguity, W̃1, W̃2, and W̃3.
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Neighborhood W̃ for contiguity W̃ with m = 1 W̃ with m = 2 W̃ with m = 3
1 2, 5, 6 2 2, 5 2, 3, 5
2 1, 3, 6, 7 3 1, 3 1, 3, 6
3 2, 4, 7, 37, 38, 39 2 2, 39 2, 37, 39
4 3, 37, 39, 40 39 3, 39 3, 39, 40
5 1, 6 6 1, 6 1, 2, 6

Table 3.2: “Nearby” neighborhoods of the first five neighborhoods for different W̃’s.

3.5 Results and Discussion

Table 3.4 shows the estimates of the parameters β̂, ρ̂, and σ̂2, and the value of the

maximized log-likelihood `, for different row-standardized weight matrices.

Estimates W̃ for contiguity W̃ with m = 1 W̃ with m = 2 W̃ with m = 3

β̂0 (intercept) 45.080 50.539 41.192 42.040

β̂1 (INC) −1.032 −1.158 −0.924 −0.941

β̂2 (HOVAL) −0.266 −0.282 −0.260 −0.266
ρ̂ 0.431 0.306 0.453 0.443
σ̂2 95.495 93.644 81.885 86.261
` −182.390 −182.124 −179.407 −180.065
AIC 374.780 374.248 368.814 370.130

Table 3.4: Estimates of the parameters of model (3.1) for different W̃’s.

From Table 3.4, we see that the estimate of ρ for W̃ when m = 1 is 0.306, which

is smaller in absolute value than the estimates of ρ for other W̃’s. Also, the estimates

of the coefficients β0, β1, and β2 for W̃ when m = 2 are close to the corresponding

estimates for W̃ when m = 3 (and not far away from the corresponding estimates for

the W̃ for natural contiguity). The smallest estimate of σ2 occurs for the W̃ when

m = 2 while the largest estimate of σ2 occurs for the W̃ for natural contiguity. The

estimate of the maximized log-likelihood ` for all W̃’s are very close to each other.
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In order to compare the fitted models for different W̃’s, we may use the Akaike

Information Criterion (AIC). The AIC is defined by the formula

AIC = 2(number of estimated parameters)− 2(maximized log-likelihood value).

From Table 3.4, we see that the smallest AIC value is 368.814, which occurs for W̃

when m = 2. Thus, based on the AIC value, it seems that best model is the one

where W̃ is constructed using 2nd nearest neighbors for each neighborhood.

Table 3.6 shows the asymptotic standard errors of β̂0, β̂1, β̂2, and ρ̂ (but not for

σ̂2) for different row-standardized weight matrices W̃’s. (Here, n = 49, which cannot

be considered “small” for a linear regression with 5 estimated parameters.)

Standard Error W̃ for contiguity W̃ with m = 1 W̃ with m = 2 W̃ with m = 3

ASE(β̂0) 7.1773 5.6959 6.2953 6.6462

ASE(β̂1) 0.3051 0.2885 0.2803 0.2884

ASE(β̂2) 0.0885 0.0875 0.0820 0.0841
ASE(ρ̂) 0.1177 0.0833 0.0976 0.1058

Table 3.6: Standard errors of the coefficients of model (3.1) for different W̃’s.

As we can see, the asymptotic standard error for β̂0 is the smallest for W̃ with

m = 1. But for W̃ with m = 2, the asymptotic standard errors for β̂1, and β̂2 are the

smallest compared to the corresponding estimates for other W̃’s. Also, the smallest

asymptotic standard error for ρ̂ is 0.0833, which occurs for W̃ with m = 2.

Remark 3.5. If we let r be the Pearson correlation coefficient between the explana-

tory variables INC and HOVAL, the VIF (Variance Inflation Factor) for each of the

explanatory variables is 1
1−r2 = 1.333, which is very small. This indicates that there

exists no multi-collinearity among the explanatory variables.
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3.6 Appendix to Chapter 3

In this appendix, we give R commands and some explanations that are needed in

Sections 3.3 and 3.4 for the following tasks: (a) read the Columbus data into R,

(b) create the W matrix indicating natural neighborhood contiguity among the 49

neighborhoods in Columbus, (c) create a weight matrix based on mth nearest neigh-

bors, and (d) apply the program from Section 3.2 to estimate the unknown model

parameters. For task (b), in the R data frame COL.OLD, we may use the built-in

neighborhood object COL.nb to find the weight matrix W that indicates natural

contiguity.

R program for performing tasks (a), (b), and (d)

## We get the Columbus crime data, from year 1980, from the package

## "spdep". The old name of the data set is "oldcol" and the name

## of the current data frame is "COL.OLD".

library(spdep)

data(oldcol)

data2=data.frame(COL.OLD)

attach(data2)

## In order to use the R code from Section 3.2, we define

## the dependent variable "CRIME" as a "y" variable

y=data2$CRIME

## Sample size of the data (here n = 49):

n=length(y)

## Here, we create a 49 by 3 design matrix using all ones

## in the first column and the explanatory variables INC (income)

## and HOVAL (house value) in the other two columns.

x=cbind(rep(1,n),data2$INC,data2$HOVAL)
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## To get the weight matrix W, we first create

## a weight "list" object from the neighborhood object COL.nb

## (a built-in object in R for this data set).

## The nb2listw function creates a weight list object

## from a binary neighborhood list object. Here COL.nb is

## a binary list object, in which regions are either listed

## as neighbours (1) or are absent (0).

lst=nb2listw(COL.nb, style="W")

## The following command creates a weight matrix from the "list" object.

w=listw2mat(lst)

## The following R code generates the estimates

## of the MLEs of rho, beta, and sigma-squared along with

## the value of the maximized log-likelihood.

ordeigen(n, y, x, w)

beta(n, y, x, w, ordeigen(n,y,x,w)$rho)

sigma2(n, y, x, w, ordeigen(n,y,x,w)$rho)

loglik(n, y, x, w, ordeigen(n,y,x,w)$rho)

## To check the results we get above, we use the built-in

## R function "lagsarlm" to fit a mixed regressive-autoregressive

## model and find the MLEs of rho, beta, and sigma-squared along with

## the value of the maximized log-likelihood.

library(spdep)

lw=mat2listw(w, style="M")

data(oldcol)

data2=data.frame(COL.OLD)

autore=lagsarlm(CRIME ~ INC + HOVAL, data=data2,lw, method="eigen",

tol.solve=1.0e-30)

autore

autore$s2

## The following R code produce the estimates of standard errors

## for the Columbus, Ohio, crime data.

summary(autore)
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R code for creating the weight matrix Wm (task (c))

The following R code produces weight matrices based on mth nearest neighbours

for the Columbus crime data set. First, we use the coordinates values from the

variables X and Y to find the distances for each location i to its neighbors. Then the

R code produces different weight matrices for m = 1, m = 2, m = 3, and so on.

## The following R code yields an n by n row-standardized weight matrix.

## In the function "weight", the argument "n" represents the sample size,

## "m" represents the order of the nearest neighbor, and

## "D" represents the n by n distance matrix, which can be obtained

## by using the X and Y coordinates of the n locations.

weight = function(n,m,D){

mat_dis=matrix(c(D),nrow=n,ncol=n,byrow=TRUE)

x=t(apply(mat_dis,1,sort))

w=matrix(data=0, nrow=n, ncol=n)

for(j in 1:n){

for(i in 1:n)

for(k in 1:n)

{if (mat_dis[k,j]<=x[k,m+1] & k!=j) {w[k,j]=1}}

}

r_total=rowSums(w)

return(w/r_total)

}

##################################################

## In order to find the distances between locations in

## Columbus, Ohio, we need the following R code:

library(spdep)

data(oldcol)

data2=data.frame(COL.OLD)

attach(data2)

X=data2$X

Y=data2$Y

location=as.matrix(cbind(X,Y))

distance <- dist(location)

D=as.matrix(distance)

61



## Here we find the weight matrix using third nearest neighbours.

## For different values of m we may get different weight matrices.

m=3

n= length(Y)

w=weight(n,m,D)

head(w)

62



CHAPTER 4

CONCLUSION AND FUTURE RESEARCH

In this thesis, we used a mixed regressive-autoregressive global model to describe

the effect of interaction among neighboring locations on the response variable in

the presence of several covariates (predictors). We also estimated the parameters

of the model using Ord’s [9] eigenvalue method with the help of the programming

language R.

In spatial data analysis, it is crucial to choose the weights that indicate the con-

tiguity of neighboring locations in a proper way. One important aspect of this thesis

is the fact that we used different kinds of weight matrices based on the natural conti-

guity of each location and various notions of “nearest neighbor”. This allowed us to

compare the estimates of the parameters of the mixed regressive-autoregressive model

for various choices of the weight matrix (see Table 3.4 in the previous chapter).

In order to make Ord’s numerical method more reliable, we row-standardized

each of those weight matrices by dividing each element of the matrix by the sum

of the elements of each row. Since a row-standardized matrix with non-negative

elements (sometimes known as Markov matrix) has (possibly complex) eigenvalues

with modulus less than or equal to 1 (see Lemma 2.4 in this thesis), the estimate of
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the parameter ρ in the model Y = Xβ + ρWY + ε lies in the interval [−1, 1].

Our results, obtained by the implementation of Ord’s method in the programming

language R, agree (up to 4 decimal points) with the results obtained by using the

built-in R function lagsarlm from the R package spdep.

One of the major disadvantages of this thesis is that we did not develop the theory

of the calculation of the asymptotic standard errors of the parameters in the model

Y = Xβ + ρWY + ε with E(ε) = 0 and Var(ε) = σ2In. This could have been

achieved by using the Hessian matrix of the second partial derivatives of the log-

likelihood function. In principle, these calculations are possible, but they are very

tedious. Due to time constraints, we did not attempt these calculations.

For the Columbus, Ohio, data set, however, we did calculate the asymptotic stan-

dard errors for all estimated parameters (except for σ̂2) using the built-in R function

lagsarlm of the R package spdep.

Although we have only considered the situation where the response variable re-

gresses with itself, in real life statistical modelling of spatial data, a very common

situation is to assume that there is a spatial autocorrelation among the error terms.

In that case, we need to consider an extended model, called “Simultaneous Autore-

gressive (SAR)” error model, which can be specified as follows:

Y = Xβ + U and U = ρWU + ε.

Here, U = (u1, . . . , un)> is an n × 1 vector of (correlated) disturbance terms and

ε ∼ MVN(0, σ2In). We may replace U to get the following model:

Y = Xβ + ρWY − ρWXβ + ε.
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The above model is basically a generalization of the Durbin model in the theory

of time series. Again, in this case (as was the case with the spatial models examined

in Chapter 2 of this thesis), the OLS estimates of the parameters are inconsistent,

and we may use the maximum likelihood approach to estimate the parameters β, ρ,

and σ2.

Due to time constraints, we did not consider the estimation of the simultaneous

autoregressive (SAR) error model in this thesis. The parameters of the model can be

estimated using the R function errorsarlm of the R package spdep.
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