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ABSTRACT 

 

 

General Coupon Collecting Models and Multinomial Games 

 

 

by 

 

 

James Y. Lee 

 

Hokwon Cho, Ph.D., Examination Committee Chair 

Associate Professor of Mathematical Sciences 

University of Nevada, Las Vegas 

 

 

 The coupon collection problem is one of the most studied problems in statistics. It 

is the problem of collecting r (r<∞) distinct coupons one by one from k different kinds 

(k<∞) of coupons. We note that this is equivalent to the classical occupancy problem 

which involves the random allocation of r distinct balls into k distinct cells. Although the 

problem was first introduced centuries ago, it is still actively investigated today. Perhaps 

its greatest feature is its versatility, numerous approaches, and countless variations. For 

this reason, we are particularly interested in creating a classification system for the many 

generalizations of the coupon collection problem. In this thesis, we will introduce models 

that will be able to categorize these generalizations. In addition, we calculate the waiting 

time for the models under consideration. Our approach is to use the Dirichlet Type II 

integral. We compare our calculations to the ones obtained through Monte Carlo 

simulation. Our results will show that our models and the method used to find the waiting 

times are ideal for solving problems of this type.      
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation of the Problem 

 The coupon collecting problem is one of the most well known problems among 

probability and statistics. It has been studied extensively ever since it was first formulated 

by many mathematicians and statisticians (Hald, 1984). It is still actively studied. We 

assume that there are k (<∞) distinct coupons to collect and the probability of collecting a 

coupon of type i (i = 0,1,…,k) is non-zero, and coupons are obtained one at a time. We 

are interested in the waiting time that represents the number of coupons until we have 

collected one of each. Generalizations of this problem include collecting a subset, 

collecting at least two of each coupon, and many others. The goal of this thesis is to 

classify or model these generalizations into more detailed and appropriate categories. In 

addition, we will find the expected waiting time to collect the coupons for each model we 

introduce.  

 The coupon collection problem can be explained via a multinomial distribution. In 

general, the waiting time of a sequential decision problem such as the coupon collection 

problem can be found using the incomplete Dirichlet integrals. We will use Monte Carlo 

simulation and compare these to the expected waiting time.   

 

1.2 Assumptions and Definitions 

 Suppose that there are k (<∞) distinct types of coupons to collect. Denote the 

probability of collecting a coupon of type i by pi, where 
1

1.
k

ii
p


  Then a complete set 

refers to all k distinct objects in the set. A subset is any part of the complete set. A 



2 

singleton is an object that appears once and only once in the set. For example, if we roll a 

fair six-sided die, then the best case scenario would be to see all six faces of the die 

exactly once. Any extra object beyond the complete set is referred to as a surplus. 

 

1.3 Some Important Probability Distributions 

 In this section, we introduce some important probability distributions. 

 

Definition 1.3.1 (Binomial Distribution) A random variable X is said to have a binomial 

probability distribution with parameters (n,p) if the probability mass function is given by:  

 

(1 ) , 0,1,...
( )

0,  otherwise.

m n m
n

p p m n
P X m m


 

  
   




                               (1.1) 

  

We denote this by ~X  Bin(n,p), and 

 

( ) ,  and ( ) (1 ).E X np Var X np p    

 

Definition 1.3.2 (Multinomial Distribution) The Multinomial distribution is a 

generalization of the binomial distribution. Consider n independent trials ( )n   , where 

each trial results in one of k mutually exclusive outcomes, and each outcome has a 

probability ip  of occurring, where 
1

1
k

ii
p


 and 0 1,  = 1,..., .ip i k 

 
Let Yi,n be the 

number of outcomes falling in cell i (1 ≤ i ≤ k) after n observations. It follows that 
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0 ≤ Yi,n ≤ n and 
,1

.
k

i ni
Y n


   Then a random vector Y is said to have the multinomial 

probability mass function  

 

1 2

1 1 1 2

1 2

!
( ,... ) ... .

! !... !
   kxx x

k k k

k

n
P Y y Y y p p p

y y y                                (1.2)  

 

with parameters n and p = (p1 ,…,pk ).  

 

Definition 1.3.3 (Beta Distribution) The Beta distribution is a continuous distribution 

with the probability distribution function 

 

1 11
(1 ) ,  0 1,  0,  0

( , )( | , )

0,  elsewhere,

x x x
Bf x

   
  

 
    

 

             (1.3)

 

 

where ( , )B    represents the beta function,  

 

1

1 1

0

( , ) (1 ) ,     B x x dx  

 

and  

 

2
[ ] ,  and [ ]

( ) ( 1)
E X Var X

 

     
 

   
.
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 The Beta distribution is closely related to the binomial distribution.  The role of 

the random variable is reversed in the binomial and the beta distribution. Second, 

consider a problem of the following: let ~ ( , )X Bin n p  and we wish to calculate 

( ) or ( ),P X m P X m  such that we have  

 

( ) 1 ( ) (1 ) .
n

m n m

k m

n
P X m P X m p p

m





 
      

 


                      (1.4)

 

 

 For large values of m and n, the computation is difficult to perform. However, note that 

we can do the following: 

 

1

0

!
(1 ) (1 ) .

( 1)!( )!

pn
k n k m n m

k m

n n
p p x x dx

m m n m

  



 
   

  
 

              (1.5) 

Thus the binomial pdf can be calculated using the beta function. Note that replacing p 

with x and n,n-m with α-1, β-1 is the Bin (n,p) distribution. That is, Beta (α-1,β-1) is 

equivalent to Bin (n,p).

 

 

Definition 1.3.4 (Dirichlet Distribution) Let 1 2 1, ,..., 0.k     A random vector 

1 2( , ,..., )kX X XX is said to have a Dirichlet probability distribution with parameters 

(
1 2 1, ,..., k   

) if the joint probability distribution function of X is given by:    
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11 1 111 1
1 1

1 11

( ... )
(1 ) , 0,

( ) ( )( ,..., )

0,elsewhere,

 




  
  

  



k k
kv vvk

k i ii
kx k

v v
x x x

v vf x x

              (1.6) 

 

We denote the Dirichlet distribution by 1 2 1( , ,...; ).kD     
When k = 1, Eq. (1.6) reduces 

to ( , ),1 2D v v  which is the beta ( 1 2,  ) distribution. Hence the Dirichlet distribution is a 

multivariate generalization of the beta distribution. It is interesting to note that the 

Dirichlet distribution is the conjugate prior of the multinomial distribution in Bayesian 

setting.  

The incomplete Dirichlet integrals of type I and type II are generalizations of the 

incomplete beta function (in 1-dimension): 

 

1
/

1 1

0 0

( ) ( )
( , ) (1 ) ,

( ) ( ) ( ) ( ) (1 )

r
p p q

r s

p r s

r s r s y dy
I r s x x dx

r s r s y


 



   
  
     

               (1.7)                                        

 

where 0 ≤ p ≤ 1 and q = 1- p.  

For b ≥ 2 dimensions, the first integral in Eq. (1.7) is called the Dirichlet integral of Type 

1. It is defined by the following b-dimensional integral: 

 

( )

( )

( 1)
( , ) ... (1 ... ) ,

( ) ( 1 )

b
p p

b n br r

p b i ib
i

n
I r n x x x dx

r n br

 



 
   
   

 
1

1
0 0

1             (1.8)
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where 0 ≤ p ≤ 1/b,  n ≥ rb. We can see that when b = 1, we arrive at the first integral in 

Eq. (1.7). When b = 2 , we can use the Type I integral to sum either tail of the binomial or 

negative binomial distribution. For more than two it gives rise as special case to the 

distribution of the minimum frequency in the multinomial.  

 The second integral in Eq. (1.7) can also be generalized for b ≥ 2 dimensions. 

These are the Dirichlet integrals of Type II. The C integral is the lower –tail form and is 

given by 

 

1

( ) 1

10 0

( )
( , ) ... ,

( ) ( ) (1 ... )

b
r

a a i i
b i

a b m br

b

x dx
m br

C r m
r m x x







 

    


 

                   (1.9) 

 

where a ≥ 0, b is an integer and m, b, and r are all positive. The D integral is the upper-

tail form and is given by 

  

1

( ) 1

1

( )
( , ) ... .

( ) ( ) (1 ... )

b
r

i i
b i

a b m br

ba a

x dx
m br

D r m
r m x x


 





 

    


 

                   (1.10) 

 

Note that in both cases if we set b = 1 then the C and D integrals are reduced to the 

second integral in Eq. (1.7). In two dimensions, the C and D functions can be used for the 
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tail of the negative binomial distribution, and for b ≥ 2 they represent the tails of of the 

negative multinomial distribution.  They can be applied to the area of ranking and 

selection problems. They can also be applied to finding probabilities associated with 

counting cell problems.  The Type I and Type II integrals can be used to calculate the 

waiting time for counting cell problems. The Type I integral would be used when the 

number of cells is fixed. The Type II integral would be used in a sequential sampling 

scheme where the number of cells is not fixed in advance. For the coupon collection 

problem and for this thesis, we are dealing only with the Type II integral. For more 

applications using the Dirichlet integrals, see Sobel, Uppuluri, and Frankowski, 1985. 
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CHAPTER 2 

COUPON COLLECTING MODELS 

2.1 The Coupon Collection Problem 

 The coupon collection problem was essentially first seen in literature in 1708 

when introduced by the French mathematician De Moivre (Hald, 1984). Since then, the 

coupon collection problem has gone by many different names. One might have seen it as 

the occupancy or urn problem, the random allocation problem, or the birthday problem 

(Holst, 1986). The basis of these problems is the same. Suppose an urn contains r 

different balls, and balls are drawn with replacement until k balls have been drawn at 

least m times each. Let n equal the number of balls drawn. The coupon collection 

problem deals with the number of balls drawn until k different balls have been drawn. 

The occupancy problem finds the number of balls drawn after n draws have been made. 

The random allocation of cells involves placing n balls independently into r cells. The 

birthday problem seeks to find how many people are needed to get a duplication of 

birthdays (letting r equal 365 and the balls as days of the year). One can see that these 

problems are equivalent! Many attempts have been made to calculate the waiting times 

using different methods. Feller (1950) showed that simple combinatorics could be used to 

solve the birthday problem. Johnson and Kotz (1977) calculated the waiting time for the 

coupon collection problem applying Stirling numbers of the second. Kolchin, et al (1978) 

used generating functions to find the waiting time. Holst (1986) took the approach of 

using the Poisson process to calculate the waiting time. He also introduced asymptotic 

results in the same paper. These results form the classical coupon collection problem, 

where coupons are collected one at a time, and the probability of collecting a coupon of 
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any type is uniform. There are, however, many other variations of the problem. Von 

Schelling (1934) calculated the waiting time when the probability of collecting each 

coupon was not uniform. Norman and Shepp (1960) calculated the waiting time to collect 

two complete sets of coupons. Stadje (1990) found the waiting time when collecting 

multiple coupons at once. More recently, Chang and Ross (2007) showed that the Poisson 

Process could be used to determine the waiting time for collecting multiple subsets of 

coupons. May (2008) used generating functions to find the waiting time for collecting 

quotas of coupons.  

   

2.2 Formulation of Basic Models 

 We can see that there are many variations of the coupon collection problem. What 

if we were to establish some sort of order to the problem? Imagine a system where we 

can classify any statistical game and/or process into one of the models. This would 

simplify the problem greatly and set up a common structure that can be used by any 

interested individuals. This thesis is the first attempt to formally organize the coupon 

collection problem into its various. In addition, we will use one singular approach the 

find the expected waiting time. This will further simplify the problem. Our approach is to 

use the Dirichlet distributions. First, we investigate the cell configuration in our models. 

These will provide the basic structure of our models.  

2.2.1 Cell Configuration in a Multinomial Model 

 A multinomial model involves collecting r coupons from a set of k coupons. 

Suppose we assume that all k coupons have the same probability of being selected, pi = 

1/k, i = 1, 2,…, k. This is referred to as the Equal Probable Configuration, or EPC (Cho, 
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2003). For example, consider a problem of tossing a fair six-sided die. One wishes to 

know the expected number of rolls until all six faces of the die appear at least once. This 

is equivalent to the classic coupon collection problem! Note that the die is rolled only 

once each time, and that the probability of rolling any single number is the same for all 

numbers. Figure 2.1 gives the cell configuration and probabilities for this scenario. 

 

 

1/6 1/6 1/6 1/6 1/6 1/6                            

6 cells 

     Figure 2.1. Cell structure and probabilities for 6 cells under the EPC. 

 

 

 For the general case under the EPC with n coupons, the probability of obtaining a 

couple of type i, pi, where i = 1, 2, … k, is 1/k. Figure 2.2 gives the cell configuration and 

probabilities for k cells under the EPC. 

 

 

1/k 1/k 1/k 1/k  …  1/k                        

                                                                    k cells 

Figure 2.2 Cell structure and probabilities under the EPC for k cells.
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 The second configuration is the Single Slippage Configuration, or SSC (Cho, 

2010). Consider the ordered cell probabilities p[1] < p[2] = … = p[k-1] = p[k], where p[j] 

represents the jth ordered cell probability, j = 1, 2, …, k. Slippage occurs when the cell 

probabilities are not all equally likely. We denote the slippage by Δ, where p[1] = p[j] – Δ,  

j = 1, 2, …, k.  Hence in the single slippage model, one of the cell probabilities is 

different from all the others. The difference in probability between this smallest cell and 

all other cells is defined as slippage. It should be that a coupon with the smallest 

probability, p[1], plays a major role to determine the waiting time N. We will show that as 

p[1] decreases, N increases 

 For example, consider a loaded 6-side die, where the probability of rolling one of 

the numbers, say 1, is ε, while the probability of rolling any of the remaining five 

numbers is the same. Figure 2.3 gives the cell configuration and probabilities for single 

slippage for k = 6 with one cell, where ε = 1/10.  

 

 

9/50 9/50 9/50 9/50 9/50                                1/10    

                   5 cells                                1 cell 

Figure 2.3 Single slippage configuration with one cell for k = 6, Δ = 4/50. 
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 In general, the SSC for k +1 cells has p[1] = ε ( > 0), with all other cells having 

equal probability of being selected. Figure 2.4 gives the cell configuration and 

probabilities for single slippage with one cell under general conditions.  

 

 

(1− ε)/k (1− ε)/k (1− ε)/k …  (1− ε)/k                                              ε                

                                                              k cells                                          1 cell 

Figure 2.4 Single slippage configuration with one cell, Δ = [1 – ε(1+k)] / k. 

 

 

 Since the smallest cell probability, p[1], is less than or equal to the probability of 

any other cell, it must be that when k ≤ 10, Δ must be less than 1/10. If Δ = 1/10 then the 

configuration is the EPC. Similarly, when k ≤ 20, Δ must be less than 1/20, etc… 

 It may also be  that more than one cell shares this slippage property. It is still 

considered single slippage. Figure 2.5 gives the cell configuration and probabilities when 

k = 6. 

 

 

1/5 1/5 1/5 1/5                    1/10 1/10            

             4 cells                            2 cells 

Figure 2.5 Single slippage with two cells (k = 6, Δ = 1/10). 
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 Finally, the third configuration is the Multiple Slippage Configuration, or MSC 

(Cho, 2010). In this scenario, there is more than one slippage in the configuration. 

Consider the ordered cell probabilities p[1] =...= p[j] < p[j+1] = … p[l]  < p[l + 1] =...= p[k]. 

Note that when k = l, the MSC reduces to the SSC. Again, the cells that have lower 

slippage properties play a major role in determining the waiting time N. Figure 2.6 gives 

the cell configuration and probabilities for double slippage when k =6. 

 

 

17/80 17/80 17/80 17/80                            1/10       1/20    

                                                      4 cells                             1 cell      1 cell 

Figure 2.6 Double slippage with one cell each; Δ1 = 1/20, Δ2 = 9/80. 

 

 

 It is generally the case that in the MSC, more than one cell shares the slippage 

property. Consider Figure 2.7 for the case when k = 6. 

 

 

1/4 1/4 1/4               1/10 1/10              1/20    

                                              3 cells        2 cells   1 cell 

Figure 2.7 Double Slippage under OMM for MSC; Δ1 = 1/20, Δ2 = 3/20. 
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2.2.2 One Multinomial Model 

 We now introduce the One Multinomial Model, or OMM, where coupons are 

drawn from a single set.  For example, collecting a set of baseball cards, or cards from a 

deck, or game pieces of a popular board game. In this model, the configuration of the cell 

probabilities of obtaining each coupon in the set will come from either the EPC, SSC, or 

MSC.  

2.2.3 Compound Multinomial Model 

 Consider a scenario where coupons are collected from different sets. We call this 

the Compound Multinomial Model, or CMM. For example, suppose we are tossing two 

dice simultaneously and we are interested in seeing the face numbers at least once 

regardless of which die it is on. Similarly, suppose we  are collecting football cards and 

baseball cards. The setup is as follows. Supposed we have k distinguishable types of 

coupons, where P(coupon of type i) = pi, i = 1,2,…,k, and 
1

k

ii
p

 =1, and more generally, 

1

k

ii
p

 ≤ 1. 

 Let Ci denote the number of coupons of type i, i = 1,2,…,k, (k < ∞). Let 

1

k

ii
N C


  be the total number of distinct coupons among the k types, which may 

include types not being collected. Then E(WT) = E(WT1) + E(WT2).  

2.2.4 Customer’s Choice Model 

 The Multinomial Models mentioned previously share the idea that one complete 

set must be collected. However, it may not always be desirable to collect a complete set. 

Perhaps we want to collect the basketball cards of only our favorite players. We call this 

subset selection. Or maybe we would like to collect two complete sets of coupons. Also 
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consider the scenario where we only want one coupon in the whole set. For this reason, 

we call this category the Customer Choice Model. This is more of an umbrella model as 

it covers scenarios where we are not collecting complete sets. 

 A more flexible way to represent the expected waiting time under the CCM is by 

E(WT|Si), where Si is a subset of the set of coupons S, i = 1,2,…, k. Consider the 

following; suppose one wants to see all sides of each of several type of dice, and we 

assume that we have one of each type. However, it may be that one can be tossing them 

separately, and the player decides which one to toss. Or, it may be that the player tosses 

one of each type simultaneously. Also consider the scenario where the player tosses the 

dice separately with a random mechanism for selecting the type of die to be tossed. The 

expected waiting time would  fall under the CCM. This type of problem can be related to 

various waiting time problems where the die represents different sets of coupons and the 

faces represent the coupons to be collected. 

 Similarly, consider the problem of observing the faces of die regardless of which 

die it is on; here we toss the dice simultaneously so that we can observe two more 

different numbers (i.e. faces of the die) in one toss.  



16 

CHAPTER 3 

EXPECTED WAITING TIMES 

 In this chapter, we calculate the expected waiting times for each model under 

consideration. We determine how many coupons we need to collect in order to have a 

complete set. It is important to note that in our models the coupons are collected one at a 

time. Since we do not know in advance how many we need to collect, we continue until 

we have achieved our goal. This is called an inverse type sequential sampling scheme. 

Hence we can use the Dirichlet Type II integral to calculate the expected waiting times. 

In the scenario where the number of coupons to be collected are fixed, we use the 

Dirichlet Type I integral. 

 

3.1 E[WT] for the Classic Coupon Collection Problem 

 In the classic case, there are k coupons to collect, each with equal probability of 

being selected. From elementary probability theory, the expected waiting time E(WT) is 

given by  

 

E(WT) = 
1 1 1

(1 ... )
2 3

k
k

     ,                                          (3.1) 

 

and can also be approximated by  

 

E(WT) ≈ (log  ),k k                                                       (3.2) 
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where 0.57721566  is Euler’s constant.  

 We can also make the best use of the Dirichlet Type II C-Integral to arrive at the 

same answer. The beta distribution can be used to calculate the lower and upper tail 

probabilities of the binomial distribution. In the same way, the Dirichlet Type II integral 

can be used to calculate the lower and upper tail of the multinomial distribution. In fact, 

the C integral, which we use here, is used to calculate the probability that the last coupon 

reaches its quota. Using the r
th

 ascending factorial moment given in Sobel et al (1977), 

we can obtain the first two moments of the waiting time, E(WT) and E(WT
2
).  

 

[ ] ( 1)( )
( , ),

( )

b

a

b r
C r r

r p






  

 
                                         (3.3)

 

 

where b is the number of cells, r is the common quota, a = 1, and the C-integral is the 

same as introduced before. The first ascending factorial moment when γ = 1 is the mean 

μ, and the variance can be obtained from the relation 

 

2 [2] ( 1).                                                     (3.4) 

 

For example, under the Equal Probable Configuration with b = 6, γ = 1, a =1 and r =1, 

the first factorial moment (and hence also the expected waiting time) becomes 
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1 1 1 1 1

[1] 1 2 3 4 5

5 7

1 2 3 4 50 0 0 0 0

6 (2) (7)

1 (1) (2) (1 )
(1)

6

dx dx dx dx dx

x x x x x


 


      


    

 

 

The result is 14.6998. Note that if we used Eq. (3.1) then the result is 14.7. This agrees 

with the expected value obtained using the Dirichlet integral! An approximation using Eq. 

(3.2) gives 14.2138. To calculate the variance, we first need to calculate the second 

ascending factorial moment.  

 

1 1 1 1 1

[2] 1 2 3 4 5

2 5 8

1 2 3 4 50 0 0 0 0

6 (3) (8)
.

(1)(1/ 6) (1) (3) (1 )

dx dx dx dx dx

x x x x x


 

             

 

The result is 269.78. Now we can find the variance using Eq. (3.2): 

 

2 [2] [1] [1](1 ) 38.99.        

 

The D integral, which we do not use, can be used to calculate the expected waiting time 

until the first cell reaches its quota. We simply replace the C integral with the D integral 

in the ascending factorial.  

The following table gives the waiting times for collecting one complete set of coupons, 

where the number of coupons in the set range from 2 to 20. Their corresponding standard 

deviations are also given. The cell configuration is the Equal Probable Configuration.  
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Table 3.1: Expected Waiting Time for OMM under EPC 

# of coupons Cell Configuration E(WT) Stdev 

2 (1/2,1/2) 3.0000 1.4142 

3 (1/3,1/3,1/3) 5.5000 2.4898 

4 (1/4,1/4,1/4,1/4) 8.3331 3.8007 

5 (1/5,1/5,…..,1/5) 11.4180 5.0161 

6 (1/6,1/6,…….,1/6) 14.6998 6.2442 

7 (1/7,1/7,………,1/7) 18.0280 7.6173 

8 (1/8,1/8,………..,1/8) 21.7428 8.7185 

9 (1/9,1/9,……….…,1/9) 25.4607 9.9629 

10 (1/10,1/10,……….,1/10) 29.2896 11.2110 

12 (1/12,1/12,……..…,1/12) 37.2385 13.7156 

15 (1/15,1/15,…………..1/15) 49.7734 17.4878 

20 (1/20,1/20,……………,1/20) 71.9547 23.8015 

 

 

As the number of coupons increases, the expected waiting time also increases. Similarly, 

the standard deviation of the waiting time also increases.  

 

3.2 E[WT] for Basic Models 

 We are interested in the waiting times for models when the probabilities are non-

uniform, such as in the slippage case. We can use the r
th

 ascending factorial moment 
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again to calculate the waiting times, but it is in a different from than in the EPC case. It is 

as follows: 

 

[ ] ( 1)

1

( )
( , )

( )

b
b

a

r
C r r

r p 

 
 

  


 



 
 


 ,                         (3.5) 

 

where the C integral is as above, and 

 

1 1 1( ,..., , ,..., )bp p p p
a

p p p p

 


   

 

                               (3.6) 

 

represents the ratio of the cell probabilities. In the EPC case, since the probability of 

collecting any coupon in the set is the same, a was simply 1 and it was not necessary to 

represent a as a vector. Now, a is a vector because the probabilities are not all uniform.  

In this thesis, we have calculated the single slippage case. Consider the configuration 

where k = 2, p[1] = 1/10, and p[2] = 9/10. The first ascending factorial moment would be of 

the form 

 

9 1/9
[1] 1 1

3 30 0
1 1

(2) (3) (2) (3)

(1)(1/10) (1) (2) (1 ) (1)(9 /10) (1) (2) (1 )

dx dx

x x


   
 
         . 

 

The answer is 10.1110.  The following table gives the expected waiting time for single 

slippage with one cell. When k is less than or equal to ten, the smallest cell probability is 
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equal to 1/10. The slippage values are also given. It represents the difference between the 

smallest cell probability and the probability of collecting any of the other k - 1 coupons in 

the set (since the probability of collecting any of the remaining k – 1 coupons is uniform). 

 

 

Table 3.2: Expected Waiting Time for OMM under SSC (p[1] = 1/10) 

# of coupons Cell Configuration Slippage E(WT) Stdev 

2 (1/10,9/10) 4/5 10.1110 9.4106 

3 (1/10,9/20,9/20) 7/20 10.6969 8.9966 

4 (1/10,3/10,3/10,3/10) 1/5 11.8970 8.4725 

5 (1/10,9/40,9/40,…,9/40) 1/8 13.7001 8.0662 

6 (1/10,9/50,9/50,..…,9/50) 4/50 16.0320 7.9864 

8 (1/10,9/70,9/70,….…,9/70) 2/70 22.0231 9.4094 

10 (1/10,1/10,………...…,1/10) 0 29.2896 11.2110 

 

 

As the number of coupons increases, the value of the slippage decreases. For k = 10, there 

is no slippage. This configuration falls under the EPC!  

What would happen if the smallest cell probability is smaller than 1/10? Table 3.3 gives 

the expected waiting time for single slippage, but now we see that the smallest cell 

probability is 1/20.  



22 

Table 3.3: Expected Waiting Time for OMM under SSC (p[1] = 1/20) 

# of coupons Cell Configuration Slippage E(WT) Stdev 

2 (1/20,19/20) 9/10 20.0526 19.4436 

3 (1/20,19/40,19/40) 17/40 20.3483 19.2323 

4 (1/20,19/60,19/60,19/60) 4/15 20.9979 18.7457 

5 (1/20,19/80,19/80,…,19/80) 3/16 22.0415 18.0489 

 

 

We observe that as the smallest cell probability decreases, the expected waiting time 

increases. If we are collecting two complete sets under the EPC, we use Eq. (3.1) again, 

but in this case r = 2. The calculation becomes only a little more complicated.  

 

 

Table 3.4: Expected Waiting Time for OMM under the EPC, 2 Complete Sets 

# of coupons Cell Configuration E(WT) Stdev 

2 (1/2,1/2) 5.500 1.3426 

3 (1/3,1/3,1/3) 9.6357 3.2557 

4 (1/4,1/4,1/4,1/4) 14.1926 4.0767 

5 (1/5,1/5,….…,1/5) 19.0413 6.1056 

6 (1/6,1/6,………,1/6) 24.1338 7.5425 

10 (1/10,1/10,…….,1/10) 46.2295 13.3007 
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CHAPTER 4 

SUMMARY AND CONCLUSION 

4.1 Monte Carlo Simulation 

 We carry out Monte Carlo simulation to verify our models. The results of the 

simulation for some of our models are given in the following tables. Table 4.1 gives the 

results for the One Multinomial Model under the Equal Probable Configuration. The 

average stopping time is given by E(WT), which is the expected waiting time, and it’s 

variability is given as the standard error, denoted by S.E.  The standard error is the 

standard deviation divided by the number of simulations. Calculations were performed 

for k = 2 to 20, where each row is based on 10000 experiments.  

 

 

Table 4.1: One Multinomial Model, EPC 

# of coupons Cell Configuration E(WT) S.E. 

2 (1/2,1/2) 3.0243 0.0145 

3 (1/3,1/3,1/3) 5.4784 0.0261 

4 (1/4,1/4,1/4,1/4) 8.3468 0.0376 

5 (1/5,1/5,…..,1/5) 11.4323 0.0509 

6 (1/6,1/6,…...,1/6) 14.7326 0.0634 

7 (1/7,1/7,…….,1/7) 18.0971 0.0741 

8 (1/8,1/8,……...,1/8) 21.7320 0.880 

9 (1/9,1/9,………,1/9) 25.6202 0.0993 

10 (1/10,1/10,……,1/10) 29.1361 0.1113 
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11 (1/11,1/11,……,1/11) 33.2630 0.1236 

12 (1/12,1/12,…….,1/12) 37.2011 0.1375 

13 (1/13,1/13,……..,1/13) 41.4696 0.1493 

14 (1/14,1/14,………,1/14) 45.5014 0.1601 

15 (1/15,1/15,……….,1/15) 49.9203 0.1800 

16 (1/16,1/16,……..…,1/16) 54.2025 0.1872 

17 (1/17,1/17,…………,1/17) 58.6064 0.2011 

18 (1/18,1/18,………….,1/18) 62.6443 0.2073 

19 (1/19,1/19,………..…,1/19) 67.1957 0.2238 

20 (1/20,1/20,……………,1/20) 71.7870 0.2378 

 

 

 These values are very close to the exact values which we calculated using the 

Dirichlet integrals. We observe that as the number of cells increases, so too does the 

expected waiting time. This is important in our discussion as we have shown that our 

simulation provides an accurate validation of our computed results. 

 The following table represents the simulation results under the Single Slippage 

Configuration. For k from 1 to 10, the smallest cell probability is 1/10. For k from 11 to 

20, the smallest cell probability is 1/20. The average stopping time, the slippage in the 

cell configuration, and standard errors are also given, where each row is based on 10000 

experiments. 
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Table 4.2: One Multinomial Model, SSC 

# of coupons Cell Configuration Slippage E(WT) S.E. 

2 (1/10,9/10) 4/5 10.1960 0.0949 

3 (1/10,9/20,9/20) 7/20 10.7986 0.0895 

4 (1/10,3/10,3/10,3/10 1/5 11.9805 0.0863 

5 (1/10,9/40,……,9/40) 1/8 13.6515 0.0796 

6 (1/10,9/50,…..….,9/50) 2/25 15.9404 0.0789 

7 (1/10,3/20,………..,3/20) 1/20 18.8859 0.0840 

8 (1/10,9/70,…….……,9/70) 2/70 22.1072 0.0899 

9 (1/10,9/80,……..…..…,9/80) 1/80 25.63847 0.1014 

10 (1/10,1/10,…………...…,1/10) 0 29.1685 0.1121 

11 (1/20,19/200,19/200,…,19/200) 9/200 36.0395 0.1596 

12 (1/20,19/220,19/220,…,19/220) 2/55 39.2519 0.1591 

13 (1/20,19/240,19/240,…,19/240) 7/240 43.0009 0.1689 

14 (1/20,19/260,19/260,…,19/260) 3/130 46.4897 0.1714 

15 (1/20,19/280,19/280,…,19/280) 1/56 50.6792 0.1802 

16 (1/20,19/300,19/300,…,19/300) 1/75 54.4838 0.1917 

17 (1/20,19/320,19/320,…,19/320) 3/320 58.7457 0.2014 

18 (1/20,19/340,19/340,…,19/340) 1/170 63.0875 0.2134 

19 (1/20,19/360,19/360,…,19/360) 1/360 67.1244 0.2272 

20 (1/20,1/20,………………,1/20) 0 72.0891 0.2376 
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 Under this more likely scenario, as the slippage value increases, so too does the 

expected waiting time. In short, the waiting time depends on the smallest cell probability. 

Note that when k = 10 and when k = 20, the configuration is the Equally Likely 

Configuration. Another feature of the OMM under the SSC reveals that as the number of 

coupons increases, the slippage decreases. Thus, when we compare the expected waiting 

time of the SSC to the EPC, we note that the waiting times will eventually converge as 

the number of coupons increases. 

 Table 4.3 gives the results when the smallest cell probability is 1/20 for k from 2 

to 5. As the smallest cell probability decreases, the expected waiting time increases. 

Table 4.4 gives the expected waiting time under the EPC for collecting two complete sets. 

 

 

Table 4.3: One Multinomial Model, SSC 

# of coupons Cell Configuration Slippage E(WT) S.E. 

2 (1/20,19/20) 9/10 19.8218 0.1937 

3 (1/20,19/40,19/40) 17/40 20.6559 0.1954 

4 (1/20,19/60,…,19/60) 4/15 20.9611 0.1897 

5 (1/20,19/80,…….,19/80) 3/16 22.1296 0.1836 

6 (1,20,19/100,……..,19/100) 7/50 23.4503 0.1729 

8 (1/20,19/140,…….…,19/140) 3/35 27.6800 0.1657 

10 (1/20,19/180,…………,19/180) 1/18 32.8003 0.1571 
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Table 4.4: One Multinomial Model under EPC, 2 complete sets 

# of coupons Cell Configuration E(WT) S.E. 

2 (1/2,1/2) 5.4983 0.0180 

3 (1/3,1/3,1/3) 9.6342 0.0329 

4 (1/4,1/4,1/4,1/4) 14.1858 0.0471 

5 (1/5,1/5,…..,1/5) 19.1057 0.0613 

6 (1/6,1/6,……,1/6) 24.0318 0.0745 

7 (1/7,1.7,…….,1.7) 29.4078 0.0741 

8 (1/8,1.8,…..…,1.8) 35.0712 0.1052 

9 (1/9,1/9,………,1/9) 40.4835 0.1187 

10 (1/10,1/10,……,1/10) 46.1340 0.1328 

11 (1/11,1/11,….…,1/11) 52.2246 0.1486 

12 (1/12,1/12,…..…,1/12) 58.1540 0.1629 

13 (1/13,1/13,……..,1/13) 64.2499 0.1770 

14 (1/14,1/14,………,1/14) 70.3018 0.1923 

15 (1/15,1/15,……….,1/15) 76.1953 0.2026 

16 (1/16.1/16,…………,1/16) 82.7703 0.2165 

17 (1/17,1/17,………….,1/17) 88.7004 0.2294 

18 (1/18,1/18,…………..,1/18) 95.6422 0.2462 

19 (1/19,1/19,…………….,1/19) 101.8835 0.2587 

20 (1/20,1/20,……………..,1/20) 108.8387 0.2776 
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4.2 Summary of Results 

 These results will prove useful when faced with a situation that mirrors the 

coupon collection problem. The method used to calculate the waiting times present 

another means on top of the ones already discovered. We do not wish to compare our 

methods; instead, we show the versatility of the coupon collection problem and its many 

approaches.  

 We can compare the EPC for the One Multinomial Model compared to the 

Customer Choice Model of obtaining two complete sets. For example, say one would like 

to collect two complete sets under the OMM as opposed to simply collecting two 

complete sets under the Customer Choice Model. Note that these are different problems. 

By the Customer Choice Model, the expected waiting time is equal to the sum of the 

individual waiting times. Thus E(WT) = 14.6998 + 14.6998 = 29.3996, while the 

expected waiting time under the Customer Choice Model is 24.0318. Why are these 

values different? In the Customer Choice Model the expectation of collecting two 

complete sets is conditional on obtaining the first set. 

 

4.3 Future Study 

 We can apply the coupon collection problem to card games. Card games are 

essentially waiting time problems in that we keep playing until we have collected the 

winning hand. There are many variations to card games such as poker, pai gow, and 

baccarat, but essentially they are waiting time decisions. For future study or as an 
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illustration, we could apply the coupon collection problem to a card game in order to find 

the waiting time necessary to be dealt a given hand. 

 We can apply decision theoretic approaches to the coupon collection problem as 

well. For example, suppose there is a cost associated with collecting a coupon, as in the 

McDonald’s Monopoly game. Then we can ask, what is the optimal waiting time based 

on a loss function? This certainly would interest economists and basic consumer behavior. 

We hope that with this thesis, many more ideas and applications would be discovered. 

 

4.4 Conclusion 

 In this thesis, we have studied various types of the coupon collection problem and 

suggested a classification system by introducing the slippage. Any waiting time problem 

could fit into one of our models. We have calculated the expected waiting times for our 

models using Dirichlet integrals and have given numerical evidence that our calculations 

are accurate by Monte Carlo simulation.  
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