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ABSTRACT 

ARIMA Models for Bank Failures: Prediction and Comparison 

by 

Fangjin Cui 

Dr. Chih-Hsiang Ho, Examination Committee Chair 
Professor of Mathematical Sciences 
University of Nevada, Las Vegas 

The number of bank failures has increased dramatically over the last twenty-two 

years. A common notion in economics is that some banks can become “too big to fail.” Is 

this still a true statement? What is the relationship, if any, between bank sizes and bank 

failures? In this thesis, the proposed modeling techniques are applied to real bank failure 

data from the FDIC. In particular, quarterly data from 1989:Q1 to 2010:Q4 are used in 

the data analysis, which includes three major parts: 1) pairwise bank failure rate 

comparisons using the conditional test (Przyborowski and Wilenski, 1940); 2) 

development of the empirical recurrence rate (Ho, 2008) and the empirical recurrence 

rates ratio time series; and 3) the Autoregressive Integrated Moving Average (ARIMA) 

model selection, validation, and forecasting for the bank failures classified by the total 

assets.        
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CHAPTER 1 

INTRODUCTION 

Since September 25, 2008, when Washington Mutual Inc., became the biggest bank 

failure on record, almost 300 banks have collapsed. During the last 2 years, the number of 

bank failures significantly increased compared to the previous 6 years, during which 

period only around 40 banks failed. In retrospect, the number of bank failures has 

increased dramatically over the last twenty-five years. Out of 3879 total bank failures 

since 1934, when the Federal Deposit Insurance Corporation (FDIC) was established, 

nearly 3000 occurred between 1985 and 2010. A bank fails when it can no longer cover 

its obligations (liabilities) with its assets and must file for bankruptcy. The increase in 

bank failures is typically accompanied by high unemployment and reduced liquidity. 

Moreover, the survivors collect the market power by reducing competition and 

potentially harming consumers in the future. 

To reduce the risk of bank failures, the FDIC, which guaranteed to pay the first 

$100,000 deposit in full to each account if the bank failed since 1980, raised the amount 

to $250,000 temporarily during the Financial Crisis in 2008. Additionally, the Congress 

passed the Emergency Economic Stabilization Act to assist the banking industry during 

the Financial Crisis. Thus, the United States Secretary of the Treasury spent up to $700 

billion to support distressed assets from banks, which injected new capital into the 

banking system. Despite the aforementioned events, the number of bank failures 

increased. As more and more analysts focus their attention on the banking industry, a 

widespread question emerges: Will the situation worsen in the future?  The key point 

raised is: Can we forecast bank failures in the future?  
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A common notion in economics is that some banks can become “too big to fail.” If it 

is true, then people who deposit in a relatively large bank face less risk than those who 

put their money in a smaller bank.  Is this still a true statement? What is the relationship, 

if any, between bank sizes and bank failures?    

In this study, the following proposed modeling techniques are applied to real bank 

failure data from the FDIC. First, the data of bank failures will be divided into three 

groups, based on the total assets held by the banks, as follows: Group 1, banks with assets 

under $300 million; Group 2, banks with between $300 million and $1 billion in assets; 

Group 3, banks with more than $1 billion in assets. In particular, quarterly data from 

1989:Q1 to 2010:Q4 are used in the data analysis, which includes three major parts: 1) 

pairwise bank failure rate comparisons using the conditional test (Przyborowski and 

Wilenski, 1940); 2) development of the empirical recurrence rate (Ho, 2008) and the 

empirical recurrence rates ratio time series; and 3) the Autoregressive Integrated Moving 

Average (ARIMA) model selection, validation, and forecasting for the bank failures 

classified by the total assets.        

Specifically, the fundamental tools of ARIMA are introduced in Chapter 2. Bank 

data are introduced in Chapter 3. Chapter 4 illustrates the ARIMA modeling techniques 

using the empirical recurrence rate time series converted from the Group 2 bank failures. 

Pairwise bank failure rate comparisons using the conditional test and the empirical 

recurrence rates ratio will be presented in Chapter 5. Chapter 6 concludes our work.  
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CHAPTER 2 

 FUNDAMENTAL THEORIES AND METHODS 

2.1 Poisson Process 

A point process is a sequence of real numbers ���, ��, … 
 with properties 

�� � �� � �   and   lim��� �� � ��. 

Generally, at time point �� a certain event happens. Hence, the  ���� are called event times. 

Frequently, the event times are of less interest than the number of events, which occur in 

an interval �0, t�, t � 0. Let N(t) be the random variable that denotes the number of 

events in the interval (0, t]. For obvious reasons, �����, � � 0
 is said to be the counting 

process belonging to the point process ���, ��, … 
. The intensity function of the process is 

defined as ( ]
t

tttNP
t

t ∆

=∆+
=

→∆

)1,(
lim)(

0
λ . A counting process N(t) is called a Poisson 

process, if and only if it satisfies the following conditions: (1) N(0) = 0; (2) The random 

variables N(a, b] and N(c, d] are independent, for any a < b   c < d; And (3) for any a < b, 

N(a, b] has the Poisson distribution with mean dxxb
a∫ )(λ . If ���� is constant over �, the 

process is referred to as a homogeneous Poisson process. For a homogeneous Poisson 

Processes, λ  is treated as the rate of occurrences.  

2.2 Empirical Recurrence Rate  

 A key parameter desired by the economists is the recurrence rate of failures of the 

targeted bank group. Let 1, , nt tK  be the times of the n -ordered bank failures during an 

observation period )0,( 0t , where �! is the time-origin and 0 is the present time. If " is the 

time-step, a discrete time series { }zl  is generated sequentially at equidistant time 
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intervals �! � ", �! � 2", … , �! � $", . . . , �! � �" (= present time). Using the empirical 

recurrence rate (ERR) (Ho, 2008) as follows: 

&' � ()'* � +,+-. /01234 ,5 2-/6 5-7.0438 7/ �9:,9:;'*� 
'* . 

where $ = 1, 2, …, N. zl  can be regarded as the observation at time t 0( )t h= + l , for the bank 

failures to be modeled. Note that zl  evolves over time and is simply the maximum 

likelihood estimator (MLE) of the mean, if the underlying process observed over 0(t , 

0 )t h+ l  is a homogeneous Poisson process. The time-plot of the empirical recurrence rate 

(ERR-plot) offers the possibility of further insights into the data. If we have data up to 

time <, the value ,T kz +  1k ≥  needs to be predicted based on the sample observation 

1( , , )Tz zK of an ERR time series. We will apply the ARIMA class of models to handle 

our ERR time series because it is a process that evolves over time.  ARIMA models are 

introduced next. 

2.3 ARIMA Models 

The Autoregressive Moving Average (ARMA) model, also called Box-Jenkins model, 

was introduced by Box and Jenkins (1976). The basic processes of the Box–Jenkins 

ARMA (p,q) model may be thought of in following ways: the autoregressive process, and 

the moving average process. The autoregressive model is analogous to the regression 

model, based on the idea that the current value of the seriestX . Autoregressive model, 

(AR(p) model), which constructs the present value based on a linear function of its past 

values and a noise term, according to 

=9 � >�=9?� � � � >@=9?@ � A9 



 

5 
 

tX  is mean-zero stationary, 1φ ,…, pφ  are the autoregressive coefficients for p order 

process. The autoregressive operator is defined to be  

>�&� � 1 C >�& C >�&� C � C >@&@ 

The other one is moving average model, (MA(q) model), which describes the present 

term by a linear function of its past error term and a noise term, as follow: 

=9 � A9 � D�A9?� � � � DEA9?E 

The moving average operator is  

D�&� � 1 � D�& � D�&� � � � DE&E 

A sequence, �A9
 , of uncorrelated random variables, each with zero mean and 

variance F�, is referred to as white noise. This is indicated by the notation 

�A9
~WN�0, F��, 

�=9
  is an ARMA�J, K� process, if �=9
 is stationary and can be written as 

=9 C >�=9?� C � C >@=9?@ � A9 � D�A9?� � � � DEA9?E, 

where �A9
 ~ L� �0, F��  and the polynomials �1 C >�& C � C >@&@�  and �1 � D�& �
� � DE&E� have no common factor (Brockwell and Davis, 2002).  

Thus, the general ARMA models are a combination of the AR operators and MA 

operators. Note that A9  is a white noise sequence with zero mean and constant 

variance �F��. 

Autoregressive Integrated Moving Average (ARIMA) generalizes ARMA and 

incorporates a wide range of nonstationary series, which are reduced to ARMA processes 

when differenced finite number of times. Differencing will be discussed in Section 2.4.2.  

 Additionally, ARIMA modeling involves three stages: model exploration, estimation, 

and diagnostics. The first step, model exploration, is to identify the appropriate model 
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and the orders of model, which are normally achieved by plots of the sample 

autocorrelation function (ACF) and sample partial autocorrelation function (PACF). Also, 

the identification can be done by fitting different possible model structures and orders, 

then using a goodness-of-fit statistic to select the best model, which is an auto fit 

procedure. The second step, estimation, is to estimate the coefficients of the model. The 

maximum likelihood estimation method is used for this part. The last step is a diagnostic 

check of the selected model. As with the linear regression model, a key element in this 

step is to make sure that the residuals of the selected model are normally distributed. Also, 

all the parameters in the model are statistically significant. The best model is the one that 

has the fewest parameters among all models that fit the data, which is usually guided by 

the principle of parsimony (Cryer, and Chan, 2008; Box and Jenkins, 1976; Shumway 

and Stoffer, 2005). 

2.4 Data Transformation 

 ARMA model requires that the realized date follow a stationary process which means 

the statistical properties such as mean, variance, autocorrelations, etc. keep constant over 

time. Some mathematical transformations will be employed, if the process is not 

stationary. Two common transformations that will be discussed are the following. 

2.4.1 Box-Cox Transformation 

The Box-Cox procedure automatically identifies a transformation from the family of 

power transformations on Y. If the variability of the data set increases or decreases over 

time, the Box-Cox transformation will be employed to make the variance constant. This 

transformation converts original observations Y�, Y�, … , Y/ to fO�Y��, fO�Y��, … , fO�Y/�,  
where: 
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PQ�R� � S TU?�
Q , � V 0

log�R� , � � 0Y. 
Suitable value of λ, will be chosen to make the variability of PQ�R� a constant.  

2.4.2 Differencing 

 Differencing is a data-processing technique used to remove trends or seasonal 

components. In this, one simply considers the difference between pairs of observations 

with appropriate time separations, such as, the first difference, which is denoted as:  

Z=9 � =9 C =9?� � �1 C [�=9 , 
where B is the backward shift operator. Differencing of order d is 

Z\=9 � �1 C [�\=9 . 
Furthermore, single differencing is used to remove linear trend, while double differencing 

is to eliminate quadratic trend.  As mentioned earlier, ARIMA processes can be reduced 

to ARMA processes by differencing a time series.  

 The differencing technique adopted to deal with the seasonality of period d is the 

lag d difference operator d∇ , which is defined as:  

t
d

dtttd XBXXX )1( −=−=∇ − . 

 

For example, differencing at lag 4 will remove the seasonal effect in a quarterly time 

series. 

2.4.3 Subtracting the Mean 

A zero-mean ARMA process is denoted as ARMA process in ITSM2000 (Brockwell 

and Davis, 2002). Therefore, the sample mean of the transformed data is subtracted from 

each observation, once the apparent deviations from stationarity of the data have been 
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removed by differencing.  

2.5 Model Diagnostics and Comparison 

 The AR and MA terms are determined after correcting any autocorrelation that 

remains in the differenced series.   

2.5.1 The Sample ACF/PACF of the Residuals 

 If the sample size n is large enough, the autocorrelation of residuals sequence1Y ,…, 

nY  with finite variance is approximately independent and identically distributed (iid) with 

distribution N(0, 
�
(). Therefore, whether the observation residuals are consistent with the 

iid noise can be tested by examining the sample correlations of the residuals. The null 

hypothesis of iid noise will be rejected if more than two or three out of 40 fall outside the 

bounds 1.96 / n±  or if one falls far outside the bounds (Brockwell and Davis, 2002). 

2.5.2 Tests for Randomness of the Residuals 

A popular test, formulated by Ljung and Box (1978), called Ljung-Box test, is commonly 

used to check whether the residuals of a fitted ARIMA model are observed values of 

independent and identically distributed random variables. It is referred to as a 

portmanteau test, since it is based on the autocorrelation plot and tests the overall 

independence based on a few lags.  The Ljung-Box test is as follows. 

:0H  The sequence data are iid 

:aH  The sequence data are not iid 

with the test statistic: 

2

1

1ˆ)()2()ˆ(ˆ
k

m

k

rknnnrQ ∑
=

−−+= , 
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where ∑∑
=

−
+=

=
n

l
lkl

n

kl
lk aaar

1

2

1

ˆˆˆˆ , the estimated autocorrelation at lag k , 

          ] = sample size, 

          ̂  = number of lags being tested   

As a rule of thumb, the sample ACF and PACF are good estimates of the ACF and 

PACF of a stationary process for lags up to about a third of the sample size (Brockwell 

and Davis, 2002). 

After a model has been fitted to a series nzz ,...,1 , we got the residuals naa ˆ,...,ˆ1 . If 

no model is being fitted, then naa ˆ,...,ˆ1 are the “mean corrected” vectors of nzz ,...,1 .  

If the sample size n is large, the distribution of )ˆ(ˆ rQ  is roughly 2
qpm −−χ  under the null 

hypothesis, where ̂ C J C K is the degree of freedom of the chi-square distribution, 

and,  J � K is the number of parameters of the fitted model. The null hypothesis will be 

rejected at level α , if à � b�?c;e?@?E� . Consequently, the sequence data are not 

independent, or their autocorrelations are significantly different from zero. 

2.5.3 AIC, BIC and AICC Statistics 

Another approach to model selection is the use of information criteria such as Akaike 

information criterion (AIC), or the Bayesian information criterion (BIC), which is a 

Bayesian modification of the AIC statistic. The bias-corrected version of the AIC 

statistic, the AICC statistic, introduced by Akaike in 1974, is employed in this thesis as 

information criterion to select appropriate models using the ITSM2000 package. Each 

information statistic is defined as the following, 
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2
,

2
,

2
,

ˆlog 2

ˆlog 2 /( 1)

ˆlog log

p q

p q

p q

AIC N r

AICC N rN N r

BIC N r N

ε

ε

ε

σ

σ

σ

= +

= + − −

= +

 

where Ffg�  is the maximum likelihood estimator of Fg�, and h � J � K � 1 is the number 

of parameters estimated in the model, including a constant term. The second term in all 

three equations is a penalty for increasing r.  Thus, minimizing the number of parameters 

is one of the ways to minimize the values of these criteria. The best model should be the 

model that has the fewest parameters yet still sufficiently describes the data. A small 

value of AICC shows a good model. Nonetheless, it should be used only as rough guide.  

2.6 Forecasting 

The appropriate ARIMA model obtained will be used to predict future values of the 

time series from the past values.  The forecasting function given below will be chosen to 

have, as follows, has the minimum mean square error. 

&9 � P�&�, … , &9?�� � i9, 
where P�&�, … , &9?�� is a function of the past values of the series and determined by the 

past value of data. The second part i9, noise part, is a sequence of independent and I  

dentically distributed (iid) variables as mentioned before. Predictions will be achieved by 

forecasting the residuals and then inverting the transformations adopted to arrive at 

forecasts of the original series.  
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CHAPTER 3 

BANK DATA  

Commercial bank data were compiled from the Chicago Federal Reserve database 

(www.chicagofed.org ). The report of Condition and Income data includes information 

from individual commercial banks and savings associations that are regulated by the 

Federal Reserve System, the Comptroller of the Currency, and the Federal Deposit 

Insurance Corporation (FDIC). The data are reported and published on a quarterly basis. 

The numbers of bank failures in the United States during 1989:Q1 to 2010:Q4 are 

obtained from the FDIC failed bank list.  Based on this list, 1821 banks were reported to 

fail over the 88 quarters (Figure 3.1).  

 

 

Figure 3.1    Plot of the Number of Bank Failures from 1989:Q1 to 2010:Q4 

 

The FDIC (www.fdic.gov) reports bank failures on a weekly basis, typically on a 

Friday afternoon to avoid a run on bank assets. Bank failures in this thesis are drawn 



 

12 
 

from the FDIC bank failure reports, which list failed banks by name, location, charter 

type, total assets, and other characteristics. Consistent with the solvent bank data, 

however, we count the number of bank failures on a quarterly basis. In this study, 

individual banks that failed during 1989:Q1- 2010:Q4 are divided into three groups by 

total assets level.  

3.1 CPI Adjustment 

In economics, the nominal level of prices of goods and services changes over a period 

of time. When the price level rises, each unit currency buys fewer goods and services. 

The purchasing power of money --- the real value in the internal medium of exchange 

and unit of account in the economy changed over time. The Consumer Price Index (CPI) 

is used to bridge nominal values to real values. The total assets of banks reported are 

measured by nominal price. To make the total assets in different time periods comparable, 

the total assets of banks are converted to the real values which are based on: 

<j�i$ k��l��m � nopqnopr  s <j�i$ k��l���, 

where <j�i$ i��l��� is the nominal total assets of a failed bank at  time i  (the month a 

failure was reported); tuv� is CPI at the ith month that bank failed; tuvw is the CPI for 

the base month (taken as September 2010 in this thesis). <j�i$ k��l��m is the total assets 

deflated by the CPI. 

Monthly CPI data are obtained from the Federal Reserve Bank of St. Louis Federal 

Reserve Economic Data (FRED) (http://research.stlouisfed.org/fred2/). 

3.2 Bank Classification 

The data on bank failures will be divided into three groups, based on the adjusted 

total assets held by the banks at the time they failed, as follows: Group 1, banks with 
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assets under $300 million; Group 2, banks with assets between $300 million and $1 

billion; Group 3, banks with more than $1 billion in assets. Quarterly numbers of bank 

failures for each group are retrieved from the original Failed Bank List are summarized in 

Table 3.1. Plots of the time series on the original failures are illustrated as Figure3.2. 

Plots of the time series on the original failures are illustrated as Figure3.2 
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Figure 3.2 Plots of Numbers of Bank Failures from 1989:Q1 to 2010:Q4: a. Group 1; b. 

Group 2; c. Group 3 
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CHAPTER 4 

EMPIRICAL RECURRENCE RATE  

4.1 ERR-Plots 

Figure 4.1 shows the Empirical Recurrence Rate plot (ERR-plot) for each group from 

1989:Q1 to the present time 2010:Q4 with time step =1 quarter. 

4.2 Data Splitting 

Cross-validation is the statistical practice of splitting a sample of data into two 

subsets so that the analysis is initially performed on one subset, while the other subset is 

retained for subsequent use in confirming and validating the initial analysis. The first 

subset is called training sample and is used to develop a model for prediction. The second 

part, called prediction set is used to evaluate reasonableness and predictive ability of the 

selected model. In this study, cross-validation is used as an additional guide for model 

selection.  

We will use the ITSM2000 software (Brockwell and Davis, 2002) to model the ERR 

data with time-step h = 1 quarter. Recall that there are 88 data points for the entire time 

series. First, we split the data into: training sample and prediction set. In this case, our 

training sample is the original data set excluding the last 6 ERRs, which will form the 

prediction set (Figure 4.1). These six ERR values in the prediction set, representing the 

most recent 6 quarters of each bank group, will be compared with those of the six-step 

predictions produced by a candidate model. Of course, the size of a prediction set is quite 

flexible as long as it fits a common goal of model selection.  

 



 

16 
 

 

Figure 4.1 ERR Plots of Bank Failures through the Entire Time Period (Training Sample 

and Prediction Set): a. Group 1 (Assets Less than $300 Million); b. Group 2 (Assets 

between $300 Million and $1 Billion); c. Group 3 (Assets more than $1 Billion) 
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4.3 ARIMA Modeling for Group 2 ERRs 

In this section, ARIMA modeling and computational techniques are presented to fit 

the ERRs of the training sample of Group 2 (Figure 4.1b) and to predict its future number 

of failures, which will then be compared to the prediction set. The plot of the sample ACF 

(Figure 4.2 b) show that the sample ACF is slowly decaying. It indicates non-stationary 

behavior and seasonality. Thus differencing is applied. Since the data has evident 

nonconstant variance, we use the Box-Cox transformation to stabilize the variability. 

After applying the Box-Cox transformation with λ � 1.5, we see the trend still exists 

(Figure 4.3). Initially we take the differencing operator Z on the training sample at lag 2. 

Figure 4.4 tells us the resulting series is almost stationary. 

We then subtract the sample mean from each observation of the differenced series to 

generate a stationary zero-mean time series (Figure 4.4). The sample ACF and PACF 

suggest and lead to an AR(5) model. This leads to the following estimated model:  

 

 

 

 

 

 

Note that Xt represents zero-mean stationary time series of ERR, and the error term Zt 

represents a white noise process. 

 

 

ARMA Model: 

Xt = 1.909 Xt-1 - 0.1431 Xt-2 - 1.430 Xt-3 + .5489 Xt-4+ .1113 Xt-5+ Zt 

WN Variance = .120997E+03 

Standard Error of AR Coefficients 

0.000240       0.000053      0.000044      0.001002     0.000668 
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Figure 4.2.  a, ERR-plot of Training Sample (Group 2); b, Sample ACF; c, Sample PACF. 
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Figure 4.3. a, Group 2 Time-plot after Box-Cox Transformation with λ=1.5 ; b, Sample 

ACF; c, Sample PACF. 
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Figure 4.4. a, Group 2 Time-plot after Differencing at Lag 2; b, Sample ACF; c, Sample 

PACF. 
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Figure 4.5. Diagnostics for the AR(5) Model. a, Residual plot; b, Residual ACF; c, 

Residual PACF. 

Figure 4.5 is a set of diagnostic plots produced by ITSM2000 package, which show 



 

22 
 

the ACF and PACF of residuals of training sample. The AICC statistic is 637.718. And 

the Ljung-Box test is not significant (p-value = 0.95705) indicating that the residuals are 

approximately white noise.  

 Table 4.1 compares the numerical values of the observed ERRs to predicted ERRs 

and observed counts to predicted counts numbers. The predicted counts are derived from 

the predicted ERRs. The observed bank failure numbers and the predictions are compared 

in Figure 4.6. 

 

Table 4.1 Numerical Values of  Observed ERRs, Observed Counts in the Prediction Set, 

Predicted ERRs (Using AR(5)) and Corresponding Predict Counts for the Prediction Set, 

and the Predicted ERRs Using the AR(5) with their Counterparts (the Corresponding 

Values Derived from the Predicted ERRs) 

Time 
      ERR         Counts 

Observed Predicted Observed Predicted 

2009:Q3 3.325301 3.33014 12 12.40164 rounded to 12 

2009:Q4 3.392857 3.39551 9 8.82122 rounded to 9 

2010:Q1 3.541176 3.51463 16 13.52071 rounded to 14 

2010:Q2 3.651163 3.5556 13 7.03805 rounded to 7 

2010:Q3 3.781609 3.64738 15 11.54046 rounded to 12 

2010:Q4 3.818182 3.63738 7 2.76738 rounded to 3 
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Figure 4.6 Comparison of Observed Number of Bank Failures with the Forecasts in the 

Presiction Set for Group 2, 2009:Q3-2010:Q4 
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CHAPTER 5 

EMPIRICAL RECURRENCE RATES RATIO 

5.1 Methodology 

5.1.1 The Conditional Test 

Let =�  and =�  be independent observations from Poisson (� 1) and Poisson (� 2) 

distributions respectively. Then, the joint distribution of =� and =� is given by: 

f�y�,y�� � zQ{|{}~U{
�{! � zQ�|�}~U�

��! � � Q{|{Q�|�
�{!��! l?�Q{;Q��       =� � 0,1,2, …  

                                                                                       =� � 0,1,2, … 

 

Note that 

=� � =� � �~uj���j]��� � ���.  

The well-known method of testing the difference between two Poisson means is the 

conditional test (Przyborowski and Wilenski, 1940). It is based on the fact that the 

conditional distribution of =� given =� � =� � � is binomial, whose success probability 

is a function of the ratio Q�Q{ �ρ. 
The proof goes as follows. Considering the conditional distribution, =� given S = s > 

0. The probability mass function of the conditional distribution of =� given S = s is given 

by: 

P�y�|� � �Y� � u�=� � y�, =� � =� � ��u�=� � =� � ��  

� l?O{ λ��{y�! · l?O� λ��?�{�� C y��!
l?�O{;O�� �λ� � λ����!
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           � � �y�� � λ�λ� � λ���{ � λ�λ� � λ���?�{
 

                                                �  � �y�� � 11 � ���{ � �1 � ���?�{ ~[�]j^�i$ ��, 11 � �� 

Let �
�;� � J. Then, to test the equality of two Poisson means, is to test the following 

hypotheses: 

�!: �� � �� versus ��: �� V �� 

which is equivalent to 

 �!: � � 1 versus  ��: � V 1. 

which is equivalent to 

  �!: J � �
�  versus ��: J V �

�, 

It can be generalized as follows: 

�!: J � J!  versus  ��: J � J!, 

where 0 � J! � 1. And it is equivalent to 

�!: �  �! versus  ��: � � �!,  

where �! > 0, and �! � �?@:@:  . 

When X� � � is observed, the conditional test (C-test) rejects H0 , if 

p-value = P�X�  �|� � �� � ∑ ���� J!��1 C J!��?�  ����! , 

where � is the level of significance. Of course, normal approximation can be 

implemented for the above binomial test for large s. 

5.1.2 Conditional Tests for Bank Failures  

In this thesis, we divide the banks into three groups based on the levels of total assets 

of the banks. For each bank group, we assume that the number of bank failures follows a 
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homogeneous Poisson process with failure rate λ. According to the classification criterion 

described in Chapter 3, Group 1 represents banks with assets under $300 million; Group 

2 is banks with assets between $300 million and $1 billion; and banks in Group 3 have 

assets more than $1 billion. Let �� be the failure rate of ith group of banks, � � 1,2,3. Also, 

let 

��� � Q�Qr  and J�� � �
�;�r�,  1  � � �  3. 

Then a hypothesis for bank failure rates comparison between any two groups i and j 

can be presented as follows:  

 �!:  ���  ���!  versus  ��:  ��� � ���! , 

where   ���! � 0, is a known reference ratio calculated from solvent bank database, which 

will described later .The corresponding C-test is then 

 

�!: J�� � J��!  versus ��: J�� � J��! , 

where 0 � J��! � 1 and J��! � �
�;�r�: .  

The reference ratio ���! , for each (i, j) pair, is calculated by taking the average of all the 

quarterly solvent commercial bank group ratios through the entire observation period. Consequently, 

if the failure rate ratio (���� is tested significantly higher than the historical population 

ratio (���! ), the jth group yields a disproportionally higher failure rate than the ith group. 

For example, in comparing Group 1 and Group 2, the reference value, ���! , calculated 

from the solvent bank data base is 0.183689 and the corresponding J��!  is 0.844816. The 

total numbers of bank failures during the entire time period are 1238, and 336 for Group 

1 and Group 2, respectively. Based on the C-test, 
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p-value � P�=�  1238�S � 1574� 

� ∑ �1574k ��0.844816�6�1 C 0.844816���¢£¤?6���¥¦6�! �5.9482E-10 

The null hypothesis is rejected, indicating that Group 1 has contributed less than 84.48% 

of the total failures, and it is statistically significant. In other words, compared with 

Group 1, banks in Group 2 are more likely to fail during the observation period. Recall 

that Group 1 includes banks with total assets below 300 million dollars, while Group 2 

has total assets between 300 million dollars and 1 billion dollars. Therefore, the result of 

the above C-test implies that smaller banks have significantly higher survival rate during 

the observation period. Additionally, all pairwise comparisons reinforce the above 

conclusion. Table 5.1 lists the results. It seems that the statement: “Too Big to Fail.” is 

not supported by our data analysis during this particular observation period. 

 

Table 5.1 Conditional Tests for Pairwise Comparisons 

 Group (1, 2) Group (2, 3) Group (1, 3) 

Total number of failures (Xi, =�) (1238, 336) (336, 247) (1238, 247) 

Total number of both group (s) 1574 583 1485 

Solvent bank ratio ( ���! ) 0.183689 0.522247 0.093755 

Solvent bank probability ( J��! ) 0.844816 0.656924 0.914282 

p-value 5.9482E-10 3.21769E-05 1.7062E-23 
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5.1.3 Empirical Recurrence Rates Ratio  

The C-test examines the relationship of means of two homogeneous Poisson 

processes, which have constant expected values. Motivated by the ideas of the C-test and 

the Empirical Recurrence Rate developed by Ho (2008), we produce an Empirical 

Recurrence Rates Ratio (ERRR) time series for the bank failure rates ratio as follows: 

Let ��, ��, … , �( be the n-ordered bank failure times during an observation period (t0, 

t0+Nh ) from the past to the present. The ERRR is then defined as follows:  

§' � ∑ ¨{�)�©{∑ �¨{�;¨���)�©{  ,  $ � 1,2, … , N. 

X ij= number of failures in group i in time (t0, t0+jh] 

where � � 1, 2  and � � 1, 2, … , N . Then a discrete time series {dl} is generated 

sequentially as �! � ", �! � 2",…, �! � $",…, �! � �" (= the present time). h presents 

the time step.  

Both the ERR and ERRR offer the possibility of developing a model, monitoring and 

predicting bank failure rate ratios. Moreover, if both of the targeted processes are 

homogeneous Poisson processes, then the ERRR is the maximum likelihood estimator 

(MLE) of p, and the MLE of � can be obtained by the invariance property of the MLE. 

5.2 ARIMA Modeling: All Groups 

5.2.1 Training Sample Modeling: �� ��⁄  

Along the same line of argument as for ERR, we apply the ARIMA class of models to 

handle our ERRR time series because it is a process that evolves over time. The modeling 

process is the same as that detailed in Chapter 4. The following analysis uses the ERRR 

time series (Figure 5.1) generated from Group 1 (=X1) and Group 2 (=X2). 
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Figure 5.1 ERRR-plot for Group 1 versus Group 2 from 1989:Q1 to 2010:Q4 

 

 The plots of the training sample (first 82 quarters) and its sample ACF and PACF in 

Figure 5.2 show nonstationarity and periodicity. Therefore, the Box-Cox transformation, 

and differencing will be employed to remove the trend and seasonality. Since the plot 

(Figure 5.2) shows nonconstant variance, we consider the Box-Cox transformation to 

stabilize the variability. After the λ = 1.5 Box-Cox transformation, we see the trend still 

exists (Figure 5.3). We then take the differencing operator Z on the training sample at lag 

3. Figure 5.4 tells us the series has not reached stationary yet. So we do further 

differencing at lag 1. 
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Figure 5.2 a. Time-plot b. Sample ACF, c. Sample PACF of Training Sample with the               

ERRRs from Group 1 versus Group 2 
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Figure 5.3. a, Time-plot after Box-Cox Transformation with λ=1.5 ; b, Sample ACF; c, 

Sample PACF for the ERRR of Group1 versus Group2. 
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Figure 5.4. a, Time-plot after Differencing at Lag 3; b, Sample ACF; c, Sample PACF. 
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Figure 5.5. a, Time-plot after differenced at Lag 1of Lag 3 Transformed ERRR; b, 

Sample ACF; c, Sample PACF 
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We then subtract the sample mean from each observation of the differenced series to 

generate a stationary zero-mean time series (Figure 5.5). The sample ACF and PACF 

suggest and indicate an AR(3) model. Therefore, our estimated model is:  

 

 

 

 

 

 

Note that Xt represents a twice-differenced stationary mean-corrected time series and the 

error term Zt represents a white noise process. The AICC statistic is -586.602. Also, the 

Ljung-Box test is not significant with p-value= 0.45713, indicating that the residuals are 

approximately white noise. The plots of sample ACF/PACF of the residuals are shown in 

Figure 5.6.  

We also compare the predicted ERRRs with the actual ERRRs in the prediction 

set. Figure 5.7 indicate that the model fit relatively well. Table 5.2 shows the numerical 

comparison among these two sets of ERRR. 

 

 

 

 

 

ARMA Model:  

Xt = .3829 Xt-1 + .5415 Xt-2 - .7467 Xt-3  + Zt 

WN Variance = .000027 

Standard Error of AR Coefficients 

       .210673       .189058       .170469 
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Figure 5.6. Diagnostics for the AR(3) Model. a, Residual plot; b, Residual ACF; c, 

Residual PACF. 
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Figure 5.7 The Complete Data (Training Sample and Prediction Set) with Six Forecasts  

Appended to the Training Sample for Model Validation; Inset: Comparison of Six 

Forecasted ERRRs with the Prediction Set  

 

Table 5.2 Numerical Comparison between the ERRRs (Predicted versus Observed) 

Time Observed ERRR Predicted ERRR 

2009:Q3 0.803278689 0.80206 

2009:Q4 0.801670146 0.79822 

2010:Q1 0.795377294 0.79533 

2010:Q2 0.791500664 0.79152 

2010:Q3 0.787055016 0.78741 

2010:Q4 0.786531131 0.7837 
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5.2.2 Full Data Forecasting: �� ��⁄  

   We next extend the ARIMA modeling to the full data set of ERRR values. As in the 

previous case, we still take the Box-Cox transformation at λ=1.5, and difference at lag 3 

and lag 1. The fitted model is also an AR(3) as follows.  

  

 

 

 

 

The AICC statistic is -636.969, and the Ljung - Box statistic of residuals is not 

significant, as p-value = .53327. The plots of the residuals and their sample ACF and 

PACF are shown in Figure 5.8. Table 5.3 shows the 8 predicted values of the model, for 

the time period 2011:Q1 to 2012:Q4. The corresponding forecasted failure ratios (�� ��⁄ ) 

are: 0.28, 0.28, 0.28, 0.29, 0.30, 0.31, 0.32, and 0.33 (Table 5.3). The overall trend of the 

failure rate ratio ��� � Q�Q{  is increasing with a mean of 0.30, which is larger than the 

reference population ratio (���! � 0.183689) (Figure 5.9). In other words, Group 2 

consistently contributes more than its fair share of failures relative to Group 1 during the 

forecasted period. 

5.2.3 Comparisons: All Groups 

We extend our data analysis to the following two pairs: Group 2 versus Group 3 and 

Group 1 versus Group 3. Table 5.3 summarizes the results. Figure 5.10 depicts the 

temporal trends. All the results point to the same directions: smaller banks have a 

significantly and disproportionally higher survival rate than banks with larger total assets. 

X t = .3447 Xt-1 + .5046 Xt-2 - .7525 Xt-3 + Zt 

   WN Variance = .000026 

 Standard Error of AR Coefficients 

       .204349       .184433       .164831 
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Figure 5.8. Diagnostics for the AR(3) Model for the Full Data. a, Residual Plot; b, 
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Residual ACF; c, Residual PACF. 

 

Figure 5.9 Comparisons of Predicted Values and Reference Value of Bank Ratio of 

Group1 versus Group 2   

 

 

Figure 5.10 The Predicted Values of all Pairwise ERRRs during 2011:Q1 to 2012:Q4  



 

40 
 

Table 5.3 Numerical Values of the Predicted ERRRs of 2011:Q1 to 2012:Q4 of Group (1, 2), Group (2, 3) and Group (1, 3) 

Time 
Predicted  

ERRR (1,2) 

Estimated ��� 

���! � 0.18 

Predicted 

ERRR(2,3) 

Estimated ρ�¥ 

ρ�¥! � 0.52 

Predicted 

ERRR(1,3) 

Estimated ρ�¥ 

ρ�¥! � 0.09 

2011:Q1 0.78301 0.2771229 0.58041 0.72292 0.83144 0.202733 

2011:Q2 0.78293 0.27725339 0.58981 0.695461 0.83153 0.202602 

2011:Q3 0.77889 0.28387834 0.59422 0.682878 0.83306 0.200394 

2011:Q4 0.77525 0.28990648 0.59849 0.670872 0.83063 0.203905 

2012:Q1 0.7692 0.300052 0.60802 0.644683 0.8301 0.204674 

2012:Q2 0.76484 0.307463 0.61262 0.632333 0.83092 0.203485 

2012:Q3 0.75728 0.32051553 0.6171 0.620483 0.8279 0.207875 

2012:Q4 0.75337 0.32736902 0.62673 0.595583 0.82681 0.209468 
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CHAPTER 6 

CONCLUSION 

Coupled with the conditional test (Przyborowski and Wilenski, 1940), the empirical 

recurrence rates ratio, extended from the empirical recurrence rate (Ho, 2008 ), allows us 

to apply the well-known ARIMA modeling techniques to compare and forecast bank 

failures in the USA based on the most recent 22 years of financial data. The ERR and 

ERRR not only smooth and reduce the volatility of a financial system modeled by a 

stochastic process, but operate as a linking bridge between a classical time series and a 

point process. In this thesis, all the results of the statistical data analyses point to the same 

direction: Smaller banks have a significantly and disproportionally higher survival rate 

than banks with larger total assets. In other words, it seems that the statement: “Too big to 

fail.” is not supported by the most recent financial data. 
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APPENDIX  

 DATA 

Table 1A:  Quarterly Bank Failures Data from 1989:Q1 to 2010:Q4 

Time Group1 Group 2 Group3 

1989:Q1 158 52 37 

1989:Q2 78 6 12 

1989:Q3 87 17 5 

1989:Q4 64 10 8 

1990:Q1 80 22 19 

1990:Q2 93 15 9 

1990:Q3 60 12 4 

1990:Q4 49 10 8 

1991:Q1 47 11 19 

1991:Q2 55 11 12 

1991:Q3 44 17 5 

1991:Q4 33 7 10 

1992:Q1 36 8 5 

1992:Q2 37 9 6 

1992:Q3 18 4 2 

1992:Q4 25 18 12 

1993:Q1 8 2 1 

1993:Q2 14 2 2 

1993:Q3 16 0 0 
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1993:Q4 4 1 0 

1994:Q1 0 0 0 

1994:Q2 5 1 0 

1994:Q3 7 0 0 

1994:Q4 1 1 0 

1995:Q1 1 2 0 

1995:Q2 2 1 0 

1995:Q3 2 0 0 

1995:Q4 0 0 0 

1996:Q1 1 0 0 

1996:Q2 2 0 0 

1996:Q3 3 0 0 

1996:Q4 0 0 0 

1997:Q1 0 0 0 

1997:Q2 0 0 0 

1997:Q3 0 0 0 

1997:Q4 1 0 0 

1998:Q1 0 0 0 

1998:Q2 1 0 0 

1998:Q3 1 1 0 

1998:Q4 0 0 0 

1999:Q1 1 0 0 

1999:Q2 1 0 0 
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1999:Q3 3 0 1 

1999:Q4 2 0 0 

2000:Q1 2 0 0 

2000:Q2 1 0 0 

2000:Q3 2 0 0 

2000:Q4 2 0 0 

2001:Q1 1 0 0 

2001:Q2 1 0 0 

2001:Q3 1 0 1 

2001:Q4 0 0 0 

2002:Q1 4 1 1 

2002:Q2 1 1 0 

2002:Q3 1 0 0 

2002:Q4 2 0 0 

2003:Q1 0 0 1 

2003:Q2 1 0 0 

2003:Q3 0 0 0 

2003:Q4 1 0 0 

2004:Q1 3 0 0 

2004:Q2 1 0 0 

2004:Q3 0 0 0 

2004:Q4 0 0 0 

2005:Q1 0 0 0 
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2005:Q2 0 0 0 

2005:Q3 0 0 0 

2005:Q4 0 0 0 

2006:Q1 0 0 0 

2006:Q2 0 0 0 

2006:Q3 0 0 0 

2006:Q4 0 0 0 

2007:Q1 1 0 0 

2007:Q2 0 0 0 

2007:Q3 0 0 1 

2007:Q4 1 0 0 

2008:Q1 2 0 0 

2008:Q2 1 0 1 

2008:Q3 3 1 5 

2008:Q4 5 5 7 

2009:Q1 10 8 11 

2009:Q2 12 8 4 

2009:Q3 28 12 10 

2009:Q4 25 9 11 

2010:Q1 18 16 7 

2010:Q2 22 13 7 

2010:Q3 24 15 2 

2010:Q4 22 7 1 
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Table 2A: The ERR Data of Bank Failures during 1989:Q1 to 2010:Q4 

Time Group1 Group 2 Group3 

1989:Q1 158 52 37 

1989:Q2 118 29 24.5 

1989:Q3 107.6667 25 18 

1989:Q4 96.75 21.25 15.5 

1990:Q1 93.4 21.4 16.2 

1990:Q2 93.33333 20.33333 15 

1990:Q3 88.57143 19.14286 13.42857 

1990:Q4 83.625 18 12.75 

1991:Q1 79.55556 17.22222 13.44444 

1991:Q2 77.1 16.6 13.3 

1991:Q3 74.09091 16.63636 12.54545 

1991:Q4 70.66667 15.83333 12.33333 

1992:Q1 68 15.23077 11.76923 

1992:Q2 65.78571 14.78571 11.35714 

1992:Q3 62.6 14.06667 10.73333 

1992:Q4 60.25 14.3125 10.8125 

1993:Q1 57.17647 13.58824 10.23529 

1993:Q2 54.77778 12.94444 9.777778 

1993:Q3 52.73684 12.26316 9.263158 

1993:Q4 50.3 11.7 8.8 

1994:Q1 47.90476 11.14286 8.380952 

1994:Q2 45.95455 10.68182 8 

1994:Q3 44.26087 10.21739 7.652174 

1994:Q4 42.45833 9.833333 7.333333 

1995:Q1 40.8 9.52 7.04 

1995:Q2 39.30769 9.192308 6.769231 

1995:Q3 37.92593 8.851852 6.518519 

1995:Q4 36.57143 8.535714 6.285714 
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1996:Q1 35.34483 8.241379 6.068966 

1996:Q2 34.23333 7.966667 5.866667 

1996:Q3 33.22581 7.709677 5.677419 

1996:Q4 32.1875 7.46875 5.5 

1997:Q1 31.21212 7.242424 5.333333 

1997:Q2 30.29412 7.029412 5.176471 

1997:Q3 29.42857 6.828571 5.028571 

1997:Q4 28.63889 6.638889 4.888889 

1998:Q1 27.86486 6.459459 4.756757 

1998:Q2 27.15789 6.289474 4.631579 

1998:Q3 26.48718 6.153846 4.512821 

1998:Q4 25.825 6 4.4 

1999:Q1 25.21951 5.853659 4.292683 

1999:Q2 24.64286 5.714286 4.190476 

1999:Q3 24.13953 5.581395 4.116279 

1999:Q4 23.63636 5.454545 4.022727 

2000:Q1 23.15556 5.333333 3.933333 

2000:Q2 22.67391 5.217391 3.847826 

2000:Q3 22.23404 5.106383 3.765957 

2000:Q4 21.8125 5 3.6875 

2001:Q1 21.38776 4.897959 3.612245 

2001:Q2 20.98 4.8 3.54 

2001:Q3 20.58824 4.705882 3.490196 

2001:Q4 20.19231 4.615385 3.423077 

2002:Q1 19.88679 4.54717 3.377358 

2002:Q2 19.53704 4.481481 3.314815 

2002:Q3 19.2 4.4 3.254545 

2002:Q4 18.89286 4.321429 3.196429 

2003:Q1 18.5614 4.245614 3.157895 

2003:Q2 18.25862 4.172414 3.103448 
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2003:Q3 17.94915 4.101695 3.050847 

2003:Q4 17.66667 4.033333 3 

2004:Q1 17.42623 3.967213 2.95082 

2004:Q2 17.16129 3.903226 2.903226 

2004:Q3 16.88889 3.84127 2.857143 

2004:Q4 16.625 3.78125 2.8125 

2005:Q1 16.36923 3.723077 2.769231 

2005:Q2 16.12121 3.666667 2.727273 

2005:Q3 15.8806 3.61194 2.686567 

2005:Q4 15.64706 3.558824 2.647059 

2006:Q1 15.42029 3.507246 2.608696 

2006:Q2 15.2 3.457143 2.571429 

2006:Q3 14.98592 3.408451 2.535211 

2006:Q4 14.77778 3.361111 2.5 

2007:Q1 14.58904 3.315068 2.465753 

2007:Q2 14.39189 3.27027 2.432432 

2007:Q3 14.2 3.226667 2.413333 

2007:Q4 14.02632 3.184211 2.381579 

2008:Q1 13.87013 3.142857 2.350649 

2008:Q2 13.70513 3.102564 2.333333 

2008:Q3 13.56962 3.075949 2.367089 

2008:Q4 13.4625 3.1 2.425 

2009:Q1 13.41975 3.160494 2.530864 

2009:Q2 13.40244 3.219512 2.54878 

2009:Q3 13.57831 3.325301 2.638554 

2009:Q4 13.71429 3.392857 2.738095 

2010:Q1 13.76471 3.541176 2.788235 

2010:Q2 13.86047 3.651163 2.837209 

2010:Q3 13.97701 3.781609 2.827586 

2010:Q4 14.06818 3.818182 2.806818 
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Table 3A: The ERRR Data of Bank Failures during 1989:Q1 to 2010:Q4 

Time Group1:2 Group 2:3 Group1:3 

1989:Q1 0.752381 0.58427 0.810256 

1989:Q2 0.802721 0.542056 0.82807 

1989:Q3 0.811558 0.581395 0.856764 

1989:Q4 0.819915 0.578231 0.861915 

1990:Q1 0.813589 0.569149 0.85219 

1990:Q2 0.821114 0.575472 0.861538 

1990:Q3 0.822281 0.587719 0.868347 

1990:Q4 0.822878 0.585366 0.867704 

1991:Q1 0.822044 0.561594 0.855436 

1991:Q2 0.822839 0.555184 0.852876 

1991:Q3 0.816633 0.570093 0.855194 

1991:Q4 0.816956 0.56213 0.851406 

1992:Q1 0.817006 0.564103 0.852459 

1992:Q2 0.816489 0.565574 0.852778 

1992:Q3 0.816522 0.567204 0.853636 

1992:Q4 0.808047 0.569652 0.847845 

1993:Q1 0.80798 0.57037 0.848168 

1993:Q2 0.80886 0.569682 0.848537 

1993:Q3 0.811336 0.569682 0.850594 

1993:Q4 0.81129 0.570732 0.8511 

1994:Q1 0.81129 0.570732 0.8511 

1994:Q2 0.811396 0.571776 0.851727 

1994:Q3 0.81245 0.571776 0.852596 

1994:Q4 0.811952 0.572816 0.85272 

1995:Q1 0.810811 0.574879 0.852843 

1995:Q2 0.810468 0.575904 0.853088 

1995:Q3 0.810768 0.575904 0.853333 

1995:Q4 0.810768 0.575904 0.853333 
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1996:Q1 0.810918 0.575904 0.853455 

1996:Q2 0.811216 0.575904 0.853699 

1996:Q3 0.811663 0.575904 0.854063 

1996:Q4 0.811663 0.575904 0.854063 

1997:Q1 0.811663 0.575904 0.854063 

1997:Q2 0.811663 0.575904 0.854063 

1997:Q3 0.811663 0.575904 0.854063 

1997:Q4 0.811811 0.575904 0.854184 

1998:Q1 0.811811 0.575904 0.854184 

1998:Q2 0.811959 0.575904 0.854305 

1998:Q3 0.811469 0.576923 0.854425 

1998:Q4 0.811469 0.576923 0.854425 

1999:Q1 0.811617 0.576923 0.854545 

1999:Q2 0.811765 0.576923 0.854666 

1999:Q3 0.812207 0.57554 0.854321 

1999:Q4 0.8125 0.57554 0.85456 

2000:Q1 0.812793 0.57554 0.854799 

2000:Q2 0.812938 0.57554 0.854918 

2000:Q3 0.81323 0.57554 0.855155 

2000:Q4 0.81352 0.57554 0.855392 

2001:Q1 0.813665 0.57554 0.85551 

2001:Q2 0.813809 0.57554 0.855628 

2001:Q3 0.813953 0.574163 0.855049 

2001:Q4 0.813953 0.574163 0.855049 

2002:Q1 0.8139 0.57381 0.854826 

2002:Q2 0.813416 0.574822 0.854943 

2002:Q3 0.813559 0.574822 0.855061 

2002:Q4 0.813846 0.574822 0.855295 

2003:Q1 0.813846 0.57346 0.854604 

2003:Q2 0.813989 0.57346 0.854722 
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2003:Q3 0.813989 0.57346 0.854722 

2003:Q4 0.814132 0.57346 0.854839 

2004:Q1 0.814559 0.57346 0.855189 

2004:Q2 0.814701 0.57346 0.855305 

2004:Q3 0.814701 0.57346 0.855305 

2004:Q4 0.814701 0.57346 0.855305 

2005:Q1 0.814701 0.57346 0.855305 

2005:Q2 0.814701 0.57346 0.855305 

2005:Q3 0.814701 0.57346 0.855305 

2005:Q4 0.814701 0.57346 0.855305 

2006:Q1 0.814701 0.57346 0.855305 

2006:Q2 0.814701 0.57346 0.855305 

2006:Q3 0.814701 0.57346 0.855305 

2006:Q4 0.814701 0.57346 0.855305 

2007:Q1 0.814843 0.57346 0.855422 

2007:Q2 0.814843 0.57346 0.855422 

2007:Q3 0.814843 0.572104 0.854735 

2007:Q4 0.814985 0.572104 0.854852 

2008:Q1 0.815267 0.572104 0.855084 

2008:Q2 0.815408 0.570755 0.854516 

2008:Q3 0.815209 0.565116 0.851469 

2008:Q4 0.81283 0.561086 0.847364 

2009:Q1 0.809382 0.555315 0.841331 

2009:Q2 0.80631 0.55814 0.840214 

2009:Q3 0.803279 0.557576 0.837296 

2009:Q4 0.80167 0.553398 0.833575 

2010:Q1 0.795377 0.55948 0.831557 

2010:Q2 0.791501 0.562724 0.830084 

2010:Q3 0.787055 0.572174 0.831737 

2010:Q4 0.786531 0.576329 0.83367 
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Table 3A: The Number of Solvent Bank and the Pairwise Ratios during 1989:Q1 to 

2010:Q4 

Time Group 1 Group 2 Group 3 G2/G1 G3/G2 G3/G1 

1989:Q1 11922 1410 792 0.118268747 0.561702128 0.066431807 

1989:Q2 11855 1425 792 0.120202446 0.555789474 0.066807254 

1989:Q3 11711 1434 801 0.12244898 0.558577406 0.068397233 

1989:Q4 11583 1453 809 0.125442459 0.556779078 0.069843737 

1990:Q1 11508 1431 791 0.124348279 0.552760307 0.068734793 

1990:Q2 11417 1419 795 0.124288342 0.5602537 0.069633003 

1990:Q3 11354 1383 800 0.121807293 0.578452639 0.07045975 

1990:Q4 11285 1406 784 0.124590164 0.557610242 0.069472751 

1991:Q1 11195 1390 789 0.124162573 0.567625899 0.070477892 

1991:Q2 11108 1374 804 0.123694634 0.585152838 0.072380266 

1991:Q3 11012 1389 795 0.126135125 0.572354212 0.07219397 

1991:Q4 10864 1395 791 0.128405744 0.56702509 0.072809278 

1992:Q1 10770 1367 798 0.126926648 0.583760059 0.074094708 

1992:Q2 10660 1375 790 0.128986867 0.574545455 0.074108818 

1992:Q3 10570 1382 783 0.130747398 0.566570188 0.074077578 

1992:Q4 10478 1388 780 0.132468028 0.561959654 0.074441687 

1993:Q1 10415 1356 765 0.130196831 0.564159292 0.073451752 

1993:Q2 10299 1358 763 0.131857462 0.56185567 0.074084863 

1993:Q3 10181 1354 772 0.13299283 0.570162482 0.075827522 
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1993:Q4 10060 1377 759 0.136878728 0.551198257 0.075447316 

1994:Q1 9929 1369 763 0.13787894 0.557341125 0.076845604 

1994:Q2 9808 1354 769 0.138050571 0.567946824 0.078405383 

1994:Q3 9682 1359 758 0.140363561 0.557763061 0.07828961 

1994:Q4 9530 1355 773 0.142182581 0.570479705 0.081112277 

1995:Q1 9359 1316 763 0.140613313 0.579787234 0.081525804 

1995:Q2 9271 1313 772 0.141244 0.587966489 0.083270413 

1995:Q3 9117 1336 781 0.146539432 0.584580838 0.085664144 

1995:Q4 8989 1329 793 0.147847369 0.59668924 0.088218934 

1996:Q1 8900 1305 786 0.146629213 0.602298851 0.088314607 

1996:Q2 8792 1266 764 0.14399454 0.603475513 0.086897179 

1996:Q3 8684 1274 753 0.146706587 0.591051805 0.086711193 

1996:Q4 8621 1272 757 0.147546688 0.595125786 0.087808839 

1997:Q1 8531 1271 758 0.148986051 0.596380803 0.088852421 

1997:Q2 8423 1263 727 0.149946575 0.575613618 0.086311291 

1997:Q3 8341 1268 697 0.152020141 0.549684543 0.083563122 

1997:Q4 8243 1278 696 0.155040641 0.544600939 0.084435278 

1998:Q1 8121 1271 696 0.156507819 0.547600315 0.085703731 

1998:Q2 8060 1279 688 0.158684864 0.53792025 0.085359801 

1998:Q3 7986 1269 683 0.15890308 0.53821907 0.085524668 

1998:Q4 7846 1267 677 0.161483559 0.53433307 0.086286006 

1999:Q1 7782 1241 680 0.159470573 0.547945205 0.087381136 

1999:Q2 7738 1248 666 0.161281985 0.533653846 0.086068752 
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1999:Q3 7676 1241 659 0.161672746 0.531023368 0.085852006 

1999:Q4 7621 1238 662 0.162445873 0.534733441 0.086865241 

2000:Q1 7576 1230 638 0.162354805 0.518699187 0.084213305 

2000:Q2 7511 1240 642 0.1650912 0.517741935 0.085474637 

2000:Q3 7398 1246 637 0.168423898 0.511235955 0.086104353 

2000:Q4 7303 1267 639 0.173490346 0.504340963 0.087498288 

2001:Q1 7223 1274 631 0.176381005 0.495290424 0.087359823 

2001:Q2 7175 1285 645 0.179094077 0.501945525 0.08989547 

2001:Q3 7125 1303 644 0.182877193 0.494244052 0.090385965 

2001:Q4 7023 1321 654 0.188096255 0.495079485 0.093122597 

2002:Q1 6963 1305 637 0.187419216 0.488122605 0.091483556 

2002:Q2 6899 1312 638 0.190172489 0.486280488 0.092477171 

2002:Q3 6827 1333 649 0.195254138 0.486871718 0.095063718 

2002:Q4 6748 1343 660 0.199021932 0.491437081 0.097806758 

2003:Q1 6707 1357 658 0.202325928 0.484893147 0.098106456 

2003:Q2 6630 1378 677 0.207843137 0.491291727 0.102111614 

2003:Q3 6584 1395 682 0.211877278 0.488888889 0.103584447 

2003:Q4 6538 1397 674 0.213673906 0.482462419 0.10308963 

2004:Q1 6493 1377 677 0.212074542 0.491648511 0.104266133 

2004:Q2 6447 1396 674 0.216534822 0.482808023 0.104544749 

2004:Q3 6386 1408 677 0.220482305 0.480823864 0.106013154 

2004:Q4 6331 1414 686 0.223345443 0.485148515 0.10835571 

2005:Q1 6281 1432 675 0.227989174 0.471368715 0.107466964 
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2005:Q2 6196 1466 672 0.236604261 0.458390177 0.108457069 

2005:Q3 6193 1466 666 0.236718876 0.454297408 0.107540772 

2005:Q4 6122 1496 683 0.244364587 0.456550802 0.111564848 

2006:Q1 6070 1503 683 0.247611203 0.454424484 0.112520593 

2006:Q2 6132 1503 692 0.245107632 0.460412508 0.11285062 

2006:Q3 6102 1499 694 0.245657162 0.462975317 0.113733202 

2006:Q4 6020 1518 700 0.252159468 0.46113307 0.11627907 

2007:Q1 5988 1522 699 0.254175017 0.459264126 0.116733467 

2007:Q2 5977 1496 704 0.250292789 0.470588235 0.117784842 

2007:Q3 5944 1480 699 0.248990579 0.472297297 0.117597577 

2007:Q4 5918 1480 699 0.250084488 0.472297297 0.118114228 

2008:Q1 5890 1464 695 0.248556876 0.474726776 0.117996604 

2008:Q2 5864 1461 679 0.24914734 0.464750171 0.115791269 

2008:Q3 5801 1464 678 0.252370281 0.463114754 0.116876401 

2008:Q4 5654 1506 712 0.266360099 0.472775564 0.125928546 

2009:Q1 5577 1509 719 0.270575578 0.476474486 0.12892236 

2009:Q2 5551 1495 714 0.269320843 0.477591973 0.128625473 

2009:Q3 5470 1499 701 0.274040219 0.467645097 0.128153565 

2009:Q4 5427 1495 690 0.275474479 0.461538462 0.127142067 

2010:Q1 5339 1488 695 0.278703877 0.467069892 0.13017419 

2010:Q2 5280 1459 682 0.276325758 0.467443454 0.129166667 

2010:Q3 5231 1451 682 0.277384821 0.470020675 0.130376601 

2010:Q4 5198 1401 682 0.269526741 0.486795146 0.131204309 
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