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ABSTRACT

A MONOLITHIC ALE FINITE ELEMENT METHOD FOR A STOKES/PARABOLIC
INTERFACE PROBLEM WITH JUMP COEFFICIENTS

By
[an Kesler
Dr. Pengtao Sun, Examination Committee Chair

Professor of Mathematics
University of Nevada, Las Vegas, USA

In this thesis, a non-conservative arbitrary Lagrangian-Eulerian (ALE) method is devel-
oped and analyzed for a type of linearized Fluid-Structure Interaction (FSI) problem in a
time dependent domain with a moving interface - an unsteady Stokes/parabolic interface
problem with jump coefficients. The corresponding mixed finite element approximation is
analyzed for both semi- and full discretizations based upon the so-called non-conservative
ALE scheme. The stability and optimal convergence properties in the energy norm are

obtained for both schemes.
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CHAPTER 1

Introduction

1.1 Introduction

This thesis will study a coupled system of partial differential equations (PDEs), which
consists of an unsteady Stokes equation and a parabolic equation defined in a time-dependent
domain with a moving interface. Such coupled systems of PDEs arise from many fluid-
structure interaction (FSI) problems. Fluid-Structure Interaction problems describe the
coupled dynamics of fluid mechanics and structure mechanics. They are classical multi-physics
problems (Richter, 2010) and as such, have a diverse range of applications in engineering. A
key factor in the simulation of such problems comes from the deformation of the domain due
to the evolving flow acting on the surface. Specifically, we are looking at a two-way coupled
system, that is, the fluid flow affects the structure at the same time that the motion of the
structure affects the fluid flow.

A classic example of a two-way coupled system is an elastic structure submerged in a
fluid with an inflow condition. As the flow deforms the structure, the deformation of the
structure affects the flow. Thus creating feedback between both the flow and structure, i.e.,
the coupling is two-way. This is illustrated in Figure 1.1.

The thing that every F'SI problem has in common is that the domain on which the coupled
system is defined will move with respect to time, that is, the domain (often called €2) is no

longer fixed. We can then describe the domain as time dependent (€2(t)). The movement of
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Figure 1.1. Two-way coupled FSI system (Richter, 2010)

the domain can be in the form of a rotation, translation, or deformation.

In order to take this movement into consideration, we will use the Arbitrary-Lagrangian-
Eulerian (ALE) description of the model problem, and then adopt the ALE finite element
method to discretize the proposed unsteady Stokes/parabolic interface problem. To that
end, we first take some arbitrary invertible affine mapping from the initial domain (reference
domain) to the domain at any other time in the simulation. With this mapping we can
define a domain velocity w which allows the implementation of a mesh updating algorithm
that follows the moving domain. The definition of the mapping and the consequences are
further discussed in Section 3.2.

The classical approach to such problems is to discretize the time dependent domain so

that the Geometric Conservation Law (GCL) is preserved.

tn+1 tn+1

:/ i/ dmdt:/ / w - nndsdt
mo At Jou n o90(1)

The GCL is further discussed in Section 3.3. The numerical discretization that we are going

'Q (") ‘ — ‘Q(t")

to develop in this thesis, now coined the "non-conservative ALE scheme”, does not actually
satisfy the GCL.In what follows, the development and analysis of our numerical scheme will

show that the non-conservative ALE scheme has no downsides and provides a much simpler



scheme.

1.2 Outline

This thesis is divided into four sections. In Chapter 2, we provide useful preliminary
results and introduce notation used in the remainder of the thesis.

Chapter 3, specifically Section 3.1 , presents the linearized FSI model problem, an un-
steady Stokes/parabolic interface problem. Section 3.2 establishes the ALE mapping and
some standard definitions, followed by the ALE formulation of the model problem.In Section
3.3 we make some comments on the Reynold’s Tranport Theorem and its relation to the
Geometric Conservation Law. We then finish this chapter with the Non-Conservative Weak
form in Section 3.4.

Chapter 4 consists of the derivation of the semi-discrete scheme followed by the analysis
of the stability and error estimates in Sections 4.2 and 4.3 respectively.

Chapter 5 begins with the derivation of the fully-discrete scheme. We then spend the
rest of this chapter on the analysis of the error estimates in Section 5.1.

We end the thesis with a few concluding remarks in Chapter 6.



CHAPTER 2

Preliminary Notation and Results

We adopt the standard Lebesgue and Sobolev Spaces taken from Adams and Fournier (2003).
Let © C R? be an open set where m € N, and 1 < p < oo. Let L,(2) denote the linear space
of measurable p power integrable functions on € equipped with norm ||| »(). The Sobolev
space W™P(Q) contains functions f € LP(€2) that have weak derivatives D*f € LP(2) up to

m. For 1 < p < oo, the norm in W"?(Q) is denoted by

D=

s = { [ 32 Do |
Q

la]<m
and for p = oo,

e —e
al<m

We also use the classical norm and seminorm notations for Sobolev Spaces. In many

situations we choose to simplify this notation, we denote W™?2(Q2) by H™(2) and omit the

index p = 2 and Q whenever possible, that is, ||ul|ym2 = ||u||gn. We also denote W?(Q)
by LP(2) and omit the index m = 0 whenever is convenient. That is ||u|lyor = ||ul|zr. We
also shorten this during the longer proofs to ||u||r» = ||ullo and [|u| gm = ||w|m.

seriesLemma 2.1 (Poincaré inequality). Let Q C R be a bounded open set and 1 < p < oo.
Then there exists a constant M > 0 that only depends on p and §2 such that for all u €
Wo"(%)

|ul| ey < M| Dul|zr(q)- (2.1)



seriesLemma 2.2 (Cauchy-Schwarz inequality).

|uv]|L2) < [Jullz2@) V]| 22 (0 - (2.2)

seriesLemma 2.3 (Young’s inequality with €). If a,b € R where a > 0 and b > 0 , then we

have

a2 2

€
b<e—+ — Ve>N0.
a_62€+2, €

Note that the special case where € = 1 is known as simply Young’s inequality and will be used

frequently throughout this thesis.

seriesTheorem 2.1 (Reynold’s Transport Theorem (Leal, 2007), (Reynolds, 1903)). Let ¢(x, t)

be a smooth function defined on € x (0,T). we have that

d [ (00 [ (dg
pr thb(x,t)dx—/gt (E%—Vgﬁw—i-qzﬁv-w)dx—/ﬂt (E

where w is domain velocity and

—i—gbV-w) dx,

X

de
dt

_9¢
ot

+w-Vo.
It’s worth noting that the above equality also holds on open subdomains of ).

In the following lemma, Vg, Q4, Why and M, are introduced in Sections 3.4 and 4.1.

seriesLemma 2.4. Let (V1,Va) € H'NL> (0,T;V,), ;1 € L*(0,T;Qp) and let Vi, pr be the

interpolation onto Wh,t and My, respectively. We then have

|V = V|, < CR*Y" V| grss, forr=0,1,2and k >,

lp1 — Pl < Chk_Tle“Hk, forr=0,1and k> r+ 1.

5



seriesLemma 2.5. Assume we have the same conditions as in Lemma 2.4. We then have

d(Vl—‘;D 1 de
—— | < =g 1.
1=l < o1 e, V>

This lemma can be found in Gastaldi (2001).



CHAPTER 3

The Unsteady Stokes/Parabolic Interface Problem

3.1 Model Description

Let Q C RY (d = 2,3), Z = (0,7] (T > 0). Two subdomains, Qi := Q;(t) C Q (i =
1,2) (0 < ¢t < T), satisfying QL U Q2 = Q, Q' N Q2 = . These two subdomains are
separated by an interface: T, := ['(¢t) = 9Q N 9QZ, which may move/deform along with
t € Z, which causes €2 (i = 1,2) to also change with ¢ € Z and are termed as the current
(Eulerian) domains with respect to x, in contrast to their initial (reference/Lagrangian)
domains, QF := Qf (i = 1,2) with respect to X, where, a flow map is defined from Q' to
Qi (i =1,2), as: X; — x;(X;,t) such that x;(x;,t) = X; + X;(%;,t),Vt € Z, where X is the
displacement field in the Lagrangian frame. The deformation gradient tensor, F; := Vi, x;,
and J; = det(F;). A few examples of this type of domain are illustrated in Figure 3.1.

In what follows, we set 1) = ¢)(X, ) which equals ¥(x(X,t),t), and V = Vg, (i = 1,2).

We define the Stokes equations in Q} and the parabolic equation in Q? with respect to

Vie HY 0, T; H3()),i = 1,2 and p; € H' (0, T; H*(Q})) as follows

( L —V - (muVV)+Vp = fi, in Q} x7T
V-V, =0, in Q} xT
Vi = g, ondQN\Iy xZ
Vi(x,0) = Vi, in Q!
B2 —V - (12VVa) = fo, in 2 x7T (3.1)
Vo = g3, ondQN\I, xZ
Vy(x,0) = V9, in 2
Vi = V,, onTy xT
C (=pi + i VV) g+ sV Vone = 7, onTy xT



i
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Figure 3.1. An immersed and partitioned domain (Lan et al., 2017)

3.2 ALE Mapping

With the model problem in place, we now define the affine mapping that allows us to use
the ALE description of the model problem. Assume 3X; € H' <O, T, W2’°°(Qi)2> such that

Vt € Z, the mapping:

Xi: Qo
X; — Xi(f(i,t)

is invertible and (X7)~! € W2>(Qi)2. %, € Q' is known as the reference coordinate variable.

The domain velocity is then defined as

_0X] (%)

lei XI—>R2, (.U,L(Xz,t)— at fOTZ:1,2

With this domain velocity, we can now define a derivative which takes this velocity into

account. This is known as the ALE derivative and is defined as

i %xT > R

dv; oV,

(Xz‘,t) — I ‘ﬁ(XZ,t) = W

(Xi7 t) + (wi(xi, t) : V) Vi(xi7 t) (32)

8



Equipped with the domain velocity and ALE derivative, we can proceed to rewrite our
problem using the ALE description. In order to do this, we note that

VY

W(Xi,t) 7 (x;,1) — (wi(x4,1) - V) Vi(x5,1)

X

Substituting this into our model problem we obtain the ALE description as follows.

( %li_@“’l'V)Vl_v'(ﬂlvvl)—i-vm = fi, in Q%XI
V-V, = 0, in Q) x7T
Vi = g, ondQ\Iy xZ
Vi(x,0) = V9 in Q!
Bl = (- V) Vo= V- (1uVVy) = [, in Q2 xT (3.3)

Vy = g¢o, on OO\ xZ '
V2(X7 O) = V(Q)u in 2
w1 = Wway, only x7Z
Vi = Vy, onT}; x7T
\ (=p1l + 1 VVi)ny +psVVony = 7, on Iy xT

3.3 Geometric Conservation Law

Before continuing to the discretization of our problem, it’s pertinent to explore the nature
of the GCL. The Geometric Conservation Law (GCL) comes as a consequence of Theorem

2.1. Letting ¢(x,t) = 1, we see that % = 0. Plugging this into Theorem 2.1, we have

d
0
dt| "

:/(V-w)dX: w - nds
o8 GIoN
Integrating both sides from " to t"*!, we get

seriesLemma 3.1 (Geometric Conservation Law).

tn+1
’Q (") | - ‘Q (t") | = / w - ndsdt
tn 0
Consider the P.D.E.
oV
v F =
BT +V 0



where V is a transported quantity and F is the flux. Choosing a test function V, integrating
over the entire domain, using integration by parts and applying Theorem 2.1 to take the

time derivative out of the integral we can obtain the Conservative Formulation:

d

dt (V’ V) oM N (V ’ (VWT) 7‘~/> - <F7 Vf/) = 0.

Q4 Q

We can see that letting V = 1 and V = 1 we obtain Lemma 3.1. Hence the GCL is conserved.
On the other hand, we can neglect the use of Theorem 2.1. Keeping the ALE time

derivative inside of the integral gives the following non-conservative formulation.

(% v) - (w VV,V)Qt - (F. vV)Qt ~0.

Letting V and V be constants, simply yields 0 = 0. Thus, this does not produce Lemma

)
X

3.1. However, the non-conservative scheme does not seem to yield any negative results. In
fact, the non-conservative formulation is much simpler than the conservative forumlation to
be developed and implemented on the fully discrete level, as shown in Chapter 5. This is

the formulation we will be analyzing in this thesis.

3.4 Non-Conservative Weak Form

To begin, we need to introduce some Sobolev Spaces.

Vo= {($n, 1) € HHQH? x HY(Q2)%|¢y = ¢ on T}
Vo = {(1,12) € V|t = g; on OQ\I'y,i = 1,2}

Vo = {(¥1,1) € V|¢h; =0 on OQ\Ty,i = 1,2}

Qb = L*(Q)

Qb = {qe Q1’ thI qdz = 0}.

With these spaces we can now define the monolithic weak form of model (3.3). Adding the

equations of model (3.3) together, multiplying by test functions (1,5) € V; and applying

10



integration by parts, we obtain the non-conservative weak form as follows. Find (V1,Vy) €

H' N L> (0,T;V,) and p; € L*(0,T;Q}) such that

>

i=1

dV;
<W' 71/%) o+ (1iV Vi, Vibi)gi = (Wi V) Vi, i) g | = (p1, V- 1)y
% Qi

2
(V Vl,Q1 Z fzy¢z Ql T w1>1‘t (¢1:¢2) € ‘_/07 q1 € Ql (34)
=1

11



CHAPTER 4

Finite Element Discretization: Semi-Discretization

Consider a quasi-uniform triangulation 7;'; of the continuous domain €. We assume
that no triangle of ’77:'70 has two edges on 9, and that no triangle crosses the interface T'.
We now define the discretization of our ALE mapping X.

4.1 Discretized ALE Mapping and the Semi-Discrete Formulation

For any t € Z consider the discretization of the mapping X; by means of piecewise linear

Lagrangian finite elements. We will denote this mapping X };7t:
Xp, 0 0
X = Xj,(%,1)
where X} , is smooth and invertible. Likewise, the discrete mesh velocity is defined as follows:

o . dXi, (x;,t
b O X T o R wjt) = B0l

which leads to the discrete ALE time derivative:

de h i
W{ . th X I — R
dV; A

h
@ ket =50

(x;,1) (xi,t) + (wh,(xi, 1) - V) Vi(x5, 1)

We will denote the image of 7}/, under this discrete mapping as 7;';. We now proceed to
the definition of our discrete spaces using the classical P? elements for V; and P! elements
for Q. We can find such a mapping by look at the harmonic mapping. That is, it satisfies
the following: X

—AX}'LJ =0, in
X}, =0, on 0O\ (4.1)
Xli,t = Hth, on Fh

12



The discrete ALE FEM spaces are defined as follows:
Wi = {(in,¥n2) € Vy|tin|, € PP(K),VK € T},
WP, = {(Win Un2) € Vo|tin|, € P(K), YK € T} },
Muy = {an € Q'|qn|, € P'(K),VK € T;,},
MR, = {an € Qplan| 4 EPl( ), VKGEZ}
My = {an € (L*( Qo )’ lan|; € (P1(K))* VK € Ty},

where P"(K) is the set of polynomlals on K of degree less than or equal to n.

Now, using (3.4) and the above definitions, the corresponding finite element discretization

is: Find (Vi, Vou) € Why, prn € My, such that

22: (deh

=1

» Vi h> + (1iVVip, Vl/)i,h)gi — ((win - V) Vin, Yin) (4.2)
X Qi

t

2
= (P, Vi) + (V- Vi, qua)g Z fisin)gi + {7, Y1p)y,
=1

Y (i, Yin) € Wiys qun € My

The analysis of the convergence of the above scheme relies on a couple of assumptions

about the discrete ALE mapping X}, ;. We assume that the following error estimate is true:
1 X — Xntll oo (00)2 + BV (Xe = Xnt) [ ooyt < CRAINA||| Xy || we2.oe )2

Construction of such a mapping is discussed in Gastaldi (2001).
Assuming w;, € W2°°(€);)2, then we also have the following error estimate on the domain

velocity:

lwo(t) — wn(®)llL=(@0z + RNV (@ (E) = wn(t)) L@ < CR?[Inhl[lw(®)|lw2(u2-

Finally, we assume that our triangulation 7}, is non-degenerate with time. That is, we

assume that there exists a p > 0 such that
diamBg > ph diamK, VK € Tp,

13



for all t € [0,T] and all h € (0, 1], where By, is the largest disk contained in K. We are now

in a position to analyze the stability of 4.2.

4.2 Semi-Discretization Stability Analysis

seriesTheorem 4.1. Assume the conditions for formulation (4.2) hold. Then we can obtain
the following estimate for anyt € I:
2
> (HVz‘,hHLoo(o,t;LQ(Qg)) + HVi,hHLQ(o,t;Hl(Qé»)
i=1 ;
<C <Z (Hfz',hﬂLz(o,t;L?(Qg)) + Vi (0)ll z2ep )) + 17l 22y ) . (43)

i=1

Proof. In (4.2), let ¢; 5, = Vi, ¢1.n = p1,p, then

dVv;
> ( - 1h> + (1 Vin, VVin)gs = (@i - V) Vi, Vi) (4.4)
=1 ’A( Qi
2
= Z (fi;Vi,h)Qg + (7, Vl,h>rt
=1

By using the following estimates

A 1 /d
( di fc’Vi’h)Qz B _(E"Vivh”g_(V'WhVah,Vi,h)>,

2

t

(1iVVin, VVin)g: = il VVisll§ = ClViall3,

(p1n, V-Vip) = 0,

we then have,

1d
= Vil + C [ Vinl?
> {Zd Vel + CIVaal
2 Ll
Z [ i 5 (V- winVin, Vi,h)Q%' + ((win - V) Vip, V’i,h)Q%‘
+<7-7 Vl,h)[‘t

14



Using the bound on w;;, Young’s inequality with e ,the Cauchy-Schwarz inequality and

the trace theorem we have the following:

(Wi = V) Vin, Vin)gr < llwinllooVVinllol[Viallo (4.5)

< e[ Vinllt + ClIVialls,

(V : Wi,hvi,ha Vi,h)Q;L < C||Vi,h||(2)a (4-6)
(fir: Vin)ai < [l finllol[Vinllo < € (Lfimllg + 1Vinll3) (4.7)
(T, Vi), < ItllezaenVirllzewy < I7llzzaen [Vinlh (4.8)

< ClI7llia,) + el Vinlli-

We choose a sufficiently small ¢, leading to

i=1

2 2
> {2 A +0||vm||1] < (Z (£l + 1Vinlls) + ||T||%2<m> -
=1

Integrating over time from 0 to ¢, then

[\

2 2 t

1

SO (IVan @IS = 1IV2AIIE) +Z/O [Vinllidt (4.9)
i=1 i=1

t
<C (Z/o (Lfinllg + IVinll3) dt+/0 HTH%Z(rt)dt>-
=1

Using Gronwall’s inequality, we have the desired stability result:

2
Z (HVZ hHLoo 0,£;L2(021) ) + ||Vz h“L2 OtHl(QZ))>

=1

2
<C (Z (Hfi,h||L2(0,t;L2(Q;')) + ||Vz',h(0)HL2(Qg)) + HTHLQ(Fz)) :

=1

15



4.3 Semi-Discrete Error Analysis

We begin by looking at a handful of lemmas which will help us through the error-analysis.

h)
*/ Q)

seriesLemma 4.1. Assume «, 5,7 : Q(t) — R are smooth functions. Then we have

da

d
it (O‘V@VV)Q(?&) - (E

h dp h dvy

Vi, Vy + |aV—| ,Vy + | aV[E,V—

< dt |, dt
Q(t) Q(t)

= ((Ven i) VB, V) o) + (V- 1) VB, Vg

Proof. Using Vu = Vu - F~1 where F = (%)

where

16



Ge = /Q<o> a (ﬁﬁ : Fﬁl) : (W : Fﬁl) Y i — (av 5,9 (V- wn))og) »

dt
where G5 and G5 use % = —F’I@whﬁfl, which can be verified by observing that E.
A A A A A 1 fr—1 N I
P = g (P = AR g PO =00 So 4B — —pHERL where

dF _ d () — vix —
L d (Vx)—vdt—th.

seriesLemma 4.2. Assume «, 5 : Q(t) — R are smooth functions. Then we have

h

dp
A,V'ﬁ) ‘|‘<(I,VE
* Q(t)

- (anh : VBT)

d do h

o @V Blag = <E

X

) (V- wn) @, V- Bl
Q(t)

Q)

Proof. Using V- 8= V3 : F~T, we have

where
dé [~ - do|"
G1:/ —O‘(w:F—T)de=<—O‘ ,v-@> ,
L df - dg "
e [ (04 ) aae= (0w 2])
(0) t U)o

G / 73 Pt
[ oalvs: L) Jax
3 0) dt

_ /Q K (V8 : P TNWl P Jdx
(

~ N dJ
G:/ a(VB:FT)—=dk=(a,V-p(V-w ,
1= o8 ) ek = (0, V- B(V - wn))g



—T T T 2 2
where we use 40" = —[-TAEL =T gpq dFL — 4 (VXT> = Vw] for Gs.

seriesLemma 4.3. Assume v € WM and q € My, then the following inf-sup condition holds

\Y
inf sup g >C>0.
€M1 e, 1Vll1llgllo —

This lemma can be found in Xu and Yang (2015).

We can now proceed to the main theorem of the section, the error estimate of the semi-

discrete scheme.

seriesTheorem 4.2. Suppose (V1,p1, Va) is the solution to (3.4) and (Vi n,p1n, Van) is the

solution to (4.2), then we have the following error estimate:

2

de h
Z [H dt dt HL?(OtLZ(Q' ) + Vi =V, (0.t:H ()
2
+ [ _pl,h”L?(O;t;L?(Q%))} < Ch2<z {||Vz‘HH1mLoo(o,t;H3(ng)) (4.10)
i=1
i dp
+ HW ) it (Q;’))} + Hp1HL<>°<07t;H2(Ql ) + H dt HL2 0;t;H? (Ql))>
h
Proof. Subtracting (4.2) from (3.4) and using the identity O = 9541 + (w; —w;p) - V'V,

X

»

we get the error equation:

[ (%

(win - V) (Vi—=Vip) awi,h)gzt‘] —(pr —p1p, V- iﬁl,h)ﬂ% +

" deh

X

awz h) + (1V (Vi = Vip), Vwi,h)ﬂg -
Qi

(V- (Vi—=Vip) ,C]1,h)Q% =0.
To proceed, we need to introduce the discrete kernel space K, as
Ky = {(Y1n,Y2n) € Wh,t‘ (V- i, ql,h)Qtl =0,Vq1 5 € M}?’t}
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Picking arbitrary functions V = (\71, \72) € Kj, and p € M,?vt. Let V=V, =V, — \71 +

\71- —Vipn=n+&, and py —p1p =p1 — P1 + P1 — prp = o+ B, we can rewrite (4.11) as

2

D

3 {(d@
-2 |-

Vi h> + (1iV&i, V@Z)z‘,h)gi] — (B, V- trn) o
Qi

t

s Vg h) - (i Vs, Viﬁi,h)gg + ((Win - V) (i + &) awi,h)]
o

+(o, V- thrn)g; - (4.11)
h
Choosing v, , = % , 1.n = B, the error equation (4.11) becomes
2 [ h h h
dé;|” d&; df d;|"
B ETR B ETR zv ) ) o =
; (dt S dr x) i (“ Vg )Q] (5 Vo,

2 | h h
dn; df, d§; dg;
' (dt Yy ) - (uNm,VE ) T+ (( V) (i +&) = - )]
=1 L Q% X Q%
dg;
(oo ) "
o

Using Youngs inequality with € and the Cauchy-Schwarz inequality gives us the following

estimates:
- %
o dt
t

( )Qi—l( o (i, VE) - (Cil—t V&N&) (4.14)

(V& (Vwiy + Vwi,) , VE) —((V~wz~,h)mV&7V€¢)>,

h

d§;
& G (4.13)

d&

wiV&i, V

d d
B,V & ) = %(67v'§1> - <dt V- §1) - (4.15)
(V- win) B,V -&1) + (5VW1h,V§1)
dn; " d; dm d&
- (% Tt x) y CH Ho + H Ho, (4.16)
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% >
v
I

h

X

d dp;
—(a (Mivﬁi>vfi) - ( dt

h
/%V% K Vfi) + (/Mvm (Vwi,h + ngh) >V5i) — ((V - win) 1V, V&) ),
d;|" dg;|"
(win - V) (0 + &) —¢ > < Ofllwinllwzes (Il + 1€115) +el == 5 (4.18)
"\ _d do|"
OJ,V‘% ,X>£(&7V.£l)_<ai,v.fl — (419)

((V . wlyh) Q, V- 51) + (anLh, fo) s

where (4.14), (4.17) use Lemma 4.1 and (4.15), (4.19) use Lemma 4.2.

Applying the bound on y; and w;p, as well as Cauchy-Schwarz and Young’s inequality

20



with €, we get the following estimates

dpi "
dt |4

(V& (Vwip + Vwi,) , VE) < Cllwpllwase|&l13,

sz’7vfz’> < Cl&l3,

(V- win) 1V, VE) < CllwinllwzlI&]1T,

d
dt B?v 51)

( v-gl)ZO,

(V- win) B,V &) < ellBl§ + Cllwrnllwz= &1,

(BVwin, VET) < ellBllo + Cllwrnllwa=< 1€,

dy; |
( 7 AV”“V52‘> < O (Inali? +I&13) (4.20)

dn dﬁihz 2
(uvdt vgz>_ (152 15 + e ).

(1iVn; (Vwin + Vi), VE) < Cllwinllwze (Inllf + 1&117)

(V- win) 1V, VE) < Cllwinllwzee (il + 1&117)

(Vi (Vwig + Veiy) , V&) < Cllwigllweaes (i + 1€17)

d
( dof v&)_ (1% + el

(V- win) o, V&) < C (lalls +lI&]7) ,

(aVwin, VET) < C (laf2 + &) -

Applying the estimates obtained in (4.20) to (4.14), (4.15), (4.17), (4.19) and choosing €
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small enough, we have

d&; d
[u—f I3+ 2 (e Ve,

2

=1

2
dm
(3 [ns,nl T

i=1

2

I L4
L0 de

(Vi V)i | + (4.21)

h

d
I+ !Ia|!§) T

da
5 (@ V&g + =

Integrating in time from 0 to ¢, yields

[ 4 0 V6 V8 dh = (V6 0, V&0 — ((0)VE0), V),
[ 4 0V V) = (0, V(1) — (100 0), VE(0))
| 5 @ V& dt = (o). vai(0) ~ (a0), VEi(0).

where we bound the following terms using Cauchy-Schwarz and Young’s inequality with

(1a(t)V&(t), V&) < ClI&lI1T,

(1:(0)V&:(0), VE&(0)) < ClI&(0)]1F,

(s () Vi), V&(1)) < CllnallT + ell&ll1,
(1(0)Vni(0), VEi(0)) < C (Im(O) I + [1€(0)I[7)
(a(t), V& (1) < Cllalls +ell& i,

((0), V&1 (0)) < C (lla(0)[IF + 1€2(0)]17) -

Applying Gronwall’s Inequality, we’re left with
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2 dfl
>l

i=1

2
L2 Oth(QZ ) + ||€Z|| m(O,t;Hl(Qi))]

S

+ Il +I&(0)]13 .
L2 (04:H' (2)) o (0,t;H (92)) o (0,:H ()
VeKh\{O} P
IVEANG) B (4.22)
h

2
HL2(0¢;L2(Q,})))

+ ||7h(0)||2oo(07t,H1(Q%))} + ||aH2oo<0tL2 Ql ) + H

+ EHﬂ(t) HiZ(O,t;LQ(Q%)) :
Using Brezzi Theory discussed in Boffi et al. (2013), we can take the infimum over the

more general finite element spaces, this gives the following:

d&

Z

2
OtLQ(QZ ) + Hé-lH oo(OtHl(Qz))

2
dm
<C_ i Z[ o mamnionyy + 1
= VeW o}, 2(0,:H (921)) > (0,6H ()
peMf oy (4.23)

do|"
2 2
+&0)] w@,t;mm] 00 e ey + N

HLQ(Oth(Ql)))2)

+ EHﬁ<t)HiQ(0,t;LQ(Qt1)) .

For the error estimate on pressure, we will use the discrete LBB condition for FSI prob-

lems discussed in Xu and Yang (2015):

) (V-im )
181% < Yin S?Fewh N @onn, Y2l

(V : ¢17h7 o+ ﬁ)g% - (V : ’lzfl,h, a)Qtl

= sup

(V1,0 02,0)EWh ¢ H(% h7w2 h)”l
2 d(Vi—V;,
> [ <(—h) i h) + (V (Vi—=Vin), Vl/h‘,h)gi
< sup - %
B (1,h,%2,n)EWh ¢ H<w1,h7 w2,h)||1
= (i V) (Vi = Via) sty | = (7 by
+ sup
(Y1,h%2,n)EWh ¢ H (¢1,h7 w&h) ”1
dnz d&
< OZ [E TR IS 1l + 612 + (124)
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where the final inequality comes from applying the Cauchy-Schwarz inequality and separating

V=V, =n; +¢&. Integrating (4.24) from 0 to ¢ and plugging (4.23) in, we have

2

2
dn
2 7
180 e oaszzquy <€ _inf (D { Iz2 (o) * ||?7@||L2(0tH1(m) +

VeWh t\{o} =1
My {0}

|| dgl

||L2(OtH1 Qi ) + ||€Z||L2(OtH1 Qi ) + ||7h( )||L2(OtH1 Qi >:| + ||a||L2(OtL2(Ql)))

Taking € small enough and applying Gronwall’s inequality, (4.23) becomes

2
déz )

Z L2 OtLQ(Qz ) + Hng w(O,t;Hl(Qi))

=1

2 d77
<C inf ¢ 2 P i
- VeW,\{0}, ZZ:; [ L2 (0.4:H () [l o< (0,4H1(2))) (4.25)
peMy \{0}

do|"

2 2 2
+ “52(0)” ‘X’(O,t;Hl(Qi))] + “CVH W(O,t;LQ(Q%)) + H dt HLQ(OtLQ(Ql))) )

Choosing interpolation as our arbitrary function, letting V; ,(0) = f/iyh(O), adding (4.24)

and (4.25) and using Lemmas 2.4 and 2.5, we have
dfz
Z 15
2

A 2 4.26
< (3 157 | iy * TV P ooy | 11y 420
=1

2 2
|| "O(O,t;Hl(Qé)) + ||ﬁ||L2(0;t;L2(Qt1))

||L2(0tL2 Qz ) + ||€Z

||dp1

||L2(O t;H2(QL) ))

i i, n;, @ back in and applying the triangle inequality we have our result.

[]
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CHAPTER 5

Fully-Discrete Scheme

With the semi-discrete scheme taken care of, we can now move on to the fully-discrete
scheme. Let At > 0 be the time step and ¢, = nAt for n = 0,..., N. We'll be using the

backward Euler scheme for temporal discretization. We introduce the following notation:

+1
At ’

n+1l __

where X, 11, = X, 0 (X,11) . The fully discrete scheme can now be obtained.

Find (o4, 057") € Wa, o, P13 € M, . such that vf), = 6;(0) for every n and

2
> GV in) g+ (VI Vi) = @V )y, ]

=1
2 (5.1)
- (p?,—itlv V- ¢1,h)9;+1 T (V ’ quj;l’ q17h)Q’}L+l B Z [(f:}j17 ¢i7h)g%+j |
i=1
+ <7—7 ¢1,h>

Ftn+1

holds for every (¢n,v¢25) € W,?’t and every ¢, € My, We can now move on to the error

estimate for the fully discrete scheme.

5.1 Fully-Discrete Error Analysis

We'll start with a few lemmas which will allow us to perform the required analysis. For

what follows, we define X, ,,.1 = X, 11 0 (X,,)~'. We have the following lemmas.
seriesLemma 5.1. Let ¢" ™' € Wy, then

tn+1
167480 Ko Bag, = 10 e~ [ ([ 1670 XtV e )t
n " tn ¢
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Proof.

d d - . “n dJ; ..
E |¢n+10Xt7n+1|2d$:/ £|¢n+1|2jtdxz |¢ +1|2d_ttdx
2 o o (5.2)
= |¢n+1 @) Xt7n+1|2v . (A)]—de.
Q¢
Thus
tn+1 tn+1 d
/ 10" 0 Xy i1 |PV - wpdadt = / — [ 6" o Xy i |Pduadt
tn Q4 tn dt Qs (53)
_ / ’¢n+1|2dm . / |¢n+1 o Xn,nJrl’de;
Qtn+1 Qtn
where rearranging gives the result. O]

The following lemma considers the classical Taylor expansion technique in the context of

the ALE description.

seriesLemma 5.2. For any V € Whﬂf, we have

V(xn+1’ tn+1) _ V(l‘n, tn) danrl At d2vn+1
At = |, 2| e |, Ven Vv
Proof. Expanding V (2", t") at 2", we get
oV Ax)? (0*V
V(" t") = V(2" ") — Az (%) (@™ ") + ( 23: : <ax2 > @)+ (54)

Noting that

a_v n+l gny __ a_v n+1l ynt+ly 82V n+l yn+1
(8m)<x ,t)—(ax)(x AT — At ppn (™) + .

(5.5)

@ZV n+1 yjny\ __ aZV n+1 jn+1 83V n+1 yjn+1
we have,

ov 0?V
n o4ny __ n+l 4gny\ i n+1l yn+l n+1l yn+l

V(z", t") = V(" ") Ax(@x)(x Jt )—l—A:L'At(axat)(x LT+

2 (5.6)
(Az)” [’V n+1 gn+1

5 572 (") +
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Thus,
V($n+1, tn+1) _ V(.ﬁlﬁn, tn) V($n+1, tn+1) _ V(.ﬁlﬁn—H, tn)

At At (5.7)
V(z" ) — V(2" t7) ’
At ’
Which, when expanded, gives
Az (OVN™ _(Ax) (VN PV
At \ 9z oAt \ 022 “\ oror (5.8)
V(g ) — V(2 ) '
+ :
At
where
V(I"'H, tn—i—l) . V(JI"'H, tn) B a_v n+1 B g aQV n+1 (5 9)
At ot 2\ Ot2 '

n+1
Since (%, 1") = z(%X, ")~ At (%)n+l+ (AZt)Q <<8927§> +.... We see that % = (%)RH_
At (022"
(%)
We then have

V($n+1,tn+1) _ V(l‘n,tn) B 8_33 n+1 8_V n+1 B g aQ_x n+1 8_V n+1
At ot Oz 2 \ot? Oz

o % Ny "+1_§ % nt192 gy ]
ot 0zt 2 ot 0x?

N 8_V n—i—l_g 82_V n+1
ot 2 \ Ot?

AV AL[OPV | PPt gVl gpntl @2vitl  (gpn i\ 2 gRvt]
= - = 2
a |, 2 [(%2 T Tor Tor 7ot owon ( ot ) oz }
AV AL[d@V dedV o d (do
Codt |, 2| di2 |, dtdedr\dt)]
(5.10)
O

The final lemma is borrowed from Martin et al. (2009). It puts bounds on various

Jacobian terms which arise.
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seriesLemma 5.3. There exists Cy and Cy depending on X and hg > 0 such that
||JXh7t||Loo(Q0) < 01 YVt € [O,T], Yh € (0, ho)

HJX;iHL‘X’(QO) S 02 Vt S [O,T], Vh € (0, ho)
|t — Julleo < CAL.
We can now proceed to the main theorem of the section, the fully discrete error estimate.

seriesTheorem 5.1. Suppose (V1,p1, Va) is the solution to (5.4) and (Vfgl,p?;l,V"H) is

the solution to (5.1), then we have the following error estimate:

>

i=1

< (1 + A (Z [annm " +Z|I

=1+ j5=0
N .
+ 2 Il
j=1

Proof. We begin by adding and subtracting 6, V7™ into (5.1).We then subtract the result

N
IV~ VL + A V] - vz,hum;-_)]

j=1

d2v]
)+ Z =
j=

iea | e

from (3.4). This gives:

[ (%

=1

v, ¢) VI VI ),
Q;+1

e (VI VI V)~ (W (VI - VI ),

n+1

n+1

(5.12)

= =PV ), (V (VT V) ) gy =0

n+1

Pick arbitrary functions V = (\71, \72) € Kj, and p € M,?’t. Let V,—=V,, =V, — \71 +
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Vi—Vin=mi+&, and p1 — piy = p1 — D1 +P1— pry = a+ B, and choosing (11, o) € Kp:
2

AVt
e

i=1

5V, %h) + (07, wi,h)% +

QU o
(19, Vein) g } = (BN i)y (VG )

2
Z{ 5tn”+1,wi,h)ﬂ — (V! Vidin)g + (5.13)

+1
=1

((W?;l V)( n+1+£n+l) wz h)Q1

n+1

] " (OénJrl, v Q/JI,h)Q;H
- (V nH,fh h)
n+1

Choosing ¥, = &M, g1, = "+, using Cauchy-Schwarz and Young’s inequality with e

and noting

<6n+1 V gn—&—l) ( gn-i-l Bn—i—l)ﬂ (V nn—&—l’ﬁn—l—l)ﬂl :O,

n+1

we have the following estimates:

(i VET, VET) > Ol

(Vi VETT) < Clln T+ ellg I

(5.14)
((win' - V) ()60 < O (I + 11E0H1G) + ell& I,
(@ V) < Clla™HIF + el
The term ((Stf;”l, %’,h) is handled in the following way.
We'll change variables: x,, = X, o (Xn+1)_1 (Tps1), wn—i—l % n o Xnir1. This gives:
§?+1 — gzn O Antin w _ 5;1-1—1 . gzn O Antlin w
At ? ’L,h Ql At QZ At Y T,,h QZ
n+1 n+1 n+1 (515)
— gin—l—l w é-n w Jn+1
At s Wih o . 7 ih ° Jn Qi+1
Choosing 1, = £, we have:

ngH_l n+1)
(5re7),

n+1

é'n n+1 é.n n+1 Jn - Jn+1
(At 5 OXnn+1 o -+ At g OXn'rL+1 Jn o .

n
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4 etz ..
We note (51 g@“) = %, and the remaining two terms we move to the
@,

At 0™

right hand side. We then have the following estimate:

& i1 1||£”||0n 116" © Xonrallg
(Atﬁ natt | <5TAr T3 Ar : (5.16)

i1
Using Lemma 5.1, we have:

é;n n 1 ||§n||0n 1 ||§?+1 © n,n-‘rl”g,n
<Kt7 61 1 oX n,n+1 <= +

Qi 2 At 2 At
LIE R 116 M8 n 1 ot [ 1
< -t m 2 — [ &€ 0 Xyt |PV - wipdx | dt
=2 At T2 A z/t At/|§’ ° Xinta["V - winde
! 9 (5.17)
L€ | LIS e 1 1
< Z % n =115 n - V- : n+1 X " dt
<Aty A g e 19 wle [ gl e Xennl,
2 At 2 At v
where [|€77" 0 X piall§, < [l Jellooll s lsoll&7 13 11 s used from Lemma 5.3
Following similarly, we also have:
; Jn — J, LI R | LIE" o Xunalls
n+l g n n+1 < C At 0,n = 1% ) 0,n
(At & e ( In ))Q 2 At 2 At
! (5.18)

A ”é?“g,n ||§Z‘2+1||(2),n+1 n+11(12
< CAt At +C AL & o mr1 | -

1

n+
The terms (dvi

— &Vt ffﬂ) and — (67!, &), will be handled using

dt < Qfl_,_l il
Lemma 5.2:
<dV?+1 5 Vn+1 §n+1>
dt %4
(At <d2vy+1 de\"™ (av\"T d (de\"T
=\ 2 (T —(a) (dm) %(E) &
x Qi (5.19)
<O 2 d2V—f’+1 2 Al yntl n+1)2 n+1)2
< OO (I | B 1 (T (i)™ TV 4 167
d2v?+1x

< c(an (|

| s 4 IV R s+ 167 )
X
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and

(5 nn-i—l Sin—H)Qi

n+1

APt At gt de\"" (dp\"T d (da\"T e

S\ at | 2\ aer |, \at dx dr \ dt |
Q%-H
dni ™ ™! n nil o n
SC(H pm 1 + (207 7 !Ion+1+ 1 (Vewin)™ (win)™ ™ VG o (5.20)
I )
n+1 ) d2 n+1 . .
(II 61 + (2007 71 ||on+1 R e + 1€ ||on+1),

where 22 € H'(0,T; W (Q})) and V € L2(0,T; H*(Q} U Q7)) N HY(0,T; H' ().

Using the estimates from 5.14 and choosing € small enough, we have the following:

2 n n
Z 1 Hé- +1“0 n+1 o l ||§l ||(2],n + ||£n+1||2
— At 2 At i el
™ 5.21
(Z [H oy + I s+ 12y + LRI (5.21)

a2+ C<At>2).

To achieve the global error we sum over n from 0 to N and use
n+1 n+1

Z €713, + Z 7N, < QZ €713,

as well as the Discrete Gronwall inequality to get
2
i=1

2
< inf
— VeK,\{0}, (Z

~ =1
pEMS,t\{O}

N
1 .
SIE I+ AL R,

=0

m
I67115.0 +Atz 1=

Ho, +Atz HmHUD (5.22)

N
+ ALY |5, + C(AL).

Jj=0

By Brezzi theory discussed in Boffi et al. (2013), we extend the infimum over the more
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general finite element space:

2 1 N 4
> |31+ Sl

=1

N
<oy ||§0||00+At2||—\ B sl )
vew,, :\{0}, i—1 =0
pend \{0}

N
+ ALY o5, + C(AL).

Jj=0

Choosing interpolation for our arbitrary functions and using Lemma 2.4, we have

<.
Il o
—

[Hg ||L2(QI + Atz ||§]||H1 Qz ]
- < X dv
<o+ @3 [Z IV ey + 3
1 7=0 j=0

J d V]
7 2
. dt 2 H?’(QZ Z H dt2

N
+ 3 Il )
=0

M }

(5.24)

Adding 7;* and nf back in and using the triangle inequality, we have our result O
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CHAPTER 6

Conclusion

The Stokes/Parabolic interface problem is a stepping stone to more complex fluid-structure
interaction problems. The model problem is described in a moving domain €2; and we dis-
cuss the properties of an appropriate ALE mapping. We then write our model problem
using the ALE description. We proceed to discretize the model problem in space to define
its semi-discrete non-conservative ALE finite element approximation, and analyze both its
stability and error estimates. We see that the semi-discrete scheme has a convergence order
of O(h?). We then proceed to discretize the temperal domain using the implicit backward
Euler scheme, and define the fully discrete non-conservative ALE finite element approxima-

tion. After analyzing the fully discrete scheme’s error estimates, we obtain a convergence

order of O(h? + At).
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