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ABSTRACT

MODELING AND ANALYSIS OF PEDESTRIAN FLOWS

by

Romesh Khaddar

〈Dr. Zhonghai Ding〉, Examination Committee Chair

University of Nevada, Las Vegas

According to the Traveler Opinion and Perception Survey of 2005, about 107.4

million Americans regularly use walking as a mode of transport during their commute,

which amounts for 51% of the total American population. In 2009, 4092 pedestrian

fatalities were reported nationwide, out of 59,000 pedestrian crashes. This amounts

for 12% of the fatalities in the total traffic accidents recorded, and shows an over-

representation of pedestrians incidents. Thus, it is imperative to understand the

causes behind such statistics, and conduct a comprehensive research on pedestrian

walking behavior and their interaction with surroundings.

A lot of researches on pedestrian flows have been conducted with respect to crowd

dynamics in various situations like evacuation simulations. In this thesis, we investi-

gate the Hughes model for pedestrian flows, which is governed by a coupled system

of a scalar conservation law and an eikonal equation. The Hughes model considers

the pedestrians as a continuum fluid and describes the motion of pedestrians in a
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densely crowded region. For the one-dimensional Hughes model with a single turning

point (the origin), the governing equation can be be decomposed into two classical

conservation laws on two sub-domains around the origin. We study various com-

monly observed interactions of pedestrian flows for tracking and understanding their

movement on a mesoscopic level.

In this thesis, the conservation law for pedestrian flows and the Hughes model

are introduced in Chapter 2. We then summarize some existing theoretical work on

the well-posedness and existence of the entropy solutions of the Hughes model in

Chapter 3. In Chapter 4, we study the one-dimensional Hughes model with a single

turning point (the origin) and the given pedestrian potential which governs pedestrian

flow tendency around the origin, and investigate 18 different cases. An interesting

phenomena of dual shocks is observed, and remains to be investigated further in the

future work.
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

Pedestrian safety is a primary concern in mixed traffic situations as it is related

to human life. According to a report by NHTSA, 4,092 pedestrians were killed and

an estimated 59,000 were injured in traffic crashes in United States in 2009. The

numbers are significant as they account for 12% of fatalities in crash data [25]. Each

pedestrian injury or fatality has serious implications in terms of cost to those affected

directly and indirectly. A great deal of research has been done in pedestrian and

vehicle interactions [28, 30]. A slight improvement in pedestrian safety can lead to

increased mobility and in turn encourage pedestrian friendly environments. As a re-

sult, it becomes extremely important to create ways that improves the interactions

between driver and pedestrians.

Traffic congestion is a very important aspect of transportation planning within

city limits and boundaries. The costs attributed to congestion are at multiple levels

and can be broadly classified in direct and indirect costs. Direct costs include fuel,

vehicle operations and maintenance; while the indirect costs include inability to cal-

culate precise travel time i.e. delays, air pollution and societal concerns. But the

trend doesnt stop here and traffic congestion creates tertiary effects like road rage,
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anger, and slow emergency vehicle response [24].

Traditionally, larger part of travel planning is done with the aim to minimize

travel time. In addition, preference is given to vehicle traffic over pedestrian traffic

[14]. Some studies have attempted to explain the effect of reducing traffic congestion

by optimizing travel time costs to both pedestrians and vehicles [26]. These studies

are more relevant to traffic in heavily traveled areas, but point towards a more sub-

tle area of pedestrian safety. After the completion of planning, study on pedestrian

safety is required to understand the effect of the new improvements; such as effects

of countermeasures using before and after studies. Such studies are incomplete in a

broader sense of safety unless actual human subjects experience such systems. Some

methods used for study of pedestrian safety are surveys and observations on an actual

implemented system, over the course of time.

Pedestrian safety is also attributed to drivers of vehicles traveling through the

traffic system. Furthermore, pedestrian safety is a mutual relationship between both

drivers and pedestrians. If any of the two does not understand it or fail to respect

others right, both of them have to face the repercussions. The study of such issues is

under the broad topic of human factors research in transportation engineering.

Studies have shown that the socio-economic, demographics, and level of pedestrian

activity of an area affect the transportation behavior [30]. Transportation behavior in
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general discusses the interaction between transportation system and people; ranging

from mode choice to trip frequency and distance as well as the ways citizens affects

the transportation policy. Demographics is a broad term and includes many variables

such as religion, income, race, sex, marital status, etc. that can help put members

of a population into smaller groupings. With respect to the transportation behavior,

certain variables have been found in high correlation such as age distribution, race

and ethnicity, education level etc. [10]. Statistically, a set of individuals can be iden-

tified as the representative of demographics for a region to conduct human factors

research. Such research is an important topic in the field of transportation since it

assesses effects on transportation systems subject to variations in user behavior due

to their personal traits.

Due to the complexity involved between transportation behavior and demograph-

ics, individual behavior cannot be truly studied or analyzed for the entire population.

Statistical methods provide the capability to represent demographical information

with a smaller set of individuals, thereby creating a significant representation of the

population inhabiting in that region. Such methods are based on surveys in a safe and

controlled environment of a lab and have widely been accepted for study of human

factors research [32].

As mentioned earlier, pedestrian safety has been mostly studied on established

transportation systems by surveys and observations at the locations/site. Such meth-
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ods though address in understanding many real life problems, however they have cer-

tain implied assumptions and therefore lack on a few grounds. For example, since

such surveys and observations are taken on an existing system and the results are

used for suggesting modifications to it. This incidentally implies the system might be

running in a potentially unsafe condition.

The standards in conducting pedestrian Level of Service (LOS) analysis is ex-

plained Highway Capacity Manual (HCM) in USA. Although, a standardized set of

practices is defined for data collection and quantifying congestion in pedestrian facil-

ities, many studies identify amendments and new methods for HCM to analyze LOS

[4].

According to HCM, LOS for pedestrian part of a transportation system can be

improved upon three primary areas namely pedestrian characteristics, sidewalk en-

vironment and flow characteristics. The relationships between these categories have

emerged in the literature for pedestrian studies and can be illustrated as shown in

figure 1.1 [4].

Pedestrian characteristics can be broadly classified as personal characteristics,

trip purposes, and expectations and behavior. Personal characteristics relate vari-

ables like pedestrian speed and sidewalk widths with age, gender, group size and

other demographic factors [5, 18, 34]. Trip purpose and pedestrian perceptions like
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Figure 1.1: Relationship between pedestrian and traffic environment

safety, comfort and convenience have also been found to affect their behavior, though

they have not been addressed in HCM. Researchers have confirmed that pedestrians

perception of environment affect their behavior significantly [33, 16, 23]. In general,

they have a tendency to put a cost to each sidewalk facility for a destination on their

personal expectations [12]. Similarly, individual behaviors like use of music players

and mobile handsets during walking, has been criticized by various authors [3] but

researchers merely have anecdotal evidences for the same and wish to understand it

more.

Researchers have studied modeling techniques that involves interactions of pedes-

trians and drivers. Pedestrians are affected largely by transportation, environmental,

and social systems surrounding them whereas drivers are inherent part of transporta-

tion systems [29, 22]. The benefit of such a system is the need to create a pedestrian

friendly environment for the planning of sustainable transportation systems and liv-

able communities. Additionally, optimizations and site selection techniques have been
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used to identify high crash locations as well as to design experiments to implement

the countermeasures [31]. Despite recent efforts by notable researchers, there is still a

need to understand the pedestrian and driver behavior through simulation techniques

such as the use of driving simulator, video games, and animations. This can help both

the driver and the pedestrian understand the effects of safe driving habits as soon as

they get their drivers license.

This research primarily addresses some of the concerns and focus mainly on sim-

ulating the pedestrian behavior. Vehicles usually travel in a single line of motion,

i.e. they travel in only one direction. As opposed to vehicular traffic, pedestrians are

treated as crowd as they do not follow a particular line of motion (or lane in general).

There are multiple approaches suggested for such kind of problem and are primarily

solved based on two concepts.

• Pedestrians are treated as discrete elements passing through a domain, generally

in a computer simulation. Approaches covered are:

1. Using a granular material analogue (rare)

2. Modeling the path taken assuming pedestrians optimize their immediate

local behavior

3. Assuming they attempt to move along predefined globally determined

paths

• The crowd is treated as a whole, generally applicable for a large crowd. Ap-
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proaches covered are:

1. A fluid (now rare)

2. A continuum responding to local influences

3. In a continuum, individuals optimize behavior to reach non-local objectives

With this idea, a better interactive pedestrian simulator was envisioned. This

simulator is expected to allow a human subject to traverse a virtual space consist-

ing of computed pedestrians. Such implementation requires a better representation

of background pedestrian traffic. This thesis, a mathematical model is proposed to

compute background pedestrian interactions and the pedestrian traffic flow. The ob-

jective was to better capture the effect of the pedestrian flow as well as validate the

method corresponding to it.

An expected result by this work allows towards development of a module using

which a platform (human centered pedestrian simulator) can be constructed for con-

ducting studies on pedestrian related transportation systems.

With the above mentioned concepts, this research envisages a better interactive

pedestrian simulator. This simulator is expected to allow a human subject to traverse

a virtual space consisting of computed pedestrians. Such implementation requires a

better representation of background pedestrian traffic. In this research, a mathemat-

ical model to compute background pedestrian interactions and the pedestrian traffic
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flow was proposed. The objective was to better capture the effect of the pedestrian

flow through a computationally faster approach. The results show the development

of a module to construct a platform (human centered pedestrian simulator) for con-

ducting studies on pedestrian related transportation systems.

The thesis is structured as follows. Chapter 2 introduces the conservation law

for pedestrian flows and the Hughes model, which forms an important component

of this research work. Chapter 3 summarizes some existing theoretical work on the

well-posedness and existence of the entropy solutions of the Hughes model. Chapter 4

focuses on the one-dimensional Hughes model with a single turning point (the origin)

and the given pedestrian potential which governs pedestrian flow tendency around

the origin, and investigate 18 different cases. Chapter 5 summarizes the conclusions

and future work.
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CHAPTER 2

CONCEPT REVIEW - CONSERVATION LAW IN 1D

In this thesis, the modeling of pedestrian flow is done in a similar manner as

the modeling of traffic flow. Traffic flow is modeled based on the conservation law,

i.e. given a roadway segment, difference between numbers of vehicles leaving and

entering equals the number of vehicles on the roadway segment. This chapter details

the derivation of scalar conservation law for traffic models and nature of corresponding

solutions.

2.1 Conservation of Mass

The conservation of mass is discussed in context of flow across a region or

boundary. In case of single dimension, let us consider a section between x = x1 and

x = x2 referenced from the origin on the x-axis as shown in figure 2.1. Assuming

this section contains fluid with scalar field ρ(t, x), and that the fluid enters the region

from left i.e. at x = x1, and leaves at x = x2. Therefore the flux of fluid entering at

any time is q(t, x1), and leave at q(t, x2). Flux flowing through a given point at any

time is the product of density and velocity at that point equation (2.1).

q(t, x) = ρ(t, x)v(t, x) (2.1)
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ρ(t, x)q(t, x1)

v(t, x)

q(t, x2)

x1 x2

Figure 2.1: Conservation of Mass

Since the conservation of mass implies the net change in flux, it is equal to the

mass contained inside an arbitrary boundary. hence in one dimensional case is defined

by x1 and x2. The mass in the section from x = x1 to x = x2 at time t is given by

mass in [x1, x2] at time t =

∫ x2

x1

ρ(t, x)dx (2.2)

The total mass that enters the section from the edge at x = x1 is given by

Inflow at x1 from time t1 to t2 =

∫ t2

t1

ρ(t, x1)v(t, x1)dt (2.3)

Similarly, the total mass that leaves the section from the edge at x = x2 is given

by

Outflow at x2 from time t1 to t2 =

∫ t2

t1

ρ(t, x2)v(t, x2)dt (2.4)
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The conservation law states that the change in mass in the section [x1, x2] from

time [t1, t2] is equal to the mass that enters through the flux at x1 from which the

mass that exits through the flux at x2 has been subtracted. This is stated below as

the conservation law in the first integral form.

∫ x2

x1

ρ(t2, x)dx−

∫ x2

x1

ρ(t1, x)dx =

∫ t2

t1

ρ(t, x1)v(t, x1)dt−

∫ t2

t1

ρ(t, x2)v(t, x2)dt (2.5)

Alternatively, this can also be written in the second integral form as:

d

dt

∫ x2

x1

ρ(t, x)dx = ρ(t, x1)v(t, x1)− ρ(t, x2)v(t, x2) (2.6)

Equation (2.5) can be written as

∫ x2

x1

[ρ(t2, x)− ρ(t1, x)] dx =

∫ t2

t1

[ρ(t, x1)v(t, x1)− ρ(t, x2)v(t, x2)] dt (2.7)

If ρ(t, x) and v(t, x) are differentiable functions then we get

ρ(t2, x)− ρ(t1, x) =

∫ t2

t1

∂

∂t
ρ(t, x)dt (2.8)

and

ρ(t, x2)v(t, x2)− ρ(t, x1)v(t, x1) =

∫ x2

x1

∂

∂x
(ρ(t, x)v(t, x))dx (2.9)
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Using equations (2.8) and (2.9) in (2.7) gives the following equation.

∫ x2

x1

∫ t2

t1

{

∂

∂t
ρ(t, x) +

∂

∂x
[ρ(t, x)v(t, x)]

}

dtdx = 0 (2.10)

Since this must be satisfied for all intervals of time and x then it must be true that

the following differential form of the conservation law is satisfied.

∂

∂t
ρ(t, x) +

∂

∂x
[ρ(t, x)v(t, x)] = 0 (2.11)

In terms of the mass flux, this equation can be written as

∂

∂t
ρ(t, x) +

∂

∂x
q(t, x) = 0 (2.12)

And this equation can also be written as

∂

∂t
ρ(t, x) +▽(ρ(t, x)v(t, x)) = 0 (2.13)

2.2 Pedestrian Conservation Law

In terms of pedestrians, they do not move one behind the other as the vehicles

do. Pedestrians do not follow lanes and neither do they follow direction of movement.

It can be argued that pedestrians tend to go out of way as deemed fit. Therefore, the

same lane can be used for bidirectional traffic. This can be modeled as a net direction

of movement on a given segment. Since a pedestrian flow is being discussed, in which

12



only one type of pedestrian is involved, following qualities are taken into account:

• Density, q, of the flow, which is the expected number of individuals located

within unit area of road segment at a given time, t, and location x, and

• Velocity, v, of the flow, which is the expected velocity of individuals at a given

time, t, and location, x.

It is also assumed that small variations from the expected value can be there,

and therefore are negligible, so q and v may be taken as their local mean values.

Thus, conservation of pedestrians implies from equation (2.12). For further analysis,

it is necessary to make following assumptions about the nature of pedestrian motion.

Three major assumptions are made here:

1. The behavior characteristics and density of surrounding pedestrians determine

the speed of pedestrians. Thus the velocity components for a single type of

pedestrian are given by

v = f(ρ)φ̂x (2.14)

where f(ρ) is the speed and φ̂x is direction cosine of the motion. This is a stan-

dard assumption. For the crowds of interest here i.e. the density is not extreme,

pedestrian speed is established by surrounding pedestrians in a similar way as to

Greenshield’s (1934) model of vehicular flow. As it will become clear later, this

assumption is fundamental to use of the Lighthill and Whitham (1955) model,

which has been verified in various studies. However, an uniformly accepted

13



form of the function relating the density and speed cannot be established, be-

cause of multiple extrinsic factors and their varying effect which are individual

dependent. Some examples can be the psychological state of pedestrians or the

conditions of ground under foot.

2. The pedestrians in a group aim to reach a common destination without any pref-

erence to location. i.e. they have a common sense of task φ (called potential).

There is no perceived advantage of moving along a line of constant potential.

Therefore, the only direction for motion of pedestrians is perpendicular to that

of the potential, i.e.

φ̂x =
−∂φ

∂x

|∂φ
∂x
|

(2.15)

This assumption is not applicable for vehicular traffic but when pedestrian flows

are considered, they appears to be quite applicable. This is due to the reason

that pedestrians ave the ability for visual assessment of the situation. There is

also another implicit assumption in this that shorter pedestrians take a cue for

their direction from the tallest pedestrians in the vicinity as they have a better

overall view of the situation. It should also be noted that most crowds follow

this assumption but not all types can do the same. However, even in situations

when it is not applicable an acceptable approximation is provided.

3. Pedestrians avoid high density area at the same time optimizing travel time to be

minimum. This can be assumed separable such that product of travel time and

density is minimized. This leads to the situation that two pedestrians having

14



same potential should be end up at the same new potential at some later time.

Thus, it can be noted that time is a measure of potential. Hence, the pedestrian

speed has to be proportional to distance between potentials irrespective of the

starting position of a pedestrian on same potential.

1

|∂φ
∂x
|
= g(ρ)|f(ρ)| (2.16)

where g(ρ) is a factor to allow for the discomfort at very high densities.Generally,

the factor g(ρ) is equal to unity for most densities but rises for high densities.

The equations from above assumptions (2.14) - (2.16) together form the governing

equations for pedestrian flow. This converges to:

−
∂ρ

∂t
+

∂

∂x
(ρg(ρ)f 2(ρ)

∂φ

∂x
) = 0 (2.17a)

g(ρ)f(ρ) =
1

|∂φ
∂x
|

(2.17b)

The system (2.17) requires explicit boundary conditions for every particular situ-

ation. Sometimes, ρ is explicitly defined on the open boundaries that correspond to

entrances. However, by specifying ρ and the speed, f(ρ), the flow ρf(ρ), is specified

automatically. Usually, the potential φ, is considered zero at exits and the normal

derivative of φ is specified as zero on closed boundaries. For any slowly moving bound-

ary, such as next to a slowly moving vehicle, the normal components of velocity of

15



both the pedestrians and the boundary must be equal. For a rapidly moving bound-

ary, safety issues are important and the boundary condition depends on psychological

influences.

Together the set of equations in (2.17) is a generalization in single dimension of

Hughes Model [13]. This model can also be written as:

−
∂ρ

∂t
+ div(ρf 2(ρ)▽ φ) = 0 (2.18a)

| ▽ φ| =
1

f(ρ)
(2.18b)

2.3 Solution Properties

The flow of pedestrian traffic is dependent on density and flow velocity. This

is given by:

q = ρf(ρ) (2.19)

Since f(ρ) and g(ρ) can be any function in model (2.17), there is a problem to

identify the correct one for obtaining solutions and is a difficult choice. However, they

are expected to have following properties:

• f(0) is finite

• f(ρmax) = 0

16



• df(ρ)
dρ

≤ 0

• g(ρ) ≥ 1

• dg(ρ)
dρ

≥ 0

where ρmax is the density at which pedestrians can’t move anymore. For example,

based on Greenshield’s model, f(ρ) and g(ρ) can be defined as:

g(ρ) = 1 (2.20)

f(ρ) = A− Bρ (2.21)

where A and B are positive constants. The generates the flow as:

q = ρ(A− Bρ) (2.22)

and the resulting characteristics are quadratic in nature and can be visualized as in

the figure 2.2

Therefore the maximum flow q is:

qmax =
A2

4B

at,

ρqmax
=
ρm

2
=

A

2B
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ρ
ρm

f(ρ)

f(ρ) = vf (1−
ρ

ρm
)

ρ
ρm

vf

q

(ρqmax
, qmax)b

Figure 2.2: Greenshield’s Model characteristics
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There are two possible values for pedestrian density for any value of flow less

than the maximum possible value, viz, supercritical (ρ < ρqmax
) and sub-critical

(ρ > ρqmax
). Thus, for simplicity, we set

f(ρ) = vf (1−
ρ

ρmax

),

ρqmax
=
ρm

2
,

qmax =
vfρm

4
.
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CHAPTER 3

MATHEMATICAL ANALYSIS OF HUGHES MODEL

In chapter 2 the basics of traffic conservation law was touched upon by introduc-

tion of Hughes model. In this chapter the Hughes model is discussed more deeply

and the solutions are approached.

3.1 Hughes Model

In the Hughes Model, the pedestrians are treated as continuum as the derivation

stems from the continuity equation (2.13). However, the introduction of a potential

function was to identify that all the pedestrians together had a common destination

but the immediate destination may or may not be the same. This allowed for notion

that the crowd is taking decisions to optimize its flow velocity. The Hughes Model is

described as:

−
∂ρ

∂t
+ div(ρf 2(ρ)▽ φ) = 0 (3.1a)

| ▽ φ| =
1

f(ρ)
(3.1b)

Here x denotes the position variable with x ∈ Ω , a bounded domain in R
d with

smooth boundary ∂Ω, t ≥ 0 is time and ρ = ρ(x, t) is the crowd density. The
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function f(ρ) is given by f(ρ) = 1− ρ, modeling the existence of a maximal density

of individuals which can be normalized to 1 by a simple scaling. The boundary and

initial conditions are:

φ(x, t) = 0, x ∈ ∂Ω, t ≥ 0 (3.2)

and

ρ(x, 0) = ρ1(x) ≥ 0 (3.3)

In (3.1) if the system is decoupled by equating f(ρ) to 1, it is converted into a non-

linear conservation law with discontinuous flux. Such equations have been studied in

[15] and [17]. The Hughes model share multiple features with such class of equations,

however, it is much more challenging methodically. The implicit time dependence

of the potential ▽φ and the non-linearity of the equation are the cause behind it.

Regularity corresponding to Lipschitz continuity only can be expected for the unique

viscosity solution φ.

Since the density of pedestrians satisfy the continuity equation (2.13), the velocity

vector can be written as

V (t, x) = |V (t, x)|Z(t, x) (3.4a)

|Z(t, x)| = 1 (3.4b)

The relationship between |V | and ρ can be assumed to be linear (3.5). This is
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also a form of Greenshield’s Model.

|V (t, x)| = 1− ρ (3.5)

The directional unit vector Z(x, t) , is assumed to be parallel to the gradient of

the potential φ(x, t). Such potential is determined by solving the equation in (3.1).

Here the potential φ signifies the common sense of the task (the task is represented

by the boundary ∂Ω ). In other words, pedestrians try to minimize their travel time

estimate, which can be modeled by following equation:

| ▽ φ| = 1, φ|∂Ω = 0

The above equation has the unique semi-concave solution φ(x) = dist(x, ∂Ω) at

least in a convex domain Ω. Hence, a reasonable assumption is that individuals at-

tempt to manipulate their travel time by avoiding high densities, therefore we can

safely assume:

| ▽ φ| =
1

1− ρ
, φ|∂Ω = 0

This leads to

Z(t, x) =
▽φ(t, x)

| ▽ φ(t, x)|
= (1− ρ)▽ φ(t, x)

which implies that equation (3.1) is continuous in nature.
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Developing a mathematical theory for the model (3.1) has not been successful

till now. The inherent non-linearity in the continuity equation requires to go for

entropy solution in scalar conservation laws. In such cases, the weak L∞ solutions

of equations are not unique in general. Moreover, the vector field ▽φ can have time

varying discontinuities in subsets of Ω.

It can be argued that the subsets of discontinuity depend on ρ both non-linearly

and non-locally and can be validated in examples for single dimension problems. It can

also be seen that f(ρ) = 1−ρ generates problems when the crowd density approaches

ρ = 1 as the magnitude of the potential function | ▽ φ| blows up. Therefore, the

model is highly non-trivial, even in single dimension as, even if the model can be

decoupled by integration.

In [8] an approximations to the Hughes model (3.1) has been proposed which

regularizes the potential thereby avoiding the discontinuity in gradient of potential

| ▽ φ|. This has been achieved by approximating the potential equation by addition

of a small viscosity:

δ△ φ+ | ▽ φ|2 =
1

f 2(ρ)
, δ > 0 (3.6)

This would still create a problem of blow up at over-crowdedness i.e. ρ = 1.

However, it can be considered as shown below thereby elimination the unintentional

blowup at the boundary.

δ△ φ+ f 2(ρ)| ▽ φ|2 = 1, δ > 0 (3.7)
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Still this complicates the development of a satisfactory existence and uniqueness

theory by using the coupling (3.7) due to density dependent coefficient for Hamilton-

Jacobi term | ▽ φ|2. Therefore, a better method was proposed as:

δ1 △ φ+ | ▽ φ|2 =
1

(f(ρ) + δ2)2
, δ1, δ2 > 0 (3.8)

the potential φ in (3.8) would satisfy:

| ▽ φ| =
1

1− ρ+ δ2
(3.9)

The velocity field polar decomposition introduced in (3.4) converts to:

V = |V |Z, |Z| = 1

|V | = f(ρ)2| ▽ φ| =
f(ρ)2

δ2 + f(ρ)
=

(1− ρ)2

δ2 + (1− ρ)
, Z =

▽φ

| ▽ φ|
(3.10)

|V | has a logistic profile in (3.10), similar to that of original Hughes Model. However,

it has a residual velocity at the half of maximum density. Also the gradient of unit

vector Z is very high in value but not infinite. Therefore, the behavior of |V | in the

additional viscosity solution is close to that of original Hughes Model.

Combining (3.10) with Hughes Model results in following model:















ρt − (ρf 2(ρ)φx)x = 0,

−δ1φxx + |φ|2 = 1
(f(ρ)+δ2)2

(3.11)

24



3.2 Existence of Solutions

Let:

g(ρ) := ρf 2(ρ)

with initial condition:

ρ(x, 0) = ρ1(x) ≥ 0 (3.12)

and Dirchlet Boundary condition:

min
k∈[0,tr(ρ)]

g(tr(ρ))− g(k) = 0 (3.13)

φ(±1, t) = 0 (3.14)

Here tr(ρ) denotes the trace of ρ on the boundary. Therefore,















tr(ρ(−1, t)) = ℓim
x→−1+

ρ(x, t)

tr(ρ(1, t)) = ℓim
x→1−

ρ(x, t)

(3.15)

A more detailed proof is covered in [2] which establishes that (3.13) and (3.14)

are the correct ways for scalar conservation law. Thus boundary condition reduces to

g(tr(ρ)) ≥ g(k) on x = ±1, ∀k ∈ [0, tr(ρ)] (3.16)
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and implies the fact that on the boundary the function g is non-decreasing for allowed

densities. Introduce the space of bounded variation functions by

BV ([−1, 1]) = {f ∈ L1([−1, 1])|V 1
−1(f) <∞}

where,

V 1
−1(f) = sup

p∈P

(

np
∑

n=1

|f(xi+1)− f(xi)|)

and P is the set of all the partitions of [−1, 1]. If f ′(x) is integrable, then

V 1
−1(f) =

∫ 1

−1

|f ′(x)|dx.

Definition 3.2.1. Entropy Solution: let ρ1 ∈ BV ([−1, 1]). A couple (ρ, φ) is a weak

entropy solution to the system (3.11) if:

• ρ ∈ BV ([−1, 1]× [0, T )) ∩ L∞([−1, 1]× [0, T ))

• φ ∈ W 2,∞[−1, 1]

• ρ and φ must satisfy the following inequality:

∫∫

ΩT

|ρ− k|ψtdxdt+

∫

∞

−∞

ρ1ψ0dx−

∫∫

ΩT

sgn(ρ− k)[g(ρ)− g(k)]ψxφxdxdt

+

∫∫

ΩT

sgn(ρ− k)g(k)ψφxxdxdt− sgn(k)

∫ T

0

[g(tr(ρ))− g(k)]φψ|±1dt ≥ 0

(3.17)

for every Lipschitz continuous test function ψ in [−1, 1]× [0, T ) having compact
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support.

• ρ and φ satisfy the second equation in (3.11) almost everywhere in x and t.

In context of conservation law, equation (3.11) can be approximated via a vanish-

ing viscosity approach into a system:

ρt − (ρf 2(ρ)φx)x = ǫρxx (3.18a)

−δ1φxx + |φx|
2 =

1

(f(ρ) + δ2)2
(3.18b)

for small ǫ > 0. The system (3.18) is coupled with homogeneous boundary condi-

tions:

ρ(x, t)|x=±1 = 0,

φ(x, t)|x=±1 = 0

with initial conditions

ρ(x, 0) = ρ1(x)

Existence of unique (smooth) solutions to the above regularized problem follows

from standard results [20] and [35].

Theorem 3.2.1. (Existence of entropy solutions). There exists an entropy solution

(ρ, φ) to system (3.11) with initial condition (3.12) and boundary conditions (3.13)-

(3.14) in the sense of Definition 3.2.1. Such solution is the limit as ǫ → 0 of the

solution ρǫ to system (3.18).
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This theorem leads to the situation where we establish the uniqueness of entropy

solution in sense of Definition 3.2.1.

Theorem 3.2.2. (Uniqueness of entropy solutions). There exists at most one en-

tropy solution (ρ, φ) to the system (3.11) with initial condition (3.12) and boundary

conditions (3.13)-(3.14) in the sense of Definition 3.2.1.

Using the above definition and theorems, which are proved in [8], we can say that

the system described in (3.11) has a unique solution (ρ, φ) in a weak sense.

However, during this exercise we see two major things as follows:

• The actual Hughes Model has not been proven to have unique solution, although

modifications like system (3.11) based on equation (3.1) have been proven as

seen above.

• Due to the nature of actual Hughes Model, the existence and uniqueness is not

easy to prove, and many other modifications to the model are possible as per

the requirements within the purview of Hughes Model.

In the next chapter, another such proposed modification on (2.17) following the

solution properties is discussed.
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CHAPTER 4

MODIFIED PEDESTRIAN FLOW MODEL

In Chapter 2 we discussed the basics of traffic conservation law and touched upon

the Hughes model. However in Chapter 3 the challenge to prove the existence and

uniqueness of solutions to the Hughes model were discussed. Thereby, an established

modification to the Hughes model was discussed and a theoretical exercise was com-

pleted as well as established its continuity. In this chapter we cover the modification

to the Hughes model and how the solutions are approached.

4.1 Modified Hughes Model

In the Hughes Model, the pedestrians are treated as continuum as the derivation

stems from the continuity equation. Hence, we can assume that the pedestrians are

treated as a non-porous fluid. The introduction of a potential function was to iden-

tify the common direction for pedestrians. This common destination allowed them to

move in a path that culminated at the set destination. Moreover, the model inher-

ently assumed that the crowd moves in a particular direction and there is no cross

traffic.

However, in a city environment there is no mandate and pedestrians can move
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around freely. In other words, each pedestrian has a different final destination, but

choose path based on the Hughes Model hypotheses. Therefore it is very important

that a traffic network model is defined for such a city to understand how pedestrians

interact with each other.

4.1.1 Traffic Network Model

A traffic network model is defined as a grid comprising of set or defined paths.

Each of the path can be straight line or a curve. However we assume that there are

negligible curve paths and can be approximated as a collection of straight lines. This

allows for multiple intersections to be present in the traffic network whenever two of

such paths cross.

Therefore, a traffic network can be modeled as a system of linear equations:

Y =M ×X + C where(x, y) ∈ Ω (4.1)

The solutions to the set of equation 4.1 represent the intersections of the roadway

systems. This in turn divides each line into a set of line segments marked by inter-

sections, and each segment contains pedestrians. Each point of intersection can be

thought of as a traffic light and since the effects of curve are assumed negligible, it

is valid to assume that both the line segments are collinear. The pedestrians exist

on both the side of the considered traffic light. Note that at this point the focus
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has been shifted from a two-dimensional physical space to a single dimensional space

which considers pedestrians on a straight line.

4.1.2 Modeling the movement

Since a single dimensional movement is being considered, it can be assumed that

the potential is merely a sign of direction of movement for a particular pedestrian.

However, since pedestrians can intermingle and not all of them will have the same

direction of movement individually, we treat them as continuum and assign attributes

to a group. Hence it can be assumed that a group of pedestrians have a common

destination that involves crossing the next line segment and the decision is taken

based on Hughes Model assumptions.

However, the model considers a generalized set of functions f(ρ) and g(ρ) which

follow the solution properties 2.3, and establish the necessary bounds on (f, g). The

functions chosen within these bounds will adhere to Hughes Model, hence will follow

the same semantics, however, will depend on certain assumptions. Therefore we define

following assumptions:

• There is a net direction of movement for a group of pedestrians, however, indi-

vidual pedestrian may go in any direction and are negligible in number.

• A group of pedestrians can move in any direction, i.e. positive or negative.

• The dynamics are tracked from the moment when red light switches to green.
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Based on the above assumptions, the following functions can be taken:

g(ρ) =
1

v(t, x)|dφ
dx
|

(4.2)

f(ρ) = v(t, x) (4.3)

where v(t, x) is the velocity of pedestrians through the road segment and φ is a

C1
c curve for determination of direction of movements. It is assumed C1

c under the

assumptions stated above. The gradient of this curve determines the tendency to

move in a particular direction. However, quantification of such a tendency is very

hard. Therefore, by taking the sign of this tendency curve, we can judge the direction

of movement for the pedestrian at a point at any given time.

4.1.3 Proposed Modified Model

Using the above described assumptions for the involved dynamics on the Hughes

Model (2.17), along with equations (4.3) and (4.2) the following model is established

−
∂ρ

∂t
+

∂

∂x
(ρ v sgn(φx)) = 0 (4.4)

Where sgn is the signum function to obtain sign of the slope of potential curve. This

sign determines the direction of movement towards negative or positive infinity.

It is important to note that a signum function has been introduced, which is
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discontinuous at 0, hence there are necessary changes required around discontinuity.

This changes the above equation into the following model:















−∂ρ

∂t
+ ∂

∂x
(ρf(ρ)sgn(φx)) = 0,when∂φ

∂x
6= 0

∂ρ

∂t
= 0, when φx = 0

(4.5)

which is required from the equation (4.2) and therefore requires the explicit definition

in (4.5).

4.2 Solution of Proposed Modified Hughes Model

By observing Hamilton-Jacobi type equations (e.g. [6]), it is evident that (4.5)

may feature more than one weak solution. In other words, φx can change its sign at

infinite points within its domain. Since the model of pedestrian interactions is chosen

as described in the section 4.1.1, the possible solution is chosen such that there is an

extremal point at origin.

It is clear in the proposed model (4.5) that there may be a discontinuity intro-

duced into the system. Therefore, the system requires to consider that in approaching

for a solution. To solve this set of equations, a case wise approach is used. In this

approach, various possible combinations of potential are considered such that ∂φ

∂x
is

compared with 0. These combinations are applied with respect to the Modeling of

movement as covered in the previous section.
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Therefore, the problem statement can be re-stated as: on a stretch of a road seg-

ment, with traffic light at the center in stop state (red light), has pedestrians on both

sides. However, pedestrians on each side of the red light are following a potential

function of their own, and is common to their side.

This problem is solved from the time instant the red light switches to green,

thereby signaling the traffic to move. At this point following combinations of potential

for the two way traffic emerge (later referred as cases).

1. φℓ
x < 0 and φr

x > 0

2. φℓ
x < 0 and φr

x = 0

3. φℓ
x < 0 and φr

x < 0

4. φℓ
x = 0 and φr

x > 0

5. φℓ
x = 0 and φr

x = 0

6. φℓ
x = 0 and φr

x < 0

7. φℓ
x > 0 and φr

x > 0

8. φℓ
x > 0 and φr

x = 0

9. φℓ
x > 0 and φr

x < 0

where φℓ
x, φ

r
x are the derivative with respect to x for x < 0 and x > 0 respectively,

and x = 0 marks the position of the traffic light. This simplifies the movement of
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pedestrians by determining their tendency for a particular direction.

However, this also leaves another problem in the system. From classical analysis

of density equations, ρℓ0 ≥ ρr0 because the primary assumptions were that the flow

happens from left to right(unidirectional flow) and the boundaries are always allow-

ing free flow. But in the above described scenarios, the flow can be bidirectional,

however, the boundaries still behave the same.

For each of nine cases listed above, following two subcases occur and need to be

investigated:

• Case A: ρℓ0 ≤ ρr0

• Case B: ρℓ0 > ρr0

At this point, each of the initial conditions under Case A or B are eventually leads

to

−
∂ρ

∂t
+ k

∂(ρv)

∂x
= 0 (4.6)

where k ∈ {−1, 0, 1}. This converts the Hughes model (4.5) into a set of two typical

Witham-type equations with opposite directions on both sides of origin in single

dimension as shown in equation (2.11). The solutions to this set of equations can be

computed by the method of characteristics, which is a standard procedure to solve

Riemann-type problems, and is covered widely in literature like [11].
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4.2.1 Entropy Solutions

From above it can be seen that the conservation law (4.5) splits into two

separate conservation laws represented in (4.6). It is well known that the Riemann

problem may feature, in general, more than one weak solution. Thus, one needs the

concept of entropy solution, [19, 27]. It is known that Lax admissibility criterion for

shocks [21] implies that admissible shocks are decreasing on x < 0 and increasing on

x > 0. Thus, for most cases, a solution (weak in nature) is either a rarefaction or

a shock wave as shown in figures 4.1, and 4.2. Note that the velocity v(t, x) follows

the Greenshield’s model, i.e. the velocity and density of the flow follow a quadratic

relationship expressed as v = vf (1−
ρ

ρmax
) where vf is free flow velocity of the traffic

and ρmax is the maximum possible density which occurs at traffic jam.

ρrρℓ

Figure 4.1: Rarefaction Characteristics Solution

The entropy solution for (4.5) is introduced as follows

Definition 4.2.1. (Weak entropy solutions) Let 0 < δ < 1 and ρ0 ∈ BV ∩L∞([−1, 1])

with 0 < ρ0 ≤ ρmax(1− δ). A function
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ρrρℓ

Figure 4.2: Shock wave Characteristics Solution

ρ ∈ L∞([0,+∞)× [−1, 1])∩BVloc([0,+∞)× [−1, 1]) is a BV weak entropy solution to

the problem (4.5) with initial datum ρ0(0, x) = ρ0(x) if and only if ρ(t, x) ∈ [0, 1− δ]

for all x ∈ [−1, 1] and t ≥ 0, satisfies the following conditions:

1. For all test functions ϕ ∈ C∞
c ([0, T )× (−1, 1)) we have

∫ T

0

∫ 1

−1

ρ(t, x)ϕt(t, x)dxdt+

∫ 1

−1

ρ0(x)ϕ(0, x)dx

−

∫ T

0

∫ 1

−1

ρ(t, x)v(t, x)sgn(−x)ϕx(t, x)dxdt = 0 (4.7)

2. Tr(ρ(t, x = ±1)) ∈ [0, ρ̄] ∀t > 0.

3. For each convex function e : [0, ρmax(1 − δ)] → R, there exists a Lipschitz

function p : [0, ρmax(1− δ)] → R, such that:

e(ρ)t + kp(ρ)x 6 0 on x ∈ [−1, 1] \ {0} (4.8)

where the above inequality converts into two inequalities, depending on k ∈
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{−1, 0, 1}, and the two inequalities are satisfied in the sense of distributions.

The BV condition is required here because the initial finiteness of the total vari-

ation is propagated along the solution. This issue is strictly related with the ef-

fectiveness of the wave front tracking strategy for this problem [7]. The condition

ρ ≤ ρmax(1− δ) ∀t ≥ 0 is used to avoid the singularity in (4.2), due to the condition

f(ρmax) = 0 (i.e., null velocity at maximum density). Assume this condition on the

initial data and expect that, by the maximum principle, it is satisfied at later time:

‖ρ(t)‖L∞ ≤ ‖ρ0‖L∞ ∀t ≥ 0.

At the boundary points x = ±1, the behavior of the solution can be determined

similar to that in [9], by solving two Riemann problems: at x = −1 with ρℓ = 0 and

ρr = Tr(ρ(x = −1)), at x = 1 with ρℓ = Tr(ρ(x = 1)) and ρr = 0. Since g is concave,

the two boundary layers at x = ±1 have to be solved by means of a rarefaction wave.

The rarefaction fan generated at the boundary enters the domain [−1, 1] when the

trace of ρ (on both sides x = ±1) satisfied Tr(ρ) ∈ [ρ̄, 1] and leaves the domain

otherwise.

However it should be noted that here each case and subcase differs in nature and

therefore is required to be handled differently. Nature of solution to each of them is

dependent on the left and right density of pedestrians as well as their tendency to

move towards a particular direction. Based on this, the following subsections aim to
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capture the various possible scenarios that are derived, and visualizes the solutions.

4.2.2 Case A: ρℓ ≤ ρr

This is the case when ρℓ ≤ ρr which implies that the absolute value of slope of

characteristics on the left section is less than that of right hand side. The nine cases

listed above (from 1 to 9) about various combinations of left and right potentials will

generate solutions that displayed in the following figures. For the case where a shock

wave occurs, and an appropriate equation is provided for the progress of shock wave

(ṡ is the shock wave speed).

ρ = ρr
ρ = 0

ρ = ρℓ

Figure 4.3: Case 1: Vacuum Solution
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ρ = ρr
ρ = 0

ρ = ρℓ

Figure 4.4: Case 2: Vacuum Solution

ρ = ρrρ = ρℓ

Figure 4.5: Case 3: Rarefaction Solution

ρ = ρr

ρ = 0

ρ = ρℓ

Figure 4.6: Case 4: Vacuum Solution

ρ = ρrρ = ρℓ

Figure 4.7: Case 5: Still Solution
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ρ = ρr

ρ = ρm

ρ = ρℓ

Figure 4.8: Case 6: Shock wave Solution

ṡ =
qr

ρm − ρr

ρ = ρrρ = ρℓ

Figure 4.9: Case 7: Shock wave Solution

ṡ = −
qℓ − qr

ρℓ − ρr

ρ = ρr

ρ = ρm

ρ = ρℓ

Figure 4.10: Case 8: Shock wave Solution

ṡ =
qℓ

ρℓ − ρm
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ρ = ρr

ρ = ρm

ρ = ρℓ

Figure 4.11: Case 9: Dual Shock wave Solution

ṡℓ =
qℓ

ρℓ − ρm
,

ṡr = −
−qr

ρm − ρr

4.2.3 Case B: ρℓ > ρr

This is the case when ρℓ > ρr which implies that the absolute value of slope of

characteristics on the left section is greater than that of right hand side. In this case,

the above discussed cases (from 1 to 9) about various combinations of left and right

potential will generate solutions that can be represented in the following set of figures.

In certain cases, shock wave occurs, and an appropriate equation has been provided.
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ρ = ρr

ρ = 0

ρ = ρℓ

Figure 4.12: Case 1: Vacuum Solution

ρ = ρr

ρ = 0

ρ = ρℓ

Figure 4.13: Case 2: Vacuum Solution

ρ = ρrρ = ρℓ

Figure 4.14: Case 3: Shock wave Solution

ṡ =
qℓ − qr

ρℓ − ρr
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ρ = ρr

ρ = 0

ρ = ρℓ

Figure 4.15: Case 4: Vacuum Solution

ρ = ρrρ = ρℓ

Figure 4.16: Case 5: Still Solution

ρ = ρr

ρ = ρm

ρ = ρℓ

Figure 4.17: Case 6: Shock wave Solution

ṡ =
qr

ρm − ρr
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ρ = ρrρ = ρℓ

Figure 4.18: Case 7: Rarefaction Solution

ρ = ρr

ρ = ρm

ρ = ρℓ

Figure 4.19: Case 8: Shock wave Solution

ṡ =
qℓ

ρℓ − ρm

ρ = ρr

ρ = ρm

ρ = ρℓ

Figure 4.20: Case 9: Dual Shock wave Solution

ṡℓ =
qℓ

ρℓ − ρm
, ṡr = −

−qr

ρm − ρr
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4.3 Further discussion of solutions

From last section, the nature of one dimensional pedestrian flow across a red light

is analyzed. Based on our investigation, we have following two observations:

• The nature of solutions is similar in most cases when compared from Case A

to Case B barring a few cases of potential distribution (viz case 3 and 7). In

these cases, the rarefaction and shock wave solutions were interchanged. In case

of dual shock wave solution, the shock speed changed in both sides due to the

change in relative densities.

• The case of dual shock wave solution is fairly interesting as it generates the

situation of congestion at the junction that needs mathematical justification.

This is relevant because of the consideration of a traffic network model. In case

of a city, there might be common point interest for pedestrians, which implies

all the pedestrians aim to reach a particular location and therefore, can create

congestion situations.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion and further discussions

In this thesis, the primary investigation was about pedestrian flows in single di-

mension as well as the pedestrian behavior in such situations. Various cases were

covered when a single fixed turning point was considered, where a turning point is

the point where the crowd differs in the tendency to move in a particular direction at

time t = 0. In this case, the location of turning point (point at which the pedestri-

ans change their direction) is known beforehand along with the potential distribution

(tendency to move in any particular direction) along the domain.

However, a similar problem was addressed in literature [1], but aimed to identify

the turning point as it was not fixed. The literature aimed to address mathematical

difficulty in the discontinuous gradient of the solution to the eikonal equation (2.17b)

appearing in the flux of the conservation law for the Hughes model (2.17).This was

particularly for one dimensional interval with zero Dirichlet conditions (the two edges

of the interval are interpreted as targets), the model can be decoupled in a way to con-

sider two classical conservation laws on two sub-domains separated by a turning point.
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In this thesis, the system of equation (2.17) was investigated for a fixed turning

point and known tendency which yielded a few interesting observations. It was re-

alized that a case of dual shocks is now possible as a weak solution for the system.

It implies the situation where in a traffic network model, whenever a multitude of

pedestrians aim to reach a specific point, a stagnant crowd will be generated, which

confirms with general observation. In the finer details, even though a lot of cases look

similar, they are having a subtle difference between them as they are different in na-

ture due to the definition of problem itself. The problem changes considerably as soon

as the left and right hand side densities have various relations. Another important

observation in this investigation was that the pedestrians can emulate the situation

of maximum density because of their tendency (potential distribution), even though

the jam density has not been reached on a roadway segment.

5.2 Further work

It will be interesting to pursue mathematically the following four cases as a part

of further work.

• In the situation when the tendency of pedestrians is to stand and not move, it

creates a situation where jam density is emulated at the interface.

• A situation of dual shocks was observed in chapter 4. This situation presents

an interesting case where the turning point emulates jam density.

• There can be more than one turning point on the same road segment under
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consideration, and their location can be determined by the eikonal equation in

[1]. Under the discussed framework, it will generate interesting situations for

analysis.

• A brief introduction of the network traffic model was given in the chapter 4,

however, a complete analysis in that direction is also of mathematical impor-

tance as it will generate a more opportunities in analyzing the evolution of

density profile on a network under various events. Moreover such analysis can

be helpful in simulation field for systems as discussed in literature [28].
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