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ABSTRACT
Poisson Process Monitoring, Test and Comparison
By
Qing Chen
Dr. Chih-Hsiang Ho, Examination Committee Chair
Professor of Mathematical Sciences
University of Nevada, Las Vegas
The task of determining whether a sudden change occurred in theatgener
parameters of a time series generates application in araag. In this thesis, we aim at
monitoring the change-point of a Poisson process by method, whichrecterized by a
forward-backward testing algorithm and several overall emwatrol mechanisms. With
the application of this proposed method, we declare that Mount Etmat ia simple
Poissonian volcano, because two different regimes divided by the chamgeJanuary
30" 1974, are identified. The validation procedures, used in a compleméastaign, by
the formal hypothesis tests and graphical method will be distusseonclusion, the

proposed method is easy to implement, and its assessment studebemanducted

based on large scale simulation.



ACKNOWLEDGEMENTS
| would like to say thank you to everyone who helped me throughoujotimisey.
Especially, |1 would like to show appreciation to my advisor, Dr. Hogf@rything. His
encouragement, guidance, and support kept me on the right track. Higmsedt both

research and teaching will always be a great example for me.

In addition, | am very thankful to these committee members, Drtvilds Dr. Amei

and Dr. Bai, for their positive inputs and mentoring during my graduate studies.

Last but not least, | would also like to thank my family for their love and support.



TABLE OF CONTENTS

Y = 1S 3 ¥ AN O SRR iii
ACKNOWLEDGEMENTS ..ottt ettt e e e e e e e e e e e e e e e e e e s e s sannneeneenees iv
LIST OF TABLES ...ttt ettt e e e e e e e e st e et e e e e e aaaaeaaeeeeeeeaannnnes Vil
LIST OF FIGURES ... ..ottt e e e e e e e e e e e e e s s sttt e e e e e e e e aaaaaaaeaaaaeaenaanns viii
CHAPTER 1 INTRODUCTION ....uiiiiiiiiiiiiiiiiiiieeee e e e e e e e e ss st easeeeeeeeeeaaaaaaeaaaaeeaenannnns 1
CHAPTER 2 FUNDAMENTAL TOOLS ...ttt 3
2.1 The Forward and Backward TESTS ........ccoeviiiiiiiiiiiiiiiiiiiii e 3
2.1 1 THE Z TS ettt ettt e e e e e e e e e e e eeeeeanees 4
2.1.2 The DackWard Z TeSt.......ccoouiriiiiiiii e 5
2.2 Other HYPOtheSIS TESIS ....uiiii it e e e e 5
2.2. 1 TR F TSt ittt e e e e e e e e e e e e e 6
2.2.2 The ConditioNal TEST......cceiiiiiiiiiiiie e 6
2.3 Controlling the Error RALE .........ciiii i e e 8
2.3.1 Controlling the Family-Wise Error Rate..........ccccooeeeeiiiiiiiiiiiiiiiiicceeeeee e 8
2.3.2 Controlling the False Discovery Rate .............coovvvviviiiiiiiiiiiiie e eeeeeeeeeeeeinnns 9
CHAPTER 3 METHOD ...coiiiiiiiiieic ettt e 12
3.1 Forward-Backward Testing Algorithm ... 12
3.1.1 A SIMPIE VEBISION....cciiiiieeeeeee et e e e e ettt s e e e e e e e e e e aaeeeeeessnnnes 12
3.1.2 ADetalled VEISION .....cccoieeieeeeeeeeeee e 13
3.2 Validation - Used in a Complementary fashion ..............ccccceeeiiiiiiiiieciiieeeeeeiiens 14
3.2.1 Validation via Empirical Recurrence Rate PIOt..............oovviiiiiiiiiiinnnnne. 14
CHAPTER 4 APPLICATION: REGIME IDENTIFICATION FOR A VOCANIC
TIME SERIES ...ttt 16
4.1 Empirical Example: The Case of Mount EtNa .........cccooovviiiiiiiiiiiiieiiiiiienn 16
4.2 Implementation and Data ANAIYSIS ..........uuuurriiiiiiiiiie e e 18
4.2.1 SEEP OB ..ttt e et e e e e e e e e e e aaennes 18
4.2.2 SEEP TWO ettt e e et r e et e e e e e e e et e et e e ra e eaas 19
A.2.3 STEP TRICE .. 24
Y (=T o o 11 | PSPPI 25
4.2.5 Step Five and BeYONd ........cooooiiiiiiieieeiie s 26
7 G V=T =1 (o o (APPSO PP PSPPI 26
4.3.1 By Formal HYpOthesiS TeSES......ccuuuiiiiiiiiiiiieee e 26
4.3.2 BY the ERR-PIOL .....euuiiiiiiiiiiiiiiiie ettt 26
4.4 Comparisons with Other Error Controlling Methods ..............eiiiiiiiiiineiinne. 27
CHAPTER 5 CONCLUSIONS ....outtiiiiiiiiiiiiiii ittt e st eee e e e e aaaaaaaaaeaaeanannns 29



Vi



LIST OF TABLES

Table 1 Error correction procedures when m tests are performed...........ccccceeeeiiiiieeeenennn. 11
Table 2 Eruptive activities of MOUNt EtN@............coovviiiiiiiiiiiicees e 17

Table 3 Ranked p-values by Z test on the whole process (the BH procedure)................. 20
Table 4 Ranked p-values of the backward Z test (the BH procedure)............ccccceevvveennns 21
TADIE 5 MLES Of B oeeeiiiii ettt e e e e e e e e e e e e 22

Table 6 Ranked p-values of the second regime (the BH procedure) ..........ccccccceeeeieeeennnn. 24
Table 7 Two regimes Of MOUNE EtNA..........ouuuiuiiiiiiiiiie e eeeeeeeeees 25

vii



LIST OF FIGURES

Figure 1 Individual test threshold (Verhoeven et al., 2005) performing 50 tests and

FWER= FDR = 0.05 ..ottt ettt 10
Figure 2 Example of an ERR-PIOL ......uuuiiiii e 15
Figure 3 Tests in searching the first change point...............ciiiiiiiiii e 18
Figure 4 Ranked p-values (the BH procedure) based on (a) all the p-valli€s) the

P-vValues DEIOW 0.05 ... 19
Figure 5 Results of searching the first change point............ccoooiiiiiiiciii e 22
Figure 6 Ranked p-values on the second regime (the BH procedure) ...........ccccccceeeeeennn.. 23
Figure 7 ERR plots. (a) The whole process, (b) regime 1, and (c) regime 2.................... 27
Figure 8 Results using different error rate controlling methods ..............cccooeeviiiiieiiiiinnnes 28

viii



CHAPTER 1
INTRODUCTION

Poisson processes are one of the most important classes of stqutuaesses, with
many properties, finding applications in diverse areas. Methodstefaining whether a
sudden change occurred in the generative parameters of a Poissess pgsoan active
research field.

The Z test of a Poisson process is defined by Bain et al. (198bjs anodified for a
failure truncated process by Bain et al. (1991). Ho (1993) developsathevérd Z test
and shows the asymmetric performance of the forward and backwaestis4an detecting
an alternative which is increasing or decreasing step-funatiendity. In addition, he
suggests that both tests could be performed on the same data tor t@nfrocess and
identify instability and unusual circumstances.

Mulargia et al. (1987) address the importance of quantitative ifidatibn of
different regimes of a volcano via the change points. They appbgaential testing
procedure based on the two sample Kolmogorov-Smirnov (K-S) statihic(1992)
demonstrates a procedure for regime identification of a Poigemess based on a
simple control chart. He also recommends adjusting the significkaveds because
multiple tests are performed.

In this thesis, we monitor a single Poisson process by implemgettie forward and
backward Z tests based on an algorithm to detect the change poitite. detecting
procedure, different error control methods are available when multgdes are

compared. The change points identified will be verified via sévests such as the F



test, the Conditional test by Przyborowski and Wilenski (1940), andemmgirical
recurrence rate plot (Ho, 2008).

The fundamental tools and related theory are introduced in Chapter gteCBa
describes the methods to detect the change points and the methodslaifovaliThe
proposed method is implemented to identify different regimes of Méunat in Chapter

4. We then conclude our studies in Chapter 5.



CHAPTER 2

FUNDAMENTAL TOOLS
A point process is a stochastic model that describes the occwi@neeents. These
occurrences are thought of as points on the time axis. Let N(t) be the ranukinevthat

denotes the number of events in the interval (O, t]. The intensityidanof the process is

=D A counting process N(t) is called a Poisson

defined asi(t) = lim P(N(t’tA*t at]

process, if and only if it satisfies the three conditions: (10) N{ O; (2) The random
variables N(a, b] and N(c, d] are independent, for any &<k d; And (3) for any a <

b, N(a, b] has the Poisson distribution with mfs@ﬂ(x)dx.

B-1
A family of Poisson Processes with the intengity = g(%) , forp>0,0>0 are

called the power law processes. They provide models for megayrable systems which
study the occurrence rate of failures. A repairable syssesaid to be deteriorating (or
improving) if the intensity of the process is increasing (or desing). Iff =1, itis a

homogeneous Poisson process (HPP). Otherwise & rn-homogeneous Poisson
process (NHPP). Jf > 1the derivative of the intensity functio%xt& Is always positive,

so the intensity functioht (Keeps increasing. ff < ,1the intensity functionA t(i%

decreasing.

2.1 Forward and Backward Tests

It may be reasonable to assume that the intengitg Boisson process(:), is

constant, so tests dfl,: A() is constant versu$i, : A() is not constant are of interest.



The results of such tests indicate whether the IsitHPP may be adequate or whether a
more general NHPP is required in modeling the aetiwes of stochastic phenomena.
2.1.1 The Z Test
Bain et al. (1985) define the Z test of a Poissmtegss. It is modified for the failure
truncated case by Bain and Engelhardt (1991). ThesEis discussed for the smooth
alternatives and step functions with one or thregular or irregular) jumps by Bain et al.

(1985) and Engelhardt et al. (1990). It is the UMfekk for the power law process with
the intensityl(t) = (8/6)t/0)"" forp and & > 0.
A power law process is referred to as “failure tated” if it is truncated at the nth

event. Likewise, a time truncated power law prodessuncated at a prescribed time

point t, where n events are observed before timidhé. maximum likelihood estimator
(MLE) of the parametetifis,é = r/zw“logttw, wheren, =n-1andt, =t for the failure
1 i

truncated process; andn,=n and t, =t for the time truncated procesNote that

.

t

t t
<%<A <%are ordered statistics from a uniform distributiom (0, 1). It is

w w w

easy to show thai |09tt_w is distributed as a Gamma with parametesnd 1, and
- .

2_P=22W|0gt_w follows a chi-square distribution witten, degrees of freedom.
B 1 t;

Therefore, for

H,: The process is an HPP

H, : The process is not an HPP,



the forward Z test statistic zs_ = Z |0g ~w_we reject the null hypothesis, if
- .

Z< y%a2(2n,) OrZ > 7%2(20,) .
2.1.2 The Backward Z Test
It is known that the Z test has asymmetric perforoeain detecting an alternative
which is increasing or decreasing step-functiognsity in a Poisson process. Ho (1993)
proposed the backward Z test and shows that ibi® mppowerful than the forward test in
detecting an increasing step-intensity alternafomethe failure truncated process or a
decreasing step-intensity alternative for the tinuecated process. Both of the tests are

robust against an abrupt change in the process.

Supposg,, <t, <A <t ,are the cumulative events times (0rt,, ) of the Poisson
process, the new cumulative event timgs-t, , <t,, —t, , <A <t, —t, based on the
reversed order of the original inter-event time abbgained. Applying the Z test on the

backward cumulative event times, we have the backw@ test statistics

Ny
Z, = —ZZIog(l—tt—i) . For the following hypothesis test,
1

w

H,: The process is an HPP

H, : The process is not an HPP

Ny
the backward Z test statisticZg = —ZZIog(l—tt—i) , we reject the null hypothesis, if
1

w

Z< y%a2(2n,) OIZ > 7%.2(2n,) .



2.2 Other Hypothesis Tests

Besides the forward and backward Z tests, therenarey well-known hypothesis
tests for Poisson processes. Both of the Z testsdced above are for testing if a single
process is an HPP. The F test and the Conditiesata be described below provide
methods to determine whether the parameters oHMI®s are identical.

2.2.1 The F Test

It may be the case that the HPP is a reasonablelrfaydnore than one system, but
the systems are not identical in the sense thatrtteans may be different. The F test
(Rigdon and Basu, 2000) used to be test whethevdterrence rates of two failure-

truncated HPPs are identical.

If two HPPs are truncated th andn2th events, respectively, the MLE of the

intensitiesare, = n, /T

i,

fori=1, 2. The statisti@'l’i’ni/iI is distributed as a chi-square

distribution with 2n degrees of freedom, for i = 1, 2, and they are peddent. So the
ratio /11/@//12/{1 has an F distribution with2n, numerator and2n, denominator

degrees of freedom. When the null hypothesis is, tthen F :jz/ﬂl is distributed as

F(2n,,2n,). Thus, for

H : A # 4,
the test statistic is Fﬂ:—2 / /{l ; we reject the null hypothesisHf< F,_, ,(2n;,2n,) or

F> Fa/2 (2n,,2n,)



2.2.2 The Conditional Test
The Conditional test of comparing two Poisson maanmovided by Przyborowski

and Wilenski (1940). Suppose independent randomahlasX,,L , X are distributed
as Poisson with mean, and another group of independent random variables

Y,,L .Y, are distributed as Poisson with megn and the two groups of random

variables are also independent. Tb{e_ni X, is distributed as Poisson with megw , ,
1

Y = iYi is distributed as Poisson with meaj,, and X and Y are independent. So,
1

condition on X + Y = k, X has a Binomial distriboti with success probability

na, /Ny,
1+nay/na,

. Hence, for
Hy: =0,
Ha : 0(17&0(2

if k, is the observed value of X, then the p-valu@fain{P(X <k;),1- P(X <k,)}.

We reject the null hypothesis, if the p-value ssléhan the set threshold. Or, we reject

the null hypothesis ik, <c ork, > c,, where

P(k, <c,ork >c,|H,)= i(éj%k +i(:1jo.5k <a.
0 c

The number of events on any unit time interval d?asson process has a Poisson

distribution, so the Conditional hypothesis testalded above can be used to test if two

HPPs have the same rate. Note that, testjugi, =1, is equivalent to testing

Hyioy=a,.



2.3 Controlling the Error Rate

The p-value of a hypothesis test is the probabdftpbtaining a test statistic at least
as extreme as one that was actually observed, asguhat the null hypothesis is true.
Usually we reject the null hypothesis if the p-walis less than 0.05 or 0.01,
corresponding to a 5% or 1% threshold of type brerAnd in hypothesis testing, it is
possible to have two kinds of errors. Rejectingua hull hypothesis is called the type |
error or the false positive. The type Il erroradihg to reject a null hypothesis that is not
true. Moreover, the power of a test is the proligtolf not making a type Il error.

When we consider simultaneously testing a famihhygbotheses, a problem occurs
resulting from the increase of the type | error.aNtwe set a p-value threshold of, for
example, 0.05, we are saying that there is a 5%aghthat the result is a false positive.
While 5% is acceptable for one individual testyvéd do lots of tests on the data, then this
5% can result in a large number of false positivezhniques have been developed to
solve this problem.

2.3.1 Controlling the Family-Wise Error Rate

The control of the family-wise error rate (FWER}asmaintain the chance of making
even a single type | error for the family of hypedls tests at the desietevel, by
performing individual tests at error rates that afeaction of the overalt. For example

the classical Bonferroni procedure (CB, Holm 19i8%p conduct each individual test at

a significance level oﬁ, given that the significance level for the whotemily of m
m

tests isa LetP(A)be the probability of no type | errors occurringdégbe the

significance level for each of the m tests.P$;91A)is the probability of no type | errors



for the family of tests. The Bonferroni inequalilﬁ(_mlA) > z P(A)-(m-1) implies 1 —
= i-1
P(FWERE m(l-a,)—(m-1). In order to satisfy the family wise error rate thie

multiple testing to be no longer thanit is easy to show that, < l
m .

An improvement called the sequential Bonferroni cpdure (SB, Holm 1979)
performs tests based on the ranked p-values whalataining the FWER at the desired

level. Rank the these m p-values in the increasmdgr. For a given overall significance

level, find the largest r such th8t = 71—, 2"d relectallfl, fori=1,2A, r. The

idea of the sequential Bonferroni is to order theajues and compare the smallest p-

value to < . If it is smaller thang, we reject it and start to test the remair{mg- 1
m m

hypotheses by using the same rule. Continue ddiisguntil the hypothesis cannot be
rejected. At that point, stop and accept the ngsbtineses.

Sometimes when the number of tests is very bigthertest statistics are highly
dependent, thpower for an individual test may become unaccepthiw following the
FWER controlling method. That is a consequence ioimizing the chance of making
even a single type | error. Let us think aboutékizeme case, that the tests are perfectly
dependent. Assume that the testing contains 1086tighl individual tests, and the
prescribed significance level is 0.05, then thesitzal Bonferroni method would require
p-values to be smaller the 0.05/1000.

2.3.2 Controlling the False Discovery Rate

The classical and sequential Bonferroni procedtoess on controlling the FWER,

resulting in more type Il errors and a reductionthe power. An alternative way of

9



controlling FWER is to control the false discovegte (FDR) which is proposed by
Benjamini and Hochberg (1995). The FDR is defineth& expectation of the proportion
of the type | errors among all the significant hymses. The error rate controlling

procedures are shown in Table 1 and Figure 1.

0.05 4 FDE Benjammu and Hochberg (19953 B
© FWER Hoblm's Sequential Bonferroni / i
= === FWEER. classical Bonferroni P ]
-~
-
004 -~
-
-
= _~
= 0.03 -
= -
7 ~
= e
0.02 ~
,'/;
e
0.01 -
L
f.-‘
e e e U T oo
0.0 - T T v -
10 20 30 40 50

Tests ra:-ﬂ-:cd by ascc;'l.ding p-vahues
Fig 1. Individual test threshold (Verhoeven et al., 200&)forming 50 tests and

FWER = FDR =0.05

In practice, the Benjamini and Hochberg proceduBel)(is easy to apply. Let

H,,H, L ,H be the null hypotheses ang, p,,A , p,their corresponding p-values.

Order these values in increasing order and dehet@ byp,, p,,.A , P, - For a given

a, find the largesk such thatp(k) < « .Then reject (i.e. declare positive) 4,

m-c(m)
fori=1, 2/\, k. When the m tests are independent or positivefielated theo(m) = 1

10



, if they are negatively correlated, thgm) = Zm“l The FDR control is to strike a more
il

balanced compromise between type | error and typedr.

Table 1. Error correction procedures when m tests are paddr

ranked b;eps-tvsalue Bonferroni Bonfe?r?)%lijentlal BH
1 a/m a/m a/m
2 a/m al(m-1) 2a/m
3 a/m allm-2) 3a/m
A \ \ \
i a/m al(m—i+1) ia/m
A \ A A
m a/m a a

11



CHAPTER 3
METHOD
Change-point detection is a problem for discovetimg points where the property of
a time series, based on data, has changed. Thgsignal change points attracts active
research due to its wide application in lots ofdse For example, people may want to
detect when there was a shift in the key paranibsrmeasures the quality of products
in industrial control. Given time series data medeby an NHPP, we are interested in
where the change points are, if they exist. Ifeéreme no such change points, then an HPP
is adequate for modeling the occurrence of thetsvétypothesis testing could be a good
statistical tool for detecting change points. listthesis, we apply the forward and
backward Z tests to monitor a single Poisson psaes identify its change points. Type
| errors controlling procedures are needed forptmposed technique because multiple
tests are performed. We choose to demonstrate ethoeh using the FDR procedure.

Results using the classical and sequential Bornfepimcedures will also be compared.

3.1 Forward-Backward Testing Algorithm
Before applying the tests, we need to choose thbadef adjusting the type | error. Two
versions, simple and detailed, of the forward-bakivtesting algorithm are present
below.
3.1.1 A Simple Version
1. Determine the maximum number of tests for theseh error rate control
mechanism;

2. Rank all the p-values generated by the sequentiasts and record the earliest

12



test, which is significant and is a candidate ftnua change point;
3. Repeat Step 2 using thgtest;
4. Claim the first change point identified by thetést if the trend is decreasing,

because the forward test is more powerful tharbtekward test in detecting an NHPP
with decreasing step-function intensities in thdéufa-truncated framework (Ho, 1993).
Otherwise, declare the change point produced by jtest as the real change point;

5. Start the search of next change point by repg&tep 1- 4 with a new time origin,
which is the end of the previous regime;

6. Continue doing Step 5 until no more change paiah be detected.

3.1.2 A Detailed Version
(1) We need at least two inter-event time intertalperform either test. Thus, we

need to condu¢h— 1ests, if there are n events in the Poisson progéssfirst one is to
test whether the process from the initial timehi® $econd event is an HPP.

(2) Suppos®,,, P,y A, P, are the ascending ranked p-values by the forward Z

test and the prescribed significance levet is=ind the largest j such that, sﬁa.

Then allH, are rejected by the forward Z tests, for i = 1X2,.

(3) Repeat the steps above using the backwardtZSeppose that we findt ;, are

rejected by the backward Z tests, for i = ¥\2,u.

(4) Assume the time of thenthevent is the earliest truncated time among the
significant hypotheses by the forward tests, astievent is the earliest truncated time in

the significant hypotheses by the backward testciveéd get the idea of the trend of the

13



intensity via the MLEs of the parametgr(see Section 2.1). If MLEs ¢@fare greater
than 1, we conclude that the time of tfrg —1)th event is the change point. Otherwise
we take the time point of thén —1)thevent to be the change point, because the

backward Z test is more powerful than the traddioforward test if the process is
increasing (Ho, 1993).

(5) Other possible change points are obtained Ipyementing the same procedure to
the rest of the process which starts from the pwiat of the first change point.

(6) Continue doing Step 5 until no more change tgooan be detected. All the

different regimes of the Poisson process are diviiethe change points.

3.2 Validation - Used in a Complementary Fashion
The change points identified using the forward-makl testing procedure and the
type | errors controlling methods can be furthetideded via additional tests and
graphing techniques such as the empirical recuererate plot (ERR-plot), to be
described below.

3.2.1 Validation via Empirical Recurrence Rate Plot

For a Poisson process truncatet aive assume that,t,,A ,t, are the times of the n
ordered events during the periot}, ). Supposet, is the initial time, andt, +Qh is

equal ta, the empirical recurrence rates are defined as Zbi@8)

_ Total numberof eventsin (t,,t, +Ih)

i ’wherel =12,A,0Q.

The ERR-plot is a good technique to study a Poiggoegess. An example of the

ERR-plot is shown in Figure 2. The ERR-plot of aRRHshould lie roughly along a

14



horizontal line, indicating a constant intensitithe ERR-plot is increasing, the intensity
of the process is increasing and a power law psoeath the parameter greater than
one may be a good model for this process. And aeptaw process with a parameger
smaller than one provides a reasonable model fer giocess whose ERR-plot is
decreasing. Additionally, based on the ERR-plothef regime identified, we could learn
whether a change point is due to an abrupt changegoadual change. For instance, if
the ERR-plots of the two regimes before and aftexr thange point are roughly
horizontal, then there is an abrupt change in tbegss and the process may have a step-

intensity.

(©-Dhz,) (Qhzy)

A 3 b Q-Dh Ch

Fig 2. Example of an ERR-plot
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CHAPTER 4
APPLICATION: REGIME IDENTIFICATION FOR A VOLCANIC TME SERIES

Mulargia et al. (1987) apply a sequential testimyrpdure to detect the change points
of Mount Etna based on the two-sample KolmogorovrSon (K-S) test, which is a
general-purpose test that discriminates between data sets as belonging to two
different regimes. Ho (1992) constructs a tablecoifitrol limits, and demonstrates a
procedure of regime identification based on a sérgantrol chartthat shows a point
outside the control limits almost as soon as tloegss enters a new regime. He uses the
idea of statistical process control to distingustween the variation inherent in the
observed repose times and the extraordinary vamidtiat signals a real change in the
regimes.

Following the forward-backward testing algorithnmsdebed in Chapter 3, an updated
data set of Mount Etna (Smethurst et al., 20095& to demonstrate the change point(s)
search process, including validation and comparigsimg additional graphical and

guantitative methods.

4.1 Empirical Example: The Case of Mount Etna
The importance of quantitative and objective idegtion of different regimes of a
volcano is addressed by Mulargia et al. (1987). MoHtna is one of the famous
volcanoes in the world, attracting many scientiststudy its activities. There are many
available and reliable records of its history afiptions from mid-seventeenth century.

The latest data set, provided by Smethurst eR8DY), records the eruptive activities of
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1669 to 2008.

Table 2. Eruptive activity on Mount Etna

Mount Etna, which contains dates, volume, and oitifermation of the eruptions from

Time Time Time
Date between Date between Date between
events events events

1669-03-11 4922 1874-08-29 1731 1975-02-24 278
1682-09-01 2386 1879-05-26 1396 1975-11-29 882
1689-03-14 4741 1883-03-22 1154 1978-04-29 117
1702-03-08 19359 1886-05-19 2243 1978-08-24 86
1755-03-09 2891 1892-07-09 5772 1978-11-18 258
1763-02-06 132 1908-04-29 693 1979-08-03 592
1763-06-18 197 1910-03-23 536 1981-03-17 741
1764-01-01 847 1911-09-10 2638 1983-03-28 715
1766-04-27 5135 1918-11-30 1660 1985-03-12 288
1780-05-18 2600 1923-06-17 1965 1985-12-25 3
1787-07-01 1791 1928-11-02 4988 1985-12-28 306
1792-05-26 3824 1942-06-30 1700 1986-10-30 1060
1802-11-15 2324 1947-02-24 1012 1989-09-24 3
1809-03-27 944 1949-12-02 358 1989-09-27 808
1811-10-27 2769 1950-11-25 1923 1991-12-14 3503
1819-05-27 4906 1956-03-01 2893 2001-07-17 467
1832-10-31 0 1964-02-01 1436 2002-10-27 0
1832-10-31 4034 1968-01-07 154 2002-10-27 681
1843-11-17 3199 1968-06-09 1030 2004-09-07 675
1852-08-20 4546 1971-04-05 1031 2006-07-14 668
1865-01-30 1700 1974-01-30 40 2008-05-12
1869-09-26 1798 1974-03-11 350

We assume that the time of the first eruption &sitiitial time (see Table 2¥0 that

the second event in the original data set becomedinst event of the process. In the
original data set, there are two eruptions recoatedach of the following dates: October

31% of 1832 and October F70f 2002. For the following analysis, we treat bp#irs of
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eruptions occurred on the same date as a singtd.eMeerefore, using March 11, 1669

as the time origin, we generate 62 inter-event tmervals (in days, Table 2).

| 4922 |

Pl D23se |-F
P —| »arar |— Py -
3)19359
4) 2891
5)132
6)197
7)847
8)5135
9) 2600
10)1791
11)3824
12)2324
13)944

- P P -

Fig 3. Tests in searching the first change point

4.2 Implementation and Data Analysis

A step by step forward-backward testing procedtiasely resembles the algorithm

in Chapter 3, is applied to Mount Etna.
4.2.1 Step One

First, we decide to adopt the Benjamini and Hoohl@ocedure (BH) (Benjamini
and Hochberg, 1995) to control the false discovaty (FDR). Because both the forward
and backward Z tests require at least two intenetimes, our initial search requires a
total of 61 sequential tests, respectively, forhetest. Therefore, consistent with the

notations developed in Chapter 2, for a giuemve need to locate the largest k such that
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Fio S6£1a' Then reject allH;, fori =1, 2/\, k. Also, « is set at 0.05. All of the tests

in search of the first change point are shown gufa 3.
4.2.2 Step Two
The performance statistics generated by the seiquénrivard Z test are summarized
in Table 3, and are shown in Figure 4. Accordingh® ranked p-values and the FDR
testing guidelines, there are 23 significant setjaketests with the 39test as the earliest
(Figure 5). In other words, the forward Z test dete1 968-06-09 as the first change point,

which marks the end/beginning of the first/seccegime.

(&)
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Fig 4. Ranked p-values (the BH procedure) based onl(H)eap-values,

and (b) the p-values below 0.05
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Table 3. Ranked p-values by the Z test on the whole progbeBH procedure)

P-value Test

P-value Test

rank ID Ranked p BH rank ID Ranked p BH
1 61 4.94E-06 8.20E-04 32 32 7.36E-02  2.62E-02
2 60 7.10E-06 1.64E-03 33 28 7.61E-02  2.70E-02
3 56  9.36E-06 2.46E-03 34 27 7.65E-02  2.79E-02
4 59 1.02E-05 3.28E-03 35 31 8.52E-02  2.87E-02
5 55  1.28E-05 4.10E-03 36 24 9.55E-02  2.95E-02
6 58  1.46E-05 4.92E-03 37 23 1.04E-01  3.03E-02
7 57 2.30E-05 5.74E-03 38 26 1.08E-01  3.11E-02
8 54  252E-05 6.56E-03 39 22 1.36E-01  3.20E-02
9 53 3.11E-05 7.38E-03 40 25 1.48E-01  3.28E-02
10 52 5.29E-05 8.20E-03 41 21 1.71E-01  3.36E-02
11 51 1.01E-04 9.02E-03 42 14 1.81E-01  3.44E-02
12 50 1.70E-04 9.84E-03 43 13 1.92E-01  3.52E-02
13 49  2.43E-04 1.07E-02 44 20 2.06E-01  3.61E-02
14 48  3.44E-04 1.15E-02 45 15 2.36E-01  3.69E-02
15 47  5.13E-04 1.23E-02 46 19 2.46E-01  3.77E-02
16 46  8.50E-04 1.31E-02 47 17 2.58E-01  3.85E-02
17 45  1.46E-03 1.39E-02 48 16 2.61E-01  3.93E-02
18 44  2.46E-03 1.48E-02 49 12 2.77E-01  4.02E-02
19 43  3.31E-03 1.56E-02 50 18 2.98E-01 4.10E-02
20 42  5.22E-03 1.64E-02 51 10 3.17E-01  4.18E-02
21 41  7.96E-03 1.72E-02 52 11 3.27E-01  4.26E-02
22 40 1.29E-02 1.80E-02 53 3 4.02E-01  4.34E-02
23 39 1.66E-02 1.89E-02 54 9 4.13E-01  4.43E-02
24 38 2.14E-02 1.97E-02 55 7 4.31E-01  4.51E-02
25 37 3.26E-02  2.05E-02 56 8 4.92E-01  4.59E-02
26 35 3.58E-02 2.13E-02 57 4 6.44E-01  4.67E-02
27 36 3.89E-02 2.21E-02 58 1 6.53E-01  4.75E-02
28 34 3.93E-02 2.30E-02 59 6 6.54E-01  4.84E-02
29 33 5.71E-02  2.38E-02 60 2 8.13E-01  4.92E-02
30 30 5.81E-02  2.46E-02 61 5 9.89E-01  5.00E-02
31 29 6.47E-02  2.54E-02
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Table 4. Ranked p-values of the backward Z test (the BHgutace)

Test Test

Prank 1D Ranked p BH P rank 1D Ranked p BH

1 55 1.94E-08 8.20E-04 32 37 1.42E-01 2.62E-02
2 52 5.04E-08 1.64E-03 33 23 1.57E-01 2.70E-02
3 53 1.60E-07 2.46E-03 34 30 1.86E-01 2.79E-02
4 56 4.63E-07 3.28E-03 35 29 1.86E-01 2.87E-02
5 54 1.69E-06 4.10E-03 36 13 1.92E-01 2.95E-02
6 51 4.31E-06 4.92E-03 37 36 1.94E-01 3.03E-02
7 47 5.39E-06 5.74E-03 38 33 2.00E-01 3.11E-02
8 48 9.72E-06 6.56E-03 39 24 2.05E-01 3.20E-02
9 46 1.05E-05 7.38E-03 40 28 2.27E-01 3.28E-02
10 61 1.46E-05 8.20E-03 41 22 2.47E-01 3.36E-02
11 49 1.57E-05 9.02E-03 42 26 2.79E-01 3.44E-02
12 50 1.71E-05 9.84E-03 43 10 2.99E-01 3.52E-02
13 60 2.09E-05 1.07E-02 44 14 3.02E-01 3.61E-02
14 59 3.09E-05 1.15E-02 45 32 3.49E-01 3.69E-02
15 58 4.65E-05 1.23E-02 46 21 3.57E-01 3.77E-02
16 45 9.66E-05 1.31E-02 47 12 4.15E-01 3.85E-02
17 57 1.44E-04 1.39E-02 48 9 4.21E-01 3.93E-02
18 43 4.35E-04 1.48E-02 49 20 458E-01 4.02E-02
19 44 7.94E-04 1.56E-02 50 8 4.60E-01 4.10E-02
20 42 1.43E-03 1.64E-02 51 31 4.78E-01 4.18E-02
21 41 2.33E-03 1.72E-02 52 11 4.96E-01 4.26E-02
22 6 2.12E-02 1.80E-02 53 19 6.00E-01 4.34E-02
23 40 2.52E-02 1.89E-02 54 25 6.10E-01 4.43E-02
24 38 3.02E-02 1.97E-02 55 15 6.16E-01 4.51E-02
25 39 3.27E-02 2.05E-02 56 1 6.53E-01 4.59E-02
26 7 3.57E-02 2.13E-02 57 17 7.07E-01 4.67E-02
27 34 6.57E-02 2.21E-02 58 16 7.28E-01 4.75E-02
28 35 1.11E-01 2.30E-02 59 4 8.40E-01 4.84E-02
29 27 1.14E-01 2.38E-02 60 2 8.56E-01 4.92E-02
30 5 1.23E-01 2.46E-02 61 18 8.82E-01 5.00E-02
31 3 1.32E-01 2.54E-02
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Table5. MLEs of g

Regime 1 Regime 2

# of events MLE # of events MLE # of events MLE
2 5.060 23 1.490 2 0.878
3 2.150 24 1.520 3 0.895
4 0.937 25 1.520 4 0.680
5 1.080 26 1.430 5 0.810
6 1.290 27 1.470 6 0.934
7 1.500 28 1.510 7 0.966
8 1.650 29 1.500 8 0.884
9 1.520 30 1.510 9 0.814
10 1.540 31 1.510 10 0.781
11 1.600 32 1.450 11 0.816
12 1.540 33 1.460 12 0.889
13 1.560 34 1.480 13 0.909
14 1.630 35 1.520 14 0.825
15 1.610 36 1.520 15 0.883
16 1.510 37 1.500 16 0.844
17 1.460 38 1.510 17 0.658
18 1.440 39 1.540 18 0.676
19 1.390 40 1.560 19 0.685
20 1.420 41 1.580 20 0.693
21 1.440 42 1.620 21 0.701
22 1.460
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Fig 5. Results of searching the first change point
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Table 6. Ranked p-values of the second regime (the BH proegd

Forward Z test BH Backward Z test
Test Test
order ranked p-values order Ranked p-values
16 0.031 0.003 16 0.003
17 0.038 0.005 17 0.030
18 0.040 0.008 18 0.054
19 0.042 0.010 19 0.084
20 0.045 0.013 20 0.116
3 0.135 0.015 3 0.119
9 0.205 0.018 1 0.181
1 0.219 0.020 9 0.205
8 0.272 0.023 10 0.235
13 0.273 0.025 13 0.239
11 0.273 0.028 4 0.269
15 0.279 0.030 8 0.328
10 0.303 0.033 15 0.430
14 0.304 0.035 2 0.475
7 0.404 0.038 14 0.476
2 0.404 0.040 7 0.483
5 0.424 0.043 11 0.590
4 0.465 0.045 5 0.909
6 0.470 0.048 12 0.913
12 0.541 0.050 6 0.990

4.2.3 Step Three
The performance statistics generated by the sequebackward Z test are
summarized in Table 4, and are shown in FigurecéoAding to the ranked p-values and
the FDR testing guidelines, there are 21 significmyuential tests with the #1est as
the earliest this time (Figure 5). In other wortlhee backward Z test detects January 30,
1974 as the first change point, which is two evédatsr than the one detected by the

forward Z test.
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4.2.4 Step Four

The MLEs of the paramete# of the point process truncated at th& 401, 42

event are 1.56, 1.58, and 1.61 (Table 5), respaygtiwhich indicate that the trend is
increasing. Consequently, January374 is declared as the first change point, wrsch i

detected by the backward test.

Table 7. Two regimes of Mount Etha

Date Date Date

1 1682-09-01 23 1883-03-22 5 1978-04-29
2 1689-03-14 24 1886-05-19 6 1978-08-24
3 1702-03-08 25 1892-07-09 7 1978-11-18
4 1755-03-09 26 1908-04-29 8 1979-08-03
5 1763-02-06 27 1910-03-23 9 1981-03-17
6 1763-06-18 28 1911-09-10 10 1983-03-28
7 1764-01-01 29 1918-11-30 11 1985-03-12
8 1766-04-27 30 1923-06-17 12 1985-12-25
9 1780-05-18 31 1928-11-02 13 1985-12-28
10 1787-07-01 32 1942-06-30 14 1986-10-30
11 1792-05-26 33 1947-02-24 15 1989-09-24
12 1802-11-15 34 1949-12-02 16 1989-09-27
13 1809-03-27 35 1950-11-25 17 1991-12-14
14 1811-10-27 36 1956-03-01 18 2001-07-17
15 1819-05-27 37 1964-02-01 19 2002-10-27
16 1832-10-31 38 1968-01-07 20 2004-09-07
17 1843-11-17 39 1968-06-09 21 2006-07-14
18 1852-08-20 40 1971-04-05 22 2008-05-12
19 1865-01-30 41 1974-01-30

20 1869-09-26 1974-03-11

21 1874-08-29 1975-02-24

22 1879-05-26 1975-11-29
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4.2.5 Step Five and Beyond
Analogously, our search at the second stage rexjair®tal of 20 sequential tests.

Note that the new time origin is January B874. Again, we need to locate the largest k
such thatR,, SLa, and reject allH, for i = 1, 2/\, k. Also, the performance
20

statistics generated by the sequential forward lzackward Z tests are summarized in
Table 6 and Figure 6, which conclude that thererarenore change points. The two

regimes identified are shown in Table 7.

4.3 Validation
4.3.1 By Formal Hypothesis Tests

As we have mentioned in Chapter 2, both the F dest the Conditional test are
designed to investigate whether two HPPs havedime sate/mean. As expected, both of
the p-values (= 5.38e-07 for the F test and 9.97&0the Conditional test) obtained by
performing the tests are highly significant.

4.3.2 By the ERR-Plot

The ERR-plot offers the possibility of further igkt into the data and provides
valuable technical basis for model developmentsRipRts produced for the whole
process, regime one, and regime two are presestBdjare 7. According to Figure 7(a),
there is an apparent slope change of the ERR teriessat the detected change point,
January 301974. Moreover, the opposite trends depicted byBER&R-plots of both
regimes provide additional justification for thetcame. Interestingly enough, both the
sub-ERR plots are not near horizontal. Clearlyndicates that the change in trend is

gradual. In other words, a near HPP ERR-plot sgy@al abrupt change between two
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regimes, which is not the case for Mount Etna.
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Fig 7. ERR plots. (a) The whole process, (b) regime d,(ahregime 2

4.4 Comparisons with Other Error Controlling Metkod
The implementation of the proposed technique utiegFDR error rate controlling
mechanism has been shown in a great detail. Foiséike of comparisons, both the

classical Bonferroni (CB) and sequential Bonferr(®B) FWER controlling procedures
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are adopted to detect the change points for Motim& Bs well. The results are rather
interesting: (a) Both of the FWER controlling prdaees produce the same change point.
(b) In chronological order, the change point selédiy the CB and SB is two events later
than that previous detected using their counter@dR). And (c) the backward test

picks all regardless of the controlling mechaniBigure 8 compares the results using the

three error rate controlling procedures.

Z : Z g
35)1923
36)2893
37)1436
38)154

BH =] 39) 1030
40)1031
41)40 == BH (1974-01-30)

42)350 ) \
431278 |4 CB&SB

44)882 (1975-02-24)

SB s3] 45)117
CB ==| 46) 86

47)258
48) 592
49)741

Fig 8. Results using different error rate controlling hoets
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CHAPTER 5
CONCLUSIONS

The forward and backward Z tests are applied sdi@lignon a single Poisson
process to detect its change points. Differentnegi of the process are then classified by
the detected change points. Results of the tegimogedure are investigated using
additional methods. We choose a reliable volcaata get to apply the methods, because
objective identification of regimes of a volcano & great importance to the
volcanological community.

The testing algorithm which combines both of thevierd and backward tests is more
efficient to detect the change points, due to tifierdnt performance of the Z test of
detecting the change points of the process withntreasing or decreasing intensity. The
adjustment of the significance levels should besmmred in the testing procedure
because multiple tests are performed. The forwandard testing procedure, coupled
with the error control methods, is simple to apphd can be extended to detect change
points for different purposes. For instance, th@ppsed method can solve problems of
identifying the time point at which the occurrenege of car accidents in an area has
decreased, detecting the time when the dust stetansto occur more frequently than
before, discovering when an economic entity betprrecover, and so on.

In conclusion, our effort for future studies wile lWevoted to proposing a simpler
testing algorithm, which can be evaluated with rgdascale simulation. The selection
criterion is set to be: declare the first pointttwiespect to the forward-pass), identified

by either test Z andZ,), as the true change point.
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