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ABSTRACT

TIME-DEPENDENT RANDOM EFFECT POISSON RANDOM FIELD

MODEL FOR POLYMORPHISM WITHIN AND BETWEEN TWO

RELATED SPECIES

by

Shilei Zhou

Dr. Amei Amei, Examination Committee Chair

Associate Professor of Mathematical Sciences

University of Nevada Las Vegas

Molecular evolution is partially driven by mutation, selection, random genetic

drift, or combination of the three factors. To quantify the magnitude of these ge-

netic forces, a previously developed time-dependent fixed effect Poisson random field

model provides powerful likelihood and Bayesian estimates of mutation rate, selec-

tion coefficient, and species divergence time. The assumption of the fixed effect model

that selection intensity is constant within a genetic locus but varies across genes is

obviously biologically unrealistic, but it serves the original purpose of making statis-

tical inference about selection and divergence between two related species they are

individually at mutation-selection-drift inequilibrium. By relaxing the constant se-

lection assumption, this dissertation derives a within-locus random effect model in

which the selective intensity of non-synonymous mutation in a gene is treated as a
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random sample from some underlying normal distribution and applies a Bayesian

framework to make statistical inference about various genetic parameters. Also, a

new N-ADAM-mixing Markov chain Monte Carlo sampler is created to provide bet-

ter sampling strategy and fastens the convergence speed. Furthermore, to conquer the

computational cost of the developed model this dissertation proposes a MPI parallel

computing scheme which boosts the calculation speed by ten times.
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CHAPTER 1

INTRODUCTION

One of the central goals of population genetics is to characterize the various forces

that shape pattern of genetic polymorphism within and between species. Genetic

material or DNA, resides in chromosomes, is an instructional manual to produce

all materials that is necessary to maintain functions of a living creature. The long

twisted ladder-like string structure of DNA is built by paired nucleotides or base pairs.

There are four types of nucleotides A(denine), C(ytosine), G(uanine), and T(hymine)

following a rule to pair up, A with T and C with G. A certain portion of chromosome

in connection with a particular trait defines a gene or genetic locus. Creature carries

DNA in paired chromosomes, like higher plants or animals is called Diploid, while

haploid such as bacteria has only one single chromosome. It is sometime useful to

use term Allele as an expression of genetic type. An allele is a reflection of variation

of gene and most common alleles are referred as wild types. Diploid organisms have

one allele on each of their chromosomes as opposed to haploid carries only one allele.

If a pair of alleles are the same, we call it homozygote and heterozygote otherwise.

Proteins are built from series of amino acids. Each protein is composed of an

unique sequence of amino acids encoded from particular regions of genes. These re-

gions of genes are sets of consecutive triplets of nucleotides called codons. Codons

1



designate all around 20 different amino acids although there are 43 = 64 possible ways

of composing triplets out of the four types of nucleotides. This non-one-to-one map-

ping gives enough room to condons to code all amino acids with redundancy. About

half of amino acids are encoded by four different codons with various nucleotides

in third position. Most of the remaining amino acids are encoded by two different

codons. A nucleotide mutation can occur at one of the three sites in a codon posi-

tion. A mutation is called synonymous (or silent) if it does not change the underlying

encoded amino acid and a non-synonymous (or replacement) mutation results in a

change to the amino acids. Most possible mutations at first and second sites are re-

placement and majority of silent mutations are at the third codon position. A DNA

site is called polymorphic if there is more than one type of nucleotides at that site in

a population and monomorphic otherwise.

Population genetics studies the frequencies of alleles in a population and its

changes resulted from multiple factors, such as selection, mutation, random genetic

drift or the mixture of the three factors. Selection or Darwinian selection could in-

fluence allele frequencies by effects of genes on its host and can be represented by

fitness. A fitness of a gene is a measure defined by the expected number of surviving

offspring in the next generation that are descendants of that gene. Positive fitnesses

indicate favorable mutations while negative fitnesses mean deleterious mutations and

zero are neutral. Random genetic drift is the result of changes of allele frequencies in

a population due to random mating. In a Random mating system, every male-female

pair in the population can act as, with equal chance, a set of parents to produce next
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generation.

Statistical inference using Poisson random field (PRF) models are widely applied

to sets of aligned DNA sequences to quantify various genetic forces, such as mutation,

selection and divergence. Using aligned DNA sequences from closely related species

McDonald and Kreitman[32] first proposed a test of neutrality of a 2 × 2 contin-

gency table. The rows of the contingency table represent the number of silent or

replacement nucleotide mutation sites, and columns are the number of sites that are

either fixed differences between species or polymorphisms within spices. Here fixed

differences are defined as nucleotide sites that are fixed within species but different

between species and polymorphisms are sites that are different within one or more

species. Given a genetic locus if the selection is considered to be neutral then the

ratio of replacement fixed differences to replacement polymorphisms should be ex-

pected to equal the ratio of silent fixed differences to silent polymorphisms. Based

on 30 aligned DNA sequences from the alcohol dehydrogenase(Adh) locus of three

species of Drosophila, McDonald and Kreitman concluded that an excess amount

of replacement fixed differences is a result of positive selections acting on advanta-

geous mutations. Despite the simpleness and intuitiveness of this neutrality test, a

quantitative estimate is needed to describe the strength and direction of the selective

effect. Moreover, the complexity of the interaction among mutation, selection and

random genetic drift is far beyond the scope of the McDonald-Kreitman test. The

joint impact of such factors can be studied via a population genetics model. In 1992,

Sawyer and Hartl [42] developed a Poisson random field (PRF)model. They showed
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that the distribution of frequencies of mutant sites is a Poisson random field governed

by silent and replacement mutation rates, selection coefficient and species divergence

time. Application of the PRF model to Adh data, they were able to estimate all these

parameters by Maximum-likelihood method[9, 42]. Bustamante et al[8]extended the

original PRF model to a hierarchical Bayesian fixed effect model to estimate various

genetic parameters over multiple loci with selection coefficients being assumed to be

fixed within one locus, but normally distributed across all loci.

Although the Poisson random field model provides quantitative estimates of vari-

ous genetic parameters, it also harbors some biologically unrealistic assumptions due

to mathematical convenience. The model, among other things, assumes that nu-

cleotide sites are independent or at linkage equilibrium which is equivalent to free

of recombination [9]. Another assumption is that each species reaches mutation-

selection-drift equilibrium after divergence. It also assumes that selective effect of

replacement mutations within a locus is constant but varies across loci.

All these assumptions serve as original mathematical purposes of building up

the PRF model and estimating genetic parameters. Recent studies have focused

on relaxing such limitations and extended the original PRF model to more gen-

eral settings. For example, the assumption of linkage equilibrium makes it inappro-

priate for genes exhibited strong linkages or reduced recombination[44]. Zhu and

Bustamante[50] proposed a composite-likelihood ratio test that preserves indepen-

dence but later adjusts for dependence among sites through coalescent simulations

with recombination.The original PRF model assumes both populations have reached
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mutation-selection-drift equilibrium after divergence and have same effective popula-

tion size. While Sawyer et al. [44]argued that lacking of demographic factors, such

as recent population growth, bottlenecks, and subdivision can undermine the model.

Williamson et al. [47] proposed a time-dependent PRF model based on data from

one species to infer demographic factor and natural selection by using the ratio of

population sizes before and after size change as a demographic parameter. Using

maximum-likelihood estimation method, they applied this model to single nucleotide

polymorphism (SNP)data of 301 human genes and discovered that there was strong

evidence for recent growth of human population, subject to widespread negative se-

lections on replacement mutations. Boyko et al. [7] improved this approach to make

inference of distribution of fitness on newly arising mutations with non-stationary

demographic history. Application of their model to a SNP data set containing 20

European Americans and 15 African Americans yielded an ancient population expan-

sion with African Americans and relatively recent bottleneck in European American

population. The peak of estimated distribution of fitness was near neutrality while

30%− 42% of replacement mutations are moderately deleterious.

Simulation results have shown that the assumption of mutation-selection-drift

equilibrium has been causing underestimate of divergence time, especially when di-

vergence time is small [1]. Amei and Sawyer[2, 3] developed a time-dependent PRF

model to explicitly implement divergence time into the model without population

equilibrium assumption. They incorporated this model with Bayesian framework, ap-

plied to 91 genes of D.melanogaster and D.simulans, and used Markov chain Monte
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Carlo methods to estimate selection coefficients and species divergence time. Ap-

plication of the model to simulated data sets showed a strong consistency between

estimates and true values.

Both time-independent and time-dependent Bayesian frameworks treat selective

effects of replacement mutations within a locus as constant and such models are called

”fixed effect” model. Specifically, fixed effect models assume that replacement muta-

tions within one genetic locus are under constant selection and selection coefficient

is normally distributed with fixed mean and variance across loci. This assumption

is artificial, probably biologically unrealistic, and can potentially bias estimates of

selection coefficients. Rather than fixed, selection coefficients should enjoy somewhat

randomness within the same locus. To abandon articulateness and reveal biological

reality, Sawyer et al. [44]proposed a Bayesian random effect model, in which the se-

lection coefficient at a locus is assumed to be drawn from a normal distribution with

a within-locus mean that varies among loci but with a constant within-locus variance.

Results based on the application of their model to 91 genes in African populations

of D. simulans and D.melanogaster data set showed that high proposition of fixation

was driven by positive selection and majority of newly arisen nonsynonymous muta-

tions are deleterious[44]. However, this random effect model is still under the time

equilibrium setting.

To achieve an accurate estimate of divergence time and keep the freedom of se-

lective effects being randomly changing, we develop a hierarchical Bayesian random

effect model under time-dependent PRF framework by assuming normally distributed
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within-locus selective effect. Central Limit theorem grants us a natural choice of nor-

mal distribution as underlying distribution of selective effects within locus[25, 44].

Other heavier-tailed distributions have been implemented into time-independent ran-

dom effect model with an effort to eliminate model-dependence and results from

heavier-tailed distribution are almost identical to those from normal distribution

model[1]. The 91 genes in African populations of D. simulans and D.melanogaster

data is applied to the proposed model to make statistical inference of selection and

divergence and the results are compared with other studies.

We begin with a step-by-step derivation of the time-dependent PRF model and it’s

Bayesian implementation with random effect. Massive computational cost requires

us to develop a parallel computing technique and that is discussed in Chapter 3

with great details. At last we test the newly developed method on sets of simulated

data and on the real data set of 91 genes of African populations of D. simulans and

D.melanogaster to infer selection and divergence.
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CHAPTER 2

TIME-DEPENDENT POISSON RANDOM FIELD

2.1 Poisson Random Field

Let N = (N1, N2, ..., Nn) be n independent Poisson random variables with E(Ni) =

ci. Define a measure µ(A) on subset A ⊆ X = {0, 1, 2, ..., n} by µ(i) = ci, so that

µ(A) =
∑

i∈A ci. Now we define a random measure N(A) on X by N(i) = Ni, so that

N(A) =
∑

i∈ANi for A ⊆ X and

E(N(A)) =
∑
i∈A

E(N(i)) =
∑
i∈A

E(Ni) =
∑
i∈A

ci = µ(A). (2.1)

Definition 1. A Poisson random field(PRF) is a random measure (X,B, N(A)) on

a measurable space (X,B) with mean measure (X,B, µ) if

E
(
e
∫
X f(y)N(dy)

)
= e

∫
X(ef(y)−1)µ(dy) (2.2)

for all bounded F -measurable functions f(y) on X with
∫
X
|f(y)|µ(dy) <∞.

Let N = (N1, N2, ..., Nn) be as in (2.1). Suppose that there are Ni objects of

some kind at state i(1 ≤ i ≤ n). At a particular time, all the objects at state i move

independently of one another to some points in a finite set Y . Assume that each of
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the objects at state i moves to y ∈ Y with a probability π(i, y), where π(i, y) ≥ 0 and∑
y∈Y π(i, y) = 1 for i ∈ X.

Let My be the total number of objects that move to y ∈ Y , from all starting state

i.

Lemma 1. {My : y ∈ Y } are independent Poisson random variables with means

E(My) =
n∑
i=1

ciπ(i, y) for y ∈ Y. (2.3)

If X = Y , then π(i, y) represents a Markov transition function on the set X =

{0, 1, 2, ..., n}.

Suppose that, at each time k = 0, 1, 2, .... a random number Vk of objects is placed

at state 1 ∈ X. We also assume that all Vk, k ≥ 0 are independent and identical

Poisson random variables with means E(Vk) = v, v ≥ 0. Immediately after the kth

set of immigrants arrive, all objects move one step independently according to π(i, y).

In particular, one of the objects who arrived at state 1 at time k will move to state i at

time k + t with probability π(t)(1, i), where the π(t) is the tth matrix power of π(i, y).

Define N(s, i) as the number of objects at state i at time s ≥ 0. The population

is counted in the sth step after the new immigrants arrive, thus N(0, 1) = V0 and

N(s, 1) ≥ Vs ≥ 0.

Lemma 2. For each fixed s, {N(s, i)} are independent Poisson random variables

with means

E (N(s, i)) = v

s∑
m=0

πm(1, i) for 0 ≤ i ≤ n (2.4)
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That is, at time s the expected number of mutations with population frequency

i consists of mutations who entered the system at time 0 ≤ m ≤ s at state 1 (only

one new mutant nucleotide occurs at each time step at a particular site) and finally

reach state i.

2.2 The Moran Model

Suppose that a population of N haploid individuals has a mutant type a that

initially has j0 copies and the rest are “wild-type” A[35]. The development of the

process takes place in continuous time and each individual’s life time follows a negative

exponential distribution with λ depending on whether the individual has type a or

type A. The state of the system at any time t is defined by the number of mutant

individuals. An individual who dies is immediately replaced by a new individual

who is randomly chosen from the population immediately before the death. Suppose

that each individual of type a has a lifetime T which follows a negative exponential

distribution with probability density function(pdf) of λ−1
1 e
− t
λ1 , and the distribution of

the lifetime of type A has pdf of λ−1
2 e
− t
λ2 . The fitness of mutant type a is denoted by

1 + σN , where σN = λ1−λ2
λ2

is called selection coefficient which can be either positive

or negative. Let XN
k denote the number of individuals who carry the mutant type

a in the population after kth time step for k ≥ 0. XN
k is then a birth-and-death

Markov chain on state space SN = {0, 1, ..., N} and has transition probabilities for

1 ≤ j ≤ N − 1

10



pN(j, j + 1) =
(1 + σN) j

N
(1− j

N
)

1 + σN(1− j
N

)

pN(j, j − 1) =
j
N

(1− j
N

)

1 + σN(1− j
N

)

pN(j, j) = 1− pN(j, j + 1)− pN(j, j − 1)

(2.5)

The states 0 and N are traps corresponding to the loss of mutant type a and the

fixation of mutant type a respectively with pN(0, 0) = pN(N,N) = 1. This is the so–

call Moran model[35]. The original PRF model proposed by Sawyer and Hartl [42] is

based on Wright-Fisher model which considers that all N individuals are replaced at

each time step. In contrast, the Moran model puts one randomly chosen individual at

risk to be replaced at each time step. Therefore, one generation of the Wright-Fisher

model corresponds to N generations of the Moran model[2].

At time 0 we assume that there are M0 sites which are polymorphic with mutant

and wild type in population and Mj new mutations occur at time j = 1, 2, .... The

M0 and Mj are independent Poisson with E(Mj) = µN � E(M0). Let XN
0,m,k denote

numbers of mutant nucleotides at these M0 initial polymorphic sites at times k ≥

0 and is subject to 1 ≤ m ≤ M0. Also let XN
1,n,j,k represent numbers of mutant

nucleotides at sites which are indexed by n = 1, 2, ...,Mj and arise at time j, while

1 ≤ j ≤ k and k ≥ 0, and by assumption X1,n,j,j = 1. We consider that the model is

under the infinite sites assumption that new mutations only occur at sites which have

not been affected by neither new mutations nor initial mutations. We also assume that

sites evolve independently and this is equivalent to saying that sites are in complete
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linkage equilibrium within a locus. Under these assumptions XN
0,m,k and X1,n,j,k are

independent and identical Markov chains with the same transition probabilities given

by (2.5). Due to the identicalness we use XN
k as in (2.5) to represent either XN

0,m,k

or X1,n,j,k, where, again, 0 and N are traps. XN
k can be approximated by a diffusion

process Xt on (0, 1) with time scaled as t ∼ k/N2 for large N(next section).

The number of sites at which there are i mutant nucleotides at time k ≥ 0 for

1 ≤ i ≤ N is

Nk(i) = #{m : XN
0,m,k = i}+ #{n : XN

1,n,j,k = i}, (2.6)

where # represents cardinality of the set, 1 ≤ m ≤M0, 1 ≤ n ≤Mj, 1 ≤ j ≤ k. This

definition illustrates that the number of polymorphic sites with population frequency

of i/N comes from two sources. The first one is the initial polymorphisms at time

k = 0 and the second one is new mutations that arose after k = 0 and already reached

i/N at time k > 0.

The expected value of Nk(i) is

E(Nk(i)) =
N−1∑
j=1

ωNi p
k
N(j, i) + µn

k∑
j=1

pk−jN (1, i). (2.7)

where ωNi = E(N0(i)) and pkN(j, i) is the kth matrix power of pN(j, i). Then

N∑
i=1

f(
i

N
)Nk(i) =

M0∑
m=1

f

(
XN

0,m,k

N

)
+

k∑
j=1

Mr∑
n=1

f

(
XN

1,n,j,k

N

)
(2.8)

for any functions f(x) on [0, 1]
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Here we assume that Mj and N0(i) are independent and follow Poisson distribu-

tion. An extension of Bartlett’s theorem[30] proves that for each fixed time k ≥ 0

{Nk(i)}, i = 1, 2, ... are independent Poisson random variable and form a Poisson

random field(PRF) on {1/N, 2/N, ..., 1}.

2.3 Limiting Diffusion Approximation

Two Markov chains X0,m,k and X1,n,j,k are intuitive but impractical to manage

or make any inference when N gets larger. However, as N → ∞ both chains can

be approximated by a continuous-time continuous-state diffusion process Xt. To

approach this limiting diffusion process we rescale time as N2 steps of the discrete

Markov chain so that t ∼ k
N2 and assume that the selection coefficient is scaled as

N · σN → γ as N →∞. Let Y N
k =

XN
k

N
be the proportion of mutants at time k. We

can show that for integer iN ∈ [0, N ] such that xN = iN
N
→ x ∈ (0, 1) and any δ ≥ 0,

lim
N→∞

N2EiN
(
Y N

1 − xN
)

= γx(1− x)

lim
N→∞

N2EiN
(
(Y N

1 − xN)2
)

= 2x(1− x)

lim
N→∞

N2EiN
(
|Y N

1 − xN |2+δ
)

= 0

(2.9)

converge uniformly in x for iN = [Nx]. By Taylor’s theorem

lim
N→∞

N2EiN
(
h(Y N

1 )− h(xN)
)

= x(1− x)h′′(x) + γx(1− x)h′(x) = Lxh(x) (2.10)

uniformly for 0 ≤ x ≤ 1 for any h ∈ C2[0, 1].
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In particular, the diffusion process Xt is generated by a following differential op-

erator who has exit boundaries at 0 and 1 [14]

Lx =
1

2
a(x)

dx

dx2
+ b(x)

d

dx
(2.11)

where a(x) = γx(1−x) and b(x) = 2x(1−x) are continuous functions on x ∈ [0, 1].

According to the Feller form we can rewrite the differential operator as

Lx =
d

m(dx)

d

s(dx)
(2.12)

where s(x)( s(dx) = s′(x)dx) and m(dx) are called scale function and speed measure

respectively [27, 45]. From (2.8) we can write the scale and speed measure as

s(x) =
1− e−γx

γ
and m(dx) =

eγx

x(1− x)
dx (2.13)

where s′(0) = 1. At silent sites we set γ = 0, thus s(x) = x and m(dx) = 1
x(1−x)

dx.

Suppose that the diffusion process Xt has a smooth symmetric transition density

p(t, x, y) = p(t, y, x) [49] with respect to m(dx) such that

∫ 1

0

p(t, x, y)m(dy) = 1 (2.14)

We define that

B01 = {f ∈ C[0, 1] : f(0) = f(1) = 0} (2.15)
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where C[0, 1] defines a collection of continuous functions on [0, 1]. For h(x) ∈

C2(0, 1) ∩B01 and any functions f ∈ C[0, 1], by Strum-Liouville theorem [11]

Lxh(x) = −f(x) for 0 < x < 1 (2.16)

has an unique solution

h(x) =

∫ 1

0

G(x, y)f(y)m(dy) (2.17)

where G(x, y) is a Green function, given by

G(x, y) =
(s(1)− s(x ∨ y))(s(x ∧ y)− s(0))

s(1)− s(0)
(2.18)

and satisfying ∫ 1

0

∫ 1

0

G(x, y)2m(dx)m(dy) <∞. (2.19)

It implies that G(x, y) is a Hilbert-Schmidt kernel on L2(0, 1) with respect to m(dy)[2,

38]. Thus there exists a complete orthonromal system of functions {αn(x)}(eigenfunctions)

in L2(0, 1) ∩ C2(0, 1) ∩B01 and {λn}(eigenvalues), 0 < λ1 ≤ λn ↑ ∞ such that

∫ 1

0

G(x, y)αn(y)m(dy) =
αn(x)

λn
(2.20)

where we assume αn(0) = αn(1) = 0, and
∑∞

n=1
1
λ2n

< ∞. The equation (2.20) is

equivalent to

Lxαn(x) = −λnαn(x) (2.21)
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By Mercer’s theorem[38]

G(x, y) =
∞∑
n=1

αn(x)αn(y)

λn
(2.22)

converges absolutely and uniformly for 0 ≤ x, y ≤ 1, and

p(t, x, y) =
∞∑
n=1

e−λntαn(x)αn(y) (2.23)

converges uniformly for 0 ≤ x, y ≤ 1 and t ≥ a > 0. Hence

∂

∂t
p(t, x, y) = Lxp(t, x, y) t > 0, 0 < x, y < 1 (2.24)

For f(x) ∈ C[0, 1] and f(0) = f(1) = 0 we define

u(x, t) =

∫ 1

0

p(t, x, y)f(y)m(dy) (2.25)

and it can be solved by a parabolic partial differential equation(PDE)[2]

∂

∂t
u(x, t) = Lxu(x, t) u(x, 0) = f(x). (2.26)

Define

Qtf(x) = Ex(f(Xt)) =

∫ 1

0

p(t, x, y)f(y)m(dy) (2.27)

16



for f ∈ B01. That is Qt is a mapping from B01 → B01 and

|Qtf(x)| ≤ Ce−λ1t||f || (2.28)

where ||f || = sup0≤y≤1 |f(y)|[2, 14, 27]. Then Qt is a strongly-continuous and linear

semi-group operator on B01.

On Banach space B, Qt has a infinitesimal generator A which is a linear operator

defined by Ah(x) = f(x) on domain D(A) [13, 27, 45]

D(A) =
{
h ∈ B : lim

t→0
||(1/t)(Qth− h)− f || = 0 for some f ∈ B

}
(2.29)

where ||.|| defines the norm in the Banach space, and D(A) is dense in B. Referring

to (2.28) D(A) is the range of resolvent operator

R0f(x) =

∫ ∞
0

Qtf(x)dt =

∫ 1

0

G(x, y)f(y)m(dy) (2.30)

hence D(A) = R0(B01).

Define BC = {f ∈ B01|f(x) = 0 for some a > 0, x ∈ [0, a] ∪ [1 − a, 1]} , then

C = R0(Bc) is a core for A[45]. Then for all h ∈ R0(Bc) (2.10) holds[2]. Thus by

Trotter theorem [45]:

Theorem 3. For Xt and Y N
j as above and iN = [Nx],

lim
N→∞

EiN
(
f(Y N

N2t)
)

= Ex(f(Xt)) = Qtf(x) (2.31)
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uniformly for 0 ≤ x ≤ 1 for any f ∈ B01 with f(0) = f(1) = 0. The convergence is

also uniform for 0 ≤ t ≤ T for any T > 0.

Thus the Markov chains {X0,m,k} and {X1,n,j,k} converge in distribution to the

diffusion process {Xt} with the infinitesimal generator (2.11) and scale and speed

measure (2.12).

In an equilibrium case we need to find the limiting probability of fixation before the

extinction of mutations. We define hN(i) = PiN (TNN < TN0 ), in which TNk = min{j :

XN
j = k}, minimum time for Markov chain XN

j to reach the state k starting at state

i, is defined as hitting time of the Markov chain XN
j and TNa = min{t : Xt = a} as

the hitting time of the diffusion process {Xt}. With transition function pN(i, j) from

(2.5) and the classical Gambler’s Ruin problem[35] we have

Lemma 4. Let iN be integers with 0 ≤ iN ≤ N and iN
N
→ x for some x, 0 ≤ x ≤ 1.

Then

lim
N→∞

PiN (TNN < TN0 ) = Px(T1 < T0) =
s(x)− s(0)

s(1)− s(0)
=
s(x)

s(1)
(2.32)

s(x) is the scale function, and if iN = [Nx], the convergence is uniform for x,0 ≤

x ≤ 1.

A stronger version of Lemma 4 is to consider the “local limit” when iN
N

approaches

0 or 1. That is

Lemma 5. Let iN be integers with 1 ≤ iN ≤ N and xN = iN
N

. Then

lim
N→∞

PiN (TNN < TN0 )

s(xN)/s(1)
= 1. (2.33)
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Similarly, if 0 ≤ iN ≤ N − 1 and xN = iN
N

, then

lim
N→∞

1− PiN (TNN < TN0 )

(s(1)− s(xN))/s(1)
= 1. (2.34)

When xN → 0 (2.34) holds uniformly for 0 ≤ x ≤ 1, and similarly (2.33) holds

uniformly if xN → 1.

2.4 Dual Markov Chains and Time-Dependent PRF Model

At the build-up of the Moran model and diffusion process approximation, a new

mutation starts at 1
N
→ 0, most of which will immediately die out at diffusion time

scale. This causes the singularity of the diffusion process {Xt} at x = 0. To avoid

dealing with this singularity we work with a dual Markov chain and a dual diffusion

process[29]. We define a dual Markov chain {X̃N
k } as {XN

k |TNN < TN0 }. That is {X̃N
k }

is the number of mutant nucleotides at time k conditional on fixation of this mutation

rather than extinction. Thus {X̃N
k } is a Markov chain on S̃N = {1, 2, .., N} which

will never attains X̃N
k = 0 and N is the absorbing boundary, with transition function

qN(i, j) = Pi(X
N
1 = j|TNN < TN0 ) =

1

hN(i)
pN(i, j)hN(j) (2.35)

where hN(i) = Pi(T
N
N < TN0 ) and Pi means conditional on XN

0 = i.

Similar to the diffusion process from last section we define Ỹ N
j =

X̃N
j

N
so that

0 < Ỹ N
j ≤ 1 and a corresponding diffusion approximation can be obtained as follows.
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For integer iN ∈ S̃N and any δ ≥ 0,

lim
N→∞

N2ẼiN

(
Ỹ N

1 − xN
)

= γx(1− x)
1 + e−γx

1− e−γx

lim
N→∞

N2ẼiN

(
(Ỹ N

1 − xN)2
)

= 2x(1− x)

lim
N→∞

N2ẼiN

(
|Ỹ N

1 − xN |2+δ
)

= 0

(2.36)

converge uniformly in x for iN = min([Nx]+1) [2]. By Taylor’s theorem we can again

show that

lim
N→∞

N2ẼiN

(
h(Ỹ N

1 )− h(xN)
)

= x(1− x)h′′(x) + γx(1− x)
1 + e−γx

1− e−γx
h′(x)

= L̃xh(x)

(2.37)

uniformly for 0 ≤ x ≤ 1 for any h ∈ C2[0, 1].

The operator L̃x can be written in the Feller form as

L̃x =
d

m̃(dx)

d

s̃(dx)
(2.38)

with scale and speed measure as:

s̃(x) = − 1

s(x)
and m̃(dx) = (s(x))2m(dx) (2.39)

with the transition density q(t, x, y).

Since limx→0 s̃(x) = ∞ and
∫ 1/2

0
|s̃(x)|m̃(dx) < ∞ the boundary point 0 is an

entrance boundary for X̃t generated by L̃x and 1 is an exit boundary [14, 27].
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We define

B1 = {f ∈ C[0, 1] : f(1) = 0} (2.40)

and the Green function associated with L̃x by

G̃(x, y) =
G(x, y)

s(x), s(y)
(2.41)

Similar to the diffusion process Xt, we have

∫ 1

0

∫ 1

0

G̃(x, y)2m̃(dx)m̃(dy) =

∫ 1

0

∫ 1

0

G(x, y)2m(dx)m(dy) <∞. (2.42)

where G̃(x, y) is the kernel of Hibert–Schmidt with respect to m̃(dx). Applying the

same eigenfunction αn(x) and eigenvalues λn we have

∫ 1

0

G̃(x, y)α̃n(y)m̃(dy) =
1

s(x)

∫ 1

0

G(x, y)s(y)α̃n(y)m(dy) =
α̃n(x)

λn
(2.43)

where α̃n(x) = αn(x)
s(x)

.

Hence

G̃(x, y) =
∞∑
n=1

α̃n(x)α̃n(y)

λn
=

G(x, y)

s(x)s(y)
(2.44)

and

q(t, x, y) =
∞∑
n=1

e−λntα̃n(x)α̃n(y) =
p(t, x, y)

s(x)s(y)
(2.45)
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Define

Q̃tf(x) = Ẽxf(X̃t) =

∫ 1

0

q(t, x, y)f(y)m̃(dy) (2.46)

then the operator Q̃t has |Q̃tf(x)| ≤ Ce−λ1t||f || and forms a strongly continuous

semigroup on B1. There exists some h(x) such that h ∈ D(Ã) = R̃0(B1) but h 6∈

C1[0, 1] where R̃0f(x) =
∫∞

0
Q̃tf(x)dt =

∫ 1

0
g̃(x, y)f(y)m̃(dy). We define BC = {f ∈

B1|f(x) = b for x ∈ [0, a] ∪ [1 − a, 1] for some a, b > 0}, then (2.37)holds for h ∈

R̃0(Bc) [2]. Again by Trotter’s theorem:

Theorem 6. For X̃t and Ỹ N
j as above and iN/N →∞,

lim
N→∞

ẼiN

(
f(Ỹ N

N2t)
)

= Ẽx(f(X̃t)) = Q̃tf(x) (2.47)

for 0 ≤ x ≤ 1 and any f ∈ B1 with f(1) = 0. The convergence is uniform if

iN = min([Nx] + 1, 1) for 0 ≤ t ≤ T and T > 0.

The two main results in the limiting PRF on (0, 1) describing the distribution of

site polymorphisms and limiting expected number of mutations due to fixation are

stated as follows[2].

Theorem 7. Assume that NσN → γ, NθN → θ,kN → k and that Nk(i) defined in

(2.6) satisfies ωNj = E(N0(j)). Then for Qtf(x)

lim
N→∞

E

(
N∑
i=1

f(
i

N
)NkN (i)

)
=

∫ 1

0

Qtf(x)v(dx) + θ

∫ 1

0

s(1)− s(x)

s(1)− s(0)
(f(x)−Qtf(x))m(dx)

(2.48)
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for any f ∈ C[0, 1] with f(0) = f(1) = 0 such that g(x) = f(x)/x for x > 0 extends

to a continuous function on [0, 1].

Here v(dx) is assumed to be a Borel measure on (0, 1) such that
∫ 1

0
xv(dx) < ∞

and

lim
N→∞

N−1∑
j=1

g(
j

N
)
j

N
ωNj =

∫ 1

0

g(y)yv(dy) (2.49)

for all g ∈ C[0, 1].

Mean density of limiting PRF in (2.48) is g(t, θ, γ, y)m(dy) such that

g(t, θ, γ, y) =

∫ 1

0

p(t, x, y)v(dx)+

θ
s(1)− s(y)

s(1)− s(0)
− θ

∫ 1

0

s(1)− s(x)

s(1)− s(0)
p(t, x, y)m(dx)

(2.50)

where v(dx) is an equilibrium mean density with

v(dx) = θ
s(1)− s(x)

s(1)− s(0)
m(dx) =

s(1)− s(x)

x(1− x)

θeγx

s(1)
dx (2.51)

Theorem 8. Under the condition of Theorem 7, the asymptotic expected number of

mutant sites that have become fixed at mutant nucleotides by time t in the population
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is

lim
N→∞

EiN(Nkn(N)) =
N−1∑
j=1

ωNi p
k
N(j,N) + µn

k∑
j=1

pk−jN (1, N)

=

∫ 1

0

Px(T1 ≤ t)v(dx) +
θ

s(1)

∫ t

0

P̃0(T1 ≤ u)du

=
1

s(1)

(∫ 1

0

s(x)v(dx)−
∫ 1

0

∫ 1

0

p(t, x, y)s(y)m(dy)v(dx)

+θt− θ
∫ 1

0

∫ 1

0

q(u, 0+, y)s(y)2m(dy)du

)

where T1 = min{t : Xt = 1} is the hitting time when the diffusion process {Xt}

reached the right exit boundary[2].

For all three equations (2.48), (2.50) and (2.52), the first terms on the right-hand

sides are due to initial polymorphic at time t = 0 and the rests are subject to new

mutations after time t > 0.
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CHAPTER 3

TIME-DEPENDENT RANDOM EFFECT PRF MODEL

3.1 DOHRS Table

Suppose that we have random samples from two closely related species. For ex-

ample, m+n sets of aligned DNA sequences are acquired from two species. Without

loss of generality, we assume that m sets are from the first species and the second

species contributes n sets. The infinite sites assumption guarantees that mutations

are so rare that it can only occur once at a nucleotide site. We also assume that there

is one of two types of alleles at each nucleotide sites, mutant type or wild type.

McDonald and Kreitman first proposed a 2 × 2 contingency table, also called

DPRS table to describe numbers of fixed differences and polymorphisms at silent or

replacement sites in a joint alignment[32]. Specifically in the following table

Fixed Differences Polymorphisms

(D) (P)

Silent (S) Ks Vs

Replacement (R) Kr Vr

Table 3.1: DPRS Table
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Ks and Kr represent numbers of silent and replacement fixed differences between

two species, and Vs and Vr are silent and replacement polymorphisms within one or

two species. Here fixed differences are defined as sites that have same allele types

within each species but different between species and polymorphisms are sites that

are polymorphic within one or two species.

In the time-dependent PRF model, an ancestral species with population size N is

assumed to diverge into two species at a time point in the past and the two daughter

populations have the same size N . The polymorphisms within one species can possi-

bly come from either legacy polymorphism or new mutation polymorphism. Here new

mutation polymorphism comes from nucleotide mutation that occurs after the diver-

gence and legacy polymorphism is caused by the initial polymorphisms that already

exist in the ancestor population at the time of divergence. New mutation polymor-

phism is assumed to be observable only within one daughter species while legacy

polymorphism may be shared between two species. Therefore polymorphisms appear

in both daughter populations are mainly due to legacy polymorphisms. Under this

setting, the 2× 2 DPRS table is extended to 2× 3 contingency table, called DOHRS

table, which divides the polymorphism into two columns accordingly. Similar to pre-

vious notations, Ks and Kr represent total number of silent and replacement fixed

differences between two species, Os and Or are numbers of sites that are polymorphic

in only one species, and Hs and Hr are numbers of sites that are polymorphic in both

species
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Fixed Differences New Polymorphism Legacy Polymorphisms
(D) (O) (H)

Silent(S) Ks Os Hs

Replacement(R) Kr Or Hr

Table 3.2: DOHRS Table

3.2 Sample Configuration Formulas

The six counts (Ks Os Hs Kr Or Hr) in the DOHRS table are independent Pois-

son random variables and their means depend on a set of parameters β(tdiv, θ, γ).

Assuming that both species have the same effect population size N , the tdiv is the

scaled diffusion time since the divergence of the species. In other words, the ancestor

of these two species diverged tdivN
2 generations ago. We also assume that the two

daughter population share same mutation rate θ and selection coefficient γ, with θs

representing silent mutation rate and θr for replacement mutation rate. In the previ-

ously developed time-dependent PRF model, all replacement mutations happened at

nucleotide sites within a genetic locus are assumed to have a constant selection coef-

ficient γ and such γ varies from locus to locus. In this dissertation, we removed this

biologically unrealistic assumption by treating the selective effect of nonsynonymous

mutations in a gene as a random sample from some underlying distribution. The de-

tail of the model is presented in the next section, Given that PRF models use aligned

DNA sequences from two species as input data, the theoretical results presented in

Chapter 2 need to be incorporated into corresponding sample configuration formulas.

In a sample fixed difference sites are due to the fixation of a mutant type at a given

locus or draws from polymorphic sites that by chance form a set of monomorphic
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nucleotides. Sites that are polymorphic only in one species are sampled from either

legacy polymorphic sites or new mutation sites and polymorphic sites shared by both

species are outcomes of legacy polymorphisms.

At a given legacy polymorphic site, let x be the population frequency of a mutant

nucleotide at time t = 0. In a random sample of n sequenced genes from a single

daughter population let I(x, n) to be the probability that the site is monomorphic in

the sample for the wild type(nonmutant type), J(x, n) be the probability that the site

is polymorphic in the sample and K(x, n) the probability that site is monomorphic

in the sample for the mutant nucleotide. Then these probabilities are given by:

I(x, n) = Px(T0 ≤ t) +

∫ 1

0

p(t, x, y)(1− y)nm(dy)

= 1− s(x)

s(1)
−
∫ 1

0

p(t, x, y)

(
1− (1− y)n − s(y)

s(1)

)
m(dy)

K(x, n) = Px(T1 ≤ t) +

∫ 1

0

p(t, x, y)ynm(dy)

=
s(x)

s(1)
−
∫ 1

0

p(t, x, y)

(
yn − s(y)

s(1)

)
m(dy)

J(x, n) =

∫ 1

0

p(t, x, y) (1− yn −−(1− y)n)m(dy)

(3.1)

At a time t > 0, let C1 be the number of legacy polymorphic sites that are fixed

differences in the sample, C2 is the number of legacy polymorphic sites that are

polymorphic in only one species and C3 is the number of legacy polymorphic sites

that are polymorphic in both samples and specifically, they are
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C1(β) =

∫ 1

0

(I(x,m)K(x, n) + I(x, n)K(x,m)) v(dx)

C2(β) =

∫ 1

0

(J(x,m)(K(x, n) + I(x, n)) + J(x, n)(K(x,m) + I(x,m))) v(dx)

=

∫ 1

0

(J(x,m) + J(x, n)− 2J(x,m)J(x, n)) v(dx)

C3(β) =

∫ 1

0

(J(x,m)J(x, n)) v(dx)

(3.2)

where m, n are counts of aligned DNA sequences from two daughter population and

v(dx) = θ
s(1)− s(x)

s(1)− s(0)
m(dx). (3.3)

Suppose that a new nucleotide mutation in a population has population frequency

of y. For n chromosomes from that population, then yn is the probability that the

sample is monomorphic of mutant type, (1 − y)n is the probability that the sample

is monomorphic of wild type and the probability that the sample is polymorphic is

1− yn − (1− y)n.

Given a constant γ within each genetic locus, the expected values of the six entries

of the DOHRS table are given by:

E(K) =
θ

s(1)
Λ1(γ, t,m, n) (3.4)

E(O) =
θ

s(1)
Λ2(γ, t,m, n) (3.5)

E(H) =
θ

s(1)
Λ3(γ, t,m, n) (3.6)
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where

Λ1(γ, t,m, n) =

∫ 1

0

{[I(x,m)K(x, n) + I(x, n)K(x,m) + xn + xm]

−
∫ 1

0

(xn + xm)p(t, x, y)m(dy)}[s(1)− s(x)]m(dx)

+ 2(t−
∫ t

0

P̃0(T1 ≤ u)du)

(3.7)

Λ2(γ, t,m, n) =

∫ 1

0

{[J(x,m) + J(x, n)− 2J(x,m)J(x, n)+

2− xn − xm − (1− x)n − (1− x)m]

−
∫ 1

0

(2− yn − ym − (1− y)n − (1− y)m)p(t, x, y)m(dy)}

[s(1)− s(x)]m(dx)

(3.8)

Λ3(γ, t,m, n) =

∫ 1

0

J(x,m)J(x, n)[s(1)− s(x)]m(dx) (3.9)

3.3 Random Effect Bayesian Model

The fixed-effect model assumes that the within-locus selection coefficient γi, at

locus i, is a constant and follows a normal distribution N(µr, σb). It is biologically

unrealistic to employ an constant selection coefficient to all new mutations that could

possibly become fixed or polymorphic at a genetic locus. Here we propose a random

effect model by assuming within-locus selection y is also normally distributed with

mean γi and a global variance σw. Without changing the original setting the mean γi
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varies across loci as a normal N(µγ, σb) in which both parameters are considered to be

global parameters. The expected values of the counts due to replacement mutations

become conditional expectations, such as E(Kr|γi, σw) = θ
S(1)

Λ1(y|γi), E(Or|γi, σw) =

θ
S(1)

Λ2(y|γi) and E(Hr|γi, σw) = θ
S(1)

Λ3(y|γi). Given that E(Kr) = E[E(Kr|γi)], we

calculate the expected numbers of replacement polymorphisms and fixed differences

as

E(Kr) =

∫ +∞

−∞
E(Ky|γi)N(γi, σw)dy

=
θr
s(1)

∫ +∞

−∞
Λ1(y, t,m, n)N(γi, σw)dy =

θr
s(1)

Λ?
1(γi, t,m, n)

E(Hr) =

∫ +∞

−∞
E(Hy|γi)N(γi, σw)dy

=
θr
s(1)

∫ +∞

−∞
Λ2(y, t,m, n)N(γi, σw)dy =

θr
s(1)

Λ?
2(γi, t,m, n)

E(Or) =

∫ +∞

−∞
E(Oy|γi)N(γi, σw)dy

=
θr
s(1)

∫ +∞

−∞
Λ3(y, t,m, n)N(γi, σw)dy =

θr
s(1)

Λ?
3(γi, t,m, n)

(3.10)

Next, we develop a hierarchical Bayesian framework to the time-dependent random

effect PRF model to make statistical inference about divergence and selection between

two related species. In contrast to maximum likelihood estimation (MLE), Bayesian

method shares information from all loci and hence becomes desirable for multilocus

analysis. Although most parameters are governed by information from each individual
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locus, species divergence time tdiv,mean selection coefficient µγ, between loci variance

σb and within locus variance σw are “global” parameters that make use of information

from all loci.

For computational convenience we use conjugate priors for parameter and propose

the prior distributions:

θs ∼ Γ(αs, βs)

θr ∼ Γ(αr, βr)

tdiv ∼ U(0, tmax)

(µγ, σb) ∼ NG(µ, σ2|µ0, n0, α0, β0)

σw ∼ U(0, σMax)

(3.11)

where NG(µ, σ2) is the inverse-gamma-normal conjugate prior The full likelihood

function becomes:

L(µr, σ
2
b , σ

2
w, tdiv, Ks, Kr, Os, Or, Hs, Hr)

=
N∏
i=1

{
φ(γi|µγ, σb)Γ(θs,i|αs, βs)Γ(θr,i|αr, βr)

× Poi1(θs,i, 0, 0, tdiv, Ks,i,mi, ni)Poi2(θs,i, 0, 0, tdiv, Os,i,mi, ni)

× Poi3(θs,i, 0, 0, tdiv, Hs,i,mi, ni)Poi1(θr,i, γi, σw, tdiv, Kr,i,mi, ni)

× Poi2(θr,i, γi, σw, tdiv, Or,i,mi, ni)Poi3(θr,i, γi, σw, tdiv, Hr,i,mi, ni)

}
× Γ(

1

σ2
b

|α0, β0)φ(µγ|µ0,
σb√
n0

)U(tdiv|0, tmax)U(σb|0, σwmax)

(3.12)
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Due to the complexity of the full likelihood function, it is impossible to handle the

question by using one-layer Markov chain Monte Carlo(MCMC) simulation technique.

A multi-level MCMC simulation updating strategy was proposed by Bustamante

et al. [8]. The trajectories of parameters in each iteration were updated by two

types of sampling methods. First is the Metroplis-Hasting method. It compares a

likelihood ratio of posterior probabilities that are evaluated by a proposed value of

a parameter drawn from a given distribution and the current value, and accept the

proposed value if the ratio is greater than a random number from [0, 1][26, 34]. If

the full conditional posterior distribution is a known distribution, the Gibbs sampler

can directly sample a new value of a parameter from that distribution[21]. It can

be shown that the Gibbs sampler is a special case of the Metroplis-Hasting method

in which the likelihood ratio is always 100%. Given priors and full likelihood, θs,i,

θr,i and hyperparameter (µγ, γb) are updated by the Gibbs sampling, and σw, tdiv,

γi are updated by the Metroplis-Hasting method. To implement this model, the

“uninformative” prior parameters were applied to impose minimum amount of “prior”

knowledge( or artificial assumptions) on the unknown parameters. In our case, we

set α0 = β0 = αs = βs = αr = βr = 0.001, n0 = 1, and tmax = 100, σmax = 10. Our

updating strategies are listed below.

Updating γi

In the full likelihood expression (3.12) there are one normal density and three

Poisson mass functions involve the parameters γi and hence its condition dis-
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tribution given other parameters is

πγi(.) = C1{φ(σi|µγ, σ2
b )Poi1(θr,i, γi, Kr,i)Poi2(θr,i, γi, Or,i)Poi3(θr,i, γi, Hr,i)

= C2{φ(σi|µγ, σ2
b )exp(−θr,iΛ?

i (γ, tdiv))Λ
?
1i(γ, tdiv)

Kr,iΛ?
2i(γ, tdiv)

Or,iΛ?
3i(γ, tdiv)

Hr,i

(3.13)

where Λ?
i (γ, tdiv) = Λ?

1i(γ, tdiv) + Λ?
2i(γ, tdiv) + Λ?

3i(γ, tdiv)

We update γi at each loci by a random-walk Metropolis algorithm. At each time

step t we propose a new γ
′
i by uniformly picking a value in (γi,t − hγ, γi,t + hγ),

hγ = 6 in our case. We accept this value as a new γi value with probability

min{1, πi(γ
′
i)

πi(γi,t)
}, or otherwise keep the original value unchanged.

Updating θs,i and θr,i

Th conditional distributions of θs,i and θr,i given other parameters have closed

formulas of gamma distribution and hence Gibbs sampler can be used to draw

next step state

θs,i ≈ Γ(αs +Ks,i +Os,i +Hs,i, βs + Λ?(0, tdiv))

θr,i ≈ Γ(αr +Kr,i +Or,i +Hr,i, βr + Λ?(γi, tdiv)).

(3.14)

Updating tdiv

All Poisson terms and the prior U(tdiv|0, tmax) in the full likelihood contain tdiv
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and hence the conditional distribution of tdiv can be written as

πt(.) =C1U(t|0, tmax)
N∏
i=1

{Poi1(θs,i, 0, Ks,i)Poi2(θs,i, 0, Os,i)

Poi3(θs,i, 0, Hs,i)Poi1(θr,i, γi, Kr,i)

Poi2(θr,i, γi, Or,i)Poi3(θr,i, γi, Hr,i)}

(3.15)

with the ith factor in the product is given by

C1iexp[−(θs,iΛ(0, t) + θr,iΛ(γi, t))]

Λ1i(γ, tdiv)
Kr,iΛ2i(γ, tdiv)

Or,iΛ3i(γ, tdiv)
Hr,i

Λ1i(0, tdiv)
Ks,iΛ2i(0, tdiv)

Os,iΛ3i(0, tdiv)
Hs,i

(3.16)

A newly proposed t′div is drawn uniformly from (tdiv,t − ht, tdiv,t + ht) with ht =

0.7. Similar to the updating procedure as γi we will accept t′div based on the

likelihood ratio.

Updating µγ and σb

We update µγ and σb from an inverse-gamma-normal distribtuion by first sam-

pling σb from

1

σ2
b

≈ Γ(αa +
N

2
, βa +

1

2

N∑
i=1

(γi − γ̄)2 +
Nn0( 1

N

∑N
i=1 γi − µ0)

2(n0 +N)
) (3.17)
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and then sampling µγ from

µγ ≈ N(
n0µ0 +

∑N
i=1 γi

n0 +N
,

σ2
b

n0 +N
) (3.18)

Updating σw

Similar to the situation of γi and tdiv there is no known conditional distribution

for σw, and it has to be updated by Random-Walk Metropolis algorithm. We

set a step hs = 0.7 and sample based on following distribution

πσw =
N∏
i=1

{
Poi1(θr,i, γi, σw, tdiv, Kr,i,mi, ni)× Poi2(θr,i, γi, σw, tdiv, Or,i,mi, ni)

× Poi3(θr,i, γi, σw, tdiv, Hr,i,mi, ni)× U(σw|0, σmax)
}
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3.4 N-ADAM-Mixing MCMC Sampler

Our initial practice using above method was proven to be unsuccessful in such a

way that either the MCMC chain did not converge or converged extremely slow. The

reason is that each of the three parameters (µγ, σb, σw) has a high autocorrelation

and it is evidenced by poor mixing behavior of the chain shown in related trace plots

and aotucorrelation function(ACF). Such high autocorrelations make proposal values

rely heavily on previous values and hence the Markov chain moves slowly through

entire parameter space, which causes a slow convergence to true target posterior

distribution.

One solution is to run the MCMC simulation as long as we can since the chain will

eventually converge as the iteration t→∞. However, without an explicit estimation

this “long enough time” blurs the run time of the MCMC to “infinite”, and we have

only limited amount of time. A more approachable way is to improve the proposal

distribution. Usually a low acceptance rate indicates poor mixing and most draws do

not satisfy the target posterior distribution. One cause is that Metropolis sampling

steps are too large which decrease probabilities of drawing a acceptable value from the

parameter space. Another source is sampling in wrong directions or from a restricted

region of entire parameter space. Improving the proposal scale or direction or both

can increase the chance that a new draw from proposal distribution will be accepted.

Some proposal strategies, such as reparameterization and other adaptive methods[22],

have been experimented , but most of which are lack of either rescaling or redirecting

proposal distributions.
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Haario et al. [24] proposed a adaptive Metropolis(AM) algorithm to tune both

step size and spatial orientation of the proposal distribution by assuming a Gaussian

proposal distribution. Suppose that at time t a d-dimensional AM Markov chain

Xt ∈ Rd has been gone through states X0, X1, ..., Xt. The Gaussian distribution will

propose next candidate by setting current Markov chain state Xt as mean and the

covariance sdCt, where variance-covariance matrix Ct is determined by accounting all

previous states X0, X1, ..., Xt and scaling parameter sd depends on the dimension d of

the vector Xt. Gelman et al. [19] showed that sd = (2.38)2 is the optimal option for

mixing the Metropolis search if both target and proposal distributions are Gaussian,

and it should be altered later. Generally it is true but in our practice the target

density is so complicated that severely violates the Gaussian assumption. Considered

the current state (µt−1, σb,t−1, σw,t−1) the proposed values are given by


µ?

σ?b

σ?w

 ∼ N




µt−1

σb,t−1

σw,t−1

 , Ct


where Ct is

Ct =


C0 t ≤ t0

SdCov(X0, ..., Xt−1) + SdεId t ≥ t0
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The acceptance probability given by the Metropolis algorithm is

α{Xt, X
?} = min{1, π(X?)

π(Xt)
} (3.19)

where Xt is current state and X? is the proposed value.

The empirical variance-covariance matrix could be updated with a recursive algo-

rithm to reduce computational cost, such as

Ct = Cov(X1, ..., Xt) =
t− 2

t− 1
Ct−1 +

1

t− 1

{
XtX

T
t + (N − 1)X̄t−1X̄

T
t−1 − X̄tX̄

T
t

}

X̄t−1 =
1

t− 1

t−1∑
i=1

Xi X̄t =
{

(t− 1)X̄t−1 +Xt

}
/t

In an application of this method to our data set, we combine (µγ, σb, σw) as a 3D

joint distribution and update them using an empirical covariance matrix. Accordingly

we have to change the 3D density as

πjoint(.) =
N∏
i=1

{
φ(γi|µγ, σb)× Poi1(θr,i, γi, σw, tdiv, Kr,i,mi, ni)

× Poi2(θr,i, γi, σw, tdiv, Or,i,mi, ni)Poi3(θr,i, γi, σw, tdiv, Hr,i,mi, ni)

}
× U(σb|0, σmax)U(µγ|µmin, µmax)U(tdiv|0, tmax)U(σw|0, σmax)

(3.20)

For the first 50, 000 iterations, we fixed the variance-covariance matrix at C0 =(
50 0 0
0 25 0
0 0 25

)
. In our trails this method did reduce autocorrelations but the sampling
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efficiency is still low due to the high correlation among (µγ, σb, σw).

A high dimension MCMC, like our case, introduces certain significant correlations

among parameters. The searching path is then dominated by some of the parameters

due to the high correlation and will be limited to a small region of the parameter

space. For example, there are two random variables X1, X2 follow a joint normal

distribution with a variance-covariance matrix C = ( 1.5 1.4
1.4 1.5 ). Obviously they are

highly correlated. If we use C as our covariance of the Gaussian proposal distribution,

the sampling region will be a flat-needle-shape ellipse. The Metropolis sampler will

only go through the region around a 45-degree axes within an extremely narrow width,

as shown in the top panel of Figure 3.1.

Similarly, the high correlation among (µγ, σb, σw) compressed the searching path

to a narrow needle shape area, where the pinpoints region are remarkably smaller than

the middle region of the needle. Even after the AM tuning these pinpoints can hardly

be touched, and the proposal distribution will be trapped at the middle region. Such

behavior will cause a low acceptance rate due to the fact that inappropriate searching

path does not explore true area of sample space and sample draws wander around

the middle region.

Bai [4] proposed an adaptive directional Metropolis-within-Gibbs (ADMG) algo-

rithm that can adjust both random sample direction and scale “componentwisely”

with a Metropolis-within-Gibbs sampler. A singular value decomposition(SVD) is

performed on the empirical covariance matrix, and then orthonormal vectors from

SVD are used as sampling directions. Referring to “componentwisely”, this algorithm
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updates each parameter following one of the sampling directions from SVD and with

a jumping scale that is tuned based on average acceptance rates from previous 100

steps.

In our practice we adapted both AM and ADMG algorithms to develop an Adap-

tive directional Adaptive Metropolis (ADAM ) algorithm to ensure the efficiency and

convergence of our MCMC. Rather than componentwise we still update (µγ, σb, σw)

as a 3D vector.

For the previous C = ( 1.5 1.4
1.4 1.5 ), we conduct a singular value decomposition (SVD)

on this matrix which projects the two variables into an orthogonal space by

C = DΣU (3.21)

where Σ is a 2 × 2 diagonal matrix and D and U are unitary with U = DT . The

columns of U are a set of orthonormal vectors that span a vector space. Usually D

and U are regarded as rotation matrices which rotate coordinates into an orthogonal

space and Σ as a scaling matrix which describes the lengths of each axes after rotation.
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Based on the SVD,

D =

 -0.7071068 -0.7071068

-0.7071068 0.7071068



Σ =

 2.9 0

0 0.1



U = DT

(3.22)

Performing this orthogonal transformation on X1 and X2 gives us a new set of

random variables Y1 and Y2 as follows

 Y1

Y2

 = U

 X1

X2

 (3.23)

After the transformation, the proposal distribution will sample next candidates

Y ′1 and Y ′2 based on Y1 and Y2 instead of X1 and X2 along with variance-covariance

matrix Σ.  Y ′1

Y ′2

 ∼ N


 Y1

Y2

 ,Σ

 (3.24)
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Figure 3.1: Sampling Region

This method projects the original sampling region to a significantly expanded

space, and provides better chance to draw more “satisfied” candidates(bottom panel

of Figure 3.1). Thus it improves the efficiency of the proposal distribution and moves

the MCMC towards the target density more quickly.

While updating (µγ, σb, σw) we apply a δ(n)Σ as covariance matrix, where δ(n) =
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exp(2 ∗ d ∗ (δ(n)(k)− 0.3)) is a jumping scale. Here, δ(n)(k) is interpreted as 100–step

average acceptance rate at “kth” batch of iterations. We don’t have to update the

100–step average acceptance rate δ(n)(k) in every iteration. Alternatively it will be

updated for every 100 iterations, that is after “kth” 100 iterations it will be reset as

δ(n)(k) = 1
100

Σk∗100+100
n=k∗100+1αn, where αn = min{1, π(Y ?)

π(Xt)
} is the acceptance rate for each

iteration. We describe the ADAM algorithm on X = (µγ, σb, σw) as follow:

• Step 1

Perform singular value decomposition on Σt = DΣU . Set Y = UTXt where

Xt = (µt, σb,t, σw,t)

• Step 2

Sample Y ? from N {Y, δ(n)Σ}

• Step 3

Revise the transformation X? =
(
UT
)−1

Y ?

• Step 4

Calculate the acceptance rate α = min{1, πjoint(X
?)

πjoint(Xt)
}. Set Xt+1 = X? with

probability α, otherwise Xt+1 = Xt

However fixing the initial matrix at C0 =
(

50 0 0
0 25 0
0 0 25

)
still concerns us since it is

purely our guess from biological senses and all other references tell us no information

of choosing such constant matrix. Even from Bayesian perspective this process is not

safe. With all knowledge of former runs we develop a process that quantitatively ex-

hibits behaviors of each datasets. A natural implementation is to use original method
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to start the MCMC run, and then calculate variance-covariance matrix based on that.

We name the new method as N-ADAM-Mixture algorithm.

• Initial

Run the MCMC using the original method(without any adaptions) for 50, 000

and calculate the empirical covariance matrix C0.

• Fixed

Run the ADAM method for another 100, 000 iterations using the fixed covari-

ance matrix C0.

• Full Adaption

Fully adapt ADAM, update empirical covariance matrix Ct recursively for every

iteration.

3.4.1 Ergodicity

The N-ADAM-Mixture chain is essentially an ADAM chains. Because we pro-

posed a different approach to “guess” what is the best C0, but did not change the

updating strategy after that. However a ADAM chain is no longer Markovian. This

is because the empirical variance-covariance matrix uses the cumulative informa-

tion on all previous states, hence the transition kernel depends on X0, X1, ..., Xn

as P (Xn+1|X0, X1, ..., Xn) instead of just Xn .

The orthogonal transformation from Y to X is solely to expand our sampling
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region. In fact Xn+1 = U−1Y ∼ N(Xn,Σn), the empirical effects Σn can still be

viewed as from Xn to Xn+1 directly.

For a Markov chain {Xt} we define π(.) as its target probability distribution on a

state space X . Let {Pγ} be a collection of Markov chain kernels that have the same

stationary distribution π(.). Updating from Xn to Xn+1 we have

P (Xn+1|Xn,Γn, Xn−1,Γn−1, ..., X0,Γ0) = PΓn+1(x, .) for n ≥ 0 (3.25)

where Γn ∈ Y is a random index chosen at the nth step. Roberts and Rosenthal [40]

proved that

lim
n→∞

sup
A⊂X
||P (Xn ∈ A)− π(A)|| = 0

lim
n→∞

1

n
Σn
i=1g(Xi) = π(g) for all bounded g : X → R

(3.26)

given that both Diminishing(or Vanishing) Adaption condition

lim
n→∞

sup
x⊂X
||PΓn+1(X, .)− PΓn(X, .)|| = 0 in probability (3.27)

and Containment(Bounded Convergence) condition

{Mε(Xn,Γn) = inf{n ≥: ||PΓn(Xn, .)−π(x, .)|| ≤ ε}}∞n=0 is bounded in probability, ε > 0

(3.28)

hold. This theorem provides a powerful “detector” to verify whether or not Xn pre-

serves its ergodicity and hence PΓn∈Y(x, .) will converge to the stationary distribution
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π(.).

The ADAM adaption uses X0, X1, ..., Xn−1 to estimate an empirical covariance

matrix as the variance-covariance matrix for the Gaussian proposal distribution at

nth step. The amount of change made in the estimated variance-covariance matrix

at step n is only order of O( 1
n
). Our scale parameter δ(n) can be expressed as

δ(n) = C + θ(n) where C is a constant and θ(n) is an adjusting parameter at step

n. As n → ∞, both O( 1
n
) [40]and θ(n) are going to be 0[4]. It satisfies diminishing

condition.

In particular, to avoid wasting time for parameters wandering at some states that

are non-biological meaning, we defined the upper and lower boundaries for µγ ∈

[−20, 20], both σb and σw ∈ [0, 10]. Thus Haario et al. [24] claimed that empirical

covariance matrix Σn is bounded such that Γn ∈ Y is compact. Therefore X × Y is

compact and the containment condition holds[5, 39]. Hence the ergodicity holds for

N-ADAM algorithm.
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3.5 Numerical Approximation and Parallel Computing

In our diffusion approximation, the integration in the following form

∫ 1

0

f(y)p(x, y, t)m(dy) (3.29)

is a solution of a parabolic partial differential equation(PDE) with certain boundary

conditions and an initial condition

µtt(x, t) = a(x)µx(x, t) + b(x)µxx(x, t)

µ(0, t) = µ(1, t) = 0, µ(x, 0) = f(x) for 0 ≤ x ≤ 1

(3.30)

A classic Crank–Nicolson(CN) method can implicitly numerically solves this PDE

with a fixed time step ∆t on [0, t] and a fixed space step ∆x on [0, 1]. Another type of

integration which occurs multiple times in our model is
∫ 1

0
g(x)m(dx) and it can be

evaluated numerically by Gaussian-Legendre approximation with m(dx) = eγx

x(1−x)
dx

for γ ≥ 0. We can substitute g(x) eγx

x(1−x)
with f(x), and derive the solution as

∫ 1

0

f(x)x(1− x)dx =
1

2
Σn
k=1w(ξk)f(

1

2
ξk +

1

2
) (3.31)

where abscissas ξk for k = 1, 2, ..., n are roots of the Legendre polynomials Pn(x) and

corresponding weight functions w(ξk) are obtained by solving a system of equations.

To reduce the computational cost without sacrificing accuracy we set n = 10.

The most time consuming part in our calculation is to numerically evaluate a
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two-layer integration such as
∫ 1

0
µ(x, t)m(dx) which shows up frequently in those Λ

functions. Notice that the µ(x, t) satisfies the PDE (3.30). It then requires a Crank-

Nicolson method to corporate with the Gaussian-Legendre integration so that space

step xi of CN method is no longer fixed. That is, the grid mesh of CN method on x

space is not uniform any more. We have to numerically solve the PDE on xi = ξk for

k = {1, 2, ..., 10} according to the Gaussian-Legendre method. Hence a Nonuniform

grid CrankNicolson method is applied to these functions. Under this circumstance

we evaluate a two-layer function as

∫ 1

0

µ(x, t)m(dx) =
1

2
Σ10
k=1w(ξk)µ(

1

2
ξk +

1

2
, t)

eγξk

ξk(1− ξk)
(3.32)

for a time t > 0. That is, at a fixed time t we numerically solve a parabolic PDE for

10 times in order to retrieve an answer of this two-layer function.

Both Nonuniform grid CrankNicolson method and Gaussian-Legendre method are

implemented with R API, and later can be called in R.

For our random effect model, there is another type of integration needs to be

evaluated numerically. That is

E(Kr) = E[E(Kr|γi)] =
θ

S(1)

∫ +∞

−∞
Λ1(y|γi)N(y|γi, σw)dy (3.33)

where Λ1 is the Λ function derived from fixed effect model. Gauss-Hermite method

is designed to deal with integration over interval of (−∞,+∞). Let E(Kr) =
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θr
s(1)

Λ?
1(γi, σw, t) and the numerical process can be described as follow

E(Kr) =
θ

S(1)

∫ +∞

−∞
Λ1(y|γi)

1√
2πσw

e
− (y−γi)

2

2σ2w dy

Set x = y−γi
σw
∼ φ(0, 1)

since Λ1(γi + x · σw|γi) = Λ1(γi + x · σw)

⇒ θ√
2π

∫ +∞

−∞
Λ1(γi + x · σw)e−

x2i
2 dx

Set x√
2

= y

⇒ θ√
2π

∫ +∞

−∞
Λ1(γi +

√
2 · y · σw)ey

2

dy

⇒ Λ?
1(γi, σw, t) =

1√
π

∫ +∞

−∞
Λ1(γi +

√
2 · yj · σw)ey

2
j dyj

=
1√
π

10∑
j=1

Λ1(γi +
√

2 · yj · σw)w(yj)

where yj and w(yj) are abscissas and weights respectively. Similar to Gauss-Legendre

method we select 10 pairs of abscissas and weights. Same method applied to approx-

imating the values of E(Hr) and E(Or).

Multiple occurrence of these two-layer integrations and expected values from ran-

dom effect model require us to solve the PDE for over 2000 times just in one single

MCMC iteration. This computation intensity prevents us from implementing the

Bayesian framework developed in the random effect model by using MCMC simula-

tion. Because such MCMC simulation needs at least one million iterations before it

can be considered to converge and it takes over 300 days based on rough estimation.

To increase the computing speed, we have to redesign the program to suit a parallel
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computing architecture. At a given genetic locus i, estimates of functions Λ?
1,i,Λ

?
2,i,Λ

?
3,i

are independent of each other so that each function consumes an independent I/O.

All genes in our data set are also independent of each other which ensures an inde-

pendent I/O for each gene. Hence, within a single MCMC iteration function values

of Λ?
1,i,Λ

?
2,i,Λ

?
3,i at genetic locus i can be independently estimated without affecting

the same process at other locus j for i 6= j. Thus an parallel computing technique

can be implemented in our model and boosts loop speed.

Message Passing Interface (MPI) is a communication protocol to standardize the

message-passing system on parallel computers. The MPI defines syntax and semantics

of a core set of library routines[12]. Such library routines provide varieties for users

to implement message passing programs on parallel computers in Fortran and C, and

later script language such as Python, Jave etc. Implementations of MPI mostly use

a manager-worker architecture in which multiple processes(workers) are controlled

by one process(manager). Therefore, memory management and “message”(data and

functions) passing mechanism between a manager and workers are extremely useful

for most statistical users. An alternative solution which have been adapted within

statistical computation is parallel computing packages under R environment.

R[46] is an open-source programming language and software environment for sta-

tistical analysis. It provides a script-like language environment that reduce the com-

plexity for any individuals to perform statistical analysis. Through an extensive

amount of packages R can be easily extended to many complicated statistical pro-

cess. In R, packages are libraries of functions and R user can develop and distribute R
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packages at the Comprehensive R Archive Network(CRAN) under suitable licenses.

It provides options for almost every aspect of statistical studies and superb graphic

ability. However, parallel or high performance computing (HPC) is not natively sup-

ported by R environment. Several packages have been developed to compensate this

disadvantage. An early effort is Rmpi [48] which provides a low level programming

interface on MPI. Without knowing details of MPI implementations R users can ac-

cess low level MPI functions throught Rmpi functions. But it is only a wrapper of

MPI which is still too complicated to be widely used by R users. Especially, users

have to have a deep knowledge of mechanism of a manager-worker architecture to

span and manage worker processes. Simple Network of Workstations(snow) provides

wrappers of Rmpi functions. R instances on workers processes are launched through

a script (c < makeCluster()). It also supports alternative version of high-level ap-

ply() function family. snowfall package is on top of snow package, which provides

the top-level wrappers of snow functions. Snowfall grands user an simple interface to

launch a cluster computing by sfInit() function without handling R cluster objects.

For example, in a cluster provided by the Center for Applied Mathematics and Statis-

tics(CAMS) at UNLV, we can launch a R parallel computing interactive session by

sfInit(parallel=T,cpus=10,type=”MPI”). This function will form a computing group

of 11 CPUs including 1 manager and 10 workers under MPI communication protocol.

Any data that is acquired by processes on workers can be explicitly passed from man-

ager via sfExport() function. In addition, functions that will be executed on workers

are loaded on worker nodes by sfSource() function, which provides a convenient way
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to handle the worker computing by declaring a separated file including all worker

functions. Along with high-level apply() function family snowfall can automatically

distribute and execute calculation on different nodes over the cluster. For a cluster

that has machines with different calculation speed sfClusterApplyLB() can balance

this infrastructure by immediately starting a new segment on a node upon completion

of it’s previously assigned segment.

The OpenMPI is the most widely used MPI implementation these days. However,

it is not suitable to R MPI packages. Instead, we used LAMMPI implementation in

our program.

To apply a parallel computing scheme to our dates set, we construct a 91×3 table

where 91 rows represents 91 genetic loci from two species and 3 columns contains

three Λ? functions. In CAMS cluster system, we distribute 91 rows into 32 CPUs on

different four nodes through MPI interface under R environment. The total 32 CPUs

consist of one manager and 31 workers who will carry out most of the calculation.

Because all three Λ? functions rely only on three parameters: tdiv, σw and γi at the

ith locus, updates have to be made upon changes of these three parameters. To

minimums communication time between the manager and workers, we proposed the

parallel updating scheme as follow:

• Step 0 initialize the 91×3 Λ? table using the initial values proposed by random

distributions(once at the beginning of a run).

• Step 1 propose new t?div, γ
?
i , (µ?γ, σ

?
b , σ

?
w) for i = 1, 2, ..., 91
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• Step 2 Calculate a new 91 × 3 Λ? table based on the proposed γ?, replace ith

row of Λ? table if the ith proposed γ? has been accepted.

• Step 3 Given the t?div calculate a new 91 × 3 Λ? table and replace the old Λ?

table with a new Λ? table if t?div has been accepted.

• Step 4 Calculate a new 91× 3 Λ? table based on (µ?γ, σ
?
b , σ

?
w), replace the old Λ?

table with a new Λ? table if (µ?γ, σ
?
b , σ

?
w) has been accepted.

Step1∼4 are executed within the main loop body, while Step 0 is an initialization

procedure that provides some randomly chosen values to start the MCMC process.

The MCMC running information is printed to a .Rout file and can be monitored real

time. For every 50, 000 iterations all estimated parameters are saved to .rda file for

future analysis.
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CHAPTER 4

STATISTICAL INFERENCES OF DIVERGENCE AND SELECTION

4.1 Simulation Study

To test the ability of estimating divergence time accurately, we applied our model

to two simulated date sets with two extreme time. They are 4.38 for data set 1

and 0.56 for data set 2, where the divergence time are scaled in terms of diffusion

time scale. Each of the two sets are simulated to contain 30 genes with parameters

(µγ, σb, σw) taking (−6.82, 3.78, 2.56) for data set 1, and (9.15, 3.15, 2.37) for data set

2 respectively. After the first 250, 000 iterations as a burn-in period, 5, 000 samples

are taken every 400 steps to form ten sub chains. The convergence is confirmed by

trace plots (Figure 4.1 and 4.2) and Gelman–rubin diagnostic (< 1.1)[20].

For both data sets, the divergence time quickly converged to its true value with

slight variation. However, all simulated results tend to overestimate global parameters

µγ, σb and σw. For example, the magnitude of the mean selection coefficient µ̂γ is

larger than its corresponding true value, but maintains the same selective direction

in the sense that the sign of µ̂γ stays the same as the given value. Also median

estimates of σ̂w in our study are not close to their true values but 95% confidence

intervals still cover most true values. The reason is that σw is an artificial parameter

we implanted into the model to be biologically realistic, but it is lack of data support.
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It may require a longer MCMC simulation for the model to capture the true values of

σw or add more loci into the data set to supply more information about within-locus

variation.

Figure 4.1: Trace plots of data set 1
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Figure 4.2: Trace plots of data set 2

4.2 Real Data Set

The time-dependent random effect PRF model was applied to the data of Pröschel

et al. [37]. The data set consists of 91 autosomal genes in Drosophila melanogaster

which are collected from Lake Kariba, Zimbabwe. The number of alleles ranges from

7 to 12 are all from coding regions[23]. As a comparison of divergence a single highly

inbred line of Drosophila simulans is sampled from Chapel Hill, North Carolina[33].

Each of the 91 genes forms a DOHRS table consisting of Ks, Os, Hs, Kr, Or, Hr and
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total numbers of alleles from each species (n ranges from 7 to 12 and m = 1). Thus

the data can be viewed as a 91× 8 matrix.

After the first 150, 000 burn-in iterations, parameters were estimated from 10

MCMC sub chains that each had 500 samples drawn by every 400 iterations. Both

ACF and Gelman–rubin diagnostic (< 1.1) grant the convergence of the MCMC

sub chains[20]. We present our results for the four parameters µγ, σb, σw and tdiv

in terms of their means, standard errors,medians, 95% credible intervals and 6-lag

autocorrelations and list them all in Table 4.1 and Table 4.2.
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Mean S.D Median G.R. HPDI(95%) ACF
Lower Upper 1 2 3 4 5

SubChain 1 µγ -3.68 3.65 -3.81 -10.25 2.42 0.81 0.75 0.68 0.63 0.57
σbetween 6.28 1.64 6.22 3.44 9.48 0.51 0.47 0.38 0.38 0.35
σwithin 6.19 2.53 6.6 0.8 9.79 0.89 0.82 0.74 0.69 0.65
tDiv 2.7 0.11 2.69 2.48 2.9 0.08 0.04 0.03 0.06 0.03

SubChain 2 µγ -3.18 3.84 -2.71 1.01 -10.7 2.66 0.86 0.79 0.72 0.66 0.61
σbetween 6.07 1.63 6.06 1.01 3.15 9.35 0.63 0.54 0.48 0.44 0.42
σwithin 5.79 2.69 6.08 1.01 0.44 9.84 0.91 0.84 0.77 0.71 0.65
tDiv 2.69 0.11 2.69 1 2.5 2.91 -0.02 0.01 -0.09 0.06 -0.06

SubChain 3 µγ -3.3 3.77 -2.93 1 -10.27 2.51 0.87 0.79 0.74 0.69 0.63
σbetween 6.24 1.66 6.2 1 3.35 9.5 0.59 0.5 0.45 0.42 0.37
σwithin 6 2.58 6.25 1 0.93 9.84 0.91 0.84 0.78 0.71 0.65
tDiv 2.69 0.11 2.69 1 2.49 2.91 0.02 -0.01 0.01 -0.06 -0.04

SubChain 4 µγ -3.02 4.17 -2.32 1 -10.27 2.7 0.89 0.83 0.76 0.71 0.67
σbetween 5.96 1.73 5.93 1 3.07 9 0.68 0.59 0.53 0.45 0.46
σwithin 5.56 2.97 5.71 1.01 0.37 9.72 0.92 0.86 0.8 0.73 0.69
tDiv 2.69 0.11 2.68 1 2.49 2.93 -0.1 0.05 -0.04 -0.01 0.03

SubChain 5 µγ -3.63 3.91 -3.6 1 -10.82 2.52 0.87 0.79 0.74 0.7 0.64
σbetween 6.27 1.64 6.28 1 3.49 9.41 0.63 0.55 0.51 0.46 0.44
σwithin 6.1 2.71 6.57 1.01 0.57 9.84 0.92 0.85 0.79 0.75 0.69
tDiv 2.68 0.11 2.69 1 2.46 2.91 0.07 0.06 -0.08 0.01 -0.06

Table 4.1: Estimates of µγ, σb, σw and tdiv
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Mean S.D Median G.R. HPDI(95%) ACF
Lower Upper 1 2 3 4 5

SubChain 6 µγ -3.31 3.65 -3.15 1 -10.14 2.71 0.85 0.77 0.71 0.64 0.56
σbetween 6.22 1.6 6.25 1 3.38 9.25 0.59 0.53 0.46 0.43 0.39
σwithin 6.04 2.51 6.23 1 0.69 9.7 0.9 0.82 0.74 0.67 0.6
tDiv 2.69 0.11 2.68 1 2.47 2.91 -0.02 0.02 0.02 0.01 -0.01

SubChain 7 µγ -3.51 3.9 -3.76 1 -10.11 2.68 0.87 0.8 0.77 0.71 0.68
σbetween 6.27 1.75 6.29 1 3.3 9.45 0.7 0.62 0.61 0.58 0.55
σwithin 6.04 2.81 6.77 1 0.59 9.72 0.92 0.87 0.83 0.79 0.75
tDiv 2.69 0.11 2.69 1 2.49 2.89 -0.04 0.02 0.05 -0.04 -0.03

SubChain 8 µγ -4.51 3.77 -4.89 1.01 -11.04 1.79 0.85 0.76 0.69 0.65 0.59
σbetween 6.41 1.54 6.38 1 3.6 9.42 0.59 0.43 0.31 0.29 0.27
σwithin 6.7 2.34 7.17 1.01 1.79 9.87 0.89 0.81 0.74 0.68 0.63
tDiv 2.7 0.11 2.71 1 2.49 2.93 0.02 -0.02 -0.05 0.05 -0.02

SubChain 9 µγ -2.12 3.47 -1.7 1.01 -9.43 2.92 0.85 0.8 0.74 0.68 0.64
σbetween 5.86 1.6 5.72 1.01 3.35 9.24 0.57 0.51 0.53 0.42 0.4
σwithin 5.17 2.62 5.28 1.01 0.3 9.59 0.89 0.82 0.77 0.73 0.7
tDiv 2.68 0.11 2.67 1 2.46 2.91 0.04 0.01 0.05 0.05 0.01

SubChain 10 µγ -2.87 3.95 -2.81 1.01 -9.71 2.68 0.9 0.85 0.8 0.75 0.7
σbetween 5.94 1.63 6 1.01 3.27 9.09 0.66 0.56 0.52 0.47 0.47
σwithin 5.57 2.87 6.16 1.01 0.39 9.76 0.92 0.86 0.81 0.75 0.71
tDiv 2.67 0.11 2.67 1 2.48 2.89 0.05 0.03 -0.03 0.01 -0.04

Table 4.2: Estimates of µγ, σb, σw and tdiv(continued)

60



All estimates discussed below are based on the values generated from the last sub

chain. In the diffusion time scale the point estimates (median) and 95% creditable

intervals of the global parameters are mean of selection coefficients µγ = −2.81 with

(−9.71, 2.68), between-locus standard deviation σb = 6.00 with (3.27, 9.09), within-

locus standard deviation σw = 6.16 with (0.39, 9.76) and species divergence time tdiv =

2.67 with (2.48, 2.89). The mean selection coefficients µγ implies that the selection

coefficient γ at each locus tends towards negative value due to model assumption

that it is normally distributed with mean µγ. Our results support the viewpoint

that most replacement mutations are deleterious[8, 16, 17, 41, 43, 44]. However,

comparing with µγ = −5.7 estimated in Sawyer et al. [44], our estimate is only half of

that value and more lean towards so-call “mild deleterious”. The estimated median

selection coefficients and their 95% creditable intervals for the 91 genes are plotted in

Figure 4.3 and sorted in an ascending order. In the Figure 4.3, only 24 out of the 91

genes have positive selection coefficients γ. Overall, the magnitude of the selection

coefficients is small, for example, 36% of the replacement mutations have γ > −1,

76% have γ > −5, and 93% have γ > −9.
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Figure 4.3: Sorted selection coefficient γ for the 91 genes

Adapting the haploid effective population size of Ne = 0.645 million, the es-

timate of divergence time tdiv = 2.67 ± 0.11 implies that the divergence between

D.melanogaster and D.simulans happened 1.72 million year ago. It is consistent with

Amei’s estimate of tdiv = 2.61 under the time-dependent fixed effect model[3], which

suggests that in terms of divergence time estimation, the time-dependent fixed effect

model is robust to the deviation from the within-locus constant selection assump-

tion. However time-independent PRF models, either fixed effect or random effect,

62



tend to overestimate speciation time. For example, using the exact same data set,

Sawyer et al. [43, 44] estimated a divergence time of 4.46 using a fixed effect model

and 4.48 by a random effect model. This set of data also contains information with

respect to sex bias. Specifically, there are 33 male-biased genes, 28 female-biased

genes and 30 sex-unbiased genes (see details in [44]). Similar to Figure 4.3, we gen-

erate three plots of estimated selection coefficient respectively for male-biased group,

female-biased group and sex-unbiased genes and presented in Figure 4.4.
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Figure 4.4: Selection parameter γ for male-biased(left), female-biased(middle), and

sex-unbiased(right) genes

According to the Figure 4.4, new replacement mutations in sex-biased genes(male-

or female-biased) are more likely to be favorable. 30% of male- and 46% of female-

biased genes are under positive selection, and male-biased genes have shorter cred-

itable intervals. In contrast, only 16.6% of replacement mutations occurred in sex-

unbiased genes are beneficial. It substantially disagrees with the prospect that re-

placement mutations in sex-biased genes are majorly under adaptive selections[3].
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4.3 Estimation of Genetic Proportions

Assuming that within a genetic locus i, each new replacement mutation is subject

to a selection coefficient y which is normally distributed with mean γi and a variance

σw. using the 91 genes, we extend our study to infer the following for quantities

which are widely applied in the area of population genetics. They are the expected

population proportion of beneficial new replacement mutations, the expected propor-

tion of sample polymorphisms due to positive selection, the expected proportion of

fixed differences due to positive selection, and finally the mean selection coefficient

for fixed differences.

The expected population proportion of beneficial replacement mutations is given

by ∫ +∞

0

N(y|γi, σw)dy (4.1)

and our estimate gives 0.341. It is coordinated with our estimate of µγ since E(y) =

E(E(y|γi, σw)) = E(γi) = µγ. Hence, deleterious replacement mutations arise more

frequently than beneficial ones.

The expected proportion of sample polymorphisms due to positive selection is

∫ +∞
0

E(Oy +Hy|γi)N(y|γi, σw)dy∫ +∞
−∞ E(Oy +Hy|γi)N(y|γi, σw)dy

(4.2)

and we estimates this proportion as 0.533. Both deleterious and beneficial replace-

ment mutations have nearly equal chance to contribute to sample polymorphisms.
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The expected proportion of fixed differences due to positive selection is

∫ +∞
0

E(Kp)N(y|γi, σw)dy∫ +∞
−∞ E(Kp)N(y|γi, σw)dy

(4.3)

and our model gives an estimated of 0.893. Our result is slightly lower than that of

Sawyer et al. [44] where they estimated about 95% of fixed differences between the

two species are positively selected. The mean selection coefficient for fixed differences

is given by ∫ +∞

−∞
yE(Kp)N(y|γi, σw)dy. (4.4)

Our estimate of the above quantity is significantly higher than previous studies. It

was estimated in order of 10−6 in Sawyer et al. [44] and Abel [1] while our estimate

has an order of 10−5.

Summary estimates for the above mentioned genetic quantities are presented in

Table 4.3 and results are compared among the 33 male-biased, 28 female-biased genes

and 30 sex-unbiased genes. In Figure 4.5, we graphically illustrate our estimated of

mean proportion of nonsynonymous new mutations that are positively selected (N),

mean proportion of sample polymorphisms due to positive selection (S) and mean

proportion of fixed differences due to positive selection (F). Again genes are broken

down to the three groups with different sex bias. The error bars represent 95% credible

intervals.
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Figure 4.5: Comparison of the three genetic proportions

Male-biased Female-biased Unbiased All-genes
Feature expression expression expression expression
Mean γ of estimated mutational distribution -2.27 -2.17 -4.34 -2.92
Proportion of new mutations with Nes > 0 0.361 0.39 0.273 0.341
Proportion of sample polymorphisms with Nes > 0 0.567 0.571 0.459 0.533
Proportion of fixed differences with Nes > 0 0.913 0.901 0.862 0.893
Mean Nes of fixed differences 29.7 39.2 19 29.1

Table 4.3: Comparison of the three genetic proportions
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From Table 4.3 and Figure 4.5, sex-biased genes have a greater chance to en-

counter adaptive selection than unbiased genes. Female-biased genes exhibit slightly

stronger positive selection than male-biased genes in both sample polymorphisms and

fixed differences. However, the mean γ of fixed differences in female-biased genes is

39.2 which is significantly larger than 29.7 of male-unbiased genes and almost double

of the value for sex-unbiased genes. In the Table 4.3, the mutational distributions of

γ for male- and female-biased genes are almost identical (−2.27 and −2.17) and the

larger mean γ for fixed differences implies that the fixation of replacement mutations

in female-biased genes is driven by strong positive selection. The expected propor-

tion of polymorphisms due to positive selection is over 50% and our finding is quite

different from Sawyer et al. [44] estimates that beneficial mutations contribute 30%

of polymorphisms.

4.4 Conclusion

The time-independent random effect PRF has a tendency to overestimate the di-

vergence time between species[1]. To compensate the overestimation Amei and Sawyer

[2], theoretically, developed a time-dependent PRF model by explicitly building the

divergence time into the model. Later a time-dependent fixed effect PRF frame-

work with a constant within-locus selection coefficient was applied to aligned DNA

sequences of D.melanogaster and D.simulans to estimate and infer parameters[3].

However, the assumption of constant selection coefficient within a locus is artificial

and biologically unrealistic. In the dissertation we relax the constant selection as-
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sumption and develop a time-dependent random effect PFR model assuming that,

at each locus, each newly-arisen replacement mutation has a selection coefficients y

distributed normally with mean γi and variance σw. In order to make statistical in-

ference about various genetic parameters based on real data set, we applied sample

configuration formulas to a hierarchical Bayesian framework. There are two main

difficulties in the implementation of the model. One problem is the slow convergence

of the underlying Markov chain due to high correlation among parameters and high

auto-correlation within certain parameters. Another problem is the extremely long

running time of a single iteration due to numerically solving PDEs repeatedly.

We develop a new sampling method called N-ADAM-Mixing as well as a parallel

computing technique to overcome two main issues. Finally we test our model on

simulated date sets and one real data set and results are compared with estimates

from previous studies.

Although the model derived in this dissertation is more realistic than previous

ones, there are still certain restricted assumptions made in the model. For example,

we assume that both species have the same population size. However changes in

demographics such as population increase or bottleneck might alter the population

size that could shake impact on parameter estimates and confound the interpretation

of polymorphism and divergence[6, 15, 17, 28, 32]. Use of Drosophila data derived

from Africa can avoid some of the demographic complexities[23, 36, 44]. Another

assumption is that the nucleotide sites are at high level of recombination and it is

equivalent to assuming that sites are at linkage equilibrium. We model nuclotide sites
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are independent under this assumption. However, linkage inequilibrium is becoming

popular in certain regions of a gene. Further study is needed to check the robustness

of the model from departure from these assumptions.
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