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ABSTRACT

A game tree is a nonempty set of sequences, closed under subsequences (i.e., if p ∈ T

and p extends q, then q ∈ T ). If T is a game tree, then there is a natural topology on [T],

the set of paths through T . In this study we consider two types of topological spaces, both

constructed from game trees. The first is constructed by taking the Cartesian product of

two game trees, T and S: [T ]× [S]. The second is constructed by the concatenation of two

game trees, T and S: [T ∗ S]. The goal of our study is to determine what conditions we

must require of the trees T and S so that these two topologies are homeomorphic.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Determinacy has been studied extensively since the 1950’s. The study of determinacy has

led to several important results which have impacted areas of modern set theory, such as the

study of large cardinals and descriptive set theory. Determinacy with more complicated, (but

definable), “pay-offs” is stronger (in consistency strength). One way to get more complicated

pay-offs on games of length ω is to play longer open games (length> ω).

In the study of “longer” games—games in which plays have length longer than ω—we

see that the long tree has the tree topology, but we may also “split” the tree at ω and view

it as the product of two trees. This is used in Ikeda’s dissertation [1] and Yosts’s thesis [7] .

A specific example of “splitting” trees is given by Ikeda [1]. She explains: “We shall

identify the body of the tree [X≤ω+n] = Xω+n with the product Xω ×Xn. Let

x = 〈x0, x1, . . . 〉 ∈ Xω and g = 〈g0, g1, . . . , gn−1〉 ∈ Xn. Then

xag = 〈x0, x1, . . . , g0, g1, . . . , gn−1〉 ∈ Xω+n.”

However, when a tree has paths which vary in length, it is not clear that splitting is

possible. This leads us to natural questions: When can this be done? Is there always a

homeomorphism between the product topology of two trees and the concatenated topology

of the long tree? If not, for which types of trees does this homeomorphism hold?
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Initially, we constructed an example for which the two topologies are homeomorphic, but

we were also able to construct a counterexample in which the two topologies are not. With

this in mind, we began our studies to answer these questions.

1.2 Introduction to this Thesis

The goal of this thesis is to study the relationship of two common topologies on game

trees which arise when studying determinacy. They are the product topology and the tree

topology. In this thesis, we provide some basic results as to how the tree topology behaves

for “longer” trees. We start by showing that for trees T = S = ω<ω, the two topologies

are homeomorphic. This example drives us to show that there is always a natural bijection

(referred to throughout this thesis as the canonical function) between the product topology

of two trees and the tree topology of the “long” concatenated tree. We are able to introduce

lemmas for the canonical function; the first states sufficient conditions to show that the

canonical function is continuous, and the second states necessary and sufficient conditions

to show that the canonical function is an open map. Using these lemmas, we prove a result

that generalizes to more trees for which the canonical function is a homeomorphism between

the two topologies. At the end of Chapter 2 and in Chapter 3 we give several examples

of interesting trees for which the canonical function produces a homeomorphism between

the two topologies. However, in Chapter 4 we show that the canonical function does not

always produce a homeomorphism. We give two counterexamples in which we show that the

canonical function is not continuous and is not open.
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For material in this thesis, the following books and publications are standard references:

Jech’s Set Theory [2]

Martin’s Borel and Projective Games [3]

Moschovakis’ Descriptive Set Theory [4]

Munkres’ Topology [5]

These and additional references are listed in the Bibliography.

1.3 Definitions from Topology

The following definitions can be found in Munkres’ Topology [5].

Definition 1.1. A topology on a set X is a collection T of subsets of X having the following

properties:

1. ∅ and X are in T .

2. The union of elements of any subcollection of T is in T .

3. The intersection of the elements of any finite subcollection of T is in T .

Definition 1.2. A set X for which a topology T has been specified is called a topological

space.

Definition 1.3. If X is a topological space with topology T , we say that a subset U of X

is an open set of X if U belongs to the collection T .

Definition 1.4. If X is any set, the collection of all subsets of X is a topology on X. It is

called the discrete topology.

3



Definition 1.5. If X is a set, a basis for a topology on X is a collection B of subsets of X

(called basis elements) such that:

1. For each x ∈ X, there is at least one basis element B such that x ∈ B.

2. If x belongs to the intersection of two basis elements B1 and B2, then there is a basis

element B3 containing x such that B3 ⊂ B1 ∩B2.

Remark 1.6. If B satisfies these two conditions, then we define the topology T generated

by B as: A subset U of X is open in X if for each x ∈ U , there is a basis element B ∈ B

such that x ∈ B and B ⊂ U .

Definition 1.7. Let X and Y be topological spaces. The product topology on X × Y is

the topology having as basis the collection B of all sets of the form U × V , where U is an

open subset of X and V is an open subset of Y .

Definition 1.8. A subset A of a topological space X is said to be closed if the set X \ A

is open.

Definition 1.9. A function f : X → Y is said to be continuous if for each open subset V

of Y , the set f−1(V ) = {x ∈ X| f(x) ∈ V } is an open subset of X.

Definition 1.10. A function f : X → Y is said to be open if for every open set U of X,

the set f(U) = {f(x)| x ∈ U} is open in Y .

Definition 1.11. Let X and Y be topological spaces; let f : X → Y be a bijection.

If both the function f and the inverse function f−1 : Y → X are continuous, then f is

called a homeomorphism. Alternatively, a homeomorphism is a bijective correspondence

f : X → Y such that f(U) is open if and only if U is open.

4



1.4 Definitions and Notation for this Thesis

Definition 1.12. Define a sequence as any function defined on an ordinal. So, for

f : α→ X, where α ∈ ord, then

f := 〈f(i)| i ∈ α〉 = {(i, b)| i ∈ α, b ∈ X and (i, b) ∈ f}

Definition 1.13. Let A and B be any sets. AB = {f | f : B → A}.

Definition 1.14. Let f be a sequence. Then, we define the length of f as lth(f) = dom(f).

Notation 1.15. Suppose f is a sequence of length α ∈ ord. Then, for any β ≤ α, f � β is

the sequence of length β, such that for all x ∈ β, (f � β)(x) = f(x).

Definition 1.16. T is a game tree on X if and only if T is a non-empty set of sequences,

and for all f ∈ T there exists γ ∈ ord, where f : γ → X, and ∀ γ′ < γ, f � γ′ ∈ T .

Remark 1.17. We will refer to a game tree as a tree.

Definition 1.18. A tree T is non-trivial if and only if there exists f ∈ T such that

dom(f) > 0. A tree T is trivial if T = {∅}.

Definition 1.19. Let T be a tree. The body of T, denoted as [T ], is defined as f ∈ [T ] if

and only if no proper extension of f is in T and:

1. If dom(f) = γ, for γ a limit ordinal, then ∀γ′ < γ, f � γ′ ∈ T .

2. If dom(f) = γ, for γ a successor ordinal, then f ∈ T .

We say f is a path through T if f ∈ [T ].
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Definition 1.20. A tree T is well-founded if for all f ∈ [T ], dom(f) < ω.

Definition 1.21. If A is any set, Pfin(A) = {D ⊆ A | D is finite}.

Definition 1.22. fin(AB) = {τ | ∃ D ∈ Pfin(B) and τ : D → A}.

Remark 1.23. For any f ∈ T if f ? ∈ Pfin(f), then dom(f ?) ∈ Pfin
(
dom(f)

)
and for all

x ∈ dom(f ?), f ?(x) = f(x).

Definition 1.24. If d is any function, dom(d) ⊆ ord, ran(d) ⊆ X, and α ∈ ord, then:

1. Shift right by α is defined as sR(d, α) = {(α + ρ, x) | (ρ, x) ∈ d}.

2. Shift left by α is defined as sL(d, α) = {(ρ, x) |(α + ρ, x) ∈ d},where α ≤ γ

such that γ = min{λ|λ ∈ dom(d)}.

Definition 1.25. Let T be a tree. Then the Tree Topology on [T ] is the topology generated

by the following basis: If d : A → X and A ⊆ ord where |A| < ω (i.e. d ∈ fin(XA)), then

B
[T ]
d = {f ∈ [T ]| f ⊇ d}.

Remark 1.26. This is a basis for a topology.

Fact 1.27. Let A ⊆ [T ]. A is open in the Tree Topology if and only if

∀f ∈ A ∃f ? ∈ Pfin(f) ∀g ∈ [T ] (g ⊇ f ? =⇒ g ∈ A).

Definition 1.28. Let Xα be a set with topology Tα and α ∈ γ, where γ is any ordinal. The

Product Topology on
∏
α∈γ

Xα is the topology generated by the basis

{
B =

∏
α∈γ

Yα, where each Yα is open in Tα and finitely many Yα 6= Xα

}

6



Remark 1.29. Let T� denote the product topology on [T ]× [S]. A basic open set in T� is

B
[T ]
t? ×B

[S]
s? = {t ∈ [T ]| t ⊇ t?} × {s ∈ [S]| s ⊇ s?} (where t? ∈ fin(XA) and s? ∈ fin(Y B)).

Notation 1.30. Let (a1, a2) ∈ [T ]× [S]. To simplify notation, we write a1 × a2 ∈ [T ]× [S].

Definition 1.31. Let t ∈ [T ] and s ∈ [S], where dom(t) = α and dom(s) = β. Define the

concatenation x = tas as:

If i ∈ α + β, then x(i) =


t(i), if i ∈ α

s(j), if i = α + j, j ∈ β

Note that dom(tas) = α + β.

Remark 1.32. If i ∈ α + β, then i ∈ α or there exists unique j ∈ β such that i = α + j.

Definition 1.33.

T ∗ S =

f
∣∣∣∣∣∣∣∣
f ∈ T, or

∃α such that f � α ∈ [T ] and sL(f � [α, dom(f)), α) ∈ S


Remark 1.34. If we allowed for empty trees, then T ∗ S = T , where S = ∅.

Remark 1.35. If S is trivial (S = {∅}), then T ∗ S = T ∪ [T ] and [T ] = [T ∗ S]. Further,

[T ] and [T ∗ S] have the same topology.

Remark 1.36. Let T� denote the tree topology on [T ∗S]. We can express a basic open set

in T� as B[T∗S]
d = {f ∈ [T ∗ S]| f ⊇ d}.

7



1.5 Preliminaries

We begin by proving the following lemmas. The first lemma describes that we can split

a path through a tree into two unique sequences, such that the concatenation of the two

sequences is the same as the original path. The second lemma shows that any path through

a concatenated tree can be split into two paths, one of which is a path through the first tree

and the other a path through the second tree. It is important to note that each of these

paths are also unique by Lemma 1.37.

Lemma 1.37. If f : γ → X and α ≤ γ, then there exist unique sequences f1 and f2 such

that f = fa1 f2 where dom(f1) = α.

Proof. Let f : γ → X and α ≤ γ.

If α = γ, then let f1 = f and f2 = ∅. Note that dom(f1) = α. Then, by definition

of concatenation f = fa1 f2. Also, note that f1 and f2 are unique, since f and ∅ are both

unique.

Assume α < γ. Let f1 = f � α. Note that dom(f1) = α. Let f2 = sL
(
f � [α, γ), α

)
.

Then, by definition of concatenation f = fa1 f2.

To show that f1 and f2 are unique, consider a second concatenation, f = ga1 g2, where

dom(g1) = α. So, g1 = f � α. Since f is a function, then f1(λ) = f(λ) = g1(λ) for all

λ < α. Therefore, f1 = g1. Since α < γ, there exists a unique β such that α + β = γ. By

definition of concatenation, if dom(f1) = α, then dom(f2) = β. Similarly, dom(g1) = α. So,

dom(g2) = β. Hence, f2(µ) = f(α + µ) = g2(µ) for all µ such that µ < β. Thus, f2 = g2.

We conclude that f1 and f2 are unique.
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Lemma 1.38. Assume T and S are non-trivial trees. Then f ∈ [T ∗ S] if and only if there

exists a unique α < dom(f) such that f � α ∈ [T ], and so sL(f � [α, dom(f)), α) ∈ [S].

Remark 1.39. By Lemma 1.37 f � α ∈ [T ] and sL(f � [α, dom(f)), α) ∈ [S] are unique.

Proof. (⇒) Assume f ∈ [T ∗ S].

Case 1: Let dom(f) = γ for some limit ordinal γ. So, for all λ < γ, f � λ ∈ T ∗ S. Then,

f � λ ∈ T or there exists α < λ such that f � α ∈ [T ] and sL(f � [α, λ), α) ∈ S.

Suppose f � λ ∈ T for all λ < γ. By definition, f ∈ [T ], because γ is a limit ordinal.

Now, f ∈ [T ] and f ∈ [T ∗ S]. By Lemma 1.37, f = fa1 f2 where dom(f1) = γ. Since f1 = f ,

then f1 ∈ [T ]. So, f2 = ∅ and dom(f2) = 0. Next, because f = fa1 f2 ∈ [T ∗ S] and f1 ∈ [T ],

f2 ∈ S. So, for all h ∈ S, dom(h) = 0 which implies S is a trivial tree. By assumption, S is

a non-trivial tree. Hence, there exists α < γ such that for all λ̂ where α ≤ λ̂ < γ, f � α ∈ [T ]

and sL(f � [α, λ̂), α) ∈ S.

Say f � α = f1. By Lemma 1.37, f = fa1 f2, where dom(f1) = α and f2 = sL(f � [α, γ), α).

Also, by Lemma 1.37, f1 and f2 are unique. Last, since γ − α is a limit ordinal,

sL(f � [α, γ), α) ∈ [S], by definition 1.19, as long as no proper extension of f2 is in S. Suppose

there is some proper extension of f2 in S. Let g2 ⊃ f2 in S. So, there exists g = fa1 g2. Since

f = fa1 f2 is unique and g2 ⊃ f2, g ⊃ f . But, f ∈ [T ∗ S]. Thus, no proper extension of f

exists. Hence, there is no proper extension of f2 ∈ S.

Case 2: Let dom(f) = γ for some successor ordinal γ. By definition 1.19, f ∈ T ∗ S. Then,

f ∈ T or there exists α < γ such that f � α ∈ [T ] and sL(f � [α, γ), α) ∈ S. If f ∈ T , then

f ∈ [T ], because γ is a successor ordinal. Additionally, f ∈ [T ∗ S]. However, this would

imply that S is a trivial tree, as proven in Case 1. Hence, there exists α < γ such that
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f � α ∈ [T ] and sL(f � [α, γ), α) ∈ S.

Say f � α = f1. By Lemma 1.37, f = fa1 f2, where dom(f1) = α and f2 = sL(f � [α, γ), α).

Also, by Lemma 1.37, f1 and f2 are unique. Last, since γ − α is a successor ordinal, then

sL(f � [α, γ), α) ∈ [S], by definition 1.19, as long as no proper extension of f2 is in S. Suppose

there is some proper extension of f2 in S. Let g2 ⊃ f2 in S. So, there exists g = fa1 g2. Since

f = fa1 f2 is unique and g2 ⊃ f2, g ⊃ f . But, f ∈ [T ∗ S]. Thus, no proper extension of f

exists. Hence, there is no proper extension of f2 ∈ S.

(⇐) Let f be a sequence such that f : γ → X. Suppose there exists α < dom(f) = γ

such that f � α ∈ [T ] and sL(f � [α, γ), α) ∈ [S].

First, we wish to show that f has no proper extension in T ∗S. Suppose not. Then, there

exists a sequence g, where g ⊃ f . But, sL(f � [α, γ), α) ∈ [S]. So, sL(g � [α, dom(g)), α) /∈ S,

because no proper extension of sL(f � [α, γ), α) is in S. Thus, g /∈ T ∗ S.

Suppose λ < α. Consider f � λ. Since f � α ∈ [T ], then f � λ ∈ T . Thus, f � λ ∈ T ∗ S.

Suppose α ≤ λ < γ. Consider f � λ. Since α ≤ λ, by Lemma 1.37, f � λ = fa1 f2 where

dom(f1) = α. Then, by assumption f1 ∈ [T ], since f1 = f � α. Next, f2 = sL(f � [α, λ), α).

If λ = α, then f2 = ∅. In either case, because λ < γ, then f2 ∈ S. Thus, f � λ ∈ T ∗ S.

If γ is a limit ordinal, then f ∈ [T ∗ S] and we are done.

Otherwise, let γ be a successor ordinal. Consider f . Since α < γ, by Lemma 1.37,

f = fa1 f2 where dom(f1) = α. By assumption, we have f1 ∈ [T ], because f1 = f � α. Next,

f2 = sL(f � [α, γ), α) ∈ [S]. Now, since λ− α is successor and f2 ∈ [S], then f2 ∈ S. Thus,

f ∈ T ∗ S. So, f ∈ [T ∗ S].

Last, we wish to show that α is unique. Suppose not. Then, there exist an f ∈ [T ∗ S]

and α < dom(f) such that f � α ∈ [T ] and sL(f � [α, dom(f)), α) ∈ [S]. Additionally, there
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exists β < dom(f) such that f � β ∈ [T ] and sL(f � [β, dom(f)), β) ∈ [S], where α 6= β.

Since α and β are ordinals, then either α < β or β < α.

Without loss of generality, assume that α < β. Say f1 = f � α and f2 = f � β. Since

α < β, f2 ⊃ f1. Thus, f1 = f2 � α.

Case 1: Let β be a successor ordinal. Since f � β ∈ [T ], f � β ∈ T . Thus, f1 has a proper

extension in T , but f1 ∈ [T ]. Contradiction.

Case 2: Let β be a limit ordinal. So, α+ 1 < β. Since f � β ∈ [T ], f2 � (α+ 1) ∈ T . Thus,

f2 � (α + 1) is a proper extension of f1 in T , but f1 ∈ [T ]. Contradiction.

In both cases, we get a contradiction. Therefore α = β. So, α is unique.
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CHAPTER 2

THE CANONICAL FUNCTION

We begin this chapter with an example which shows that the product topology on the

trees T = S = ω<ω is homeomorphic to the tree topology on the concatenated tree T ∗ S.

This result shows that there are homeomorphisms that exist between the two topologies for

certain trees.

2.1 A Basic Homeomorphism

Theorem 2.1. Let T = S = ω<ω. Then [T ]× [S] ∼= [T ∗ S].

Proof. Let T = S = ω<ω.

Define f : [T ] × [S] → [T ∗ S]. Let a ∈ [T ] × [S] where a = a1 × a2, such that a1 ∈ [T ]

and a2 ∈ [S], then f(a) = aa1 a2. We wish to show that f is a bijection.

In order to show that f is one-to-one, let a = a1 × a2, b = b1 × b2 ∈ [T ] × [S]. Assume

that f(a) = f(b). Then, by the definition of f , we have aa1 a2 = ba1 b2, so that

(aa1 a2) � ω = (ba1 b2) � ω. Since a1 ∈ [T ], a1 has length ω, so that (aa1 a2) � ω = a1. Similarly,

(ba1 b2) � ω = b1. Since (aa1 a2) � ω = (ba1 b2) � ω, a1 = b1. Also, because aa1 a2 = ba1 b2,

(aa1 a2) � [ω, ω + ω) = (ba1 b2) � [ω, ω + ω). Since a2 ∈ [S], a2 has length ω, so that

(aa1 a2) � [ω, ω + ω) = sR(a2, ω). Similarly, (ba1 b2) � [ω, ω + ω) = sR(b2, ω). So,

(aa1 a2) � [ω, ω + ω) = (ba1 b2) � [ω, ω + ω) which implies sR(a2, ω) = sR(b2, ω). Further,
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sR(a2, ω) = sR(b2, ω) implies that a2 = b2. So, a1 = b1 and a2 = b2. Thus, a1 × a2 = b1 × b2.

Consequently, a = b. Therefore, f is one-to-one.

Next, we show that f is onto. Let y ∈ [T ∗ S]. So, y = ya1 y2 for some y1 ∈ [T ] and

y2 ∈ [S] by Lemma 1.38. Next, x = y1 × y2 ∈ [T ] × [S], so f(x) = ya1 y2 = y. Hence, for all

y ∈ [T ∗ S] there exists x ∈ [T ]× [S] such that f(x) = y. So, f is onto.

We conclude that f is a bijection.

Next, we show that f is continuous. Since f−1
(⋃
i∈I

Ai

)
=
⋃
i∈I

f−1(Ai), it is enough to

show the pre-image of a basic open set is open. Let B[T∗S]
d be a basic open set in T�.

So, B[T∗S]
d = {tas| tas ⊇ d} where d = t? ∪ sR(s?, ω). Consider f−1(B[T∗S]

d ). Suppose

x ∈ f−1(B[T∗S]
d ). Then, f(x) ∈ B[T∗S]

d . So, f(x) ⊇ d. Note that x = t̃ × s̃ for some

t̃ ∈ [T ] and s̃ ∈ [S]. So, lth(t̃) = ω. Since f(x) = t̃as̃ ⊇ d, then f(x) � ω = t̃ and

f(x) � [ω, ω+ω) = sR(s̃, ω). Further, d � ω = t? and d � [ω, ω+ω) = sR(s?, ω). Thus, t̃ ⊇ t?

and s̃ ⊇ s?.

Next, we find an open neighborhood in T� containing x. Let

B
[T ]
t? ×B

[S]
s? = {t ∈ [T ]| t ⊇ t?}×{s ∈ [S]| s ⊇ s?}. Since x = t̃×s̃ such that t̃ ⊇ t? and s̃ ⊇ s?,

x ∈ B
[T ]
t? ×B

[S]
s? . Now, choose an arbitrary z ∈ B

[T ]
t? ×B

[S]
s? . So, z = t̂ × ŝ for some t̂ ⊇ t?

and ŝ ⊇ s?. Thus, f(z) = t̂aŝ. Since t̂ ⊇ t?, ŝ ⊇ s?, and lth(t̂) = ω, t̂aŝ ⊇ t? ∪ sR(s?, ω).

So, f(z) ∈ B[T∗S]
d . Hence, z ∈ f−1(B[T∗S]

d ) so that B
[T ]
t? ×B

[S]
s? ⊆ f−1(B[T∗S]

d ). Therefore, f is

continuous.

Last, we show that f is open. Since f
(⋃
i∈I

Ai

)
=
⋃
i∈I

f(Ai), it is enough to show the image

of a basic open set is open. Let B
[T ]
t? ×B

[S]
s? in T� where

B
[T ]
t? ×B

[S]
s? = {t ∈ [T ]| t ⊇ t?}×{s ∈ [S]| s ⊇ s?}. Now, we consider f(B

[T ]
t? ×B

[S]
s? ). Pick an

arbitrary y ∈ f(B
[T ]
t? ×B

[S]
s? ). Then, y = f(y1× y2) = ya1 y2 for some y1 ∈ B

[T ]
t? and y2 ∈ B

[S]
s? .

13



So, y1 ⊇ t? and y2 ⊇ s?. Since lth(y1) = ω, y ⊇ t? ∪ sR(s?, ω).

Next, we find an open neighborhood in T� containing y. Consider

B[T∗S]
d = {tas ∈ [T ∗ S]| tas ⊇ d}, where d = t? ∪ sR(s?, ω). Hence, y ∈ B[T∗S]

d . Next,

pick an arbitrary q ∈ B[T∗S]
d . So, q ⊇ d. By Lemma 1.38, there exist unique q1 and q2

such that q = qa1 q2 where q1 = q � ω ∈ [T ] and q2 = sL(q � [ω, ω + ω), ω) ∈ [S]. Next,

d � ω = t? and sL(d � [ω, ω + ω), ω) = s?. So, q1 ⊇ t? and q2 ⊇ s?. Let p ∈ [T ] × [S], where

p = q1× q2. Thus, p ∈ B
[T ]
t? ×B

[S]
s? . Further, f(p) = q. So, f(p) ∈ f(B

[T ]
t? ×B

[S]
s? ). Therefore,

B[T∗S]
d ⊆ f(B

[T ]
t? ×B

[S]
s? ). Thus, f is an open map.

We have shown that f : [T ]× [S]→ [T ∗ S] is a bijection which is continuous and open.

Therefore [T ]× [S] ∼= [T ∗ S].

The function that is used in Theorem 2.1 is a natural choice. Throughout the rest of

this thesis, instead of finding any homeomorphism, we devote our studies to the use of this

natural function. We will refer to this function as the “Canonical Function.” Our next

step is to show that regardless of the two trees we use, the canonical function will produce

a bijection.

2.2 Results for the Canonical Function

Theorem 2.2. Let T and S be any non-trivial trees. Then there exists a bijection

f : [T ]× [S]→ [T ∗ S], defined by f(a) = aa1 a2 for a = a1 × a2 ∈ [T ]× [S].

Proof. Let a ∈ [T ] × [S], where a = a1 × a2 such that a1 ∈ [T ] and a2 ∈ [S]. Define

f : [T ]× [S]→ [T ∗ S], by f(a) = aa1 a2.

We wish to show that f is one-to-one. Let a, b ∈ [T ] × [S]. So, a = a1 × a2 and
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[T ]

∅

a1

[S]

∅

a2

a1 × a2 ∈ [T ]× [S]

[T ∗ S]

∅

aa1 a2

aa1 a2 ∈ [T ∗ S]

Figure 2.1: The path a1 × a2 ∈ [T ]× [S] and corresponding path aa1 a2 ∈ [T ∗ S].
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b = b1 × b2 for some a1, b1 ∈ [T ] and a2, b2 ∈ [S]. Assume f(a) = f(b). By the definition

of f , f(a), f(b) ∈ [T ∗ S]. Since f(a) = aa1 a2 and f(b) = ba1 b2, a
a
1 a2 = ba1 b2. Suppose that

lth(a1) = α, for some ordinal α, and that lth(b1) = β, for some ordinal β. Since a1, b1 ∈ [T ]

and f(a) � α = a1, f(a) � α ∈ [T ]. Similarly, f(b) � β = b1. So, f(b) � β ∈ [T ]. By

assumption, f(a) = f(b). Thus, f(a) � β ∈ [T ]. However, by Lemma 1.38, there must be a

unique ordinal α such that f(a) � α ∈ [T ]. We have f(a) � α ∈ [T ] and f(a) � β ∈ [T ], where

α is unique, so α = β. Hence, f(b) � α = b1. Thus, f(a) = f(b). So, f(a) � α = f(b) � α,

which implies a1 = b1.

Since f(a) = f(b), then dom(f(a)) = dom(f(b)). Also, we have shown that a1 = b1,

where dom(a1) = α for some ordinal α. So, f(a) = aa1 a2 and f(a) = aa1 b2. However, by

Lemma 1.37, f(a) = aa1 a2 is unique for dom(a1) = α. Hence, a2 = b2.

Since a1 = b1 and a2 = b2, a1 × a2 = b1 × b2. Thus, a = b. Therefore, f is a one-to-one

function.

To show that f is onto, let y ∈ [T ∗ S]. By Lemma 1.38, y = ya1 y2 such that y1 ∈ [T ]

and y2 ∈ [S]. Now, suppose x = y1 × y2. Then x ∈ [T ]× [S], because y1 ∈ [T ] and y2 ∈ [S].

Thus, f(x) = ya1 y2 = y. So, f is onto.

We have shown that f is one-to-one and onto. Therefore, f is a bijection.

In order to show that two topological spaces are homeomorphic, we must show that there

exists a bijection between the two topological spaces that is both continuous and open. By

Theorem 2.2, we have shown that we always have a bijection between the product topology

and the tree topology. So, to prove a homeomorphism exists between [T ]× [S] and [T ∗ S],

it is enough to show that for the given trees T and S, the canonical function is continuous
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and open.

Our next goal is to find conditions that imply the canonical function is continuous and

open. We have found sufficient conditions that prove the canonical function is continuous.

This result is stated in Lemma 2.3. Additionally, we have found necessary and sufficient

conditions that prove the canonical function is open. This result is stated in Lemma 2.9.

Lemma 2.3. Let T and S be any non-trivial trees. If for all p ∈ [T ] there exists d? ∈ Pfin(p)

such that for all q ∈ B
[T ]
d? , lth(q) = lth(p), then the canonical function is continuous.

Proof. Let T and S be any non-trivial trees. Assume for all p ∈ [T ] there exists d? ∈ Pfin(p)

such that for all q ∈ B
[T ]
d? , lth(q) = lth(p). Recall B

[T ]
d? = {t ∈ [T ]| t ⊇ d?}. Consider a

basic open set in T�, say B[T∗S]
d , where B[T∗S]

d = {y ∈ [T ∗ S]| y ⊇ d}. Consider f−1(B[T∗S]
d ).

Suppose x ∈ f−1(B[T∗S]
d ). So, f(x) ∈ B[T∗S]

d .

Next, we find an open neighborhood in T� containing x. Note that x = p1 × s for some

p1 ∈ [T ] and s ∈ [S]. Suppose lth(p1) = α for some ordinal α. Because f(x) ∈ B[T∗S]
d ,

f(x) = pa1 s ⊇ d. By Lemma 1.38, α is unique, since f(x) � α = p1 ∈ [T ]. Also,

s = sL

(
f(x) �

[
α, dom(f(x))

)
, α
)
∈ [S]. By assumption, there exists d? ∈ Pfin(p1) such

that for all q1 ∈ B
[T ]
d? , lth(q1) = lth(p1). Define d1 = (d � α) ∪ d? and

d2 = sL

(
d �

[
α, dom(f(x))

)
, α
)

. So, d ⊆ d1 ∪ sR(d2, α). Then, p1 ⊇ d1 and s ⊇ d2. Thus,

B
[T ]
d1
×B

[S]
d2

= {u ∈ [T ]| u ⊇ d1} × {v ∈ [S]| v ⊇ d2} is a neighborhood of x. If d1 = ∅, then

B
[T ]
d1
×B

[S]
d2

= [T ]×B
[S]
d2

. If d2 = ∅, then B
[T ]
d1
×B

[S]
d2

= B
[T ]
d1
× [S].

Now, choose an arbitrary z ∈ B
[T ]
d1
×B

[S]
d2

. So, z = z1× z2 such that z1 ⊇ d1 and z2 ⊇ d2.

By assumption, since z1 ⊇ d1, then z1 ⊇ d?. So, z1 ∈ B
[T ]
d? . Hence, lth(z1) = lth(p1) = α.

Further, f(z) = za1 z2. So, za1 z2 ⊇ d1 ∪ sR(d2, α). Because d ⊆ d1 ∪ sR(d2, α), f(z) ⊇ d. So,
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f(z) ∈ B[T∗S]
d . Thus, z ∈ f−1(B[T∗S]

d ). So, B
[T ]
d1
×B

[S]
d2
⊆ f−1(B[T∗S]

d ). Since x was chosen

arbitrarily, we have shown for all x ∈ f−1(B[T∗S]
d ) there exists B

[T ]
d1
×B

[S]
d2
∈ T� such that

x ∈ B
[T ]
d1
×B

[S]
d2
⊆ f−1(B[T∗S]

d ). Therefore, f is continuous.

Remark 2.4. The converse of Lemma 2.3 does not hold. In the following example, we

provide a tree, T , that does not satisfy the conditions in Lemma 2.3; however, for a specific

tree, S, we see that the canonical function is continuous.

[T ]

∅

ω

(h, `)
0

0
0

(ω, 0) ω

(i, j)

0
0

(ω, 0)

1
1

1

ω

1
0

0

(ω, 0)

∀n ∈ ω ∃m ∈ ω (m ≥ n and p(m) 6= 0)

(m, k)

Figure 2.2: [T ] defined in Example 2.5.

Example 2.5.

Let p ∈ [T ] iff


p ∈ ωω+1, if ∀n ∈ ω ∃m ∈ ω (m ≥ n and p(m) 6= 0) and p(ω) = 0

p ∈ ωω, if ∃n ∈ ω ∀m ∈ ω (m ≥ n =⇒ p(m) = 0)

Let [S] = {0}ω. Then, the canonical function is continuous.
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Remark 2.6. Let f be a sequence with ran(f) ⊆ ω, then

f ∈ T iff


lth(f) < ω, or

lth(f) = ω and ∀n ∈ ω ∃m ∈ ω (m ≥ n and f(m) 6= 0), or

lth(f) = ω + 1 and f(ω) = 0 and ∀n ∈ ω ∃m ∈ ω (m ≥ n and (f � ω)(m) 6= 0)


Proof. Let T and S be defined as above. First, note that for any t ∈ [T ] with lth(t) = ω,

for all d? ∈ Pfin(t), there exists t2 ∈ B
[T ]
d? with lth(t2) = ω + 1. See Figure 2.2. We wish to

show that for T and S, f : [T ]× [S]→ [T ∗ S] is continuous.

Let B[T∗S]
d = {tas ∈ [T ∗ S]| tas ⊇ d} be any basic open neighborhood of T�. Suppose

x1 ∈ f−1(B[T∗S]
d ). So, f(x1) ∈ B[T∗S]

d . Then, f(x1) ⊇ d. Let x1 = p× s ∈ [T ]× [S].

Case 1: Assume lth(p) = ω + 1. By the definition of [T ], for all n ∈ ω there exists m ∈ ω

such that m ≥ n and p(m) 6= 0 and p(ω) = 0. Now, since pas ⊇ d, define d1 = d � ω+ 1 and

d2 = sL

(
d � [ω+1, ω+ω), ω+1

)
. So, p ⊇ d1 and s ⊇ d2. Note that s = ~0, so ran(d2) ⊆ {0}.

Since p(ω) = 0, p ⊇ {(ω, 0)}. Let d? = d1 ∪ {(ω, 0)}. Note that either ω ∈ dom(d1) and

d1(ω) = 0, in which case {(ω, 0)} ⊆ d1, or ω /∈ dom(d1) and d1 ⊆ d?. So, B
[T ]
d? ×B

[S]
d2

is an

open neighborhood of x1. Suppose x2 ∈ B
[T ]
d? ×B

[S]
d2

where x2 = q × s, for some q ∈ B
[T ]
d?

and s ∈ B
[T ]
d2

. Then, q ⊇ d?. Since q(ω) = 0, lth(q) = ω + 1. So, lth(q) = lth(p). Thus,

f(x2) = qas ⊇ d?∪sR(d2, ω+1). Further, d1 ⊆ d?, so d = d1∪sR(d2, ω+1) ⊆ d?∪sR(d2, ω+1).

Hence, f(x2) ⊇ d. Therefore, f(x2) ∈ B[T∗S]
d . Thus, B

[T ]
d? ×B

[S]
d2
⊆ f−1(B[T∗S]

d ).

Case 2: Assume lth(p) = ω. So, by the definition of [T ], there exists n ∈ ω for all

m ∈ ω such that m ≥ n =⇒ p(m) = 0. Now, since pas ⊇ d, define d1 = d � ω and

d2 = sL

(
d � [ω, ω + ω), ω

)
. So, p ⊇ d1 and s ⊇ d2. Note that s = ~0, so ran(d2) ⊆ {0}.

So, B
[T ]
d1
×B

[S]
d2

is an open neighborhood of x1. Suppose x2 ∈ B
[T ]
d1
×B

[S]
d2

where x2 = q × s.

Since q ∈ B
[T ]
d1

, q ⊇ d1.
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If lth(q) = ω, then f(x2) = qas ⊇ d1 ∪ sR(d2, ω). Thus, f(x2) ⊇ d. So, f(x2) ∈ B[T∗S]
d .

Next, if lth(q) = ω + 1, then q(ω) = 0. Since q(ω) = 0,

f(x2) ⊇ d1 ∪ {(ω, 0)} ∪ sR(d2, ω) = d̂. If ω ∈ dom(sR(d2, ω)), then {(ω, 0)} ⊆ sR(d2, ω). So,

d = d̂. Thus, d ⊆ d̂. Otherwise, ω /∈ dom(sR(d2, ω)). So, d ⊆ d̂. Either way, since d ⊆ d̂,

f(x2) ⊇ d. So, f(x2) ∈ B[T∗S]
d . Therefore, B

[T ]
d1
×B

[S]
d2
⊆ f−1(B[T∗S]

d ).

Using both cases, we have shown that for all x ∈ f−1(B[T∗S]
d ) there exists B

[T ]
d1
×B[S]

d2
∈ T�

such that x ∈ B
[T ]
d1
× B

[S]
d2
⊆ f−1(B[T∗S]

d ). Hence, f−1(B[T∗S]
d ) is open. Therefore, f is

continuous.

Remark 2.7. If we define T , as in Example 2.5, and let S = ω<ω, then the canonical

function is not continuous.

Conjecture 2.8. Let T be any non-trivial tree. Assume for all non-trivial trees, S, the

canonical function is continuous. Then for all p ∈ [T ] there exists d? ∈ Pfin(p) such that for

all q ∈ B
[T ]
d? , lth(q) = lth(p).

Lemma 2.9. Let T and S be any non-trivial trees. The canonical function is an open map

if and only if given any h1 ∈ B
[T ]
d1

and h2 ∈ B
[S]
d2

there exists d such that ha1 h2 ∈ B
[T∗S]
d and

for all g = ga1 g2 ∈ B
[T∗S]
d (where g1 ∈ [T ] and g2 ∈ [S]), g1 ∈ B

[T ]
d1

and g2 ∈ B
[S]
d2

.

Proof. Let T and S be any non-trivial trees.

(⇒) Assume that f is an open map. Recall B
[T ]
d1

= {t ∈ [T ]| t ⊇ d1} and

B
[S]
d2

= {s ∈ [S]| s ⊇ d2}. Note that B
[T ]
d1
×B

[S]
d2

is a basic open set in T�. Let h1 ∈ B
[T ]
d1

and h2 ∈ B
[S]
d2

. So, x = h1 × h2 ∈ [T ] × [S]. Then, f(x) = ha1 h2 ∈ [T ∗ S]. Note that

f(x) ∈ f(B
[T ]
d1
×B

[S]
d2

). Since f is open, there exists B[T∗S]
d ∈ T� such that

f(x) ∈ B[T∗S]
d ⊆ f(B

[T ]
d1
×B

[S]
d2

), where B[T∗S]
d = {tas ∈ [T ∗ S]| tas ⊇ d}. Thus, there exists
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d such that f(x) = ha1 h2 ∈ B
[T∗S]
d ⊆ f(B

[T ]
d1
×B

[S]
d2

).

Suppose g ∈ B[T∗S]
d . So, g ∈ f(B

[T ]
d1
× B

[S]
d2

). Then, there exists z ∈ B
[T ]
d1
× B

[S]
d2

such

that f(z) = g. Because z ∈ B
[T ]
d1
× B

[S]
d2

, z = g1 × g2, for some g1 ∈ B
[T ]
d1

and for some

g2 ∈ B
[S]
d2

. Note that f(z) = ga1 g2 = g. Last, g was arbitrary, so for all g = ga1 g2 ∈ B
[T∗S]
d

(where g1 ∈ [T ] and g2 ∈ [S]), g1 ∈ B
[T ]
d1

and g2 ∈ B
[S]
d2

.

(⇐) Let B
[T ]
d1

= {t ∈ [T ]| t ⊇ d1} and B
[S]
d2

= {s ∈ [S]| s ⊇ d2}. Assume for any h1 ∈ B
[T ]
d1

and h2 ∈ B
[S]
d2

, there exists d such that ha1 h2 ∈ B
[T∗S]
d , where B[T∗S]

d = {tas ∈ [T ∗ S]| tas ⊇ d},

and for all g = ga1 g2 ∈ B
[T∗S]
d (where g1 ∈ [T ] and g2 ∈ [S]), g1 ∈ B

[T ]
d1

and g2 ∈ B
[S]
d2

. Now,

B
[T ]
d1
× B

[S]
d2

is a basic open set in T�. Consider f(B
[T ]
d1
× B

[S]
d2

). Let y ∈ f(B
[T ]
d1
× B

[S]
d2

).

Then, there exists q = t̃ × s̃, for some t̃ ∈ B
[T ]
d1

and for some s̃ ∈ B
[S]
d2

, such that f(q) = y.

Then, f(q) = t̃as̃ = y. Since t̃ ∈ B
[T ]
d1

and s̃ ∈ B
[S]
d2

, by assumption, there exists d such

that y = t̃as̃ ∈ B[T∗S]
d . Further, B[T∗S]

d is an open neighborhood of y in T�. Choose an

arbitrary z ∈ B[T∗S]
d . By Lemma 1.38, there exist unique z1 and z2 such that z = za1 z2 where

z1 ∈ [T ] and z2 ∈ [S]. Next, by assumption since z ∈ B[T∗S]
d , z1 ∈ B

[T ]
d1

and z2 ∈ B
[S]
d2

. Let

x = z1× z2. Note that x ∈ [T ]× [S]. So, f(x) = za1 z2 = z. Then, f(x) = z ∈ f(B
[T ]
d1
×B

[S]
d2

).

Therefore, B[T∗S]
d ⊆ f(B

[t]
d1
× B

[S]
d2

). Since y was chosen arbitrarily we have shown for all

y ∈ f(B
[T ]
d1
×B

[S]
d2

) there exists B[T∗S]
d ∈ T� such that y ∈ B[T∗S]

d ⊆ f(B
[T ]
d1
×B

[S]
d2

). Hence,

f(B
[T ]
d1
×B

[S]
d2

) is open. So, f is an open map.

Below is a simple example to show the usefulness of Theorem 2.2, Lemma 2.3, and Lemma

2.9. In this example, we use a well-founded tree, that we call “R” throughout the rest of

this thesis. See Figure 2.3.
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[R]

∅

0 1

0

2

0 1

0

3

0 1

0

2

10

0

Figure 2.3: Well-founded Tree R.

Example 2.10. Let T = ω<ω and R = {a ∈ ω<ω| ∀i < j < lth(a), ai > aj}. Then

[T ]× [R] ∼= [T ∗R].

Proof. Let T = ω<ω and R = {a ∈ ω<ω| ∀i < j < lth(a), ai > aj}. Since T and R are

non-trivial trees, by Theorem 2.2, the canonical function is a bijection.

Next, we use Lemma 2.3 to show that f is continuous. Let p ∈ [T ]. Then, lth(p) = ω.

Suppose p? ∈ Pfin(p). Let B
[T ]
p? = {t ∈ [T ]| t ⊇ p?}. Now, suppose q ∈ B

[T ]
p? . Then, q ∈ [T ].

So, lth(q) = ω. Hence, lth(q) = lth(p). Thus, for all t ∈ [T ] there exists d? ∈ Pfin(t) such

that for all q ∈ B
[T ]
d? , lth(q) = lth(t). By Lemma 2.3, f is continuous.

Next, we use Lemma 2.9 to show that f is an open map. Let h1 ∈ B[T ]
d1

and h2 ∈ B[R]
d2

.

So, h1 ⊇ d1 and h2 ⊇ d2. Since h1 ∈ [T ], dom(h1) = ω. Let d = d1 ∪ sR(d2, ω). Let

x = h1×h2 ∈ [T ]× [R]. So, f(x) = ha1 h2. Since h1 ⊇ d1 and h2 ⊇ d2, h
a
1 h2 ⊇ d1 ∪ sR(d2, ω).

Therefore, ha1 h2 ⊇ d. Let B[T∗R]
d = {y ∈ [T ∗R]| y ⊇ d}. So, ha1 h2 ∈ B

[T∗R]
d .

Now, suppose that g ∈ B[T∗R]
d . So, g ∈ [T ∗ R] and g ⊇ d. Since f is onto there exists

an s ∈ [T ] × [R] such that f(s) = g. Say s = g1 × g2, where g1 ∈ [T ] and g2 ∈ [R]. Thus,
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f(s) = ga1 g2 = g. Since g1 ∈ [T ], dom(g1) = ω. Thus, g1 = g � ω. Recall d = d1 ∪ sR(d2, ω).

So, d1 = d � ω. Thus, g1 ⊇ d1. So, g1 ∈ B[T ]
d1

. Also, g2 = sL

(
g �

[
ω, dom(g)

)
, ω
)

and

d2 = sL

(
d �
[
ω, dom(g)

)
, ω
)

. Thus, g2 ⊇ d2. So, g2 ∈ B[R]
d2

. By Lemma 2.9, f is open.

We have shown that f is a bijection which is continuous and open. Therefore,

[T ]× [R] ∼= [T ∗R].
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CHAPTER 3

EXAMPLES OF HOMEOMORPHISMS

In this chapter, we use the results from Chapter 2 to show that a homeomorphism exists

between T� and T� for trees that are defined in a more general manner. In fact, as shown in

Theorem 3.1, we can show that the existence of a homeomorphism sometimes only depends

on the first tree. The second tree can be any non-trivial tree.

3.1 T has uniform length

Theorem 3.1. Let T be any non-trivial tree such that there exists γ ∈ ord, for all

p ∈ [T ], dom(p) = γ, and let S be any non-trivial tree. Then [T ]× [S] ∼= [T ∗ S].

Proof. Let T be any non-trivial tree such that ∃ γ ∈ ord, ∀ p ∈ [T ], dom(p) = γ and let S

be any nontrivial tree. By Theorem 2.2, the canonical function is a bijection.

We wish to show that f is continuous, using Lemma 2.3. Consider p1 ∈ [T ]. Then,

lth(p1) = γ. Suppose p1 ⊇ p? for some p? ∈ Pfin(p1). Let B
[T ]
p? = {t ∈ [T ]| t ⊇ p?}. Now,

suppose q1 ∈ B
[T ]
p? . Then, q1 ∈ [T ]. So, lth(q1) = γ. Hence, lth(q1) = lth(p1). Thus, for all

p ∈ [T ] there exists d? ∈ Pfin(p) such that for all q ∈ B
[T ]
d? , lth(q) = lth(p). So, by Lemma

2.3, f is continuous.

Next, we wish to show that f is an open map, using Lemma 2.9. Recall

B
[T ]
d1

= {t ∈ [T ]| t ⊇ d1} and B
[S]
d2

= {s ∈ [S]| s ⊇ d2}. Let h1 ∈ B
[T ]
d1

and h2 ∈ B
[S]
d2

. Since
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h1 ∈ B
[T ]
d1

, h1 ∈ [T ]. So, dom(h1) = γ = lth(h1). Consider x = h1 × h2 ∈ [T ] × [S]. Then,

f(x) = ha1 h2 ∈ [T ∗ S]. Since h1 ⊇ d1, h2 ⊇ d2, and lth(h1) = γ, then ha1 h2 ⊇ d1 ∪ sR(d2, γ).

Define d = d1 ∪ sR(d2, γ). Let B[T∗S]
d = {tas ∈ [T ∗ S]| tas ⊇ d}, so f(x) = ha1 h2 ∈ B

[T∗S]
d .

Since h1 and h2 are arbitrary, for any h1 ∈ B
[T ]
d1

and h2 ∈ B
[S]
d2

there exists d such that

f(x) = ha1 h2 ∈ B
[T∗S]
d .

Suppose g ∈ B[T∗S]
d . Then, g ∈ [T ∗ S] and g ⊇ d. By Lemma 1.38, there exist unique g1

and g2 such that g = ga1 g2, where g1 = g � γ ∈ [T ] and g2 = sL

(
g �

[
γ, dom(g)

)
, γ
)
∈ [S].

Next, d � γ = d1 and d2 = sL

(
d �
[
γ, dom(g)

)
, γ
)

. So, g1 ⊇ d1 and g2 ⊇ d2. Thus, g1 ∈ B
[T ]
d1

and g2 ∈ B
[S]
d2

. Last, g was arbitrary, so for all g = ga1 g2 ∈ B
[T∗S]
d (where g1 ∈ [T ] and

g2 ∈ [S]), g1 ∈ B
[T ]
d1

and g2 ∈ B
[S]
d2

. So, by Lemma 2.9, f is an open map.

We have shown that f : [T ]× [S]→ [T ∗ S] is a bijection which is continuous and open.

Therefore, [T ]× [S] ∼= [T ∗ S].

In Theorem 3.1 above, we were able to prove a homeomorphism exists between the two

topological spaces if the paths through the first tree T have the same length. As stated

before, the second tree can be any non-trivial tree S. After proving this result, we wish to

find examples of trees which have varying path lengths to use as our first tree. For our next

example, we use the same well-founded tree R that was used in Example 2.10.

3.2 Interesting Examples

Example 3.2. Let R = {a ∈ ω<ω| ∀i < j < lth(a), ai > aj} and let S be any non-trivial

tree. Then [R]× [S] ∼= [R ∗ S].

Proof. Since R and S are non-trivial trees, by Theorem 2.2, the canonical function is a
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bijection.

Next, we use Lemma 2.3 to show that f is continuous. Let p ∈ [R]. Then, there is a

k ∈ ω such that p(k) = 0. By definition of R, lth(p) = k + 1. Consider p? = {(k, 0)}, where

p? ∈ Pfin(p). So, B[R]
p? = {r ∈ [R]| r ⊇ p?}. Suppose q ∈ B[R]

p? . So, q ⊇ p?. Then, q(k) = 0.

Again, by definition of R, lth(q) = k + 1. Therefore, lth(p) = lth(q). Thus, for all r ∈ [R]

there exists d? ∈ Pfin(r) such that for all r̃ ∈ B[R]
d? , lth(r̃) = lth(r). So, by Lemma 2.3, f is

continuous.

Last, we use Lemma 2.9 to show that f is open. Let h1 ∈ B[R]
d1

and h2 ∈ B[S]
d2

. So, h1 ⊇ d1

and h2 ⊇ d2. Since h1 ∈ [R], h1(k) = 0 for some k ∈ ω. So, dom(h1) = k + 1. Because

dom(h1) is finite, h1 ∈ Pfin(h1). Define d = h1 ∪ sR(d2, k + 1). Since h1 ⊇ d1, d ⊇ d1. Let

x = h1×h2 ∈ [R]×[S], so f(x) = ha1 h2. Since h1 ⊇ h1 and h2 ⊇ d2, h
a
1 h2 ⊇ h1∪sR(d2, k+1).

So, ha1 h2 ⊇ d. Let B[R∗S]
d = {y ∈ [R ∗ S]| y ⊇ d}. So, ha1 h2 ∈ B

[R∗S]
d .

Now, suppose that g ∈ B[R∗S]
d . So, g ∈ [R ∗ S] and g ⊇ d. Further, g ⊇ h1. Thus,

g(k) = 0. Recall h1 ∈ [R] with dom(h1) = k + 1. So, h1(n) 6= 0 for all n < k. Hence,

g(n) 6= 0 for all n < k. By Lemma 1.38, there exist unique g1 and g2 such that g = ga1 g2,

where g � (k + 1) = g1 ∈ [R] and sL

(
g �

[
k + 1, dom(g)

)
, k + 1

)
= g2 ∈ [S]. Recall

d = h1 ∪ sR(d2, k + 1). So, d � (k + 1) = h1. Thus, g1 ⊇ h1. So, g1 ∈ B[R]
d1

. Also,

sL

(
d �

[
k + 1, dom(g)

)
, k + 1

)
= d2. Thus, g2 ⊇ d2. So, g2 ∈ B[S]

d2
. Therefore, by Lemma

2.9, f is an open map.

We have shown that f is a bijection which is continuous and open. Therefore,

[R]× [S] ∼= [R ∗ S].

In the next example, we define a tree which has varying path lengths. In this case, we
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want a tree that has paths that are of length ω or greater. To construct this tree, the domain

of each path is based on the move in the first position, and defined by ω · (t(0) + 1). This

yields paths that have lengths which are multiples of ω. See Figure 3.1.

∅

0

ω

1

ω · 2

2

ω · 3

n

ω · (n+ 1)

Figure 3.1: [T ] = {t | dom(t) = ω · k, k = t(0) + 1, ran(t) ⊆ ω}.

Example 3.3. Let [T ] = {t | dom(t) = ω · k, k = t(0) + 1, ran(t) ⊆ ω}. Let S be any

non-trivial trivial tree. Then [T ]× [S] ∼= [T ∗ S].
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Proof. Since T and S are non-trivial trees, by Theorem 2.2, the canonical function is a

bijection.

Next, we use Lemma 2.3 to show that f is continuous. Let p ∈ [T ]. Then p(0) = n,

for some n ∈ ω. Consider p? = {(0, n)}, where p? ∈ Pfin(p). So, B[T ]
p? = {t ∈ [T ]| t ⊇ p?}.

Suppose q ∈ B[T ]
p? . So, q ⊇ p?. Then, q(0) = n. So, q(0) + 1 = n + 1 = k. Hence,

dom(q) = ω · k = lth(p) = lth(q). Therefore, for all t ∈ [T ] there exists d? ∈ Pfin(t) such

that for all t̃ ∈ B[T ]
d? , lth(t̃) = lth(t). So, by Lemma 2.3 f is continuous.

Last, we use Lemma 2.9 to show that f is open. Let h1 ∈ B[T ]
d1

and h2 ∈ B[S]
d2

. So, h1 ⊇ d1

and h2 ⊇ d2. Also, h1(0) = n for some n ∈ ω. Next, h1(0) + 1 = n+ 1 = k. Since h1 ∈ [T ],

dom(h1) = ω · k = lth(h1). Let d = {(0, n)} ∪ d1 ∪ sR(d2, ω · k). Because h1 ⊇ {(0, n)} and

h1 ⊇ d1, either d1(0) = n or 0 /∈ dom(d1). Let x = h1 × h2 ∈ [T ] × [S]. So, f(x) = ha1 h2.

Since h1 ⊇ {(0, n)} ∪ d1 and h2 ⊇ d2, h
a
1 h2 ⊇ {(0, n)} ∪ d1 ∪ sR(d2, ω · k). So, ha1 h2 ⊇ d. Let

B[T∗S]
d = {y ∈ [T ∗ S]| y ⊇ d}. So, ha1 h2 ∈ B

[T∗S]
d .

Now, suppose that g ∈ B[T∗S]
d . So, g ∈ [T ∗ S] and g ⊇ d. Since f is onto there exists an

r ∈ [T ]× [S] such that f(r) = g. Say r = g1 × g2, where g1 ∈ [T ] and g2 ∈ [S]. Thus,

f(r) = ga1 g2 = g. Next, since g ⊇ d, g(0) = n. So, g1(0) = n. Thus, dom(g1) = ω · k.

Therefore, g � (ω ·k) = g1. Recall d = {(0, n)}∪d1∪sR(d2, ω ·k), so d � (ω ·k) = {(0, n)}∪d1.

Thus, g1 ⊇ {(0, n)} ∪ d1. So, g1 ⊇ d1. Therefore, g1 ∈ B[T ]
d1

. Also,

sL

(
g �

[
ω · k, dom(g)

)
, ω · k

)
= g2 and sL

(
d �

[
ω · k, dom(g)

)
, ω · k

)
= d2. Thus, g2 ⊇ d2,

because g ⊇ d. So, g2 ∈ B[S]
d2

. Therefore, by Lemma 2.9, f is open.

Therefore, [T ]× [S] ∼= [T ∗ S].

Prior to the example below, all of the trees we have used either have paths which are
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limit length or finite length. In the following example, we define a tree T where paths have

two possible lengths: limit length ω or successor length ω + 1. In this tree, notice that each

path’s length is determined by the path restricted to ω being in a clopen set, or by being in

the clopen complement.

[T ]

∅

p � ω ∈ A
p ∈ AC

ωω ω ω ω ω

Figure 3.2: [T ] defined in Example 3.4.

Example 3.4. Let p ∈ [T ] iff


p ∈ ωω+1, if p � ω ∈ A

p ∈ ωω, if p ∈ AC
,

where A ⊆ ωω is any (fixed) clopen set. Let S be any non-trivial trivial tree. Then

[T ]× [S] ∼= [T ∗ S].

Proof. First, note that because A is a clopen set, AC is a clopen set. Since T and S are

non-trivial trees, by Theorem 2.2, the canonical function is a bijection.

Next, we use Lemma 2.3 to show that f is continuous. Let p ∈ [T ].

Case 1: Assume that p � ω ∈ A. Then, lth(p) = ω + 1. So, for some k ∈ ω, p(ω) = k. Let
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d? = {(ω, k)} ∈ Pfin(p). Suppose that q ∈ B
[T ]
d? . Then, q ⊇ d?. Thus, lth(q) = ω+ 1. Hence,

lth(q) = lth(p).

Case 2: Assume that p � ω ∈ AC . Then, lth(p) = ω and p = p � ω. Since AC is open, AC

can be written as a countable union of basic open sets. Say AC =
⋃
i∈ω

B
[T ]
i . Since p ∈ AC ,

there exists n ∈ ω such that p ∈ B
[T ]
n . Recall, by definition of a basic open set in the tree

topology, B
[T ]
n = {t ∈ [T ]|t ⊇ d?n} where d?n ∈ fin(ωω). Thus, p ⊇ d?n. Now, suppose

q ∈ B
[T ]
n . Then, q � ω ∈ AC . So, lth(q) = ω. Hence, lth(q) = lth(p).

In both cases, we have met the conditions of Lemma 2.3. Thus, f is continuous.

Next, we use Lemma 2.9 to show that f is an open map.

Case 1: Let h1 � ω ∈ A. Then, for some n ∈ ω, h1 ∈ B
[T ]
n = {t ∈ [T ]|t ⊇ d?n} where

d?n ∈ fin(ωω+1). So, h1 ⊇ d?n. Let h2 ∈ B
[S]
d2

. So, h2 ⊇ d2. Since h1 � ω ∈ A, dom(h1) = ω+1.

Define d = d?n∪ sR(d2, ω+ 1). Suppose x = h1×h2 ∈ [T ]× [S]. Then, f(x) = ha1 h2 ∈ [T ∗S].

Since h1 ⊇ d?n, h2 ⊇ d2, and lth(h1) = ω + 1, we have ha1 h2 ⊇ d. Recall

B[T∗S]
d = {tas ∈ [T ∗ S]| tas ⊇ d}. So, f(x) = ha1 h2 ∈ B

[T∗S]
d . Next, suppose g ∈ B[T∗S]

d .

Then, g ∈ [T ∗ S] and g ⊇ d. By Lemma 1.38, there exist unique g1 and g2 such that

g = ga1 g2, where g1 = g � ω + 1 ∈ [T ] and g2 = sL

(
g �
[
ω + 1, dom(g)

)
, ω + 1

)
∈ [S]. Next,

d � ω + 1 = d?n and d2 = sL

(
d �

[
ω + 1, dom(g)

)
, ω + 1

)
. So, g1 ⊇ d?n and g2 ⊇ d2. Thus,

g1 ∈ B
[T ]
n and g2 ∈ B

[S]
d2

.

Case 2: Let h1 ∈ AC . Then, for some n ∈ ω, h1 ∈ B
[T ]
n = {t ∈ [T ]|t ⊇ d?n} where

d?n ∈ fin(ωω). So, h1 ⊇ d?n. Let h2 ∈ B
[S]
d2

. So, h2 ⊇ d2. Since h1 ∈ AC , dom(h1) = ω.

Define d = d?n∪sR(d2, ω). Suppose x = h1×h2 ∈ [T ]×[S]. Then, f(x) = ha1 h2 ∈ [T ∗S]. Since

h1 ⊇ d?n, h2 ⊇ d2, and lth(h1) = ω, we have ha1 h2 ⊇ d. Let B[T∗S]
d = {tas ∈ [T ∗S]| tas ⊇ d}.

So, f(x) = ha1 h2 ∈ B
[T∗S]
d . Next, suppose g ∈ B[T∗S]

d . Then, g ∈ [T ∗ S] and g ⊇ d. By
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Lemma 1.38, there exist unique g1 and g2 such that g = ga1 g2, where g1 = g � ω ∈ [T ] and

g2 = sL

(
g �
[
ω, dom(g)

)
, ω
)
∈ [S]. Next, d?n = d � ω and d2 = sL

(
d �
[
ω, dom(g)

)
, ω
)

. So,

g1 ⊇ d?n and g2 ⊇ d2. Thus, g1 ∈ B
[T ]
n and g2 ∈ B

[S]
d2

.

In both cases, we have met the conditions of Lemma 2.9. Hence, f is an open map.

We have shown that f : [T ]× [S]→ [T ∗ S] is a bijection which is continuous and open.

Therefore, [T ]× [S] ∼= [T ∗ S].
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CHAPTER 4

COUNTEREXAMPLES

In this chapter, we show that the canonical function does not always produce a

homeomorphism. In both of the counterexamples below, the canonical function is not

continuous and not open. In both of these counterexamples, we use a construction for the

first tree that is similar to the construction of the first tree used in Example 3.4. However,

path lengths of the first tree in our counterexamples are defined by sets that are not clopen.

Theorem 4.1. There exist trees for which the canonical function is not a homeomorphism.

Proof. See counterexamples below.

[T ]

∅

ω

(n, `)
0

0
0

ω ω ω ω ω

∀n ∈ ω ∃m ∈ ω (m ≥ n and p(m) 6= 0)

(m, k)

Figure 4.1: [T ] defined in Counterexample 4.2.
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Counterexample 4.2. This is an example of a tree, T , that has lengths of paths defined

by sets that are both not open and not closed. In this case, the canonical function is not

continuous and not open.

First define the tree T .

Let p ∈ [T ] iff


p ∈ ωω+1, if ∀n ∈ ω ∃m ∈ ω (m ≥ n and p(m) 6= 0)

p ∈ ωω, if ∃n ∈ ω ∀m ∈ ω (m ≥ n =⇒ p(m) = 0)

Let [S] = ωω.

Proof. Let T and S be defined as above. Suppose B[T∗S]
d = {paq ∈ [T ∗ S]| paq ⊇ d} ∈ T�,

where d = {(ω, 0)}. We show f−1(B[T∗S]
d ) is not an open set. Let p = ~0 and q = ~0.

Then, let x = p × q ∈ [T ] × [S]. So, lth(p) = ω. Thus, f(x) = paq = ~0. So, f(x) ⊇ d.

Hence, f(x) ∈ B[T∗S]
d . Thus, x ∈ f−1(B[T∗S]

d ). Let p? ∈ Pfin(p) and q? ∈ Pfin(q). Consider

B
[T ]
p? ×B

[S]
q? , where B

[T ]
p? = {t ∈ [T ]|t ⊇ p?} and B

[S]
q? = {s ∈ [S]|s ⊇ q?}. B

[T ]
p? ×B

[S]
q? is an

arbitrary basic open neighborhood in T� containing x. We show B
[T ]
p? ×B

[S]
q? * f−1(B[T∗S]

d ).

Consider z ∈ B
[T ]
p? × B

[S]
q? . Let z = p̃ × q̃ such that q̃ = q and p̃ = pa1 p

a
2 {1}. Define

p1 = ~0, so that p1 ⊇ p? and p2 =
−→
0, 1. So, p̃ ∈ [T ] and lth(p̃) = ω + 1. Note p̃(ω) = 1. So,

f(z) = p̃aq̃ + d. Thus, f(z) /∈ B[T∗S]
d . So, B

[T ]
p? ×B

[S]
q? * f−1(B[T∗S]

d ). Since B
[T ]
p? ×B

[S]
q? is

arbitrary, f−1(B[T∗S]
d ) is not open. Therefore, f is not continuous.

Suppose [T ] × B
[S]
c2 = [T ] × {q ∈ [S]| q ⊇ c2} ∈ T�, where c2 = {(0, 0)}. We show

f([T ]×B
[S]
c2 ) is not an open set. Suppose p = ~0 and q = {0}a~1. Let x = p× q ∈ [T ]× [S].

Hence, lth(p) = ω. Also, q ⊇ c2, because q(0) = 0. So, x ∈ [T ]×B
[S]
c2 . Then,

f(x) = paq ∈ f([T ] ×B
[S]
c2 ). Let p? ∈ Pfin(p). Consider B[T∗S]

c = {tas ∈ [T ∗ S]| tas ⊇ c},

where c ⊇ p? ∪ sR(c2, ω). Since p ⊇ p?, q ⊇ c2, and lth(p) = ω, then f(x) ⊇ c. Thus, B[T∗S]
c

is an arbitrary basic open neighborhood in T� containing f(x).
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Now, consider v ∈ B[T∗S]
c . Let v = p̃aq̃. Define q̃ = ~1. Further, let p̃ = pa1 p

a
2 {0}, where

p1 = ~0 so that p1 ⊇ p? and p2 =
−→
0, 1. So, p̃ ∈ [T ] and lth(p̃) = ω + 1. Because p̃ ⊇ p? and

p̃(ω) = 0, v ⊇ c. However, consider f−1(v) = p̃× q̃. Since q̃ = ~1, q̃ + c2. So, q̃ /∈ Bc2 . Thus,

v /∈ f([T ]×B
[S]
c2 ). So, B[T∗S]

c * f([T ]×B
[S]
c2 ). Since B[T∗S]

c is arbitrary, f([T ]×B
[S]
c2 ) is not

open. Therefore, f is not an open map.

[T ]

∅

ω

(k, k)

ω ω ω ω ω

∀n ∈ ω, p(n) 6= n

Figure 4.2: [T ] defined in Counterexample 4.3.

Counterexample 4.3. This is an example of a tree, T , that has two possible path lengths.

If the sequence has length ω + 1, then the sequence restricted to ω is in the open set A

(defined below). If the sequence has length ω, then the sequence is not in A. Instead, the

sequence is in the complement of A which is closed. In this case, the canonical function,

f : [T ]× [S]→ [T ∗ S] is not continuous and not open.

Let A ⊆ ωω, where A =
⋃
n∈ω

On such that On = {t ∈ ωω| t(n) = n}.

Let p ∈ [T ] iff


p ∈ ωω+1, if p � ω ∈ A

p ∈ ωω, if p /∈ A
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Let [S] = ωω.

Proof. Let T and S be defined as above. Suppose B[T∗S]
d = {paq ∈ [T ∗ S]| paq ⊇ d} ∈ T�,

where d = {(ω, 0)}. We wish to find an element of f−1(B[T∗S]
d ). Let p = {1}a~0 and q = ~0. So,

p(0) = 1 and for all m ∈ ω, p(m + 1) = 0. Thus, p � ω /∈ A. So, lth(p) = ω. Let x = p× q.

Note that f(x) = paq = {1}a~0, so f(x) ⊇ d. Hence, f(x) ∈ B[T∗S]
d . Thus, x ∈ f−1(B[T∗S]

d ).

Let p? ∈ Pfin(p) and q? ∈ Pfin(q). Consider B
[T ]
p? × B

[S]
q? , where B

[T ]
p? = {t ∈ [T ]|t ⊇ p?}

and B
[S]
q? = {s ∈ [S]|s ⊇ q?}. So, B

[T ]
p? ×B

[S]
q? is an arbitrary basic open neighborhood in T�

containing x.

Since p? is a finite set, there exists k ∈ ω, k 6= 0 such that k /∈ dom(p?). Now, consider

z = p̃ × q where p̃ = {1}a~0a{k}a~0a{1}. So, p̃(k) = k. Thus, p̃ ∈ A. So, lth(p̃) = ω + 1.

Notice for all j ∈ dom(p?), j > 0, p̃(j) = 0 and p̃(0) = 1 = p(0). So, p̃ ⊇ p?. Hence,

z ∈ B
[T ]
p? ×B

[S]
q? . However, since lth(p̃) = ω + 1 and p̃ = {1}a~0a{k}a~0a{1}, p̃(ω) = 1. So,

f(z) = p̃aq̃ + d. Thus, f(z) /∈ B[T∗S]
d . So, B

[T ]
p? ×B

[S]
q? * f−1(B[T∗S]

d ). Since B
[T ]
p? ×B

[S]
q? is

arbitrary, f−1(B[T∗S]
d ) is not open. Therefore, f is not continuous.

Suppose [T ]×B
[S]
c2 = [T ]× {q ∈ [S]| q ⊇ c2} ∈ T�, where c2 = {(0, 0)}. We wish to find

an element of f([T ]×B
[S]
c2 ). Suppose p = {1}a~0 and q = {0}a~1. So, p ∈ [T ] and q ∈ [S]. Let

x = p×q. Since p(0) = 1 and for all m ∈ ω, p(m+1) = 0, then p /∈ A. So, lth(p) = ω. Next,

q ⊇ c2, because q(0) = 0. So, x ∈ [T ]×B[S]
c2 . Hence, f(x) = paq ∈ f([T ]×B[S]

c2 ). Next, we find

an open neighborhood of f(x). Let p? ∈ Pfin(p). Consider B[T∗S]
c = {tas ∈ [T ∗S]| tas ⊇ c},

where c ⊇ p? ∪ sR(c2, ω). Since p ⊇ p?, q ⊇ c2, and lth(p) = ω, then f(x) ⊇ c. Thus, B[T∗S]
c

is an arbitrary basic open neighborhood in T� containing f(x).

Since p? is a finite set, there exists k ∈ ω, k 6= 0 such that k /∈ dom(p?). Define
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p̃ = {1}a~0a{k}a~0. So, p̃(k) = k. Thus, p̃ ∈ A. So, lth(p̃) = ω + 1. Define q̃ = ~1. Let

v = p̃aq̃. Notice for all j ∈ dom(p?), j > 0, p̃(j) = 0 and p̃(0) = 1 = p(0). So, p̃ ⊇ p?.

Because p̃ ⊇ p? and p̃(ω) = 0, v ⊇ c. Therefore, v ∈ B[T∗S]
c . However, f−1(v) = p̃× q̃. Since

q̃ = ~1, q̃ + c2. So, q̃ /∈ B
[S]
c2 . Thus, v /∈ f([T ]×B

[S]
c2 ). So, B[T∗S]

c * f([T ]×B
[S]
c2 ). Since B[T∗S]

c

is arbitrary, f([T ]×B
[S]
c2 ) is not open. Therefore, f is not an open map.
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CHAPTER 5

CONCLUSION

In this thesis we provided some basic results as to how the product topology on two trees

behaves in comparison to the tree topology for longer trees.

In Chapter 2, we were able to show that the canonical function is always a bijection

between the product topology of two trees and the tree topology of the long concatenated

tree. We were also able to state results that more easily allow us to prove a homeomorphism

exists between the two topological spaces, the product topology for [T ] × [S] and the tree

topology for [T ∗ S], given trees T and S. We explored conditions that we must require

of the trees T and S to guarantee that the canonical function produces a homeomorphism.

We gave sufficient conditions to show that the canonical function is a continuous map.

Additionally, we gave a conjecture that states that if the canonical function is continuous for

all non-trivial trees S, then T satisfies the condition that every path in [T ] is contained in an

open neighborhood such that all paths in that neighborhood have the same length. We were

successful in finding necessary and sufficient conditions for T to prove that the canonical

function is open.

In Chapter 3, we used our proven lemmas to present several examples of trees T and

S for which the canonical function is a homeomorphism. Lastly, in Chapter 4 we gave

counterexamples that show the canonical function does not always produce a homeomorphism.

In our counterexamples, we show that the canonical function is both not continuous and not
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open.

The original purpose of this study was to show that for some trees T and S, the two

topological spaces are homeomorphic, and to find trees T and S for which the two topological

spaces are not homeomorphic. We were able to complete our first goal. However, we were

only able to prove that the canonical function is not a homeomorphism for certain trees T

and S. This does not prove that there is not a homeomorphism between the two topological

spaces for those given trees. Future work may include finding other functions which produce

a homeomorphism for these more complicated trees, or it may be possible to show that no

such function exists.
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RESULTS

Lemma 1.37: If f : γ → X and α ≤ γ, then there exist unique sequences f1 and f2 such

that f = fa1 f2 where dom(f1) = α.

Lemma 1.38: Assume T and S are non-trivial trees. Then f ∈ [T ∗ S] if and only if there

exists a unique α < dom(f) such that f � α ∈ [T ] and so sL(f � [α, dom(f)), α) ∈ [S].

Theorem 2.1: Let T = S = ω<ω. Then [T ]× [S] ∼= [T ∗ S].

Theorem 2.2: Let T and S be any non-trivial trees. Then there exists a bijection

f : [T ]× [S]→ [T ∗ S], defined by f(a) = aa1 a2, for a = a1 × a2 ∈ [T ]× [S].

Lemma 2.3: Let T and S be any non-trivial trees. If for all p ∈ [T ] there exists d? ∈ Pfin(p)

such that for all q ∈ B
[T ]
d? , lth(q) = lth(p), then the canonical function is continuous.

Lemma 2.9: Let T and S be any non-trivial trees. The canonical function is an open map

if and only if given any h1 ∈ B
[T ]
d1

and h2 ∈ B
[S]
d2

there exists d such that ha1 h2 ∈ B
[T∗S]
d and

for all g = ga1 g2 ∈ B
[T∗S]
d (where g1 ∈ [T ] and g2 ∈ [S]), g1 ∈ B

[T ]
d1

and g2 ∈ B
[S]
d2

.

Theorem 3.1: Let T be any non-trivial tree such that there exists γ ∈ ord, for all

p ∈ [T ], dom(p) = γ, and let S be any non-trivial tree. Then [T ]× [S] ∼= [T ∗ S].

Theorem 4.1: There exist trees for which the canonical function is not a homeomorphism.
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