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ABSTRACT
A Statistical Modd for Long-Term Forecasting of Strong Sand Dust Stor ms
by
Sigi Tan
Dr. Chih-Hsiang Ho, Examination Committee Chair

Professor of Mathematical Sciences
University of Nevada, Las Vegas

Dust elevated into the atmosphere by dust storms has numerous enviednment
consequences. These include contributing to climate change; modifymgweather
conditions; producing chemical and biological changes in the oceans;feciihgfsoll
formation, surface water, groundwater quality, crop growth, and sur(@aldie and
Middleton, 1992). Societal impacts include disruptions to air, road ahdraffic;
interruption of radio services; the myriad effects of stakswtricity generation; property
damage; and health effects on humans and animals (Warner, 2004).

In this thesis, we extend the idea of empirical recurreneg(ERR), developed by
Ho (2008), to model the temporal trend of the sand-dust storms in moi@iena.
Specifically, we show that the ERR time series has thewolly characteristics: (1) it is
a potent surrogate for a point process; (2) it is created to ddikantage of the
well-developed and powerful time series modeling tools; and (Znitpcoduce reliable
forecasts, capable of retrieving the corresponding mean numbersod s@nd-dust

storms.
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CHAPTER 1
INTRODUCTION

A dust storm is said to occur when the horizontal visibility $s llan 1000m, and
when the dust is being circulated into the atmosphere within sight of the obbesgte
of this international standard, some researchers develop thedefimition with respect
to different areas. Taet al (2002) give the following criteria particularly used in Inner
Mongolia, China:

Dust storm — at least three stations reporting with horizontal visibilityess than
1000m and an average wind speed of 10.8 to 20.7 m/s;

Srong dust storm — at least three stations reporting with horizontal visibilityess
than 500m and an average wind speed of 17.2 to 24.4 m/s;

Very strong dust storm — at least one station reporting with horizontal visibility of
less than 50m and an average wind speed of 20.8 m/s or greater.

Dust storms can cause numerous environmental consequences. These include
contributing to climate change; modifying local weather conditions;ymiag chemical
and biological changes in the oceans; and affecting soil famasurface water,
groundwater quality, crop growth and survival. Societal impactadectiisruptions to air,
land and rail traffic; interruption of radio services; the mye#fécts of static-electricity
generation; property damage; and health effects on humans and aritiadgigh
commonly viewed as an ecological evil, dust storm has a posifieet of neutralizing

acid rain. Chinese scientists discovered that sand and dust galcitnm carbonate with
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a pH indicator between seven and eight can increase the aeithdastor of rainfall in
northern China, which can effectively alleviate the harmful effects dfraa.

Climate is generally regarded to be an important facttwanting the occurrences
of dust storms. This indicates factors such as wind, relativediymair temperature,
precipitation and dryness index. This thesis focuses on the northern Chin@erd@%4
to 2002 and the sand storms that mainly originated from the follovagi@ns: Hexi
Corridor of Gansu Province and Alxa Plateau, southern rim of SoutraXgnBasin, and
central Inner Mongolia. The features of sand storms’ frequendytiosus during the past
50 years are as follows: a fluctuating increase during 1960s-1970a #odtuating
decrease during 1980s-1990s. After 2000, activities of the sun began auredvof
weak trend, which weakened the warm trend of climate. Consequentiptehsity of
the surface heat-field in the Tibetan plateau was weak lanait temperature of the
northern Xinjiang, Hexi corridor and Ningxia region was abnormaily. IAll these
changes have made sand storms enter a new active period imm@Qtiea. (Thomas T.
Warner, 2004; Zhou and Zhang, 2003; Yang et al, 2007; Zhang et al, 2002)

By developing an empirical recurrent rate (ERR) time setlds thesis presents a
new treatment to smooth the point process. The ERR is computed satyuemd
cumulatively at equidistant time intervals during the observatiomgeOnce we
establish the ERRs, we explore the possibility of using lithesar stochastiomodel
ARIMA model to develop reliable and robust forecasts, appropriately designed

simulations could help us to have a general idea about the reahddtgive some hints
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for finding the final model.

To sum up, definition of ERR, ARIMA model and relevant time sdhesries and
method are introduced in Chapter 2, we perform the simulation in CtaapBhapter 4
uses the sand storm data to build the model and discuss the dgnsitideleting the

burn in period. Chapter 5 will be the conclusion of this study.



CHAPTER 2
THEORIES AND METHODS

2.1 Empirical Recurrence Rates

Let t,,...t, be the times of occurrences of n sand stodorgng an observation
period (t, ,0), where O = present time. Then we can generate a segglesbased upon
the counting data sequentially at equidistant time intervals
t,+h t,+2h, ~n, t;+Ih,~n, t;+Nh (= O = present time). Ift, is viewed as the
time-origin and h as the time-step, thefiz} can beregarded as the observation at
time t=t,+Ih, for the sand storms to be modeldtherefore, a time series of the
empirical recurrence rates (ERR) is proposed and is defined as follows:

Z =n /lh =total number of sand storms(ip.t, +1h)/Ih,

where n is the cumulative number of sand stornls;1, 2, ..., N. Note that z
evolves over time and it is simply the MLE of the mean, if the uyider process
observed irft,, t,+1h) is a homogeneous Poisson process. If we start at Timthe
value z,, k=1 is needed to be predicted based on the sample observation
(z,K ,z )of an ERR time seriesn a regression situation, leX denote the time index,
z the response values, and then use the fitted regression model hzoptdiowever,
a regression model assumes that the observations are independehisaisdnbt a

reasonable assumption for a process that evolves over time. ThuRIiM& Anodel is

introduced.



2.2 ARIMA Models

Classical regression is often insufficient for explaining @l the interesting
dynamics of a time series. It is developed for the stase.cNamely, the regression only
allows the dependent variable to be influenced by current valtiehe independent
variables. Besides, the regression may not capture the additivneiuse such as
presented in a random walk process.

The acronym ARIMA, stands for autoregressive integrated movintagee The
original key reference is from Box and Jenkins (1970). The basic gseseof the
Box—Jenkins ARIMA p,d,q) model may consists of the following: the autoregressive
process, the integrated process, and the moving average process. orbgreggive
model is analogous to the regression model, based on the idea thatrém value of
the serie, . The current value is a linear combination ofghraost recent past values of
itself plus an “innovation” term\, that incorporates everything new in the series at
time t that is not explained by the past values. An autoregressive mbdederp, is of
the form:

X=X 3+ P, X o+ 4P X, +W,
wheret=1,2,...N, X, is mean-zero stationary,...,4, are called the autoregressive
coefficients for an ptlorder proces¥), is Gaussian white noise series with mean zero

and variances?, independent ofX, ,, X,_,,..., X,., foreveryt.

p

A moving average (MA) process of ordglis a linear combination of the current



white noise term and tregmost recent past white noise terrds and is defined by

X =24+6Z +.+0,Z ,
where t=1,2,...,N, X, IS mean-zero stationary time serieg, is Gaussianwhite
noise with mean zero and varianeg. 6,,...,6, are called the MA parameters of the
model.

A general autoregressive moving average (ARMA) model, ARMA)(is given
by:

X, =X, —m Xy =2+ 02+ .40, .

A time seriesX, is said to follow an integrated autoregressive moving average
model (ARIMA) if the dth differenceY, =V‘X, is a stationary ARMA process. I,
follows an ARMA {,q) model, we say that, is an ARIMA (b,d,q) process. In
constructing ARIMA model we go through 3 stages: identification, estimation, and
diagnostic checking. In the identification stage, preliminaryneges forg, p andd are
obtained using the plots of the sample autocorrelation function (ACFample partial
autocorrelation function (PACF). Sometimes identification is dogeab auto fit
procedure — fitting many different possible model structures andsoated using a
goodness-of-fit statistic to select the best model. The secogd ®ao estimate the
coefficients of the model. In this step, we adopt the maximuniinded estimation
method. The last stage is model diagnostic checking. In the ARiMAeling, it is

important to perform diagnostic checking on the residuals offitteel model. This

usually consists of a group of tests including tests for normasityg the residuals.
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Moreover, it is necessary to test that all the model parasnaterstatistically significant.
The fitting process is often guided by the principle of parsimony, by which stenoelel
is one that has the fewest parameters among all modelst tthat fiata. (Cryer and Chan,

2008; Box and Jenkins, 1978humway and Stoffer, 20p5

2.3 Data Pretreatment
2.3.1 Data Splitting
Cross-validation is the statistical practice of partitioningaaple of data into
subsets so that the analysis is initially performed on a sbubset, while the other
subset are retained for subsequent use in confirming and validatingtialeanalysis.
For a large enough data set, it can be partitioned into twotsstsng sample used to
develop a model and prediction set used to evaluate the reasonablethgs®dictive
ability of the model.
2.3.2 Data Transformation
The one important condition for ARMA (ARIMA) model is obtaining atistaary
time series (mean=0), which needs appropriate transformationdiffierent types of
data.
(a) Box-Cox Transformation
For a given value of the paramelerand positive observationy,,Y,,Y;,..Y,, the

transformation is defined:



l_
y' -1 5.0

f,.(y)=
log(y), A=0

The power transformations are useful when the variabilithefdata increases or
decreases with the level. By suitable choice,dhe variability can often be made nearly
constant, which is a requirement for stationarity. For examptel2 produces a square
root transformation useful for Poisson-like data, arel—1 corresponds to a reciprocal
transformation.

(b) Differencing

Differencing a time series can remove trends, whether tresgstare stochastic, as
in a random walk, or deterministic, as in the case of a lineadtrBy subtracting each
data point in a series from its predecessor, the first order differedeénsd:

VX, =X, — X, =@1-B)X,
whereB is the backward shift operator. A seriessrsaid to be integrated of order d if:

Yt=V*X, =(1-B)" X,
By introducing the lagd differencing operatdv,, we can eliminate seasonality and
trend of periodd :

VX, =X, = X4 = @-BY)X,

For example, differencing at lag 12 will remove the seasdfedten a monthly time
series.

If the data suggest nonstationarity, then it is necessary rformea power

transformation or differencing to produce a new series thabrs gompatible with the
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assumption of stationarity. Appropriate numbers of differencing gétierate a series
with rapidly decayingsample ACF, and then the differenced data set can be fitted by a
low-order ARMA process. This means that the fitted parametdrbe well away from
the boundary of the allowable parameter set. Therefore, aftey difeerencing, we
check the plots of the sample autocorrelation function (ACF) andsdh®le partial
autocorrelation function (PACF) to see where the ACF/PACHts“coff” at the
boundst1.96 /</n . If the sample ACF has very few significant spikes at verglslags
and cuts off drastically or dies down very quickly, we get acstaty series. If the
sample ACF dies slowly, we should do further differencing. (Brotkesed Davis.,
2002).
(c) Subtracting the Mean

The term ARMA model is used in the program ITSM2000 (Brockwell Rads.,
2002) to denote a zero-mean ARMA process. Therefore, the sareple of the data
should be small before modeling. Once the apparent deviations tfationarity of the
data have been removed, we subtract the sample mean of thertreatstiata from each
observation. The search for a fitted ARMA model for a transformean-corrected data

set then follows.

2.4 Model Diagnostics
2.4.1 The Sample ACF of the Residuals

For large n, the sample autocorrelations of an independent and identically
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distributed (iid) sequencé’,..., Y, with finite variance are approximately iid with
distribution N(O, 1/n). We can therefore test whether or not the dabeesiduals are
consistent with iid noise by examining the sample autocomektdf the residuals and
rejecting the iid noise hypothesis if more than two or tlmeeof 40 fall outside the
bounds +1.96/4/n or if one falls far outside the bounds (Brockwell and Davis., 2002).
2.4.2 Tests for Randomness of the Residuals
In addition to looking at residual correlations at individual lags, it is useful to have a
test that takes into account their magnitudes as a group. LjuhBax (1978) proposed
the statistic used to test the overall independence based on a few dhkagdsfinition of
Ljung-Box test is as follows.
H,: The sequence data are iid

H.: The sequence data are not iid

a-

The test statistic is: Q(f) = n(n+ 2> (n—k) 'z,
k=1

n n
where f, = Zéyélk/z a’? , the estimated autocorrelation at l&g
1=1

I=k+1
n=sample size,
m = number of lags being tested,
and a,,...,a, are the residuals after a model has been fitted to a sepiesz,. If no

model is being fitted, thera,,...,a, are the “mean corrected” vectorszpf..,z, .

The chi-square distribution foé(r“) is based on a limit theorem as—co, in
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other words, the statisti@(r‘) has a finite sample distribution that is close;mfpfq for
large n, if the correct ARMAY,g) model is estimated. Thus, a general “portmanteau” test
would reject the ARMA$,g) model if the observed value o@(r‘) exceeded an
appropriate critical value in a chi-square distribution with p — g degrees of freedom
at levelx . (Brockwell and Davis, 2002).
2.4.3 AIC, BIC and AICC Statistics

Many time series models are introduced along with the respediagnostic
checking procedures. Through the utilization of diagnostic checkitigoa it is hoped
that the researcher should be able to grasp the relative wietiisse models, hence,
answering the question “Which model describes the data best?”, Tiismodel
diagnostic checking is often used together with model selectiteri@rsuch as the
Akaike information criterion (AIC), or the bias-corrected versionthad AIC statistic
(AICC) and the Bayesian information criterion (BIC). Akaikesffiintroduced AIC
statistic in 1974, and the BIC statistic was proposed by Sechinat978. These two
approaches actually complement each other. Each informatiostisté defined as

follows:
AIC,, =Nlogs? +2r
~2
AICC, =Nlogo; + 2N /(N-r-1)

BIC,, = Nlogé? +r logN
where 67 is the maximum likelihood estimator af’, and r = p+q+1 is the number

11



of parameters estimated in the model, includingrstant term. The second term in all
three equations is a penalty for increasinglence, if we want to minimize the values of
these criteria, we should minimize the number ohpeeters. Therefore, the best model

is the model adequately describes data and hast@aesmmeters. (Li, 2003)

2.5 Forecasting

One of the primary objectives of building a modw®l & time series is to be able to
forecast the values for that series at future tim&bke forecasting function
z = f(z_,,K ,z)+a has the minimum mean square error. The first phthe above
equation f(z_, ...,z))is a function of the past values of the series @nshould be
determined by the data. The second part called noise part, is a sequence of
independent and identically distributed (iid) vates. Predictions will be achieved by
forecasting the residuals and then inverting tlamdformations adopted to arrive at
forecasts of the original series. Also, we will sdach model is the best fitting model by
comparing the forecasted values with the predicseh Then, we will combine the
training sample and the prediction set as a fulh dt to forecast sand storms for the
future based on the same techniques as before.tNatté¢he cumulated mean numbers
inverted from the forecasted ERRs should be nooredsing, and should sometimes be

adjusted accordingly. (Ho, 2008.)
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2.6 Subset Model Checking
In the ITSM2000 package, the coefficients of modeis given with the ratio of
each estimate to 1.96 times its standard errdrisfa causal model (P85, Brockwell et al.,
2002). The denominator (1.96xstandard error) isctitecal value (at level 0.05) for the
coefficient. Thus, if the ratio is less than 1 bsalute value, we may conclude (at level
0.05) that the corresponding coefficient in the slathay be zero. After dropping the
non-significant coefficients, a subset model comeswhich requires additional model

selection process.
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CHAPTER 3
SIMULATION
The number of strong sand storms that occurredamorthern China during March
1954 to April 2002, are obtained from the paperlighbd by Zhou and Zhang (2003). In
this time period, there were 908 sand storms oedurin 578 months (1954
March—2002 April). By graphing the raw data (Figé), we see that the time series
has a lot of zeroes, and clearly it is not a Poigsocess. The ordinary ARIMA modeling
techniques can not handle the series with manyszesioce the stationarity may be
difficult to achieve. Therefore, proper smoothirfgpsld be implemented. Before we
perform the real data analysis, it is always goodexplore the applicability of the
proposed technique based on the simulated data. wi=adopt the following simulation
method: We randomly select one year from the rata,dapeat it 17 times, and treat it as
a whole data set of 17 years. Note that due toosedisy, most of the sand storms
occurred during the months of March, April and Maigh no storms for the rest of the
year. Our selected year, 1996, has 2 sand stordygrihand 14 in May. After converting
it to an ERR time series, we use the techniqueribestin Section 2.3.1 to split the data
into two sets: training sample and prediction Bethis case, our training sample is the
whole data set excluding the last 2 years (24 ladpsdh is the prediction set (Figure 3.2).

Our modeling approach based on the simulated déitheraddressed in detail below.
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Figure3.1 Plot of strong sand storms in northern China betwMarch 1954 and
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Figure3.2 Training sample and prediction set of data s#t Wwi= 1 month.
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To model the ERR with h = 1 month, we will use g&ftware ITSM2000 to
analyze the data. The plot of the training samplgure 3.3a), and its sample ACF and
PACF (Figure 3.3b,c) show nonstationarity and pbcity. Therefore, the data
pretreatment, Box-Cox transformation and differagcidescribed in Section 2.3 will be
explored to remove the trend and the seasonaliisst, Fwe use the Box-Cox
transformation to stabilize the variance beforéed#ncing. A combination gf=1.5 for
the Box-Cox transformation (Figure 3.4) and a l& differencing indicate some
improvements in achieving stationarity (Figure 3B)rthermore, the remaining linear
trend has been removed by taking additional diffeeeat lag 1. The ACF/PACF plots
(Figure 3.6) indicate that the stationarity is mddarge attained. Thus, we subtract the
sample mean of the transformed data from each wdusamn to generate a series to which
we then fit a zero-mean stationary model. An MAi€Ltonsidered based on our initial

model search. The estimated (MLE) model is:

Xi=2-0.1456 4,

Estimated WN Variance = 0.048960

Standard Error of MA Coefficient = 0.088909

Note that Xrepresents a twice-differenced stationary mearected time series

and the error termZepresents a white noise process.
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Training sample after Box-Cox transformation 3~1.5
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Figure 3.4 a, Time plot after Box-Cox transformation %t1.5; b, Sample ACF; c,

Sample PACF.
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-2 Twice differenced fraiming sample
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Figure36 a, Time plot of after further differencing at laghl Sample ACF; ¢, Sample
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The AICC statistic is -25.778570, the plots of seMpCF/PACF of the residuals
are shown in Figure 3.7. Also, the Ljung-Box tesnhot significant (p-value =0.94258),
indicating that the residuals are approximatelytevhbise. Some evidence of the validity
of the fitted model can be obtained through an emation of the actual predictive
capability of the selected model. Thus, for theppge of model validation, we produce
Figures 3.8 and 3.9 to compare the 24 forecasts thi¢ prediction set. By visual
inspection of Figure 3.9, we conclude that selectexlel is not seriously biased and
gives an appropriate indication of the predictibdiy of the model. We also present a
more rigorous model validation based on a set®gt#timated mean numbers (Table 3.1).
Note that several mean numbers are invalid and m@efastment because the mean
function should be non-decreasing.

In summary, it predicts a mean number of 14 samarst for the month of April for
both years, which is close to the actual numbeswveints. Hence, the model validation
results are successful and the proposed modelchgitpue can be repeated using the real

data set, to be addressed in the next chapter.
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Table 3.1. The numerical values of the actual ERRs and meanbers in the prediction
set, and the predicted ERRs using the MA (1) whggirtcounterparts (the corresponding

mean values derived from the predicted ERRS)

Predicted Monthly ERR Mean number

month Actual | Prediction Actual Prediction
1 1.325967 1.31980 0 -1.1162 adjust to|0
2 1.318681 1.30723 0 | -0.96794 adjust to 0
3 1.311475 1.29471 0 | -0.97141 adjustto 0
4 1.315217 1.29395 2 1.15639
5 1.383784 1.36316 14 13.89017
6 1.376344 1.35043 0 -0.9537 adjustto D
7 1.368984 1.33776 0 | -0.95551 adjustto 0
8 1.361702 1.32513 0 -0.9609 adjust to 0
9 1.354497 1.31257 0 | -0.96079 adjust to 0
10 1.347368 1.30005 0 | -0.96607 adjust to 0
11 1.340314 1.28758 0 -0.96949 adjust to|0
12 1.333333 1.27515 0 | -0.97468 adjust to 0
13 1.326425 1.25646 0 -2.12643 adjust to|0
14 1.319588 1.23867 0 | -1.98132 adjustto 0
15 1.312821 1.22088 0 | -1.99911 adjustto 0
16 1.316327 1.21516 2 0.17984
17 1.380711 1.28168 14 13.3218
18 1.3737371 1.26370 0 -1.99068 adjust to|0
19 1.366834 1.24572 0 | -2.00866 adjust to 0
20 1.36 1.22772 0 -2.03028 adjust to 0
21 1.353234 1.20971 0 -2.0501 adjustto 0
22 1.346535 1.19168 0 |-2.07175 adjust to 0
23 1.339901 1.17362 0 -2.09524 adjust to|0
24 1.333333 1.15554 0 | -2.11694 adjustto Q
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CHAPTER 4
APPLICATION

4.1 ARIMA modeling without ERR conversion
By graphing the raw data (Figure 3.1), we see timattime series has a lot of
zeroes. Before introducing the idea of the ERRfivee try to model the raw data using
the ARIMA technique. After taking the Box-Cox trémsnation and a differencing at lag
I2 and 1 (Figure 4.1), we see the routine transédion methods hardly make a stationary
time series for the sand storm data. Therefore falleto find a model by using the

ARIMA techniques.

4.2 ARIMA modeling using non-cumulative ERR
Next, by adopting the ERR method, we calculate ERRs for each of the 55
years respectively and put them together (Figu2a)4This time series has less number
of zeros than the raw data. Because the ERRs mndatad independently for each year,
we can see that there exists a huge fluctuatitineirseries. The stationarity is still hard to

achieve by the common transformations (Figure 4Rb,

4.3 ARIMA modeling using ERR
We apply the idea of ERR to smooth the whole rava,dahich is described in
Chapter 2. First, we see a large variation at #giriming of the series from Figure 4.3.

Since the initial search for the whole ERR timdesewas not successful, we then trim
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the data set from the beginning of the data, aagears if we drop the raw data about

13 months and recalculate the ERRs, the modelioggss becomes much simpler.

Number

inj-nqujiilulii J

0 100 200 300 400 500
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-200

100 200 300 400 s00

200

100

Number

-1o04

-200

0 100 200 300 400 s00

Figure 4.1 a. Time plot after Box-Cox transformation %t1.5; b. Time plot after

differencing at lag 12; c. Time plot after furtttgfferencing at lag 1.
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Figure4.2 a Time plot of the non-cumulative ERR. b. Time pltieadifferencing

at lag 12. c. Time plot after further differenciaiglag 1.
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Thereforea modified data set, which includes 565 monthsamoidsstorms (April
1955- April 2002), will be used to demonstrate modeling techniques. Consequently,
the training sample (537 lags, Figure 4.4a) con$tall the data set excluding the last

28 ERRs (January 2000 — April 2002), which is thedction set.

ERR (in 1 month)

0 100 200 300 400 500

Figure4.3 ERR plot with whole data set from March 1954 +iAp002

4.3.1 Model search for the training sample
The plots of the sample ACF and PACF (Figure 4d}tshow that the spikes are
slowly decaying. This indicates nonstationary beébravand seasonality. Thus
differencing is applied. Since the data has evid®reasing or decreasing variability, we
consider the Box-Cox transformation to stabilize Wariability. After thé\.=1.5 Box-Cox
transformation, we see the trend still exists (Fegd.5). Then we take the differencing

operator V on the training sample at lag 12, as the datalisated monthly. Figure 4.6
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tells us the series has not reached stationarity ye
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Figure4.4 a, Time-plot of the ERR based on the ‘trimmedadset; b, Sample ACF; c,

Sample PACF.
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Training sample after Box-Cox trandformation at »=1.5
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Figure4.6 a, Time-plot after differencing at lag 12; b, $4&ACF;c, Sample PACF.
So we do further differencing at lag 1, Then wetsadi the sample mean from

each observation of the differenced series to gdé@ex stationary zero-mean time series
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(Figure 4.7). The sample ACF and PACF suggest aMAR,1). Therefore, our initial

model estimated using MLE is:

Xi=0.9950 X1 + 4 + 0.2688 4,

Estimated WN Variance = 0.286035

Standard Error of AR Coefficients: 0.000363

Standard Error of MA Coefficients: 0.050929

Note that Xrepresents a twice-differenced stationary mearected time series
and the error termZepresents a white noise process.

The AICC statistic is 842.380, and the Ljung - Best is significant (p-value =0),
indicating that the residuals are not approximatgtyte noise. The plots of the residual,
ACF and PACF of residual are shown in Figure 4.8t the ARMA (1,1), we can
calculate the ratios (estimated coefficient)/(1&é&rdard error), the ratios of each
coefficient are:

Ratio of AR coefficient= 1.008444
Ratio of MA coefficient= -0.451766
We see the absolute value of ratio of MA coeffitisnless than 1, so we keep the

AR coefficient, which indicates a subset AR (1) miothe MLE of AR(1) is

X1 =0.9966 X1 + 4

Estimated WN Variance = 0.298764

Standard Error of AR Coefficients: 0.003595
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Subset model AR (1) is considered to fit the tinegies VV, ,z, ITSM2000
produces AICC value and a set of diagnostic plathsas residual sample ACF and
sample PACF, as shown in Figure 4.9. The AICC sttatis 863.020, and the Ljung -
Box test is not significant (p-value 6.15533), indicating that the residuals are
approximately white noise. The prediction calcwatis performed using the ITSM2000.
Table 4.1 shows the numerical values of the adiRIRs and mean numbers in the
prediction set, and the predicted ERRs using the(BAR(Subset of ARMA(1,1)) with
their counterparts. Figure 4.10 shows the comparisetween the actual ERRs and
predicted ERRs.

4.3.2 Full-Data Forecasting

We already saw the possibility of the ERR modelhitlp the training sample, now
we focus on the ARIMA model which is using the fdita set (including the prediction
set). This training sample consists of 565 lagsnfeypril, 1955 to April, 2002 (Figure
4.11a.). As before, we still take the Box-Cox tfan®ation atA=1.5 (Figure 4.12). Next
we difference the time series at lag 12 (Figur&y.Then we model this stationary series

with an ARMA(1,1), the initial model estimated inU® is:

X:=0.9968 X, + 0.63014: + Z

Estimated WN Variance = 0.383546.

Standard Error of AR Coefficients: 0.003398.

Standard Error of MA Coefficients: 0.033046.
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Figure4.7 a, Time-plot after differencing at lag 1; b, Sa&fCF; c, Sample PACF.
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Figure 4.9 Diagnostics for the subset AR (1) modeRasidual plot; b, Residual ACF;

¢, Residual PACF.
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Table 4.1. The numerical values of the actual ERRs and meambats in the prediction
set, and the predicted ERRs using the subset ARw(tt) their counterparts (the

corresponding mean values derived from the prediiEfRRS)

Predicted mont Monthly ERR Mean number
Actual Prediction Actual | Prediction
January 2000 | 1.470260223 1.47037 0| 0.05906
February 2000 | 1.467532468 1.46787 0| 0.12287
March 2000 1.464814815 1.4655 0| 0.19044
April 2000 1.48243992¢6 1.47274 11| 5.36786
May 2000 1.487084871 1.47818 4| 4.4049
June 2000 1.484346225 1.47613 0| 0.37323
July 2000 1.4816176477 1.47421 0| 0.44125
August 2000 1.478899083 1.47241 0| 0.50401
September 2000 1.476190476 1.47074 0| 0.57228
October 2000 | 1.473491773 1.46918 0| 0.6299
November 20000  1.47080292 1.46775 0| 0.69841
December 2000 1.471766849 1.46644 2| 0.76166
January 2001 | 1.469090909 1.46536 0| 0.88432
February 2001 | 1.466424682 1.46452 0 1.0126
March 2001 1.472826087 1.46390 5| 1.13034
April 2001 1.56238698 1.47303 51| 6.38497
May 2001 1.566787004 1.48043 4| 5.46163
June 2001 1.563963964 1.48047 0| 1.50199
July 2001 1.561151079 1.48074 0 1.626
August 2001 1.558348294 1.48123 0| 1.74485
September 2001 1.555555556 1.48196 0 1.8747
October 2001 | 1.552772809 1.48291 0| 1.99401
November 2001 1.56 1.48408 0| 2.11354
December 2001] 1.547237077 1.48548 0| 2.23868
January 2002 | 1.544483986 1.48722 0| 242334
February 2002 | 1.541740675 1.48929 0| 2.60295
March 2002 1.55141844 1.49169 7| 2.78289
April 2002 1.569911504 1.50383 12| 8.03515
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Figure4.10 Comparison of 28 forecasted ERRs with the pregictet and actual ones
The AICC statistic is 1051.99, and the Ljung - Best is significant (p-value =0),
indicating that the residuals are not approximatdgijte noise. The plots of the residual,
residual of ACF and PACF are shown in Figure 4HRdr the ARMA (1,1), we can
calculate the ratios (estimated coefficient)/(1&@&rdard error), the ratios of each
coefficient are:
Ratio of AR coefficient= 1.324450
Ratio of MA coefficient= -0.436091
We see the absolute value of ratio of MA coeffitisness than 1, so we keep the

AR coefficient, which indicates a subset AR (1) mipthe MLE of AR(1) is:

Xi=0.9968 X1 + 4

Estimated WN Variance = @65074.

Standard Error of AR Coefficients: @03394.
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Time plot after Box-Cox transformation at 2=1.5
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The AICC statistic is 1155.07, and the Ljung - Best is not significant (p-value
=0.75132). The plots of the residual, residual 6Ffand PACF are shown in Figure 4.15.

Table 4.2 shows the 24 forecasts values of acte&<Eand mean numbers.
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Figure4.14 Diagnostics for the ARMA (1,1) model. Residual plot; b, Residual ACF;

¢, Residual PACF.
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Table 4.2 The numerical values of the predicted ERRs and mmeambers (the

corresponding mean values derived from the prediiEfRRSs)

Predicted Monthly Mean number
month ERR
Prediction Prediction
May 2002 1.57409 3.93494

June 2002 1.57105 -0.14959 adjust ta O
July 2002 1.56803 | -0.14431 adjust to0
August 2002 1.56502 -0.14466 adjust tg 0
August 2002 1.56202 | -0.14498adjustto O
September 2002 1.55903 | -0.14527adjust to O
October 2002 | 1.55605 -0.14553 adjust to
November 2002 1.55309 | -0.14003 adjustto O
December 2002 1.55013 -0.14595 adjust to
January 2003 | 1.54718 | -0.14612 adjustto O

OJ

(=

February 2003| 1.55663 6.99038
March 2003 1.57488 12.08688
April 2003 1.57884 3.86376

OJ

May 2003 1.57561 -0.29133 adjust to
June 2003 1.57239 | -0.29199 adjustto 0
July 2003 1.56918 -0.29262 adjust to
August 2003 | 1.56598 | -0.29322 adjustto O
September 2003 1.56279 | -0.29379 adjust to O
October 2003 | 1.55961 -0.29433 adjust to
November 2003 1.55644 | -0.29484 adjust to O
December 2003 1.55328 -0.29532 adjust to
January 2004 | 1.55013 | -0.29577 adjustto O
February 2004 | 1.55937 6.98325
March 2004 1.57741 12.18493

(=

(=

OJ
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4.4 The role of prediction set
We use the prediction set to facilitate our modaection process. It is quite
common that several ARIMA models may fit a trainsgmple equally well. However,
the quality of forecasting varies among candidatelels. Therefore, our prediction set
plays an important role in filtering out the modath poor prediction. Recall that we
have a large variation at the beginning of theesera common practice is to delete a

small subset of ERR at the beginning of the tinreesewhich is called burn in period.

_ I
a |
|
4 ! o
|
g Training sample without burn in period | 8
3
]
2] |
|
1; . . . !
0 100 200 300 400 500

Figure4.16 ERR plot with training sample and prediction set

In order to demonstrate this point, we apply thenesaechniques in 4.3 to
following time series: (1) converting the whole aaet (March 1954 — April 2002) to an
ERR time series; (2) delete the first ERR; (3)tle first 549 ERRs be the training
sample and keep the last 28 lags as the predisdbriFigure 4.16 shows the plot of the

training sample and prediction set. To model tf@ning sample, we use the same
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transformations: first the Box-Cox transformatianial.5, next differencing at lag 12

and 1. An AR(1) model is considered. The MLE of Ai(1) is:

Xi=-0.1833 X1 + Z

Estimated WN Variance = 0.029588

Standard Error of AR Coefficients: 0.053076

Note that Xrepresents a twice differenced stationary mearected time series
and the error termZepresents a white noise process.

The AICC statistic is -361.796, and the Ljung - Bext is not significant (p-value
=0.26756), indicating that the residuals are appros@tgavhite noise. The plots of the
ACF and PACF residuals are shown in Figure 4.1@utféi 4.18 shows the comparison
between the actual ERRs and predicted ERRs usiegnibdel 1, which is not
encouraging, even though, the model passes alflidtggostics. Figure 4.19 shows the
comparisons of the results with the predictionfsemodel 2. Model 1(4.3.1) and 2(4.4)
are defined in Table 4.3. Clearly, the forecastsnfrthe model 1 appear to be more
realistic in showing the seasonality of the sawdnss occurred in northern China area.

Table 4.3. The two ARIMA models with different data sets.

MLE Model Data Set
1. X;=0.9966 X1 + Z Without the first 13 months of raw data.
2. X;=-0.1833 X1 + Z Without the burn in period of the first ERR.
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CHAPTER 5
CONCLUSIONS

In the thesis, we are able to find a suitable ARIMAdel for the sand dust storms
which occurred in northern China from March 195Afwil 2002 by using the empirical
recurrence rates (ERR). ERR is calculated sequigrgibequidistant time intervals. We
adopt this method which is used to smooth the tihatiefits into the ARIMA. Clearly, the
number of the sand dust storms does not followissBn process. Through the ERR, we
build a linking bridge between the classical tireeéess and a point process.

Before fitting the real data into ARIMA model, wramine the applicability of the
proposed technique based on the simulated dataaWé®mly select a year of the raw
data, repeat it 17 times and calculate the 180 ERBs first 15 years as our training
sample, and the last two years as the predictibmrAseMA(1) predicts very well. Next
we apply this technique into the real data analysier the initial model search, we find
that it is difficult to fit the ARIMA with the ERR®ased on the whole data set, so we
drop the raw data about 13 months and recalcui@&RRs. The training sample is the
rest of the data set excluding the last 28 monihsch is the prediction set. Before
modeling, we must make sure that the ARMA processtationary. First we take the
Box-Cox transformation at=1.5 then differencing twice at lag 12 and 1 reipely. A
subset AR(1) of ARMA(1,1) passes the randomnedsftesresiduals and has all the
residual ACF lags falling within the boundsl.96 //n , it predicts well in the short term

of 12 months compare to the prediction set. Nex, also find a subset AR(1) of
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ARMA(1,1) using the full data set. It successfupyedicts a seasonal trend in the
following two years. In addition, we try severahet methods to analyze the data. The
model we find for the data which cut off burn inripe does not predict very well. We
hardly find a suitable model for the raw data withBERR conversion or non-cumulative
ERR time series, since they have trouble in makegstationary time series.

From our work we see that the ERR is an effectivay wo analyze the
meteorological data. The sand storm data displagpecial seasonality, with the
maximum frequencies in March, April and May. Thetref the years are zeros. After
converting to an ERR time series, we can use thesidal ARIMA techniques to model
and predict sand dust storms. Likewise, the apmdicaof ARIMA models for sand
storms will further facilitate the research in theeas of biology, economies, social

science, etc.
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APPENDIX

DATA
Tablel Number of the sand storms in northern China (MH8&4-April 2000)

Year Month Count Year Month Count
1954 March 7 1957 January 0
1954 April 1 1957 February 0
1954 May 7 1957 March 15
1954 June 0 1957 April 7
1954 July 0 1957 May 3
1954 August 0 1957 June 0
1954 September 0 1957 July 0
1954 October 0 1957 August 0
1954 November 0 1957 September 0
1954 December 0 1957 Octobe 0
1955 January 0 1957 November 0
1955 February 0 1957 December 2
1955 March 6 1958 January 0
1955 April 11 1958 February 16
1955 May 0 1958 March 11
1955 June 0 1958 April 19
1955 July 0 1958 May 0
1955 August 4 1958 June 0
1955 September 0 1958 July 0
1955 October 0 1958 August 0
1955 November 0 1958 September 0
1955 December 0 1958 Octobef 0
1956 January 0 1958 November 0
1956 February 5 1958 December 0
1956 March 7 1959 January 4
1956 April 9 1959 February 0
1956 May 0 1959 March 8
1956 June 0 1959 April 16
1956 July 0 1959 May 2
1956 August 0 1959 June 4
1956 September 0 1959 July 0
1956 October 0 1959 August 0
1956 November 0 1959 September 0
1956 December 2 1959 October 0
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Year Month Count Year Month Count
1959 November 0 1963 February 0
1959 December 0 1963 March 0
1960 January 0 1963 April 13
1960 February 3 1963 May 0
1960 March 10 1963 June 0
1960 April 5 1963 July 0
1960 May 2 1963 August 0
1960 June 0 1963 September 0
1960 July 0 1963 October 0
1960 August 0 1963 November 0
1960 September 0 1963 December 0
1960 October 0 1964 January 0
1960 November 0 1964 February 0
1960 December 1 1964 March 10
1961 January 0 1964 April 1
1961 February 0 1964 May 0
1961 March 0 1964 June 0
1961 April 10 1964 July 0
1961 May 12 1964 August 0
1961 June 0 1964 September 0
1961 July 0 1964 October 0
1961 August 0 1964 November 0
1961 September 0 1964 December 0
1961 October 0 1965 January 0
1961 November 0 1965 February 0
1962 January 0 1965 March 0
1962 February 0 1965 April 5
1962 March 3 1965 May 0
1962 April 3 1965 June 0
1962 May 0 1965 July 0
1962 June 0 1965 August 0
1962 July 0 1965 September 0
1962 August 0 1965 October 0
1962 September 0 1965 November 7
1962 October 0 1965 December 7
1962 November 0 1966 January 0
1962 December 0 1966 February 9
1963 January 2 1966 March 10
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Year Month Count Year Month Count
1966 April 19 1969 June 0
1966 May 4 1969 July 2
1966 June 7 1969 August 0
1966 July 0 1969 September 1
1966 August 0 1969 October 0
1966 September 0 1969 November 0
1966 October 0 1969 December 0
1966 November 0 1970 January 0
1966 December 0 1970 February 0
1967 January 0 1970 March 0
1967 February 2 1970 April 1
1967 March 0 1970 May 0
1967 April 1 1970 June 0
1967 May 0 1970 July 0
1967 June 0 1970 August 0
1967 July 0 1970 September 0
1967 August 0 1970 October 0
1967 September 0 1970 November 0
1967 October 0 1970 December 0
1967 November 0 1971 January 0
1967 December 0 1971 February 1
1968 January 0 1971 March 2
1968 February 0 1971 April 17
1968 March 0 1971 May 0
1968 April 6 1971 June 0
1968 May 2 1971 July 0
1968 June 0 1971 August 0
1968 July 0 1971 September 0
1968 August 0 1971 October 0
1968 September 0 1971 November 0
1968 October 0 1971 December 0
1968 November 0 1972 January 0
1968 December 0 1972 February 3
1969 January 0 1972 March 1
1969 February 0 1972 April 8
1969 March 10 1972 May 0
1969 April 11 1972 June 0
1969 May 0 1972 July 0
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Year Month Count Year Month Count
1972 August 0 1975 October 0
1972 September 0 1975 November 0
1972 October 0 1975 December 0
1972 November 0 1976 January 0
1972 December 0 1976 February 1
1973 January 0 1976 March 2
1973 February 0 1976 April 3
1973 March 0 1976 May 2
1973 April 2 1976 June 0
1973 May 0 1976 July 0
1973 June 0 1976 August 0
1973 July 0 1976 September 0
1973 August 0 1976 October 0
1973 September 0 1976 Novembger 0
1973 October 0 1976 December 3
1973 November 0 1977 January 0
1973 December 0 1977 February 5
1974 January 0 1977 March 10
1974 February 2 1977 April 4
1974 March 0 1977 May 0
1974 April 5 1977 June 0
1974 May 0 1977 July 0
1974 June 0 1977 August 0
1974 July 0 1977 September 0
1974 August 0 1977 October 0
1974 September 0 1977 November 0
1974 October 0 1977 December 0
1974 November 0 1978 January 0
1974 December 0 1978 February 0
1975 January 0 1978 March 0
1975 February 0 1978 April 4
1975 March 3 1978 May 2
1975 April 9 1978 June 1
1975 May 0 1978 July 0
1975 June 0 1978 August 0
1975 July 4 1978 September 0
1975 August 0 1978 October 0
1975 September 0 1978 November 0
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Year Month Count Year Month Count
1978 December 0 1982 February 0
1979 January 0 1982 March 0
1979 February 1 1982 April 4
1979 March 3 1982 May 9
1979 April 27 1982 June 0
1979 May 5 1982 July 0
1979 June 2 1982 August 0
1979 July 0 1982 September 0
1979 August 0 1982 October 0
1979 September 0 1982 November 0
1979 October 0 1982 December 2
1979 November 0 1983 January 0
1979 December 0 1983 February 0
1980 January 3 1983 March 9
1980 February 0 1983 April 40
1980 March 0 1983 May 12
1980 April 9 1983 June 0
1980 May 5 1983 July 0
1980 June 1 1983 August 0
1980 July 0 1983 September 0
1980 August 0 1983 October 0
1980 September 0 1983 November 0
1980 October 0 1983 December 0
1980 November 0 1984 January 0
1980 December 0 1984 February 0
1981 January 0 1984 March 0
1981 February 0 1984 April 36
1981 March 0 1984 May 1
1981 April 15 1984 June 0
1981 May 10 1984 July 0
1981 June 0 1984 August 0
1981 July 0 1984 September 0
1981 August 0 1984 October 0
1981 September 0 1984 November 2
1981 October 0 1984 December 0
1981 November 0 1985 January 0
1981 December 0 1985 February 0
1982 January 0 1985 March 0
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Year Month Count Year Month Count
1985 April 4 1988 June 0
1985 May 4 1988 July 0
1985 June 4 1988 August 0
1985 July 0 1988 September 0
1985 August 0 1988 October 0
1985 September 0 1988 November 0
1985 October 0 1988 December 0
1985 November 0 1989 January 0
1985 December 0 1989 February 0
1986 January 0 1989 March 0
1986 February 0 1989 April 3
1986 March 6 1989 May 3
1986 April 4 1989 June 0
1986 May 13 1989 July 0
1986 June 0 1989 August 0
1986 July 0 1989 September 0
1986 August 0 1989 October 0
1986 September 0 1989 November 0
1986 October 0 1989 December 0
1986 November 0 1990 January 0
1986 December 0 1990 February 0
1987 January 0 1990 March 5
1987 February 0 1990 April 5
1987 March 0 1990 May 2
1987 April 0 1990 June 2
1987 May 6 1990 July 0
1987 June 0 1990 August 0
1987 July 0 1990 September 0
1987 August 0 1990 October 0
1987 September 0 1990 Novembger 0
1987 October 0 1990 December 0
1987 November 0 1991 January 0
1987 December 0 1991 February 0
1988 January 2 1991 March 0
1988 February 0 1991 April 0
1988 March 0 1991 May 4
1988 April 9 1991 June 0
1988 May 0 1991 July 0
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Year Month Count Year Month Count
1991 August 0 1994 October 0
1991 September 0 1994 November 0
1991 October 0 1994 December 0
1991 November 0 1995 January 0
1991 December 0 1995 February 0
1992 January 0 1995 March 5
1992 February 0 1995 April 0
1992 March 0 1995 May 9
1992 April 3 1995 June 0
1992 May 3 1995 July 0
1992 June 0 1995 August 0
1992 July 0 1995 September 0
1992 August 0 1995 October 0
1992 September 0 1995 November 0
1992 October 0 1995 December 0
1992 November 0 1996 January 0
1992 December 0 1996 February 0
1993 January 0 1996 March 0
1993 February 0 1996 April 2
1993 March 3 1996 May 14
1993 April 4 1996 June 0
1993 May 11 1996 July 0
1993 June 0 1996 August 0
1993 July 0 1996 September 0
1993 August 0 1996 October 0
1993 September 0 1996 November 0
1993 October 0 1996 December 0
1993 November 0 1997 January 0
1993 December 0 1997 February 0
1994 January 0 1997 March 0
1994 February 0 1997 April 0
1994 March 0 1997 May 3
1994 April 14 1997 June 0
1994 May 0 1997 July 3
1994 June 0 1997 August 0
1994 July 0 1997 September 0
1994 August 0 1997 October 0
1994 September 0 1997 November 0
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Year Month Count Year Month Count
1997 December 0 2000 September 0
1998 January 0 2000 Octobe 0
1998 February 0 2000 November 0
1998 March 3 2000 December 2
1998 April 10 2001 January 0
1998 May 2 2001 February 0
1998 June 0 2001 March 5
1998 July 0 2001 April 51
1998 August 0 2001 May 4
1998 September 0 2001 June 0
1998 October 0 2001 July 0
1998 November 0 2001 August 0
1998 December 0 2001 September 0
1999 January 0 2001 Octobe 0
1999 February 0 2001 November 0
1999 March 0 2001 December 0
1999 April 5 2002 January 0
1999 May 4 2002 February 0
1999 June 0 2002 March 7
1999 July 0 2002 April 12
1999 August 0

1999 September 0

1999 October 0

1999 November 0

1999 December 0

2000 January 0

2000 February 0

2000 March 0

2000 April 11

2000 May 4

2000 June 0

2000 July 0

2000 August 0
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