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ABSTRACT 
 

A Statistical Model for Long-Term Forecasting of Strong Sand Dust Storms 
 

by 
 

Siqi Tan 
 

Dr. Chih-Hsiang Ho, Examination Committee Chair 
Professor of Mathematical Sciences 
University of Nevada, Las Vegas 

Dust elevated into the atmosphere by dust storms has numerous environmental 

consequences. These include contributing to climate change; modifying local weather 

conditions; producing chemical and biological changes in the oceans; and affecting soil 

formation, surface water, groundwater quality, crop growth, and survival (Goudie and 

Middleton, 1992). Societal impacts include disruptions to air, road and rail traffic; 

interruption of radio services; the myriad effects of static-electricity generation; property 

damage; and health effects on humans and animals (Warner, 2004). 

In this thesis, we extend the idea of empirical recurrence rate (ERR), developed by 

Ho (2008), to model the temporal trend of the sand-dust storms in northern China. 

Specifically, we show that the ERR time series has the following characteristics: (1) it is 

a potent surrogate for a point process; (2) it is created to take advantage of the 

well-developed and powerful time series modeling tools; and (3) it can produce reliable 

forecasts, capable of retrieving the corresponding mean numbers of strong sand-dust 

storms. 
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CHAPTER 1 

INTRODUCTION 

A dust storm is said to occur when the horizontal visibility is less than 1000m, and 

when the dust is being circulated into the atmosphere within sight of the observer. In spite 

of this international standard, some researchers develop their own definition with respect 

to different areas. Tao et al (2002) give the following criteria particularly used in Inner 

Mongolia, China: 

Dust storm – at least three stations reporting with horizontal visibility of less than 

1000m and an average wind speed of 10.8 to 20.7 m/s; 

Strong dust storm – at least three stations reporting with horizontal visibility of less 

than 500m and an average wind speed of 17.2 to 24.4 m/s; 

Very strong dust storm – at least one station reporting with horizontal visibility of 

less than 50m and an average wind speed of 20.8 m/s or greater. 

Dust storms can cause numerous environmental consequences. These include 

contributing to climate change; modifying local weather conditions; producing chemical 

and biological changes in the oceans; and affecting soil formation, surface water, 

groundwater quality, crop growth and survival. Societal impacts include disruptions to air, 

land and rail traffic; interruption of radio services; the myriad effects of static-electricity 

generation; property damage; and health effects on humans and animals. Although 

commonly viewed as an ecological evil, dust storm has a positive effect of neutralizing 

acid rain. Chinese scientists discovered that sand and dust rich in calcium carbonate with 
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a pH indicator between seven and eight can increase the acid-base indicator of rainfall in 

northern China, which can effectively alleviate the harmful effects of acid rain. 

Climate is generally regarded to be an important factor influencing the occurrences 

of dust storms. This indicates factors such as wind, relative humidity, air temperature, 

precipitation and dryness index. This thesis focuses on the northern China area from 1954 

to 2002 and the sand storms that mainly originated from the following regions: Hexi 

Corridor of Gansu Province and Alxa Plateau, southern rim of South Xinjiang Basin, and 

central Inner Mongolia. The features of sand storms’ frequency variations during the past 

50 years are as follows: a fluctuating increase during 1960s-1970s and a fluctuating 

decrease during 1980s-1990s. After 2000, activities of the sun began a new round of 

weak trend, which weakened the warm trend of climate. Consequently, the intensity of 

the surface heat-field in the Tibetan plateau was weak and the air temperature of the 

northern Xinjiang, Hexi corridor and Ningxia region was abnormally low. All these 

changes have made sand storms enter a new active period in northern China. (Thomas T. 

Warner, 2004; Zhou and Zhang, 2003; Yang et al, 2007; Zhang et al, 2002) 

By developing an empirical recurrent rate (ERR) time series, this thesis presents a 

new treatment to smooth the point process. The ERR is computed sequentially and 

cumulatively at equidistant time intervals during the observation period. Once we 

establish the ERRs, we explore the possibility of using the linear stochastic model 

ARIMA model to develop reliable and robust forecasts, appropriately designed 

simulations could help us to have a general idea about the real data, and give some hints 
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for finding the final model. 

To sum up, definition of ERR, ARIMA model and relevant time series theories and 

method are introduced in Chapter 2, we perform the simulation in Chapter 3. Chapter 4 

uses the sand storm data to build the model and discuss the sensitivity of deleting the 

burn in period. Chapter 5 will be the conclusion of this study. 
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CHAPTER 2 

THEORIES AND METHODS 

2.1 Empirical Recurrence Rates 

Let 1t ,… nt  be the times of occurrences of n sand storms during an observation 

period )0,( 0t , where 0 = present time. Then we can generate a series { }zl  based upon 

the counting data sequentially at equidistant time intervals 

,ot h+ 0 2 ,t h+ ,K 0 ,t h+ l ,K 0t Nh+ (= 0 = present time). If 0t  is viewed as the 

time-origin and h  as the time-step, then { }zl  can be regarded as the observation at 

time 0t t h= + l , for the sand storms to be modeled. Therefore, a time series of the 

empirical recurrence rates (ERR) is proposed and is defined as follows:  

/z n h=l l l  = total number of sand storms in lhlhtt /),( 00 + ,      

where nl  is the cumulative number of sand storms, l =1, 2, …, N. Note that zl  

evolves over time and it is simply the MLE of the mean, if the underlying process 

observed in 0(t , 0 )t h+ l  is a homogeneous Poisson process. If we start at time T , the 

value ,T kz +  1k ≥  is needed to be predicted based on the sample observation 

1( , , )Tz zK of an ERR time series. In a regression situation, let X  denote the time index, 

z  the response values, and then use the fitted regression model to obtain T kz + . However, 

a regression model assumes that the observations are independent and this is not a 

reasonable assumption for a process that evolves over time. Thus the ARIMA model is 

introduced. 
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2.2 ARIMA Models 

Classical regression is often insufficient for explaining all of the interesting 

dynamics of a time series. It is developed for the static case. Namely, the regression only 

allows the dependent variable to be influenced by current values of the independent 

variables. Besides, the regression may not capture the additional structure such as 

presented in a random walk process.  

The acronym ARIMA, stands for autoregressive integrated moving average. The 

original key reference is from Box and Jenkins (1970). The basic processes of the 

Box–Jenkins ARIMA (p,d,q) model may consists of the following: the autoregressive 

process, the integrated process, and the moving average process. The autoregressive 

model is analogous to the regression model, based on the idea that the current value of 

the series tX . The current value is a linear combination of the p most recent past values of 

itself plus an “innovation” term tW  that incorporates everything new in the series at 

time t that is not explained by the past values. An autoregressive model of order p, is of 

the form:  

1 1 2 2 ...t t t p t p tX X X X Wφ φ φ− − −= + + + +  

where 1, 2,...,t N= , tX  is mean-zero stationary, 1φ ,…, pφ  are called the autoregressive 

coefficients for an pth order process, tW  is Gaussian white noise series with mean zero 

and variance 2σ , independent of 1tX − , 2tX − ,…, t pX −  for every t. 

A moving average (MA) process of order q is a linear combination of the current 
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white noise term and the q most recent past white noise terms tZ  and is defined by 

1 1 ...t t t q t qX Z Z Zθ θ− −= + + +  

where 1, 2,...,t N= , tX  is mean-zero stationary time series, tZ  is Gaussian white 

noise with mean zero and variance 2σ . 1θ ,…, qθ  are called the MA parameters of the 

model. 

A general autoregressive moving average (ARMA) model, ARMA (p,q), is given 

by: 

1 1 1 1... ...t p t p t t q t qX X X Z Z Zφ φ θ θ− − −− − − = + + + . 

A time series tX  is said to follow an integrated autoregressive moving average 

model (ARIMA) if the dth difference d
t tY X= ∇  is a stationary ARMA process. If tY  

follows an ARMA (p,q) model, we say that tX  is an ARIMA (p,d,q) process. In 

constructing ARIMA model we go through 3 stages: identification, estimation, and 

diagnostic checking. In the identification stage, preliminary estimates for q, p and d are 

obtained using the plots of the sample autocorrelation function (ACF) and sample partial 

autocorrelation function (PACF). Sometimes identification is done by an auto fit 

procedure – fitting many different possible model structures and orders and using a 

goodness-of-fit statistic to select the best model. The second stage is to estimate the 

coefficients of the model. In this step, we adopt the maximum likelihood estimation 

method. The last stage is model diagnostic checking. In the ARIMA modeling, it is 

important to perform diagnostic checking on the residuals of the fitted model. This 

usually consists of a group of tests including tests for normality using the residuals. 
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Moreover, it is necessary to test that all the model parameters are statistically significant. 

The fitting process is often guided by the principle of parsimony, by which the best model 

is one that has the fewest parameters among all models that fit the data. (Cryer and Chan, 

2008; Box and Jenkins, 1976; Shumway and Stoffer, 2005) 

 

2.3 Data Pretreatment 

2.3.1 Data Splitting 

Cross-validation is the statistical practice of partitioning a sample of data into 

subsets so that the analysis is initially performed on a single subset, while the other 

subset are retained for subsequent use in confirming and validating the initial analysis. 

For a large enough data set, it can be partitioned into two sets: training sample used to 

develop a model and prediction set used to evaluate the reasonableness and predictive 

ability of the model. 

2.3.2 Data Transformation 

The one important condition for ARMA (ARIMA) model is obtaining a stationary 

time series (mean=0), which needs appropriate transformations for different types of 

data.  

(a) Box-Cox Transformation 

For a given value of the parameter λ, and positive observations nYYYY ,... , , 321 , the 

transformation is defined: 
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The power transformations are useful when the variability of the data increases or 

decreases with the level. By suitable choice of λ, the variability can often be made nearly 

constant, which is a requirement for stationarity. For example, λ = ½ produces a square 

root transformation useful for Poisson-like data, and λ = −1 corresponds to a reciprocal 

transformation. 

(b) Differencing 

Differencing a time series can remove trends, whether these trends are stochastic, as 

in a random walk, or deterministic, as in the case of a linear trend. By subtracting each 

data point in a series from its predecessor, the first order difference is defined:  

1 (1 )t t t tX X X B X−∇ = − = −  

where B is the backward shift operator. A series Yt is said to be integrated of order d if: 

Yt = (1 )d d
t tX B X∇ = −  

By introducing the lag-d  differencing operator d∇ , we can eliminate seasonality and 

trend of period d : 

t
d

dtttd XBXXX )1( −=−=∇ −  

For example, differencing at lag 12 will remove the seasonal effect in a monthly time 

series. 

If the data suggest nonstationarity, then it is necessary to perform a power 

transformation or differencing to produce a new series that is more compatible with the 
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assumption of stationarity. Appropriate numbers of differencing will generate a series 

with rapidly decaying sample ACF, and then the differenced data set can be fitted by a 

low-order ARMA process. This means that the fitted parameters will be well away from 

the boundary of the allowable parameter set. Therefore, after every differencing, we 

check the plots of the sample autocorrelation function (ACF) and the sample partial 

autocorrelation function (PACF) to see where the ACF/PACF “cuts off” at the 

bounds 1.96 / n± . If the sample ACF has very few significant spikes at very small lags 

and cuts off drastically or dies down very quickly, we get a stationary series. If the 

sample ACF dies slowly, we should do further differencing. (Brockwell and Davis., 

2002). 

(c) Subtracting the Mean 

The term ARMA model is used in the program ITSM2000 (Brockwell and Davis., 

2002) to denote a zero-mean ARMA process. Therefore, the sample mean of the data 

should be small before modeling. Once the apparent deviations from stationarity of the 

data have been removed, we subtract the sample mean of the transformed data from each 

observation. The search for a fitted ARMA model for a transformed mean-corrected data 

set then follows.  

 

2.4 Model Diagnostics 

2.4.1 The Sample ACF of the Residuals 

For large n, the sample autocorrelations of an independent and identically 
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distributed (iid) sequence 1Y ,…, nY  with finite variance are approximately iid with 

distribution N(0, 1/n). We can therefore test whether or not the observed residuals are 

consistent with iid noise by examining the sample autocorrelations of the residuals and 

rejecting the iid noise hypothesis if more than two or three out of 40 fall outside the 

bounds 1.96 / n±  or if one falls far outside the bounds (Brockwell and Davis., 2002). 

2.4.2 Tests for Randomness of the Residuals 

In addition to looking at residual correlations at individual lags, it is useful to have a 

test that takes into account their magnitudes as a group. Ljung and Box (1978) proposed 

the statistic used to test the overall independence based on a few of lags. The definition of 

Ljung-Box test is as follows. 

:0H  The sequence data are iid 

:aH  The sequence data are not iid 

The test statistic is:  2

1

1 ˆ)()2()ˆ(ˆ
k

m

k

rknnnrQ ∑
=

−−+= , 

where ∑∑
=

−
+=

=
n

l
lkl

n

kl
lk aaar

1

2

1

ˆˆˆˆ , the estimated autocorrelation at lag k , 

n = sample size, 

m = number of lags being tested, 

and naa ˆ,...,ˆ1  are the residuals after a model has been fitted to a series nzz ,...,1 . If no 

model is being fitted, then naa ˆ,...,ˆ1 are the “mean corrected” vectors of nzz ,...,1 .  

The chi-square distribution for )ˆ(ˆ rQ  is based on a limit theorem as n →∞, in 
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other words, the statistic )ˆ(ˆ rQ  has a finite sample distribution that is close to 2
qpm −−χ for 

large n, if the correct ARMA(p,q) model is estimated. Thus, a general “portmanteau” test 

would reject the ARMA(p,q) model if the observed value of )ˆ(ˆ rQ  exceeded an 

appropriate critical value in a chi-square distribution with m − p − q degrees of freedom 

at levelα . (Brockwell and Davis, 2002). 

2.4.3 AIC, BIC and AICC Statistics 

Many time series models are introduced along with the respective diagnostic 

checking procedures. Through the utilization of diagnostic checking methods, it is hoped 

that the researcher should be able to grasp the relative merits of these models, hence, 

answering the question “Which model describes the data best?” Thus, the model 

diagnostic checking is often used together with model selection criteria such as the 

Akaike information criterion (AIC), or the bias-corrected version of the AIC statistic 

(AICC) and the Bayesian information criterion (BIC). Akaike first introduced AIC 

statistic in 1974, and the BIC statistic was proposed by Schwarz in 1978. These two 

approaches actually complement each other. Each information statistic is defined as 

follows: 

2
,

2
,

2
,

ˆlog 2

ˆlog 2 /( 1)

ˆlog log

p q

p q

p q

AIC N r

AICC N rN N r

BIC N r N

ε

ε

ε

σ

σ

σ

= +

= + − −

= +

 

where 2ˆεσ  is the maximum likelihood estimator of 2εσ , and 1++= qpr  is the number 
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of parameters estimated in the model, including a constant term. The second term in all 

three equations is a penalty for increasing r. Hence, if we want to minimize the values of 

these criteria, we should minimize the number of parameters. Therefore, the best model 

is the model adequately describes data and has fewest parameters. (Li, 2003) 

 

2.5 Forecasting 

One of the primary objectives of building a model for a time series is to be able to 

forecast the values for that series at future times. The forecasting function 

1 1( , , )t t tz f z z a−= +K  has the minimum mean square error. The first part of the above 

equation )...,( 1,1 zzf t− is a function of the past values of the series and it should be 

determined by the data. The second part ta , called noise part, is a sequence of 

independent and identically distributed (iid) variables. Predictions will be achieved by 

forecasting the residuals and then inverting the transformations adopted to arrive at 

forecasts of the original series. Also, we will see which model is the best fitting model by 

comparing the forecasted values with the prediction set. Then, we will combine the 

training sample and the prediction set as a full data set to forecast sand storms for the 

future based on the same techniques as before. Note that the cumulated mean numbers 

inverted from the forecasted ERRs should be non- decreasing, and should sometimes be 

adjusted accordingly. (Ho, 2008.) 

 

 



 13 

 

2.6 Subset Model Checking 

In the ITSM2000 package, the coefficients of models are given with the ratio of 

each estimate to 1.96 times its standard error, if it is a causal model (P85, Brockwell et al., 

2002). The denominator (1.96×standard error) is the critical value (at level 0.05) for the 

coefficient. Thus, if the ratio is less than 1 in absolute value, we may conclude (at level 

0.05) that the corresponding coefficient in the model may be zero. After dropping the 

non-significant coefficients, a subset model comes up, which requires additional model 

selection process.  
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CHAPTER 3 

SIMULATION 

The number of strong sand storms that occurred in the northern China during March 

1954 to April 2002, are obtained from the paper published by Zhou and Zhang (2003). In 

this time period, there were 908 sand storms occurred in 578 months (1954 

March—2002 April). By graphing the raw data (Figure 3.1), we see that the time series 

has a lot of zeroes, and clearly it is not a Poisson process. The ordinary ARIMA modeling 

techniques can not handle the series with many zeros, since the stationarity may be 

difficult to achieve. Therefore, proper smoothing should be implemented. Before we 

perform the real data analysis, it is always good to explore the applicability of the 

proposed technique based on the simulated data. Here we adopt the following simulation 

method: We randomly select one year from the raw data, repeat it 17 times, and treat it as 

a whole data set of 17 years. Note that due to seasonality, most of the sand storms 

occurred during the months of March, April and May with no storms for the rest of the 

year. Our selected year, 1996, has 2 sand storms in April and 14 in May. After converting 

it to an ERR time series, we use the technique described in Section 2.3.1 to split the data 

into two sets: training sample and prediction set. In this case, our training sample is the 

whole data set excluding the last 2 years (24 lags) which is the prediction set (Figure 3.2). 

Our modeling approach based on the simulated data will be addressed in detail below.  
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Figure 3.1  Plot of strong sand storms in northern China between March 1954 and 

April 2002. 

 

 

Figure 3.2  Training sample and prediction set of data set with h = 1 month. 
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Figure 3.3  a, ERR plot of the training sample; b, Sample ACF; c, Sample PACF  
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To model the ERR with h = 1 month, we will use the software ITSM2000 to 

analyze the data. The plot of the training sample (Figure 3.3a), and its sample ACF and 

PACF (Figure 3.3b,c) show nonstationarity and periodicity. Therefore, the data 

pretreatment, Box-Cox transformation and differencing, described in Section 2.3 will be 

explored to remove the trend and the seasonality. First, we use the Box-Cox 

transformation to stabilize the variance before differencing. A combination of λ=1.5 for 

the Box-Cox transformation (Figure 3.4) and a lag 12 differencing indicate some 

improvements in achieving stationarity (Figure 3.5). Furthermore, the remaining linear 

trend has been removed by taking additional difference at lag 1. The ACF/PACF plots 

(Figure 3.6) indicate that the stationarity is by and large attained. Thus, we subtract the 

sample mean of the transformed data from each observation to generate a series to which 

we then fit a zero-mean stationary model. An MA (1) is considered based on our initial 

model search. The estimated (MLE) model is:  

Xt = Zt - 0.1456 Zt-1. 

Estimated WN Variance = 0.048960 

Standard Error of MA Coefficient = 0.088909 

Note that Xt represents a twice-differenced stationary mean-corrected time series 

and the error term Zt represents a white noise process.  
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Figure 3.4  a, Time plot after Box-Cox transformation at λ=1.5; b, Sample ACF; c, 

Sample PACF.  
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Figure 3.5  a, Time plot of after differencing at lag 12; b, Sample ACF; c, Sample                                           

PACF.  
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Figure 3 6  a, Time plot of after further differencing at lag 1; b, Sample ACF; c, Sample 

PACF.  
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The AICC statistic is -25.778570, the plots of sample ACF/PACF of the residuals 

are shown in Figure 3.7. Also, the Ljung-Box test is not significant (p-value =0.94258), 

indicating that the residuals are approximately white noise. Some evidence of the validity 

of the fitted model can be obtained through an examination of the actual predictive 

capability of the selected model. Thus, for the purpose of model validation, we produce 

Figures 3.8 and 3.9 to compare the 24 forecasts with the prediction set. By visual 

inspection of Figure 3.9, we conclude that selected model is not seriously biased and 

gives an appropriate indication of the predictive ability of the model. We also present a 

more rigorous model validation based on a set of the estimated mean numbers (Table 3.1). 

Note that several mean numbers are invalid and need adjustment because the mean 

function should be non-decreasing.  

In summary, it predicts a mean number of 14 sand storms for the month of April for 

both years, which is close to the actual number of events. Hence, the model validation 

results are successful and the proposed modeling technique can be repeated using the real 

data set, to be addressed in the next chapter.  
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Figure 3.7  Diagnostics for the MA (1). a, Residual plot; b, Residual ACF; c, Residual 

PACF.  
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Table 3.1. The numerical values of the actual ERRs and mean numbers in the prediction 

set, and the predicted ERRs using the MA (1) with their counterparts (the corresponding 

mean values derived from the predicted ERRs) 

 
Predicted 

month 
Monthly ERR Mean number 

Actual Prediction Actual Prediction 
1 1.325967 1.31980 0 -1.1162 adjust to 0 
2 1.318681 1.30723 0 -0.96794 adjust to 0 
3 1.311475 1.29471 0 -0.97141 adjust to 0 
4 1.315217 1.29395 2 1.15639 
5 1.383784 1.36316 14 13.89017 
6 1.376344 1.35043 0 -0.9537 adjust to 0 
7 1.368984 1.33776 0 -0.95551 adjust to 0 
8 1.361702 1.32513 0 -0.9609 adjust to 0 
9 1.354497 1.31257 0 -0.96079 adjust to 0 
10 1.347368 1.30005 0 -0.96607 adjust to 0 
11 1.340314 1.28758 0 -0.96949 adjust to 0 
12 1.333333 1.27515 0 -0.97468 adjust to 0 
13 1.326425 1.25646 0 -2.12643 adjust to 0 
14 1.319588 1.23867 0 -1.98132 adjust to 0 
15 1.312821 1.22088 0 -1.99911 adjust to 0 
16 1.316327 1.21516 2 0.17984 
17 1.380711 1.28168 14 13.3218 
18 1.373737 1.26370 0 -1.99068 adjust to 0 
19 1.366834 1.24572 0 -2.00866 adjust to 0 
20 1.36 1.22772 0 -2.03028 adjust to 0 
21 1.353234 1.20971 0 -2.0501 adjust to 0 
22 1.346535 1.19168 0 -2.07175 adjust to 0 
23 1.339901 1.17362 0 -2.09524 adjust to 0 
24 1.333333 1.15554 0 -2.11694 adjust to 0 
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Figure 3.8  The predicted ERR of the simulation the year 1996 for 24 months. 

 

 

 

Figure 3.9  Plot of the ERR comparison of the prediction set and forecasts. 
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CHAPTER 4 

APPLICATION 

4.1 ARIMA modeling without ERR conversion 

By graphing the raw data (Figure 3.1), we see that the time series has a lot of 

zeroes. Before introducing the idea of the ERR, we first try to model the raw data using 

the ARIMA technique. After taking the Box-Cox transformation and a differencing at lag 

l2 and 1 (Figure 4.1), we see the routine transformation methods hardly make a stationary 

time series for the sand storm data. Therefore, we fail to find a model by using the 

ARIMA techniques. 

 

4.2 ARIMA modeling using non-cumulative ERR 

Next, by adopting the ERR method, we calculate the ERRs for each of the 55 

years respectively and put them together (Figure 4.2a). This time series has less number 

of zeros than the raw data. Because the ERRs are calculated independently for each year, 

we can see that there exists a huge fluctuation in the series. The stationarity is still hard to 

achieve by the common transformations (Figure 4.3b, c).  

 

4.3 ARIMA modeling using ERR 

We apply the idea of ERR to smooth the whole raw data, which is described in 

Chapter 2. First, we see a large variation at the beginning of the series from Figure 4.3. 

Since the initial search for the whole ERR time series was not successful, we then trim 
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the data set from the beginning of the data, and it appears if we drop the raw data about 

13 months and recalculate the ERRs, the modeling process becomes much simpler. 

 

 

Figure 4.1  a. Time plot after Box-Cox transformation at λ=1.5; b. Time plot after 

differencing at lag 12; c. Time plot after further differencing at lag 1. 
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Figure 4.2  a. Time plot of the non-cumulative ERR. b. Time plot after differencing 

at lag 12. c. Time plot after further differencing at lag 1.  
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Therefore, a modified data set, which includes 565 months of sand storms (April 

1955- April 2002), will be used to demonstrate our modeling techniques. Consequently, 

the training sample (537 lags, Figure 4.4a) consists of all the data set excluding the last 

28 ERRs (January 2000 – April 2002), which is the prediction set.  

 

Figure 4.3  ERR plot with whole data set from March 1954 – April 2002 

 

4.3.1 Model search for the training sample 

The plots of the sample ACF and PACF (Figure 4.4b, c) show that the spikes are 

slowly decaying. This indicates nonstationary behavior and seasonality. Thus 

differencing is applied. Since the data has evident increasing or decreasing variability, we 

consider the Box-Cox transformation to stabilize the variability. After the λ=1.5 Box-Cox 

transformation, we see the trend still exists (Figure 4.5). Then we take the differencing 

operator ∇  on the training sample at lag 12, as the data is collected monthly. Figure 4.6 
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tells us the series has not reached stationarity yet. 

 

Figure 4.4  a, Time-plot of the ERR based on the ‘trimmed’ data set; b, Sample ACF; c, 

Sample PACF. 
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Figure 4.5  a, Time-plot after Box-Cox transformation at λ=1.5 ; b, Sample ACF; c, 

Sample PACF.  
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Figure 4.6  a, Time-plot after differencing at lag 12; b, Sample ACF; c, Sample PACF. 

So we do further differencing at lag 1, Then we subtract the sample mean from 

each observation of the differenced series to generate a stationary zero-mean time series 
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(Figure 4.7). The sample ACF and PACF suggest an ARMA(1,1). Therefore, our initial 

model estimated using MLE is:  

Xt = 0.9950 Xt-1 + Zt + 0.2688 Zt-1 

Estimated WN Variance = 0.286035  

Standard Error of AR Coefficients: 0.000363 

Standard Error of MA Coefficients: 0.050929 

Note that Xt represents a twice-differenced stationary mean-corrected time series 

and the error term Zt represents a white noise process.  

The AICC statistic is 842.380, and the Ljung - Box test is significant (p-value =0), 

indicating that the residuals are not approximately white noise. The plots of the residual, 

ACF and PACF of residual are shown in Figure 4.8. For the ARMA (1,1), we can 

calculate the ratios (estimated coefficient)/(1.96×standard error), the ratios of each 

coefficient are:  

Ratio of AR coefficient= 1.008444 

Ratio of MA coefficient= -0.451766 

We see the absolute value of ratio of MA coefficient is less than 1, so we keep the 

AR coefficient, which indicates a subset AR (1) model, the MLE of AR(1) is  

Xt = 0.9966 Xt-1 + Zt 

Estimated WN Variance = 0.298764  

Standard Error of AR Coefficients: 0.003595 
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Subset model AR (1) is considered to fit the time series 12 tz∇∇ , ITSM2000 

produces AICC value and a set of diagnostic plots such as residual sample ACF and 

sample PACF, as shown in Figure 4.9. The AICC statistic is 863.020, and the Ljung - 

Box test is not significant (p-value = 0.15533), indicating that the residuals are 

approximately white noise. The prediction calculation is performed using the ITSM2000. 

Table 4.1 shows the numerical values of the actual ERRs and mean numbers in the 

prediction set, and the predicted ERRs using the AR (1) (Subset of ARMA(1,1)) with 

their counterparts. Figure 4.10 shows the comparison between the actual ERRs and 

predicted ERRs. 

4.3.2 Full-Data Forecasting 

We already saw the possibility of the ERR modeling with the training sample, now 

we focus on the ARIMA model which is using the full data set (including the prediction 

set). This training sample consists of 565 lags from April, 1955 to April, 2002 (Figure 

4.11a.). As before, we still take the Box-Cox transformation at λ=1.5 (Figure 4.12). Next 

we difference the time series at lag 12 (Figure 4.13). Then we model this stationary series 

with an ARMA(1,1), the initial model estimated in MLE is: 

Xt = 0.9968 Xt-1 + 0.6301Zt-1 + Zt 

Estimated WN Variance = 0.383546.  

Standard Error of AR Coefficients: 0.003398. 

Standard Error of MA Coefficients: 0.033046. 
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Figure 4.7  a, Time-plot after differencing at lag 1; b, Sample ACF; c, Sample PACF. 
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Figure 4.8  Diagnostics for the ARMA (1,1) model. a, Residual plot; b, Residual ACF; c, 

Residual PACF. 
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Figure 4.9  Diagnostics for the subset AR (1) model a, Residual plot; b, Residual ACF; 

c, Residual PACF.  
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Table 4.1. The numerical values of the actual ERRs and mean numbers in the prediction 

set, and the predicted ERRs using the subset AR (1) with their counterparts (the 

corresponding mean values derived from the predicted ERRs) 

 

Predicted month 
Monthly ERR Mean number 

Actual Prediction Actual Prediction 
January 2000 1.470260223 1.47037 0 0.05906 
February 2000 1.467532468 1.46787 0 0.12287 
March 2000 1.464814815 1.4655 0 0.19044 
April 2000 1.482439926 1.47274 11 5.36786 
May 2000 1.487084871 1.47818 4 4.4049 
June 2000 1.484346225 1.47613 0 0.37323 
July 2000 1.481617647 1.47421 0 0.44125 

August 2000 1.478899083 1.47241 0 0.50401 
September 2000 1.476190476 1.47074 0 0.57228 
October 2000 1.473491773 1.46918 0 0.6299 

November 2000 1.47080292 1.46775 0 0.69841 
December 2000 1.471766849 1.46644 2 0.76166 
January 2001 1.469090909 1.46536 0 0.88432 
February 2001 1.466424682 1.46452 0 1.0126 
March 2001 1.472826087 1.46390 5 1.13034 
April 2001 1.56238698 1.47303 51 6.38497 
May 2001 1.566787004 1.48043 4 5.46163 
June 2001 1.563963964 1.48047 0 1.50199 
July 2001 1.561151079 1.48074 0 1.626 

August 2001 1.558348294 1.48123 0 1.74485 
September 2001 1.555555556 1.48196 0 1.8747 
October 2001 1.552772809 1.48291 0 1.99401 

November 2001 1.55 1.48408 0 2.11354 
December 2001 1.547237077 1.48548 0 2.23868 
January 2002 1.544483986 1.48722 0 2.42334 
February 2002 1.541740675 1.48929 0 2.60295 
March 2002 1.55141844 1.49169 7 2.78289 
April 2002 1.569911504 1.50383 12 8.03515 
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Figure 4.10  Comparison of 28 forecasted ERRs with the prediction set and actual ones 

The AICC statistic is 1051.99, and the Ljung - Box test is significant (p-value =0), 

indicating that the residuals are not approximately white noise. The plots of the residual, 

residual of ACF and PACF are shown in Figure 4.14. For the ARMA (1,1), we can 

calculate the ratios (estimated coefficient)/(1.96×standard error), the ratios of each 

coefficient are:  

Ratio of AR coefficient= 1.324450 

Ratio of MA coefficient= -0.436091 

We see the absolute value of ratio of MA coefficient is less than 1, so we keep the 

AR coefficient, which indicates a subset AR (1) model, the MLE of AR(1) is: 

Xt = 0.9968 Xt-1 + Zt. 

Estimated WN Variance = 0. 465074. 

Standard Error of AR Coefficients: 0. 003394. 
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Figure 4.11  a, Time plot of full data set; b, Sample ACF; c, Sample PACF. 
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Figure 4.12  a, Time plot after Box-Cox transformation at λ=1.5 ; b, Sample ACF; c, 

Sample PACF. 
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Figure 4.13  a, Time plot after differencing at lag 12; b, Sample ACF; c, Sample PACF. 
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The AICC statistic is 1155.07, and the Ljung - Box test is not significant (p-value 

=0.75132). The plots of the residual, residual of ACF and PACF are shown in Figure 4.15. 

Table 4.2 shows the 24 forecasts values of actual ERRs and mean numbers.  

 

Figure 4.14  Diagnostics for the ARMA (1,1) model. a, Residual plot; b, Residual ACF; 

c, Residual PACF. 
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Figure 4.15  Diagnostics for the subset AR (1) model. a, Residual plot; b, Residual ACF; 

c, Residual PACF. 

 



 44 

 

Table 4.2 The numerical values of the predicted ERRs and mean numbers (the 

corresponding mean values derived from the predicted ERRs) 

 

Predicted 
month 

Monthly 
ERR 

Mean number 

Prediction Prediction 
May 2002 1.57409 3.93494 
June 2002 1.57105 -0.14959 adjust to 0 
July 2002 1.56803 -0.14431 adjust to0 

August 2002 1.56502 -0.14466 adjust to 0 
August 2002 1.56202 -0.14498 adjust to 0 

September 2002  1.55903 -0.14527 adjust to 0 
October 2002  1.55605 -0.14553 adjust to 0 

November 2002  1.55309 -0.14003 adjust to 0 
December 2002  1.55013 -0.14595 adjust to 0 
January 2003  1.54718 -0.14612 adjust to 0 
February 2003 1.55663 6.99038 
March 2003  1.57488 12.08688 
April 2003 1.57884 3.86376 
May 2003 1.57561 -0.29133 adjust to 0 
June 2003 1.57239 -0.29199 adjust to 0 
July 2003 1.56918 -0.29262 adjust to 0 

August 2003 1.56598 -0.29322 adjust to 0 
September 2003 1.56279 -0.29379 adjust to 0 
October 2003  1.55961 -0.29433 adjust to 0 

November 2003 1.55644 -0.29484 adjust to 0 
December 2003  1.55328 -0.29532 adjust to 0 
January 2004  1.55013 -0.29577 adjust to 0 
February 2004 1.55937 6.98325 
March 2004  1.57741 12.18493 

 

 

 

 



 45 

 

4.4 The role of prediction set 

We use the prediction set to facilitate our model selection process. It is quite 

common that several ARIMA models may fit a training sample equally well. However, 

the quality of forecasting varies among candidate models. Therefore, our prediction set 

plays an important role in filtering out the model with poor prediction. Recall that we 

have a large variation at the beginning of the series, a common practice is to delete a 

small subset of ERR at the beginning of the time series, which is called burn in period.  

 

 

 Figure 4.16  ERR plot with training sample and prediction set 

 

In order to demonstrate this point, we apply the same techniques in 4.3 to 

following time series: (1) converting the whole data set (March 1954 – April 2002) to an 

ERR time series; (2) delete the first ERR; (3) let the first 549 ERRs be the training 

sample and keep the last 28 lags as the prediction set. Figure 4.16 shows the plot of the 

training sample and prediction set. To model the training sample, we use the same 
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transformations: first the Box-Cox transformation at λ=1.5, next differencing at lag 12 

and 1. An AR(1) model is considered. The MLE of the AR(1) is: 

Xt = -0.1833 Xt-1 + Zt 

Estimated WN Variance = 0.029588  

Standard Error of AR Coefficients: 0.053076 

Note that Xt represents a twice differenced stationary mean-corrected time series 

and the error term Zt represents a white noise process.  

The AICC statistic is -361.796, and the Ljung - Box test is not significant (p-value 

= 0.26756), indicating that the residuals are approximately white noise. The plots of the 

ACF and PACF residuals are shown in Figure 4.17. Figure 4.18 shows the comparison 

between the actual ERRs and predicted ERRs using the model 1, which is not 

encouraging, even though, the model passes all the diagnostics. Figure 4.19 shows the 

comparisons of the results with the prediction set for model 2. Model 1(4.3.1) and 2(4.4) 

are defined in Table 4.3. Clearly, the forecasts from the model 1 appear to be more 

realistic in showing the seasonality of the sand storms occurred in northern China area. 

Table 4.3. The two ARIMA models with different data sets. 

 
MLE Model Data Set 

1. Xt = 0.9966 Xt-1 + Zt Without the first 13 months of raw data. 

2. Xt = -0.1833 Xt-1 + Zt Without the burn in period of the first ERR. 
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Figure 4.17  Diagnostics for the AR(1) model. a, Residual plot; b, Residual ACF; c, 

Residual PACF. 

 



 48 

 

 

Figure 4.18  Comparison of 28 forecasted ERRs using model 1 with the prediction set  

 

 

Figure 4.19  The comparisons of the results with the prediction set for model 2 
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CHAPTER 5 

CONCLUSIONS 

In the thesis, we are able to find a suitable ARIMA model for the sand dust storms 

which occurred in northern China from March 1954 to April 2002 by using the empirical 

recurrence rates (ERR). ERR is calculated sequentially at equidistant time intervals. We 

adopt this method which is used to smooth the data that fits into the ARIMA. Clearly, the 

number of the sand dust storms does not follow a Poisson process. Through the ERR, we 

build a linking bridge between the classical time series and a point process. 

Before fitting the real data into ARIMA model, we examine the applicability of the 

proposed technique based on the simulated data: We randomly select a year of the raw 

data, repeat it 17 times and calculate the 180 ERRs, use first 15 years as our training 

sample, and the last two years as the prediction set. An MA(1) predicts very well. Next 

we apply this technique into the real data analysis. After the initial model search, we find 

that it is difficult to fit the ARIMA with the ERRs based on the whole data set, so we 

drop the raw data about 13 months and recalculate the ERRs. The training sample is the 

rest of the data set excluding the last 28 months, which is the prediction set. Before 

modeling, we must make sure that the ARMA process is stationary. First we take the 

Box-Cox transformation at λ=1.5 then differencing twice at lag 12 and 1 respectively. A 

subset AR(1) of ARMA(1,1) passes the randomness test for residuals and has all the 

residual ACF lags falling within the bounds 1.96 / n± , it predicts well in the short term 

of 12 months compare to the prediction set. Next, we also find a subset AR(1) of 
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ARMA(1,1) using the full data set. It successfully predicts a seasonal trend in the 

following two years. In addition, we try several other methods to analyze the data. The 

model we find for the data which cut off burn in period does not predict very well. We 

hardly find a suitable model for the raw data without ERR conversion or non-cumulative 

ERR time series, since they have trouble in making the stationary time series.  

From our work we see that the ERR is an effective way to analyze the 

meteorological data. The sand storm data display a special seasonality, with the 

maximum frequencies in March, April and May. The rest of the years are zeros. After 

converting to an ERR time series, we can use the classical ARIMA techniques to model 

and predict sand dust storms. Likewise, the application of ARIMA models for sand 

storms will further facilitate the research in the areas of biology, economies, social 

science, etc.  
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APPENDIX 

DATA 

Table 1  Number of the sand storms in northern China (March1954-April 2000) 
Year Month Count Year Month Count 

1954 March 7 1957 January 0 

1954 April 1 1957  February 0 

1954 May 7 1957  March 15 

1954 June 0 1957  April 7 

1954 July 0 1957  May 3 

1954 August 0 1957  June 0 

1954 September 0 1957  July 0 

1954 October 0 1957  August 0 

1954 November 0 1957  September 0 

1954 December 0 1957 October 0 

1955 January 0 1957  November 0 

1955 February 0 1957  December 2 

1955 March 6 1958  January 0 

1955 April 11 1958  February 16 

1955 May 0 1958  March 11 

1955 June 0 1958  April 19 

1955 July 0 1958  May 0 

1955 August 4 1958  June 0 

1955 September 0 1958  July 0 

1955 October 0 1958  August 0 

1955 November 0 1958  September 0 

1955 December 0 1958  October 0 

1956 January 0 1958  November 0 

1956 February 5 1958  December 0 

1956 March 7 1959  January 4 

1956 April 9 1959  February 0 

1956 May 0 1959  March 8 

1956 June 0 1959  April 16 

1956 July 0 1959  May 2 

1956  August 0 1959  June 4 

1956  September 0 1959  July 0 

1956 October 0 1959  August 0 

1956 November 0 1959  September 0 

1956 December 2 1959  October 0 
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Year Month Count Year Month Count 

1959  November 0 1963  February 0 

1959  December 0 1963  March 0 

1960  January 0 1963  April 13 

1960  February 3 1963  May 0 

1960  March 10 1963  June 0 

1960  April 5 1963  July 0 

1960  May 2 1963  August 0 

1960  June 0 1963  September 0 

1960  July 0 1963  October 0 

1960  August 0 1963  November 0 

1960  September 0 1963  December 0 

1960  October 0 1964  January 0 

1960  November 0 1964  February 0 

1960  December 1 1964  March 10 

1961  January 0 1964  April 1 

1961  February 0 1964  May 0 

1961 March 0 1964  June 0 

1961  April 10 1964  July 0 

1961  May 12 1964  August 0 

1961  June 0 1964  September 0 

1961  July 0 1964  October 0 

1961  August 0 1964  November 0 

1961  September 0 1964  December 0 

1961 October 0 1965  January 0 

1961  November 0 1965  February 0 

1962  January 0 1965  March 0 

1962  February 0 1965  April 5 

1962  March 3 1965  May 0 

1962  April 3 1965  June 0 

1962  May 0 1965  July 0 

1962  June 0 1965 August 0 

1962  July 0 1965  September 0 

1962  August 0 1965  October 0 

1962  September 0 1965  November 7 

1962  October 0 1965  December 7 

1962  November 0 1966  January 0 

1962  December 0 1966  February 9 

1963  January 2 1966  March 10 
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Year Month Count Year Month Count 

1966  April 19 1969  June 0 

1966  May 4 1969  July 2 

1966  June 7 1969  August 0 

1966  July 0 1969  September 1 

1966  August 0 1969  October 0 

1966  September 0 1969  November 0 

1966  October 0 1969  December 0 

1966  November 0 1970  January 0 

1966  December 0 1970  February 0 

1967  January 0 1970 March 0 

1967  February 2 1970  April 1 

1967 March 0 1970  May 0 

1967  April 1 1970  June 0 

1967  May 0 1970  July 0 

1967  June 0 1970  August 0 

1967  July 0 1970  September 0 

1967  August 0 1970  October 0 

1967  September 0 1970  November 0 

1967  October 0 1970  December 0 

1967  November 0 1971  January 0 

1967  December 0 1971  February 1 

1968  January 0 1971  March 2 

1968  February 0 1971  April 17 

1968  March 0 1971  May 0 

1968  April 6 1971  June 0 

1968  May 2 1971  July 0 

1968  June 0 1971  August 0 

1968  July 0 1971  September 0 

1968  August 0 1971  October 0 

1968  September 0 1971  November 0 

1968  October 0 1971  December 0 

1968  November 0 1972  January 0 

1968  December 0 1972  February 3 

1969  January 0 1972  March 1 

1969  February 0 1972  April 8 

1969  March 10 1972  May 0 

1969  April 11 1972  June 0 

1969  May 0 1972  July 0 
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Year Month Count Year Month Count 

1972  August 0 1975  October 0 

1972  September 0 1975  November 0 

1972  October 0 1975  December 0 

1972  November 0 1976  January 0 

1972  December 0 1976 February 1 

1973  January 0 1976  March 2 

1973  February 0 1976  April 3 

1973  March 0 1976  May 2 

1973  April 2 1976  June 0 

1973  May 0 1976  July 0 

1973  June 0 1976  August 0 

1973  July 0 1976  September 0 

1973  August 0 1976  October 0 

1973 September 0 1976  November 0 

1973  October 0 1976  December 3 

1973  November 0 1977  January 0 

1973  December 0 1977  February 5 

1974  January 0 1977  March 10 

1974  February 2 1977  April 4 

1974  March 0 1977  May 0 

1974  April 5 1977  June 0 

1974  May 0 1977  July 0 

1974  June 0 1977  August 0 

1974  July 0 1977  September 0 

1974  August 0 1977  October 0 

1974  September 0 1977  November 0 

1974  October 0 1977  December 0 

1974  November 0 1978  January 0 

1974  December 0 1978  February 0 

1975  January 0 1978  March 0 

1975  February 0 1978  April 4 

1975  March 3 1978  May 2 

1975 April 9 1978  June 1 

1975  May 0 1978  July 0 

1975  June 0 1978  August 0 

1975  July 4 1978  September 0 

1975  August 0 1978  October 0 

1975  September 0 1978  November 0 
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Year Month Count Year Month Count 

1978  December 0 1982  February 0 

1979  January 0 1982 March 0 

1979 February 1 1982 April 4 

1979  March 3 1982  May 9 

1979 April 27 1982 June 0 

1979  May 5 1982 July 0 

1979  June 2 1982  August 0 

1979  July 0 1982 September 0 

1979  August 0 1982  October 0 

1979  September 0 1982  November 0 

1979  October 0 1982  December 2 

1979  November 0 1983  January 0 

1979  December 0 1983  February 0 

1980  January 3 1983  March 9 

1980  February 0 1983 April 40 

1980  March 0 1983  May 12 

1980  April 9 1983  June 0 

1980  May 5 1983 July 0 

1980  June 1 1983  August 0 

1980  July 0 1983  September 0 

1980 August 0 1983  October 0 

1980  September 0 1983  November 0 

1980  October 0 1983  December 0 

1980  November 0 1984  January 0 

1980  December 0 1984  February 0 

1981  January 0 1984  March 0 

1981  February 0 1984 April 36 

1981 March 0 1984  May 1 

1981 April 15 1984  June 0 

1981  May 10 1984 July 0 

1981 June 0 1984  August 0 

1981  July 0 1984  September 0 

1981  August 0 1984  October 0 

1981  September 0 1984  November 2 

1981  October 0 1984  December 0 

1981  November 0 1985  January 0 

1981  December 0 1985  February 0 

1982  January 0 1985  March 0 
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Year Month Count Year Month Count 

1985  April 4 1988  June 0 

1985  May 4 1988  July 0 

1985  June 4 1988  August 0 

1985  July 0 1988  September 0 

1985  August 0 1988  October 0 

1985  September 0 1988  November 0 

1985  October 0 1988  December 0 

1985  November 0 1989  January 0 

1985  December 0 1989  February 0 

1986  January 0 1989  March 0 

1986  February 0 1989  April 3 

1986  March 6 1989  May 3 

1986 April 4 1989  June 0 

1986  May 13 1989  July 0 

1986  June 0 1989  August 0 

1986  July 0 1989  September 0 

1986  August 0 1989  October 0 

1986  September 0 1989  November 0 

1986  October 0 1989  December 0 

1986  November 0 1990  January 0 

1986 December 0 1990  February 0 

1987  January 0 1990  March 5 

1987  February 0 1990  April 5 

1987  March 0 1990  May 2 

1987  April 0 1990  June 2 

1987  May 6 1990  July 0 

1987 June 0 1990 August 0 

1987  July 0 1990  September 0 

1987  August 0 1990  October 0 

1987 September 0 1990  November 0 

1987  October 0 1990  December 0 

1987  November 0 1991  January 0 

1987  December 0 1991  February 0 

1988  January 2 1991  March 0 

1988  February 0 1991  April 0 

1988  March 0 1991  May 4 

1988  April 9 1991  June 0 

1988  May 0 1991  July 0 
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Year Month Count Year Month Count 

1991  August 0 1994  October 0 

1991  September 0 1994  November 0 

1991  October 0 1994  December 0 

1991  November 0 1995  January 0 

1991  December 0 1995  February 0 

1992  January 0 1995  March 5 

1992 February 0 1995  April 0 

1992  March 0 1995  May 9 

1992  April 3 1995  June 0 

1992  May 3 1995  July 0 

1992  June 0 1995  August 0 

1992  July 0 1995  September 0 

1992  August 0 1995  October 0 

1992  September 0 1995  November 0 

1992  October 0 1995  December 0 

1992  November 0 1996  January 0 

1992  December 0 1996  February 0 

1993  January 0 1996  March 0 

1993  February 0 1996  April 2 

1993  March 3 1996  May 14 

1993  April 4 1996  June 0 

1993  May 11 1996  July 0 

1993  June 0 1996  August 0 

1993  July 0 1996  September 0 

1993  August 0 1996  October 0 

1993  September 0 1996  November 0 

1993  October 0 1996  December 0 

1993  November 0 1997 January 0 

1993  December 0 1997  February 0 

1994  January 0 1997  March 0 

1994  February 0 1997  April 0 

1994  March 0 1997  May 3 

1994  April 14 1997  June 0 

1994  May 0 1997  July 3 

1994  June 0 1997  August 0 

1994  July 0 1997  September 0 

1994  August 0 1997  October 0 

1994  September 0 1997  November 0 
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Year Month Count Year Month Count 

1997  December 0 2000  September 0 

1998  January 0 2000  October 0 

1998  February 0 2000  November 0 

1998  March 3 2000  December 2 

1998  April 10 2001  January 0 

1998  May 2 2001  February 0 

1998  June 0 2001  March 5 

1998  July 0 2001  April 51 

1998  August 0 2001  May 4 

1998  September 0 2001  June 0 

1998  October 0 2001  July 0 

1998  November 0 2001  August 0 

1998  December 0 2001  September 0 

1999  January 0 2001  October 0 

1999  February 0 2001 November 0 

1999  March 0 2001 December 0 

1999  April 5 2002  January 0 

1999  May 4 2002  February 0 

1999  June 0 2002  March 7 

1999  July 0 2002  April 12 

1999  August 0    

1999  September 0    

1999  October 0    

1999  November 0    

1999  December 0    

2000  January 0    

2000 February 0    

2000  March 0    

2000  April 11    

2000  May 4    

2000  June 0    

2000  July 0    

2000  August 0    
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