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ABSTRACT

A Gaming Application of the Negative Hypergeometric Distribution

by

Steven Jones

Dr. Rohan Dalpatadu, Advisory Committee Chair
Associate Professor of Mathematical Sciences

University of Nevada, Las Vegas

The Negative Hypergeometric distribution represents waiting times when drawing

from a finite sample without replacement. It is analogous to the negative binomial,

which models the distribution of waiting times when drawing with replacement. Even

though the Negative Hypergeometric has applications it is typically omitted from

textbooks on probability and statistics and is not generally known. The main purpose

of this thesis is to derive expressions for the mean and variance of a new application

of the Negative Hypergeometric to gaming and gambling. Other applications are

described as well.
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Chapter 1

The Negative Hypergeometric

Distribution

Suppose a finite population consists of two types of objects, which one can think of

as red and white balls in an urn. There are N balls altogether, of which M are red.

If balls are drawn randomly, then how many must be drawn to obtain k red ones,

where 1 ≤ k ≤M?

This random variable has the Negative Hypergeometric distribution, one that is

typically omitted from textbooks on probability and statistics, such as Casella and

Berger (2002) or Feller (1957), and is seldom found in books on discrete distributions,

either. Feller’s classic text (on page 56) contains an exercise related to the distribution

but does not name it explicitly. There are several possible reasons for this common

omission. First, the distribution does not arise frequently in applications, and when it

does, it can often be approximated by the negative binomial. Second, derivation of the

moments is typically rather involved (two ways are given in Schuster and Sype 1987).

Third, there has been some confusion in the literature as to the correct nomenclature

for the distribution (Miller and Fridel 2007).

Nevertheless, the Negative Hypergeometric distribution is considered to be an
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elementary probabilistic urn model and is usually described in books on that subject,

such as Norman and Kotz (1977). It is argued in Miller and Fridel (2007) that the

Negative Hypergeometric distribution should be included in probability courses since

it rounds out the picture for drawing without replacement: it plays the same role as

the negative binomial, which models waiting times when sampling with replacement.

The primary purpose of this thesis is to suggest a new application of the Nega-

tive Hypergeometric distribution to gaming and gambling, and to derive results for

a compound distribution that arises from this application. Another possible applica-

tion, to customer satisfaction surveys, is also described. These results are presented

in Chapter 2.

First, however, a derivation of the mean and variance using only elementary math-

ematics is provided, and the formulas for mean and variance are shown to be valid

for all degenerate cases. In addition, several ways of generalizing the distribution are

discussed.

1.1 Finding the Probability Mass Function

Let X denote the number of balls that must be drawn to obtain k red ones, from an

urn containing N balls, of which M are red. First note that k ≤ X ≤ k + N −M ,

since in a repeated drawing for k of the M red balls one obtains any number of the

remaining N −M white ones. Let fX(x) denote the probability mass function. Then

fX(x) = Pr(draw k − 1 red in x− 1 draws) × Pr(draw red on the last draw); i.e.,

fX(x) =

(
N−M
x−k

)(
M
k−1

)(
N

x−1

) (M − k + 1)

(N − x+ 1)

which simplifies to

fX(x) =

(
x−1
k−1

)(
N−x
M−k

)(
N
M

) . (1.1)
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Hereafter this is referred to as the Negative Hypergeometric distribution, and denoted

nhg(N,M, k).

The following Lemma will prove useful in calculating the moments of this distri-

bution. Since probability sums to one, the identity

k+N−M∑
x=k

(
x− 1

k − 1

)(
N − x
M − k

)
=

(
N

M

)
(1.2)

is valid for any N > M ≥ k > 0. This leads to a

Lemma. For any natural numbers a > b > 0 and c > 0,

a−b∑
y=0

(
a− y
b

)(
c+ y

c

)
=

(
a+ c+ 1

b+ c+ 1

)
Proof. Let k = c+ 1, N = a+ k, M = b+ k, and y = x− k. It readily follows that

N > M > k > 0 and k ≤ x ≤ k + N −M , so the previous combinatorial argument

applies, and the result follows from substitution in Equation 1.2. (A more general

form of this identity can be found in Graham, Knuth and Patashnik 1994, 169).

1.2 Computing the Mean and Variance

The mean and variance of the random variable X are now calculated, using the

Lemma. The idea is to set x
(
x−1
k−1

)
= k

(
x
k

)
and x(x + 1)

(
x−1
k−1

)
= k(k + 1)

(
x+1
k+1

)
in the

sums for E(X) and E(X(X + 1)), and then re-index:

(
N

M

)
E(X) =

k+N−M∑
x=k

x

(
x− 1

k − 1

)(
N − x
M − k

)
=

k+N−M∑
x=k

k

(
x

k

)(
N − x
M − k

)

= k
N−M∑
y=0

(
k + y

k

)(
N − k − y
M − k

)
= k

(
N + 1

M + 1

)
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E(X) =
k
(
N+1
M+1

)(
N
M

) =
N + 1

M + 1
· k (1.3)

where the Lemma was applied with a = N − k, b = M − k and c = k. Similarly,

(
N

M

)
E(X(X + 1)) =

k+N−M∑
x=k

x(x+ 1)

(
x− 1

k − 1

)(
N − x
M − k

)

=
k+N−M∑

x=k

k(k + 1)

(
x+ 1

k + 1

)(
N − x
M − k

)

= k(k + 1)
N−M∑
y=0

(
k + 1 + y

k + 1

)(
N − k − y
M − k

)
= k(k + 1)

(
N + 2

M + 2

)

E(X(X + 1)) =
k(k + 1)

(
N+2
M+2

)(
N
M

) =
k(k + 1)(N + 1)(N + 2)

(M + 1)(M + 2)

Var(X) = EX(X + 1)− EX − (EX)2

=
k(k + 1)(N + 1)(N + 2)

(M + 1)(M + 2)
− k(N + 1)

M + 1
−
(
k(N + 1)

M + 1

)2

With some algebra this simplifies to

Var(X) =
(N + 1)(N −M)

(M + 1)2(M + 2)
· k(M + 1− k) (1.4)

Note that for a fixed N and M , the expected value of X is linear in k and the

variance is parabolic. The variance is highest at values of k nearest (M + 1)/2, and

the variance for k and M + 1 − k are the same. (For example, the variance is the

same for k = 1 or k = M .)

Example. Suppose there are 3 white balls, 4 red, and from the mixture it is
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desired to draw 2 red balls. Let X be the random variable representing the number

of draws. Then N = 7,M = 4, k = 2, and X ∼ nhg(7,4,2). The mean and variance

of X are calculated directly in the table below.

x pX(x) pX(x) · x pX(x) · (x−X)2

2
(

1
1

)(
5
2

)
/
(

7
4

)
= 10/35 20/35 (10/35)(10− 16)2/25 = 360/875

3
(

2
1

)(
4
2

)
/
(

7
4

)
= 12/35 36/35 (12/35)(15− 16)2/25 = 12/875

4
(

3
1

)(
3
2

)
/
(

7
4

)
= 9/35 36/35 (9/35)(20− 16)2/25 = 144/875

5
(

4
1

)(
2
2

)
/
(

7
4

)
= 4/35 20/35 (4/35)(25− 16)2/25 = 324/875

Total 1 X =16/5 Var(X) = 24/25

Table 1.1: Sample Calculations of Mean and Variance

These quantities are also calculated from Equations 1.3 and 1.4:

E(X) =
N + 1

M + 1
k =

16

5

Var(X) =
(N + 1)(N −M)

(M + 1)2(M + 2)
k(M − k + 1) =

24

25

1.3 Including Degenerate Cases

In the foregoing discussion it was assumed that the parameters of the distribution

satisfy N > M ≥ k > 0. This can easily be generalized to N ≥ M ≥ k ≥ 0 by

including a couple of degenerate cases.

First consider the case k = 0. Here the random variable X can simply be defined

to take the value 0 with probability 1. It is easily checked that Equations 1.3 and 1.4

for the mean and variance of are still valid and give the correct answer of zero.

Assume, then, that k > 0. If N > M , then the original condition of N > M ≥

k > 0 is true and all previous results apply. So the only other case to consider is
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N = M . Appealing again to the model of drawing from a collection of red and white

balls, it is clear that if all the balls are red, then the number of balls that must be

drawn to obtain k red ones is exactly k. Putting N = M into Equation 1.3 gives E(X)

= k, and Equation 1.4 gives Var(X) = 0, both correct when N = M . The previously

specified range, k ≤ X ≤ k + N −M , correctly forces X = k, and so remains valid.

Finally, Equation 1.1 correctly computes the probability mass function at X = k:

fX(k) =

(
k−1
k−1

)(
N−k
N−k

)(
N
N

) = 1.

By including these two degenerate cases, the following Theorem is obtained:

Theorem. Suppose that from a collection of N objects of which M are specially

marked, objects are drawn randomly until exactly k of the marked ones have been

obtained, where N ≥ M ≥ k ≥ 0. Let X be a random variable representing the

number of draws. Then the probability that X = x for any x ∈ Z is given by:

fX(x) =



(
x−1
k−1

)(
N−x
M−k

)
/
(
N
M

)
if 0 < k ≤ x ≤ k +N −M

1 if k = x = 0

0 otherwise

(1.5)

The mean and variance of X are:

E(X) =
N + 1

M + 1
· k (1.6)

Var(X) =
(N + 1)(N −M)

(M + 1)2(M + 2)
· k(M + 1− k) (1.7)

Proof. When N > M ≥ k > 0, these results follow directly from Equations 1.1,

1.3, and 1.4. For the case k = 0, it is seen that the probability mass function is equal
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to 1 when x = 0 and is zero for all other values of x. The correctness of the other

two formulas was checked previously. When k > 0 and N = M , all three formulas

were also validated in the previous discussion.

1.4 Generalizations

The Negative Hypergeometric distribution may be generalized to include non-integer

parameters. It is easily checked that Equation 1.1 may be written as:

fX(x) =

(
N −M
x− k

)
Γ(M + 1) Γ(x) Γ(N − x+ 1)

Γ(k) Γ(M − k + 1) Γ(N + 1)

With a simple change of variable Y = X − k (so that Y has the range 0, 1, . . . ,

N −M), the resulting distribution

fY (y) =

(
N −M

y

)
Γ(M + 1) Γ(y + k) Γ(N − k − y + 1)

Γ(k) Γ(M − k + 1) Γ(N + 1)

is now valid for real values of k, M and N so long as k > 0, M > k − 1, and

N −M is a natural number, since further substitution of α = k, β = M − k+ 1, and

m = N −M yields the standard beta-binomial distribution (Shuster and Sype 1987,

456; Bowman, Kastenbaum and Shenton 1992):

fY (y) =

(
m

y

)
Γ(α + β) Γ(y + α) Γ(β +m− y)

Γ(α) Γ(β) Γ(m+ α + β)

K. D. Ling suggests another way to generalize the Negative Hypergeometric

distribution by defining more sophisticated waiting times for the urn model. In the

“later waiting time” scenario, drawing continues until k1 white and k2 red balls have

been drawn from the urn. In the “sooner waiting time” model, k1 white or k2 red

are drawn, whichever comes first. Recurrence relations for the means of these random

7



variables are found in Ling’s paper (Ling 1993).

To illustrate the “later waiting time” for k1 = k2 = 1, the following problem is

adapted from Derman (1973, 311):

A committee is to be drawn randomly from a group consisting of 7 women

and 3 men. How many people must be chosen to ensure that the com-

mittee has at least one woman and one man? Calculate the mean and

standard deviation of this random variable.

To apply the Negative Hypergeometric distribution to this problem, first define a

Bernoulli random variable Y which represents the gender of the first person drawn,

0 for female and 1 for male. Then let X be the number of subsequent draws required

to select a person of the opposite sex, plus one. Thus,

X|Y ∼


nhg(9,3,1) + 1 if Y = 0

nhg(9,7,1) + 1 if Y = 1

P (Y = y) =


7
10

if Y = 0

3
10

if Y = 1

Combined with Equations 1.6 and refvariance these lead directly to:

E(X|Y ) =


10
4

+ 1 = 7
2

if Y = 0

10
8

+ 1 = 9
4

if Y = 1

Var(X|Y ) =


10·6·3
42·5 = 9

4
if Y = 0

10·2·7
72·8 = 5

14
if Y = 1

Then applying standard probability calculations,

8



E(E(X|Y )) =
7

10
· 7

2
+

3

10
· 9

4
=

25

8

E({E(X|Y )}2) =
7

10
· 7

2

2

+
3

10
· 9

4

2

=
323

32

E(Var(X|Y )) =
7

10
· 9

4
+

3

10
· 5

14
=

471

280
,

the answer is:

E(X) = E(E(X|Y )) =
25

8
= 3.125

Var(X) = Var(E(X|Y )) + E(Var(X|Y ))

= E({E(X|Y )}2)− {E(E(X|Y ))}2 + E(Var(X|Y ))

=
323

32
−
(

25

8

)2

+
471

280
=

4503

2240
.
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Chapter 2

Some Applications

2.1 Overview

Although largely neglected in probability textbooks, the Negative Hypergeometric

distribution does occasionally arise in applications, such as educational testing, lin-

guistics and biostatistics (Miler and Fridel 2007).

One noteworthy application is the distribution of mental test scores. Assuming the

distribution of true abilities of test takers is a beta-distributed random variable and

each test-taker’s chance of a correct score on all test items are independent, identically

distributed Bernoulli where the probability of success is linearly dependent on ability,

then the resulting distribution of raw test scores has the Negative Hypergeometric

distribution (with generalized parameters). For details see Lord and Novick (1968).

Another example involving learning comes from a study of birds’ ability to re-

member the location of food (Ridout 1999). An experiment involving coal tits was

conducted as follows. Birds were released individually in a room with four feeders,

one of which they had fed from previously, and three empty ones. The one with food

was in the same location as before, but with the food now hidden. In searching for

the correct feeder, the birds rarely visited an empty feeder twice, so the number of

10



feeders visited is modeled as Negative Hypergeometric. It turned out that the birds’

memory of the location of the filled feeder from previous experience is equivalent to

replacing the single filled feeder with 3.7 ones and then having the birds find the filled

feeder by trial and error; that is, a generalized Negative Hypergeometric with k=1,

M=3.7, and N -M=3 (see section 1.4).

The purpose of the rest of this chapter is to suggest a couple new applications

of the Negative Hypergeometric distribution; one to gaming, and one to customer

satisfaction surveys.

2.2 A Bonus Game for Slot Machines

Many slot machines feature a ”bonus game” with almost certain payoffs which is

available to the player at high points during regular slot play. The bonus game can be,

for example, spins of a wheel of fortune. The Negative Hypergeometric distribution

suggests an interesting variation on this.

The bonus game pictured in Figure 2.1 operates similarly to spinning a wheel,

except the player selects squares from a rectangular grid until a certain number of

”jokers” have been revealed. In the example shown, the play ends with the third

joker (compared to, say, three spins of a wheel). This adds interest to the bonus

game since the number of prizes will vary and, unlike the wheel of fortune, the player

has a chance to win all of the prize squares.

The underlying game board with all squares exposed is shown in Figure 2.2. From

this data the expected length of play and winnings can be calculated, as well as the

standard deviation of those quantities. Letting k be the number of jokers when play

stops, the length of play has the Negative Hypergeometric distribution, in this case

with N = 16 and M = 4. Equations 1.6 and 1.7 give the mean and variance of the

11



$25

$25

$100

$100

$50

$50

$50

Figure 2.1: Bonus Game In Play. So far the player has collected $400, but the next
selection will end the bonus play round.

length of play X.

Of greater interest to the player is the number of prize squares exposed during

play. Denoting this random variable by Y , then clearly Y = X − k (since there are

exactly k jokers exposed at the end of play). Thus:

µY = EY = EX − k =
N + 1

M + 1
k − k =

N −M
M + 1

k (2.1)

and the variance of Y equals the variance of X:

σ2
Y = Var Y = Var X =

(N + 1)(N −M)

(M + 1)2(M + 2)
k(M + 1− k) (2.2)

Now consider winnings. Let W be a random variable which is the total of all the

amounts shown on prize squares at the end of play. One would expect that

E(W ) = µYA

12



$25 $25

$25

$25 $25

$25

$100

$100

$100

$50

$50

$50

Figure 2.2: Bonus Game Board Revealed. All prize squares and jokers are exposed.

where A is the average of all prize square amounts. This is indeed the case, and will

be justified below. For the game shown in Figure 2.2, with play to stop at the third

joker (k = 3), A = $50 and µY = (12/5)·3 = 7.2 prize squares, so the expected value

of the winnings is 7.2 · $50 = $360. Calculation of the variance of the winnings is

more complicated. To derive the formulas for E(W ) and Var(W ), some notation is

needed. Let:

N = number of squares on the board

M = number of joker squares, with N −M > 1

k = number of jokers to draw before play ends (1 ≤ k ≤M)

N −M = number of prize squares

Aj = amount shown on the jth prize square, j = 1, 2, . . . , N −M

(If j is outside this range, take Aj = 0)

A = average prize amount

A2 = average squared prize amount

13



Cn
r = number of r-combinations of n objects

(This is the notation used in Chen and Koh 1992)

Ωy = the set of all y-combinations of {1, 2, . . . , N −M},

where y ∈ {0, 1, 2, . . . , N −M}

Ω = ∪N−My=0 Ωy = the space of all game outcomes

y(ω) = the number of elements in the combination ω, for ω ∈ Ω

χj(ω) =


1 if j is in the combination ω

0 otherwise.

Two combinatorial identities are needed in the derivation:

∑
ω∈Ωy

χj(ω) = no. of combinations in which j appears

= CN−M−1
y−1 =

y

N −M
CN−M

y =
y

N −M
|Ωy|

∑
ω∈Ωy

χi(ω)χj(ω) = no. of combinations in which i and j appear

= CN−M−2
y−2 =

y(y − 1)

(N −M)(N −M − 1)
CN−M

y

=
y(y − 1)

(N −M)(N −M − 1)
|Ωy| (i 6= j)

To begin, the probability of each outcome ω is given by

P (ω) = P (ω|Y = y(ω))P (Y = y(ω)) = |Ωy(ω)|−1P (Y = y(ω))

and the player’s winnings are defined as

w(ω) =
∑
j

χj(ω) · Aj

14



where the summation may be taken over all natural numbers. Thus,

E(W | Y = y) =
1

P (y)

∑
ω∈Ωy

P (ω)w(ω)

=
1

P (y)

∑
ω∈Ωy

|Ωy|−1P (y)
∑
j

χj(ω) · Aj = |Ωy|−1
∑
j

Aj

∑
ω∈Ωy

χj(ω)

= |Ωy|−1
∑
j

Aj
y

N −M
|Ωy| = yA

(2.3)

and

E(W ) = E(yA) = µYA, (2.4)

as suggested earlier. To compute Var(W ), one additional identity is needed:

∑
i 6=j

AiAj = (N −M)2 A
2 − (N −M) A2

where, once again, the summation may be taken to be over all natural numbers. (This

identity is easily verified by expanding A
2
.)

First calculate, using the assumption that N > M + 1,

∑
ω∈Ωy

w2(ω) =
∑
ω∈Ωy

[∑
j

χj(ω)A2
j +

∑
i 6=j

χi(ω)χj(ω)AiAj

]

=
∑
j

A2
j

∑
ω∈Ωy

χj(ω) +
∑
i 6=j

AiAj

∑
ω∈Ωy

χi(ω)χj(ω)

=
∑
j

A2
j

y

N −M
|Ωy|+

∑
i 6=j

AiAj
y(y − 1)

(N −M)(N −M − 1)
|Ωy|

= |Ωy|

[
y A2 +

y(y − 1)[(N −M)A
2 − A2]

N −M − 1

]

15



which gives

E(W 2 | Y = y) =
1

P (Y = y)

∑
ω∈Ωy

P (ω)w2(ω)

=
1

P (Y = y)

∑
ω∈Ωy

|Ωy|−1P (Y = y)w2(ω)

= y A2 +
y(y − 1)[(N −M)A

2 − A2]

N −M − 1

Combining this with Equation 2.3:

Var(W | Y = y) = E(W 2 | Y = y)− (E(W | Y = y))2

=

[
y A2 +

y(y − 1)[(N −M)A
2 − A2]

N −M − 1

]
− (yA)2

=
A2 − A2

N −M − 1
[(N −M)y − y2],

after simplification. So

E(Var(W | Y )) =
A2 − A2

N −M − 1
[(N −M)µY − (σ2

Y + µ2
Y )] (2.5)

Now from Equation 2.1,

(N −M)µY − µ2
Y = µ(N −M − µ)

=
N −M
M + 1

k[(N −M)(1− k

M + 1
))] =

(N −M)2

(M + 1)2
k(M + 1− k)

16



and then using Equation 2.2,

(N −M)µY − µ2
Y − σ2

Y

=
(N −M)2

(M + 1)2
k(M + 1− k)− (N + 1)(N −M)

(M + 1)2(M + 2)
k(M + 1− k)

=
(N −M)(N −M − 1)

(M + 1)(M + 2)
k(M + 1− k).

Inserting the last result into 2.5 gives

E(Var(W | Y ))

=
A2 − A2

N −M − 1

(N −M)(N −M − 1)

(M + 1)(M + 2)
k(M + 1− k)

=
(A2 − A2

)(M + 1)

N + 1
σ2
Y , (2.6)

from 2.2. The variance of W is now easily calculated from Equations 2.3 and 2.6 as

Var(W ) = E(Var(W | Y )) + Var(E(W | Y ))

=
(A2 − A2

)(M + 1)

N + 1
σ2
Y + A

2
σ2
Y =

(N −M)A
2

+ (M + 1)A2

N + 1
σ2
Y (2.7)

For the payoffs shown in Figure 2, A = 50.0 and A2 = 3437.5. Plugging these

values into Equations 1.6, 1.7, 2.4, and 2.7, produces the results shown in the table

below. (Note: The results in the table and the formulas derived above were checked

independently with a computer program, which is reproduced in Appendix A. The

program recomputed the values by summing over all possible outcomes of the game.)
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Variable k = 1 k = 2 k = 3 k = 4
No. of prize squares (Y )

expected value (µY ) 2.4 4.8 7.2 9.6
standard deviation (σY ) 2.3 2.9 2.9 2.3

Winnings (W )
expected value $120.00 $240.00 $360.00 $480.00
standard deviation $123.88 $150.50 $150.50 $123.88

Table 2.1: Statistics for the Bonus Game

2.3 Estimating Customer Satisfaction

For this application suppose there is a company named Magic Seminars which puts on

motivational programs at different cities in the U.S. and Canada. The seminars are

attended by anywhere from 100 to 2000 people. Management has decided to obtain

three testimonials from each seminar that had at least 500 in attendance. To do so,

professional callers will attempt to reach attendees after the seminar by phone. If a

message is left and the call is not returned within 48 hours, the caller will attempt to

reach the person one more time. The callers are instructed to keep track of the total

number of calls made, including the number of messages left, before three testimonials

are obtained. The list of attendees is randomized to avoid any possible bias in the

selection of people who are called.

To analyze this situation mathematically, consider a particular seminar event. The

exact number of attendees is known, and is denoted N . Attendees can be classified

as follows:

Type 1: Sufficiently satisfied with the seminar that the person will provide

a testimonial within 48 hours of being called;

Type 2: All attendees who are not of Type 1.

Let the number of Type 1 attendees be denoted by M . Since the call list is

randomized, the total number of calls, including messages left, that must be made to

obtain 3 testimonials is a Negative Hypergeometric random variable X with k = 3.

18
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Figure 2.3: Graph of posterior probabilities for various values of M when X=32 when
N=500 and k=3. The maximum is at M=46.

Presented this way, the management of Magic Seminars comes up with a novel

idea: to use the variable X, which is available at no additional cost once the testimo-

nials are obtained, to estimate overall customer satisfaction. For each seminar, M/N

times 100% will be the numerical satisfaction figure. Consultation with a statistician

(who is familiar with the Negative Hypergeometric) reveals that this figure may be

estimated using the technique of maximum posterior likelihood.

To explain how this works, consider a particular seminar event and assume for

the moment that M is known. After the callers have obtained three testimonials, X

is also known. The value of N is the number of attendees, and k = 3. Therefore, it

is possible to compute the probability of this value of X using Equation 1.5.

For example, suppose there are 500 attendees and it takes 32 calls to obtain three

testimonials. Figure 2.3 displays the The probability that X = 32 for the values of

M between 3 and 100. The maximum posterior probability occurs at M = 46, giving

a satisfaction score for this event of (46/500)·100% = 9.2%.

It is not necessary to compute the posterior probability for every possible value

of M in order to determine the maximum. In fact, the maximum occurs at

19



M0 =

⌊
k(N + 1)

x

⌋
.

To see this, observe that the posterior probability

p(M ;N, k, x) =

(
x−1
k−1

)(
N−x
M−k

)(
N
M

)
increases by the proportion

p(M + 1;N, k, x)

p(M ;N, k, x)
=

(M + 1)(k +N − x−M)

(N −M)(M + 1− k)

going from M to M + 1. Denoting the numerator of the last fraction by f(M) and

the denominator by g(M), it follows that p(M + 1) > p(M) if and only if

f(M)− g(M) = k(N + 1)− (M + 1)x > 0;

that is, if and only if M < k(N+1)
x
− 1. In the case that k(N+1)

x
is not an integer, then

it is easily checked that

· · · < p(M0 − 1) < p(M0) > p(M0 + 1) > p(M0 + 2) > . . . .

If k(N+1)
x

is an integer, then

· · · < p(M0 − 2) < p(M0 − 1) = p(M0) > p(M0 + 1) > . . . .

In the latter case the maximum occurs at both M0 − 1 and M0.

Interestingly, the hypergeometric distribution also works for this application. The

interpretation is that x samples are drawn, from which k are of Type 1, and the fact

that the last sample drawn was Type 1 is immaterial. (In the usual notation for the

20



hypergeometric distribution, the roles of x and k are reversed from their roles here.)

Letting PH be the probability calculated from the hypergeometric,

PH(K = k | N,M, x) =

(
M
k

)(
N−M
x−k

)(
N
x

) =
k

x
p(M ;N, k, x)

where p(M ;N, k, x) is the probability calculated from the Negative Hypergeometric

distribution. Since k and x are constants in this application, the value of M that

maximizes the posterior probability will be the same in either case.
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Appendix A

Computations for the Bonus Game

All the results for the bonus game shown in Table 2.2, as well as equations 2.1,
2.2, 2.4, and 2.7, were all verified independently by having the computer directly
sum over all possible combinations. The final printout of the checking program is
listed below, followed by the Python source code. (Python a freely available, object-
oriented programming language that supports high-level dynamic data types. See
Martelli (2006) for more information on the language.)

Input data:

N= 16 , M = 4

A = [100, 25, 25, 50, 25, 25, 100, 50, 25, 50, 25, 100]

Step 1: compute Ab and A2b

Ab = 50.0 A2b = 3437.5

Step 2: verify mean and variance of X for k = 3

X= 3 prob= 0.00714285714286

X= 4 prob= 0.0197802197802

X= 5 prob= 0.0362637362637

X= 6 prob= 0.0549450549451

X= 7 prob= 0.0741758241758

X= 8 prob= 0.0923076923077

X= 9 prob= 0.107692307692

X= 10 prob= 0.118681318681

X= 11 prob= 0.123626373626

X= 12 prob= 0.120879120879

X= 13 prob= 0.108791208791

X= 14 prob= 0.0857142857143

X= 15 prob= 0.05

By direct summation: p= 1.0 xb= 10.2 VarX= 8.16

From formula: p= 1.0 xb= 10.2 VarX= 8.16
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Step 3: verify the formulas for the mean and variance of Y and W

------------------------------------------------------------------

k = 1 summing 4096 possible outcomes

Direct summation: p= 1.0 mu= 2.4 sig2= 5.44

EW= 120.0 VarW= 15100.0

From formula: p= 1.0 mu= 2.4 sig2= 5.44

EW= 120.0 VarW= 15100.0

k = 2 summing 4096 possible outcomes

Direct summation: p= 1.0 mu= 4.8 sig2= 8.16

EW= 240.0 VarW= 22650.0

From formula: p= 1.0 mu= 4.8 sig2= 8.16

EW= 240.0 VarW= 22650.0

k = 3 summing 4096 possible outcomes

Direct summation: p= 1.0 mu= 7.2 sig2= 8.16

EW= 360.0 VarW= 22650.0

From formula: p= 1.0 mu= 7.2 sig2= 8.16

EW= 360.0 VarW= 22650.0

k = 4 summing 4096 possible outcomes

Direct summation: p= 1.0 mu= 9.6 sig2= 5.44

EW= 480.0 VarW= 15100.0

From formula: p= 1.0 mu= 9.6 sig2= 5.44

EW= 480.0 VarW= 15100.0

The source code that generated the above printout follows:

N=16; M=4; n = N-M;

A = [100,25,25,50,25,25,100,50,25,50,25,100]

print "Input data:"

print ’ N=’,N, ’, M =’,M

print ’ A =’, A

print; print

print "Step 1: compute Ab and A2b"

#----------------------------------------------------------

Ab = 0.0; A2b = 0.0;

for i in range(n):
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Ab += A[i]; A2b += A[i]*A[i]

Ab /= n; A2b /= n

print ’ Ab = ’,Ab, ’ A2b = ’,A2b

print; print

# Some extra test code

# s = 0

# for i in range(n):

# for j in range(n):

# if i != j: s += A[i]*A[j]

# print s, n*n*Ab*Ab - n*A2b

# print

# Code for computations involving r.v. X

#----------------------------------------------------------

def ncomb(n,r): # number of r-combinations of n objects

if r == 0: return 1.0

m = 1.0

for i in range(r,0,-1): m *= (1.0*n-r+i)/i

return m

def px(x): return ncomb(x-1,k-1)*ncomb(16-x,4-k)/ncomb(16,4)

# probability mass function for X

k = 3

print "Step 2: verify mean and variance of X for k =",k

#-------------------------------------------------------

p = 0; xb = 0; x2b = 0

for x in range(3,16):

print ’ X=’,x,’ prob=’,px(x)

p += px(x); xb += x*px(x); x2b += x*x*px(x)

print ’By direct summation: p=’,p, ’ xb=’,xb, \
’ VarX=’,x2b-xb*xb

print ’From formula: p=’,1.0, ’ xb=’,(N+1.0)*k/(M+1),\
’ VarX=’,(N+1.0)*(N-M)*k*(M-k+1)/((M+1)*(M+1)*(M+2))

print; print

# Code for generating the outcome space & amounts of winnings

#------------------------------------------------------------

24



def firstc(y): return range(y)

def nextc(comb,k):

i = k-1

comb[i] += 1

while i>=0 and comb[i]>=n-k+1+i:

i -= 1

comb[i] += 1

# print ’ ’,i,c

if comb[0] > n-k: return 0

for j in range(i+1,k):

comb[j] = comb[j-1] + 1

# print ’ ’,i,c

return 1

def win(c):

w = 0

if len(c) == 0: return 0

for i in range(len(c)): w += A[c[i]]

return w

def firstoc():

oc = [0,[], px(k)]

return oc

def nextoc(oc):

y = oc[0]; comb = oc[1]

# print y,comb

if y == 0:

oc[0] = 1; oc[1] = firstc(1)

oc[2] = px(k+1)/ncomb(n,1)

return 1

if nextc(comb,y):

oc[1] = comb; return 1

y += 1

if y > n: return 0

oc[0] = y; oc[1] = firstc(y); oc[2] = px(y+k)/ncomb(n,y)

return 1

# Some additional test code

# comb = firstc(2); print comb, win(comb)

# while nextc(comb,2): print comb, win(comb)

# print ncomb(4,2), ncomb(4,1), ncomb(4,0)

# print px(3); print
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print ’Step 3: verify the formulas for the mean and’, \
’variance of Y and W’

#----------------------------------------------------------

print ’---------------------------------’ + \
’---------------------------------’

for k in range(1,M+1):

p = 0; yb=0; y2b=0; wb = 0; w2b=0; py=0; wby=0; w2by=0

oc = firstoc(); # contributes 0 to all means

p += oc[2]; noc = 1; # but it contributes to probability

# print oc, win(oc[1])

while nextoc(oc):

y = oc[0]; comb = oc[1]; prob = oc[2]; w = win(comb)

p += prob; noc += 1

yb += prob*y; y2b += prob*y*y

wb += prob*w; w2b += prob*w*w

if y == 5: # checks values on the condition that y=5

py += prob; wby += prob*w; w2by += prob*w*w

mu = yb; sig2 = y2b-yb*yb

EW = wb; VarW = w2b-wb*wb

wby /= py; w2by /= py

print; print ’k = ’,k,’ summing’,noc,’game outcomes’

print ’Direct summation: p=’,p, ’ mu=’,mu, \
’ sig2=’,sig2,’ EW=’,EW, ’ VarW=’,VarW

print ’From formula: p=’,1.0, \
’ mu=’, (N-M)*k/(M+1.0), \
’ sig2=’, (N+1.0)*(N-M)*k*(M-k+1)/((M+1)*(M+1)*(M+2)), \
’ EW=’, mu*Ab, \
’ VarW=’, sig2*((N-M)*Ab*Ab+(M+1.0)*A2b)/(N+1)

# print ’mu, sig2’,mu,sig2, \
#(N-M)*k/(M+1.0), \
#(N+1.0)*(N-M)*k*(M+1-k)/((M+1)*(M+1)*(M+2))

# print ’For y=5: wby, varWy’, wby, w2by-wby*wby, \
#(A2b-Ab*Ab)*((N-M)*5-25)/(N-M-1.0)

# print ’(N-M)*mu-mu*mu’,(N-M)*mu-mu*mu, \
#(N-M)*(N-M)*k*(M+1.0-k)/((M+1.0)*(M+1))

#print ’(N-M)*mu-mu*mu-sig2’,(N-M)*mu-mu*mu-sig2, \
#(N-M)*(N-M-1)*k*(M+1.0-k)/((M+1.0)*(M+2))

#print ’VarW’, \
#sig2*Ab*Ab+sig2*(A2b-Ab*Ab)*(M+1.0)/(N+1.0), \
#sig2*((N-M)*Ab*Ab+(M+1.0)*A2b)/(N+1)

print
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Appendix B

Customer Satisfaction Calculations

The data for the graph of probability as a function of M (in Table 2.3) was calculated
with a Python program. A sample print out is shown below and the source code
follows.

Input paramaters:

N= 500 k= 3 x= 32

M, p*1000, p(M+1)/p(M)

-----------------------------

30,17.1836 1.03883

31,17.8508 1.035218

32,18.4795 1.031838

33,19.0678 1.028666

34,19.6144 1.025684

35,20.1182 1.022874

36,20.5784 1.020221

37,20.9945 1.017711

38,21.3663 1.015332

39,21.6939 1.013074

40,21.9775 1.010927

41,22.2177 1.008882

42,22.4150 1.006932

43,22.5704 1.00507

44,22.6848 1.003289

45,22.7594 1.001584

46,22.7955 0.99995

47,22.7944 0.998381

48,22.7575 0.996874

49,22.6863 0.995424

50,22.5825 0.994028

51,22.4476 0.992682
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52,22.2834 0.991384

53,22.0914 0.99013

54,21.8733 0.988919

55,21.6310 0.987746

56,21.3659 0.986612

57,21.0798 0.985512

58,20.7744 0.984446

59,20.4513 0.983411

60,20.1120 0.982406

Here is the Python code that generated the above printout:

N=500; k=3; x=32

# Posterior probability calculation for M

# (output is captured in a TXT file)

#--------------------------------------------------------

def ncomb(n,r): # number of r-combinations of n objects

if r == 0: return 1.0

m = 1.0

for i in range(r,0,-1): m *= (1.0*n-r+i)/i

return m

def px(M): return ncomb(x-1,k-1)*ncomb(N-x,M-k)/ncomb(N,M)

# probability mass function for X

print ’Input paramaters:’

print ’ N=’,N, ’ k=’,k, ’ x=’,x; print

print "M, p*1000, p(M+1)/p(M)"

print "-----------------------------"

for M in range(k, min(k+N-x+1,101)):

ratio = round((M+1.0)*(k+N-x-M)/((N-M)*(M+1-k)),6)

if M>=30 and M<=60:

print str(M)+","+str(round(1000*px(M),4))+’ ’\
+str(ratio)
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