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ABSTRACT 
 

Poisson Process Monitoring, Test and Comparison 
 

By 
 

Qing Chen 
 

Dr. Chih-Hsiang Ho, Examination Committee Chair 
Professor of Mathematical Sciences 
University of Nevada, Las Vegas 

 
The task of determining whether a sudden change occurred in the generative 

parameters of a time series generates application in many areas. In this thesis, we aim at 

monitoring the change-point of a Poisson process by method, which is characterized by a 

forward-backward testing algorithm and several overall error control mechanisms. With 

the application of this proposed method, we declare that Mount Etna is not a simple 

Poissonian volcano, because two different regimes divided by the change point, January 

30th 1974, are identified. The validation procedures, used in a complementary fashion, by 

the formal hypothesis tests and graphical method will be discussed. In conclusion, the 

proposed method is easy to implement, and its assessment studies could be conducted 

based on large scale simulation.  
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CHAPTER 1 

INTRODUCTION 

Poisson processes are one of the most important classes of stochastic processes, with 

many properties, finding applications in diverse areas. Methods of determining whether a 

sudden change occurred in the generative parameters of a Poisson process is an active 

research field. 

The Z test of a Poisson process is defined by Bain et al. (1985), and is modified for a 

failure truncated process by Bain et al. (1991). Ho (1993) develops the backward Z test 

and shows the asymmetric performance of the forward and backward Z tests in detecting 

an alternative which is increasing or decreasing step-function intensity. In addition, he 

suggests that both tests could be performed on the same data to monitor the process and 

identify instability and unusual circumstances. 

Mulargia et al. (1987) address the importance of quantitative identification of 

different regimes of a volcano via the change points. They apply a sequential testing 

procedure based on the two sample Kolmogorov-Smirnov (K-S) statistic. Ho (1992) 

demonstrates a procedure for regime identification of a Poisson process based on a 

simple control chart. He also recommends adjusting the significance levels because 

multiple tests are performed. 

In this thesis, we monitor a single Poisson process by implementing the forward and 

backward Z tests based on an algorithm to detect the change points. In the detecting 

procedure, different error control methods are available when multiple tests are 

compared. The change points identified will be verified via several tests such as the F 
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test, the Conditional test by Przyborowski and Wilenski (1940), and the empirical 

recurrence rate plot (Ho, 2008).   

The fundamental tools and related theory are introduced in Chapter 2. Chapter 3 

describes the methods to detect the change points and the methods of validation. The 

proposed method is implemented to identify different regimes of Mount Etna in Chapter 

4. We then conclude our studies in Chapter 5.  
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CHAPTER 2  

FUNDAMENTAL TOOLS 

A point process is a stochastic model that describes the occurrences of events. These 

occurrences are thought of as points on the time axis. Let N(t) be the random variable that 

denotes the number of events in the interval (0, t]. The intensity function of the process is 

defined as ( ]
t

tttNP
t

t ∆
=∆+

=
→∆

)1,(
lim)(

0
λ . A counting process N(t) is called a Poisson 

process, if and only if it satisfies the three conditions: (1) N(0) = 0; (2) The random 

variables N(a, b] and N(c, d] are independent, for any a < b≤≤≤≤ c < d; And (3) for any a < 

b, N(a, b] has the Poisson distribution with mean dxxb
a∫ )(λ .  

A family of Poisson Processes with the intensity
1

( )
t

t
ββ

λ
θ θ

−
 =  
 

, for 0, 0β θ> >  are 

called the power law processes. They provide models for many repairable systems which 

study the occurrence rate of failures. A repairable system is said to be deteriorating (or 

improving) if the intensity of the process is increasing (or decreasing). If 1=β , it is a 

homogeneous Poisson process (HPP). Otherwise it is a non-homogeneous Poisson 

process (NHPP). If 1>β , the derivative of the intensity function 
t∂

∂λ is always positive, 

so the intensity function )(tλ keeps increasing. If 1<β , the intensity function )(tλ is 

decreasing.   

 

2.1 Forward and Backward Tests 

It may be reasonable to assume that the intensity of a Poisson process, )(⋅λ , is 

constant, so tests of )(:0 ⋅λH  is constant versus )(: ⋅λaH  is not constant are of interest. 
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The results of such tests indicate whether the simple HPP may be adequate or whether a 

more general NHPP is required in modeling the occurrences of stochastic phenomena.  

2.1.1 The Z Test 

Bain et al. (1985) define the Z test of a Poisson process. It is modified for the failure 

truncated case by Bain and Engelhardt (1991). The Z test is discussed for the smooth 

alternatives and step functions with one or three (regular or irregular) jumps by Bain et al. 

(1985) and Engelhardt et al. (1990). It is the UMPU test for the power law process with 

the intensity ( ) ( )( ) 1−= βθθβλ tt , for β and θ  > 0. 

A power law process is referred to as “failure truncated” if it is truncated at the nth 

event. Likewise, a time truncated power law process is truncated at a prescribed time 

point t, where n events are observed before time t. The maximum likelihood estimator 

(MLE) of the parameterβ is ∑=
wn

i

w

t

t
n

1

logβ̂ , where 1−= nnw and nw tt =  for the failure 

truncated process; and  nnw =  and ttw =  for the time truncated process.
 
Note that 

w

n

ww t

t

t

t

t

t
w )()2()1( <<< Λ are ordered statistics from a uniform distribution on (0, 1). It is 

easy to show that ∑
wn

i

w

t

t

1

log
 
is distributed as a Gamma with parameterswn and 1, and 

∑=
wn

i

w

t

tn

1

log2ˆ
2

β
 follows a chi-square distribution with wn2  degrees of freedom. 

Therefore, for
 

   :0H  The process is an HPP 

      :aH  The process is not an HPP, 
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the forward Z test statistic is ∑==
wn

i

w

t

tn
Z

1

log2
ˆ

2

β
, we reject the null hypothesis, if 

)2(21
2

wnZ αχ −≤  or )2(2
2

wnZ αχ≥ .  

2.1.2 The Backward Z Test 

It is known that the Z test has asymmetric performance in detecting an alternative 

which is increasing or decreasing step-function intensity in a Poisson process. Ho (1993) 

proposed the backward Z test and shows that it is more powerful than the forward test in 

detecting an increasing step-intensity alternative for the failure truncated process or a 

decreasing step-intensity alternative for the time truncated process. Both of the tests are 

robust against an abrupt change in the process.   

Suppose )()2()1( wnttt <<< Λ are the cumulative events times on ) ,0( wt of the Poisson 

process, the new cumulative event times )1()1()( tttttt wnwnw ww
−<<−<− − Λ based on the 

reversed order of the original inter-event time are obtained. Applying the Z test on the 

backward cumulative event times, we have the backward Z test statistics

∑ −−=
wn

w

i
B t

t
Z

1

)1log(2 . For the following hypothesis test, 

:0H  The process is an HPP 

     :aH  The process is not an HPP 

the backward Z test statistics is ∑ −−=
wn

w

i
B t

t
Z

1

)1log(2 , we reject the null hypothesis, if 

)2(21
2

wnZ αχ −≤  or )2(2
2

wnZ αχ≥ . 
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2.2 Other Hypothesis Tests 

Besides the forward and backward Z tests, there are many well-known hypothesis 

tests for Poisson processes. Both of the Z tests introduced above are for testing if a single 

process is an HPP. The F test and the Conditional test to be described below provide 

methods to determine whether the parameters of two HPPs are identical.  

2.2.1 The F Test 

It may be the case that the HPP is a reasonable model for more than one system, but 

the systems are not identical in the sense that their means may be different. The F test 

(Rigdon and Basu, 2000) used to be test whether the occurrence rates of two failure-

truncated HPPs are identical.  

If two HPPs are truncated at1
thn and 2

thn  events, respectively, the MLE of the 

intensities are ,
ˆ

ii i i nn Tλ = , for i =1, 2. The statistic ini i
T λ̂2 ,  is distributed as a chi-square 

distribution with 2 in degrees of freedom, for i = 1, 2, and they are independent. So the 

ratio 1 2 2 1
ˆ ˆλ λ λ λ has an F distribution with 12n  numerator and 22n  denominator 

degrees of freedom. When the null hypothesis is true, then F = 2 1
ˆ ˆλ λ  is distributed as 

F( 12n , 22n ). Thus, for 

:0H 1 2λ λ=  

:aH 1 2λ λ≠  

the test statistic is F =2 1
ˆ ˆλ λ ; we reject the null hypothesis, if )2 ,2( 2121 nnFF α−≤  or

)2 ,2( 212 nnFF α≥ . 
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2.2.2 The Conditional Test 

The Conditional test of comparing two Poisson means is provided by Przyborowski 

and Wilenski (1940). Suppose independent random variables
11 , , nX XL are distributed 

as Poisson with mean1α , and another group of independent random variables 

21 , , nY YL are distributed as Poisson with mean2α , and the two groups of random 

variables are also independent. Then
1

1

n

iX X=∑  is distributed as Poisson with mean1 1n α , 

2

1

n

iY Y=∑ is distributed as Poisson with mean2 2n α , and X and Y are independent. So, 

condition on X + Y = k, X has a Binomial distribution with success probability

1 1 2 2

1 1 2 21

n n

n n

α α
α α+

. Hence, for 

:0H 1 2α α=  

:aH 1 2α α≠  

if 1k is the observed value of X, then the p-value is )}(1 ),(min{*2 11 kXPkXP ≤−≤ . 

We reject the null hypothesis, if the p-value is less than the set threshold. Or, we reject 

the null hypothesis if 11 ck ≤ or 21 ck ≥ , where 

( ) .5.05.0|or  
2

1

10 1
02111 α≤








+








=≥≤ ∑∑ k

k

c

k
c

k

k

k

k
HckckP  

The number of events on any unit time interval of a Poisson process has a Poisson 

distribution, so the Conditional hypothesis test described above can be used to test if two 

HPPs have the same rate. Note that, testing 210 : λλ =H  is equivalent to testing

210 : αα =H . 
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2.3 Controlling the Error Rate 

The p-value of a hypothesis test is the probability of obtaining a test statistic at least 

as extreme as one that was actually observed, assuming that the null hypothesis is true. 

Usually we reject the null hypothesis if the p-value is less than 0.05 or 0.01, 

corresponding to a 5% or 1% threshold of type I error. And in hypothesis testing, it is 

possible to have two kinds of errors. Rejecting a true null hypothesis is called the type I 

error or the false positive. The type II error is failing to reject a null hypothesis that is not 

true. Moreover, the power of a test is the probability of not making a type II error. 

When we consider simultaneously testing a family of hypotheses, a problem occurs 

resulting from the increase of the type I error. When we set a p-value threshold of, for 

example, 0.05, we are saying that there is a 5% chance that the result is a false positive. 

While 5% is acceptable for one individual test, if we do lots of tests on the data, then this 

5% can result in a large number of false positives. Techniques have been developed to 

solve this problem. 

2.3.1 Controlling the Family-Wise Error Rate  

The control of the family-wise error rate (FWER) is to maintain the chance of making 

even a single type I error for the family of hypothesis tests at the desiredα level,  by 

performing individual tests at error rates that are a fraction of the overallα . For example 

the classical Bonferroni procedure (CB, Holm 1979) is to conduct each individual test at 

a significance level of 
m

α
, given that the significance level for the whole family of m 

tests is α . Let )( iAP be the probability of no type I errors occurring and 0α be the 

significance level for each of the m tests. So )(
1

i

m

i
AP

=
∩ is the probability of no type I errors 
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for the family of tests. The Bonferroni inequality )1()()(
1

1
−−≥∩ ∑

=
=

mAPAP
m

i
ii

m

i
implies 1 – 

P(FWER) )1()1( 0 −−−≥ mm α . In order to satisfy the family wise error rate of the 

multiple testing to be no longer thanα , it is easy to show that
m

α
α ≤0 .  

An improvement called the sequential Bonferroni procedure (SB, Holm 1979) 

performs tests based on the ranked p-values while maintaining the FWER at the desired 

level. Rank the these m p-values in the increasing order. For a given overall significance 

level, find the largest r such that rm
p r −+

≤
1)(

α
 and reject all ( )iH  for i = 1, 2,Λ , r. The 

idea of the sequential Bonferroni is to order the p-values and compare the smallest p-

value to 
m

α
. If it is smaller than 

m

α
, we reject it and start to test the remaining )1( −m

hypotheses by using the same rule. Continue doing this until the hypothesis cannot be 

rejected. At that point, stop and accept the rest hypotheses.  

Sometimes when the number of tests is very big, or the test statistics are highly 

dependent, the power for an individual test may become unacceptably low following the 

FWER controlling method. That is a consequence of minimizing the chance of making 

even a single type I error. Let us think about the extreme case, that the tests are perfectly 

dependent. Assume that the testing contains 1000 identical individual tests, and the 

prescribed significance level is 0.05, then the classical Bonferroni method would require 

p-values to be smaller the 0.05/1000. 

2.3.2 Controlling the False Discovery Rate 

The classical and sequential Bonferroni procedures focus on controlling the FWER, 

resulting in more type II errors and a reduction in the power. An alternative way of 
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controlling FWER is to control the false discovery rate (FDR) which is proposed by 

Benjamini and Hochberg (1995). The FDR is defined as the expectation of the proportion 

of the type I errors among all the significant hypotheses. The error rate controlling 

procedures are shown in Table 1 and Figure 1.  

 

 

 

Fig 1. Individual test threshold (Verhoeven et al., 2005) performing 50 tests and    

          FWER = FDR = 0.05  

 

 

In practice, the Benjamini and Hochberg procedure (BH) is easy to apply. Let 

1 2, , , mH H HL be the null hypotheses and mppp ,,, 21 Λ their corresponding p-values. 

Order these values in increasing order and denote them by )()2()1( ,,, mppp Λ . For a given 

α, find the largest k such that 
( ) ( )k

k
P

m c m
α≤

⋅
.Then reject (i.e. declare positive) all ( )iH  

for i = 1, 2,Λ , k. When the m tests are independent or positively correlated then 1)( =mc
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; if they are negatively correlated, then
1

1
( )

m

c m
i

=∑ . The FDR control is to strike a more 

balanced compromise between type I error and type II error.   

 

 

Table 1. Error correction procedures when m tests are performed 

Tests 
ranked by p-value 

Bonferroni 
Sequential 

Bonferroni 
BH 

1 mα  mα  mα  

2 mα  )1/( −ma  mα2  

3 mα  )2/( −ma  mα3  

Μ Μ Μ Μ 
i mα  )1/( +− ima  miα  

Μ Μ Μ Μ 
m mα  a  a  
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CHAPTER 3 

METHOD 

Change-point detection is a problem for discovering time points where the property of 

a time series, based on data, has changed. The analysis of change points attracts active 

research due to its wide application in lots of fields. For example, people may want to 

detect when there was a shift in the key parameter that measures the quality of products 

in industrial control. Given time series data modeled by an NHPP, we are interested in 

where the change points are, if they exist. If there are no such change points, then an HPP 

is adequate for modeling the occurrence of the events. Hypothesis testing could be a good 

statistical tool for detecting change points. In this thesis, we apply the forward and 

backward Z tests to monitor a single Poisson process and identify its change points. Type 

I errors controlling procedures are needed for the proposed technique because multiple 

tests are performed. We choose to demonstrate our method using the FDR procedure. 

Results using the classical and sequential Bonferroni procedures will also be compared.  

 

3.1 Forward-Backward Testing Algorithm 

Before applying the tests, we need to choose the method of adjusting the type I error. Two 

versions, simple and detailed, of the forward-backward testing algorithm are present 

below. 

3.1.1 A Simple Version  

1. Determine the maximum number of tests for the chosen error rate control 

mechanism; 

2. Rank all the p-values generated by the sequential Z tests and record the earliest 
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test, which is significant and is a candidate for a true change point;   

3. Repeat Step 2 using theBZ test; 

4. Claim the first change point identified by the Z test if the trend is decreasing, 

because the forward test is more powerful than the backward test in detecting an NHPP 

with decreasing step-function intensities in the failure-truncated framework (Ho, 1993). 

Otherwise, declare the change point produced by theBZ test as the real change point;   

5. Start the search of next change point by repeating Step 1- 4 with a new time origin, 

which is the end of the previous regime; 

6. Continue doing Step 5 until no more change points can be detected.   

3.1.2 A Detailed Version 

(1) We need at least two inter-event time intervals to perform either test. Thus, we 

need to conduct )1( −n tests, if there are n events in the Poisson process. The first one is to 

test whether the process from the initial time to the second event is an HPP. 

(2) Suppose )1()2()1( ,,, −nppp Λ  are the ascending ranked p-values by the forward Z 

test and the prescribed significance level isα . Find the largest j such that α
1)( −

≤
n

j
p j . 

Then all ( )iH  are rejected by the forward Z tests, for i = 1, 2,Λ , j.  

(3) Repeat the steps above using the backward Z test. Suppose that we find ( )iH  are 

rejected by the backward Z tests, for i = 1, 2,Λ , u.  

(4) Assume the time of the thn1 event is the earliest truncated time among the 

significant hypotheses by the forward tests, and thn2 event is the earliest truncated time in 

the significant hypotheses by the backward test. We could get the idea of the trend of the 
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intensity via the MLEs of the parameter β (see Section 2.1). If MLEs ofβ are greater 

than 1, we conclude that the time of the thn )1( 2 −  event is the change point. Otherwise 

we take the time point of the thn )1( 1 − event to be the change point, because the 

backward Z test is more powerful than the traditional forward test if the process is 

increasing (Ho, 1993).  

(5) Other possible change points are obtained by implementing the same procedure to 

the rest of the process which starts from the time point of the first change point.  

(6) Continue doing Step 5 until no more change points can be detected.  All the 

different regimes of the Poisson process are divided by the change points. 

 

3.2 Validation - Used in a Complementary Fashion 

The change points identified using the forward-backward testing procedure and the 

type I errors controlling methods can be further validated via additional tests and 

graphing techniques such as the empirical recurrence rate plot (ERR-plot), to be 

described below.      

3.2.1 Validation via Empirical Recurrence Rate Plot 

For a Poisson process truncated att , we assume that nttt ,,, 21 Λ  are the times of the n 

ordered events during the period (0t , t ). Suppose 0t  is the initial time, and Qht +0  is 

equal tot , the empirical recurrence rates are defined as (Ho, 2008) 

lh

lhtt
zl

),(in  events ofnumber  Total 00 +
=

, where Ql  , 2, ,1 Λ= . 

The ERR-plot is a good technique to study a Poisson process. An example of the 

ERR-plot is shown in Figure 2. The ERR-plot of an HPP should lie roughly along a 
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horizontal line, indicating a constant intensity.  If the ERR-plot is increasing, the intensity 

of the process is increasing and a power law process with the parameterβ greater than 

one may be a good model for this process. And a power law process with a parameterβ

smaller than one provides a reasonable model for the process whose ERR-plot is 

decreasing. Additionally, based on the ERR-plot of the regime identified, we could learn 

whether a change point is due to an abrupt change or a gradual change. For instance, if 

the ERR-plots of the two regimes before and after the change point are roughly 

horizontal, then there is an abrupt change in the process and the process may have a step-

intensity.  

 

 

 

Fig 2. Example of an ERR-plot 
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CHAPTER 4 

APPLICATION: REGIME IDENTIFICATION FOR A VOLCANIC TIME SERIES 

Mulargia et al. (1987) apply a sequential testing procedure to detect the change points 

of Mount Etna based on the two-sample Kolmogorov-Smirnov (K-S) test, which is a 

general-purpose test that discriminates between two data sets as belonging to two 

different regimes. Ho (1992) constructs a table of control limits, and demonstrates a 

procedure of regime identification based on a simple control chart, that shows a point 

outside the control limits almost as soon as the process enters a new regime. He uses the 

idea of statistical process control to distinguish between the variation inherent in the 

observed repose times and the extraordinary variation that signals a real change in the 

regimes.  

Following the forward-backward testing algorithm described in Chapter 3, an updated 

data set of Mount Etna (Smethurst et al., 2009) is used to demonstrate the change point(s) 

search process, including validation and comparison using additional graphical and 

quantitative methods.  

 

4.1 Empirical Example: The Case of Mount Etna 

The importance of quantitative and objective identification of different regimes of a 

volcano is addressed by Mulargia et al. (1987). Mount Etna is one of the famous 

volcanoes in the world, attracting many scientists to study its activities. There are many 

available and reliable records of its history of eruptions from mid-seventeenth century. 

The latest data set, provided by Smethurst et al. (2009), records the eruptive activities of 
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Mount Etna, which contains dates, volume, and other information of the eruptions from 

1669 to 2008.  

   

 

Table 2. Eruptive activity on Mount Etna  

      Date 
Time 

between 
events 

      Date 
Time 

between 
events 

 Date 
Time 

between 
events 

1669-03-11 4922 1874-08-29 1731 1975-02-24 278 
1682-09-01 2386 1879-05-26 1396 1975-11-29 882 
1689-03-14 4741 1883-03-22 1154 1978-04-29 117 
1702-03-08 19359 1886-05-19 2243 1978-08-24         86 
1755-03-09 2891 1892-07-09 5772 1978-11-18 258 
1763-02-06 132 1908-04-29  693 1979-08-03 592 
1763-06-18 197 1910-03-23  536 1981-03-17 741 
1764-01-01 847 1911-09-10 2638 1983-03-28 715 
1766-04-27 5135 1918-11-30 1660 1985-03-12 288 
1780-05-18 2600 1923-06-17 1965 1985-12-25 3 
1787-07-01 1791 1928-11-02 4988 1985-12-28 306 
1792-05-26 3824 1942-06-30 1700 1986-10-30 1060 
1802-11-15 2324 1947-02-24 1012 1989-09-24 3 
1809-03-27 944 1949-12-02 358 1989-09-27 808 
1811-10-27 2769 1950-11-25 1923 1991-12-14 3503 
1819-05-27 4906 1956-03-01 2893 2001-07-17 467 
1832-10-31 0 1964-02-01 1436 2002-10-27 0 
1832-10-31 4034 1968-01-07 154 2002-10-27 681 
1843-11-17 3199 1968-06-09 1030 2004-09-07 675 
1852-08-20 4546 1971-04-05 1031 2006-07-14 668 
1865-01-30 1700 1974-01-30 40 2008-05-12  
1869-09-26 1798 1974-03-11 350   

 

 

We assume that the time of the first eruption is the initial time (see Table 2), so that 

the second event in the original data set becomes the first event of the process. In the 

original data set, there are two eruptions recorded on each of the following dates: October 

31st of 1832 and October 27th of 2002. For the following analysis, we treat both pairs of 
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eruptions occurred on the same date as a single event. Therefore, using March 11, 1669 

as the time origin, we generate 62 inter-event time intervals (in days, Table 2).   

 

  

 

Fig 3. Tests in searching the first change point 

 

 

4.2 Implementation and Data Analysis 

A step by step forward-backward testing procedure, closely resembles the algorithm 

in Chapter 3, is applied to Mount Etna.  

4.2.1 Step One 

First, we decide to adopt the Benjamini and Hochberg procedure (BH) (Benjamini 

and Hochberg, 1995) to control the false discovery rate (FDR). Because both the forward 

and backward Z tests require at least two inter-event times, our initial search requires a 

total of 61 sequential tests, respectively, for each test. Therefore, consistent with the 

notations developed in Chapter 2, for a given α, we need to locate the largest k such that 



 

19 
 

( ) 61k

k
P α≤ . Then reject all ( )iH  for i = 1, 2,Λ , k. Also, α  is set at 0.05. All of the tests 

in search of the first change point are shown in Figure 3.  

4.2.2 Step Two 

The performance statistics generated by the sequential forward Z test are summarized 

in Table 3, and are shown in Figure 4. According to the ranked p-values and the FDR 

testing guidelines, there are 23 significant sequential tests with the 39th test as the earliest 

(Figure 5). In other words, the forward Z test detects 1968-06-09 as the first change point, 

which marks the end/beginning of the first/second regime. 

 

 

 

Fig 4. Ranked p-values (the BH procedure) based on (a) all the p-values, 

            and (b) the p-values below 0.05 
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Table 3. Ranked p-values by the Z test on the whole process (the BH procedure) 

P-value 
rank 

Test 
ID Ranked p BH 

P-value 
rank 

Test 
ID Ranked p BH 

1 61 4.94E-06 8.20E-04 32 32 7.36E-02 2.62E-02 
2 60 7.10E-06 1.64E-03 33 28 7.61E-02 2.70E-02 
3 56 9.36E-06 2.46E-03 34 27 7.65E-02 2.79E-02 
4 59 1.02E-05 3.28E-03 35 31 8.52E-02 2.87E-02 
5 55 1.28E-05 4.10E-03 36 24 9.55E-02 2.95E-02 
6 58 1.46E-05 4.92E-03 37 23 1.04E-01 3.03E-02 
7 57 2.30E-05 5.74E-03 38 26 1.08E-01 3.11E-02 
8 54 2.52E-05 6.56E-03 39 22 1.36E-01 3.20E-02 
9 53 3.11E-05 7.38E-03 40 25 1.48E-01 3.28E-02 
10 52 5.29E-05 8.20E-03 41 21 1.71E-01 3.36E-02 
11 51 1.01E-04 9.02E-03 42 14 1.81E-01 3.44E-02 
12 50 1.70E-04 9.84E-03 43 13 1.92E-01 3.52E-02 
13 49 2.43E-04 1.07E-02 44 20 2.06E-01 3.61E-02 
14 48 3.44E-04 1.15E-02 45 15 2.36E-01 3.69E-02 
15 47 5.13E-04 1.23E-02 46 19 2.46E-01 3.77E-02 
16 46 8.50E-04 1.31E-02 47 17 2.58E-01 3.85E-02 
17 45 1.46E-03 1.39E-02 48 16 2.61E-01 3.93E-02 
18 44 2.46E-03 1.48E-02 49 12 2.77E-01 4.02E-02 
19 43 3.31E-03 1.56E-02 50 18 2.98E-01 4.10E-02 
20 42 5.22E-03 1.64E-02 51 10 3.17E-01 4.18E-02 
21 41 7.96E-03 1.72E-02 52 11 3.27E-01 4.26E-02 
22 40 1.29E-02 1.80E-02 53 3 4.02E-01 4.34E-02 
23 39 1.66E-02 1.89E-02 54 9 4.13E-01 4.43E-02 
24 38 2.14E-02 1.97E-02 55 7 4.31E-01 4.51E-02 
25 37 3.26E-02 2.05E-02 56 8 4.92E-01 4.59E-02 
26 35 3.58E-02 2.13E-02 57 4 6.44E-01 4.67E-02 
27 36 3.89E-02 2.21E-02 58 1 6.53E-01 4.75E-02 
28 34 3.93E-02 2.30E-02 59 6 6.54E-01 4.84E-02 
29 33 5.71E-02 2.38E-02 60 2 8.13E-01 4.92E-02 
30 30 5.81E-02 2.46E-02 61 5 9.89E-01 5.00E-02 
31 29 6.47E-02 2.54E-02 
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Table 4. Ranked p-values of the backward Z test (the BH procedure) 

P rank 
Test 
ID Ranked p BH P rank 

Test 
ID Ranked p BH 

1 55 1.94E-08 8.20E-04 32 37 1.42E-01 2.62E-02 
2 52 5.04E-08 1.64E-03 33 23 1.57E-01 2.70E-02 
3 53 1.60E-07 2.46E-03 34 30 1.86E-01 2.79E-02 
4 56 4.63E-07 3.28E-03 35 29 1.86E-01 2.87E-02 
5 54 1.69E-06 4.10E-03 36 13 1.92E-01 2.95E-02 
6 51 4.31E-06 4.92E-03 37 36 1.94E-01 3.03E-02 
7 47 5.39E-06 5.74E-03 38 33 2.00E-01 3.11E-02 
8 48 9.72E-06 6.56E-03 39 24 2.05E-01 3.20E-02 
9 46 1.05E-05 7.38E-03 40 28 2.27E-01 3.28E-02 
10 61 1.46E-05 8.20E-03 41 22 2.47E-01 3.36E-02 
11 49 1.57E-05 9.02E-03 42 26 2.79E-01 3.44E-02 
12 50 1.71E-05 9.84E-03 43 10 2.99E-01 3.52E-02 
13 60 2.09E-05 1.07E-02 44 14 3.02E-01 3.61E-02 
14 59 3.09E-05 1.15E-02 45 32 3.49E-01 3.69E-02 
15 58 4.65E-05 1.23E-02 46 21 3.57E-01 3.77E-02 
16 45 9.66E-05 1.31E-02 47 12 4.15E-01 3.85E-02 
17 57 1.44E-04 1.39E-02 48 9 4.21E-01 3.93E-02 
18 43 4.35E-04 1.48E-02 49 20 4.58E-01 4.02E-02 
19 44 7.94E-04 1.56E-02 50 8 4.60E-01 4.10E-02 
20 42 1.43E-03 1.64E-02 51 31 4.78E-01 4.18E-02 
21 41 2.33E-03 1.72E-02 52 11 4.96E-01 4.26E-02 
22 6 2.12E-02 1.80E-02 53 19 6.00E-01 4.34E-02 
23 40 2.52E-02 1.89E-02 54 25 6.10E-01 4.43E-02 
24 38 3.02E-02 1.97E-02 55 15 6.16E-01 4.51E-02 
25 39 3.27E-02 2.05E-02 56 1 6.53E-01 4.59E-02 
26 7 3.57E-02 2.13E-02 57 17 7.07E-01 4.67E-02 
27 34 6.57E-02 2.21E-02 58 16 7.28E-01 4.75E-02 
28 35 1.11E-01 2.30E-02 59 4 8.40E-01 4.84E-02 
29 27 1.14E-01 2.38E-02 60 2 8.56E-01 4.92E-02 
30 5 1.23E-01 2.46E-02 61 18 8.82E-01 5.00E-02 
31 3 1.32E-01 2.54E-02        
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Table 5. MLEs of β  

Regime 1 Regime 2 

# of events MLE # of events MLE # of events MLE 
2 5.060 23 1.490 2 0.878 
3 2.150 24 1.520 3 0.895 
4 0.937 25 1.520 4 0.680 
5 1.080 26 1.430 5 0.810 
6 1.290 27 1.470 6 0.934 
7 1.500 28 1.510 7 0.966 
8 1.650 29 1.500 8 0.884 
9 1.520 30 1.510 9 0.814 
10 1.540 31 1.510 10 0.781 
11 1.600 32 1.450 11 0.816 
12 1.540 33 1.460 12 0.889 
13 1.560 34 1.480 13 0.909 
14 1.630 35 1.520 14 0.825 
15 1.610 36 1.520 15 0.883 
16 1.510 37 1.500 16 0.844 
17 1.460 38 1.510 17 0.658 
18 1.440 39 1.540 18 0.676 
19 1.390 40 1.560 19 0.685 
20 1.420 41 1.580 20 0.693 
21 1.440 42 1.620 21 0.701 
22 1.460 

 

 

 

Fig 5. Results of searching the first change point 
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Fig 6. Ranked p-values on the second regime (the BH procedure) 
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Table 6. Ranked p-values of the second regime (the BH procedure) 

Forward Z test BH Backward Z test 
Test 
order ranked p-values 

Test 
order Ranked p-values 

16 0.031 0.003 16 0.003 
17 0.038 0.005 17 0.030 
18 0.040 0.008 18 0.054 
19 0.042 0.010 19 0.084 
20 0.045 0.013 20 0.116 
3 0.135 0.015 3 0.119 
9 0.205 0.018 1 0.181 
1 0.219 0.020 9 0.205 
8 0.272 0.023 10 0.235 
13 0.273 0.025 13 0.239 
11 0.273 0.028 4 0.269 
15 0.279 0.030 8 0.328 
10 0.303 0.033 15 0.430 
14 0.304 0.035 2 0.475 
7 0.404 0.038 14 0.476 
2 0.404 0.040 7 0.483 
5 0.424 0.043 11 0.590 
4 0.465 0.045 5 0.909 
6 0.470 0.048 12 0.913 
12 0.541 0.050 6 0.990 

 

 

4.2.3 Step Three 

The performance statistics generated by the sequential backward Z test are 

summarized in Table 4, and are shown in Figure 4. According to the ranked p-values and 

the FDR testing guidelines, there are 21 significant sequential tests with the 41st test as 

the earliest this time (Figure 5). In other words, the backward Z test detects January 30, 

1974 as the first change point, which is two events later than the one detected by the 

forward Z test.  
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4.2.4 Step Four 

The MLEs of the parameter β  of the point process truncated at the 40th, 41st, 42nd 

event are 1.56, 1.58, and 1.61 (Table 5), respectively, which indicate that the trend is 

increasing. Consequently, January 30, 1974 is declared as the first change point, which is 

detected by the backward test. 

 

 

Table 7. Two regimes of Mount Etna 

Date Date Date 
1 1682-09-01 23 1883-03-22 5 1978-04-29 
2 1689-03-14 24 1886-05-19 6 1978-08-24 
3 1702-03-08 25 1892-07-09 7 1978-11-18 
4 1755-03-09 26 1908-04-29 8 1979-08-03 
5 1763-02-06 27 1910-03-23 9 1981-03-17 
6 1763-06-18 28 1911-09-10 10 1983-03-28 
7 1764-01-01 29 1918-11-30 11 1985-03-12 
8 1766-04-27 30 1923-06-17 12 1985-12-25 
9 1780-05-18 31 1928-11-02 13 1985-12-28 
10 1787-07-01 32 1942-06-30 14 1986-10-30 
11 1792-05-26 33 1947-02-24 15 1989-09-24 
12 1802-11-15 34 1949-12-02 16 1989-09-27 
13 1809-03-27 35 1950-11-25 17 1991-12-14 
14 1811-10-27 36 1956-03-01 18 2001-07-17 
15 1819-05-27 37 1964-02-01 19 2002-10-27 
16 1832-10-31 38 1968-01-07 20 2004-09-07 
17 1843-11-17 39 1968-06-09 21 2006-07-14 
18 1852-08-20 40 1971-04-05 22 2008-05-12 
19 1865-01-30 41 1974-01-30 
20 1869-09-26 1974-03-11 
21 1874-08-29 1975-02-24 
22 1879-05-26 1975-11-29   
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4.2.5 Step Five and Beyond 

Analogously, our search at the second stage requires a total of 20 sequential tests. 

Note that the new time origin is January 30, 1974. Again, we need to locate the largest k 

such that ( ) 20k

k
P α≤ , and reject all ( )iH  for i = 1, 2,Λ , k. Also, the performance 

statistics generated by the sequential forward and backward Z tests are summarized in 

Table 6 and Figure 6, which conclude that there are no more change points. The two 

regimes identified are shown in Table 7.  

 

4.3 Validation 

4.3.1 By Formal Hypothesis Tests 

As we have mentioned in Chapter 2, both the F test and the Conditional test are 

designed to investigate whether two HPPs have the same rate/mean. As expected, both of 

the p-values (= 5.38e-07 for the F test and 9.97e-07 for the Conditional test) obtained by 

performing the tests are highly significant.    

4.3.2 By the ERR-Plot      

The ERR-plot offers the possibility of further insight into the data and provides 

valuable technical basis for model developments. ERR-plots produced for the whole 

process, regime one, and regime two are presented as Figure 7. According to Figure 7(a), 

there is an apparent slope change of the ERR time series at the detected change point, 

January 30, 1974. Moreover, the opposite trends depicted by the ERR-plots of both 

regimes provide additional justification for the outcome. Interestingly enough, both the 

sub-ERR plots are not near horizontal. Clearly, it indicates that the change in trend is 

gradual. In other words, a near HPP ERR-plot signals an abrupt change between two 
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regimes, which is not the case for Mount Etna.  

 

 

 

Fig 7. ERR plots. (a) The whole process, (b) regime 1, and (c) regime 2 

 

 

4.4 Comparisons with Other Error Controlling Methods 

The implementation of the proposed technique using the FDR error rate controlling 

mechanism has been shown in a great detail.  For the sake of comparisons, both the 

classical Bonferroni (CB) and sequential Bonferroni (SB) FWER controlling procedures 
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are adopted to detect the change points for Mount Etna as well. The results are rather 

interesting: (a) Both of the FWER controlling procedures produce the same change point. 

(b) In chronological order, the change point selected by the CB and SB is two events later 

than that previous detected using their counterpart (FDR). And (c) the backward test 

picks all regardless of the controlling mechanism. Figure 8 compares the results using the 

three error rate controlling procedures.  

 

 

 

Fig 8. Results using different error rate controlling methods   
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CHAPTER 5 

CONCLUSIONS 

The forward and backward Z tests are applied sequentially on a single Poisson 

process to detect its change points. Different regimes of the process are then classified by 

the detected change points. Results of the testing procedure are investigated using 

additional methods. We choose a reliable volcanic data set to apply the methods, because 

objective identification of regimes of a volcano is of great importance to the 

volcanological community.  

The testing algorithm which combines both of the forward and backward tests is more 

efficient to detect the change points, due to the different performance of the Z test of 

detecting the change points of the process with the increasing or decreasing intensity. The 

adjustment of the significance levels should be considered in the testing procedure 

because multiple tests are performed. The forward-backward testing procedure, coupled 

with the error control methods, is simple to apply and can be extended to detect change 

points for different purposes. For instance, the proposed method can solve problems of 

identifying the time point at which the occurrence rate of car accidents in an area has 

decreased, detecting the time when the dust storms start to occur more frequently than 

before, discovering when an economic entity begins to recover, and so on.  

In conclusion, our effort for future studies will be devoted to proposing a simpler 

testing algorithm, which can be evaluated with a large-scale simulation. The selection 

criterion is set to be: declare the first point (with respect to the forward-pass), identified 

by either test (Z and BZ ), as the true change point.   
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