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ABSTRACT
ARIMA Modelsfor Bank Failures: Prediction and Comparison
by
Fangjin Cui
Dr. Chih-Hsiang Ho, Examination Committee Chair
Professor of Mathematical Sciences
University of Nevada, Las Vegas
The number of bank failures has increased dramatically ovdashéwenty-two

years. A common notion in economics is that some banks can becontég‘todail.” Is
this still a true statement? What is the relationship, if Bejween bank sizes and bank
failures? In this thesis, the proposed modeling techniques areadpplieal bank failure
data from the FDIC. In particular, quarterly data from 1989:Q1 to ZBl@re used in
the data analysis, which includes three major parts: 1) pairbesé failure rate
comparisons using the conditional test (Przyborowski and Wilenski, 192)0);
development of the empirical recurrence rate (Ho, 2008) and theiehpecurrence
rates ratio time series; and 3) the Autoregressive Integhteiing Average (ARIMA)

model selection, validation, and forecasting for the bank failueessified by the total

assets.
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CHAPTER 1
INTRODUCTION
Since September 25, 2008, when Washington Mutual Inc., became the biggest bank
failure on record, almost 300 banks have collapsed. During the last 2 years, the number of
bank failures significantly increased compared to the previousa6s,yduring which
period only around 40 banks failed. In retrospect, the number of banke$aihas
increased dramatically over the last twenty-five years. 8879 total bank failures
since 1934, when the Federal Deposit Insurance Corporation (FDICestedtdished,
nearly 3000 occurred between 1985 and 2010. A bank fails when it can no longier cov
its obligations (liabilities) with its assets and must fie bankruptcy. The increase in
bank failures is typically accompanied by high unemployment addcesl liquidity.
Moreover, the survivors collect the market power by reducing catopetand
potentially harming consumers in the future.
To reduce the risk of bank failures, the FDIC, which guaranteed taheayirst
$100,000 deposit in full to each account if the bank failed since 1980, raesadbunt
to $250,000 temporarily during the Financial Crisis in 2008. AdditionallyCihiegress
passed the Emergency Economic Stabilization Act to assiftatileng industry during
the Financial Crisis. Thus, the United States Secretaryeofteasury spent up to $700
billion to support distressed assets from banks, which injected apualcinto the
banking system. Despite the aforementioned events, the number of bhmksfa
increased. As more and more analysts focus their attention doatikéng industry, a
widespread question emerges: Will the situation worsen in theefuturhe key point

raised is: Can we forecast bank failures in the future?



A common notion in economics is that some banks can become “too bify"tt fa
is true, then people who deposit in a relatively large bank faserigk than those who
put their money in a smaller bank. Is this still a trueest@int? What is the relationship,
if any, between bank sizes and bank failures?

In this study, the following proposed modeling techniques are applieght bank
failure data from the FDIC. First, the data of bank failured kel divided into three
groups, based on the total assets held by the banks, as follows: Group 1, banks with assets
under $300 million; Group 2, banks with between $300 million and $1 billion in assets
Group 3, banks with more than $1 billion in assets. In particular, gyadata from
1989:Q1 to 2010:Q4 are used in the data analysis, which includes threeparégorl)
pairwise bank failure rate comparisons using the conditional Brgyl{orowski and
Wilenski, 1940); 2) development of the empirical recurrence tdte 2008) and the
empirical recurrence rates ratio time series; and 3) tlier@gressive Integrated Moving
Average (ARIMA) model selection, validation, and forecasting fo bank failures
classified by the total assets.

Specifically, the fundamental tools of ARIMA are introduced in ChapteBank
data are introduced in Chapter 3. Chapter 4 illustrates the ARIddeling techniques
using the empirical recurrence rate time series convertedtfrer@roup 2 bank failures.
Pairwise bank failure rate comparisons using the conditionalatestthe empirical

recurrence rates ratio will be presented in Chapter 5. Chapter 6 concludes our work.



CHAPTER 2
FUNDAMENTAL THEORIES AND METHODS
2.1 Poisson Process
A point process is a sequence of real numfxgrs,, ... } with properties
t; <t, <-- and lim;_  t; = +x.
Generally, at time point; a certain event happens. Hence, tiie are called event times.
Frequently, the event times are of less interest than the mwhbeents, which occur in
an interval(0,t], t > 0. Let N(t) be the random variable that denotes the number of
events in the interval (0, t]. For obvious reas¢igt),t > 0} is said to be the counting

process belonging to the point procfsst,, ... }. The intensity function of the process is

- . A counting process\(t) is called a Poisson
At—0

process, if and only if it satisfies the following conditions: (D) = 0; (2) The random
variables N(a, b] and N(c, d] are independent, for any &<k d; And (3) for any a < b,
N(a, b] has the Poisson distribution with mﬁm(x)dx. If A(t) is constant ovet, the
process is referred to as a homogeneous Poisson process. Foogeheous Poisson
Processes} is treated as the rate of occurrences.
2.2 Empirical Recurrence Rate
A key parameter desired by the economists is the recurratecef failures of the

targeted bank group. LétK ,t. be the times of thé-ordered bank failures during an
observation periot, ,Q)wheret, is the time-origin and 0 is the present timeh 1§ the

time-step, a discrete time seri¢g} is generated sequentially at equidistant time



intervalsty + h, ty + 2h,...,ty + Lh,...,to + Nh (= present time). Using the empirical

recurrence rate (ERR) (Ho, 2008) as follows:

— n; _ total number of bank failures in (to,to+1h)
1 — 75 — .
lh lh

wherel = 1, 2, ...,N. z can be regarded as the observation at tifeet, +1h), for the bank

failures to be modeledNote thatz evolves over time and is simply the maximum
likelihood estimator (MLE) of the mean, if the underlying procelsserved ovet,,

t,+1h) is a homogeneous Poisson process. The time-plot of the empirical recurrence rate
(ERR-plot) offers the possibility of further insights into théaddf we have data up to
timeT, the valuez ,, k>1 needs to be predicted based on the sample observation
(z,K ,z )of an ERR time series. We will apply the ARIMA classnobdels to handle

our ERR time series because it is a process that evolvesirager ARIMA models are

introduced next.

2.3 ARIMA Models
The Autoregressive Moving Average (ARMA) model, also called Bakids model,
was introduced by Box and Jenkins (1976). The basic processes of the rikins-Je
ARMA (p,g) model may be thought of in following ways: the autoregregsioeess, and
the moving average process. The autoregressive model is analogies regression
model, based on the idea that the current value of the Xeriésitoregressive model,
(AR(p) model), which constructs the present value based on a lineaiofunttits past
values and a noise term, according to

Xt =@ X1+ -+ X + 7



X, is mean-zero stationary,,...,4, are the autoregressive coefficients foorper

process. The autoregressive operator is defined to be
P(2) =1— @12 — @y2% — - — @pzP
The other one is moving average model, (EAhodel), which describes the present
term by a linear function of its past error term and a noise term, as follow:
Xe=Z;4+601Ze 4+ +0,Z;_
The moving average operator is
0(z) =1+ 6,z + 0,2° + -+ 0,29
A sequence{Z;}, of uncorrelated random variables, each with zero mean and
variances?, is referred to as white noise. This is indicated by the notation
{Z:}~WN(0, 0?),
{X:} is an ARMA(p, q) process, ifX,} is stationary and can be written as
Xe=1Xe1 == @pXep =2+ 0,12 4+ -+ 0,72y,
where{Z;} ~WN (0,6%) and the polynomial§l — ¢,z — - — ¢,z") and (1 + 6,z +
-++ 04z7) have no common factor (Brockwell and Davis, 2002).

Thus, the general ARMA models are a combination of the AR operatatsVIA
operators. Note thaf; is a white noise sequence with zero mean and constant
variance(c?).

Autoregressive Integrated Moving Average (ARIMA) generaliZé@MA and
incorporates a wide range of nonstationary series, which are cetud&RMA processes
when differenced finite number of times. Differencing will be discuss&kation 2.4.2.

Additionally, ARIMA modeling involves three stages: model exploratestimation,
and diagnostics. The first step, model exploration, is to identifyapeopriate model

5



and the orders of model, which are normally achieved by plots ofsémeple
autocorrelation function (ACF) and sample partial autocorrelatiortitmACF). Also,
the identification can be done by fitting different possible matieictures and orders,
then using a goodness-of-fit statistic to select the best modéthws an auto fit
procedure. The second step, estimation, is to estimate the ecogffiof the model. The
maximum likelihood estimation method is used for this part. Thestaptis a diagnostic
check of the selected model. As with the linear regression madely element in this
step is to make sure that the residuals of the selected model are norndiytds Also,
all the parameters in the model are statistically sigmiticThe best model is the one that
has the fewest parameters among all models that fit thevdatdy is usually guided by
the principle of parsimony (Cryer, and Chan, 2008; Box and Jenkins, 1976; Skumw
and Stoffer, 2005).
2.4 Data Transformation

ARMA model requires that the realized date follow a statiopawgess which means
the statistical properties such as mean, variance, autocamslagic. keep constant over
time. Some mathematical transformations will be employedheéf process is not
stationary. Two common transformations that will be discussed are theifallo
2.4.1 Box-Cox Transformation

The Box-Cox procedure automatically identifies a transformation from thiéyfaf
power transformations on Y. If the variability of the data set increasgscreases over
time, the Box-Cox transformation will be employed to make the variance corigtant
transformation converts original observatidisy,, ..., Y, to £, (Y,), fH(Y3), ..., fH,(Y,),

where:



yA-1

—,A#0
L) =1 2 -

log(y),A=0

Suitable value of, will be chosen to make the variability ff(y) a constant.
2.4.2 Differencing

Differencing is a data-processing technique used to remewestror seasonal
components. In this, one simply considers the difference between paibsaiations
with appropriate time separations, such as, the first difference, whichdtedeas:

VX, =Xt — X1 = (1= B)X;,
whereB is the backward shift operator. Differencing of ordés
ViX, = (1 - B)4X, .

Furthermore, single differencing is used to remove linear trenite double differencing
is to eliminate quadratic trend. As mentioned earlier, ARIMA @sses can be reduced
to ARMA processes by differencing a time series.

The differencing technique adopted to deal with the seasonalitgrmfdd is the

lag d difference operatoV, , which is defined as:

det = Xt - Xt—d = (1_ Bd)xt.

For example, differencing at lag 4 will remove the seasoffi@ttein a quarterly time
series.
2.4.3 Subtracting the Mean

A zero-mean ARMA process is denoted as ARMA process in ITSMZBkwell
and Davis, 2002). Therefore, the sample mean of the transformed dakdrascted from

each observation, once the apparent deviations from stationarity oatthénave been



removed by differencing.
2.5 Model Diagnostics and Comparison
The AR and MA terms are determined after correcting awpcarrelation that
remains in the differenced series.
2.5.1 The Sample ACF/PACF of the Residuals

If the sample siza is large enough, the autocorrelation of residuals seq¥gnce

Y, with finite variance is approximately independent and identickdiyibuted (iid) with

distribution N(O%). Therefore, whether the observation residuals are consisténthsit

iild noise can be tested by examining the sample correlations oésltials. The null
hypothesis of iid noise will be rejected if more than two or tlogeof 40 fall outside the
bounds+1.96/4/n or if one falls far outside the bounds (Brockwell and Davis, 2002).
2.5.2 Tests for Randomness of the Residuals

A popular test, formulated by Ljung and Box (1978), called Ljung-®sk is commonly
used to check whether the residuals of a fitted ARIMA modeloaserved values of
independent and identically distributed random variables. It is eefeto as a
portmanteau test, since it is based on the autocorrelation plot asdthesoverall

independence based on a few lags. The Ljung-Box test is as follows.

H, : The sequence data are iid
H,: The sequence data are not iid

with the test statistic:

O(F) =n(n+2)3. (- k) 72,



wheref, = Za1a1 Za1 the estimated autocorrelation at lag

I=k+1
n = sample size,
m = number of lags being tested
As a rule of thumb, the sample ACF and PACF are good estimaties &CF and
PACF of a stationary process for lags up to about a third of thplsasize (Brockwell
and Davis, 2002).

After a model has been fitted to a sergs..,z,, we got the residualg,,...,a,. If

no model is being fitted, thea,,...,a, are the “mean corrected” vectors ...,z

If the sample sizen is large, the distribution dﬁ(f) 5 roughly;(ri_p_q under the null

hypothesis, wherem — p — q is the degree of freedom of the chi-square distribution,
and, p + q is the number of parameters of the fitted model. The null hypstiekibe
rejected at leveb, if § > Xlz—a;m—p—q' Consequently, the sequence data are not
independent, or their autocorrelations are significantly different fram ze
2.5.3 AIC, BIC and AICC Statistics

Another approach to model selection is the use of information argaoh as Akaike
information criterion (AIC), or the Bayesian information aib@ (BIC), which is a
Bayesian modification of the AIC statistic. The bias-correctedsion of the AIC
statistic, the AICC statistic, introduced by Akaike in 1974, npleyed in this thesis as
information criterion to select appropriate models using the ITSM2@@Bage. Each

information statistic is defined as the following,



AIC,, =Nlogs? +2r
AICC,, =Nlogé? + 2N /(N-r-1)

~2
BIC,,=Nlogo; +rlogN

whereé? is the maximum likelihood estimator @f, andr = p + g + 1 is the number
of parameters estimated in the model, including a constant ternsetbed term in all
three equations is a penalty for increasingrhus, minimizing the number of parameters
is one of the ways to minimize the values of these crit€ha.best model should be the
model that has the fewest parameters yet still sufficieshtlscribes the data. A small
value of AICC shows a good model. Nonetheless, it should be used only as rough guide.
2.6 Forecasting

The appropriate ARIMA model obtained will be used to predict futataes of the
time series from the past values. The forecasting function deienv will be chosen to
have, as follows, has the minimum mean square error.

ze = f(2y, 0, Z¢-1) + @y,

wheref (z,, ..., z;_1) is a function of the past values of the series and determindteby t
past value of data. The second partnoise part, is a sequence of independent and |
dentically distributed (iid) variables as mentioned before. Predgwill be achieved by
forecasting the residuals and then inverting the transformatidogted to arrive at

forecasts of the original series.
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CHAPTER 3
BANK DATA
Commercial bank data were compiled from the Chicago Federal Resaaliastat

(www.chicagofed.org. The report of Condition and Income data includes information

from individual commercial banks and savings associations that are regulated by t
Federal Reserve System, the Comptroller of the Currency, and the FedwsitDe
Insurance Corporation (FDIC). The data are reported and published on a quartsrly basi
The numbers of bank failures in the United States during 1989:Q1 to 2010:Q4 are
obtained from the FDIC failed bank list. Based on this list, 1821 banks were reported to

fail over the 88 quarters (Figure 3.1).

P
o=
it

1004 Ay

MNumber of bank Fatlures

1 L= n.'
POl L ol R ;
r}— u-.f e o B e S e B e L LT R e o B e e

0 ' 20 ' 40 ' 60 ' 80
Quarter

Figure3.1 Plot of the Number of Bank Failures from 1989:Q1 to 2010:Q4

The FDIC (www.fdic.goYy reports bank failures on a weekly basis, typically on a

Friday afternoon to avoid a run on bank assets. Bank failures ith#ss are drawn

11



from the FDIC bank failure reports, which list failed banks by ndowmation, charter
type, total assets, and other characteristics. Consistent witlsolient bank data,
however, we count the number of bank failures on a quarterly basis.slIrsttidy,
individual banks that failed during 1989:Q1- 2010:Q4 are divided into three gbyups
total assets level.
3.1 CPI Adjustment

In economics, the nominal level of prices of goods and services chaveyes period
of time. When the price level rises, each unit currency buysrfg@wods and services.
The purchasing power of money --- the real value in the intenealium of exchange
and unit of account in the economy changed over time. The Consumemideze(CPI)
is used to bridge nominal values to real values. The total assbemk$ reported are
measured by nominal price. To make the total assets in different time psorogdarable,

the total assets of banks are converted to the real values which are based on:

CcPI
Total Assets* = Flb x Total Assets;,

whereTotal assets; is the nominal total assets of a failed bank at timée (honth a
failure was reported);PI; is CPI at thdath month that bank failed;PI, is the CPI for
the base month (taken as September 2010 in this tHestg). Assets™ is the total assets
deflated by the CPI.

Monthly CPI data are obtained from the Federal Reserve BaBk douis Federal
Reserve Economic DatdRED) (http://research.stlouisfed.org/fred2/).

3.2 Bank Classification
The data on bank failures will be divided into three groups, based ordjtreteda

total assets held by the banks at the time they failed, @svéolGroup 1, banks with

12



assets under $300 million; Group 2, banks with assets between $300 milligil and
billion; Group 3, banks with more than $1 billion in assets. Quarterlybetsnof bank
failures for each group are retrieved from the original Failed Re&stlare summarized in
Table 3.1. Plots of the time series on the original failuresliasgrated as Figure3.2.

Plots of the time series on the original failures are illustrated asd3@

13
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CHAPTER 4
EMPIRICAL RECURRENCE RATE
4.1 ERR-Plots

Figure 4.1 shows the Empirical Recurrence Rate plot (ERR{plogach group from

1989:Q1 to the present time 2010:Q4 with time step =1 quarter.
4.2 Data Splitting

Cross-validation is the statistical practice of splittinggaanple of data into two
subsets so that the analysis is initially performed on one suldstd,the other subset is
retained for subsequent use in confirming and validating the initidysasiaThe first
subset is called training sample and is used to develop a modetdation. The second
part, called prediction set is used to evaluate reasonablenessdruivye ability of the
selected model. In this study, cross-validation is used aslditional guide for model
selection.

We will use the ITSM2000 software (Brockwell and Davis, 2002) toehtite ERR
data with time-stefn = 1 quarter. Recall that there are 88 data points for the &ntiee
series. First, we split the data into: training sample and qgiredliset. In this case, our
training sample is the original data set excluding the IdSRRs, which will form the
prediction set (Figure 4.1). These six ERR values in the predliset, representing the
most recent 6 quarters of each bank group, will be compared with dhdise six-step
predictions produced by a candidate model. Of course, the size afietipreset is quite

flexible as long as it fits a common goal of model selection.

15



F166 4 |
I |
I i
Training Sample ;
=, A2 'I'I | ‘E
(=8 b :
=] ‘-|. | g
o & 8 :
Ll_" :H:_ 'ﬁ
e ‘D | E
5 80 - o )
o TPy
5 e
I - |
40 P,
-F'__.__Crﬂﬂnfn |
e snan
| m“‘mﬂnun:u:.:nnuuumnunrmuugcng;r ,:Iu-cu—u
O o
5. . , ! : ; T ’ |
- = a6 &0 80
b. |
X |
[
. -
] B N =
a | Training Sample R
] | | :
8 o
I |
\.ﬁ -
[+
& )
L fiaa |
20 m
- |
o
P |
£ 'Eu.r,_ﬂu
N,
o & o
';‘W'Jnu‘h1n=.n:.-n:-—.-:.nn1—..unﬁ.:-u L‘l‘
OO0 O A O S i et e DT
sl |
- 5 40 & 80
& 40 A |
q' |
. |
2 i
g | Training Sampls | 5
g oA
o i :
o \ ‘ :
= _ | -:g
& 20 | L
z | &
|‘r‘ "
- 3 -]
H_pe |
-
nu__'u__
| - |
Taga
o ke =Y,
PO i o
= J'L-UJ-('-nnﬂ-:l.nr,.——nDUDﬂ::d-gnnul:lJ-u-—.—!:Al.:l-:‘-_-mnnF‘:"J"hﬂﬁc
Lag
0 : : : - - : ' =
- 5 20 &0 B0

Figure4.1 ERR Plots of Bank Failures through the Entire Time Period (Trainingpl®am
and Prediction Seta. Group 1 (Assets Less than $300 Millioh);Group 2 (Assets

between $300 Million and $1 Billion, Group 3 (Assets more than $1 Billion)

16



4.3 ARIMA Modeling for Group 2 ERRs

In this section, ARIMA modeling and computational techniques are peskémtfit
the ERRs of the training sample of Group 2 (Figure 4.1b) and to prsdigture number
of failures, which will then be compared to the prediction set. The plot of thees&Gpl
(Figure 4.2 b) show that the sample ACF is slowly decayingdltates non-stationary
behavior and seasonality. Thus differencing is applied. Since the hdataevident
nonconstant variance, we use the Box-Cox transformation to stathibzeariability.
After applying the Box-Cox transformation with= 1.5, we see the trend still exists
(Figure 4.3). Initially we take the differencing operdiaon the training sample at lag 2.
Figure 4.4 tells us the resulting series is almost stationary.

We then subtract the sample mean from each observation of themntitid series to
generate a stationary zero-mean time series (Figure fé)sdample ACF and PACF

suggest and lead to an AR(5) model. This leads to the following estimated model:

ARMA Model:

X =1.909 X1-0.1431 X»- 1.430 X3+ .5489 X4+ .1113 X5+ Z
WN Variance = .120997E+03

Standard Error of AR Coefficients

0.000240 0.000053  0.000044 0.001002 0.000668

Note that X represents zero-mean stationary time series of ERR, aedthéerm £

represents a white noise process.
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the ACF and PACF of residuals of training sample. The AICCsstais 637.718. And
the Ljung-Box test is not significanp-{alue = 0.95705) indicating that the residuals are
approximately white noise.

Table 4.1 compares the numerical values of the observed ERRedicted ERRs
and observed counts to predicted counts numbers. The predicted countsvacefoan
the predicted ERRs. The observed bank failure numbers and the predictions @aeedom

in Figure 4.6.

Table 4.1 Numerical Values of Observed ERRs, Observed Counts in the Prediction Set,
Predicted ERRs (Using AR(5)) and Corresponding Predict Counts for the Prediet,
and the Predicted ERRs Using the AR(5) with their Counterparts (the Corresponding

Values Derived from the Predicted ERRS)

_ ERR Counts
Time
Observed Predicted Observed Predicted
2009:Q3 3.325301 3.33014 12 12.40164 rounded to 12
2009:Q4 3.392857 3.39551 9 8.82122 rounded to 9
2010:Q1 3.541176 3.51463 16 13.52071 rounded to 14
2010:Q2 3.651163 3.5556 13 7.03805 rounded to 7
2010:Q3 3.781609 3.64738 15 11.54046 rounded to 12

2010:Q4 3.818182 3.63738 7 2.76738 rounded to 3
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CHAPTER 5

EMPIRICAL RECURRENCE RATES RATIO
5.1 Methodology
5.1.1 The Conditional Test
Let X; andX, be independent observations from Poissdn) (and Poisson A_)

distributions respectively. Then, the joint distributiorXefandX, is given by:

MMeT MY 12, 2e™ 2] 4,12 342
= = 1+42) —
f(xl 'xZ) [ x1! ] [ x2! ] x1!x2! € Xl 0,1,2, ."

X, =012, ..

Note that
X; + X, = S~Poisson(A, + 1,).
The well-known method of testing the difference between two Poissansme the
conditional test (Przyborowski and Wilenski, 1940). It is based on ttethat the

conditional distribution oX; givenX; + X, = S is binomial, whose success probability

is a function of the rati%z- =p.
1

The proof goes as follows. Considering the conditional distribukipgjven S =s >
0. The probability mass function of the conditional distributioXofjiven S = s is given
by:

P(X; = x1,X1 + X, = 5)
S = =
fals =s) P(X,+X; = 5)

X1 S5—X1
M7, M
x1! (S - xl)!

o) Bt 1)’
s!

e M
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S5—X1

-0 G35
X1 }\1+)\2 }\1+}\2
X1

_ (S 1)(/))5"‘13. 'l 1
= (x1) (1 s T+5 inomial (s, g p)

Letﬁ = p. Then, to test the equality of two Poisson means, is to tesbltbeihg

hypotheses:

Hy: A4 = A, versusHy: A, # A,
which is equivalent to

Hy:p = 1 versusHy: p # 1.
which is equivalent to

Hy:p =% versudd;:p # %

It can be generalized as follows:

Hy:p = py versusHy:p < po,

where0 < p, < 1. And it is equivalent to

Hy:p < pg VErsusHy: p > pg,

1-po
Po

wherep, > 0, andp, =
WhenX; = k is observed, the conditional test (C-test) rejeftsif
- kK (SY., i s—i

p-value=P(X; < k|S=5s) = i=0(i)p0 (1-po)* "' =< a,

where a is the level of significance. Of course, normal approximation can be
implemented for the above binomial test for lasge
5.1.2 Conditional Tests for Bank Failures

In this thesis, we divide the banks into three groups based on thedétatisl assets

of the banks. For each bank group, we assume that the number of bank fialliomesa
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homogeneous Poisson process with failurexafecording to the classification criterion
described in Chapter 3, Group 1 represents banks with assets underilid@p @roup
2 is banks with assets between $300 million and $1 billion; and banks in Goane
assets more than $1 billion. L&tbe the failure rate ath group of bankg, = 1,2,3. Also,
let

j

1 . .
pij:l_i andpijzrpij, 1<i<j<3.

Then a hypothesis for bank failure rates comparison between argrdwpsi and]
can be presented as follows:
Ho: pij < pij versusHy: py; > pf),
where p?j > 0, is a known reference ratio calculated from solvent bank databhixd

will described later .The corresponding C-test is then

0 0
HO: pl] > pl] VeI'SUSHl pl] < pl’ja

1
1+p?j'

where0 < p}; < 1 andp?; =

The reference ratip?]-, for each i( j) pair, is calculated by taking the average of all the
guarterly solvent commercial bank group ratios through the entire alisaerperiod.Consequently
if the failure rate ratio;;) is tested significantly higher than the historical population
ratio (o?j), thejth group yields a disproportionally higher failure rate thantthgroup.

For example, in comparing Group 1 and Group 2, the reference p@luealculated
from the solvent bank data base is 0.183689 and the corresppiigisg).844816. The
total numbers of bank failures during the entire time period are 12383&nfbr Group

1 and Group 2, respectively. Based on the C-test,
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p-value = P(X; < 12381|S = 1574)

= yi238 15k74)(0.844816)k(1 — 0.844816)15747K) =5 9482E-10

The null hypothesis is rejected, indicating that Group 1 has contiibegs than 84.48%
of the total failures, and it is statistically significarm. dther words, compared with
Group 1, banks in Group 2 are more likely to fail during the observateriod. Recall
that Group 1 includes banks with total assets below 300 millionrdoliile Group 2
has total assets between 300 million dollars and 1 billion dolfdrerefore, the result of
the above C-test implies that smaller banks have significaigher survival rate during
the observation period. Additionally, all pairwise comparisons reinfoinee above
conclusion. Table 5.1 lists the results. It seems that therstate“Too Big to Fail.” is

not supported by our data analysis during this particular observation period.

Table 5.1 Conditional Tests for Pairwise Comparisons

Group (1, 2) Group (2, 3) Group (1, 3)
Total number of failures (XX;) | (1238, 336) (336, 247) (1238, 247)
Total number of both group (s 1574 583 1485
Solvent bank ratio g;)) 0.183689 0.522247 0.093755
g 0
Solvent bank probability#;;) | g44816 0.656924 0.914282
p-value 5.9482E-10 3.21769E-05 1.7062E-23
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5.1.3 Empirical Recurrence Rates Ratio
The C-test examines the relationship of means of two homogerfeoigson
processes, which have constant expected values. Motivated by thefitlea<-test and
the Empirical Recurrence Rate developed by Ho (2008), we produdemairical
Recurrence Rates Ratio (ERRR) time series for the bank faileeredio as follows:
Lett,, t,, ..., t, be then-ordered bank failure times during an observation perid (t
to+Nh) from the past to the present. The ERRR is then defined as follows:

!
_ Zj=1X1j
Z%:l(XU"‘ij) '

dl = 1,2,...,N.

Xj;= number of failures in groupin time (b, to+jh]

wherei =1,2 andj =1,2,...,N. Then a discrete time seriesl¥ is generated
sequentially as, + h, ty + 2h,..., ty + lh,..., t, + Nh (= the present timeh presents
the time step.

Both the ERR and ERRR offer the possibility of developing a model, arowgtand
predicting bank failure rate ratios. Moreover, if both of the ei@md) processes are
homogeneous Poisson processes, then the ERRR is the maximunoditedstimator
(MLE) of p, and the MLE op can be obtained by the invariance property of the MLE.

5.2 ARIMA Modeling: All Groups
5.2.1 Training Sample Modeling; /4,

Along the same line of argument as for ERR, we apply the ARtM#s of models to
handle our ERRR time series because it is a process that evolves over tirmedEtiag
process is the same as that detailed in Chapter 4. The follonagss uses the ERRR

time series (Figure 5.1) generated from Group L J=Xd Group 2 (=X.
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Figure 5.1 ERRR-plot for Group 1 versus Group 2 from 1989:Q1 to 2010:Q4

The plots of the training sample (first 82 quarters) and its saAPF and PACF in
Figure 5.2 show nonstationarity and periodicity. Therefore, the Boxt@asformation,
and differencing will be employed to remove the trend and sedé@goisance the plot
(Figure 5.2) shows nonconstant variance, we consider the Box-Coxotraason to
stabilize the variability. After thé = 1.5 Box-Cox transformation, we see the trend still
exists (Figure 5.3). We then take the differencing opefator the training sample at lag
3. Figure 5.4 tells us the series has not reached stationarySgewe do further

differencing at lag 1.
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We then subtract the sample mean from each observation of thieeiddféd series to
generate a stationary zero-mean time series (Figure $8)sdmple ACF and PACF

suggest and indicate an AR(3) model. Therefore, our estimated model is:

ARMA Model:

Xi=.3829 X1+ .5415 X, - .7467 X3 + 4
WN Variance = .000027

Standard Error of AR Coefficients

.210673 .189058 .170469

Note thatX; represents a twice-differenced stationary mean-correictedseries and the
error termZ; represents a white noise process. The AICC statistl8.602. Also, the
Ljung-Box test is not significant with-value= 0.45713, indicating that the residuals are
approximately white noise. The plots of sample ACF/PACF ofdékiluals are shown in
Figure 5.6.

We also compare the predicted ERRRs with the actual ERRRs in the prediction
set. Figure 5.7 indicate that the model fit relatively well. Table 5.2 showsitherical

comparison among these two sets of ERRR.
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Figure5.6. Diagnostics for the AR(3) Moded, Residual plotp, Residual ACFg¢,
Residual PACF.
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Figure5.7 The Complete Data (Training Sample and Prediction Set) with Six Fa@ecast
Appended to the Training Sample for Model Validation; Inset: Comparisf Six

Forecasted ERRRs with the Prediction Set

Table 5.2 Numerical Comparison between the ERRRs (Predicted versus Observed)

Time Observed ERRR Predicted ERRR
2009:Q3 0.803278689 0.80206
2009:Q4 0.801670146 0.79822
2010:Q1 0.795377294 0.79533
2010:Q2 0.791500664 0.79152
2010:Q3 0.787055016 0.78741
2010:Q4 0.786531131 0.7837
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5.2.2 Full Data Forecasting; /1,
We next extend the ARIMA modeling to the full data set of ERBIRRes. As in the
previous case, we still take the Box-Cox transformatidn=at5, and difference at lag 3

and lag 1. The fitted model is also an AR(3) as follows.

X =.3447 X1+ .5046 X, - .7525 X3+ 7
WN Variance = .000026
Standard Error of AR Coefficients

.204349 .184433 .164831

The AICC statistic is -636.969, and the Ljung - Box statisticesfduals is not
significant, asp-value = .53327. The plots of the residuals and their sample ACF and
PACF are shown in Figure 5.8. Table 5.3 shows the 8 predicted valtles midel, for
the time period 2011:Q1 to 2012:Q4. The corresponding forecasted failio® @, /1)

are: 0.28, 0.28, 0.28, 0.29, 0.30, 0.31, 0.32, and 0.33 (Table 5.3). The overall trend of the

failure rate ratip;, = j—z Is increasing with a mean of 0.30, which is larger than the
1

reference population ratiopf, =0.183689) (Figure 5.9). In other words, Group 2
consistently contributes more than its fair share of failugkegive to Group 1 during the
forecasted period.
5.2.3 Comparisons: All Groups

We extend our data analysis to the following two pairs: Group 2 v&sug 3 and
Group 1 versus Group 3. Table 5.3 summarizes the results. Figure 5.t6 dbpi
temporal trends. All the results point to the same directiomsller banks have a

significantly and disproportionally higher survival rate than banks with langgrdssets.
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Residual ACFr, Residual PACF.
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Table 5.3 Numerical Values of the Predicted ERRRs of 2011:Q1 to 2012:Q4 of Group (1, 2), Gr8yuprid, Group (1, 3)

Predicted Estimatedp, Predicted Estimated,3 Predicted Estimatedp, 3
Time | ERRR (1,2) p% =018 | ERRR(2,3) | p% = 0.52 ERRR(1,3) | p% = 0.09
2011:Q1 | 0.78301 0.2771229 0.58041 0.72292 0.83144 0.202733
2011:Q2 |  0.78293 0.27725339 0.58981 0.695461 0.83153 0.202602
2011:Q3 |  0.77889 0.28387834 0.59422 0.682878 0.83306 0.200394
2011:Q4 | 0.77525 0.28990648 0.59849 0.670872 0.83063 0.203905
2012:Q1 0.7692 0.300052 0.60802 0.644683 0.8301 0.204674
2012:Q2 |  0.76484 0.307463 0.61262 0.632333 0.83092 0.203485
2012:Q3 | 0.75728 0.32051553 0.6171 0.620483 0.8279 0.207875
2012:Q4 |  0.75337 0.32736902 0.62673 0.595583 0.82681 0.209468
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CHAPTER 6
CONCLUSION
Coupled with the conditional test (Przyborowski and Wilenski, 1940), the empirical
recurrence rates ratio, extended from the empirical recurrate¢Ho, 2008 ), allows us
to apply the well-known ARIMA modeling techniques to compare and fstrduank
failures in the USA based on the most recent 22 years of finatatial The ERR and
ERRR not only smooth and reduce the volatility of a financial systedeled by a
stochastic process, but operate as a linking bridge betweessicaldime series and a
point process. In this thesis, all the results of the statistical dataesalysit to the same
direction: Smaller banks have a significantly and disproportionatjizemni survival rate
than banks with larger total assets. In other words, it seems that tineestatéloo big to

fail.” is not supported by the most recent financial data.
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APPENDIX
DATA

Table 1A: Quarterly Bank Failures Data from 1989:Q1 to 2010: Q4

Time Groupl Group 2 Group3
1989:Q1 158 52 37
1989:Q2 78 6 12
1989:Q3 87 17 5
1989:Q4 64 10 8
1990:Q1 80 22 19
1990:Q2 93 15 9
1990:Q3 60 12 4
1990:Q4 49 10 8
1991:Q1 47 11 19
1991:Q2 55 11 12
1991:Q3 44 17 )
1991:Q4 33 7 10
1992:Q1 36 8 5
1992:Q2 37 9 6
1992:Q3 18 4 2
1992:Q4 25 18 12
1993:Q1 8 2 1
1993:Q2 14 2 2
1993:Q3 16 0 0
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1993:0Q4

1994:Q1

1994:Q2

1994:Q3

1994:Q4

1995:Q1

1995:Q2

1995:Q3

1995:Q4

1996:Q1

1996:Q2

1996:Q3

1996:Q4

1997:Q1

1997:Q2

1997:Q3

1997:Q4

1998:Q1

1998:Q2

1998:Q3

1998:Q4

1999:Q1

1999:Q2
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1999:Q3

1999:0Q4

2000:Q1

2000:Q2

2000:Q3

2000:Q4

2001:Q1

2001:Q2

2001:Q3

2001:Q4

2002:Q1

2002:Q2

2002:Q3

2002:Q4

2003:Q1

2003:02

2003:Q3

2003:Q4

2004:Q1

2004:Q2

2004:Q3

2004:Q4

2005:Q1
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2005:Q2 0 0 0
2005:Q3 0 0 0
2005:Q4 0 0 0
2006:Q1 0 0 0
2006:Q2 0 0 0
2006:Q3 0 0 0
2006:Q4 0 0 0
2007:Q1 1 0 0
2007:Q2 0 0 0
2007:Q3 0 0 1
2007:Q4 1 0 0
2008:Q1 2 0 0
2008:Q2 1 0 1
2008:Q3 3 1 5
2008:Q4 5 5 7
2009:Q1 10 8 11
2009:Q2 12 8 4
2009:Q3 28 12 10
2009:Q4 25 9 11
2010:Q1 18 16 7
2010:Q2 22 13 7
2010:Q3 24 15 2
2010:Q4 22 7 1
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Table 2A: The ERR Data of Bank Failuresduring 1989:Q1 to 2010:Q4

Time Groupl Group 2 Group3
1989:Q1 158 52 37
1989:Q2 118 29 245
1989:Q3 107.6667 25 18
1989:Q4 96.75 21.25 15.5
1990:Q1 93.4 21.4 16.2
1990:Q2 93.33333 20.33333 15
1990:Q3 88.57143 19.14286 13.42857
1990:Q4 83.625 18 12.75
1991:Q1 79.55556 17.22222 13.44444
1991:Q2 77.1 16.6 13.3
1991:Q3 74.09091 16.63636 12.54545
1991:Q4 70.66667 15.83333 12.33333
1992:Q1 68 15.23077 11.76923
1992:Q2 65.78571 14.78571 11.35714
1992:Q3 62.6 14.06667 10.73333
1992:Q4 60.25 14.3125 10.8125
1993:Q1 57.17647 13.58824 10.23529
1993:Q2 S54.77778 12.94444 9.777778
1993:Q3 52.73684 12.26316 9.2631549
1993:Q4 50.3 11.7 8.8
1994:Q1 47.90476 11.14286 8.380957
1994:Q2 45.95455 10.68182 8
1994:Q3 44.26087 10.21739 7.652174
1994:Q4 42.45833 9.833333 7.333333
1995:Q1 40.8 9.52 7.04
1995:Q2 39.30769 9.192308 6.769231
1995:Q3 37.92593 8.851852 6.518519
1995:Q4 36.57143 8.535714 6.285714
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1996:Q1 35.34483 8.241379 6.068966
1996:Q2 34.23333 7.966667 5.866667
1996:Q3 33.22581 7.709677 5.677419
1996:Q4 32.1875 7.46875 55
1997:Q1 31.21212 7.242424 5.33333:
1997:Q2 30.29412 7.029412 5.176471
1997:Q3 29.42857 6.828571 5.028571
1997:Q4 28.63889 6.638889 4.88888¢
1998:Q1 27.86486 6.459459 4.756751
1998:Q2 27.15789 6.289474 4.63157¢
1998:Q3 26.48718 6.153846 4512821
1998:Q4 25.825 6 4.4
1999:Q1 25.21951 5.853659 4.29268
1999:Q2 24.64286 5.714286 4.190476
1999:Q3 24.13953 5.581395 4.116279
1999:Q4 23.63636 5.454545 4.022721
2000:Q1 23.15556 5.333333 3.93333:
2000:Q2 22.67391 5217391 3.847826
2000:Q3 22.23404 5.106383 3.765957
2000:Q4 21.8125 5 3.6875
2001:Q1 21.38776 4.897959 3.612245
2001:Q2 20.98 4.8 3.54
2001:Q3 20.58824 4.705882 3.49019¢
2001:Q4 20.19231 4.615385 3.423071
2002:Q1 19.88679 454717 3.377358
2002:Q2 19.53704 4.481481 3.31481¢
2002:Q3 19.2 4.4 3.254545
2002:Q4 18.89286 4.321429 3.19642¢
2003:Q1 18.5614 4.245614 3.157895
2003:Q2 18.25862 4.172414 3.103448
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2003:Q3 17.94915 4.101695 3.050847
2003:Q4 17.66667 4.033333 3
2004:Q1 17.42623 3.967213 2.95082
2004:Q2 17.16129 3.903226 2.903224
2004:Q3 16.88889 3.84127 2.857143
2004:Q4 16.625 3.78125 2.8125
2005:Q1 16.36923 3.723077 2.76923]
2005:Q2 16.12121 3.666667 2.727273
2005:Q3 15.8806 3.61194 2.686567
2005:Q4 15.64706 3.558824 2.647059
2006:Q1 15.42029 3.507246 2.60869¢
2006:Q2 15.2 3.457143 2.571429
2006:Q3 14.98592 3.408451 2.535211
2006:Q4 14.77778 3.361111 2.5
2007:Q1 14.58904 3.315068 2.465753
2007:Q2 14.39189 3.27027 2.432437
2007:Q3 14.2 3.226667 2.413333
2007:Q4 14.02632 3.184211 2.38157¢
2008:Q1 13.87013 3.142857 2.350649
2008:Q2 13.70513 3.102564 2.333333
2008:Q3 13.56962 3.075949 2.36708¢
2008:Q4 13.4625 3.1 2.425
2009:Q1 13.41975 3.160494 2.530864
2009:Q2 13.40244 3.219512 2.54878
2009:Q3 13.57831 3.325301 2.638554
2009:Q4 13.71429 3.392857 2.738095
2010:Q1 13.76471 3.541176 2.788235
2010:Q2 13.86047 3.651163 2.837209
2010:Q3 13.97701 3.781609 2.827584
2010:Q4 14.06818 3.818182 2.806818
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Table 3A: The ERRR Data of Bank Failuresduring 1989:Q1 to 2010:Q4

L

L

L

L

Time Groupl:2 Group 2:3 Groupl:3
1989:Q1 0.752381 0.58427 0.810254
1989:Q2 0.802721 0.542056 0.82807
1989:Q3 0.811558 0.581395 0.856764
1989:Q4 0.819915 0.578231 0.861915
1990:Q1 0.813589 0.569149 0.85219
1990:Q2 0.821114 0.575472 0.861534
1990:Q3 0.822281 0.587719 0.868347
1990:Q4 0.822878 0.585366 0.867704
1991:Q1 0.822044 0.561594 0.855434
1991:Q2 0.822839 0.555184 0.852876
1991:Q3 0.816633 0.570093 0.855194
1991:Q4 0.816956 0.56213 0.851404
1992:Q1 0.817006 0.564103 0.852454
1992:Q2 0.816489 0.565574 0.852774
1992:Q3 0.816522 0.567204 0.853634
1992:Q4 0.808047 0.569652 0.847844
1993:Q1 0.80798 0.57037 0.848168
1993:Q2 0.80886 0.569682 0.848537
1993:Q3 0.811336 0.569682 0.850594
1993:Q4 0.81129 0.570732 0.8511
1994:Q1 0.81129 0.570732 0.8511
1994:Q2 0.811396 0.571776 0.851727
1994:Q3 0.81245 0.571776 0.8525964
1994:Q4 0.811952 0.572816 0.85272
1995:Q1 0.810811 0.574879 0.8528443
1995:Q2 0.810468 0.575904 0.853084
1995:Q3 0.810768 0.575904 0.853334
1995:Q4 0.810768 0.575904 0.853334
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1996:Q1 0.810918 0.575904 0.853455
1996:Q2 0.811216 0.575904 0.85369¢
1996:Q3 0.811663 0.575904 0.854063
1996:Q4 0.811663 0.575904 0.854063
1997:Q1 0.811663 0.575904 0.854063
1997:Q2 0.811663 0.575904 0.854063
1997:Q3 0.811663 0.575904 0.854063
1997:Q4 0.811811 0.575904 0.854184
1998:0Q1 0.811811 0.575904 0.854184
1998:Q2 0.811959 0.575904 0.854304
1998:Q3 0.811469 0.576923 0.854425
1998:0Q4 0.811469 0.576923 0.854425
1999:Q1 0.811617 0.576923 0.854545
1999:Q2 0.811765 0.576923 0.854666
1999:Q3 0.812207 0.57554 0.854321
1999:Q4 0.8125 0.57554 0.85456

2000:Q1 0.812793 0.57554 0.854799
2000:Q2 0.812938 0.57554 0.854918
2000:Q3 0.81323 0.57554 0.855155
2000:Q4 0.81352 0.57554 0.855392
2001:Q1 0.813665 0.57554 0.85551

2001:Q2 0.813809 0.57554 0.855628§
2001:Q3 0.813953 0.574163 0.85504¢
2001:Q4 0.813953 0.574163 0.85504¢
2002:Q1 0.8139 0.57381 0.854826
2002:Q2 0.813416 0.574822 0.854943
2002:Q3 0.813559 0.574822 0.855061
2002:Q4 0.813846 0.574822 0.855295
2003:Q1 0.813846 0.57346 0.854604
2003:Q2 0.813989 0.57346 0.854724
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2003:Q3 0.813989 0.57346 0.854727
2003:Q4 0.814132 0.57346 0.854839
2004:Q1 0.814559 0.57346 0.855189
2004:Q2 0.814701 0.57346 0.855305
2004:Q3 0.814701 0.57346 0.855305
2004:Q4 0.814701 0.57346 0.855305
2005:Q1 0.814701 0.57346 0.855305
2005:Q2 0.814701 0.57346 0.855305
2005:Q3 0.814701 0.57346 0.855305
2005:Q4 0.814701 0.57346 0.855305
2006:Q1 0.814701 0.57346 0.855305
2006:Q2 0.814701 0.57346 0.855305
2006:Q3 0.814701 0.57346 0.855305
2006:Q4 0.814701 0.57346 0.855305
2007:Q1 0.814843 0.57346 0.855427
2007:Q2 0.814843 0.57346 0.855427
2007:Q3 0.814843 0.572104 0.854735
2007:Q4 0.814985 0.572104 0.8548572
2008:Q1 0.815267 0.572104 0.855084
2008:Q2 0.815408 0.570755 0.854516
2008:Q3 0.815209 0.565116 0.85146¢
2008:Q4 0.81283 0.561086 0.847364
2009:Q1 0.809382 0.555315 0.841331
2009:Q2 0.80631 0.55814 0.840214
2009:Q3 0.803279 0.557576 0.83729¢
2009:Q4 0.80167 0.553398 0.833575
2010:Q1 0.795377 0.55948 0.831557
2010:Q2 0.791501 0.562724 0.830084
2010:Q3 0.787055 0.572174 0.831737
2010:Q4 0.786531 0.576329 0.83367

51



Table 3A: The Number of Solvent Bank and the Pairwise Ratios during 1989:Q1 to

2010:Q4

Time Group 1| Group2 GroupB G2/G1 G3/G2 G3/G1
1989:Q1 11922 1410 792 0.11826814¥.561702128 0.066431807
1989:Q2 11855 1425 792 0.12020244%555789474 0.066807254
1989:Q3 11711 1434 801 0.12244898 0.55857714D668397233
1989:Q4 11583 1453 809 0.125442439556779078 0.0698437371
1990:Q1 11508 1431 791 0.1243482M552760307 0.068734793
1990:Q2 11417 1419 795 0.124288342.5602537 | 0.06963300
1990:Q3 11354 1383 800 0.121807298578452639 0.07045975
1990:Q4 11285 1406 784 0.12459016:4557610242 0.069472751
1991:Q1 11195 1390 789 0.1241625 48567625899 0.0704778972
1991:Q2| 11108 1374 804| 0.123694631585152838 0.072380266
1991:Q3 11012 1389 795 0.126135125572354212 0.07219397
1991:Q4| 10864 1395 791| 0.12840574@.56702509| 0.07280927
1992:Q1| 10770 1367, 798| 0.126926648583760059 0.074094708
1992:Q2| 10660 1375 790| 0.12898686¥574545455 0.07410881¢8
1992:Q3| 10570 1382 783| 0.13074739B566570188 0.07407757¢8
1992:Q4| 10478 1388 780| 0.13246802B561959654 0.074441687
1993:Q1 10415 1356 765 0.130196831564159292 0.073451752
1993:Q2 10299 1358 763 0.131857460.56185567| 0.07408484
1993:Q3 10181 1354 772 0.13299283 0.57016248R75827522
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1993:Q4 | 10060 1377 759 0.136878748551198257 0.075447316
1994:Q1 9929 1369 763 0.13787894 0.55734112976845604
1994:Q2 9808 1354 769 0.13805057M.567946824 0.078405383
1994:Q3 9682 1359 758 0.140363561.557763061 0.07828961
1994:0Q4 9530 1355 773 0.142182581.570479703 0.081112277
1995:Q1 9359 1316 763 0.140613318579787234 0.081525804
1995:Q2 9271 1313 772 0.141244  0.58796648983270413
1995:Q3 9117 1336 781 0.146539432584580838 0.085664144
1995:0Q4 8989 1329 793 0.147847369.59668924| 0.08821893
1996:Q1 8900 1305 786 0.14662921(8602298851 0.0883146071
1996:Q2 8792 1266 764 0.14399454 0.60347535188689717¢
1996:Q3 8684 1274 753 0.146706587.591051803 0.086711193
1996:Q4 8621 1272 757 0.1475466885951257846 0.087808839
1997:Q1 8531 1271 758 0.148986031.596380803 0.088852421
1997:Q2 8423 1263 727 0.14994651 575613618 0.086311291
1997:Q3 8341 1268 697 0.1520201/41.549684543 0.083563124
1997:Q4 8243 1278 696 0.155040641.544600939 0.084435278
1998:Q1 8121 1271 696 0.15650781®547600313 0.085703731
1998:Q2 8060 1279 688 0.158684868.53792025| 0.0853598C
1998:Q3 7986 1269 683 0.15890308 0.53821907 0.08557
1998:0Q4 7846 1267 677 0.161483559.53433307| 0.08628600
1999:Q1 7782 1241 680 0.1594705A8547945203 0.087381136
1999:Q2 7738 1248 666 0.161281985533653844 0.0860687572
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1999:Q3 7676 1241 659 0.16167274:%531023368 0.085852004
1999:0Q4 7621 1238 662 0.162445818534733441 0.086865241
2000:Q1 7576 1230 638 0.1623548000518699187 0.084213303
2000:Q2 7511 1240 642 0.1650912 0.51774193985474631
2000:Q3 7398 1246 637 0.168423898511235953 0.086104353
2000:Q4 7303 1267 639 0.17349034:6504340963 0.087498288
2001:Q1 1223 1274 631 0.17638100:h495290424 0.087359823
2001:Q2 7175 1285 645 0.179094017.501945523 0.08989547
2001:Q3 7125 1303 644 0.182877198494244052 0.090385965
2001:Q4 7023 1321 654 0.188096235h495079483 0.0931225971
2002:Q1 6963 1305 637 0.18741921®:488122603 0.091483556
2002:Q2 6899 1312 638 0.190172489486280488 0.092477171
2002:Q3 6827 1333 649 0.195254138486871718 0.095063718
2002:Q4 6748 1343 660 0.199021932491437081 0.097806758
2003:Q1 6707 1357 658 0.202325928484893147 0.098106456
2003:Q2 6630 1378 677 0.207843137.4912917271 0.102111614
2003:Q3 6584 1395 682 0.2118772/8488888889 0.103584441
2003:Q4 6538 1397 674 0.21367390:6482462419 0.10308963
2004:Q1 6493 1377 677 0.212074542491648511 0.104266133
2004:Q2 6447 1396 674 0.216534822482808023 0.104544749
2004:Q3 6386 1408 677 0.22048230(0480823864 0.106013154
2004:Q4 6331 1414 686 0.223345443485148513 0.10835571
2005:Q1 6281 1432 675 0.2279891471368713 0.107466964
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2005:Q2 6196 1466 672 0.236604261.4583901771 0.108457069
2005:Q3 6193 1466 666 0.2367188®454297408 0.107540772
2005:Q4 6122 1496 683 0.244364587.456550802 0.111564848
2006:Q1 6070 1503 683 0.247611203454424484 0.112520593
2006:Q2 6132 1503 692 0.245107632460412508 0.11285062
2006:Q3 6102 1499 694 0.245657162462975311 0.113733202
2006:Q4 6020 1518 700 0.252159468.46113307| 0.1162790
2007:Q1 5988 1522 699 0.2541750100459264126 0.1167334671
2007:Q2 5977 1496 704 0.2502927/89470588233 0.1177848472
2007:Q3 5944 1480 699 0.2489905/M@472297291 0.117597571
2007:Q4 5918 1480 699 0.250084488472297297 0.118114228§
2008:Q1 5890 1464 695 0.2485568®474726776 0.117996604
2008:Q2 5864 1461 679 0.24914734 0.46475010°.115791269
2008:Q3 5801 1464 678 0.252370281.463114754 0.116876401
2008:Q4 5654 1506 712 0.266360099472775564 0.125928544
2009:Q1 5577 1509 719 0.2705755718476474486 0.12892236
2009:Q2 5551 1495 714 0.2693208438477591973 0.128625473
2009:Q3 5470 1499 701 0.274040210467645091 0.128153565
2009:Q4 5427 1495 690 0.27547447104615384624 0.1271420671
2010:Q1 5339 1488 695 0.2787038M0.467069892 0.13017419
2010:Q2 5280 1459 682 0.276325/38467443454 0.129166661
2010:Q3 5231 1451 682 0.277384821.470020673 0.130376601
2010:Q4 5198 1401 682 0.269526141.486795144 0.13120430¢
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