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ABSTRACT

A STUDY OF SEQUENTIAL INFERENCE FOR THE RISK RATIO
AND MEASURE OF REDUCTION OF TWO BINOMIALS

by

Zhou Wang

Dr. Hokwon Cho , Examination Committee Chair
Associate Professor of Statistics

University of Nevada, Las Vegas, USA

The binomial distribution is one of the most commonly and widely occurring

probabilistic phenomena in our lives. Since observations from independent Bernoulli

trials yield a dichotomous type, the distribution of sequences provides the basis and

clue for statistical formulations of a wide variety of problems.

Occasionally, the core of biomedical studies is related to the comparison and eval-

uation of the risks of events or outcomes of interest in comparing populations under

study. For instance, one wishes to compare two groups of subjects drawn from two

independent populations. Then, two sample proportions play central roles in those

comparisons. One of the most useful ways to make comparisons for the relative risk is

to take a ratio, also referred to as the risk ratio. In addition, a measure of reduction

of the two proportions is considered.

In this thesis, we consider sequential methods of inferences for the ratio of two

independent binomial probabilities, the risk ratio, in two populations for comparison.

We obtain approximate confidence intervals and optimal sample sizes for the risk

ratio and measure of reduction, respectively. Since there does not exist an unbiased

estimator of the risk ratio, the procedure is developed based on a slightly modified
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maximum likelihood estimator. Then, we explore properties of the proposed estima-

tor using the standard criteria, such as unbiasedness, asymptotic variance, and the

normality. For further investigation, we study the first-order asymptotic expansions

and large sample properties using the asymptotic results. Then, the finite sample

behavior will be examined through numerical studies. Monte Carlo experiment is

performed for the various scenarios of parameters of two populations.

Through illustrations, we compare the performance of the proposed methods,

which is Wald-based confidence intervals, with the likelihood-ratio confidence inter-

vals in light of length, sample sizes, and invariance. Then, we extend the proposed

sequential procedure to two-stage sampling design, which has a pilot sampling stage

and a stage of gathering all remaining observations if needed. The two-stage proce-

dure is naturally a little more versatile and practical than pure sequential in terms of

sample size and stopping time in many situations. Again, through numerical studies,

we study the advantages and usefulness of the two- stage method as well.

Consequently, by providing more comprehensive study of dynamic sampling plans

for studying the risk ratio, we hope to contribute various inferential methods to the

risk ratio and related problems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Problem

In this thesis we are concerned with the risk ratio and a measure of reduction

for two independent binomial variates. Binomial probability phenomena has become

more and more commonly used in our lives. Taking a ratio of two binomial pro-

portions is of major interest and provides an important tool for measuring the risk

ratio or the relative risk. These measures have been studied by many researchers and

frequently used in cohort studies (Katz et al., 1978 and Gart, 1985), medical and

pharmaceutical problems (Koopman, 1984), and epidemiological problems (Bailey,

1987). Additionally, when we are interested in how much the risk has been reduced,

a more convenient way to figure it out is to consider a measure of reduction. Then,

the measure of reduction is more practical to utilize as a measurement objective and

can be more useful to practitioners in comparison of two binomial proportions.

First, we study the properties of the risk ratio and measure of reduction with

various types of sampling schemes focusing on sequential methods. We develop the

procedures depending upon the sampling scheme. Then, we present a sequential

method for constructing confidence limits based on a slightly modified maximum

likelihood estimator. Monte Carlo simulation is carried out in order to investigate its

finite sample behavior. Also, the proposed method is applied to a numerical example

1



to illustrate its use.

Lachin (2000) presented various types of measures of relative risk to compare

two populations and summarized their large sample distributions for testing in his

book. In practice, Fagerland, Lydersen and Laake (2011) reviewed several different

methods and their confidence intervals focusing on the existing difference and the

ratio of proportions. We also would like to introduce some of these in the table

below.

Table 1.1. Measures of Relative Risk

Parameter θ Form Domain Null Value
Risk Ratio (RR) p1/p0 (0,−∞) 1

Risk Difference (RD) p1 − p0 [−1, 1] 0
log Risk Ratio (LRR) log p1 − log p0 (−∞,∞) 0

Odds Ratio (OR) p1/(1−p1)
p0/(1−p0) (0,∞) 1

Measure of Reduction (MOR) p0−p1
p0

(−∞, 1] 0

1.2 Sequential Approaches

1.2.1 Historical Background and Literature

The modern theory of sequential analysis began its march with applied motiva-

tions in response to demands for more efficient sampling inspection procedures during

World War II. It first came into existence simultaneously in the United States and

Great Britain. The development in large-scale survey sampling of national impor-

tance was regarded by many, including Abraham Wald, as the pioneer of sequential

2



analysis. In Abraham Wald’s 1939 paper, he first pointed out that the two central

procedures of the sampling distribution form the base of statistical-theory, namely hy-

pothesis testing and parameter estimation, are special cases of the general statistical

decision-making problem.

Wald’s paper renewed and synthesized many concepts of statistical theory, includ-

ing loss functions, risk functions, admissible decision rules, antecedent distributions,

Bayesian procedures, and minimax procedures. Making decision on the sample size

efficiently was taken into consideration. Wald and his collaborators systematically

developed theory and methodology of sequential tests in the early 1940s to reduce

the number of sampling inspections without compromising the reliability of the termi-

nal decisions. The developments were admirably summarized in his pioneering book,

Sequential Analysis in 1947.

The well-known Neyman-Pearson lemma (1937), offers a rule of thumb for when

all the data is collected and its likelihood ratio known, is one of the most important

theory in statistical hypothesis testing history. However, since the error probabilities

decrease as the number of observations increase, we want to characterize the minimum

number of observations needed to achieve desired levels of error. Rather than fixing n

ahead of time, we consider a sequential approach to testing which continues to gather

samples until a confident decision can be made. This idea is attributed to Wald,

inspired by Neyman and Pearson’s result, where he reformulated it as a sequential

analysis problem which is called the sequential probability ratio test (SPRT).

Methodologically, researchers caught on and began applying sequential analysis

to solve a wide range of practical problems from inventory, reliability, life tests, qual-

3



ity control, designs of experiments and multiple comparisons, to name a few. In the

1960s through 1970s, researchers in clinical trials realized the relevance of emerging

adaptive designs and optimal stopping rules. Clinical trials continue to be an impor-

tant beneficiary of some of the basic research in sequential methodologies. The basic

research in clinical trials has also enriched the area of sequential sampling designs.

The development in the next two decades was mirrored admirably in Ghosh (1970).

More recent theoretical developments appear in Siegmund (1985).

A number of celebrated books already exist. We have mentioned Wald (1947)

before. Additionally, one will find other volumes including Bechhofer et al. (1968),

Ghosh (1970), Chow et al. (1971), Gibbons et al. (1977), Gupta and Panchapakesan

(1979), Govindarajulu (1981), Ghosh and Sen (1991), Mukhopadhyay and Solanky

(1994), Ghosh et al. (1997), Govindarajulu (2004), Mukhopadhyay and de Silva B.M.

(2009). Other articles also worth mentioning. For example, Stein (1945), Stein (1949),

Anscombe (1952), Ray (1957), Robbins (1959), Chow and Robbins (1965), Woodroofe

(1977), Lai and Siegmund (1977), Lai and Siegmund (1979). Two important articles

emphasized the concepts of first-order and second-order efficiencies: Mukhopadhyay

(1980), Ghosh and Mukhopadhyay (1981). Govindarajulu (2004) derived closed-form

expressions for the effective type I error probability and the power at the specified

alternative and includes codes for some selected computer programs. Cho (2007)

considered a risk-efficient sequential point estimator for the ratio of two binomial

proportions based on maximum likelihood estimation under squared error loss and

cost proportional to the observations. Cho and Govindarajulu (2008) presented a

sequential method for obtaining approximate confidence limits for the ratio of two

4



independent binomial proportions.

1.2.2 Sequential Estimation

In contrast, sequential estimation has received scant attention. Sequential estima-

tion refers to estimation methods in sequential analysis where the sample size is not

fixed in advance. Instead, data is evaluated as it is collected, and further sampling is

stopped in accordance with a pre-defined stopping rule as soon as significant results

are observed. At that time, notably, Govindarajulu (1981) tried to combine sequen-

tial hypothesis testing and estimation problems. In addition, it is worth mentioning

that sequential nonparametric methods have been treated by Sen (1981), Sen (1985),

which contain some accounts of sequential estimation.

We notice interesting and newer applications of sequential methodologies today.

This is especially so in contemporary statistical challenges in agriculture, clinical

trials, data mining, finance, gene mapping, multiple comparisons and so on.

Generally, sequential methodology is known to be more efficient than a fixed-

sample size method in many aspects. In some situations, sequential methodologies

may be essential because no fixed sample size methodology would work or available.

We believe that the theory and practice of sequential analysis should ideally move

forward together as partners. To explain why sequential estimation is needed, we

will take a look at the fixed-width confidence interval estimation problem in the next

chapter.

Sequential analysis is also related to multistage ranking and selection method-
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ologies, or more generally speaking, multiple comparison problems. Some advanced

books devoted exclusively to the area of multiple comparisons are available. Bech-

hofer (1954) developed a pioneering selection methodology by advancing Steins (1945,

1949) two-stage sampling strategy. One may refer to Hochberg and Tamhane (1987)

and Hsu (1996). The interface between sequential analyses and selection problems is

available in the advanced book by Mukhopadhyay and Solanky (1994). For example,

there is no fixed-sample size methodologies in selecting the best treatment with pre-

assigned probability of correct selection. However, two-stage sequential methodologies

can deliver.

1.3 Application of Sequential Estimation

In pharmaceutical areas, controlling clinical trials is a very important issue. There

is a strong ethical and economic obligation for the researchers to analyze data peri-

odically for evidence of efficacy and safety over the course of the trial. As compelling

evidence emerges, either favoring or disfavoring the new therapy, it may become eth-

ically or economically necessary to terminate the trial before schedule. Although

periodic evaluation of data is a frequent and necessary practice in drug development,

particular statistical problems of multiple testing may appear. Classical clinical trial

designs do not formally provide the option for early termination. Rather, classical

designs consider only fixed-sample-size trials. When data from a fixed-sample size

trial are analyzed repeatedly, the true type I and type II error probabilities associat-

ed with the testing of hypotheses will be inflated above the pre-specified levels. To

6



control the undesirable escalation of the true error probabilities, sequential methods

were developed.

In the previous sections we mentioned that there are many estimating problems

that cannot be solved by any fixed sample size method. However, these problems can

be resolved by implementing dynamic sampling design schemes such as sequential

methods or two-stage procedures:

1. Risk-efficient point estimator of exponential family.

2. Ranking and selection methodologies in deciding the best populations or subsets.

3. Constructing a fixed-width confidence interval for an unknown mean with two

preassigned length 2d and level of confidence 1− α for a normal distribution.

We will discuss the third example in more details in next chapter.
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CHAPTER 2

SEQUENTIAL METHOD

2.1 Introduction

In this chapter, we start with basic definitions, and study the formulation and

development of the procedure, expectations and variances, asymptotic distributions

of the risk ratio and measure of reduction, as well as the evaluation of the procedure.

Sequential procedures are different from other statistical procedures in sampling

designs. When a researcher gathers information regarding the parameter θ, the re-

searcher has an option of looking at a sequence of observations one at a time and

decide whether to stop sampling or to continue sampling before making a decision.

Thus, the total number of observations denoted by N(> 0), is a random variable.

2.2 Definitions of Distributions and Measures

Definition 2.1 (Bernoulli Distribution) A random variable X is said to have a

Bernoulli distribution with p if the probability mass function is given by

P (X = x) = p(x) = px(1− p)1−x, x = 0, 1

where 0 ≤ p ≤ 1.

Definition 2.2 (Binomial Distribution) A random variable X is said to have a

binomial distribution with parameters n and p if the probability mass function is

8



given by

P (X = x) =

(
n

x

)
px(1− p)n−x, 0 < p < 1

where n is the number of total trials, the binomial coefficient
(
n
x

)
= n!

x!(n−x)! , p =

probability of success and 1 − p = probability of failure. We denote this by X ∼

Bin(n, p). By definition,

E(X) = np, var(X) = np(1− p).

The binomial probability refers to the probability that a binomial experiment consist-

ing of n trials results in exactly x successes with probability of success p in Bernoul-

li trials. The sum of a sequence of independent and identically distributed (i.i.d.)

Bernoulli variables follows a binomial distribution.

2.3 Formulations of the Proposed Procedure

Along with the fixed-sample methods, in this thesis we consider the sequential

method and propose to obtain approximate confidence intervals and corresponding

optimal sample sizes for the risk ratio and the measure of reduction.

Suppose we have two samples of size n from two independent Bernoulli populations

with probabilities p0 and p1, respectively, say X1, X2, ..., Xn, and Y1, Y2, ..., Yn. Let

us define

R =
n∑
i=1

Xi and S =
n∑
i=1

Yi.

Then,
∑n

i=1Xi follows the binomial distribution with parameters (n, p0), and
∑n

i=1 Yi

9



follows the binomial distribution with parameters (n, p1), respectively. That is,

R ∼ Bin(n, p0) and S ∼ Bin(n, p1)

.

Definition 2.3 (Risk Ratio) The risk ratio for two binomial variates is defined

by:

θ =
p1
p0
.

Then, the estimate of the risk ratio for the two sample proportions p̂0 and p̂1, is:

θ̂ =
p̂1
p̂0
, (2.1)

where p̂0 = R/n and p̂1 = S/n.

Since there does not exist an unbiased estimator of the measure θ, we define the

modified θ̂n to avoid the case of undefined θ̂n when R = 0:

θ̂n =
S

R + 1/n
. (2.2)

Definition 2.4 (Measure of Reduction) The measure of reduction for two inde-

pendent binomial variates is defined to be:

ρ =
p0 − p1
p0

= 1− p1
p0
,−∞ < ρ ≤ 1.

Then, the estimator for the measure of reduction for the two sample proportions p̂0

and p̂1, is:

ρ̂ =
p̂0 − p̂1
p̂0

= 1− p̂1
p̂0
, (2.3)
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where p̂0 = R/n and p̂1 = S/n.

Similarly, to avoid the case of undefined ρ̂n when R = 0:

ρ̂n =
(R + 1/n)− S

R + 1/n
= 1− S

R + 1/n
. (2.4)

By definition, ρ is a relative figure of merit for measuring the reduction between

two binomial proportions. Depending on the value of ρ,−∞ < ρ ≤ 1, the measure

of reduction has more pratical usage in comparing two populations. First, if ρ ap-

proaches one, the risk (of being infected) reduction is complete. Second, when ρ gets

close to zero, this indicates that there is no risk reduction achieved. Lastly, if ρ is

negative, this implies that a certain degree of reduction is made.

2.4 Asymptotic Properties of the Estimator θ̂n

In this section, we study the fundamental properties based on the first two mo-

ments of the estimators θ̂n and ρ̂n for further investigation.

2.4.1 Expectations

Now consider the expectation of the estimator θ̂n. By definitions and indepen-

dence, we have

E(θ̂n) = E

(
S

R + 1/n

)
= E(S)E

(
1

R + 1/n

)
= np1E

(
1

R + 1/n

)
. (2.5)
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Let Un = R−np0+1/n
np0

, so 1
R+1/n

= 1
np0

(1+Un)−1, noting that for Un 6= 1, (1+Un)−1 =

1− Un + (Un)2 − (Un)3 + (Un)4 − (Un)5(1 + Un)−1, we get that

E

(
1

R + 1/n

)
= E

[
1

np0
(1 + Un)−1

]
=

1

np0
E(1− Un + (Un)2 − (Un)3 + (Un)4 − (Un)5(1 + Un)−1), (2.6)

E(Un) = E

(
R− np0 + 1/n

np0

)
=
E(R)− np0 + 1/n

np0

=
1/n

np0
=

1

n2p0

E(Un)2 = V ar(Un) + E(Un)2 = V ar

(
R− np0 + 1/n

np0

)
+ E (Un)2

=
V ar(R)

(np0)2
+ E (Un)2 =

1− p0
np0

+

(
1

n2p0

)2

By Theorem 2 in Von Bahr (1969), if Xj is a sequence of i.i.d. random variables

such that for a positive integer k ≥ 2, E(| X1 |k) <∞, then

E[(n−1/2
n∑
j=1

(Xj)− E(Xj))
k]→ E[(σz)k],

where σ2 = V ar(X1) and z is a standard normal random variable. This implies that

for each positive integer k

E[(n−1/2(R− np0))k] = O(1)

and

E[| n−1/2(R− np0) |k] = O(1).

hence

E[| n1/2p0Un |k] = O(1) (2.7)
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By Eq.(2.7) and k = 3, 4 respectively, E(U3
n) = o( 1

n
) and also E(U4

n) = o( 1
n
).

Moreover, since 1 + Un ≥ 1
n2p0

,

hence,

E

(
1

R + 1/n

)
=

1

np0

[
1− 1

n2p0
+

1− p0
np0

+

(
1

n2p0

)2
]

+ o(n−2)

=
1

np0

(
1 +

1− p0
np0

)
+ o(n−2) (2.8)

Combining Eq.(2.5) and Eq.(2.8) we get

E(θ̂n) = np1E

(
1

R + 1/n

)
=
p1
p0

(
1 +

1− p0
np0

)
+ o(n−1)

= θ̂ + o(n−1)

Therefore, θ̂n is an asymptotically unbiased estimator of θ̂.

Now, we are able to get the expectation of the measure of reduction ρ̂ easily,

E(ρ̂n) = E

(
R + 1/n− S
R + 1/n

)
= E

(
1− S

R + 1/n

)
= 1− E(S)E

(
1

R + 1/n

)
= 1− np1E

(
1

R + 1/n

)
= 1− θ̂ + o(n−1) = ρ̂+ o(n−1). (2.9)

Therefore, ρ̂n is an asymptotically unbiased estimator of ρ̂.

2.4.2 Asymptotic Variance

To get the variance of θ̂ , we consider the maximum likelihood estimates of θ and

p0 and their information matrix. From the observed sample of n pairs of (Xi, Yi),

i = 1, 2, ., n, the likelihood function is

L (p0, p1) ∝ pr0 (1− p0)n−r ps1 (1− p1)n−s

13



L (θ, p0) ∝ pr0 (1− p0)n−r (p0θ)
s (1− p0θ)n−s

= pr+s0 (1− p0)n−r θs (1− p0θ)n−s , (2.10)

the log-likelihood function of Eq.(2.10) is then

l (θ, p0) ∝ (r + s) log (p0) + (n− r) log (1− p0)

+ s log (θ) + (n− s) log (1− p0θ) (2.11)

By setting the first derivatives to be zero, the maximum likelihood estimators (MLE)

of θ and p0 can be found:

θ̂MLE =
s

np0

and

p̂0 =
r

n
.

It should be noted that since

E
(
θ̂MLE

)
= E

(
s

np0

)
=
p1
p0

= θ,

the MLE of θ, θ̂MLE is an unbiased estimator. And so is p̂0, because

E (p̂0) = E

(
R

n

)
= p0.

To obtain the variance of MLE of θ, we consider

∂I (θ, p0)

∂θ
=
s

θ
− (n− s) p0

1− p0θ
∂I (θ, p0)

∂p0
=
r + s

p0
− n− r

1− p0
− (n− s) θ

1− p0θ
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∂2I (θ, p0)

∂θ2
= − s

θ2
− (n− s) p20

(1− p0θ)2

∂2I (θ, p0)

∂θ∂p0
=
−(n− s) (1− p0θ)− p0(n− s)θ

(1− p0θ)2
= − n− s

(1− p0θ)2

∂2I (θ, p0)

∂p20
= −r + s

p20
− n− r

(1− p0)2
− (n− s)θ2

(1− p0θ)2
.

Then, from the log-likelihood function, Fisher’s information matrix about (θ, p0) is

given by

I(θ, p0) =

 E
(
−∂2I(θ,p0)

∂θ2

)
E
(
−∂2I(θ,p0)

∂θ∂p0

)
E
(
−∂2I(θ,p0)

∂θ∂p0

)
E
(
−∂2I(θ,p0)

∂p20

) 
= n

 p20
p1(1−p1)

1
1−p1

1
1−p1

1
p0

(
1

1−p0 + θ
1−p1

)  .
So,

I−1(θ, p0) =
θ(1− p0)(1− p1)

n

 1
p0

(
1

1−p0 + θ
1−p1

)
− 1

1−p1

− 1
1−p1

p20
p1(1−p1)

 .
Therefore, from the above equation, the asymptotic variance of θ̂MLE is

V ar
(
θ̂MLE

)
=
θ(1− p0)(1− p1)

n

[
1

p0

(
1

1− p0
+

θ

1− p1

)]
=
θ(1 + θ − 2θp0)

np0
. (2.12)

Now, we consider the asymptotic variance of θ̂n = S
R+1/n

.

V ar
(
θ̂n

)
= V ar

(
S

R + 1/n

)
= E

(
S

R + 1/n

)n
−
[
E

(
S

R + 1/n

)]2
.

Since

E

(
S

R + 1/n

)
=
p1
p0

(
1 +

1− p0
np0

− 1

n2p0

)
+ o

(
n−2
)
, (2.13)
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we only need to find E
(

S
R+1/n

)2
.

E

(
S

R + 1/n

)2

= E
(
S2
)
E

(
1

R + 1/n

)2

=
[
np1(1− p1) + n2p21

]
E

(
1

R + 1/n

)2

=
[
np1(1− p1) + n2p21

] 1

n2p20
E
[
(1 + Un)−2

]
Noting that for Un 6= 1,

(1 + Un)2 = 1− 2Un + 3U2
n − 4U3

n + 5U4
n − (6U5

n + 5U6
n)(1 + Un)−2,

so,

E

(
1

R + 1/n

)2

=
1

n2p20
E
[
1− 2Un + 3U2

n − 4U3
n + 5U4

n − (6U5
n + 5U6

n)(1 + Un)−2
]
. (2.14)

In section 2.2.1, we found that

E(Un) = E

(
R− np0 + 1/n

np0

)
=
E(R− np0 + 1/n)

np0
=

1/n

np0
=

1

n2p0

E
(
U2
n

)
= V ar(Un) + E(Un)2

= V ar

(
R− np0 + 1/n

np0

)
+ EUn

2

=
V arR

(np0)2
+ E(Un)2 =

1− p0
np0

+

(
1

n2p0

)2

.

By Eq.(2.7) and k=3,4 respectively, E (U3
n) = o (n−1) and E (U4

n) = o (n−1). More-

over, since 1 + Un ≥ 1
2np0

,

(np0)
−2E

[
|
(
6U5

n + 5U6
n

)
(1 + Un)−1 |

]
≤ 4E

[
6 | U5

n | +5 | U6
n |
]

= o
(
n−2
)
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plug these into Eq.(2.14), we get

E

(
1

R + 1/n

)2

=
1

n2p20

[
1− 2

n2p0
+

3− 3p0
np0

+ 3

(
1

n2p0

)2
]

+ o
(
n−3
)
. (2.15)

Combining Eq.(2.13)-(2.15)

V ar
(
θ̂n

)
= E

(
S

R + 1/n

)2

−
[
E

(
S

R + 1/n

)]2
=
[
np1(1− p1) + n2p21

] 1

n2p20
E
[
(1 + Un)−2

]
−
[
p1
p0

(
1 +

1− 2p0
np0

+
1

4n2p20

)]2
=
[
np1(1− p1) + n2p21

] 1

n2p20

[
1− 2

n2p0
+

3− 3p0
np0

+ 3

(
1

n2p0

)2

+ o
(
n−1
)]

−
[
p1
p0

(
1 +

1− p0
np0

)
+ o

(
n−1
)]2

=

[
θ(1− p1)
np0

+ θ2
] [

1 +
3− 3p0
np0

+ o
(
n−1
)]

− θ2
[
1 +

2− 2p0
np0

+ o
(
n−1
)]

≈
[
θ(1− p1)
np0

+ θ2
] [

1 +
3− 3p0
np0

]
+ θ2

1− p0
np0

+ o
(
n−1
)

=
θ(1− p1)
np0

[
1 +

3− 3p0
np0

]
+ θ2

1− p0
np0

+ o
(
n−1
)

=
θ(1− p1)
np0

+ θ2
1− p0
np0

+ o
(
n−1
)

≈ θ(1 + θ − 2θp0)

np0
. (2.16)

From the results of Eq.(2.12) and Eq.(2.16), we see the two estimators have the same

variance. Hence, we conclude that two estimators, θ̂MLE and θ̂n are asymptotically

equivalent for large n.

Using Slutsky’s theorem and for sufficiently large n,
√
n
(
θ̂n − θ

)
converges in distri-

bution to N (0, σ2) where

σ2 =
θ(1 + θ − 2θp0)

p0
.
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This asymptotic variance agrees with the one for the MLE. Hence, the estimator

θ̂n is asymptotically efficient. (See Section 6.3 in Lehmann and Casella, 1998.)

Now, we can use the same method to find the asymptotic variance of ρ̂MLE and

ρ̂n.

The likelihood function for (ρ, p0) is

L (ρ, p0) ∝ pr0 (1− p0)n−r [p0 (1− ρ)]s [1− p0 (1− ρ)]n−s

= pr+s0 (1− p0)n−r (1− ρ)s [1− p0 (1− ρ)]n−s , (2.17)

the log-likelihood function of Eq.(2.17) is then

l (ρ, p0) ∝ (r + s) log (p0) + (n− r) log (1− p0)

= s log (1− ρ) + (n− s) log [1− p0 (1− ρ)] . (2.18)

Solve the maximum likelihood estimators(MLE) of ρ and p0 by setting the first deriva-

tives to be zero

ρ̂MLE = 1− s

np0

and

p̂0 =
r

n
.

The measure of reduction ρ is an induced measure from the risk ratio θ = p1/p0.

The MLE of ρ, ρ̂MLE is asymptotic unbiased estimator of ρ. To get the variance of

the MLE of ρ, consider

18



∂I (ρ, p0)

∂ρ
=
−s

1− ρ
+

(n− s) p0
1− p0 + p0ρ

∂I (ρ, p0)

∂p0
=
r − s
p0
− n− r

1− p0
− (n− s) (1− ρ)

1− p0 + p0ρ

∂2I (ρ, p0)

∂ρ2
= − s

(1− ρ)2
− (n− s) p20

(1− p0 + p0ρ)2

∂2I (ρ, p0)

∂ρ∂p0
=
−(n− s) (1− p0 + p0ρ)− p0(n− s)(1− ρ)

(1− p0 + p0ρ)2

=
n− s

(1− p0 + p0ρ)2

∂2I (ρ, p0)

∂p20
= −r − s

p02
− n− r

(1− p0)2
− (n− s)(1− ρ)2

(1− p0 + p0ρ)2
.

Then, from the log-likelihood function, Fisher’s information matrix about (ρ, p0) is

given by

I(ρ, p0) =

 E
(
−∂2I(ρ,p0)

∂ρ2

)
E
(
−∂2I(ρ,p0)

∂ρ∂p0

)
E
(
−∂2I(ρ,p0)

∂ρ∂p0

)
E
(
−∂2I(ρ,p0)

∂p20

) 
= n

 p20
p1(1−p1)

1
1−p1

1
1−p1

1
p0

(
1

1−p0 + 1−ρ
1−p1

)  .
So,

I(ρ, p0) =
(1− ρ)(1− p0)(1− p1)

n

 1
p0

(
1

1−p0 + 1−ρ
1−p1

)
− 1

1−p1

− 1
1−p1

p20
p1(1−p1)

 .
Therefore, from the above equation, the asymptotic variance of ρ̂MLE is

V ar (ρ̂MLE) =
(1− ρ)(1− p0)(1− p1)

n

[
1

p0

(
1

1− p0
+

1− ρ
1− p1

)]
=

(1− ρ)(2− ρ+ 2ρp0 − 2p0)

np0
. (2.19)
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The asymptotic variance of ρ̂n can be simply found from Eq.(2.16)

V ar (ρ̂n) = V ar
(

1− θ̂n
)

= V ar
(
θ̂n

)
≈ θ(1 + θ − 2θp0)

np0

=
(1− ρ)[(2− ρ)− 2p0(1− ρ)]

np0

=
(1− ρ)(2− ρ+ 2ρp0 − 2p0)

np0
. (2.20)

Hence, ρ̂MLE and ρ̂n are also asymptotically equivalent for large n. Similarly,
√
n (ρ̂n − ρ)

converges in distribution to N (0, σ2) where

σ2 =
(1− ρ)(2− ρ+ 2ρp0 − 2p0)

p0
.

2.5 Procedure and the Stopping Rule

Our goal is to develop the procedure and to construct an interval of specified width

2d with confidence coefficient 1− α for the risk ratio θ, and measure of reduction ρ.

That is,

P
{
| θ̂ − θ |≤ d

}
≥ 1− α. (2.21)

Apparently, one can make an inference of θ using a statistic Tn from a random

sample of fixed size n, (x1, x2, ..., xn), which is referred to as the fixed-sample size

method in contrast to any dynamic sampling plans. Therefore, in sequential sampling

to infer θ, we need to consider a pair (N, TN) where N is called the random sampling

time.
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To explore the rationale of adopting the sequential strategy, let’s take a look at a

fixed-width confidence interval problem with an unknown mean, which was mentioned

in Section 1.3.

Consider a random sample of size n (n > 2), (x1, x2, ..., xn) from a Normal popu-

lation with parameters µ and σ2, assuming that both µ and σ2 are unknown.

Suppose one wishes to construct a (1 − α)100% confidence interval I for µ with

length 2d and the probability of the interval Pµ,σ (µ ∈ I) ≥ 1 − α, where d ≥ 0 and

0 < α < 1 are preassigned. However, Dantzig (1940) showed that the fixed-width

confidence interval problem cannot be solved by any fixed-sample size method.

The Interval In = [X̄n − d, X̄n + d] has a probability

Pµ,σ (µ ∈ I) = 2Φ

(
d

σ/
√
n

)
− 1

⇔2Φ

(
d

σ/
√
n

)
− 1 ≥ 1− α = 2Φ(ξ)− 1.

⇔ d

σ/
√
n

=

√
nd

σ
≥ ξ.

⇔n ≥ ξ2σ2

d2

where d = tn−1
Sn√
n

and ξ = d
√
n

σ
. In conclusion, n is the smallest integer ≥ a2σ2

d2
= say

n∗, where n∗ is the optimal fixed-sample size required to construct In for µ if σ had

been known. Since σ is unknown, this can not be achieved.

In this case, we use the sample variance S2
n replacing σ2, so the stopping rule can

be stated as: N = N(d) = smallest integer n (> m), where m is the initial sample

size, such that, n ≥ a2S2
n/d

2.

Now, we will apply the above method to analyze the risk ratio and the measure of

reduction for two binomial variates. First, we need to determine the optimal sample
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size n that satisfies

P{| θ̂ − θ |≤ d} = P{
√
n | θ̂ − θ | /σ ≤ d

√
n/σ} ≥ 1− α,

since
√
n(θ̂n − θ) ∼ N(0, σ2) so,

2Φ(d
√
n/σ)− 1 ≥ 1− α, (2.22)

where Φ(x) is the CDF of a standard normal distribution.

Then, Eq.(2.22) is equivalent to:

d
√
n/σ ≥ z(2−α)/2 ≡ z, (2.23)

for specified d (> 0) where Φ(z(2−α)/2) = (2− α)/2.

Consequently, we have

n ≥ (zσ/d)2. (2.24)

Hence, the optimal fixed-sample size for the procedure becomes the smallest integer

n∗ such that n ≤ n∗ ≤ n+ 1 , for estimating θ with specified d and z. that is,

n∗ = [(zσ/d)2] + 1 (2.25)

where [·] indicates the greatest integer function.

Recall that σ2 = θ(1 + θ− 2θp0)/p0, since both θ and p0 are unknown, we are not

able to determine the optimal fixed-sample size. But sequentially, we could come up

with the following stopping rule: Stop sampling at observation

N = inf
n
{n ≥ m : n ≥ z2σ̂2

n/d
2} (2.26)
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where m(≥ 2) is the initial sample size and σ̂2
n = θ̂(1 + θ̂ − 2θ̂p̂0)/p̂0, with p̂0 =

(R + 1/n)/n and p̂1 = S/n.

Consequently, a (1− α)100% confidence interval with length 2d for θ is given by

(θ̂N − d, θ̂N + d) (2.27)

2.6 Properties and Evaluation of the Procedure

In this section we study the desirable properties of the stopping rule we proposed.

One of the most primary properties is concerned about the stopping time. Because, in

the sequential method the sample has to be formulated at a certain stage. Otherwise,

the proposed procedure is meaningless. Second aspect is the properties about the

fact how much the proposed procedure is achieved toward the inferential goals. These

properties are called the (asymptotic) consistency and (asymptotic) efficiency of the

proposed procedure, respectively.

Definition 2.5 (Asymptotic Consistency) An estimator θ̂N of θ is said to be

asymptotically consistent if, for any preassigned significant level α, limd→0 P{|θ̂N −

θ| 6 d} ≥ 1− α.

Definition 2.6 (Efficiency) Under the above set up, θ̂N is said to be asymptoti-

cally efficient if limd→0E(N)/n∗ = 1.

2.6.1 Finite Sure Termination

The following result establishes the finite sure termination holds for the proposed

sequential procedure.
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Theorem 2.1. Let N denote the stopping time associated with the proposed

procedure. Then, P (N =∞) = 0.

Proof. Using the stopping rule in Eq. (2.21)

P (N =∞) = lim
n→∞

P (N > n) ≤ lim
n→∞

P (n ≤ z2p̂2n/d
2) = 0

since σ̂2
n converges in probability to σ2 as n → ∞. Hence, the sequential procedure

terminates finitely almost surely.

2.6.2 First Order Asymptotic

To evaluate the proposed procedure, we study the asymptotic behavior of the

procedure when the sample size is sufficiently large. Therefore, since the random

stopping time N is a function of d, one can have large enough n by letting d gets

small.

In order to fit the desirable criteria, the stopping rule N in Eq. (2.26) can be written

as follow:

N = inf
n

{
n ≥ m : n ≥ z2

d2
θ̂(1 + θ̂ − 2θ̂p̂0)

p̂0

}
(2.28)

let

f(n) = n,

Wn =
θ̂(1 + θ̂ − 2θ̂p̂0)

θ(1 + θ − 2θp0)

p0
p̂0
,
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t = (t/d)2θ(1 + θ − 2θp0)/p0.

Then, Eq. (2.28) takes the form:

N = N(t) = minn{n ≥ m : Wn ≤ f(n)/t}. (2.29)

Hence, Wn is a sequence of random variables such that Wn is positive (a.s.)

and converges a.s to 1 as n approaches infinity, because p̂0,n → p0 (a.s.) and

limn→∞ θ̂n/θ = 1.

Furthermore, we see that limn→∞ f(n) =∞ and limn→∞ f(n)/f(n− 1) = 1.

Since the stopping rule N is well-defined and non-decreasing as a function of t, by

invoking the results of Chow and Robbins (1965), the first-order asymptotic for the

properties of the proposed sequential procedure are obtained as follows:

Theorem 2.2. When d goes to zero, we have

(i) N/n∗ = 1 a.s.,

(ii) P{|θ̂N − θ| 6 d} ≥ 1− α

(iii) E(N)/n∗ = 1.

Proof. (i) limd→0N = ∞ a.s., limd→0E(N) = ∞, since from the definition of N,

limd→0N ≥ limd→0 z
2σ̂2

n/d
2 a.s.. Then, from N = infn{n ≥ m : n ≥ z2σ̂2

n/d
2} we

have N − 1 ≤ z2σ̂2
N−1/d

2,

therefore,

z2σ2
N/d

2

z2σ2/d2
≤ N

n∗
≤
z2σ2

N−1/d
2 + 1

z2σ2/d2
. (2.30)
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From which it is easy to see that

σ2
N

σ2
≤ N

n∗
≤ d2

z2σ2
+
σ2
N−1

σ2
. (2.31)

Hence,

lim
d→∞

σ2
N

σ2
≤ lim

d→∞

N

n∗
≤ lim

d→∞

(
d2

z2σ2
+
σ2
N−1

σ2

)
= lim

d→∞

σ2
N−1

σ2
.

However, the quantities on the extremes of the inequality tend to unity. Thus,

limd→∞ (N/n∗) = 1.

For (ii), this is directly from the set up of this procedure, since we construct this inter-

val of width 2d with confidence coefficient 1−α for the risk ratio θ. Mathematically,

that is

P
{
| θ̂ − θ |≤ d

}
≥ 1− α.

(iii), using the large derivation priciple (LDP) and the properties of Eq.(2.29), the

proof can be done and we refer details directly to Cho and Govindarajulu (2008).
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2.7 Numerical Studies

2.7.1 Confidence Intervals Based on the Proposed Method

Monte Carlo experimentation is carried out to investigate the finite-sample be-

havior of the risk ratio and measure of reduction we have devised. Selected values for

p0 and p1 were chosen to generate the data sets consisting of sequences of binomial

variables based on a predetermined fixed number of trials for each case. Two sample

proportions of p0 and p1 are computed and the point estimator of the measure of

reduction ρ is also calculated with replications of 10000. The results of the experi-

ment are summarized in the following tables with the expected stopping time E(N),

starting sample size m, optimal sample sizes n∗ and the coverage probability (CP)

are shown with specified width d for the confidence level 1 − α, 1 − α = 0.90 and

0.95.

Table 2.1. For θ = 1.0 and ρ = 0 when p0 = 0.5, p1 = 0.5, α = 0.1, m=5

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.500 .499 1.000 .000 .10 ( .900, 1.100) .868 521.69 542

.499 .500 1.001 -.001 .20 ( .801, 1.201) .850 129.24 136

.501 .502 1.001 -.001 .30 ( .701, 1.301) .825 54.72 61

.503 .502 .997 .003 .40 ( .597, 1.397) .786 28.76 34

.499 .499 .999 .001 .50 ( .499, 1.499) .774 18.61 22

.502 .498 .993 .007 .60 ( .393, 1.593) .855 13.73 15

.498 .498 1.000 .000 .70 ( .300, 1.700) .930 11.13 12

In addition, plot of coverage probabilities and values of d (as getting smaller) are

given in the following figure.
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Figure 2.1. Plot of coverage probability against d with p0 = 0.5, p1 = 5, α = 0.05.

Table 2.2. For θ = 1.0 and ρ = 0 when p0 = 0.5, p1 = 0.5, α = 0.05, m=5

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.500 .500 1.000 .000 .10 ( .900, 1.100) .911 737.17 769

.500 .500 1.001 -.001 .20 ( .801, 1.201) .905 183.04 192

.500 .500 1.000 .000 .30 ( .700, 1.300) .885 79.65 86

.500 .500 1.000 .000 .40 ( .600, 1.400) .859 43.02 49

.499 .501 1.005 -.005 .50 ( .505, 1.505) .839 27.18 31

.498 .498 1.000 -.000 .60 ( .400, 1.600) .866 18.35 22

.500 .502 1.003 -.003 .70 ( .303, 1.703) .943 14.13 16
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Table 2.3. For θ = 1.0 and ρ = 0 when p0 = 0.5, p1 = 0.5, α = 0.1, m=10

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.500 .500 .999 .001 .10 ( .899, 1.099) .894 536.86 541

.501 .500 .998 .002 .20 ( .798, 1.198) .881 131.83 136

.500 .498 .997 .003 .30 ( .697, 1.297) .845 56.64 61

.502 .500 .996 .004 .40 ( .596, 1.396) .851 31.12 34

.499 .498 .999 .001 .50 ( .499, 1.499) .878 21.28 22

.499 .500 1.002 -.002 .60 ( .402, 1.602) .952 16.54 16

Table 2.4. For θ = 1.0 and ρ = 0 when p0 = 0.5, p1 = 0.5, α = 0.05, m=10

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.500 .500 1.000 .000 .10 ( .900, 1.100) .940 765.49 769

.500 .500 1.000 .000 .20 ( .800, 1.200) .935 189.39 192

.500 .499 .997 .003 .30 ( .697, 1.297) .910 81.82 86

.500 .500 1.000 .000 .40 ( .600, 1.400) .888 44.88 48

.500 .498 .996 .004 .50 ( .496, 1.496) .901 28.78 31

.499 .500 1.002 -.002 .60 ( .402, 1.602) .947 20.98 22

Table 2.5. For θ = 1.2 and ρ = −0.2 when p0 = 0.5, p1 = 0.6, α = 0.1, m=5

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.500 .600 1.200 -.200 .10 (1.100, 1.300) .879 638.92 650

.500 .601 1.201 -.201 .20 (1.001, 1.401) .858 157.66 163

.500 .600 1.200 -.200 .30 ( .900, 1.500) .828 66.75 73

.499 .600 1.202 -.202 .40 ( .802, 1.602) .805 35.91 41

.499 .600 1.203 -.203 .50 ( .703, 1.703) .827 22.45 27

.501 .598 1.195 -.195 .60 ( .595, 1.795) .843 16.20 19

.503 .600 1.193 -.193 .70 ( .493, 1.893) .894 12.52 14

.500 .602 1.204 -.204 .80 ( .404, 2.004) .940 10.35 11
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Table 2.6. For θ = 1.2 and ρ = −0.2 when p0 = 0.5, p1 = 0.6, α = 0.05, m=5

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.500 .600 1.200 -.200 .10 (1.100, 1.300) .940 911.19 922

.500 .600 1.200 -.200 .20 (1.000, 1.400) .926 225.40 231

.500 .601 1.203 -.203 .30 ( .903, 1.503) .904 98.29 103

.499 .600 1.202 -.202 .40 ( .802, 1.602) .876 52.94 58

.501 .600 1.198 -.198 .50 ( .698, 1.698) .865 32.37 37

.499 .599 1.201 -.201 .60 ( .601, 1.801) .859 21.81 26

.501 .599 1.197 -.197 .70 ( .497, 1.897) .870 16.61 19

.500 .599 1.197 -.197 .80 ( .397, 1.997) .936 13.20 15

Figure 2.2. Plot of coverage probability against d with p0 = 0.5, p1 = 0.6, α = 0.05.
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Table 2.7. For θ = 1.2 and ρ = −0.2 when p0 = 0.5, p1 = 0.6, α = 0.1, m=10

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.500 .600 1.200 -.200 .10 (1.100, 1.300) .899 646.35 650

.501 .600 1.197 -.197 .20 (.997, 1.397) .875 158.30 163

.500 .600 1.200 -.200 .30 ( .900, 1.500) .855 68.31 73

.501 .602 1.201 -.201 .40 ( .801, 1.601) .836 37.42 41

.504 .599 1.188 -.188 .50 ( .688, 1.688) .892 24.21 27

.499 .599 1.201 -.201 .60 ( .601, 1.801) .935 18.83 19

.498 .599 1.203 -.203 .70 ( .503, 1.903) .960 15.65 14

Table 2.8. For θ = 1.2 and ρ = −0.2 when p0 = 0.5, p1 = 0.6, α = 0.05, m=10

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.500 .600 1.200 -.200 .10 (1.100, 1.300) .946 920.21 923

.500 .600 1.200 -.200 .20 (1.000, 1.400) .935 228.25 231

.501 .599 1.197 -.197 .30 ( .897, 1.497) .923 98.88 103

.499 .600 1.202 -.202 .40 ( .802, 1.602) .898 54.09 58

.498 .597 1.198 -.198 .50 ( .698, 1.698) .891 34.61 37

.501 .604 1.205 -.205 .60 ( .605, 1.805) .952 24.30 26

.498 .600 1.203 -.203 .70 ( .503, 1.903) .967 19.30 19

Table 2.9. For θ = 1.5 and ρ = −0.5 when p0 = 0.4, p1 = 0.6, α = 0.1, m=5

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.400 .600 1.500 -.500 .15 (1.350, 1.650) .883 575.80 587

.401 .600 1.498 -.498 .25 (1.248, 1.748) .862 204.97 212

.400 .600 1.501 -.501 .35 (1.151, 1.851) .832 100.12 108

.401 .598 1.493 -.493 .45 ( 1.043, 1.943) .797 57.34 65

.401 .601 1.500 -.500 .55 ( .950, 2.050) .788 36.99 44

.399 .601 1.505 -.505 .65 ( .855, 2.155) .787 26.92 32

.402 .601 1.493 -.493 .75 ( .743, 2.243) .790 20.33 24

.399 .596 1.494 -.494 .85 ( .644, 2.344) .824 16.20 19

.400 .602 1.506 -.506 .95 ( .556, 2.456) .914 13.82 15

.402 .603 1.500 -.500 1.05 ( .450, 2.550) .961 12.22 12
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Figure 2.3. Plot of coverage probability against d with p0 = 0.4, p1 = 0.6, α = 0.05.

Table 2.10. For θ = 1.5 and ρ = −0.5 when p0 = 0.4, p1 = 0.6, α = 0.05, m=5

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.400 .599 1.498 -.498 .15 (1.348, 1.648) .935 817.49 832

.401 .600 1.499 -.499 .25 (1.249, 1.749) .928 291.39 300

.400 .600 1.501 -.501 .35 ( 1.151, 1.851) .904 146.01 153

.401 .600 1.497 -.497 .45 ( 1.047, 1.947) .875 84.59 93

.399 .601 1.507 -.507 .55 ( .957, 2.057) .842 55.31 63

.399 .600 1.502 -.502 .65 ( .852, 2.152) .827 38.14 45

.401 .600 1.496 -.496 .75 ( .746, 2.246) .850 28.49 34

.399 .599 1.502 -.502 .85 ( .652, 2.352) .872 22.73 26

.401 .602 1.502 -.502 .95 ( .552, 2.452) .912 17.97 21

.397 .600 1.511 -.511 1.05 ( .461, 2.561) .958 15.51 18
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Table 2.11. For θ = 1.5 and ρ = −0.5 when p0 = 0.4, p1 = 0.6, α = 0.1, m=10

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.400 .600 1.500 -.500 .15 (1.350, 1.650) .892 582.71 587

.400 .600 1.499 -.499 .25 (1.249, 1.749) .881 206.56 212

.399 .600 1.501 -.501 .35 ( 1.151, 1.851) .849 103.05 108

.401 .599 1.496 -.496 .45 ( 1.046, 1.946) .829 59.49 65

.399 .599 1.500 -.500 .55 ( .950, 2.050) .836 40.18 44

.399 .600 1.503 -.503 .65 ( .853, 2.153) .846 29.22 32

.400 .601 1.501 -.501 .75 ( .751, 2.251) .928 23.23 24

.401 .601 1.499 -.499 .85 ( .649, 2.349) .960 19.48 19

Table 2.12. For θ = 1.5 and ρ = −0.5 when p0 = 0.4, p1 = 0.6, α = 0.05, m=10

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.400 .600 1.501 -.501 .15 (1.351, 1.651) .945 930.49 832

.400 .600 1.499 -.499 .25 (1.249, 1.749) .929 294.42 300

.400 .600 1.501 -.501 .35 ( 1.151, 1.851) .922 147.31 153

.400 .601 1.502 -.502 .45 ( 1.052, 1.952) .887 87.38 93

.399 .602 1.508 -.508 .55 ( .958, 2.058) .875 57.48 63

.400 .598 1.493 -.493 .65 ( .843, 2.143) .897 40.57 45

.400 .600 1.499 -.499 .75 ( .749, 2.249) .931 30.91 34

.401 .598 1.493 -.493 .85 ( .643, 2.343) .962 25.05 26
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Table 2.13. For θ = 2.0 and ρ = −1.0 when p0 = 0.35, p1 = 0.7, α = 0.1, m=5

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.350 .700 1.999 -.999 .20 (1.799, 2.199) .892 611.32 619

.350 .699 1.999 -.999 .30 (1.699, 2.209) .868 266.30 275

.349 .700 2.002 -1.002 .40 (1.602, 2.402) .828 145.01 155

.350 .699 1.995 -.995 .50 (1.495, 2.495) .768 86.81 99

.349 .700 2.003 -1.003 .60 (1.403, 2.603) .757 59.96 69

.351 .701 2.000 -1.000 .70 (1.300, 2.700) .744 42.54 51

.351 .700 1.998 -.998 .80 (1.198, 2.798) .756 37.30 45

.349 .701 2.005 -1.005 .90 (1.305, 2.705) .793 25.40 31

.350 .698 1.997 -.997 1.00 (.997, 2.997) .832 21.61 25

.350 .699 1.996 -.996 1.10 (.896, 3.096) .916 18.57 21

.351 .701 2.000 -1.000 1.20 (.800, 3.200) .929 16.21 18

.351 .700 1.995 -.995 1.30 (.695, 3.295) .941 14.42 15

Table 2.14. For θ = 2.0 and ρ = −1.0 when p0 = 0.35, p1 = 0.7, α = 0.05, m=5

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.350 .700 2.000 -1.000 .20 (1.800, 2.200) .942 866.72 877

.350 .699 1.998 -.998 .30 (1.698, 2.208) .936 385.22 391

.349 .700 2.003 -1.003 .40 (1.603, 2.403) .914 212.51 221

.350 .701 2.004 -1.004 .50 (1.504, 2.504) .869 130.81 141

.349 .700 2.003 -1.003 .60 (1.403, 2.603) .821 85.85 98

.351 .702 2.003 -1.003 .70 (1.303, 2.703) .804 61.85 72

.351 .700 1.998 -.998 .80 (1.198, 2.798) .812 45.94 55

.351 .700 1.998 -.998 .90 (1.098, 2.898) .832 36.58 44

.351 .698 1.993 -.993 1.00 (.993, 2.993) .833 28.65 35

.351 .700 1.997 -.997 1.10 (.897, 3.097) .921 24.33 29

.348 .702 2.018 -1.018 1.20 (.818, 3.218) .930 21.56 25

.349 .698 1.996 -.996 1.30 (.696, 3.296) .941 19.12 21
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Figure 2.4. Plot of coverage probability against d with p0 = 0.35, p1 = 0.7, α = 0.05.

Table 2.15. For θ = 2.0 and ρ = −1.0 when p0 = 0.35, p1 = 0.7, α = 0.1, m=10

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.350 .700 2.001 -1.001 .20 (1.801, 2.201) .895 616.02 619

.350 .699 1.999 -.999 .30 (1.699, 2.209) .869 268.36 275

.349 .700 2.002 -1.002 .40 (1.602, 2.402) .852 147.44 155

.351 .699 1.991 -.991 .50 (1.491, 2.491) .813 90.63 99

.348 .701 2.013 -1.013 .60 (1.413, 2.613) .826 64.54 69

.352 .702 2.003 -1.003 .70 (1.303, 2.703) .868 46.80 51

.351 .700 1.998 -.998 .80 (1.198, 2.798) .910 37.75 39

.349 .701 2.005 -1.005 .90 (1.305, 2.705) .952 37.36 31

Table 2.16. For θ = 2.0 and ρ = −1.0 when p0 = 0.35, p1 = 0.7, α = 0.05, m=10

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.350 .700 2.000 -1.000 .20 (1.800, 2.200) .946 873.58 877

.350 .700 1.999 -.999 .30 (1.699, 2.209) .932 384.47 391

.349 .700 2.002 -1.002 .40 (1.602, 2.402) .919 214.07 221

.350 .700 2.001 -1.001 .50 (1.501, 2.501) .899 133.88 141

.349 .700 2.004 -1.004 .60 (1.404, 2.604) .868 91.24 98

.349 .701 2.003 -1.003 .70 (1.303, 2.703) .882 66.82 72

.350 .701 2.002 -1.002 .80 (1.202, 2.802) .925 51.02 55

.351 .700 1.998 -.998 .90 (1.098, 2.898) .952 41.40 44
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Table 2.17. For θ = 2.5 and ρ = −1.5 when p0 = 0.3, p1 = 0.75, α = 0.1, m=5

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.300 .750 2.499 -1.499 .25 (2.249, 2.749) .886 714.59 722

.299 .750 2.502 1.502 .35 (2.152, 2.852) .866 356.37 368

.301 .749 2.496 -1.496 .45 ( 2.046, 2.946) .830 209.23 223

.299 .749 2.500 -1.500 .55 ( 1.950, 3.050) .799 135.35 150

.299 .750 2.503 -1.503 .65 ( 1.853, 3.153) .762 93.37 107

.300 .751 2.504 -1.504 .75 ( 1.754, 3.254) .741 68.20 81

.301 .751 2.499 -1.499 .85 ( 1.649, 3.349) .713 50.74 63

.298 .751 2.513 -1.513 .95 ( 1.563, 3.463) .746 41.39 51

.300 .749 2.496 -1.496 1.05 ( 1.446, 3.546) .761 33.64 41

.298 .749 2.509 -1.509 1.15 ( 1.359, 3.659) .773 28.84 35

.301 .751 2.497 -1.497 1.25 ( 1.247, 3.747) .858 25.15 30

.301 .751 2.502 -1.502 1.35 ( 1.152, 3.852) .871 22.18 25

.299 .753 2.513 -1.513 1.45 ( 1.049, 3.949) .890 19.56 22

.302 .751 2.495 -1.495 1.55 ( .945, 4.045) .913 17.35 19

.300 .750 2.499 -1.499 1.65 ( .849, 4.149) .960 16.29 17

Table 2.18. For θ = 2.5 and ρ = −1.5 when p0 = 0.3, p1 = 0.75, α = 0.05, m=5

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.301 .750 2.498 -1.498 .25 (2.248, 2.748) .946 1014.67 1024

.299 .750 2.504 1.504 .35 (2.154, 2.854) .934 517.27 524

.301 .749 2.495 -1.495 .45 ( 2.045, 2.945) .914 307.62 317

.299 .749 2.500 -1.500 .55 ( 1.950, 3.050) .886 199.49 212

.299 .750 2.503 -1.503 .65 ( 1.853, 3.153) .846 137.61 152

.300 .751 2.504 -1.504 .75 ( 1.754, 3.254) .813 100.47 114

.299 .751 2.513 -1.513 .85 ( 1.663, 3.363) .804 77.22 90

.300 .749 2.497 -1.497 .95 ( 1.547, 3.447) .773 58.90 71

.300 .749 2.496 -1.496 1.05 ( 1.446, 3.546) .774 46.43 58

.302 .753 2.506 -1.506 1.15 ( 1.356, 3.656) .806 38.75 49

.301 .751 2.497 -1.497 1.25 ( 1.247, 3.747) .871 33.72 41

.299 .751 2.505 -1.505 1.35 ( 1.155, 3.855) .882 29.08 36

.299 .750 2.506 -1.506 1.45 ( 1.056, 3.956) .876 25.76 31

.300 .750 2.499 -1.499 1.55 ( .949, 4.049) .911 23.24 27

.300 .752 2.508 -1.508 1.65 ( .858, 4.158) .965 21.46 24
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Table 2.19. For θ = 2.5 and ρ = −1.5 when p0 = 0.3, p1 = 0.75, α = 0.1, m=10

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.301 .750 2.496 -1.496 .25 (2.246, 2.746) .884 711.16 722

.299 .750 2.503 1.503 .35 (2.153, 2.853) .878 361.65 368

.303 .752 2.496 -1.496 .45 ( 2.046, 2.946) .849 213.70 223

.299 .749 2.501 -1.501 .55 ( 1.951, 3.051) .826 138.10 150

.302 .753 2.503 -1.503 .65 ( 1.853, 3.153) .784 95.84 107

.300 .748 2.492 -1.492 .75 ( 1.742, 3.242) .775 71.19 81

.301 .750 2.497 -1.497 .85 ( 1.647, 3.347) .777 54.92 63

.298 .751 2.513 -1.513 .95 ( 1.563, 3.463) .746 41.39 51

.299 .748 2.496 -1.496 1.05 ( 1.446, 3.546) .858 37.39 41

.299 .751 2.509 -1.509 1.15 ( 1.359, 3.659) .917 32.25 35

.302 .748 2.481 -1.481 1.25 ( 1.231, 3.731) .925 27.44 30

.301 .751 2.503 -1.503 1.35 ( 1.153, 3.853) .956 25.48 25

Table 2.20. For θ = 2.5 and ρ = −1.5 when p0 = 0.3, p1 = 0.75, α = 0.05, m=10

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.300 .750 2.498 -1.498 .25 (2.248, 2.748) .943 1018.73 1025

.301 .750 2.496 1.496 .35 (2.146, 2.846) .937 512.81 523

.301 .749 2.494 -1.494 .45 ( 2.044, 2.944) .916 308.30 317

.298 .748 2.501 -1.501 .55 ( 1.951, 3.051) .887 200.36 212

.299 .750 2.503 -1.503 .65 ( 1.853, 3.153) .872 141.22 152

.302 .751 2.495 -1.495 .75 ( 1.745, 3.245) .844 102.70 114

.299 .752 2.511 -1.511 .85 ( 1.661, 3.361) .827 79.03 89

.300 .748 2.494 -1.494 .95 ( 1.544, 3.444) .849 63.65 71

.298 .751 2.510 -1.510 1.05 ( 1.460, 3.560) .872 53.06 58

.301 .752 2.503 -1.503 1.15 ( 1.353, 3.653) .915 43.81 49

.301 .751 2.497 -1.497 1.25 ( 1.247, 3.747) .929 37.88 41

.301 .751 2.499 -1.499 1.35 ( 1.149, 3.849) .962 32.76 36
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Figure 2.5. Plot of coverage probability against d with p0 = 0.3, p1 = 0.75, α = 0.05.

Table 2.21. For θ = 3.0 and ρ = −2.0 when p0 = 0.25, p1 = 0.75, α = 0.1, m=5

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.250 .750 2.999 -1.999 .30 (2.699, 3.209) .890 894.05 903

.249 .750 3.004 -2.004 .40 (2.604, 3.404) .870 495.39 508

.250 .749 2.995 -1.995 .50 (2.495, 3.495) .845 309.78 326

.301 .750 2.997 -1.997 .60 (2.397, 3.597) .818 210.51 227

.251 .752 3.001 -2.001 .70 (2.301, 3.701) .779 147.31 166

.253 .752 2.995 -1.995 .80 (2.195, 3.795) .751 109.18 127

.249 .751 3.010 -2.010 .90 (2.010, 3.910) .705 83.01 101

.250 .748 2.991 -1.991 1.00 (1.991, 3.991) .700 67.38 82

.250 .751 3.006 -2.006 1.10 (1.906, 4.106) .703 54.73 68

.251 .751 3.000 -2.000 1.20 (1.800, 4.200) .709 46.10 57

.248 .750 3.014 -2.014 1.30 (1.714, 4.314) .748 40.84 49

.251 .750 2.995 -1.995 1.40 (1.595, 4.395) .751 33.45 42

.252 .750 2.982 -1.982 1.50 (1.482, 4.482) .782 29.57 36

.251 .750 2.993 -1.993 1.60 (1.393, 4.593) .799 27.23 32

.251 .750 2.995 -1.995 1.70 (1.295, 4.695) .876 24.32 29

.250 .750 3.004 -2.004 1.80 (1.204, 4.804) .915 21.94 26

.251 .751 2.992 -1.992 1.90 (1.092, 4.892) .919 19.51 23

.251 .750 2.987 -1.987 2.00 (.987, 4.987) .950 18.40 20
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Table 2.22. For θ = 3.0 and ρ = −2.0 when p0 = 0.25, p1 = 0.75, α = 0.05, m=5

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.250 .750 2.997 -1.997 .30 (2.697, 3.207) .935 1272.14 1282

.250 .751 3.006 -2.006 .40 (2.606, 3.406) .931 709.00 720

.250 .749 2.994 -1.994 .50 (2.494, 3.494) .922 447.51 461

.302 .751 2.997 -1.997 .60 (2.397, 3.597) .902 304.82 321

.251 .753 3.008 -2.008 .70 (2.308, 3.708) .875 219.07 236

.253 .752 2.995 -1.995 .80 (2.195, 3.795) .830 160.14 180

.249 .751 3.011 -2.011 .90 (2.011, 3.911) .821 125.23 143

.250 .748 2.991 -1.991 1.00 (1.991, 3.991) .771 96.94 116

.259 .751 3.012 -2.012 1.10 (1.912, 4.112) .756 78.53 96

.247 .749 3.006 -2.006 1.20 (1.806, 4.206) .749 63.62 80

.250 .750 3.001 -2.001 1.30 (1.701, 4.301) .753 57.08 69

.252 .751 2.992 -1.995 1.40 (1.592, 4.392) .769 47.62 59

.249 .750 3.008 -2.008 1.50 (1.508, 4.508) .815 41.54 52

.250 .750 2.998 -1.998 1.60 (1.398, 4.598) .836 36.68 45

.251 .750 2.995 -1.995 1.70 (1.295, 4.695) .866 32.89 40

.250 .750 3.000 -2.000 1.80 (1.200, 4.800) .920 30.17 36

.249 .753 3.022 -2.022 1.90 (1.122, 4.922) .931 27.75 33

.251 .750 2.990 -1.990 2.00 (.990, 4.990) .958 24.09 29

Figure 2.6. Plot of coverage probability against d with p0 = 0.25, p1 = 0.75, α =
0.05.
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Table 2.23. For θ = 3.0 and ρ = −2.0 when p0 = 0.25, p1 = 0.75, α = 0.1, m=10

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.250 .750 3.001 -2.001 .30 (2.701, 3.301) .894 894.52 903

.249 .750 3.005 -2.005 .40 (2.605, 3.405) .882 496.91 507

.250 .749 2.998 -1.998 .50 (2.498, 3.498) .853 313.02 325

.301 .751 2.997 -1.997 .60 (2.397, 3.597) .841 212.06 226

.251 .750 2.991 -1.991 .70 (2.291, 3.691) .805 150.14 166

.253 .752 2.994 -1.994 .80 (2.194, 3.794) .787 113.13 127

.251 .752 3.010 -2.010 .90 (2.010, 3.910) .757 86.97 100

.250 .751 3.003 -2.003 1.00 (2.003, 4.003) .747 71.04 82

.251 .751 2.996 -1.996 1.10 (1.806, 4.006) .766 58.11 67

.250 .750 3.000 -2.000 1.20 (1.800, 4.200) .798 50.17 57

.249 .750 3.004 -2.004 1.30 (1.704, 4.304) .869 43.97 49

.250 .749 2.995 -1.995 1.40 (1.595, 4.395) .883 37.91 42

.251 .750 2.989 -1.989 1.50 (1.489, 4.489) .897 33.78 37

.248 .750 3.016 -2.016 1.60 (1.416, 4.616) .938 31.38 32

.252 .750 2.985 -1.985 1.70 (1.285, 4.685) .955 27.91 28

Table 2.24. For θ = 3.0 and ρ = −2.0 when p0 = 0.25, p1 = 0.75, α = 0.05, m=10

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.250 .750 2.999 -1.999 .30 (2.699, 3.209) .948 1272.86 1281

.250 .750 3.001 -2.001 .40 (2.601, 3.401) .937 712.18 721

.250 .749 2.994 -1.994 .50 (2.494, 3.494) .925 452.30 461

.302 .752 2.997 -1.997 .60 (2.397, 3.597) .917 309.72 321

.249 .752 3.011 -2.011 .70 (2.311, 3.711) .889 221.07 235

.250 .751 3.005 -2.005 .80 (2.205, 3.805) .854 165.01 181

.250 .748 2.991 -1.991 .90 (2.091, 3.891) .846 128.85 143

.250 .750 2.999 -1.999 1.00 (1.999, 3.999) .822 102.64 116

.259 .751 3.005 -2.005 1.10 (1.905, 4.105) .822 84.85 96

.250 .749 2.998 -1.998 1.20 (1.798, 4.198) .830 69.60 81

.250 .750 3.001 -2.001 1.30 (1.701, 4.301) .857 60.09 69

.249 .751 3.012 -2.012 1.40 (1.612, 4.412) .868 52.66 60

.249 .750 3.008 -2.008 1.50 (1.508, 4.508) .901 45.08 52

.250 .749 2.996 -1.996 1.60 (1.3968, 4.596) .933 40.69 45

.251 .749 2.988 -1.988 1.70 (1.288, 4.688) .951 36.24 40

40



Table 2.25. For θ = 4.0 and ρ = −3.0 when p0 = 0.2, p1 = 0.8, α = 0.1, m=5

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.200 .800 4.001 -3.001 .40 (3.601, 4.401) .889 1133.98 1150

.200 .799 3.995 -2.995 .50 (3.495, 4.495) .877 718.21 736

.201 .800 3.997 -2.997 .60 (3.397, 4.597) .864 495.71 513

.200 .800 4.001 -3.001 .70 (3.301, 4.701) .843 355.58 377

.200 .800 3.995 -2.995 .80 (3.195, 4.795) .803 263.88 288

.200 .801 4.010 -3.010 .90 (3.010, 4.910) .768 199.55 228

.202 .801 3.991 -2.991 1.00 (2.991, 4.991) .756 158.68 185

.200 .801 4.006 -3.006 1.10 (2.906, 5.106) .732 127.75 152

.200 .800 4.000 -3.000 1.20 (2.800, 5.200) .718 115.80 140

.199 .801 4.014 -3.014 1.30 (2.714, 5.314) .694 88.02 109

.201 .800 3.995 -2.995 1.40 (2.595, 5.395) .692 74.13 94

.202 .800 3.985 -2.985 1.50 (2.485, 5.485) .686 66.07 83

.199 .798 3.993 -2.993 1.60 (2.393, 5.593) .682 55.37 71

.201 .800 3.995 -2.995 1.70 (2.295, 5.695) .690 49.06 64

.200 .800 4.004 -3.004 1.80 (2.204, 5.804) .704 45.03 57

.200 .799 3.992 -2.992 1.90 (2.092, 5.892) .724 38.79 51

.200 .800 3.997 -2.997 2.00 (1.997, 5.997) .734 36.73 47

.201 .800 3.987 -2.987 2.10 (1.887, 6.087) .752 33.40 42

.199 .799 3.997 -2.997 2.20 (1.797, 6.197) .851 31.42 39

.200 .800 4.003 -3.003 2.30 (1.703, 6.303) .870 28.41 35

.200 .801 4.007 -3.007 2.40 (2.607, 6.407) .879 27.60 33

.201 .802 3.990 -2.990 2.50 (1.490, 6.490) .890 25.46 30

.200 .799 3.998 -2.98 2.60 (1.398, 6.598) .902 24.35 28

.200 .800 4.001 -3.001 2.70 (1.301, 6.701) .948 23.00 26
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Table 2.26. For θ = 4.0 and ρ = −3.0 when p0 = 0.2, p1 = 0.8, α = 0.05, m=5

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.200 .800 4.000 -3.000 .40 (3.600, 4.400) .940 1621.54 1634

.200 .800 3.999 -2.999 .50 (3.499, 4.499) .935 1033.56 1046

.201 .800 3.996 -2.996 .60 (3.396, 4.596) .923 711.55 727

.299 .799 4.004 -3.004 .70 (3.304, 4.704) .913 514.61 533

.202 .801 3.991 -2.991 .80 (3.191, 4.791) .895 392.16 410

.200 .800 4.002 -3.002 .90 (3.002, 4.902) .866 298.28 323

.201 .799 3.991 -2.991 1.00 (2.991, 4.991) .851 238.66 263

.198 .799 4.006 -3.006 1.10 (2.906, 5.106) .804 186.08 216

.199 .799 4.000 -3.000 1.20 (2.800, 5.200) .788 155.11 182

.201 .800 3.994 -2.994 1.30 (2.694, 5.294) .787 131.72 155

.200 .800 3.998 -2.998 1.40 (2.598, 5.398) .758 109.70 134

.202 .801 3.989 -2.989 1.50 (2.489, 5.489) .755 94.25 116

.199 .799 3.997 -2.997 1.60 (2.397, 5.597) .754 84.63 103

.201 .800 3.995 -2.995 1.70 (2.295, 5.695) .726 70.79 79

.200 .801 4.004 -3.004 1.80 (2.204, 5.804) .743 65.41 82

.199 .799 3.992 -2.992 1.90 (2.092, 5.892) .766 57.59 73

.201 .801 3.997 -2.997 2.00 (1.997, 5.997) .758 51.96 67

.202 .800 3.987 -2.987 2.10 (1.887, 6.087) .763 46.17 60

.198 .799 4.008 -3.008 2.20 (1.808, 6.208) .840 43.61 55

.200 .800 4.009 -3.009 2.30 (1.709, 6.309) .856 37.73 50

.201 .802 4.007 -3.007 2.40 (2.607, 6.407) .875 35.74 46

.202 .801 3.984 -2.984 2.50 (1.484, 6.484) .892 34.07 43

.200 .799 3.995 -2.995 2.60 (1.395, 6.595) .899 31.54 39

.200 .800 4.001 -3.001 2.70 (1.301, 6.701) .939 30.02 37
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Table 2.27. For θ = 4.0 and ρ = −3.0 when p0 = 0.2, p1 = 0.8, α = 0.1, m=10

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.200 .800 3.998 -2.998 .40 (3.598, 4.398) .891 1138.34 1150

.200 .800 3.995 -2.995 .50 (3.495, 4.495) .885 723.41 736

.201 .800 3.993 -2.993 .60 (3.393, 4.593) .880 499.04 513

.200 .802 4.011 -3.011 .70 (3.311, 4.711) .844 356.68 376

.199 .799 3.995 -2.995 .80 (3.195, 4.795) .817 265.05 287

.200 .801 4.008 -3.008 .90 (3.008, 4.908) .802 206.93 228

.198 .800 4.012 -3.012 1.00 (3.012, 5.012) .777 165.13 185

.199 .801 4.009 -3.009 1.10 (2.909, 5.109) .767 134.19 153

.200 .800 4.002 -3.002 1.20 (2.802, 5.202) .759 110.82 128

.199 .802 4.017 -3.017 1.30 (2.717, 5.317) .751 94.82 110

.201 .800 3.995 -2.995 1.40 (2.595, 5.395) .751 80.63 94

.200 .799 3.995 -2.995 1.50 (2.495, 5.495) .744 69.77 82

.199 .799 4.002 -3.002 1.60 (2.402, 5.602) .755 62.94 72

.200 .800 3.997 -2.997 1.70 (2.297, 5.697) .790 55.28 64

.200 .800 4.004 -3.004 1.80 (2.204, 5.804) .822 50.29 57

.200 .799 3.996 -2.996 1.90 (2.096, 5.896) .860 46.16 51

.201 .800 3.991 -2.991 2.00 (1.991, 5.991) .877 42.20 46

.201 .800 3.990 -2.990 2.10 (1.890, 6.090) .931 39.73 42

.199 .797 3.987 -2.987 2.20 (1.787, 6.187) .937 36.15 39

.201 .801 4.001 -3.001 2.30 (1.701, 6.301) .957 33.65 35
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Table 2.28. For θ = 4.0 and ρ = −3.0 when p0 = 0.2, p1 = 0.8, α = 0.05, m=10

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.200 .800 3.997 -2.997 .40 (3.597, 4.397) .939 1624.52 1634

.200 .800 3.999 -2.999 .50 (3.499, 4.499) .936 1034.06 1046

.200 .800 4.002 -3.002 .60 (3.402, 4.602) .927 714.89 727

.199 .799 4.004 -3.004 .70 (3.304, 4.704) .911 515.44 533

.201 .801 3.998 -2.998 .80 (3.198, 4.798) .909 391.36 409

.200 .800 4.002 -3.002 .90 (3.002, 4.902) .886 302.17 322

.201 .800 3.991 -2.991 1.00 (2.991, 4.991) .873 242.49 262

.199 .799 4.006 -3.006 1.10 (2.906, 5.106) .853 196.22 216

.199 .800 4.011 -3.011 1.20 (2.811, 5.211) .835 164.48 182

.201 .800 3.990 -2.990 1.30 (2.690, 5.290) .817 136.25 155

.200 .800 3.998 -2.998 1.40 (2.598, 5.398) .810 115.47 134

.200 .801 4.007 -3.007 1.50 (2.507, 5.507) .810 99.57 116

.198 .801 4.021 -3.021 1.60 (2.421, 5.621) .807 89.54 103

.201 .800 3.993 -2.993 1.70 (2.293, 5.693) .813 77.07 91

.200 .801 4.008 -3.008 1.80 (2.208, 5.808) .823 70.44 82

.199 .798 3.992 -2.992 1.90 (2.092, 5.892) .865 61.72 73

.201 .801 3.997 -2.997 2.00 (1.997, 5.997) .863 55.94 68

.200 .800 3.997 -2.997 2.10 (1.897, 6.097) .928 51.97 60

.199 .799 4.008 -3.008 2.20 (1.808, 6.208) .929 48.50 55

.200 .800 4.005 -3.005 2.30 (1.705, 6.305) .957 44.26 50

Figure 2.7. Plot of coverage probability against d with p0 = 0.2, p1 = 0.8, α = 0.05.
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In these tables, the minimum value of d was chosen to be 10 percent of the risk

ratio, and then increased by 0.1 in the following steps. (Note: For practical purposes,

the size of d can be determined from the standard error of the the estimate θ̂.).

From Tables 2.1 to 2.28, we infer that the expected stopping time E (N) mono-

tonically increases (to infinity) as d decreases (to zero). The Monte Carlo estimates

of p̂0 and p̂1 approach the true values of the parameters p0 and p1, respectively as

the length of the interval decreases, and we also observe that as d decreases the cov-

erage probability (CP) gets close to the nominal probability 1− α. (This property is

referred to as the asymptotic consistency.) Therefore, the above numerical evidence

indicates that the finite sample behavior lends support to the asymptotic behavior of

the proposed sequential procedure when d→ 0.

From Figures 2.1 to 2.7, clearly we can observe that the coverage probability starts

from a level higher (in fact, close to 1.0 with large value of d) than the nominal level,

and it goes down. After the coverage probability reaches its minimum value, it will

eventually approach the target nominal level when d becomes small.

In fact, increasing the starting sample sizem results in an increase of both stopping

time and coverage probability. Accordingly, when the CP is below the nominal level,

one can choose a moderate size of d which can be determined from the standard error

(S.E.) of the estimate θ̂.
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2.7.2 Wald-based CI’s Versus Likelihood-based CI’s

One might wish to consider a likelihood-based confidence interval which is prefer-

able to have since it has better general performance in some aspects than a Wald-based

confidence interval.

Definition 2.7 (Likelihood-based confidence interval) Suppose (X1, X2, ..., Xn) is

a random sample from a distribution having parameter θ. Let θ̂MLE be the maximum

likelihood estimator of θ. The likelihood-based confidence interval with confidence

level 1− α is an interval (θ̂likL , θ̂likU ) such that

P{θ̂likL 6 θ̂MLE 6 θ̂likU } > 1− α

Definition 2.8 (Parameter invariance) An interval (θ̂L, θ̂U) is said to be parameter

invariant if P{θ̂L 6 θ̂n 6 θ̂U} > 1− α implies P{ 1

θ̂U
6 1

θ̂n
6 1

θ̂L
} > 1− α.

Theorem 2.3 The likelihood confidence interval of the maximum likelihood esti-

mator is parameter invariant.

To find the likelihood-based confidence intervals of the risk ratio, we start from

the MLE of the parameter θ, then we computationally increase and also decrease

θMLE, to expand the interval and get two equal heights cut off on the likelihood

function, until the coverage probability approaches the confidence level 1− α. Using

the optimal sample size n∗, two limits of confidence interval are found. For some of

the scenarios, results are shown in the following likelihood-based CI vs. Wald-based

CI tables.
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Table 2.29. W-based CI vs L-based CI, θ = 1 (when p0 = .5, p1 = .5)

d θ̂ E(N) n∗ CP Wald-based CI likelihood CI
0.1 1.002 769.833 769 0.9501 (0.902, 1.102) (0.905, 1.105)
0.2 0.999 189.365 193 0.9277 (0.799, 1.199) (0.819, 1.221)
0.3 1.001 82.097 86 0.9084 (0.701, 1.301) (0.739, 1.353)
0.4 1.000 44.508 49 0.8806 (0.600, 1.400) (0.670, 1.492)

Table 2.30. W-based CI vs L-based CI, θ = 1.2 (when p0 = .5, p1 = .6)

d θ̂ E(N) n∗ CP Wald-based CI likelihood CI
0.1 1.199 919.697 922 0.9506 (1.099, 1.299) (1.108, 1.309)
0.2 1.199 228.134 231 0.9391 (0.999, 1.399) (1.016, 1.418)
0.3 1.201 100.019 103 0.9194 (0.901, 1.501) (0.932, 1.538)
0.4 1.200 53.209 58 0.8892 (0.800, 1.600) (0.868, 1.705)

Table 2.31. W-based CI vs L-based CI, θ = 1.5 (when p0 = .4, p1 = .6)

d θ̂ E(N) n∗ CP Wald-based CI likelihood CI
0.15 1.501 825.555 834 0.9470 (1.351, 1.651) (1.356, 1.656)
0.25 1.501 291.797 301 0.9376 (1.251, 1.751) (1.274, 1.779)
0.35 1.501 147.688 154 0.9158 (1.151, 1.851) (1.214, 1.941)
0.45 1.500 84.256 94 0.8633 (1.050, 1.950) (1.103, 2.009)

Table 2.32. W-based CI vs L-based CI, θ = 1.5 (when p0 = .3, p1 = .45)

d θ̂ E(N) n∗ CP Wald-based CI likelihood CI
0.15 1.501 1357.22 1366 0.9483 (1.351, 1.651) (1.358, 1.659)
0.25 1.500 486.307 492 0.9256 (1.250, 1.750) (1.267, 1.768)
0.35 1.499 239.882 251 0.9087 (1.149, 1.849) (1.197, 1.931)
0.45 1.499 142.538 152 0.8802 (1.049, 1.949) (1.120, 2.039)
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Table 2.33. W-based CI vs L-based CI, θ = 2 (when p0 = .35, p1 = .7)

d θ̂ E(N) n∗ CP Wald-based CI likelihood CI
0.2 2.002 867.396 881 0.9456 (1.802, 2.202) (1.813, 2.215)
0.3 1.998 383.572 392 0.9311 (1.698, 2.298) (1.729, 2.334)
0.4 2.003 213.007 221 0.9087 (1.603, 2.403) (1.660, 2.479)
0.5 2.000 130.977 142 0.8801 (1.500, 2.500) (1.589, 2.633)

Table 2.34. W-based CI vs L-based CI, θ = 2.5 (when p0 = .3, p1 = .75)

d θ̂ E(N) n∗ CP Wald-based CI likelihood CI
0.25 2.503 1018.01 1025 0.9392 (2.253, 2.753) (2.264, 2.765)
0.35 2.503 511.997 523 0.9289 (2.153, 2.853) (2.180, 2.885)
0.45 2.499 307.601 317 0.9055 (2.049, 2.949) (2.107, 3.021)
0.55 2.499 197.687 212 0.8866 (1.949, 3.049) (2.015, 3.127)

Table 2.35. W-based CI vs L-based CI, θ = 3 (when p0 = .25, p1 = .75)

d θ̂ E(N) n∗ CP Wald-based CI likelihood CI
0.3 3.002 1270.55 1281 0.9398 (2.702, 3.302) (2.720, 3.323)
0.4 2.999 707.138 721 0.9177 (2.599, 3.399) (2.635, 3.441)
0.5 3.001 445.754 461 0.9053 (2.501, 3.501) (2.553, 3.567)
0.6 3.000 305.139 321 0.8876 (2.400, 3.600) (2.476, 3.698)

Table 2.36. W-based CI vs L-based CI, θ = 4 (when p0 = .2, p1 = .8)

d θ̂ E(N) n∗ CP Wald-based CI likelihood CI
0.4 3.998 1613.19 1633 0.9401 (3.598, 4.398) (3.627, 4.430)
0.5 3.999 1029.00 1045 0.9369 (3.499, 4.499) (3.542, 4.548)
0.6 4.001 708.124 726 0.9274 (3.401, 4.601) (3.471, 4.653)
0.7 4.002 515.877 534 0.9103 (3.302, 4.702) (3.381, 4.796)
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From the above tables, we can observe that the Wald-based confidence intervals

and the likelihood-based confidence intervals are quite agreeable to each other. The

likelihood-based confidence intervals are off-centered due to the fact that the Binomi-

al distribution is skewed to the right. On the other hand, the Wald-based confidence

intervals are balanced since the intervals have constructed based on the Normal ap-

proximation.

The advantage of likelihood-based confidence intervals is that the confidence inter-

vals are invariant toward its reciprocal. We can verify the invariance by interchanging

the parameters p0 and p1. For example,

Table 2.37. The invariance of Likelihood CI

Estimate E(N) n∗ CP likelihood CI

θ̂n = 2.503 1018.01 1025 0.9392 (2.2643, 2.7651)

θ̂−1n = 0.399 1019.70 1025 0.9405 (0.3616, 0.4416)

As we see that the above results satisfy that 1/2.7651 = 0.3616 and 1/2.2643 =

0.3616. Therefore, the likelihood-based confidence intervals are exactly invariant.

However, since the likelihood-based confidence intervals are computationally-oriented,

the results are not easy to obtain analytically.

The following Tables 2.38 - 2.40 show various cases of invariance between Wald-

based confidence intervals and the likelihood-based confidence intervals.
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Table 2.38. The Confidence Interval of 1/θ; (when p0 = 0.4, p1 = 0.6)

d θ̂ E(N) n∗ CP Wald-based CI likelihood CI
0.15 1.501 825.555 834 0.9351 (1.351, 1.651) (1.356, 1.656)

d 1/θ̂ E(N) n∗ CP Wald-based CI likelihood CI
0.05 0.666 817.691 834 0.9248 (0.616, 0.716) (0.619, 0.725)

Table 2.39. The Confidence Interval of 1/θ; (when p0 = 0.3, p1 = 0.75)

d θ̂ E(N) n∗ CP Wald-based CI likelihood CI
0.2 2.503 1018.01 1025 0.9392 (2.303, 2.703) (2.264, 2.765)

d 1/θ̂ E(N) n∗ CP Wald-based CI likelihood CI
0.05 0.401 994.606 1025 0.9176 (0.351, 0.451) (0.361, 0.442)

Table 2.40. The Confidence Interval of 1/θ; (when p0 = 0.2, p1 = 0.8)

d θ̂ E(N) n∗ CP Wald-based CI likelihood CI
0.4 3.999 1613.19 1633 0.9401 (3.599, 4.399) (3.627, 4.430)

d 1/θ̂ E(N) n∗ CP Wald-based CI likelihood CI
0.025 0.2503 1466.03 1633 0.8504 (0.2253, 0.2753) (0.226, 0.277)
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From Tables 2.38 to 2.40, we can see the Wald-based confidence intervals are al-

most invariant. We refer this to as near-invariance. Thus, from the above numerical

evidence, it is fair to say that Wald-based confidence intervals produced by the pro-

posed procedure are as good as the likelihood-based confidence intervals in terms of

length and sample sizes.
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CHAPTER 3

TWO-STAGE PROCEDURE

3.1 Introduction

One can set up a sampling strategy that takes observations in two steps and

proceeds to further investigation for inferences.

As we have already discussed in the previous chapter, there does not exist a fixed-

sample size procedure for estimating the mean of a normal population (when the vari-

ance is unknown) with a fixed-width confidence interval and preassigned confidence

level. One of the ways to overcome this problem is Stein’s (1945, 1949) two-stage

procedure. The first step, called Stage 1, records a pilot sample of size m(≥ 2) and

evaluates a statistic (e.g. sample variance), then the experimenter proceeds to the

second step, Stage 2, to gather all remaining observations (if needed) for further sta-

tistical inference. We need to note that the sample size of the second sample depends

upon the results from the pilot sample.

In order to diversify the sampling plan, we consider the advantage of the sequen-

tial sampling design toward the two-stage sampling procedure and inference. For

example, often in many pharmaceutical studies, experimenters want to have inter-

im or intermediate stages to gather updated information on the adequacy of the

planned sample size in a study, because the experimenters are often uncertain about

the assessed values of the parameters that were used initially for the calculations or
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obtained from some other studies. Consequently, the sample size that was initially

planned does not necessarily guarantee the width of the confidence interval, but also

the required power (for the testing). Therefore, it would be plausible to reestimate

the required size beyond the originally planned to get the overall optimal sample sizes

if it needs. This is also frequently refered to as the sample size reestimation problem

in clinical trials.

We start with a procedure proposed by Stein (1945, 1949) that takes observations

in two stages. Then, we extend the procedure to the two-sample case for the risk ratio

and study the asymptotic properties of the procedure. Then, we will perform Monte

Carlo simulations with feasible scenarios in order to investigate the finite sample

behavior.

3.2 Two-Stage Procedure for One-sample Case

Let X1, X2, ... be a sequence of i.i.d N(µ, σ2) variables with both unknown

parameters. One wishes to construct a 100(1 − α)% confidence interval with pre-

specified length 2d and confidence level 1−α. To implement the two-stage procedure,

at the initial step, we take m(≥ 2) observations (X1, X2, ..., Xm), define the sample

mean and sample variance to be X̄m = Σm
i=1Xi/m and s2m = Σm

i=1(Xi− X̄n)2/(m− 1),

respectively. Then, based on these two quantities, we need to make a decision on how

many additional observations are required to satisfy the criteria of the problem.

The half-width of a 100(1 − α)% confidence interval based on X̄m is given by

tα/2,m−1Sm/
√
m, where tα/2,m−1 is the 100(1 − α/2)% point of t distribution with

53



(m− 1) degrees of freedom. Recall that the confidence interval for µ is Im = [X̄m −

dm, X̄m + dm] = [X̄m − tα/2,m−1Sm/
√
m, X̄m + tα/2,m−1Sm/

√
m]. If the half length

from the sample of size m is smaller than or equal to the desired half-width d, then

no further stage will be needed; otherwise the additional observations are taken so

that the total sample size n is at least as large as t2α/2,m−1S
2
m/d

2
m.

Thus, the final sample size is determined as

N ≡ N(d) = max

{
m,

[
t2α/2,m−1S

2
m

d2

]
+ 1

}
(3.1)

where [k] denotes the smallest integer ≥ k, Thus, easily we can see that N is finite

(N <∞) with probability one.

In summary, the Stein’s two-stage procedure is basically to construct a fixed-width

confidence interval for µ with sample variance S2
m that was obtained from the first-

stage sample X1, X2, ..., Xm of size m. Then, using the sample variance S2
m, one can

estimate the required optimal fixed sample size. If N = m, we already have enough

sample (pilot sample size m) to achieve the desirable d and no need to take any more

samples. If N > m, then we sample Xm+1, Xm+2, ..., XN of size (N − m) at the

second-stage. Then, we have X1, X2, ..., XN and the interval [X̄N ± d] based on all

samples of size N .

3.3 Two-Stage Procedure for Risk Ratio

As we mentioned before, the ratio of two binomial proportions is of major interest

for measuring the risk ratio in comparative prospective studies and in biomedical

experiments. Therefore, in this section, we move on to the two-stage procedure for
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the risk ratio of two binomial variates.

We consider two sequences of independent Bernoulli variates with probabilities p0

and p1, respectively, say X1, X2, ..., and Y1, Y2, .... Recall that in chapter two, we

defined two binomial random variables R =
∑n

i=1Xi and S =
∑n

i=1 Yi, where
∑n

i=1Xi

follows the binomial distribution with parameters (n, p0), and
∑n

i=1 Yi follows the

binomial distribution with parameters (n, p1). Based on these two sums of Bernoulli

variates, we define a modified estimator for the risk ratio θ = p1/p0, that is

θ̂n =
S

R + 1/n
=

∑n
i=1 Yi∑n

i=1Xi + 1/n
.

We state the main result (see Sec. 2.4) that
√
n
(
θ̂n − θ

)
converges in distribution

to N (0, σ2) for sufficiently large n with

σ2 =
θ(1 + θ − 2θp0)

p0
.

Thus, the sequence of risk ratios asymptotically satisfies the conditions to set up the

previous one-sample case when n is determined. We can take pilot samples of size m

for Xi and Yi, then we calculate the sample variance of the risk ratio θ̂m.

Now, we can apply the results of stopping time given in Section 3.2 for the risk

ratio:

N ≡ N(d) = max

{
m,

[
t2α/2,m−1S

2
m

d2

]
+ 1

}
. (3.2)

Thus, motivated by the stopping rule Eq.(3.2), we have the following proposed

two-stage procedure:

Stage 1 (Pilot stage): Obtain X1, X2, ..., Xm and Y1, Y2, ..., Ym. The integer m is
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called pilot sample size. If N = m, then we do not take sample any more (no further

stage is needed) and establish a (1 − α)100% confidence interval, Im = [X̄m ± d],

which has width 2d for risk ratio θ.

Stage 2 (Sequential stage): If N > m, we sample Xm+1, Xm+2, ..., XN and

Ym+1, Ym+2, ..., YN . Thus, the total samples of each sequence is N . Therefore, the

associated fixed-width confidence interval is given by IN = [θ̂N − d, θ̂N + d], based on

all N samples of X
′
is and Y

′
i s.

3.4 Asymptotic Properties of the Two-Stage Procedure

We now study the properties of the proposed two-stage procedure that we stated

in the previous section.

Theorem 3.1 (Finite sure termination). Let N be the stopping time associ-

ated with the proposed two-stage procedure. Then P{N <∞} = 1

Proof. If N = m, since m < ∞, it is trivial. If N > m, using the stopping rule

in Eq. (3.2)

P{N =∞} = lim
n→∞

P (N > n) ≤ lim
n→∞

P

(
n ≤

t2α/2,m−1S
2
m

d2

)
= 0.

Hence the sequential procedure terminates finitely with probability one.

Theorem 3.2 For two-stage procedure in Eq. (3.2), we have

(i) Pθ,σ (θ ∈ IN) ≥ 1− α,

(ii) Eθ,σ(N) ≥
t2
α/2,m−1

σ2

d2
,

(iii) limd→0Pθ,σ (θ ∈ IN) = 1− α.

Proof. From the set up of the procedure, (i) and (ii) can be easily verified. (Also,
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see Mukhopadhyay, N. and de Silva B.M., 2009.)

For (iii) we proceed as Theorem 2.2 in Chapter 2. In addition, it follows from

Theorem 3.2, part (ii), that Eθ,σ(N/n∗) ≥ 1 as d→ 0.

3.5 Numerical Study

In the previous sections, we mentioned that the risk ratio for two binomial variates

follows an asymptotic normal distribution, so we can use the stopping rule we derived

in Section 3.2 to calculate optimal sample sizes. In the following tables, we used

confidence level α = 0.05 and pilot (first stage) sample size m =30 or 50. The results

are summarized in the tables below, with the average sample size E(N), optimal

sample size n∗ (≥ m) and the coverage probability (CP). Note that the minimum

sample size is m.

Table 3.1. For θ = 1.0 and ρ = 0 when p0 = 0.5, p1 = 0.5, α = 0.1, m=30

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.500 .501 1.002 -.002 .20 ( .802, 1.202) .898 185.18 136

.501 .500 0.999 .001 .30 ( .699, 1.299) .901 80.88 61

.502 .501 0.997 .003 .40 ( .597, 1.397) .956 49.71 34

Table 3.2. For θ = 1.0 and ρ = 0 when p0 = 0.5, p1 = 0.5, α = 0.05, m=30

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.500 .500 1.000 .000 .20 ( .800, 1.200) .938 265.91 193

.500 .499 0.999 .001 .30 ( .699, 1.299) .951 119.32 86

.500 .500 1.000 .000 .40 ( .600, 1.400) .959 67.62 49

.500 .500 1.001 .001 .50 ( .501, 1.501) .986 46.05 31
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Table 3.3. For θ = 1.0 and ρ = 0 when p0 = 0.5, p1 = 0.5, α = 0.1, m=50

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.500 .500 1.000 .000 .10 ( .900, 1.100) .897 636.28 542

.500 .501 1.002 -.002 .20 ( .802, 1.202) .899 162.58 136

.501 .500 0.999 .001 .30 ( .699, 1.299) .901 74.10 61

Table 3.4. For θ = 1.0 and ρ = 0 when p0 = 0.5, p1 = 0.5, α = 0.05, m=50

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.500 .500 1.000 .000 .20 ( .800, 1.200) .948 236.68 193

.500 .499 0.999 -.001 .30 ( .699, 1.299) .953 103.47 86

.500 .500 1.000 .000 .40 ( .600, 1.400) .988 64.65 50

Table 3.5. For θ = 1.5 and ρ = −0.5 when p0 = 0.4, p1 = 0.6, α = 0.1, m=30

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.400 .601 1.502 -.502 .35 (1.152, 1.852) .899 179.40 108

.400 .600 1.498 -.498 .45 (1.048, 1.948) .902 106.62 66

.400 .601 1.501 -.501 .55 ( .951, 2.051) .939 71.99 44

.400 .599 1.499 -.499 .65 ( .849, 2.149) .971 55.62 32

Table 3.6. For θ = 1.5 and ρ = −0.5 when p0 = 0.4, p1 = 0.6, α = 0.05, m=30

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.401 .599 1.497 -.497 .45 (1.047, 1.947) .949 153.53 93

.398 .600 1.505 -.505 .55 ( .955, 2.055) .950 102.49 63

.399 .600 1.501 -.501 .65 ( .851, 2.151) .976 73.21 45

.401 .600 1.497 -.497 .75 ( .747, 2.247) .989 59.22 34
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Table 3.7. For θ = 1.5 and ρ = −0.5 when p0 = 0.4, p1 = 0.6, α = 0.1, m=50

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.400 .600 1.500 -.500 .35 (1.150, 1.850) .901 138.76 108

.401 .600 1.497 -.497 .45 (1.047, 1.947) .940 88.01 66

.399 .600 1.504 -.504 .55 ( .954, 2.054) .978 67.72 50

Table 3.8. For θ = 1.5 and ρ = −0.5 when p0 = 0.4, p1 = 0.6, α = 0.05, m=50

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.401 .599 1.493 -.493 .45 (1.043, 1.943) .950 121.74 93

.398 .600 1.505 -.505 .55 ( .955, 2.055) .982 87.33 63

.400 .600 1.501 -.501 .65 ( .851, 2.151) .994 67.89 50

Table 3.9. For θ = 2.0 and ρ = −1.0 when p0 = 0.35, p1 = 0.7, α = 0.1, m=30

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.351 .699 1.994 -.994 .50 (1.494, 2.494) .897 186.81 99

.351 .702 2.003 -1.003 .60 (1.403, 2.603) .898 124.42 69

.350 .700 2.000 -1.000 .70 (1.300, 2.700) .937 94.96 51

.351 .498 1.993 -.993 .80 (1.193, 2.793) .961 76.32 39

Table 3.10. For θ = 2.0 and ρ = −1.0 when p0 = 0.35, p1 = 0.7, α = 0.05, m=30

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.350 .700 2.000 -1.000 .50 (1.500, 2.500) .945 281.83 141

.349 .700 2.002 -1.002 .60 (1.402, 2.602) .947 192.96 98

.349 .699 2.001 -1.001 .70 (1.301, 2.701) .946 138.70 72

.351 .700 1.998 -.998 .80 (1.198, 2.798) .967 127.26 55

.352 .699 1.995 -.995 .90 (1.095, 2.895) .986 98.50 44
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Table 3.11. For θ = 2.0 and ρ = −1.0 when p0 = 0.35, p1 = 0.7, α = 0.1, m=50

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.350 .700 1.999 -.999 .50 (1.499, 2.499) .903 139.98 99

.351 .702 2.003 -1.003 .60 (1.403, 2.603) .946 99.49 69

.350 .702 2.004 -1.004 .70 (1.304, 2.704) .975 79.75 51

Table 3.12. For θ = 2.0 and ρ = −1.0 when p0 = 0.35, p1 = 0.7, α = 0.05, m=50

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.350 .700 2.001 -1.001 .50 (1.501, 2.501) .950 199.88 141

.351 .701 2.001 -1.001 .60 (1.401, 2.601) .956 138.10 98

.349 .699 2.001 -1.001 .70 (1.301, 2.701) .981 104.05 72

.351 .700 1.998 -.998 .80 (1.198, 2.798) .990 84.53 55

Table 3.13. For θ = 2.5 and ρ = −1.5 when p0 = 0.3, p1 = 0.75, α = 0.1, m=30

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.299 .750 2.501 -1.501 .65 ( 1.851, 3.151) .869 228.14 107

.299 .749 2.501 -1.501 .75 ( 1.751, 3.251) .889 187.10 81

.301 .750 2.497 -1.497 .85 ( 1.647, 3.347) .917 179.01 63

.300 .751 2.503 -1.503 .95 ( 1.553, 3.453) .948 122.00 50

Table 3.14. For θ = 2.5 and ρ = −1.5 when p0 = 0.3, p1 = 0.75, α = 0.05, m=30

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.299 .749 2.501 -1.501 .85 (1.651, 3.351) .948 260.28 90

.300 .748 2.496 -1.496 .95 (1.546, 3.446) .957 193.91 71

.300 .750 2.499 -1.499 1.05 (1.449, 3.549) .974 141.43 59

.301 .752 2.504 -1.504 1.15 (1.354, 3.654) .982 113.85 49
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Table 3.15. For θ = 2.5 and ρ = −1.5 when p0 = 0.3, p1 = 0.75, α = 0.1, m=50

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.300 .750 2.501 -1.501 .65 ( 1.851, 3.151) .906 166.31 107

.301 .749 2.495 -1.495 .75 ( 1.645, 3.245) .936 122.12 81

.301 .750 2.498 -1.498 .85 ( 1.648, 3.348) .962 100.34 63

.300 .750 2.501 -1.501 .95 ( 1.551, 3.451) .975 84.36 50

Table 3.16. For θ = 2.5 and ρ = −1.5 when p0 = 0.3, p1 = 0.75, α = 0.05, m=50

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.299 .751 2.506 -1.506 .85 (1.656, 3.356) .969 136.46 89

.300 .749 2.498 -1.498 .95 (1.548, 3.448) .983 112.73 71

.301 .750 2.499 -1.499 1.05 (1.449, 3.549) .991 95.47 59

.301 .751 2.502 -1.502 1.15 (1.352, 3.652) .993 86.08 50

Table 3.17. For θ = 3.0 and ρ = −2.0 when p0 = 0.25, p1 = 0.75, α = 0.1, m=50

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.250 .749 2.998 -1.998 1.00 (1.998, 3.998) .941 145.90 82

.250 .750 3.001 -2.001 1.10 (1.901, 4.101) .960 127.24 68

.251 .751 3.002 -2.002 1.20 (1.802, 4.202) .975 107.21 57

.249 .750 3.004 -2.004 1.30 (1.704, 4.304) .983 94.97 50

Table 3.18. For θ = 3.0 and ρ = −2.0 when p0 = 0.25, p1 = 0.75, α = 0.05, m=50

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.250 .748 2.994 -1.994 1.00 (1.994, 3.994) .954 202.28 116

.250 .752 3.010 -2.010 1.10 (1.910, 4.110) .970 167.76 96

.249 .749 3.003 -2.003 1.20 (1.803, 4.203) .981 145.06 81

.250 .750 3.001 -2.001 1.30 (1.701, 4.301) .986 129.28 69

.252 .753 2.998 -1.998 1.40 (1.598, 4.398) .992 112.38 59
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Table 3.19. For θ = 4.0 and ρ = −3.0 when p0 = 0.2, p1 = 0.8, α = 0.1, m=50

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.199 .800 4.004 -3.004 1.30 (2.704, 5.304) .918 257.16 109

.199 .799 3.996 -2.996 1.40 (2.596, 5.396) .937 218.09 94

.200 .799 3.995 -2.995 1.50 (2.495, 5.495) .952 199.64 83

.198 .799 3.999 -2.999 1.60 (2.399, 5.599) .963 163.78 71

.200 .800 3.996 -2.996 1.70 (2.296, 5.696) .974 152.42 64

Table 3.20. For θ = 4.0 and ρ = −3.0 when p0 = 0.2, p1 = 0.8, α = 0.05, m=50

p̂0 p̂1 θ̂ ρ̂ d Confidence Limits CP E(N) n∗

.201 .802 4.005 -3.005 1.50 (2.505, 5.505) .954 310.00 117

.199 .798 3.993 -2.993 1.60 (2.393, 5.593) .968 237.70 103

.201 .800 3.994 -2.994 1.70 (2.294, 5.694) .982 229.61 91

.200 .800 4.000 -3.000 1.80 (2.200, 5.800) .987 214.71 82

.199 .799 3.998 -2.998 1.90 (2.098, 5.898) .993 189.49 73

From the above tables, we observe that the expected sample size is more than the

required optimal sample size for the interval with the confidence level 1− α and the

half-length d , which satisfies the result in Theorem 3.2 (ii). When d→ 0, the random

stopping time N approaches∞ (w.p. 1) and the required optimal fixed-sample size n∗

goes to infinity as well. Also, smaller pilot samples result in larger required expected

sample sizes. Comparing to the numerical results from Chapter 2, we can see that

the coverage probability in the two-stage procedure has improved, because it does

over-sampled.

The pilot sample size m can be considered as a lower bound of the optimal sample
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size in the procedure. The simulation results provide substantial numerical evidence

for us to conclude that the proposed two-stage procedure performs satisfactorily. In

addition, in order to capture the more desirable and better properties of both sequen-

tial and two-stage procedure, one can consider the modified two-stage procedure for

the risk ratio.
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CHAPTER 4

CONCLUSION AND FUTURE RESEARCH

4.1 Concluding Remarks

In this dissertation, we have studied sequential methods for inference on the risk

ratio of two independent binomial variates to construct confidence intervals with

desirable length 2d and confidence level 1−α. Primarily, we proposed the sequential-

sampling design as the fundamental, and we extended the sampling strategy to the

two-stage procedure. The dynamic sampling methods such as sequential sampling

or multi-stage sampling provide optimality of the sample size and flexibility to the

experimenters to set up the plan more efficiently and effectively.

After proposing the dynamic sampling strategies, we explored their properties

with finite samples and asymptotics. Also, through the Monte Carlo simulation,

we verified finite sample behavior, numerical evidence and the performance of the

proposed procedure. Perhaps, the proposed method could be applicable to some

other measures of relative risk.

In addition, we compared the confidence interval based on the proposed method

(i.e., Wald-based) with the likelihood-based confidence intervals. We can summarize

that the proposed intervals are near-invariant. For more practical purposes, the two-

stage method is recommendable to experimenters and researchers.
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4.2 Future Direction

We now outline some future directions for feasible extensions as well as future

problems that are closely related to our methods. One of the closest approaches

we can consider is to look for the problem under the frame work of ranking and

selection methodologies. It could be used the indifference zone approach or subset

selection method for the problem. Both could be more directly decision-theoretic

oriented method, because the selection rule provides the probability of correct deci-

sion/selection, P (CS). Moreover, the problem can also be thought as the two-stage

selection procedure as well.

Second, the risk-efficient estimation for the estimator could be plausible under

the squared error loss incorporating with the cost of observations. We are able to

estimate the risk of the ratio of two binomial proportions when the loss function is in

the form of: Ln = (θ̂n − θ)2 + cn, where θ is the risk ratio we defined previously and

c(> 0) is the known cost per unit of observations. The risk function associated with

the optimal sample size could be derived by using sequential method or two-stage

method.
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APPENDIX

SOME R-CODES FOR THE SEQUENTIAL-BASED

CONFIDENCE INTERVAL SIMULATION

# Program for the sequential procedure

# Number of iteration is 5000

mor <- 1-theta1/theta0

for(i in 1:5000){

x0 <- rbinom(5000,1,theta0)

x1 <- rbinom(5000,1,theta1)

for(j in 5:5000){

mor.0 <- 1-(sum(x1[1:j]))/(sum(x0[1:j])+1/j)

theta0.hat <- (sum(x0[1:j]))/j

sigma <- sqrt((1-mor.0))*

sqrt((2-mor.0+2*mor.0*theta0.hat-2*theta0.hat)/theta0.hat)

s <- j

if(s <= (qnorm(0.975)*sigma/d)^2) break}

MOR[i] <- 1-sum(x1)/(sum(x0))

N[i] <- s

mor.N <- 1-sum(x1[1:s])/(sum(x0[1:s])+1/s)

theta0.hat <- sum(x0)/5000
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if(1-theta1/theta0 < mor.N+d & 1-theta1/theta0 <mor.N-d)

cp[i]=1

}

sigma <- sqrt((1-mor)*(2-mor+2*mor*theta0-2*theta0)/theta0)

n <- floor((qnorm(0.95)*sigma/d)^2)+1
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