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ABSTRACT

Generalized Catalan Numbers and Some Divisibility Properties

by

Jacob Bobrowski

Dr. Peter Shiue, Examination Committee Chair

Professor of Mathematical Sciences

University of Nevada, Las Vegas

I investigate the divisibility properties of generalized Catalan numbers by ex-

tending known results for ordinary Catalan numbers to their general case. First, I

define the general Catalan numbers and provide a new derivation of a known for-

mula. Second, I show several combinatorial representations of generalized Catalan

numbers and survey bijections across these representation. Third, I extend several di-

visibility results proved by Koshy. Finally, I prove conditions under which sufficiently

large primes form blocks of divisibility and indivisibility of the generalized Catalan

numbers, extending a known result by Alter and Kubota.
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CHAPTER 1

GENERALIZED CATALAN NUMBERS AND LOBB’S PROOF

The goal of this thesis is to describe a generalization of the Catalan numbers and

some divisibility phenomenon exhibited by these numbers. Since the Catalan numbers

appear in many contexts, see [9] for an extensive list, there are many ways one can

choose to define them. One definition of the Catalan numbers is as an enumeration

of certain sequences defined by Graham, Knuth, and Patashnik in [3]. We define the

nth Catalan number, as the number of possible sequences of length 2n such that

1. Each terms of the sequence is either equal to 1 or equal to −1.

2. Every partial sum of the sequence is nonnegative.

3. The total sum of the sequence is 0.

Conditions (1) and (3) ensure that the lengths of these sequences are always

multiples of 2 as there must be exactly as many terms equal to 1 as are equal to

−1. One way to generalize the Catalan numbers is to alter this balance by applying

a weight to one of the terms while keeping the other fixed. The generalization we

consider fixes the terms equal to 1 and uses a parameter k to denote the difference

between of the positive term and the negative term. Graham, Knuth, and Patashnik

call such sequences k-Raney sequences, and describe the relationship between the

1



length of such sequences and the weight k. Suppose we have a sequence with m

terms equal to 1 and n terms equal to 1− k. For such sequences to have a total sum

of 0, we would need m · 1 + n · (1− k) = 0, and hence m+ n = kn. We can define a

k-Raney sequence as any sequence whose length is a multiple of k and

1. Each terms of the sequence is either 1 or 1− k.

2. Every partial sum is nonnegative.

3. The total sum is 0.

We will define the nth k-Catalan number, denoted by Ck(n), as the number of possible

k-Raney sequences of length kn.

We will now seek a formula for the generalized Catalan numbers. In [8], Lobb

establishes a proof for a common formula for the nth Catalan number using the 2-

Raney definition. To do so, Lobb considers a different generalization of the Catalan

numbers. He looks at sequences satisfying only conditions (1) and (2) and defines

Ln,m to be the number of such sequences of length 2n where n+m of the terms equal

1 and n −m of the terms equal −1. These numbers satisfy the recurrence relation

Ln+1,m = Ln,m+1 + 2Ln,m + Ln,m−1, which makes short work of an inductive proof

that Ln,m = 2m+1
n+m+1

(
2n

n+m

)
. Since 2-Raney sequences are precisely those where the

number of terms equal to 1 is the same as the number of terms equal to −1, we have

Cn = Ln,0 = 1
n+1

(
2n
n

)
.

Lobb’s proof can be generalized for the nth k-Catalan number. To this end, we

consider sequences that satisfy only conditions (1) and (2) of the definition of k-Raney

2



n
m

0 1 2

1 1+1-2 1+1+1

2

1+1+1+1-2-2

1+1+1-2+1-2

1+1-2+1+1-2

1+1+1+1+1-2

1+1+1+1-2+1

1+1+1-2+1+1

1+1-2+1+1+1

1+1+1+1+1+1

3

1+1+1+1+1+1-2-2-2

1+1+1+1+1-2-2+1-2

1+1+1+1+1-2+1-2-2

1+1+1+1-2-2+1+1-2

1+1+1+1-2+1+1-2-2

1+1+1-2+1-2+1+1-2

1+1+1-2+1+1-2+1-2

1+1-2+1+1+1+1-2-2

1+1-2+1+1+1-2+1-2

1+1-2+1+1-2+1+1-2

1+1+1+1+1+1+1-2-2

1+1+1+1+1+1-2+1-2

1+1+1+1+1-2+1+1-2

1+1+1+1-2+1+1+1-2

1+1+1-2+1+1+1+1-2

1+1-2+1+1+1+1+1-2

1+1+1+1+1+1-2-2+1

1+1+1+1+1-2+1-2+1

1+1+1+1-2+1+1-2+1

1+1+1-2+1+1+1-2+1

1+1-2+1+1+1+1-2+1

1+1+1+1+1-2-2+1+1

1+1+1+1-2+1-2+1+1

1+1+1-2+1+1-2+1+1

1+1-2+1+1+1-2+1+1

1+1+1+1-2-2+1+1+1

1+1+1-2+1-2+1+1+1

1+1-2+1+1-2+1+1+1

1+1+1+1+1+1+1+1-2

1+1+1+1+1+1+1-2+1

1+1+1+1+1+1-2+1+1

1+1+1+1+1-2+1+1+1

1+1+1+1-2+1+1+1+1

1+1+1-2+1+1+1+1+1

1+1-2+1+1+1+1+1+1

Table 1.1: Enumerations of some sequences counted by L3
n,m

sequences. We let Lk
n,m denote the number of such sequences with (k − 1)n + m

terms equal to 1 and n−m terms equal to 1−k. See Table 1.1 for an enumeration of

some of these sequences with k = 3. Before we establish a formula for Lk
n,m, we will

need to generalize Lobb’s recurrence relation.

Theorem 1. If k ≥ 2, n ≥ 1, and n ≥ m ≥ 0, then Lk
n+1,m =

k∑
j=0

(
k
j

)
Lk
n,m+k−1−j.

Proof. We consider an arbitrary sequence counted by Lk
n+1,m. Such a sequence has

length k(n+ 1) and (k− 1)(n+ 1) +m terms equal to 1. Let j denote the number of

3



terms equal to 1 that appear in the final k terms of the sequence. Then in the first

kn terms, there are (k− 1)(n+ 1) + (m− j) = (k− 1)n+ (m+ k− 1− j) terms equal

to 1. Since the first kn terms are all equal to either 1 or 1− k and have every partial

sum nonnegative, they form a sequence counted by Lk
n,m+k−1−j. Now we observe that

there are
(
k
j

)
such arrangement where j of the final k terms equal 1. Summing over

every applicable value for j, we arrive at the recurrence relation

Lk
n+1,m =

k∑
j=0

(
k

j

)
Lk
n,m+k−1−j

with the understanding that
(
a
b

)
= 0 if b < 0 or b > a.

We can now prove the generalization of Lobb’s formula, but we find it convenient

to use a different form for the induction.

Theorem 2. If k ≥ 2, n ≥ 1, and n ≥ m ≥ 0, then Lk
n,m =

(
kn

n−m

)
− (k − 1)

(
kn

n−m−1

)
.

Proof. We prove the theorem by induction on n. First fix an integer k ≥ 2.

Consider Lk
1,m. If m 6= 0, 1, then the formula yields 0, matching the number of

sequences in this case. When m = 0, we have k−1 terms equal to 1 and one term equal

1−k. Clearly, to have every partial sum positive, the term equal to 1−k must be in the

last position, and hence Lk
1,1 = 1. Our formula yields

(
k
1

)
−(k−1)

(
k
0

)
= k−(k−1) = 1.

When m = 1, we have all k terms as ’+1’ and hence Lk
1,1 = 1. Our formula yields(

k
0

)
− (k − 1)

(
k
−1

)
= 1− (k − 1) · 0 = 1

Having established the base case, we fix an integer N > 1 and suppose that for

4



all l < N

Lk
N,l =

(
kN

N − l

)
− (k − 1)

(
kN

N − l − 1

)

Let t = k − 1 +m. We fix an integer m ≤ n and consider

Lk
N+1,m =

k∑
j=0

(
k

j

)
Lk
N,t−j

=
k∑

j=0

(
k

j

)[( kN

N − (t− j)

)
− (k − 1)

(
kN

N − (t− j)− 1

)]

=
k∑

j=0

(
k

j

)[( kN

kN − (N − (t− j))

)
− (k − 1)

(
kN

kN − (N − (t− j)− 1)

)]

Hence, Lk
N+1,m is equal to

k∑
j=0

(
k

j

)(
kN

(k − 1)(N + 1) +m− j

)
− (k−1)

k∑
j=0

(
k

j

)(
kN

(k − 1)(N + 1) +m− j + 1

)

Recalling the Vandermonde identity
a∑

i=0

(
a
i

)(
b

c−i

)
=
(
a+b
c

)

Lk
N+1,m =

(
kN + k

(k − 1)(N + 1) +m

)
− (k − 1)

(
kN + k

(k − 1)(N + 1) +m+ 1

)
=

(
k(N + 1)

(N + 1)−m

)
− (k − 1)

(
k(N + 1)

(N + 1)−m− 1

)

as desired. This completes the induction and the proof.

We note that when m = 0, the nth k-Catalan number is then given by

Ck(n) = Lk
n,0 =

(
kn

n

)
− (k − 1)

(
kn

n− 1

)
.

5



n C2(n) C3(n) C4(n) C5(n) C6(n) C7(n)
1 1 1 1 1 1 1
2 2 3 4 5 6 7
3 5 12 22 35 51 70
4 14 55 140 285 506 819
5 42 273 969 2530 5481 10472
6 132 1428 7084 23751 62832 141778
7 429 7752 53820 231880 749398 1997688
8 1430 43263 420732 2330445 9203634 28989675
9 4862 246675 3362260 23950355 115607310 430321633
10 16796 1430715 27343888 250543370 1478314266 6503352856

Table 1.2: Initial values of k-Catalan numbers with k = 2, 3, 4, 5, 6, 7

The numbers Lk
n,m have another form that is useful for the generalized Catalan

numbers and matches the form taken by Lobb’s formula. Observe that

(
kn

n−m

)
− (k − 1)

(
kn

n−m− 1

)
=

(
kn

n−m

)
− (k − 1)(n−m)

kn− n+m

(
kn

n−m

)
=
[
1− (k − 1)(n−m)

kn− n+m

]( kn

n−m

)
=
kn− n+m− (k − 1)(n−m)

kn− n+m

(
kn

n−m

)
=

km+ 1

kn− n+m

(
kn

n−m

)

so that

Lk
n,m =

km+ 1

(k − 1)n+m+ 1

(
kn

n−m

)

This gives the nth k-Catalan number the formula Ck(n) = Lk
n,0 = 1

(k−1)n+1

(
kn
n

)
. A

table of values is presented in Table 1.2.
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CHAPTER 2

ALTERNATIVE REPRESENTATIONS OF GENERALIZED CATALAN

NUMBERS

The Catalan numbers are well known for counting Dyck paths, binary trees, and

applications of binary operations. In this section, we will discuss how these objects

are counted by Catalan numbers, and how they can be generalized so that they are

counted by generalized Catalan Numbers.

In [2], Deutsche defines a Dyck Path as a series of 2n steps (1, 1) or (1,−1)

such that the series starts at (0, 0), ends at (0, 2n), and never goes below the x-

axis. Associated with each path is its Dyck word, the sequence of letters obtained

by labeling each step of a path with U for an upward step and D for a downward

step. Deutsche shows that the sequence of numbers of Dyck paths of 2n steps satisfy

a well known recurrence relation for the 2-Catalan numbers, as well as its initial

values, and so the two are the same. Another proof comes from an obvious bijection

between Dyck words and 2-Raney sequences. Given a Dyck path of length 2n, one

can replace U with +1 and D with −1 to find its associated 2-Raney sequence. Since

the Catalan numbers enumerate 2-Raney sequences, they also enumerate Dyck paths.

For an enumeration of all Dyck paths with six steps and their corresponding Dyck

words and 2-Raney sequences, see Table 2.1.
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U U U D D D U U D U D D U U D D U D U D U U D D U D U D U D

1+1+1−1−1−1 1+1−1+1−1−1 1+1−1−1+1−1 1−1+1+1−1−1 1−1+1−1+1

Table 2.1: Enumeration of all Dyck paths of length 6

The generalization of 2-Raney sequences we considered applied a weight to the

subtraction terms in the sequences. In [4], Heubach, Li, and Mansour define a corre-

sponding generalization to Dyck paths that can be slightly altered to apply a weight

to the downward step. These paths have a series of steps that start at (0, 0), end at

(kn, 0), have each step as either (1, 1) or (1, 1−k), and no step goes below the x-axis.

They are enumerated by the k-Catalan numbers. This is clearly true by reasoning in

the same way as with the Catalan number case. We label the steps with U for upward

steps and D for downward steps, then replace U with +1 and D with +(1− k).

Having no steps go below the x-axis corresponds to having all of the partial sums

nonnegative and having the path end on the y-axis corresponds to having the total

sum equal 0. For an enumeration of such paths of length 3 for k = 3, see Table 2.2.

We now discuss the application of a k-ary operation. The number of objects re-

quired for applying a k-ary operation n times can be determined inductively. For a

single application, we require k objects and to form a new expression of n + 1 ap-

plications from n applications, we must replace one object with k objects. Thus, for

n applications of a k-ary operation, we require (k − 1)n + 1 objects. In [5], Hilton

and Pedersen describe the following bijection. Given an expression of n applications

8



U U U U U U D D D U U U U U D D U D U U U U U D U D D U U U U D D U U D

1+1+1+1+1+1−2−2−2 1+1+1+1+1−2−2+1−2 1+1+1+1+1−2+1−2−2 1+1+1+1−2−2+1+1−2

U U U U D U U D D U U U U D U D U D U U U D U D U U D U U U D U U D U D

1+1+1+1−2+1+1−2−2 1+1+1+1−2+1−2+1−2 1+1+1−2+1−2+1+1−2 1+1+1−2+1+1−2+1−2

U U U D U U U D D U U D U U U U D D U U D U U U D U D U U D U U D U U D

1+1+1−2+1+1+1−2−2 1+1−2+1+1+1+1−2−2 1+1−2+1+1+1−2+1−2 1+1−2+1+1−2+1+1−2

Table 2.2: Enumeration of generalized Dyck paths of length 3 with k=3

of a k-ary operation, delete all left parentheses and reverse the expression. Then

we replace every object with a 1 and every parenthesis with a −1. The resulting

sequence is a k-Raney sequence.

Finally, we consider binary trees. Recall that a full k-ary tree is a tree such that

every node has exactly k or exactly zero leaves. We call the nodes of such a tree

with k leaves a source node and the nodes with zero leaves end nodes. Further,

we recall that if a k-ary tree has n source nodes, then it has has (k − 1)n + 1 end

nodes and kn + 1 total nodes. It is well known that the nth 2-Catalan counts the

number of binary trees with n source nodes. We again look to [5], where Hilton and

Pedersen suggest a bijection from the set of k-ary trees with n source nodes to the set

9



of possible applications of a k-ary operation on n objections. We make this bijection

explicit here.

Given a full rooted k-ary tree with n source nodes, we construct an expression in

polish notation of n applications of a k-ary operation. Beginning with an object y

corresponding to the root. If the root is a source node, we order its children 1, 2, . . . , k

and replace x with the expression K(x1, x2, . . . , xk) where xi = x if the ith child is

an end node and xi = y if the ith child is a source node. After the first stage, if any

y exists we replace it in the same way. We order its children 1, 2, . . . , k and replace

y with the expression K(x1, x2, . . . , xk) where xi = x if the ith child of y is an end

node and xi = y if the ith child of y is a source node. We then repeat this process

until every y is replaced.

In this chapter, we have shown that the set of generalized Dyck paths of length

kn with weight k, the set of possible applications of a k-ary operation on (k− 1)n+ 1

objects, the set of k-ary trees with n source nodes, and the set of k-Raney sequences

of length kn all have the same size, and hence are all counted by the nth k-Catalan

number. This was achieved by demonstrating bijections across these set. In Figure

2.1, we demonstrate the corresponding representations of one one element in each set.

10



U U U U U U D U U U U U U U U U U D D D U U U U U U U U U U U D D U D

1+1+1+1+1+1-4+1+1+1+1+1+1-4-4+1+1+1+1-4+1+1+1+1-4+1+1+1+1+1+1+1-4+1-4

KxKKxxxxxxxxxxxKKKxxxxxxxxxxKxxxxxxx(
x,

((
x,x,x,x,x

)
,x,x,x,x

)
,x,x,

((
(x,x,x,x,x),x,x,x,x

)
,x,
(
x,x,x,x,x

)
,x,x

))
◦

• ◦ • • ◦

◦ • • • • ◦ • • • •

• • • • • ◦ • • • •

• • • • •

Figure 2.1: An example of a generalized Dyck path of length 7 with k = 5 and its
corresponding representations
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CHAPTER 3

GENERALIZING SOME RESULTS FROM KOSHY AND GAO

We now use the generalized Lobb numbers to prove some divisibility results about

the general Catalan numbers. In [6], Koshy and Gao use Lobb’s formula for Ln,m to

uncover some divisibility properties of the 2-Catalan Numbers. Using methods we

will generalize shortly, they find that L2
3t+1,1 = 3t+1

t+1
C2(3t + 1), suggesting that t + 1

divides C2(3t+1). Koshy and Gao later use a recurrence relation to prove this result,

but their earlier approach allows some conclusions in the general case. Following

Koshy and Gao’s approach, we observe

Lk
n,m =

km+ 1

(k − 1)n+m+ 1

(
kn

n−m

)
= (km+ 1)

(kn)!

[n−m]! [(k − 1)n+m+ 1]!

= (km+ 1)
(kn)!

n! [(k − 1)n+ 1]!

m∏
j=1

n− j + 1

[(k − 1)n+ j + 1]

= (km+ 1)Ck(n)
m∏
j=1

n− j + 1

[(k − 1)n+ j + 1]

12



Using this identity, we observe that

Lk
(k+1)t+1,1 = Ck

(
(k + 1)t+ 1

) (k + 1)[(k + 1)t+ 1]

(k − 1)[(k + 1)t+ 1] + 2

= Ck

(
(k + 1)t+ 1

) (k + 1)[(k + 1)t+ 1]

(k − 1)(k + 1)t+ (k − 1) + 2

= Ck

(
(k + 1)t+ 1

) (k + 1)[(k + 1)t+ 1]

(k − 1)(k + 1)t+ (k + 1)

= Ck

(
(k + 1)t+ 1

)(k + 1)t+ 1

(k − 1)t+ 1

Substituting k = 2 yields Koshy and Gao’s original identity. Since the LHS is

an integer, (k − 1)t + 1 must divide Ck

(
(k + 1)t + 1

)
[(k + 1)t + 1]. We observe that

(k + 1)t + 1 = (k − 1)t + 1 + 2t, and hence gcd
(

(k + 1)t + 1, (k − 1)t + 1
)

=

gcd
(

2t, (k − 1)t+ 1
)

. Clearly any divisor of t won’t be a divisor of (k − 1)t+ 1, so

the gcd must be either 1 or 2. This is sufficient to show that for any integers k ≥ 2

and t ≥ 0, (k− 1)t+ 1 divides 2Ck

(
(k+ 1)t+ 1

)
. For the case k = 2, Koshy is able to

drop the factor of 2, but the factor is required in the general case. For instance, when

k = 6 and t = 15, we have (k − 1)t + 1 = 76 and (k + 1)t + 1 = 91, but C6(106) is

not divisible by 76. These examples however are rare. For values of k and t between

1 and 100, for instance, there are only 48 cases where (k − 1)t + 1 does not divide

Ck

(
(k + 1)t+ 1

)
.

We’ll now discuss some further divisibility results. We first establish some recur-
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rence relations for k-Catalan numbers. For n ≥ 2:

Ck(n)

Ck(n− 1)
=

[kn]!

n![(k − 1)n+ 1]!

(n− 1)![(k − 1)(n− 1) + 1]!

[k(n− 1)]!

=
(n− 1)!

n!
· [(k − 1)(n− 1) + 1]!

[(k − 1)n+ 1]!
· (kn)!

[k(n− 1)]!

=
(n− 1)!

n!
· [(k − 1)(n− 1) + 1]!

[(k − 1)(n− 1) + k]!
· (kn)!

(kn− k)!

=
1

n

k∏
j=2

1

[(k − 1)(n− 1) + j]

k−1∏
j=0

(kn− j)

=
kn

n

k−1∏
j=1

1

[(k − 1)(n− 1) + j + 1]

k−1∏
j=1

(kn− j)

= k
k−1∏
j=1

kn− j
[(k − 1)(n− 1) + j + 1]

We will refer to this relation as the general recurrence relation. Substituting k = 2

yields the well known relation

C2(n) =
4n− 2

n+ 1
C2(n− 1)

In [7], Koshy and Gao use this recurrence relation to prove a divisibility result of

the 2-Catalan numbers with Mersenne number subscript. We recall that the jth

Mersenne number is Mj = 2j − 1, and that the sequence of these numbers satisfy the

recurrence relation Mj+1 = 2Mj + 1. Koshy and Gao substitute n = Mj+1 in the

above recurrence relation to get

C2(Mj+1) =
4Mj+1 − 2

Mj+1 + 1
C2(Mj+1 − 1) =

2j+2 − 3

2j
C2(2Mj).
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Since 2j+2− 3 and 2j are coprime, Koshy and Gao conclude that 2j | C2(2Mk+1) and

2j+2 − 3 | C2(Mj+1).

We consider similar results for k = 3. Using the general recurrence relation in this

case, we get

C3(n) =
3n(3n− 1)(3n− 2)

n(2n+ 1)(2n)
C3(n− 1) =

3(3n− 1)(3n− 2)

2n(2n+ 1)
C3(n− 1)

We make the same substitution of n = Mj to obtain

C3(Mj) =
3(3Mj − 1)(3Mj − 2)

2Mj(2Mj + 1)
C3(Mj − 1) =

3(3Mj − 1)(3Mj − 2)

2MjMj+1

C3(Mj − 1)

Whereas it was obvious that 2j and 2j+2 − 3 are coprime, it is unclear, and even

false for some j, that 3(3Mj − 1)(3Mj − 2) and 2MjMj+1 are coprime. To make

a similar conclusion as were to made by Koshy and Gao, we seek conditions under

which gcd(MjMj+1, (3Mj − 1)(3Mj − 2)) = 1.

Since Mj and Mj+1 are coprime, any divisor of MjMj+1 is a divisor of exactly one of

Mj and Mj+1, and since the only common divisor of Mj and (3Mj − 1)(3Mj − 2) is

1, we need only consider gcd(Mj+1, (3Mj − 1)(3Mj − 2)). We write Mj+1 = 2Mj + 1

and consider gcd(2Mj + 1, 3Mj − 1) and gcd(2Mj + 1, 3Mj − 2) separately.

First, let d = gcd(2Mj + 1, 3Mj − 1). If we let 2Mj + 1 = kd and 3Mj − 1 = ld,

then 6Mj +3 = 3kd and 6Mj−2 = 2ld. Subtracting we get 5 = (3k−2l)d, and hence

d = 1 or d = 5.

Now let d = gcd(2Mn + 1, 3Mn − 2). If we let 2Mj + 1 = kd and 3Mj − 2 = ld
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then 6Mj +3 = 3kd and 6Mj−4 = 2ld. Subtracting we get 7 = (3k−2l)d, and hence

d = 1 or d = 7.

Thus, in order to ensure gcd(MjMj+1, (3Mj−1)(3Mj−2)) = 1, we need conditions

on j to ensure that neither 5 nor 7 divide Mj.

Note that if j = 4t+ k, then

Mj+1 ≡ 2j+1 − 1 ≡ (24)t2k+1 − 1 ≡ 16t2k+1 − 1 ≡ 2k+1 − 1 mod 5

By considering the cases of k = 0, 1, 2, or 3, we see the only value of k for which

Mj+1 ≡5 0 is 3.

Similarly, if j = 3t+ k, then

Mj+1 ≡ 2j+1 − 1 ≡ (23)t2k+1 − 1 ≡ 8t2k+1 − 1 ≡ 2k+1 − 1 mod 7

By considering the cases of k = 0, 1, or 2, we see the only value of k for which

Mj+1 ≡7 0 is 2.

From the above two cases, we have:

Theorem 3. If j 6≡ 3 mod 4 and j 6≡ 1 mod 3, then MjMj+1 divides C3(Mj − 1)

and (3Mj − 1)(3Mj − 2) divides C3(Mj).

Proof. We know that under these conditions, gcd(MjMj+1, (3Mj − 1)(3Mj − 2)) = 1.

The theorem follows then from the equation 2MjMj+1C3(Mj) = 3(3Mj − 1)(3Mj −

2)C3(Mj − 1)
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CHAPTER 4

GENERALIZING A RESULT FROM ALTER AND KUBOTA

The 2-Catalan numbers have an interesting divisibility property described by Alter

and Kubota in [1]. When a prime p > 3 divides a 2-Catalan number C2(n−1), but fails

to divide C2(n), it fails to divide every successive 2-Catalan number until C2(n+ p+3
2

).

Further, in this case p divides n + 1. To prove these results, Alter and Kubota look

at the recurrence relation

C2(n) =
4n− 2

n+ 1
C2(n− 1)

that we derived in Chapter 3. If p divides C2(n − 1), but not C2(n), the n + 1 in

the denominator must cancel a factor of p in C2(n − 1), and hence n + 1 must have

a factor of p. Once we know n + 1 is divisible by p, we repeat applications of the

recurrence relation to see

C2(n+ 1) =
4n+ 2

n+ 2
C2(n)

C2(n+ 2) =
4n+ 6

n+ 3

4n+ 2

n+ 2
C2(n)

...

C2(n+ l) =
l∏

j=1

4(n+ j)− 2

n+ j + 1
C2(n)

18



Alter and Kubota observe that

4(n+ j)− 2 ≡p 4(n+ 1) + 4j − 6 ≡p 4j − 6

so that p divides 4(n + j) − 2 if and only if j ≡p
p+3
2

, and hence p does not divide

the numerator until l = p+3
2

. Using the facts that p+3
2

< p when p > 3 and that p

divides n+ 1, we know that no term appearing in the denominator has a factor of p,

and hence C2(n+ p+3
2

) is divisible by p.

We here seek similar results for the general Catalan numbers. A computer search

of values for k, p, and n shows that the result does not generalize fully. For example,

17 divides C5(12) and does not divide C5(13), but does divide C5(14). An analysis of

the divisibility of general Catalan numbers by sufficiently large primes does, however,

yield blocks of indivisibility of consistent length. The first such block in each sequence

{Ck(n)}n≥0 is formed by its initial terms.

Using formula the formula for the k-Catalan numbers derived in Chapter 1, we

can write Ck(n) = (kn)!
n![(k−1)n+1]!

. Clearly, for any prime p larger than k, if n ≤ b p
k
c,

then kn < p. Thus p cannot divide (kn)!, and hence cannot divide Ck(n). Further,

if p > k2, then p does divide Ck(b p
k
c+ 1). To see this, we divide p by k and find q, r

such that 0 < r < k and p = qk + r. We calculate

Ck(bp
k
c+1) = Ck(q+1) =

[k(q + 1)]!

(q + 1)!
[(k − 1)(q + 1) + 1]! =

1

(q + 1)!

q−1∏
j=0

[
k(q+1)−j

]

Since p > k2 and k - p, we know k ≤ q and r ≥ 1, and hence k − r ≤ q − 1. We
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observe first that the term in the product corresponding to the index j = k − r is

k(q + 1) − (k − r) = kq + r = p and second that p - (q + 1)!, and conclude that

p | Ck(b p
k
c+ 1). We will now find conditions under which block of length b p

k
c+ 1 that

are indivisibility by a prime appear later in the sequence. To identify a block, we

need to know first that a given prime divides Ck(n) for some initial n, then that the

prime does not divide the following b p
k
c+ 1 terms, and finally that the prime divides

Ck(n+ b p
k
c+ 1). Our first result describes the starting place of possible blocks.

Theorem 4. If k ≥ 3 and p is a prime, then p | Ck(mp− 1) for any m > 0.

Proof. Starting with Ck(mp− 1) = 1
(mp−1)!

mp−1∏
j=2

[(k − 1)(mp− 1) + j] we first identify

the factors of the numerator and of the denominator that are multiples of p. Clearly

there are exactly m− 1 occurrences of p in the denominator corresponding to tp for

t = 1, 2, . . . ,m− 1.

For the numerator, first fix an index integer j and consider the corresponding term

in the product. Since (k − 1)(mp− 1) + j = (k − 1)mp− (k − 1) + j, we have that

p | (k − 1)(mp− 1) + j ⇐⇒ j ≡ (k − 1)mod p

We observe that 2 ≤ (k − 1) + tp ≤ mp − 1 for t = 0, 1, . . . ,m − 1, and conclude

that there are m occurences of p in the numerator corresponding to terms of the form

(k − 1)mp+ tp = [(k − 1)m+ t]p.

We now separate the terms that are divisible by p from the terms that aren’t.
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Define D = (mp−1)!
m−1∏
t=1

tp

and E =

mp−1∏
j=2

[(k−1)(mp−1)+j]

m−1∏
t=0

[(k−1)m+t]p

so that

Ck(mp− 1) =
E

D
·

m−1∏
t=0

[(k − 1)m+ t]p

m−1∏
t=1

tp

=
E

D
·

m−1∏
t=0

[(k − 1)m+ t]

m−1∏
t=1

t

where neither E nor D are divisible by p. Recall that the p-adic valuation of an

integer a is defined by νp(a) = max{j : pj | a}. We can now determine if Ck(mp− 1)

is divisible by p by comparing the p-adic valuation of
m−1∏
t=0

[(k − 1)m + t] and
m−1∏
t=1

t.

Recall further that by Legendre’s Formula, νp(a!) =
∑
j

b a
pj
c.

Divide m by pj for all j ≥ 1 to obtain qj, rj such that m = qjp
j + rj where

0 ≤ rj ≤ pj. Consider

νp

(
Ck(mp− 1)

)
= νp

(m−1∏
t=0

[(k − 1)m+ t]
)
− νp

(m−1∏
t=1

t
)

= 1 + νp

( (km− 1)!

[(k − 1)m]!

)
− νp

(
(m− 1)!

)
= 1 + νp

(
(km− 1)!)− νp

(
(m− 1)!

)
− νp

(
[(k − 1)m]!

)
= 1 +

∑
j=1

bkm− 1

pj
c −

∑
j=1

bm− 1

pj
c −

∑
j=1

b(k − 1)m− 1

pj
c

= 1 +
∑
j=1

[
bkm− 1

pj
c − bm− 1

pj
c − b(k − 1)m− 1

pj
c
]
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Considering each term in the sum, we have

bkm− 1

pj
c = bk(qjp

j + rj)− 1

pj
c = bkqj +

krj − 1

pj
c

bm− 1

pj
c = b(qjp

j + rj)− 1

pj
c = bqj +

rj − 1

pj
c

b(k − 1)m− 1

pj
c = b(k − 1)(qjp

j + rj)− 1

pj
c = b(k − 1)qj +

(k − 1)rj − 1

pj
c

so that the sum is

∑
j=1

[
kqj − qj − (k − 1)qj + bkrj − 1

pj
c − brj − 1

pj
c − b(k − 1)rj − 1

pj
c
]
,

and hence

νp

(
Ck(mp− 1)

)
= 1 +

∑
j=1

[
bkrj − 1

pj
c − brj − 1

pj
c − b(k − 1)rj − 1

pj
c
]
.

This sum is clearly nonnegative since
krj−1

pj
≥ (k−1)rj−1

pj
and pj ≥ rj, so the p-adic

valuation of Ck(mp− 1) is positive, and hence p | Ck(mp− 1).

We can now prove that after mpth term, the next b p
k
c+1 terms are all divisible by

p or all not divisible by p. In fact, each of these terms has the same p-adic valuation.

Theorem 5. If p is a prime greater than k2, then νp(Ck(mp+ l)) = νp(Ck(mp)) for

all l such that 1 ≤ l ≤ b p
k
c

Proof. It is sufficient to show that νp(Ck(mp+ l) = νp(Ck(mp+ l− 1)) for any l such

that 1 ≤ l ≤ b p
k
c . Substituting n = mp+ l in the general recurrence relation, we get
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Ck(mp+ l)

Ck(mp+ l − 1)
= k

k−1∏
j=1

k(mp+ l)− j
(k − 1)(mp+ l − 1) + j + 1

We show that p does not divide
k−1∏
j=1

[k(mp+ l)− j] or
k∏

j=1

(k−1)(mp+ l−1)+ j+1.

Pick any j such that 1 ≤ j ≤ k − 1. We note k(mp + l) − j ≡p kl − j, but

since l ≤ b p
k
c and j ≥ 1, we know kl − j ≤ kb p

k
c − 1 < p − 1 < p. Thus p -

k(mp + l) − j. Similarly, (k − 1)(mp + l − 1) + j + 1 ≡p (k − 1)(l − 1) + j + 1, but

(k − 1)(l − 1) + j + 1 < kl − k + k < kl < p. Thus p - (k − 1)(mp + l − 1) + j + 1.

Since no factor of p is in the numerator or denominator of the RHS of the equation,

we know νp(Ck(mp+ l) = νp(Ck(mp+ l − 1)).

Using Lucas’ Theorem, we can show that the terms Ck(mp+ l) where 0 ≤ l ≤ b p
k
c

are all related to the initial terms Ck(l) Recall that Lucas’ Theorem states that for a

prime p and integers a, b such that a =
t∑

i=0

aip
i and b =

t∑
i=0

bip
i with 0 ≤ ai, bi < p, we

have that
(
a
b

)
≡p

t∏
i=0

(
ai
bi

)
.

Theorem 6. For l : 0 ≤ l ≤ b p
k
c, Ck(mp+ l) ≡p

(
km
m

)
Ck(l).

Proof. We will use Lucas’ Theorem in two ways. First, we will prove that
(
k(mp+l)
mp+l

)
≡p(

kmp
mp

)(
kl
l

)
.

Consider
(
k(mp+l)
mp+l

)
=
(
kmp+kl
mp+l

)
. We write the base-p expansion of kmp + kl as

t∑
i=0

cip
i and of mp+ l as

t∑
i=0

dip
i. Since l ≤ b p

k
c, we know l < kl < p, and hence c0 = kl

and d0 = l.

Note then that the base-p expansions of kmp and mp are
t∑

i=1

cip
i and

t∑
i=1

dip
i.
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Thus, by Lucas’s Theorem,

(
k(mp+ l)

mp+ l

)
≡p

t∏
i=0

(
ci
di

)
=

(
c0
d0

) t∏
i=1

(
ci
di

)
≡p

(
kl

l

)(
kmp

mp

)

Using this, we conclude

Ck(mp+ l) ≡p
1

(k − 1)(mp+ l) + 1

(
k(mp+ l)

mp+ l

)
≡p

1

(k − 1)l + 1

(
kl

l

)(
kmp

mp

)

Our second use of the theorem will be to prove that
(
kmp
mp

)
≡p

(
km
m

)
. Using the

expansion above,

(
kmp

mp

)
≡

t∏
i=0

(
ci
di

)
=

(
0

0

) t∏
i=1

(
ci
di

)
≡
(
km

m

)

Using this and the above congruence, we conclude

Ck(mp+ l) ≡p

(
km

m

)
Ck(l).

So far, we have found a candidate for the initial term of a block of indivisibility

and we have shown that the terms following this initial term all divisibile or indivisible

by a prime together. We now need conditions under which they are all indivisible.

We consider a prime p such that p > k2. Substituting n = mp in the general

recurrence relation, we have
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Ck(mp)

Ck(mp− 1)
= k

k−1∏
j=1

kmp− j
(k − 1)(mp− 1) + j + 1

Since p does not divide k or
k−1∏
j=1

(kmp− j), we have

νp(Ck(mp)) = νp(Ck(mp− 1))− νp(
k−1∏
j=1

(k − 1)(mp− 1) + j + 1)

The term in
k−1∏
j=1

(k − 1)(mp − 1) + j + 1 corresponding to the index j = k − 2 is

(k − 1)(mp − 1) + (k − 2) + 1 = (k − 1)mp, so since the terms are consecutive

and there are fewer than p terms, this is the only term divisible by p. Further,

k − 1 and p are coprime, so νp(
k−1∏
j=1

(k − 1)(mp − 1) + j + 1) = νp(m) + 1. Hence,

νp(Ck(mp)) = νp(Ck(mp− 1))− νp(m)− 1. By applying theorem 5, we arrive at the

following equation. If p is a prime such that p > k2 and l is an integer such that

0 ≥ l ≥ b p
k
c, then

νp(Ck(mp+ l)) = νp(Ck(mp− 1))− νp(m)− 1

We can now state the main theorem.

Theorem 7. If k ≥ 3 and p is a prime such that p > k2, then for any m > 0 such

that νp(m) ≥ νp(Ck(mp− 1))− 1:

1. p | Ck(mp− 1)

2. p - Ck(mp+ l) for any l such that 0 ≤ l ≤ b p
k
c
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3. p | Ck(mp+ b p
k
c+ 1)

Proof. (1) has already been proven, and (2) is obvious from the above equation. That

leaves (3). We write

Ck(mp+ b p
k
c+ 1)

Ck(mp+ b p
k
c)

= k

k−1∏
j=1

k(mp+ b p
k
c+ 1)− j

(k − 1)(mp+ b p
k
c) + j + 1

Since k is not divisible by p, we have

νp(Ck(mp+bp
k
c+1)) = νp(

k∏
j=1

(k(mp+bp
k
c+1)−j))−νp(

k−1∏
j=1

[(k−1)(mp+bp
k
c)+j+1])

We divide p by k to get q and r such that p = qk+ r where 0 ≤ r < k. Now consider

k∏
j=1

(k(mp+ b p
k
c+ 1)− j). We observe

k(mp+ bp
k
c+ 1)− j ≡p kb

p

k
c+ k − j = kq + k − j = p+ k − j − r ≡p k − j − r

Thus we find that p divides a term in this product if and only if j = k− r. Since p is

prime, and r is the remainder in the division of p by k, we know 1 ≤ k − r ≤ k − 1.

Thus there is one term in the this product divisible by p, and hence νp(
k∏

j=1

(k(mp +

b p
k
c+ 1)− j)) is positive.

Now consider
k−1∏
j=1

[(k − 1)(mp+ b p
k
c) + j + 1]. We observe

(k − 1)(mp+ bp
k
c) ≡p (k − 1)bp

k
c = (k − 1)q = kq − q.
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Since kq = p− r, We have

(k − 1)(mp+ bp
k
c) + j + 1 = p− r − q + j + 1 ≡p j + 1− q − r

Thus p divides terms in the first product if and only if j = q + r − 1. We assumed

k2 < p and that p is a prime, so q > k and r > 0, and hence any such j is larger than

k − 1. Thus p doesn’t divide any of the terms in this product, and hence νp(
k−1∏
j=1

[(k −

1)(mp+ b p
k
c) + j+ 1]) = 0. The above considerations show that νp(Ck(mp+ b p

k
c+ 1))

is positive, and hence p does divide Ck(mp+ b p
k
c+ 1).

We now consider an example. We know by theorem 4 that C3(142) is divisible by

11 since 142 = 11 × 13 − 1. In fact, ν11
(
C3(142)

)
= 1. Using equation the derived

equation from above and the fact that 11 does not divide 13, we know that 11 does

not divide C3(143), C3(144), C3(145), or C3(146), but does divide C3(147). We can

continue to consider this example to see how the above equation applies when the

condition in theorem 7 fails. It can be confirmed that ν13
(
C3(142)

)
= 2, and hence

since 13 does not divide 11, C3(143), C3(144), C3(145), C3(146), and C3(147) are

divisible by 13 but not by 132, where as C3(148) is divisible by 132.
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