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ABSTRACT

ARIMA Modelsfor Forecasting Poisson Data: Application to Long-Term
Earthquake Predictions

by

Wandong Fu
Dr. Chih-Hsiang Ho, Examination Committee Chair
Professor of Mathematical Sciences
University of Nevada, Las Vegas
Earthquakes that occurred worldwide during the qoerof 1896 to 2009 with
magnitude greater than or equal to 8.0 on the Bicktale are assumed to follow a
Poisson process. Autoregressive Integrated Moviveyaige models are presented to fit
the empirical recurrence rates, and to predictréutarge earthquakes. We show valuable
modeling and computational techniques for the pepiticesses and time series data.
Specifically, for the proposed methodology, we addrthe following areas: data
management and graphic presentation, model fitind selection, model validation,

model and data sensitivity analysis, and forecgstin
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CHAPTER 1
INTRODUCTION

On January 12, 2010, a 7.0 magnitude earthquakPdrttau-Prince, Haiti. The
earthquake lasted one minute, just enough timelltehbusands of people and destroy
numerous buildings. The earthquake caused majoragano Port-au-Prince and the
surrounding area. According to the government'srege, 200,000 people were killed,
250,000 were injured, and consequently, 1.5 millpgople became homeless. Many
notable landmark buildings were significantly daedgor destroyed, including the
Palace (President René Préval survived), the Natiohssembly building, the
Port-au-Prince Cathedral, and the main jail. Thelefcountry was in ruins. On February
27, 2010, a magnitude of 8.8 earthquake occurrethefcoast of the Maule Region of
Chile, which lasted 90 seconds. Six Chilean citeeperienced intense vibrations.
Tremors were also felt in many Argentine citiescluing Buenos Aires, Cordoba,
Mendoza and La Rioja. The earthquake triggeredunatsi which devastated several
coastal towns in south-central Chile and damaged pbrt at Talcahuano. Tsunami
warnings were issued in 53 countries, causing mad@nage in the San Diego area of
California. The earthquake also generated a bladkai affected 93% of the country's
population and which went on for several days medocations.

Earthquakes always strike suddenly without warnamgl lead to disaster -- lack of
basic necessities, loss of lives, general propgsiyage, road and bridge damage, and
collapse of buildings. Therefore, forecasting eguttke has been the focus of numerous
studies (Bakun et al., 2005; Felzer et al., 2008ntdtetter et al., 2006; Hong and Guo,

1995; Jackson and Kagan, 2006; Kagan, 1993; SamadeCockerham, 1987; and



references therein).

In this thesis, we use the earthquake data workelviidm 1896 to 2009 with
magnitude greater than or equal to 8.0 on the Riddale. We assume that they follow a
Poisson process. We then constructed a discrete $inies based on the empirical
recurrent rates (ERRs) of the assumed Poisson ggpammputed sequentially at
equidistant time intervals during the observatiarigrl. The time-plot of the ERRs,
referred to as the “fingerprint” or the ERR ploffeos the possibility of further insight
into the data and provides a technical basis fodehdevelopments for the earthquake
data. In short, we present three main ideas: (hyed point process to ERR time series,
(2) study the time series using the ARIMA modeliaghniques (to be defined later), and
(3) the develop methods to retrieve the countesparthe predicted ERRS.

In summary, we define ERR, introduce ARIMA modetsl some related theories
and methods in Chapter @hapter 3 applies the modeling techniques in Ch&pte the
earthquake data. The sensitivity analysis baseith@mprocess size and the time-steps are

presented in Chapter 4. We then conclude our Sudi€hapter 5.



CHAPTER 2
THEORIES AND METHODS
2.1 Empirical Recurrence Rates

Let t,...,t, be the time of then-ordered earthquakes during an observation

n

period ¢, ,0), where t, is the time-origin and O is the present time hif is the time-step,
then a discrete time serigg} is generated sequentially at equidistant timerwale
t,+h, t,+2h, ..., t,+¢h, ..., t;+Nh(= 0 = present time).z, is regarded as the
observation at timet (=t, +¢h), for the earthquakes to be modeled. A key paramete

desired by the modelers is the recurrence ratheofargeted earthquake data. Therefore,
a time series of the empirical recurrence rates @868) is generated as follows:

_ N, _ total number of earthquakestpf, + ¢h
“h T I |

where /=1, 2, ...,N. Note thatz, evolves over time and is simply the maximum
likelihood estimator (MLE) of the mean, if the umgéng process observed (t,

t, +/h) is a homogeneous Poisson process. The time-pltdieokmpirical recurrence

rate (ERR-plot), offers the possibility of furthesights into the data. Also, if we start at
time T, the value z.,,, k=1 needs to be predicted based on the sample ohservat
(z,...,z;)of an ERR time series. In a regression modelirig,Xe denote the time index,

z be the response values, and then use the fittgesgon model to obtam,, .

However, a regression model assumes that the a@igers are independent and this is
not a reasonable assumption for a process thavevaver time. Thus the ARIMA

models are introduced.



2.2 ARIMA Models

Autoregressive integrated moving average (ARIMApdels are mathematical
models of persistence, or autocorrelation, in &tsaries. It was introduced by Box and
Jenkins (1976). ARIMA models allow us not only tocaver the hidden patterns in the
data but also to generate forecasts and predicriable’s future values from its past
values.

ARIMA models can be expressed by a series of egustiOne subset of ARIMA
models is called autoregressive, or AR models. éime autoregressive refers to the
regression on self. An AR model describes a timeseas a linear function of its past
values plus a noise tean The order of the AR model shows the number of pakies
included. The simplest AR model is the first-ordetoregressive, or AR (1) model. The
equation for this model is given by:

X, =@X_, +Z,
where t =1, 2,...,N, X,is a stationary zero-mean time series apds the first-order

autoregressive coefficient. We can see that thg¢JARnodel has the form of a regression
model in which z is regressed on its previous value, and the egrar tZ, is analogous
to the regression residuals and represents a “wibite” (uncorrelated with mean 0 and
variance g?) process.

The moving average (MA) model is another form ofIMR model in which the
time series is described as a linear functionsopitor errors plus a noise teem The
first-order moving average, or MA (1), model is givby:

X, =2,-62Z,,,



where t =1, 2,...,N, z Iis a stationary zero-mean time series, Z_, are the error
terms at time t and t-1, and is the first-order moving average coefficient.
A general autoregressive moving average (ARMA) modiBMA (p, q), is given by:
X, —¢1X1—...—(0pxt_p =Z+67Z_,+..+ Hth_q

The integrated ARMA (ARIMA) is a broadening of tbkass of ARMA that includes
differencing. We will explain the differencing ine&ion 2.4. Moreover, ARIMA
modeling involves three stages. The first stageigdentify the model. Identification
consists of specifying the appropriate model (AR,MRMA, or ARIMA) and order of
model. Sometimes identification is done by lookatglots of the sample autocorrelation
function (ACF) and sample partial autocorrelatiandtion (PACF). Sometimes it is done
by an auto fit procedure — fitting many differemtsgible model structures and orders and
using a goodness-of-fit statistic to select thet bezdel. The second stage is to estimate
the order of the model. At this stage, the coedfits are estimated, so that the sum of
squared residuals is minimized. The final stagemisdel diagnostics. One of the
important elements in this stage is to make sumettie residuals of the candidate model
are random and normally distributed. And the otbree is to ensure that the estimated
parameters are statistically significant. The rfgtiprocess is usually guided by the
principle of parsimony, by which the best modeihe one which has fewest parameters

among all models that fit the data.

2.3 Data Splitting and ERR Plotting
If the data set is large enough, it can be splib itwo sets: training sample and

prediction set. Training sample is used to devalopodel for prediction. Prediction set is



used to evaluate the reasonableness and predattiliey of the selected model. This
validation procedure named cross-validation is $atistical practice of splitting a
sample of data into subsets so that the analysistislly performed on a single subset,
while the other subset is retained for subsequsatin confirming and validating the

initial analysis. The application in this regardlwie detailed in Section 3.1 and 3.2.

2.4 Data Transformation

Our main goal is to model and predict the oanees of the large earthquakes in the
future. In proving a fitted ARMA model meaningfitlmust be at least plausible that the
data are in fact a realization of an ARMA procesd & particular a realization of a
stationary process. A stationary time series iotheewhose statistical properties such as
mean, variance, autocorrelation, etc. are all @msover time. By using of some
mathematical transformations, we can render oue eries approximately stationary.
We will introduce three common transformations tiigt called Box-Cox, differencing
and subtracting the mean as follows.

2.4.1 Box-Cox Transformation

If the original observations are,,Y,,Y,,..Y,, the Box-Cox transformation
f,converts them tof, (Y,), f, (Y,),...T,(Y,) , where:

y' -1

,AZ20
f,(y) =

log(y), 4 =0
This transformation is useful when the variability the data increases or

decreases with the level. By suitable choiceaf the variability can be made nearly



constant. For instance, positive data whose stdndaviation increases linearly with
level, the variability can be stabilized by choasid = 0 (Brockwell et al., 2002).
2.4.2 Differencing
Differencing is an important technique in transforghdata,which attempts to
de-trend to control autocorrelation and achievéatary time seriesThe first difference
is denoted as:

OX, =X, = X, =1-B)X,
where B is the backshift operator. We may extere ibtion further and define the

differences of order d as:

0%, =(@-B)" X,
Usually, single differencing is used to remove éingends and double differencing is

used to remove quadratic trend. We can eliminasm®lity and trend of period by
introducing the lag d difference operatat, :
04X, =X, = X4 = L-BY)X,

This operator should not be confused with the dperél-B)* defined earlier (Ho,
2010a).

Normally, the correct amount of differencing is tbevest order of differencing that
yields a time series which fluctuates around a -@eflned mean value and whose
autocorrelation function (ACF) plot decays rapitityzero, either from above or below.
Thus, at every stage of differencing, we check phets of sample autocorrelation
function (ACF) and the sample partial autocorrelatiunction (PACF) to see where the
ACF/PACF “cuts off’ the boundst1.96/+/n. It is desirable to find a sample ACF that

decays fairly rapidly. We say that a series isiatary if the sample ACF has very few



significant spikes at very small lags and then aftsdrastically or dies down very
quickly. If the sample ACF dies slowly, the sersdl has some trend. If ACF has
periodicity, the series has seasonality. We shdoldome more differencing of the data
before continuing.
2.4.3 Subtracting the Mean
The term, ARMA model, is used in the program ITSKIQEBrockwell et al., 2002)

to denote a zero-mean ARMA process. Thereforesaingple mean of the data should be
small before modeling. Once the apparent deviatfoore stationarity of the data have
been removed, we subtract the sample mean of tmesformed data from each
observation. The search for a fitted ARMA model éomean-corrected data set then

follows.

2.5 Model Diagnostics
We will check the residual ACF/PACF of the moddiattwe develop. Also the
models need to pass the test for randomness oésiduals. After the model diagnostics
process, we can do further predictions and compasis
2.5.1 The Sample ACF of the Residuals

For large n, the sample autocorrelations of anpeddent and identically distributed (iid)
sequencey,,..., Y, with finite variance are approximately iid withstibution N (O,
1/n). We can therefore test whether or not the mieseresiduals are consistent with iid
noise by examining the sample correlations of #sduals and rejecting the iid noise
hypothesis if more than two or three out of 40 @altside the bounds1.96/x/n or if

one falls far outside the bounds (Brockwell et 2002).



2.5.2 Ljung-Box Test for Lack of Fit in Time Serig®dels
Ljung-Box Test was proposed by Ljung and Box (1978)s commonly used to
check whether the residuals of a fitted model @mréni ARIMA modeling. It is based on
the autocorrelation plot, and it tests the oveiradlependence based on a few of lags.
Because of this, it is often referred to as a partieau test. Formally, the definition of
Ljung-Box test is as follows.

H,: The sequence data are iid

H_: The sequence data are not iid

a

The test statistic isQ(f) = n(n + 2> (n-k) 2,
k=1

where f, = >"44_, /> &7, the estimated autocorrelation at l&g
=1

I=k+1 |
n=sample size,
m= number of lags being tested

a,...,4, are the residuals after a model has been fitteal $eriesz,...,z,. If no
model is being fitted, thera,,...,4, are the “mean corrected” series df,...,z,.

For largen, the distribution of Q(f) is approximatelwé_p_q under the null
hypothesis, wherep + qis the number of parameters of the fitted modeg mipothesis
of iid is rejected if Q >)(f_a;m_p_q at level a . Therefore, there is dependence among the

sequence data. Or we can say the sequence datavdaahtocorrelations significantly

different from zero.

2.6 Model Comparison

9



2.6.1 AIC, BIC and AICC Statistics

In this thesis, we will use the AICC statistic as iaformation criterion to select
candidate models using the ITSM2000 package. ThHeCAstatistic, the bias-corrected
version of the AIC statistic, was introduced by Aeain 1974. Small value of AICC is
indication of a good model, but it should be usety @s rough guide. Final decisions
between models are based on maximum likelihood masttn. Some other
Model-selection statistics, such as the BIC siatistre also available in ITSM2000. The
BIC statistic (Schwarz, 1978) is a Bayesian modtfan of the AIC statistic. It is
evaluated at the same time as the AICC, and géslin the same way as the AICC. Each

information statistic is defined as following,
AIC,, =Nlogd? +2r
AICC,,=NlogdZ+2rN /(N-r-1)

BIC,,=Nlogd? +r logN
where &Zis the maximum likelihood estimator of?, and r = p+q+1 is the number

of parameters estimated in the model, includingrstant term. The second term in all
three equations is a penalty for increasinglence, if we want to minimize the values of
these criteria, we should minimize the number oapeeters. Therefore, the best model is
the model adequately describes data and has fpaesneters.
2.6.2 Forecasting
The candidate ARIMA models will be used to predidiure values of the time

series from the past values. The forecasting fanct, = f(z_,,...,z)+a has the

10



minimum mean square error. The first part of thevabequationf(z_, ...,z)is a

function of the past values of the series and @ukh be determined by the data. The

second parta,, called noise part, is a sequence of independehidentically distributed

(iid) variables. Predictions will be achieved byrdocasting the residuals and then
inverting the transformations adopted to arrivéoatcasts of the original series. Alsge
will see which model is the best fitting model yngparing the prediction from training
set with the prediction set. Then, we will combthe training sample and the prediction
set as a full data set to forecast earthquakehéoiuture based on the same techniques as
before. Note that the cumulated mean numbers ieddrom the forecasted ERRs should
be nondecreasing, and should sometimes be adjasteddingly (e.g., Ho, 2010a.)
2.6.3 The Subset Model Checking

In the ITSM2000 package, the coefficients of mo@eésgiven with the ratio of each
estimate to 1.96 times its standard error, if inisausal model (p85, Brockwell et al.,
2002). The denominator (1.96xstandard error) isctitecal value (at level 0.05) for the
coefficient. Thus, if the ratio is greater thannlabsolute value, we may conclude (at
level 0.05) that the corresponding coefficienthe thodel may be zero (Brockwell et al.,
2002). After dropping the non-significant coefficis, the subset model comes up. We

will do more comparisons between the full model #relsubset model.

11



CHAPTER 3

APPLICATION

3.1 Data

Earthquakes that occurred worldwide during the querof 1896 to 2009, with

Magnitude (M® 8.0 on the Richter scale, are obtained fromth8 Geological Survey

(http://www.usgs.gov/). In the data set, the year of 1896 is the timgirort,, and 2009 is

the present time 0. There were 55 earthquakes dbairred during the 114 years

(Appendix Table 1).

By using the raw data, we constructed a dot ploblteerve any possible trends

(Figure 1). It is clear that the dot plot has litvalue in delivering the temporal trend

presented by the data.

LXK AR § SaREaaE le- L. K. ] ‘5" .ﬂ“m“_'_ﬂi.ﬂlti L]
1900 1920 1940 1960 1980 2000

Figure 1. Dot plot of large earthquakes worldwide betwe8f6land 2009

Then, we count the number of earthquakes with @awdstep (1, 2 and 3 years)

and calculate thez values to do further analysis (Appendix Table £).-Three ERR

plots with three different time-steps are showkigure 2.

12
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Since there are 55 large earthquakes in 114 yeaish indicates there is approximately
one large earthquake in every two years. We congmehoose h = 2 years as the

time-step. Therefore, we will try to predict eanlagges with h = 2 years.

3.2 ARIMA Modeling with h =2
We will use the ITSM2000 software to model the E&&Ra with h = 2 years. The
data set with time-step h = 2 years has 57 lagstal. At First, we use the technique
described in Section 2.3 to split the data into 8&ts: training sample and prediction set.
In this case, our training sample is the origiraiadset excluding the last 5 ERRs, which
is the prediction set (Figure 3).These five ERRugalin the prediction set, representing a
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decade of earthquake data, will be used to comp#hethose of the one to five-step
predictions, produced by a candidate model. Of smuthe size of a predict set is quite
flexible as long as it fits a common goal of modelection. Then we focus on the
training sample set and plot the sample ACF andPPf&(bserve the data set (Figure 4).
From the plot of sample ACF, we found that the spiklie slowly and have periodicity.
This indicates nonstationary behavior. As mentioimeSection 2.4, it has some trend and

seasonality. Thus differencing is considered.

T
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Figure 3. Training sample and prediction set of data s#t Wi= 2 years. Each lag

corresponds to 2 years
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Figure4. a, time-plot;b, sample ACF¢, sample PACF of the training sample with h =

2 years. Each lag corresponds to 2 years

Applying the differencing operatof] on the training sample, we take a difference

at lag 1. Figure 5 tells us that the stationariag Imot been achieved. So we do further
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difference at lag 1. Then we subtract the samplanmfeom each observation of the
differenced series to generate a stationary zemnantiene series (Figure 6). We feel that
the ACF is cutting off at lag 3 and the PACF idingi off. This would suggest that an MA
(3) should be considered. Indeed, our initial magiéction process concludes that the

estimated (MLE) model is:

Xi=2-0.24754, + 0.14714, - 0.49854 5
Estimated WN Variance = 0.002240
Standard Error of MA Coefficients

0.141517 0.168863 0.114696

Note that Xrepresents a twice-differenced stationary zero-ntieam series and the error

term Z represents a white noise process.
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A set of diagnostic plots (Figure 7) is produced twe ITSM2000 package,

consisting of the plot of the residuals, its ACFIdPACF for the MA (3) model. The
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AICC statistic is -153.367. And the Ljung - Box ttas not significant (p-value =
0.96067), indicating that the residuals are apmpnexely white noise. The numerical
values of the actual ERRs and mean numbers in tbdigiion set, and the predicted

ERRs by the model MA (3) with their counterparts shown in Table 5.

Table 5. The numerical values of the actual ERRs and meambers in the prediction
set, and the predicted ERRs using the MA (8) their counterparts (the

corresponding mean values derived from the predliiEiRRS)

Year Annual ERR Mean number
Actual  Prediction Actual Prediction
2000-2001 0.415094 0.41238 2 1.71228
2002-2003 0.416667 0.43368 1 2.83744
2004-2005 0.436364 0.46318 3 5.9498
2006-2007 0.482143 0.49771 6 7.74352
2008-2009 0.482456 0.53728 1 7.24992

We list the ratios of (estimated -coefficients)/@x8tandard error) for each
coefficient, calculated from the output of an MA (Bodel, shown in Section 3.2. The
ratios are:

-0.892166 0.444319 -2.217303
Note that the ratio at lag 3 in absolute valugrisater than 1, which indicates the
corresponding coefficient is nonzero. We will kebp corresponding coefficient. Table 6
shows the AICC statistics and the p-values of tjundg-Box test for a variety of subset

MA (3) models. All of these models pass the redidiggnostic tests.
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Table 6. The AICC statistics and the p-values of the LjBux test for a variety of

subset MA (3) models

p-value of the

Lags MLE Model AICC Ljung-Box Test
1 2 3 1. X;=27Z-0.24754, + 0.1471%, - 0.4985%3 -153 0.961
2 3 2. Xi= Z; - 0.19954; - 0.465943 -153 0.898
1 3 3. X¢=Z;- 0.19954; - 0.465943 -155 0.978
3 4. X;=2Z; -0.513643 -155 0.828

We then use these models to make predictions. &i§whows the comparisons of
the results with the prediction set. Model 1 — @ defined in Table 6. The predicted

values are very similar, indicating that these ni®dee all acceptable.

0.6
0.55
== Actual
== Model 1
0.5
Model 2
=== Node| 3
0.45
== Nodel 4
n.4a
1 2 3 4 5

Figure 8. Comparison of five forecasted ERRs with the priain set. Each lag

corresponds to 2 years
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3.3 Full-Data Forecasting
Finally, we will use the full ERR time series tadoast the number of earthquakes in the
future. This yields the best-fitted MA (3) model rfahe mean-corrected and

twice-differenced at lag 1 data (same as befoted. 8stimated (MLE) model is:

Xi=2-0.270841 + 0.14504, - 0.50254 3
Estimated WN Variance = 0.002100
Standard Error of MA Coefficients

0.134042 0.165004 0.114643

The AICC statistic is -173.294, and the Ljung - Best is not significant (p-value =
0.96568). Then, we check the ratios as following:

-1.030746 0.448350 -2.236312
This leads to a subset MA (3), which has the Al@4istic -174.738, and the p-value of

the Ljung-Box test is 0.97676. The estimated (Mhiodel is:

Xi=2;-0.2213 41- 0.4597 43
Estimated WN Variance = .002137
Standard Error of MA Coefficients

0.114263 0.000000 0.108700

The AICC statistics and the p-values of the LjurmxBest of the subset MA (3) are a

little better than MA (3). But there is no big difence, and we will keep both of them.
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The predictions of the next ten years, from 201R0d9, are shown in the Table 7.

Table 7. The predicted ERRs using the MA (3) and the sulld#e(3) with their

counterparts (the corresponding meanegdierived from the predicted

ERRS)
Year Full model ERR Mean number

MA (3) Subset MA (3) MA (3) Subset MA (3)
2010-2011 0.50365 0.49733 3.4234 2.69028
2012-2013 0.50785 0.50620 1.5029 2.04132
2014-2015 0.54365 0.54526 5.3117 5.69960
2016-2017 0.58401 0.58886 6.01122 6.40972
2018-2019 0.62891 0.63702 6.73562 7.14956
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CHAPTER 4
SENSITIVITY ANALYSIS

In Chapter 3, we have shown that, for h = 2 yedunsre are at least two adequate
ARIMA models for the chosen earthquake data. We rave ready to address the
following issues: (1) Will the technique be appbtafor a small point process or data set?
And (2) how will the choices of time-step affecetfesults? The investigation of the first
part could be done by increasing the time-stepwfERRs to a desired level. In this
thesis, however, we simply cite the work of Ho (@0)Lto demonstrate that the proposed
technique works for the Parkfield earthquake pitemticexperiment, which represents a
small point process. We then discuss the sengitantlysis based on our own data with

three different time-steps.

4.1 Sensitivity on Process Size - Parkfield EarétkguPrediction
Since the large earthquake of Jan. 2, 1857, eakegsequences with main shocks of
magnitude (M) 6 have occurred near Parkfield, ob. ¢ 1881, Mar. 3, 1901, Mar. 10,
1922, June 8, 1934, June 28, 1966, and Sep. 28,(Bakun et. al, 2005). This is a small
point process with a somewhat periodic recurreate A focused earthquake prediction
experiment has been in progress along this ares shen. The Parkfield Experiment

(http://earthquake.usgs.gov/resear ch/par kfiel d/index.php), which is led by the USGS and

the State of California, is a comprehensive, |agatearthquake research project on the
San Andreas Fault. Scientists hope to better utadetthe physics of earthquakes -- what
actually happens on the fault and in the surroundéegion before, during, and after an

earthquake, and to provide a scientific basis fothgluake prediction. The experiment
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has involved more than 100 researchers at the USGI&borating universities and

government laboratories. Their coordinated effdrésre led to a dense network of
instruments poised to "capture” the anticipatedheaake and reveal the earthquake
process in unprecedented detail.

In 1985, the National Earthquake Prediction EvadumaCouncil (NEPEC) issued a
statement that an earthquake of about M 6 woulBaibly occur before 1993 on the San
Andreas Fault near Parkfield (Shearer, 1985). Hawew such event occurred until Sep.
28, 2004. The ARIMA model of Ho (2010b) predictednew earthquake to occur

between Dec. 5, 2002 and Dec. 4, 2004.

4.2 Sensitivity on Time-Step, h
4.2.1 ARIMA Modeling withh =1
When we choose the time-step h = 1 year, the dethes 114 lags in total. The
training sample with 104 lags and the predictionvgéh 10 lags are shown in Figure 9.
The plots of sample ACF and PACF on the traininghda (Figure 10) indicate
nonstationary behavior. Therefore, we need differep We used the same method
described in the last chapter. After taking twidéedence at lag 4 and 1, we find the best
fitting model ARMA (5, 5). The AICC statistic is 62.268, and the Ljung and Box test is
not significant (p-value = 0.86584), which givesewsdence to believe that the residuals

are approximately white noise. The estimated (Mirtepel is:
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Xi=-0.1717X1 + 0.1597X, + 0.5383X3 — 0.08758X%4 - 0.4073Xs + Z +
0.25474; + 0.46224, - 0.223743 - 0.24444, - 0.674945

Estimated WN Variance = .00108@ndard Error of AR Coefficients
0.120296 0.151424 0.122791 0.138724 0.130128
Standard Error of MA Coefficients

0.104708 0.131067 0.120401 0.119647 0.105785
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Figure9. Training sample and prediction set of data sét Wwi= 1 year. Each lag

corresponds to 1 year
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Figure 10. a, time-plot;b, sample ACFg¢, sample PACF of the training sample with h
= 1 year. Each lag corresponds to 1 year

Unfortunately, all the subset ARMA (5, 5) modelstiner pass the model diagnostic

tests nor outperform the ARMA (5, 5). The foreaagtiresults for this model are

summarized in Table 8.
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Table 8. The numerical values of the actual ERRs and meambers in the prediction
set, and the predicted ERRs using the ARB|/A) with their counterparts (the

corresponding mean values derived from the prediiefeRSs)

Year Annual ERR Mean number
Actual Prediction Actual Prediction

2000 0.40952381 0.41519 1 1.59495
2001 0.41509434 0.4218 1 1.11585
2002 0.41121495 0.43678 0 2.02466
2003 0.41666667 0.44336 1 1.14742
2004 0.43119266 0.46441 2 2.73781
2005 0.43636364 0.47262 1 1.36751
2006 0.45045045 0.49327 2 2.76477
2007 0.48214286 0.50355 4 1.64463
2008 0.47787611 0.52445 0 2.86525
2009 0.48245614 0.53609 1 1.85141

Xi=-0.1766X; + 0.1507X, + 0.5407X3 - 0.08186X, - 0.4143Xs + Z; +
0.26354,+ 0.47004;, - 0.217943 - 0.24394, - 0.668145

Estimated WN Variance = 0.000990

Standard Error of AR Coefficients

0.112016 0.112036 0.100380 0.102246 0.102535
Standard Error of MA Coefficients

0.096521 0.098182 0.121989 0.097102 0.092292

The above output is the best fitted mode using mptete ERR time series for the
mean-corrected and twice-differenced data (sameefme). It's also an ARMA (5, 5).

The predictions are shown in Table 9.
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Table 9. Predictions of large earthquakes with h = 1 year

Year Full model ERR Mean number
2010 0.4976 2.224
2011 0.50603 1.47548
2012 0.50149 0 (adjusted)
2013 0.53084 3.96479
2014 0.54151 1.80057
2015 0.5598 2.73631
2016 0.57991 2.99311
2017 0.60608 3.77265
2018 0.62047 2.37605
2019 0.65601 5.02743

4.2.2 ARIMA Modeling with h = 3
The data set with the time-step h = 3 years hda@8 The training sample with 35
lags and the prediction set with 3 lags are showhigure 11. The plots of sample ACF
and PACF on the training sample (Figure 12) indicabnstationary behavior. Thus
differencing is considered. We took the first diffiece at lag 2 and the second difference
atlag 1. This is also a suggestion of the ARMA2Pmodel. The estimated (MLE) model

is:

Xi=0.1439 X; - 0.7329 X, + Z; - 0.08275 Z, - 0.3587 Z;
Estimated WN Variance = 0.003556

Standard Error of AR Coefficients

0.309275 0.244192

Standard Error of MA Coefficients

0.325282 0.285052
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The AICC statistic is -74.570857. The Ljung - Bdatistic is 14.846 and the p-value
is 0.78513, which indicates that the residualsapproximately white noise. Additionally,
all the subset ARMA (2, 2) models neither passnioglel diagnostic tests nor outperform

the ARMA (2, 2). Table 10 gives us the comparisbaatual ERRs and prediction values.
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Figure 11. Training sample and prediction set of data sét Wi= 3 years. Each lag

corresponds to 3 years
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Table 10. The numerical values of the actual ERRs and meanbers in the prediction
set, and the predicted ERRs using the ARMA (2, R wheir counterparts

(the corresponding mean values derived from thdigted ERRS)

Year Annual ERR Mean number
Actual Prediction Actual Prediction
2001-2003 0.41666667 0.41764 2 2.10512
2004-2006 0.45045045 0.43075 5 2.70813
2007-2009 0.48245614 0.4356 5 1.84515

A complete ERR time series yields the following tbé$ted model for the

mean-corrected and twice-differenced data (sanhefase).

Xt=0.1512 X; - 0.7353 X2 + Z; - 0.05566 Z; - 0.3374 4,
Estimated WN Variance = 0.003382

Standard Error of AR Coefficients

0.307757 0.242601

Standard Error of MA Coefficients

0.322960 0.273897

Again, it's ARMA (2, 2). The predictions are shownTable 11.
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Table 11. Predictions of large earthquakes with h = 3 years

Year Full model ERR Mean number
2010-2012 0.50662 4.27454
2013-2015 0.52456 3.67266
2016-2018 0.56671 6.75813

In conclusion, Table 12 shows the prediction valoksll the comparable models

with different time-steps.

Table 12. Predictions of earthquakes with different timepst, h

Full data forecasting

h Fitted model

2010-2015
1 ARMA (5, 5) 12.176
2 Subset MA (3) 10.431
3 ARMA (2, 2) 7.9472
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CHAPTER 5
CONCLUSIONS

Earthquakes that occurred during 1896 to 2009 midignitude greater than or equal
to 8.0 on the Richter scale are assumed to foll&®@iason process. Time series (ARIMA)
models are well developed, and are applied in nfatgs. The integrated ARMA, or
ARIMA model, is an extension of the class of ARMAdels that include differencing. In
this thesis, we build a linking bridge between asBan process and the classical time
series via a sequence of the empirical recurredes rEERR), calculated sequentially at
equidistant time intervals.

We split the earthquake data set into a trainingpd@a and a prediction set. The
training sample is used to develop the candidatdetso For time-step h = 2 years, we
used the last five ERRs as a prediction set to mat@el comparisons by checking the
predictive ability of the candidate models devetbfiem the training sample. Before
modeling, we must make sure the ARMA process isiosiary. After taking twice
difference at lag 1, an MA (3) model with the loweSICC statistic passes the

randomness test for residuals and has all theuasAICF lags falling within the bounds

+1.96/\/n (Figure 7). The ratio (estimated coefficient)/@x8tandard error) is a critical
value (at level 0.05) for the coefficient. If thetio is greater than 1 in absolute value, we
conclude that the corresponding coefficient is sighificant. We then obtained some
subset MA (3) models by dropping the non-signiftcamefficients. Based on the full data
forecasting, there will be 12 large earthquakawénext 6 years from the prediction of h
= 1 year, 10 earthquakes from the prediction of B years, and 8 from h = 3 years,

which are pretty similar (Table 12).
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The application of ARIMA models for long-term eagtlake prediction is a natural
extension of the methodologies developed for tHeamic risk assessment studies (Ho,
2008, 2010a). Likewise, this work will further fhtate the research in the areas of
monitoring the occurrence rates of cancer deathaceident, teen pregnancy, suicide,

dust storm, hurricane, bank failure, foreclosuenegic mutation, etc.
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APPENDIX

DATA
Table 1. Large earthquakes worldwide since 1886 ¥ 80)

Date Location Magnitude
06/15/1896 Sanriku, Japan 8.5
06/12/1897 Assam, India 8.3
09/10/1899 Yakutat Bay, Alaska 8
08/11/1903 Southern Greece 8.3
07/09/1905 Mongolia 8.4
01/31/1906 Off the Coast of Esmeraldas, Ecuador 8.8
08/17/1906 Valparaiso, Chile 8.2
10/21/1907 Qaratog, Tajikistan 8
12/12/1908 Off the Coast of Central Peru 8.2
06/05/1920 Taiwan region 8
11/11/1922 Chile-Argentina Border 8.5
02/03/1923 Kamchatka 8.5
08/10/1931 Xinjiang, China 8
06/03/1932 Jalisco, Mexico 8.1
03/02/1933 Sanriku, Japan 8.4
01/15/1934 Bihar, India - Nepal 8.1
02/01/1938 Banda Sea, Indonesia 8.5
11/10/1938 Shumagin Islands, Alaska 8.2
05/24/1940 Callao, Peru 8.2
08/24/1942 Off the coast of central Peru 8.2
04/06/1943 lllapel - Salamanca, Chile 8.2
12/07/1944 Tonankai, Japan 8.1
11/27/1945 Makran Coast, Pakistan 8
04/01/1946 Unimak Island, Alaska 8.1
08/04/1946 Samana, Dominican Republic 8
12/20/1946 Nankaido, Japan 8.1

Queen Charlotte Islands, British Columbia,

08/22/1949 Canada 8.1
08/15/1950 Assam - Tibet 8.6
11/04/1952 Kamchatka 9
03/09/1957 Andreanof Islands, Alaska 8.6
12/04/1957 Gobi-Altay, Mongolia 8.1
11/06/1958 Kuril Islands 8.3
05/22/1960 Chile 9.5
10/13/1963 Kuril Islands 8.5
03/28/1964 Prince William Sound, Alaska 9.2
02/04/1965 Rat Islands, Alaska 8.7
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Date Location Magnitude
10/17/1966 Near the Coast of Peru 8.1
07/31/1970 Colombia 8
10/03/1974 Near the Coast of Central Peru 8.1
09/19/1985 Michoacan, Mexico 8
06/09/1994 Bolivia 8.2
03/25/1998 Balleny Islands Region 8.1
11/16/2000 New Ireland Region, Papua New Guinea 8
06/23/2001 Near the Coast of Peru 8.4
09/25/2003 Hokkaido, Japan Region 8.3
12/23/2004 North of Macquarie Island 8.1
12/26/2004 Sumatra-Andaman Islands 9.1
03/28/2005 Northern Sumatra, Indonesia 8.6
05/03/2006 Tonga 8
11/15/2006 Kuril Islands 8.3
01/13/2007 East of the Kuril Islands 8.1
04/01/2007 Solomon Islands 8.1
08/15/2007 Near the Coast of Central Peru 8
09/12/2007 Southern Sumatra, Indonesia 8.5
09/29/2009 Samoa Islands region 8.1
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Table 2. ERR with time-step h = 1 year

Time-Step  Count ERR Time-Step Count ERR
1896* 1 1 1935 0 0.4
1897 1 1 1936 0 0.390244
1898 0 0.666667 1937 0 0.380952
1899 1 0.75 1939 0 0.409091
1900 0 0.6 1940 1 0.422222
1901 0 0.5 1941 0 0.413043
1902 0 0.428571 1942 1 0.425532
1903 1 0.5 1943 1 0.4375
1904 0 0.444444 1944 1 0.44898
1905 1 0.5 1945 1 0.46
1906 2 0.636364 1946 3 0.509804
1907 1 0.666667 1947 0 0.5
1908 1 0.692308 1948 0 0.490566
1909 0 0.642857 1949 1 0.5
1910 0 0.6 1950 1 0.509091
1911 0 0.5625 1951 0 0.5
1912 0 0.529412 1952 1 0.508772
1913 0 0.5 1953 0 0.5
1914 0 0.473684 1954 0 0.491525
1915 0 0.45 1955 0 0.483333
1916 0 0.428571 1956 0 0.47541
1917 0 0.409091 1957 2 0.5
1918 0 0.391304 1958 1 0.507937
1919 0 0.375 1959 0 0.5
1920 1 0.4 1960 1 0.507692
1921 0 0.384615 1961 0 0.5
1922 1 0.407407 1962 0 0.492537
1923 1 0.428571 1963 1 0.5
1924 0 0.413793 1964 1 0.507246
1925 0 0.4 1965 1 0.514286
1926 0 0.387097 1966 1 0.521127
1927 0 0.375 1967 0 0.513889
1928 0 0.363636 1968 0 0.506849
1929 0 0.352941 1969 0 0.5
1930 0 0.342857 1970 1 0.506667
1931 1 0.361111 1971 0 0.5
1932 1 0.378378 1972 0 0.493506
1933 1 0.394737 1973 0 0.487179
1934 1 0.410256 1974 1 0.493671
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Time-Step  Count ERR Time-step Count ERR
1975 0 0.4875 1992 0 0.412371
1976 0 0.481481 1993 0 0.408163
1977 0 0.47561 1994 1 0.414141
1978 0 0.46988 1995 0 0.41
1979 0 0.464286 1996 0 0.405941
1980 0 0.458824 1997 0 0.401961
1981 0 0.453488 1998 1 0.407767
1982 0 0.448276 1999 0 0.403846
1983 0 0.443182 2000 1 0.409524
1984 0 0.438202 2001 1 0.415094
1985 1 0.444444 2002 0 0.411215
1986 0 0.43956 2003 1 0.416667
1987 0 0.434783 2004 2 0.431193
1988 0 0.430108 2005 1 0.436364
1989 0 0.425532 2006 2 0.45045
1990 0 0.421053 2007 4 0.482143
1991 0 0.416667 2008 0 0.477876

2009 1 0.482456

* January 1, 1896 — December 31, 1896
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Table 3. ERR with time-step h = 2 years

Time-Step Count ERR
1896* 2 1
1898 1 0.75
1900 0 0.5
1902 1 0.5
1904 1 0.5
1906 3 0.666666667
1908 1 0.642857143
1910 0 0.5625
1912 0 0.5
1914 0 0.45
1916 0 0.409090909
1918 0 0.375
1920 1 0.384615385
1922 2 0.428571429
1924 0 0.4
1926 0 0.375
1928 0 0.352941176
1930 1 0.361111111
1932 2 0.394736842
1934 1 0.4
1936 0 0.380952381
1938 2 0.409090909
1940 1 0.413043478
1942 2 0.4375
1944 2 0.46
1946 3 0.5
1948 1 0.5
1950 1 0.5
1952 1 0.5
1954 0 0.483333333
1956 2 0.5
1958 1 0.5
1960 1 0.5
1962 1 0.5
1964 2 0.514285714
1966 1 0.513888889
1968 0 0.5
1970 1 0.5
1972 0 0.487179487
1974 1 0.4875
1976 0 0.475609756
1978 0 0.464285714
1980 0 0.453488372
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Time-Step Count ERR
1982 0 0.443181818
1984 1 0.444444444
1986 0 0.434782609
1988 0 0.425531915
1990 0 0.416666667
1992 0 0.408163265
1994 1 0.41
1996 0 0.401960784
1998 1 0.403846154
2000 2 0.41509434
2002 1 0.416666667
2004 3 0.436363636
2006 6 0.482142857
2008 1 0.48245614

* January 1, 1896 — December 31, 1897
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Table 4. ERR with time-step h = 3 years

Time-Step Count ERR
1896* 2 0.666667
1899 1 0.5
1902 1 0.444444
1905 4 0.666667
1908 1 0.6
1911 0 0.5
1914 0 0.428571
1917 0 0.375
1920 2 0.407407
1923 1 0.4
1926 0 0.363636
1929 1 0.361111
1932 3 0.410256
1935 0 0.380952
1938 3 0.422222
1941 2 0.4375
1944 5 0.509804
1947 1 0.5
1950 2 0.508772
1953 0 0.483333
1956 3 0.507937
1959 1 0.5
1962 2 0.507246
1965 2 0.513889
1968 1 0.506667
1971 0 0.487179
1974 1 0.481481
1977 0 0.464286
1980 0 0.448276
1983 1 0.444444
1986 0 0.430108
1989 0 0.416667
1992 1 0.414141
1995 0 0.401961
1998 2 0.409524
2001 2 0.416667
2004 5 0.45045
2007 5 0.482456

* January 1, 1896 — December 31, 1898
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