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ABSTRACT 
 
 

ARIMA Models for Forecasting Poisson Data: Application to Long-Term 
Earthquake Predictions 

 
 

by 
 
 

Wandong Fu 
 

Dr. Chih-Hsiang Ho, Examination Committee Chair 
Professor of Mathematical Sciences 
University of Nevada, Las Vegas 

 

Earthquakes that occurred worldwide during the period of 1896 to 2009 with 

magnitude greater than or equal to 8.0 on the Richter scale are assumed to follow a 

Poisson process. Autoregressive Integrated Moving Average models are presented to fit 

the empirical recurrence rates, and to predict future large earthquakes. We show valuable 

modeling and computational techniques for the point processes and time series data. 

Specifically, for the proposed methodology, we address the following areas: data 

management and graphic presentation, model fitting and selection, model validation, 

model and data sensitivity analysis, and forecasting.  
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CHAPTER 1 

INTRODUCTION 

On January 12, 2010, a 7.0 magnitude earthquake hit Port-au-Prince, Haiti. The 

earthquake lasted one minute, just enough time to kill thousands of people and destroy 

numerous buildings. The earthquake caused major damage to Port-au-Prince and the 

surrounding area. According to the government’s estimate, 200,000 people were killed, 

250,000 were injured, and consequently, 1.5 million people became homeless. Many 

notable landmark buildings were significantly damaged or destroyed, including the 

Palace (President René Préval survived), the National Assembly building, the 

Port-au-Prince Cathedral, and the main jail. The whole country was in ruins. On February 

27, 2010, a magnitude of 8.8 earthquake occurred off the coast of the Maule Region of 

Chile, which lasted 90 seconds. Six Chilean cities experienced intense vibrations. 

Tremors were also felt in many Argentine cities, including Buenos Aires, Córdoba, 

Mendoza and La Rioja. The earthquake triggered a tsunami which devastated several 

coastal towns in south-central Chile and damaged the port at Talcahuano. Tsunami 

warnings were issued in 53 countries, causing minor damage in the San Diego area of 

California. The earthquake also generated a blackout that affected 93% of the country's 

population and which went on for several days in some locations.  

Earthquakes always strike suddenly without warning, and lead to disaster -- lack of 

basic necessities, loss of lives, general property damage, road and bridge damage, and 

collapse of buildings. Therefore, forecasting earthquake has been the focus of numerous 

studies (Bakun et al., 2005; Felzer et al., 2003; Helmstetter et al., 2006; Hong and Guo, 

1995; Jackson and Kagan, 2006; Kagan, 1993; Savage and Cockerham, 1987; and 
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references therein).  

In this thesis, we use the earthquake data worldwide from 1896 to 2009 with 

magnitude greater than or equal to 8.0 on the Richter scale. We assume that they follow a 

Poisson process. We then constructed a discrete time series based on the empirical 

recurrent rates (ERRs) of the assumed Poisson process, computed sequentially at 

equidistant time intervals during the observation period. The time-plot of the ERRs, 

referred to as the “fingerprint” or the ERR plot, offers the possibility of further insight 

into the data and provides a technical basis for model developments for the earthquake 

data. In short, we present three main ideas: (1) convert point process to ERR time series, 

(2) study the time series using the ARIMA modeling techniques (to be defined later), and 

(3) the develop methods to retrieve the counterparts of the predicted ERRs. 

In summary, we define ERR, introduce ARIMA models and some related theories 

and methods in Chapter 2. Chapter 3 applies the modeling techniques in Chapter 2 to the 

earthquake data. The sensitivity analysis based on the process size and the time-steps are 

presented in Chapter 4. We then conclude our studies in Chapter 5.  
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CHAPTER 2 

THEORIES AND METHODS 

2.1 Empirical Recurrence Rates 

Let 1, , nt t…  be the time of the n -ordered earthquakes during an observation 

period )0,(0t , where 0t  is the time-origin and 0 is the present time. If h  is the time-step, 

then a discrete time series { }z
ℓ

 is generated sequentially at equidistant time intervals 

,ot h+  0 2 ,t h+  ,…  0 ,t h+ ℓ  ,…  0t Nh+ (= 0 = present time). z
ℓ
 is regarded as the 

observation at time t 0( )t h= + ℓ , for the earthquakes to be modeled. A key parameter 

desired by the modelers is the recurrence rate of the targeted earthquake data. Therefore, 

a time series of the empirical recurrence rates (Ho, 2008) is generated as follows: 

n
z

h
= ℓ

ℓ
ℓ

 = 0 0total number of earthquakes in( , )t t h
h

+ ℓ
ℓ

, 

where ℓ=1, 2, …, N.  Note that z
ℓ
 evolves over time and is simply the maximum 

likelihood estimator (MLE) of the mean, if the underlying process observed in0(t , 

0 )t h+ ℓ  is a homogeneous Poisson process. The time-plot of the empirical recurrence 

rate (ERR-plot), offers the possibility of further insights into the data. Also, if we start at 

time T , the value ,T kz +  1k ≥  needs to be predicted based on the sample observation 

1( , , )Tz z… of an ERR time series. In a regression modeling, let X  denote the time index, 

z  be the response values, and then use the fitted regression model to obtainT kz + . 

However, a regression model assumes that the observations are independent and this is 

not a reasonable assumption for a process that evolves over time. Thus the ARIMA 

models are introduced. 
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2.2 ARIMA Models 

 Autoregressive integrated moving average (ARIMA) models are mathematical 

models of persistence, or autocorrelation, in a time series. It was introduced by Box and 

Jenkins (1976). ARIMA models allow us not only to uncover the hidden patterns in the 

data but also to generate forecasts and predict a variable’s future values from its past 

values. 

ARIMA models can be expressed by a series of equations. One subset of ARIMA 

models is called autoregressive, or AR models. The name autoregressive refers to the 

regression on self. An AR model describes a time series as a linear function of its past 

values plus a noise termtε . The order of the AR model shows the number of past values 

included. The simplest AR model is the first-order autoregressive, or AR (1) model. The 

equation for this model is given by:  

1t t tX X Zφ −= + ,  

where 1, 2,...,t N= , tX is a stationary zero-mean time series and φ  is the first-order 

autoregressive coefficient. We can see that the AR (1) model has the form of a regression 

model in which tz is regressed on its previous value, and the error term tZ  is analogous 

to the regression residuals and represents a “white noise” (uncorrelated with mean 0 and 

variance 2σ ) process.  

The moving average (MA) model is another form of ARIMA model in which the 

time series is described as a linear function of its prior errors plus a noise termtε . The 

first-order moving average, or MA (1), model is given by:  

1t t tX Z Zθ −= − , 
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where 1, 2,...,t N= , tz  is a stationary zero-mean time series, tZ , 1tZ −  are the error 

terms at time t and t-1, and θ is the first-order moving average coefficient. 

A general autoregressive moving average (ARMA) model, ARMA (p, q), is given by: 

1 1 1 1... ...t p t p t t q t qX X X Z Z Zφ φ θ θ− − −− − − = + + +  

The integrated ARMA (ARIMA) is a broadening of the class of ARMA that includes 

differencing. We will explain the differencing in Section 2.4. Moreover, ARIMA 

modeling involves three stages. The first stage is to identify the model. Identification 

consists of specifying the appropriate model (AR, MA, ARMA, or ARIMA) and order of 

model. Sometimes identification is done by looking at plots of the sample autocorrelation 

function (ACF) and sample partial autocorrelation function (PACF). Sometimes it is done 

by an auto fit procedure – fitting many different possible model structures and orders and 

using a goodness-of-fit statistic to select the best model. The second stage is to estimate 

the order of the model. At this stage, the coefficients are estimated, so that the sum of 

squared residuals is minimized. The final stage is model diagnostics. One of the 

important elements in this stage is to make sure that the residuals of the candidate model 

are random and normally distributed. And the other one is to ensure that the estimated 

parameters are statistically significant. The fitting process is usually guided by the 

principle of parsimony, by which the best model is the one which has fewest parameters 

among all models that fit the data.  

 

2.3 Data Splitting and ERR Plotting 

If the data set is large enough, it can be split into two sets: training sample and 

prediction set. Training sample is used to develop a model for prediction. Prediction set is 
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used to evaluate the reasonableness and predictive ability of the selected model. This 

validation procedure named cross-validation is the statistical practice of splitting a 

sample of data into subsets so that the analysis is initially performed on a single subset, 

while the other subset is retained for subsequent use in confirming and validating the 

initial analysis. The application in this regard will be detailed in Section 3.1 and 3.2. 

 

2.4 Data Transformation 

   Our main goal is to model and predict the occurrences of the large earthquakes in the 

future. In proving a fitted ARMA model meaningful, it must be at least plausible that the 

data are in fact a realization of an ARMA process and in particular a realization of a 

stationary process. A stationary time series is the one whose statistical properties such as 

mean, variance, autocorrelation, etc. are all constant over time. By using of some 

mathematical transformations, we can render our time series approximately stationary. 

We will introduce three common transformations that are called Box-Cox, differencing 

and subtracting the mean as follows.  

2.4.1 Box-Cox Transformation 

If the original observations are nYYYY ,... , , 321 , the Box-Cox transformation 

λf converts them to )(),...( ),( 21 nYfYfYf λλλ , where: 










=

≠−

=

0  ),log(

0  ,
1

)(

λ

λ
λ

λ

λ

y

y

yf  

This transformation is useful when the variability of the data increases or 

decreases with the level. By suitable choice of λ , the variability can be made nearly 
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constant. For instance, positive data whose standard deviation increases linearly with 

level, the variability can be stabilized by choosing λ = 0 (Brockwell et al., 2002). 

2.4.2 Differencing 

Differencing is an important technique in transforming data, which attempts to 

de-trend to control autocorrelation and achieve stationary time series. The first difference 

is denoted as: 

1 (1 )t t t tX X X B X−∇ = − = −  

where B is the backshift operator. We may extend the notion further and define the 

differences of order d as: 

(1 )d d
t tX B X∇ = −  

Usually, single differencing is used to remove linear trends and double differencing is 

used to remove quadratic trend. We can eliminate seasonality and trend of period d  by 

introducing the lag d difference operator d∇ :  

t
d

dtttd XBXXX )1( −=−=∇ −  

This operator should not be confused with the operator (1 )dB−  defined earlier (Ho, 

2010a).   

Normally, the correct amount of differencing is the lowest order of differencing that 

yields a time series which fluctuates around a well-defined mean value and whose 

autocorrelation function (ACF) plot decays rapidly to zero, either from above or below.  

Thus, at every stage of differencing, we check the plots of sample autocorrelation 

function (ACF) and the sample partial autocorrelation function (PACF) to see where the 

ACF/PACF “cuts off” the bounds 1.96 / n± . It is desirable to find a sample ACF that 

decays fairly rapidly. We say that a series is stationary if the sample ACF has very few 
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significant spikes at very small lags and then cuts off drastically or dies down very 

quickly. If the sample ACF dies slowly, the series still has some trend. If ACF has 

periodicity, the series has seasonality. We should do some more differencing of the data 

before continuing.  

2.4.3 Subtracting the Mean 

The term, ARMA model, is used in the program ITSM2000 (Brockwell et al., 2002) 

to denote a zero-mean ARMA process. Therefore, the sample mean of the data should be 

small before modeling. Once the apparent deviations from stationarity of the data have 

been removed, we subtract the sample mean of the transformed data from each 

observation. The search for a fitted ARMA model for a mean-corrected data set then 

follows.  

 

2.5 Model Diagnostics 

We will check the residual ACF/PACF of the models that we develop. Also the 

models need to pass the test for randomness of the residuals. After the model diagnostics 

process, we can do further predictions and comparisons.  

2.5.1 The Sample ACF of the Residuals 

For large n, the sample autocorrelations of an independent and identically distributed (iid) 

sequence 1Y ,…, nY  with finite variance are approximately iid with distribution N (0, 

1/n). We can therefore test whether or not the observed residuals are consistent with iid 

noise by examining the sample correlations of the residuals and rejecting the iid noise 

hypothesis if more than two or three out of 40 fall outside the bounds 1.96 / n±  or if 

one falls far outside the bounds (Brockwell et al., 2002). 
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2.5.2 Ljung-Box Test for Lack of Fit in Time Series Models 

Ljung-Box Test was proposed by Ljung and Box (1978). It is commonly used to 

check whether the residuals of a fitted model are iid in ARIMA modeling. It is based on 

the autocorrelation plot, and it tests the overall independence based on a few of lags. 

Because of this, it is often referred to as a portmanteau test. Formally, the definition of 

Ljung-Box test is as follows. 

:0H  The sequence data are iid 

:aH  The sequence data are not iid 

The test statistic is 2

1

1 ˆ)()2()ˆ(ˆ
k

m

k

rknnnrQ ∑
=

−−+= ,  

where ∑∑
=

−
+=

=
n

l
lkl

n

kl
lk aaar

1

2

1

ˆˆˆˆ , the estimated autocorrelation at lag k , 

n = sample size, 

m = number of lags being tested  

naa ˆ,...,ˆ1  are the residuals after a model has been fitted to a series nzz ,...,1 . If no 

model is being fitted, then naa ˆ,...,ˆ1 are the “mean corrected” series of nzz ,...,1 .  

 For largen , the distribution of )ˆ(ˆ rQ  is approximately 2
qpm −−χ  under the null 

hypothesis, where qp + is the number of parameters of the fitted model. The hypothesis 

of iid is rejected if 2
;1

ˆ
qpmQ −−−> αχ  at level α . Therefore, there is dependence among the 

sequence data. Or we can say the sequence data do have autocorrelations significantly 

different from zero.  

 

2.6 Model Comparison 



10 

2.6.1 AIC, BIC and AICC Statistics 

In this thesis, we will use the AICC statistic as an information criterion to select 

candidate models using the ITSM2000 package. The AICC statistic, the bias-corrected 

version of the AIC statistic, was introduced by Akaike in 1974. Small value of AICC is 

indication of a good model, but it should be used only as rough guide. Final decisions 

between models are based on maximum likelihood estimation. Some other 

Model-selection statistics, such as the BIC statistic, are also available in ITSM2000. The 

BIC statistic (Schwarz, 1978) is a Bayesian modification of the AIC statistic. It is 

evaluated at the same time as the AICC, and it is used in the same way as the AICC. Each 

information statistic is defined as following, 

2
,

2
,

2
,

ˆlog 2

ˆlog 2 /( 1)

ˆlog log

p q

p q

p q

AIC N r

AICC N rN N r

BIC N r N

ε

ε

ε

σ

σ

σ

= +

= + − −

= +

 

where 2ˆεσ is the maximum likelihood estimator of 2εσ , and 1++= qpr  is the number 

of parameters estimated in the model, including a constant term. The second term in all 

three equations is a penalty for increasing r. Hence, if we want to minimize the values of 

these criteria, we should minimize the number of parameters. Therefore, the best model is 

the model adequately describes data and has fewest parameters. 

2.6.2 Forecasting 

The candidate ARIMA models will be used to predict future values of the time 

series from the past values. The forecasting function 1 1( , , )t t tz f z z a−= +…  has the 
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minimum mean square error. The first part of the above equation )...,( 1,1 zzf t− is a 

function of the past values of the series and it should be determined by the data. The 

second part ta , called noise part, is a sequence of independent and identically distributed 

(iid) variables. Predictions will be achieved by forecasting the residuals and then 

inverting the transformations adopted to arrive at forecasts of the original series. Also, we 

will see which model is the best fitting model by comparing the prediction from training 

set with the prediction set. Then, we will combine the training sample and the prediction 

set as a full data set to forecast earthquakes for the future based on the same techniques as 

before. Note that the cumulated mean numbers inverted from the forecasted ERRs should 

be nondecreasing, and should sometimes be adjusted accordingly (e.g., Ho, 2010a.) 

2.6.3 The Subset Model Checking 

In the ITSM2000 package, the coefficients of models are given with the ratio of each 

estimate to 1.96 times its standard error, if it is a causal model (p85, Brockwell et al., 

2002). The denominator (1.96×standard error) is the critical value (at level 0.05) for the 

coefficient. Thus, if the ratio is greater than 1 in absolute value, we may conclude (at 

level 0.05) that the corresponding coefficient in the model may be zero (Brockwell et al., 

2002). After dropping the non-significant coefficients, the subset model comes up. We 

will do more comparisons between the full model and the subset model. 
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CHAPTER 3 

APPLICATION 

3.1 Data 

Earthquakes that occurred worldwide during the period of 1896 to 2009, with 

Magnitude (M) 8.0≥  on the Richter scale, are obtained from the U.S. Geological Survey 

(http://www.usgs.gov/). In the data set, the year of 1896 is the time origin 0t , and 2009 is 

the present time 0. There were 55 earthquakes that occurred during the 114 years 

(Appendix Table 1). 

By using the raw data, we constructed a dot plot to observe any possible trends 

(Figure 1). It is clear that the dot plot has limited value in delivering the temporal trend 

presented by the data. 

 

 

 

Figure 1. Dot plot of large earthquakes worldwide between 1896 and 2009 

 

 

Then, we count the number of earthquakes with each time-step (1, 2 and 3 years) 

and calculate the lz  values to do further analysis (Appendix Table 2 - 4). Three ERR 

plots with three different time-steps are shown in Figure 2.  
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Figure 2. ERR plots with different time-steps (h): a h=1 year, b h=2 years, c h=3 

years 
 

 

Since there are 55 large earthquakes in 114 years, which indicates there is approximately 

one large earthquake in every two years. We consider to choose h = 2 years as the 

time-step. Therefore, we will try to predict earthquakes with h = 2 years.  

 

3.2 ARIMA Modeling with h = 2 

We will use the ITSM2000 software to model the ERR data with h = 2 years. The 

data set with time-step h = 2 years has 57 lags in total. At First, we use the technique 

described in Section 2.3 to split the data into two sets: training sample and prediction set. 

In this case, our training sample is the original data set excluding the last 5 ERRs, which 

is the prediction set (Figure 3).These five ERR values in the prediction set, representing a 



14 

decade of earthquake data, will be used to compare with those of the one to five-step 

predictions, produced by a candidate model. Of course, the size of a predict set is quite 

flexible as long as it fits a common goal of model selection. Then we focus on the 

training sample set and plot the sample ACF and PACF to observe the data set (Figure 4). 

From the plot of sample ACF, we found that the spikes die slowly and have periodicity. 

This indicates nonstationary behavior. As mentioned in Section 2.4, it has some trend and 

seasonality. Thus differencing is considered.  

 

 

 

Figure 3. Training sample and prediction set of data set with h = 2 years. Each lag  

corresponds to 2 years 
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Figure 4. a, time-plot; b, sample ACF; c, sample PACF of the training sample with h =  

2 years. Each lag corresponds to 2 years 

 

 

Applying the differencing operator ∇  on the training sample, we take a difference 

at lag 1. Figure 5 tells us that the stationarity has not been achieved. So we do further 



16 

difference at lag 1. Then we subtract the sample mean from each observation of the 

differenced series to generate a stationary zero-mean time series (Figure 6). We feel that 

the ACF is cutting off at lag 3 and the PACF is tailing off. This would suggest that an MA 

(3) should be considered. Indeed, our initial model selection process concludes that the 

estimated (MLE) model is:  

 

Xt = Zt - 0.2475Zt-1 + 0.1471Zt-2 - 0.4985Zt-3 

Estimated WN Variance = 0.002240 

Standard Error of MA Coefficients 

0.141517       0.168863       0.114696 

 

Note that Xt represents a twice-differenced stationary zero-mean time series and the error 

term Zt represents a white noise process.  
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Figure 5 a, time-plot; b, sample ACF; c, sample PACF of a lag-1 differenced training 

sample with h = 2 years. Each lag corresponds to 2 years 
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Figure 6. a, time-plot; b, sample ACF; c, sample PACF of the twice-differenced  

training sample with h = 2 years. Each lag corresponds to 2 years  
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Figure 7. Diagnostics for the MA (3) fitted to the mean-corrected and  

              twice-differenced training sample. Residual a, time-plot; b, sample   

    ACF; c, sample PACF. Each lag corresponds to 2 years 

 

 

A set of diagnostic plots (Figure 7) is produced by the ITSM2000 package, 

consisting of the plot of the residuals, its ACF and PACF for the MA (3) model. The 
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AICC statistic is -153.367. And the Ljung - Box test is not significant (p-value = 

0.96067), indicating that the residuals are approximately white noise. The numerical 

values of the actual ERRs and mean numbers in the prediction set, and the predicted 

ERRs by the model MA (3) with their counterparts are shown in Table 5. 

 

 

Table 5. The numerical values of the actual ERRs and mean numbers in the prediction  

     set, and the predicted ERRs using the MA (3) with their counterparts (the  

corresponding mean values derived from the predicted ERRs) 

Year 
Annual ERR  Mean number 

Actual Prediction  Actual Prediction 
2000-2001 0.415094 0.41238  2 1.71228 
2002-2003 0.416667 0.43368  1 2.83744 
2004-2005 0.436364 0.46318  3 5.9498 
2006-2007 0.482143 0.49771  6 7.74352 
2008-2009 0.482456 0.53728  1 7.24992 

 

 

We list the ratios of (estimated coefficients)/(1.96×standard error) for each 

coefficient, calculated from the output of an MA (3) model, shown in Section 3.2. The 

ratios are:  

-0.892166       0.444319     -2.217303 

 Note that the ratio at lag 3 in absolute value is greater than 1, which indicates the 

corresponding coefficient is nonzero. We will keep the corresponding coefficient. Table 6 

shows the AICC statistics and the p-values of the Ljung-Box test for a variety of subset 

MA (3) models. All of these models pass the residual diagnostic tests.  
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Table 6. The AICC statistics and the p-values of the Ljung-Box test for a variety of  

subset MA (3) models 

Lags  MLE Model AICC 
p-value of the 

Ljung-Box Test 

1 2 3  1. Xt = Zt - 0.2475Zt-1 + 0.1471Zt-2 - 0.4985Zt-3 -153 0.961 

 2 3  2. Xt = Zt - 0.1995Zt-2 - 0.4659Zt-3 -153 0.898 

1  3  3. Xt = Zt - 0.1995Zt-1 - 0.4659Zt-3 -155 0.978 

  3  4. Xt = Zt  - 0.5136Zt-3 -155 0.828 
 

 

We then use these models to make predictions. Figure 8 shows the comparisons of 

the results with the prediction set. Model 1 – 4 are defined in Table 6. The predicted 

values are very similar, indicating that these models are all acceptable.  

 

 

 

Figure 8. Comparison of five forecasted ERRs with the prediction set. Each lag  

corresponds to 2 years 
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3.3 Full-Data Forecasting 

Finally, we will use the full ERR time series to forecast the number of earthquakes in the 

future. This yields the best-fitted MA (3) model for the mean-corrected and 

twice-differenced at lag 1 data (same as before). The estimated (MLE) model is:  

 

Xt = Zt - 0.2708Zt-1 + 0.1450Zt-2 - 0.5025Zt-3 

Estimated WN Variance = 0.002100 

Standard Error of MA Coefficients 

0.134042       0.165004       0.114643 

 

The AICC statistic is -173.294, and the Ljung - Box test is not significant (p-value = 

0.96568). Then, we check the ratios as following:  

-1.030746       0.448350     -2.236312 

This leads to a subset MA (3), which has the AICC statistic -174.738, and the p-value of 

the Ljung-Box test is 0.97676. The estimated (MLE) model is:  

 

Xt = Zt - 0.2213 Zt-1 - 0.4597 Zt-3 

Estimated WN Variance = .002137 

Standard Error of MA Coefficients 

0.114263       0.000000       0.108700 

 

The AICC statistics and the p-values of the Ljung-Box test of the subset MA (3) are a 

little better than MA (3). But there is no big difference, and we will keep both of them. 
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The predictions of the next ten years, from 2010 to 2019, are shown in the Table 7.  

 

 

Table 7. The predicted ERRs using the MA (3) and the subset MA (3) with their  

          counterparts (the corresponding mean values derived from the predicted 

ERRs) 

Year 
Full model ERR  Mean number 

MA (3) Subset MA (3)  MA (3) Subset MA (3) 
2010-2011 0.50365 0.49733  3.4234 2.69028 
2012-2013 0.50785 0.50620  1.5029 2.04132 
2014-2015 0.54365 0.54526  5.3117 5.69960 
2016-2017 0.58401 0.58886  6.01122 6.40972 
2018-2019 0.62891 0.63702  6.73562 7.14956 
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CHAPTER 4 

SENSITIVITY ANALYSIS 

In Chapter 3, we have shown that, for h = 2 years, there are at least two adequate 

ARIMA models for the chosen earthquake data. We are now ready to address the 

following issues: (1) Will the technique be applicable for a small point process or data set? 

And (2) how will the choices of time-step affect the results? The investigation of the first 

part could be done by increasing the time-step of our ERRs to a desired level. In this 

thesis, however, we simply cite the work of Ho (2010b) to demonstrate that the proposed 

technique works for the Parkfield earthquake prediction experiment, which represents a 

small point process. We then discuss the sensitivity analysis based on our own data with 

three different time-steps. 

 

4.1 Sensitivity on Process Size - Parkfield Earthquake Prediction 

Since the large earthquake of Jan. 2, 1857, earthquake sequences with main shocks of 

magnitude (M) 6 have occurred near Parkfield, on Feb. 2, 1881, Mar. 3, 1901, Mar. 10, 

1922, June 8, 1934, June 28, 1966, and Sep. 28, 2004 (Bakun et. al, 2005). This is a small 

point process with a somewhat periodic recurrence rate. A focused earthquake prediction 

experiment has been in progress along this area since then. The Parkfield Experiment 

(http://earthquake.usgs.gov/research/parkfield/index.php), which is led by the USGS and 

the State of California, is a comprehensive, long-term earthquake research project on the 

San Andreas Fault. Scientists hope to better understand the physics of earthquakes -- what 

actually happens on the fault and in the surrounding region before, during, and after an 

earthquake, and to provide a scientific basis for earthquake prediction. The experiment 
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has involved more than 100 researchers at the USGS, collaborating universities and 

government laboratories. Their coordinated efforts have led to a dense network of 

instruments poised to "capture" the anticipated earthquake and reveal the earthquake 

process in unprecedented detail. 

In 1985, the National Earthquake Prediction Evaluation Council (NEPEC) issued a 

statement that an earthquake of about M 6 would probably occur before 1993 on the San 

Andreas Fault near Parkfield (Shearer, 1985). However, no such event occurred until Sep. 

28, 2004. The ARIMA model of Ho (2010b) predicted a new earthquake to occur 

between Dec. 5, 2002 and Dec. 4, 2004.  

 

4.2 Sensitivity on Time-Step, h  

4.2.1 ARIMA Modeling with h = 1 

When we choose the time-step h = 1 year, the data set has 114 lags in total. The 

training sample with 104 lags and the prediction set with 10 lags are shown in Figure 9. 

The plots of sample ACF and PACF on the training sample (Figure 10) indicate 

nonstationary behavior. Therefore, we need differencing. We used the same method 

described in the last chapter. After taking twice difference at lag 4 and 1, we find the best 

fitting model ARMA (5, 5). The AICC statistic is -362.268, and the Ljung and Box test is 

not significant (p-value = 0.86584), which gives us evidence to believe that the residuals 

are approximately white noise. The estimated (MLE) model is: 
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Xt = -0.1717Xt-1 + 0.1597Xt-2 + 0.5383Xt-3 – 0.08758Xt-4 - 0.4073Xt-5 + Zt +  

0.2547Zt-1 + 0.4622Zt-2 - 0.2237Zt-3 - 0.2444Zt-4 - 0.6749Zt-5  

Estimated WN Variance = .001080 Standard Error of AR Coefficients 

0.120296     0.151424     0.122791     0.138724      0.130128 

Standard Error of MA Coefficients 

0.104708     0.131067     0.120401     0.119647      0.105785 

 

 

 

Figure 9. Training sample and prediction set of data set with h = 1 year. Each lag  

corresponds to 1 year 

 

 



27 

 
Figure 10. a, time-plot; b, sample ACF; c, sample PACF of the training sample with h 

= 1 year. Each lag corresponds to 1 year 

 

 

Unfortunately, all the subset ARMA (5, 5) models neither pass the model diagnostic 

tests nor outperform the ARMA (5, 5). The forecasting results for this model are 

summarized in Table 8. 



28 

Table 8. The numerical values of the actual ERRs and mean numbers in the prediction  

        set, and the predicted ERRs using the ARMA (5, 5) with their counterparts (the  

corresponding mean values derived from the predicted ERRs) 

Year 
Annual ERR  Mean number  

Actual Prediction  Actual Prediction 
2000 0.40952381 0.41519  1 1.59495 
2001 0.41509434 0.4218  1 1.11585 
2002 0.41121495 0.43678  0 2.02466 
2003 0.41666667 0.44336  1 1.14742 
2004 0.43119266 0.46441  2 2.73781 
2005 0.43636364 0.47262  1 1.36751 
2006 0.45045045 0.49327  2 2.76477 
2007 0.48214286 0.50355  4 1.64463 
2008 0.47787611 0.52445  0 2.86525 
2009 0.48245614 0.53609  1 1.85141 

 

 

Xt = - 0.1766Xt-1 + 0.1507Xt-2 + 0.5407Xt-3 - 0.08186Xt-4 - 0.4143Xt-5 + Zt +  

0.2635Zt-1 + 0.4700Zt-2 - 0.2179Zt-3 - 0.2439Zt-4 - 0.6681Zt-5 

Estimated WN Variance = 0.000990 

Standard Error of AR Coefficients 

0.112016     0.112036     0.100380     0.102246     0.102535 

Standard Error of MA Coefficients 

0.096521     0.098182     0.121989     0.097102     0.092292 

 

The above output is the best fitted mode using a complete ERR time series for the 

mean-corrected and twice-differenced data (same as before). It’s also an ARMA (5, 5). 

The predictions are shown in Table 9.  
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Table 9. Predictions of large earthquakes with h = 1 year 

Year Full model ERR Mean number 
2010 0.4976 2.224 
2011 0.50603 1.47548 
2012 0.50149 0 (adjusted) 
2013 0.53084 3.96479 
2014 0.54151 1.80057 
2015 0.5598 2.73631 
2016 0.57991 2.99311 
2017 0.60608 3.77265 
2018 0.62047 2.37605 
2019 0.65601 5.02743 

 

 

4.2.2 ARIMA Modeling with h = 3 

The data set with the time-step h = 3 years has 38 lags. The training sample with 35 

lags and the prediction set with 3 lags are shown in Figure 11. The plots of sample ACF 

and PACF on the training sample (Figure 12) indicate nonstationary behavior. Thus 

differencing is considered. We took the first difference at lag 2 and the second difference 

at lag 1. This is also a suggestion of the ARMA (2, 2) model. The estimated (MLE) model 

is:  

 

Xt = 0.1439 Xt-1 - 0.7329 Xt-2 + Zt - 0.08275 Zt-1 - 0.3587 Zt-2 

Estimated WN Variance = 0.003556 

Standard Error of AR Coefficients 

0.309275       0.244192 

Standard Error of MA Coefficients 

0.325282       0.285052 
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The AICC statistic is -74.570857. The Ljung - Box statistic is 14.846 and the p-value 

is 0.78513, which indicates that the residuals are approximately white noise. Additionally, 

all the subset ARMA (2, 2) models neither pass the model diagnostic tests nor outperform 

the ARMA (2, 2). Table 10 gives us the comparison of actual ERRs and prediction values.  

 

 

 

Figure 11. Training sample and prediction set of data set with h = 3 years. Each lag 

corresponds to 3 years 
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Figure 12. a, time-plot; b, sample ACF; c, sample PACF of the training sample with h 

= 3 years. Each lag corresponds to 3 years 
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Table 10. The numerical values of the actual ERRs and mean numbers in the prediction 

set, and the predicted ERRs using the ARMA (2, 2) with their counterparts 

(the corresponding mean values derived from the predicted ERRs) 

Year 
Annual ERR  Mean number  

Actual  Prediction  Actual Prediction 
2001-2003 0.41666667 0.41764  2 2.10512 
2004-2006 0.45045045 0.43075  5 2.70813 
2007-2009 0.48245614 0.4356  5 1.84515 

 

 

A complete ERR time series yields the following best fitted model for the 

mean-corrected and twice-differenced data (same as before).  

 

Xt = 0.1512 Xt-1 - 0.7353 Xt-2 + Zt - 0.05566 Zt-1 - 0.3374 Zt-2 

Estimated WN Variance = 0.003382 

Standard Error of AR Coefficients 

0.307757       0.242601 

Standard Error of MA Coefficients 

0.322960       0.273897 

 

Again, it’s ARMA (2, 2). The predictions are shown in Table 11. 
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Table 11. Predictions of large earthquakes with h = 3 years 

Year Full model ERR Mean number 
2010-2012 0.50662 4.27454 
2013-2015 0.52456 3.67266 
2016-2018 0.56671 6.75813 

 

 

In conclusion, Table 12 shows the prediction values of all the comparable models 

with different time-steps. 

 

 

Table 12. Predictions of earthquakes with different time-steps, h 

h Fitted model 
   Full data forecasting 

2010-2015 

1 ARMA (5, 5) 12.176 

2 Subset MA (3) 10.431 
3 ARMA (2, 2) 7.9472 
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CHAPTER 5 

CONCLUSIONS 

Earthquakes that occurred during 1896 to 2009 with magnitude greater than or equal 

to 8.0 on the Richter scale are assumed to follow a Poisson process. Time series (ARIMA) 

models are well developed, and are applied in many fields. The integrated ARMA, or 

ARIMA model, is an extension of the class of ARMA models that include differencing. In 

this thesis, we build a linking bridge between a Poisson process and the classical time 

series via a sequence of the empirical recurrent rates (ERR), calculated sequentially at 

equidistant time intervals.  

We split the earthquake data set into a training sample and a prediction set. The 

training sample is used to develop the candidate models. For time-step h = 2 years, we 

used the last five ERRs as a prediction set to make model comparisons by checking the 

predictive ability of the candidate models developed from the training sample. Before 

modeling, we must make sure the ARMA process is stationary. After taking twice 

difference at lag 1, an MA (3) model with the lowest AICC statistic passes the 

randomness test for residuals and has all the residual ACF lags falling within the bounds 

1.96 / n±  (Figure 7). The ratio (estimated coefficient)/(1.96×standard error) is a critical 

value (at level 0.05) for the coefficient. If the ratio is greater than 1 in absolute value, we 

conclude that the corresponding coefficient is not significant. We then obtained some 

subset MA (3) models by dropping the non-significant coefficients. Based on the full data 

forecasting, there will be 12 large earthquakes in the next 6 years from the prediction of h 

= 1 year, 10 earthquakes from the prediction of h = 2 years, and 8 from h = 3 years, 

which are pretty similar (Table 12). 
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The application of ARIMA models for long-term earthquake prediction is a natural 

extension of the methodologies developed for the volcanic risk assessment studies (Ho, 

2008, 2010a). Likewise, this work will further facilitate the research in the areas of 

monitoring the occurrence rates of cancer death, car accident, teen pregnancy, suicide, 

dust storm, hurricane, bank failure, foreclosure, genetic mutation, etc. 
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APPENDIX 

DATA 

Table 1. Large earthquakes worldwide since 1896 ( 0.8≥M ) 
Date Location Magnitude 

06/15/1896 Sanriku, Japan 8.5 
06/12/1897 Assam, India 8.3 
09/10/1899 Yakutat Bay, Alaska 8 
08/11/1903 Southern Greece  8.3 
07/09/1905 Mongolia  8.4 
01/31/1906 Off the Coast of Esmeraldas, Ecuador 8.8 
08/17/1906 Valparaiso, Chile  8.2 
10/21/1907 Qaratog, Tajikistan  8 
12/12/1908 Off the Coast of Central Peru 8.2 
06/05/1920 Taiwan region  8 
11/11/1922 Chile-Argentina Border 8.5 
02/03/1923 Kamchatka  8.5 
08/10/1931 Xinjiang, China  8 
06/03/1932 Jalisco, Mexico  8.1 
03/02/1933 Sanriku, Japan 8.4 
01/15/1934 Bihar, India - Nepal 8.1 
02/01/1938 Banda Sea, Indonesia 8.5 
11/10/1938 Shumagin Islands, Alaska 8.2 
05/24/1940 Callao, Peru  8.2 
08/24/1942 Off the coast of central Peru 8.2 
04/06/1943 Illapel - Salamanca, Chile 8.2 
12/07/1944 Tonankai, Japan 8.1 
11/27/1945 Makran Coast, Pakistan  8 
04/01/1946 Unimak Island, Alaska 8.1 
08/04/1946 Samana, Dominican Republic 8 
12/20/1946 Nankaido, Japan 8.1 

08/22/1949 
Queen Charlotte Islands, British Columbia, 

Canada 8.1 
08/15/1950 Assam - Tibet  8.6 
11/04/1952 Kamchatka 9 
03/09/1957 Andreanof Islands, Alaska 8.6 
12/04/1957 Gobi-Altay, Mongolia 8.1 
11/06/1958 Kuril Islands  8.3 
05/22/1960 Chile 9.5 
10/13/1963 Kuril Islands  8.5 
03/28/1964 Prince William Sound, Alaska 9.2 
02/04/1965 Rat Islands, Alaska 8.7 
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Date Location Magnitude 
10/17/1966 Near the Coast of Peru 8.1 
07/31/1970 Colombia 8 
10/03/1974 Near the Coast of Central Peru 8.1 
09/19/1985 Michoacan, Mexico 8 
06/09/1994 Bolivia 8.2 
03/25/1998 Balleny Islands Region 8.1 
11/16/2000 New Ireland Region, Papua New Guinea 8 
06/23/2001 Near the Coast of Peru 8.4 
09/25/2003 Hokkaido, Japan Region 8.3 
12/23/2004 North of Macquarie Island 8.1 
12/26/2004 Sumatra-Andaman Islands 9.1 
03/28/2005 Northern Sumatra, Indonesia 8.6 
05/03/2006 Tonga 8 
11/15/2006 Kuril Islands 8.3 
01/13/2007 East of the Kuril Islands 8.1 
04/01/2007 Solomon Islands 8.1 
08/15/2007 Near the Coast of Central Peru 8 
09/12/2007 Southern Sumatra, Indonesia 8.5 
09/29/2009 Samoa Islands region 8.1 
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Table 2. ERR with time-step h = 1 year 
Time-Step Count ERR Time-Step Count ERR 

 1896* 1 1 1935 0 0.4 
1897 1 1 1936 0 0.390244 
1898 0 0.666667 1937 0 0.380952 
1899 1 0.75 1939 0 0.409091 
1900 0 0.6 1940 1 0.422222 
1901 0 0.5 1941 0 0.413043 
1902 0 0.428571 1942 1 0.425532 
1903 1 0.5 1943 1 0.4375 
1904 0 0.444444 1944 1 0.44898 
1905 1 0.5 1945 1 0.46 
1906 2 0.636364 1946 3 0.509804 
1907 1 0.666667 1947 0 0.5 
1908 1 0.692308 1948 0 0.490566 
1909 0 0.642857 1949 1 0.5 
1910 0 0.6 1950 1 0.509091 
1911 0 0.5625 1951 0 0.5 
1912 0 0.529412 1952 1 0.508772 
1913 0 0.5 1953 0 0.5 
1914 0 0.473684 1954 0 0.491525 
1915 0 0.45 1955 0 0.483333 
1916 0 0.428571 1956 0 0.47541 
1917 0 0.409091 1957 2 0.5 
1918 0 0.391304 1958 1 0.507937 
1919 0 0.375 1959 0 0.5 
1920 1 0.4 1960 1 0.507692 
1921 0 0.384615 1961 0 0.5 
1922 1 0.407407 1962 0 0.492537 
1923 1 0.428571 1963 1 0.5 
1924 0 0.413793 1964 1 0.507246 
1925 0 0.4 1965 1 0.514286 
1926 0 0.387097 1966 1 0.521127 
1927 0 0.375 1967 0 0.513889 
1928 0 0.363636 1968 0 0.506849 
1929 0 0.352941 1969 0 0.5 
1930 0 0.342857 1970 1 0.506667 
1931 1 0.361111 1971 0 0.5 
1932 1 0.378378 1972 0 0.493506 
1933 1 0.394737 1973 0 0.487179 
1934 1 0.410256 1974 1 0.493671 
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Time-Step Count ERR Time-step Count ERR 
1975 0 0.4875 1992 0 0.412371 
1976 0 0.481481 1993 0 0.408163 
1977 0 0.47561 1994 1 0.414141 
1978 0 0.46988 1995 0 0.41 
1979 0 0.464286 1996 0 0.405941 
1980 0 0.458824 1997 0 0.401961 
1981 0 0.453488 1998 1 0.407767 
1982 0 0.448276 1999 0 0.403846 
1983 0 0.443182 2000 1 0.409524 
1984 0 0.438202 2001 1 0.415094 
1985 1 0.444444 2002 0 0.411215 
1986 0 0.43956 2003 1 0.416667 
1987 0 0.434783 2004 2 0.431193 
1988 0 0.430108 2005 1 0.436364 
1989 0 0.425532 2006 2 0.45045 
1990 0 0.421053 2007 4 0.482143 
1991 0 0.416667 2008 0 0.477876 

   2009 1 0.482456 
* January 1, 1896 – December 31, 1896 

 

 

 

 

 

 

 

 

 

 

 



40 

Table 3. ERR with time-step h = 2 years 
Time-Step Count ERR 

 1896* 2 1 
1898 1 0.75 
1900 0 0.5 
1902 1 0.5 
1904 1 0.5 
1906 3 0.666666667 
1908 1 0.642857143 
1910 0 0.5625 
1912 0 0.5 
1914 0 0.45 
1916 0 0.409090909 
1918 0 0.375 
1920 1 0.384615385 
1922 2 0.428571429 
1924 0 0.4 
1926 0 0.375 
1928 0 0.352941176 
1930 1 0.361111111 
1932 2 0.394736842 
1934 1 0.4 
1936 0 0.380952381 
1938 2 0.409090909 
1940 1 0.413043478 
1942 2 0.4375 
1944 2 0.46 
1946 3 0.5 
1948 1 0.5 
1950 1 0.5 
1952 1 0.5 
1954 0 0.483333333 
1956 2 0.5 
1958 1 0.5 
1960 1 0.5 
1962 1 0.5 
1964 2 0.514285714 
1966 1 0.513888889 
1968 0 0.5 
1970 1 0.5 
1972 0 0.487179487 
1974 1 0.4875 
1976 0 0.475609756 
1978 0 0.464285714 
1980 0 0.453488372 
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Time-Step Count ERR 
1982 0 0.443181818 
1984 1 0.444444444 
1986 0 0.434782609 
1988 0 0.425531915 
1990 0 0.416666667 
1992 0 0.408163265 
1994 1 0.41 
1996 0 0.401960784 
1998 1 0.403846154 
2000 2 0.41509434 
2002 1 0.416666667 
2004 3 0.436363636 
2006 6 0.482142857 
2008 1 0.48245614 

        * January 1, 1896 – December 31, 1897 
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Table 4. ERR with time-step h = 3 years 
Time-Step Count ERR 

 1896* 2 0.666667 
1899 1 0.5 
1902 1 0.444444 
1905 4 0.666667 
1908 1 0.6 
1911 0 0.5 
1914 0 0.428571 
1917 0 0.375 
1920 2 0.407407 
1923 1 0.4 
1926 0 0.363636 
1929 1 0.361111 
1932 3 0.410256 
1935 0 0.380952 
1938 3 0.422222 
1941 2 0.4375 
1944 5 0.509804 
1947 1 0.5 
1950 2 0.508772 
1953 0 0.483333 
1956 3 0.507937 
1959 1 0.5 
1962 2 0.507246 
1965 2 0.513889 
1968 1 0.506667 
1971 0 0.487179 
1974 1 0.481481 
1977 0 0.464286 
1980 0 0.448276 
1983 1 0.444444 
1986 0 0.430108 
1989 0 0.416667 
1992 1 0.414141 
1995 0 0.401961 
1998 2 0.409524 
2001 2 0.416667 
2004 5 0.45045 
2007 5 0.482456 

* January 1, 1896 – December 31, 1898 
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