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ABSTRACT 
 

Statistical Inference of a Measure for  
Two Binomial Variates  

 
 

by 
 
 

Serena Petersen 
 

Hokwon Cho, Ph.D., Examination Committee Chair 
Associate Professor of Mathematical Sciences 

University of Nevada, Las Vegas 
 

We study measures of a comparison for two independent binomial variates which 

frequently occur in real situations.  An estimator for measure of reduction (MOR) is 

considered for two sample proportions based on a modified maximum likelihood 

estimation. We study the desirable properties of the estimator: the asymptotic behavior of 

its unbiasedness and the variance of the estimator.  Since the measure ρ is approximately 

normally distributed when sample sizes are sufficiently large, one may establish 

approximate confidence intervals for the true value of the estimators.   For numerical 

study, the Monte Carlo experiment is carried out for the various scenarios of two sets of 

samples as well as to examine its finite sample behavior. Also, we investigate the 

behavior of the estimates when sample sizes get large.  Two examples are provided to 

illustrate the use of this new measure, and extended to the hypothesis testing for further 

statistical inference. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Motivation of the Problem 
 

In this thesis we are concerned with a measure of reduction for two independent 

binomial variates.  Binomial probability phenomenon is one of the most commonly 

occurring distributions in our lives.  Consider a problem of comparing sample 

proportions using a ratio from two independent binomial populations. There can be 

several ways of making ratios using two binomial proportions.  The ratio of two binomial 

parameters is often called the relative risk or risk ratio, which has been studied and 

frequently shown in cohort studies (Katz, Baptista, Azen, and Pike, 1978), medical and 

pharmaceutical problems (Koopman, 1984), and epidemiological problems (Bailey, 

1987), and so on.  Notably Noether (1957) seems to be the first to discuss a measure of 

effectiveness for two binomial distributions.  However, for utility of measure we devised 

a measure of reduction.  In particular, one wishes to know how much the risk has been 

reduced.  For a more convenient way to figure out, we consider a measure of reduction 

rather than making a ratio of two proportions.  Then, the measure of reduction is more 

practical to utilize in a measurement objective and can be more useful in comparison of 

two binomial proportions.  For example,  

(i) a medical research group wants to know whether a flu shot effectively 

reduces the flu infection rate during the flu season;  

(ii) a military test group wishes to determine whether implementing an 

electronic jamming technique is effective in reducing the lethality or not;   

(iii) a team of operation researchers wants to figure out whether implementing 
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a new electronic method in radar detection will reduce the detection rate or 

not.  

 

The goal of this thesis is to study the properties of the measure of reduction and to 

construct an approximate (1− α)100% confidence interval of the estimator.  Or in other 

words, how much the new condition can lower the risk compared to the existing 

condition. 

 

 1.2 Assumptions and Definitions 

 Suppose we have two independent sequences of Bernoulli trials with nonzero 

probabilities.  Let X1, X2, …, Xn be a sequence of Bernoulli trials with probability p0 and 

Y1, Y2, …, Yn be a sequence of Bernoulli trials with probability p1, respectively.   For 

instance, we are interested in measuring the “degree of reduction” in two comparable 

binomial variates with n (< ∞) trials of each outcome/category, say p0 represents the 

proportion (or probability) under no treatment made and p1 indicates the proportion (or 

probability) under the new treatment/condition imposed.  

 

Definition 1.1 (Measure of Reduction; MOR)  A measure ρ is called the measure of 

reduction (MOR) and defined by 

0 1 1

0 0

1p p p
p p

ρ −
= = − , (1.1) 

where 0 < p0 < 1 and 0 < p1 < 1. 

 

By definition, ρ is a relative figure of merit which is based on a ratio from two 
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independent binomial proportions, as may be seen from Equation (1.1).  Suppose that p0 

indicates the true proportion of a population with a certain condition and p1 is the true 

proportion of a population under the newly developed condition. Customarily, p1 is 

assumed to be bigger than p0.  

Then, depending upon the values of ρ, –∞ < ρ ≤ 1, we can have the following three 

scenarios and their interpretations for the measure of reduction;  

  (i) when ρ approaches one (i.e., p1 gets close to zero) – this means that the risk of 

infection or lethality is completely reduced/removed.  

 (ii) when ρ approaches zero (i.e., p1 is close to p0) - this implies that no reduction 

is achieved.  

(iii) when ρ is negative - this indicates that a certain degree of reduction is 

achieved. 

 

1.3 Probability Distributions 

 In this section, we study some important random variables and their probability 

distributions that are related to two main sampling schemes.   

 

Definition 1.2 (Binomial Distribution)  A random variable X is said to have a binomial 

distribution with parameters n and p if the probability mass function is given by   

 

                           
(1 ) ,  0,1,...,

( ) ,
0,  otherwise

x n xn
p p x n

P X x x
−⎧⎛ ⎞

− =⎪⎜ ⎟= = ⎨⎝ ⎠
⎪
⎩

                    (1.2) 
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where n is the number of total trials and p is the probability of success in each trial.  We 

denote this by X ~ Bin(n,p).  It can be shown that 

 

E(X) = np and Var(X) = np(1− p). 

 

The binomial probability refers to the probability that a binomial experiment consisting 

of n trials results in exactly x successes with probability of success p in Bernoulli trials. 

 Consider instead of performing a given number of trials, one conducts 

independent Bernoulli trials, respectively, until a desired number of successes are 

observed and then separated.  In this setting, the total number of trials required is random.  

This leads us to define the following probability distribution. 

 

Definition 1.3 (Negative Binomial Distribution)  A variable X is said to have the 

negative binomial distribution with parameters r and p if the probability mass function is 

given by:  

 

                                      ( )
1

( ) 1 ,
1

r kk r
P X k p p

r
+ −⎛ ⎞

= = −⎜ ⎟−⎝ ⎠
                                  (1.3)    

 

where r is the number of successes and k is the required total number of trials.  We 

denote this by X ~ NB(r,p).  It can be shown that 

( )  and
(1 )

pE X r
p

=
− 2( ) .

(1 )
pVar X r
p

=
−  
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 Where r is the number of successes, p is the probability of success and n is the number of 

total samples.  The negative binomial distribution plays an important role by estimating 

the sample size when an event has a relatively small probability.   

  Next, we introduce a probability distribution related to a sample without 

replacement.  This is known to be a probability for an urn model.  

 

Definition 1.4 (Hypergeometric Distribution)  Suppose we draw n objects from a 

population size without replacement, from an urn containing N objects in total, m of 

which are red.  Let k be the number of red objects drawn from the urn.  A random 

variable X is said to have the hypergeometric distribution if the probability mass function 

is given by:  

 

                                 ( ) .

m N m
k n k

P X k
N
n

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

                                        (1.4) 

 

We denote this by X ~ HypGeo(k;N,m,n).  It can be shown that 

 

( ) mE X n
N

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 and ( ) .m N mVar X n
N N

−⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
 

We note that if N is sufficiently large, then m p
n

≈ and 
N m

N
−

≈ 1 – p = q as in the 

binomial distribution.  
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1.4 Sampling Schemes 

 In comparing two independent populations, we use two independent samples of 

size n, respectively.  Basically, two types of sampling schemes are feasible: fixed and 

sequential.  In this subsection, we briefly describe the sampling schemes that are most 

frequently used. 

 We start with a method of sampling that is most commonly used in statistics.  The 

fixed sampling method is a sampling from a population having a fixed number of n trials 

decided on in advance.  However, problems may occur with this method because there 

may not have been enough measurements to obtain a desired statistical significance.  This 

is remedied with some kind of sequential sampling. 

  The sequential sampling method has an advantage to optimize the sample size 

with respect to the objectives or inferential goals (see Cho, 2007).  This sampling method 

is used when a sample size of n trials is not fixed in advance.  The sample size is 

determined by the sampling results.  The idea is to draw a preliminary sample of 

observations to determine how large the total sample size should be.   

 The sequential sampling technique consists of continuing the number of trials 

until a predetermined number, m, of distinct observations, appear in the sample with or 

without replacement.  For example, this sampling method can be used when a true 

proportion is small, and a larger sample is needed in order to estimate the probability p 

with a specified relative error r.    

 Stopping rules are required for sequential sampling or inverse type sampling.  A 

stopping rule depends on the goal of an experiment or on those conducting the 

experiment.   
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There are cases when it is difficult to obtain many samples.  One way to alleviate 

a small sample size in an experiment is to use a resampling technique.  We briefly 

introduce further investigation in resampling techniques and will mention this in Section 

4.3 Future Research.   

A resampling technique may be applied when there is a small sample size to 

achieve more statistical confidence.  Resampling allows estimating the precision of 

sample statistic means, variances, medians, etc.  Resampling procedures are highly 

computer-intensive with the most commonly used resampling techniques being jackknife 

and bootstrapping.   

 The Jackknife Method was originally designed by Quenouille (1956) and reduces 

the bias of an estimator.  This method is used in statistical inference to estimate the bias 

and standard error in a statistic when a random sample of observations is used to 

calculate it.  The jackknife estimator recalculates the statistic estimate; it leaves out one 

observation at a time from the sample set.  From this new set of observations, an estimate 

for the bias and an estimate for the variance of the statistic is calculated.   

 The Bootstrap is a procedure for estimating the distribution of a statistic based on 

resampling methods.  Efron and Tibshirani (1994).  They describe this method as a 

resampling method that enables one to better understand the characteristics of an 

estimator without the aid of additional probability modeling.  This procedure is based on 

resampling and simulations where we take a random sample from the sample.  This new 

sample is taken by sampling with replacement, or in other words, some of the original 

sample can appear more than once.  The new collection is called the bootstrap sample and  
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is used to assess an estimator’s variability and bias, predictive performance, and 

significance of a test.   
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CHAPTER 2  

FORMULATION OF THE PROBLEM 

2.1 Point Estimation of ρ 

Suppose we have two samples of size n (< ∞) from two independent populations 

with probabilities p0 and p1, respectively, say X1, X2,.., Xn and Y1, Y2,.., Yn.  Define  

1

n

i
i

R X
=

= ∑  and 
1

n

i
i

S Y
=

= ∑ . 

Then, 
1

n
ii

X
=∑ follows the binomial distribution with parameters of n and p0, and 

1

n
ii

Y
=∑ follows the binomial distribution with parameters of n and p1. That is, R ∼ 

Bin(n,p0) and S ∼ Bin(n,p1).   

 

Definition 2.1 (Unbiasedness) An estimator n̂θ , a function of R and S, is said to be 

unbiased for the parameter θ if  

                                           ( ) ( )ˆ , .nE E f R Sθ θ⎡ ⎤= =⎣ ⎦                               (2.1) 

 

Definition 2.2 (Bias) The bias B for an estimator n̂θ , of the parameter θ, is defined by 

 

                                                 ( ) ( )ˆ .nB Eθ θ θ= −                                     (2.2) 

 
Definition 2.3 (Asymptotic Unbiasedness) An estimator n̂θ  is said to be asymptotically 

unbiased for the parameter θ if  

                                                  ( )ˆ as .n nE nθ θ→ → ∞                               (2.3) 
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From Equation (1.1), the estimator for measure of reduction for two sample proportions 

0p̂  and 1p̂ , ρ̂ , is: 

                                                  0 1 1

0 0

ˆ ˆ ˆˆ 1 ,
ˆ ˆ

p p p
p p

ρ −
= = −                                  (2.1) 

where 0ˆ Rp
n

=  and 1ˆ Sp
n

= . 

Since there does not exist an unbiased estimator of the measure ρ, we use the modified ρ̂  

to avoid the case of undefined ˆnρ  when R = 0: 

                           ( )ˆ ˆ1 ,  1n n
R S S

R R
ερ ρ

ε ε
+ −

= = − − ∞ < ≤
+ +

                      (2.2) 

where ε (0 < ε < 1) is an auxiliary constant.  For practical purpose, one may take ε = ½ 

(e.g., see Bailey, 1987, and Cho, 2007). 

 

2.2 Properties of the Estimator 

 In this section we study the fundamental properties based on first two moments of 

the estimator ˆnρ  for further investigation.  

2.2.1 Expectations and Bias 

Now consider the expectation of the estimator ˆnρ  and its bias. By definitions and 

independence, we have 

( )

1

ˆ 1 1
1/ 2 1/ 2

1 11 ( ) 1 .
1/ 2 1/ 2

n
S SE E E

R R

E S E np E
R R

ρ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

        (2.3)  

But, noting that (see also Cho, 2007) 
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( )
( ) ( )

( )
( )

( )

0 0

1

0

0 0

2

0 0

0 0 0

0 0
2 2

0 0 0 0

0 0
2 3

0 0 0

1 1
1/ 2 1/ 2

1/ 21 1

1/ 2 1/ 21 1 ...

11 1 11 ...
2 4

11 1 1
2 4

E E
R np R np

R npE
np np

R np R npE
np np np

np p
E

np np np np

np p
np np np

−

⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟+ + − +⎝ ⎠ ⎝ ⎠
⎡ ⎤⎛ ⎞− +⎢ ⎥= +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞− + − +⎢ ⎥= − + +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤−

= − + + +⎢ ⎥
⎢ ⎥⎣ ⎦

−
= − + +

( )3
0

...
np

+

                    (2.4) 

  

From Equations (2.3) and (2.4), we have 

( )
( )

( )
( ) ( )
0 0

1 2 3 3
0 0 0 0

11 1 1ˆ 1 ... .
2 4

n

np p
E np

np np np np
ρ

⎡ ⎤−
= − − + + +⎢ ⎥

⎢ ⎥⎣ ⎦
                           (2.5) 

Then, the bias B̂  becomes 

                                 ( ) ( )
( ) ( )

1 0 21
2 2
0 0

1 0 2
2
0

ˆ ˆ( )
1

2
1/ 2

.

nB E
p pp O n

np np
p p

O n
np

ρ ρ

−

−

= −

−
= − + +

− +
= +

                            (2.6) 

Thus, 2B̂  = O(n-2) and can be neglected in the expansion. 

For n   ∞, it follows from Equation (2.5) that:  
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( ) 1

0

ˆ 1 .n
npE
np

ρ ρ= −
 

That is, ˆnρ  is asymptotically unbiased estimator of ρ.  

 

2.2.2 Maximum Likelihood Estimation  

 To find the asymptotic variance of ˆnρ , we consider using the maximum likelihood  

estimates of ρ and p0.  Since ( )1 01 ,p pρ= −  the likelihood function of ρ and p0, denoted 

by L(ρ, p0) is given by 

           

( ) ( ) ( ){ } ( ){ }

( ) ( ) ( )

( ) ( ) ( )

0 0 0 0 0

0 0 0 0

0 0 0 0

, 1 1 1 1

1 1 1

1 1 1 .

s n sn rr

n r s n sr s

n r s n sr s

n n
L p p p p p

r s

n n
p p p p

r s

p p p p

ρ ρ ρ

ρ ρ

ρ ρ

−−

− −+

− −+

⎛ ⎞ ⎛ ⎞
= − − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞

= − − − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∝ − − − +

    (2.7) 

   

Taking logarithm for both sides and denote the log-likelihood of L(ρ, p0) by l(ρ, p0), 

Equation (2.7) is  

 

                                  
( ) ( ) ( ) ( )

( ) ( )
0 0 0

0

, log log 1

log log 1
e e

e e

l p r s p n r p

s n s p

ρ

ρ ρ

∝ + + − −

+ + − −
                  (2.8) 

  

By setting ( )0,
0

l pρ
ρ

∂
=

∂
, the maximum likelihood estimate (MLE) of ρ, ˆMLEρ  is found 

which yields: 

0

ˆ 1MLE
s

np
ρ = − . 
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And letting ( )0

0

,
0

l p
p

ρ∂
=

∂
 yields an MLE of p0, which is 

0ˆ rp
n

= . 

It should be noted that since 

               ( ) ( ) 1
1

0 0 0 0

1 1ˆ 1 1 ( ) 1 1MLE
pSE E E S np

np np np p
ρ ρ

⎛ ⎞
= − = − = − = − =⎜ ⎟

⎝ ⎠
      (2.9) 

the MLE of ρ, ˆMLEρ  is an unbiased estimator. And so is 0p̂  because  

                                                ( )0 0
1ˆ ( )RE p E E R p

n n
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

                           (2.10) 

 

2.2.3 Asymptotic Variances 

To find the asymptotic variance of the MLEs, we consider the Fisher’s Information about 

ρ, p0 and (ρ,p0). Using Eq. (2.8) the information about ρ is  

                                        ( ) ( ) ( )2 2
0 0

2

, ,
.

l p l p
I E E

ρ ρ
ρ

ρ ρ

⎡ ⎤ ⎛ ⎞⎛ ⎞∂ ∂
⎢ ⎥= = − ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

           (2.11) 

First we find,  

                                               
( )

( )
( )

( )
0 0

0 0

,
,

1 1
l p n s ps

p p
ρ
ρ ρ ρ

∂ −
= − +

∂ − − +
             (2.12) 

 

then  

                                               
( )

( )
( )

( )

2 2
0 0

2 22
0 0

,
.

1 1

l p n s ps
p p

ρ
ρ ρ ρ

∂ −
= − −

∂ − − +
         (2.13) 

 



14 
 

Hence,  

                                          

( )
( )

( )
( )

( )
( )

( )

( ) ( )

( )( )

2
0

2 2
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2
1 01

2 2
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0
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np np
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ρ
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ρ ρ
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ρ ρ

⎡ ⎤−
= − − −⎢ ⎥

− − +⎢ ⎥⎣ ⎦
−

= +
− − +

= +
− − +

=
− − +

                (2.14) 

 

Similarly, the information about p0 is given by 

                                ( ) ( ) ( )2 2
0 0

0 2
0 0

, ,
.

l p l p
I p E E

p p
ρ ρ⎡ ⎤ ⎛ ⎞⎛ ⎞∂ ∂

⎢ ⎥= = − ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
                 (2.15) 

 

First we find,  

                                
( ) ( )

( )
( ) ( )
( )

0

0 0 0 0 0

, 1
,

1 1
l p n r n sr s

p p p p p
ρ ρ

ρ
∂ − − −+

= − −
∂ − − +

                  (2.16) 

then  
 

                              
( ) ( ) ( )

( )
( ) ( )
( )

22
0

2 22 2
0 0 0 0 0

, 1
.

1 1

l p r s n r n s
p p p p p

ρ ρ

ρ

∂ − + − − −
= − −

∂ − − +
         (2.17) 

Hence,  
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= ⎜ ⎟⎜ ⎟− − −⎝ ⎠
⎛ ⎞−

= +⎜ ⎟⎜ ⎟− − −⎝ ⎠

      (2.18) 

The joint information about ρ, and p0, denoted by I(ρ, p0), is 

                                                    ( ) ( )2
0

0
0

,
, .

l p
I p E

p
ρ

ρ
ρ

⎛ ⎞∂
= − ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

                         (2.19) 

First we find,  

                                         
( ) ( )

( )
( ) ( )
( )

0

0 0 0 0 0

, 1
,

1 1
l p n r n sr s

p p p p p
ρ ρ

ρ
∂ − − −+

= − −
∂ − − +

         (2.20) 

then  

                                                   
( ) ( )

( )

2
0

2
0 0 0

,
.

1

l p n s
p p p

ρ
ρ ρ

∂ −
= −

∂ ∂ − +
                     (2.21) 

 

Hence,  
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( ) ( )
( )

( )( )
( )( )

( )( )

( )

0 2
0 0

1
2

0

0
2

0

0

,
1

1 1

1 1

1 1

.
1 1

n s
I p E

p p

n np

p

n p

p

n
p

ρ
ρ

ρ

ρ

ρ

ρ

⎛ ⎞−
⎜ ⎟= − −
⎜ ⎟− +⎝ ⎠

−
=

− −

− −
=

− −

=
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                  (2.22) 

Then combining Eqs. (2.14), (2.18) and (2.22), we finally obtained the information 

matrix about (ρ,p0), 

                                  I (ρ, p0) = 

( ) ( )

( ) ( )
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ρ
ρ ρ
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      (2.23) 

 

So,  

I–1(ρ, p0) = 

   
( ) ( )( ) ( ) ( )

( ) ( )( )

0 0 0 0 0 0

0

0 1 0

1 1 1 1
1 1 1 1 1 1 1 1

.
1

1 1 1 1

p p p p p p
n p

p p p

ρ
ρ ρ ρ ρ

ρ ρ

⎡ ⎤⎛ ⎞−
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⎢ ⎥
⎢ ⎥−

− −⎢ ⎥− −⎣ ⎦

 (2.24) 
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Thus, from Equation (2.24) the asymptotic variance of ˆMLEρ  is 

         
( ) ( )( )

( ) ( )( )
0 0

0 0 0

0

0

ˆ( )

1 1 1 1 1 1
1 1 1

(1 2 ) .

MLEVar

p p
n p p p

p
np
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ρ ρ ρ
ρ

ρ ρ ρ

=

⎡ ⎤⎛ ⎞− − − −⎢ ⎥+⎜ ⎟⎜ ⎟− − −⎢ ⎥⎝ ⎠⎣ ⎦
+ −

=

 (2.25) 

Using Slutsky’s theorem and asymptotic normality of ˆMLEρ , it follows  

                                                     ( ) ( )2ˆ 0, ,
d

MLEn Nρ ρ σ−                             (2.26) 

where σ2 = ρ(1+ ρ – 2ρp0) / p0. 

Now we consider the asymptotic variance of the estimator, ˆ 1 .
1/ 2n

S
R

ρ = −
+

 

                               

( )

( ) ( )

22

22
2
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1/ 2 1/ 2

1/ 2 1/ 2
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1/ 2 1/ 2
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ρ ⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥+ +⎝ ⎠ ⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎢ ⎥+ +⎝ ⎠ ⎝ ⎠⎣ ⎦
i i

  (2.27) 

However, applying the same manner shown in Equation (2.4), we have (see also Cho, 

2007) 
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Using Equation (2.4), (2.27) and (2.28), 
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Simplifying,  
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(2.30) 

 

From Equation (2.25) to (2.30) we see the two variances of ˆnρ  have asymptotically the 
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same variance.  Therefore, we conclude that the two estimators of ˆ 1MLE
S
R

ρ = −  

and ˆ 1
1/ 2n

S
R

ρ = −
+

, are asymptotically equivalent for sufficiently large n. 
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CHAPTER 3 

NUMERICAL STUDIES AND EXAMPLES 

3.1 Simulation Studies 

 Monte Carlo experimentation is carried out to investigate the behavior of the 

measure of reduction we have devised.  Selected values for p0 and p1 were chosen to 

generate the data sets consisting of sequences of binomial variables based on a 

predetermined fixed number of trials for each case.  Two sample proportions of p0 and p1 

are computed and the point estimator of the measure of reduction ρ is also calculated with 

independent replications (denoted by m) of 100, 1000, 5000 and 10,000.  For the interval 

estimation of ρ, the standard error (S.E) is also calculated along with an 95% empirical 

confidence interval and a 95% confidence interval around ρ̂ .  The results of the Monte 

Carlo simulation are summarized in the following tables, which show the number of 

replicates, estimates of p0, p1 and ρ, and the lower and the upper bounds for the 

confidence intervals for each nominal level 95% and the 95% empirical, respectively. 

 In addition, we plot the empirical probability distribution of ρ, the measure of 

reduction, for each case to illustrate the asymptotic behavior of the measure, namely, the 

normal approximation to the binomial distributions in the probability distribution for the 

measure of reduction (MOR).  

 

3.2 Fatality in Infectious Disease 

We study an example of the vaccine effectiveness of fatality in infectious disease. 

Suppose that a group of researchers want to study the effectiveness of vaccine for a 

certain type of infectious disease such as influenza. Let p0 be the proportion of being fatal 
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with no vaccine treated for a population under no vaccine treated, and p1 be the 

proportion of being fatal with vaccine treated.  

 
 

Definition 3.1 (Reduction in Fatality; RIF)  A measure of effectiveness in reduction for 

the infectious disease, ρ is called the reduction in fatality (RIF) and defined by 

                                                          0 1 1

0 0

1RIF
p p p

p p
ρ −

= = − ,                            (3.1) 

where 0 < p0 < 1 and 0 < p1 < 1.  

 

Suppose that the success rate of the existing vaccine is known to be 40%, i.e.,  

p0 = 0.4.  A research group developed a new vaccine for the disease, which may reduce 

50% (since ρ= −0.5), compared to the existing method to prevent the disease.  After the 

Monte Carlo experiment set up, we summarize the results in Table 3.1.  The numbers of 

replicates are shown in the first column, with estimates for p0, p1 and ρ, the standard error 

for each of the experiment, and corresponding approximate 95% confidence interval and 

an 95% empirical confidence interval.  In addition, similar results are provided in 3 other 

scenarios, Tables 3.2-3.4. 

 

Table 3.1: ρ = −0.5 with p0 = 0.4 and p1 = 0.6 
 

 

Number of 
Replicates 
Xi's and 

Yi's 
0p̂  
 

1p̂  
 

Estimate   
of ρ, ρ̂  

Standard 
Error 

95% Confidence 
Interval 

95%  Empirical 
Confidence 

Interval 

100 0.4300 0.6600 −0.5618 0.0817 (−0.7219, −0.4017) (−0.5526, −0.4091) 
1000 0.4230 0.5960 −0.5428 0.0655 (−0.6712, −0.4144) (−0.5238, −0.4872) 
5000 0.4007 0.6014 −0.5377 0.0596 (−0.6545, −0.4209) (−0.5122, −0.4878) 

10000 0.4001 0.6006 −0.5242 7.87E-03 (−0.5088, −0.5396) (−0.5106, −0.5000) 
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For example, based on the 10000 times from the last column in the table, we are 

statistically sure that the true value (percentage of reduction) lies approximately between 

−0.51 and −0.54 with 95% confidence. 

 
 

 
 

Figure 3.1a: ρ = −0.5 with p0 = 0.4 and p1 = 0.6 for 10000 Replicates 
 

 

 
 

Figure 3.1b: ρ = −0.5 with p0 = 0.4 and p1 = 0.6 for 10000 Replicates  
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Table 3.2: ρ = −1.0 with p0 = 0.3 and p1 = 0.6 
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Figure 3.2a: ρ = −1.0 with p0 = 0.3 and p1 = 0.6 for 10000 Replicates 
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Figure 3.2b: ρ = −1.0 with p0 = 0.3 and p1 = 0.6 for 10000 Replicates  
 
 

Number of 
Replicates 
Xi's and 

Yi's 
0p̂  
 

1p̂  
 

Estimate   
of ρ, ρ̂  

Standard 
Error 

95% Confidence 
Interval 

95%  Empirical 
Confidence 

Interval 

100 0.2589 0.5678 −1.1322 0.1470 (−1.4203, −0.8441) (−1.0645, −0.9032) 
1000 0.3330 0.5890 −1.0640 0.1070 (−1.2737, −0.8543) (−1.0313, −0.9677) 
5000 0.3034 0.6012 −1.0581 0.0752 (−1.2055, −0.9107) (−1.0303, −0.9722) 

10000 0.2995 0.5976 −1.0505 0.0117 (−1.0734, −1.0275) (−1.0263, −0.9927) 
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Table 3.3: ρ = −3.0 for p0 = 0.2 and p1 = 0.8 
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Figure 3.3a: ρ = −3.0 with p0 = 0.2 and p1 = 0.8 for 10000 Replicates 
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Figure 3.3b: ρ = −3.0 with p0 = 0.2 and p1 = 0.8 for 10000 Replicates  
 

Number of 
Replicates 
Xi's and 

Yi's 
0p̂  
 

1p̂  
 

Estimate   
of ρ, ρ̂  

Standard 
Error 

95% Confidence 
Interval 

95%  Empirical 
Confidence 

Interval 

100 0.2500 0.7600 −3.7332 0.2530 (−4.2291, −3.2373) (−3.1500, −2.8421) 
1000 0.1830 0.7870 −3.5512 0.1470 (−3.8393, −3.2631) (−3.0526, −2.9474) 
5000 0.1932 0.7962 −3.3629 0.0748 (−3.5095, −3.2163) (−3.0476, −2.9546) 

10000 0.2003 0.8013 −3.1345 0.0292 (−3.1917, −3.0773) (−3.0455, −2.9565) 
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Table 3.4: ρ = −1.0 for p0 = 0.05 and p1 = 0.1 
 

 
 
 

 
 

Figure 3.4a: ρ = −1.0 with p0 = 0.05 and p1 = 0.1 for 10000 Replicates 
 
 

 
 

Figure 3.4b: ρ = −1.0 with p0 = 0.05 and p1 = 0.1 for 10000 Replicates  
 

Number of 
Replicates 
Xi's and 

Yi's 
0p̂  
 

1p̂  
 

Estimate   
of ρ, ρ̂  

Standard 
Error 

95% Confidence 
Interval 

95%  Empirical 
Confidence 

Interval 

100 0.0425 0.0976 −1.4833 0.201 (−1.8773, −1.0893) (−1.1667, −0.8333) 
1000 0.0556 0.0984 −1.2941 0.154 (−1.5959, −0.9923) (−1.1429, −0.8875) 
5000 0.0471 0.0911 −1.1628 0.0587 (−1.2779, −1.0476) (−1.1111, −0.9875) 

10000 0.04967 0.0910 −1.0884 0.0406 (−1.1680, −1.0088) (−1.0857, −0.9889) 
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When the probability of an event p0 (or p1) is small, it may be desirable to use 

Negative Binomial sampling. 

From Table 3.1 to Table 3.4 we observe that all of the Monte Carlo estimates, 0p̂ , 

1p̂ , and ρ̂ , converge to the corresponding true values of parameters as n gets large.  Also, 

the standard error (S.E.) decreases dramatically as the number of replicates increase.  We 

surmise that the results of the Monte Carlo experiment provide the substantial amount of 

numerical evidence and strong belief in verifying the analytical results which are shown 

in the previous chapter.  The estimates of p0 and p1 get closer to their predetermined 

values as the number of replicates increase.  Similar results from the Monte Carlo 

experiment are seen with the point estimator ρ. 

 

 
3.3 ECM Effectiveness 

 
In this section, we consider the measure of reduction in the effectiveness of 

airborne electronic countermeasures (ECM). We study the measure of effectiveness by 

comparing the number of hits under two conditions whether the ECM is turned on or off.  

Then, the reduction in lethality is related to the proportions of being hit by a surface-to-air 

missile (SAM).  In particular for the ECM, the measure of reduction (MOR) in 

effectiveness for airborne electronic countermeasures is called the reduction in lethality 

(RIL).  The following definitions are useful when discussing ECM and SAM:  

 

  (i) a hit is the event of a SAM engaging and hitting a target,  

 (ii) a miss is the event where the SAM misses the engaged target,  

(iii) a wet condition is when ECM is turned on, and 
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(iv) a dry condition is when ECM is turned off. 

 

Definition 3.2 (Reduction in Lethality; RIL)  A measure of effectiveness in reduction 

for the ECM, ρ is called the reduction in Lethality (RIL) and defined by 

                                                       1d w w
RIL

d d

p p p
p p

ρ −
= = − ,                             (3.2) 

where 0 < pd < 1 and 0 < pw < 1 with 

 pd = proportion of being hit by missile under dry condition, 

pw = proportion of being hit by missile under wet condition. 

 

By definition in Equation (3.2), the measure of reduction in lethality (RIL) RILρ  is 

a relative figure of merit rather than an absolute measurement. The advantage of the use 

of RIL is merely comparing the wet performance to the corresponding dry performance.  

For instance, if the wet proportion of hit were zero, that is pw = 0, then RILρ = 1. This 

implies that the ECM device completely removed the lethality of the missile. Similarly, if 

there was no difference in performance under two conditions, i.e., pd = pw, then 

RILρ becomes zero. This indicates that the ECM device did not reduce the lethality of the 

incoming missile at all.  It should be noted that the values of ρ can be negative. In fact, 

the target could be more vulnerable to the missile attack when the ECM device is on than 

when it is off in real situation.  

3.3.1 ECM Measure Analysis 

Requirements for ECM, to determine the effectiveness of an ECM device, lack 

sufficient information.  Requirements often come in the form of a single observed ρ̂  
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value, which a test director must use a pass or fail criteria for the ECM system in 

question.  Also, due to the high expense of missile testing, we consider n to be small, say 

n ≤ 10, noting that n is the number of runs.  The methodology presented, Equation (2.1), 

optimizes the ECM test design for minimum cost.  This will be discussed further in the 

next section.  Note that p1 = pw is the probability of a wet hit, p0 = pd is the probability of 

a dry hit and we assume pw and pd to be the same throughout the experiment. A simulated 

example is given to illustrate what the new measure ρ would result in.  The simulated 

example shows the measure of ρ given with independent replications of 100, 1000, 5000 

and 10000, along with the expectation of p0,  p1, ρ̂ , with a 95% confidence interval and 

95% empirical confidence interval around ˆ.ρ  

 

Table 3.5: ρ = −0.43 for p0 = 0.56 and p1 = 0.8 
 

 
 

Number of 
Replicates 
Xi's and 

Yi's 
0p̂  
 

1p̂  
 

Estimate   
of ρ, ρ̂  

Standard 
Error 

95% Confidence 
Interval 

95%  Empirical 
Confidence 

Interval 

100 0.5890 0.8213 −0.5484 0.2080 (−0.9561, −0.1407) (−0.5179, −0.4231) 
1000 0.5764 0.8184 −0.5391 0.0579 (−0.6526, −0.4256) (−0.5098, −0.4423) 
5000 0.5574 0.8056 −0.4877 0.0353 (−0.5569, −0.4185) (−0.5087, −0.4921) 

10000 0.5585 0.8018 −0.4468 0.00469 (−0.4560, −0.4376) (−0.5047, −0.4915) 
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Figure 3.5a: ρ = −0.43 with p0 = 0.56 and p1 = 0.8 for 10000 Replicates 
 
 

 
 

Figure 3.5b ρ = −0.43 with p0 = 0.56 and p1 = 0.8 for 10000 Replicates  
 

 

In Table 3.5, we infer that the estimated proportions, 0p̂ and 1p̂ , and the estimated 

measure ρ̂  are convergent to the parameters p0, p1 and ρ, respectively as the number of 

replicates increases. It is also noticeable that the standard errors (S.E.) monotonically 

decrease as the sample size n gets bigger. Therefore, the above numerical evidence 

indicates that the small sample behavior lends support to the asymptotic behavior of the 
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measure when the sample size gets bigger.  In addition, we have verified that as n 

increases the shape of the plot is getting close to the shape of the normal distribution.  

3.3.2 Small Sample Study in ECM 

 In real ECM experiment, the small sample test is frequently performed due 

mainly to cost reasons.  In this section, we study enumerate the sample space of the joint 

probability mass function of p(xi,yi).  Suppose we have n = 5 for both shots under the wet 

condition and shots under the dry condition.  Then the values of the measure ρ are listed 

in Table 3.6.  When p0 is 0, ρ is undefined.  To compensate, we take ε = 0.01 for 

convenience: 

( )
1

0

1 .
0.01

p
p

ρ = −
+

 

This ensures ρ is not undefined.   

 

Table 3.6: The value of ρ when n = 5 for p0 = 0.56 and p1 = 0.8 

p1: Number of hits under wet conditions 
 p(x,y) 

0 1 2 3 4 5 

0 1  
(undefined) 

−19  
(−∞) 

−39 
(−∞) 

−59 
(−∞) 

−79 
(−∞) 

−99 
(−∞) 

1 1 0 −1 −2 −3 −4 
2 1 0.500 0 −0.500 −1 −1.500 
3 1 0.667 0.333 0 −0.333 −0.667 
4 1 0.750 0.500 0.250 0 −0.250 

p0: 
Number 
of hits 

under dry 
conditions 

5 1 0.800 0.600 0.400 0.200 0 
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By independence, the joint pmf: 

 

( ) ( ) ( )

( ) ( )

( ) ( )

5 5
0 0 1 1

5 0 1
0 1 0 1

0 1

,

5 5
1 1

5 5
1 1 .

1 1

i i i i

x yx y

x y
x y

p x y p x p y

p p p p
x y

p pp p p p
x y p p

− −

=

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎡ ⎤= − − ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎣ ⎦ − −⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 

Note that the joint probability values for ρ are calculated as follows: 

 

5 5

0 0
( , ) 1.i j

i j
p x y

= =

=∑∑  

 

The n, joint probability px,y(xi,yi) are: 

 

Table 3.7: ECM Joint Probabilities of ρ̂  when n = 5 for p0 = 0.56 and p1 = 0.8 

p1: Number of hits under wet conditions 
 p(xi,yj) 0 1 2 3 4 5 

0 5.277E-06 0.0001 0.0008 0.0034 0.0068 0.0054 
1 3.358E-05 0.0007 0.0054 0.0215 0.0430 0.0344 
2 8.548E-05 0.0017 0.0137 0.0547 0.1094 0.0875 
3 1.088E-04 0.0022 0.0174 0.0696 0.1393 0.1114 
4 6.923E-05 0.0014 0.0111 0.0443 0.0886 0.0709 

p0: 
Number 
of hits 

under dry 
conditions 

5 1.762E-05 0.0004 0.0028 0.0113 0.0226 0.0180 
 

Then, we plot the probabilities of the measure of reduction, RIL, ρ.  
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Figure 3.6: Plot for probability of ρ when n = 5 for p0 = 0.56 and p1 = 0.8 

 

Furthermore, we know that ρ̂  is approximately normally distributed.  For large n, 

there exists a UMP test (See Mood, Graybill and Boes, 1974).  Suppose one may wish to 

test the RIL, ρ,  H0: ρ ≤ ρ0 versus H1: ρ > ρ0,  where ρ0 is the desirable threshold that has 

been predetermined.  We know that ρ̂ ~ N(ρ, 2
ρσ ) noting that 

0ˆ
.Z

nρ

ρ ρ
σ

− ∼  
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CHAPTER 4 

CONCLUSION 

4.1 Concluding Remarks 

We have studied a relative measure of reduction based on a ratio of the two 

binomial variates.  We also investigated the desirable properties of the measure, such as 

unbiasedness and efficiency.  The numerical analysis, through Monte Carlo experiments, 

show that the measure ρ we devised is useful and easy to understand.  Also, the numerical 

study illustrates how effectively used the measure is for both the infectious disease and 

for ECM. 

 

4.2 Future Research 

In ECM cases, there is a high cost and a small amount of opportunity to run each 

experiment.  Again, one way to mitigate this difficulty is to apply a resampling technique.  

The resampling allows one to estimate the precision of sample statistic means, variances, 

medians, etc.  If we use different types of resampling schemes we are able to optimize the 

sample sizes from the given lower limits and upper limits of the confidence intervals.  In 

other words, an experiment may achieve more statistical confidence when these 

techniques are applied.  
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