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ABSTRACT

The study of this paper is based on the Markoff equation

x2 + y2 + z2 = 3xyz. (1)

Our goal is to derive the Hasse-Weil zeta function of a generalization of Equation (1)

in dimensions 2 and 3. This algebraic variety Ma,b(F
n
q ) is defined as the solutions to

x2
1 + x2

2 + +x2
3 = ax1x2x3 + b (2)

over Fq. We derive the zeta function by counting the number of solutions to Equation

(2) over finite fields first by using a projection to P2 minus some lines and in all other

cases by applying a slicing method from the two-dimensional cases. This enables us to

derive a generating function for the number of solutions over the degree k extensions

of the finite field Fq giving us the local zeta function

Z
(

Ma,b(F
3
q), t
)

=
1

(1 − q2t)(1 − ǫqt)3(1 − ǫδqt)(1 − t)

where ǫ and δ are ±1 and depend on q.
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Chapter 1

Introductory Material

The main topics of this paper include Number Theory, Finite Field Theory and a

little algebraic geometry. It is assumed the reader has a basic knowledge of these

areas.

1.1 Finite Fields and Quadratic Residues

Throughout the paper, we derive formulas based on whether or not certain constants

are quadratic residues over finite fields. Recall, in number theory, an integer r is

called a quadratic residue modulo p if it is congruent to a perfect square modulo p.

I.e. there exists x ∈ Zp such that x2 = r (mod p). We wish to apply the following

well-known theorems whose proofs we omit.

Theorem 1.1: The set of quadratic residues form a subgroup of Z∗
p.

Theorem 1.2: The quadratic residues of Z∗
p consist of

(

p−1
2

)

elements for p 6= 2.

Since we will be working over arbitrary finite fields we wish to extend our definition

and these theorems on quadratic residues to more than just the fields Zp.

Recall that if Fq is a finite field of order q then we have q = pm where the

prime number p is the characteristic of the field and m is a positive integer. We also

know that the multiplicative group F∗
q is cyclic and hence can be written as F∗

q = 〈α〉

for some generator α, implying that our group is isomorphic to Zq−1. Let us define Rq

to be the set of quadratic residues in F∗
q, where r is a quadratic residue of F∗

q if there

exists an x ∈ Fq such that x2 = r over Fq. This means that all quadratic residues of

Fq are the even powers of the generator α. I.e. (Rq, ·) = 〈α2〉. Therefore, if 2|(q − 1)



then we have that

[F∗
q :
〈

α2
〉

] = 2

and therefore, exactly half of the elements of F∗
q belong to Rq. If 2 does not divide

q−1 then p = 2 and gcd(2, q−1) = 1 so α2 must also be a generator of F∗
q. Therefore

all elements of F∗
q are quadratic residues. This leads us to the following analogs to

Theorems 1.1 and 1.2 over finite fields:

Theorem 1.3: The set of quadratic residues Rq is a subgroup of F∗
q.

Theorem 1.4: If Fq has odd characteristic, then there are q−1
2

elements of F∗
q that

belong to Rq.

Theorem 1.5: If Fq has characteristic 2, then all elements of F∗
q belong to Rq.

For this reason, we will have to consider separate cases when deriving our class

of zeta functions.

In Section 2.3, we make use of two theorems where we again define Rq to be the

set of quadratic residues in F∗
q and introduce Nq for the set of quadratic non-residues

in F∗
q. Kelly proved the following theorems over fields of prime order but they can be

easily generalized to arbitrary fields [6].

Theorem 1.6: Let q ≡ 1 (mod 4), let r be an arbitrary quadratic residue and n an

arbitrary nonresidue and assume Fq has characteristic not equal to 2. Then the sets

r + Nq and n + Rq consist of q−1
4

quadratic residues and q−1
4

quadratic nonresidues.

Theorem 1.7: Let q ≡ 3 (mod 4), assume Fq has characteristic not equal to 2 and

r, n defined in the same manner. Then the sets r + Nq and n + Rq consist of the

element 0 and q−3
4

quadratic residues along with q−3
4

nonresidues.
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1.2 Hasse-Weil Zeta Functions

The Riemann Zeta function is defined as the complex valued function given by the

series

ζ(s) :=
∞
∑

n=1

1

ns
(1.1)

which is defined for complex numbers s with ℜ(s) > 1. We can also write ζ(s) as the

Euler product giving us the important property

ζ(s) =
∏

p prime

(

1

1 − p−s

)

.

Reimann was able to give a formula for the number of primes less then a given

number in terms of the zeroes of the meromorphic continuation ζ(s). The search for

the zeroes of such functions is reguarded as one of the most important problems in

pure mathematics today.

It was only natural for mathmeticians to generalize ζ(s) in an attempt to

gain more insight into the Reimann zeta function, and also because zeta functions

themselves contain valuable information about the counting of certain geometric and

algebraic objects. These zeta functions can be divided into two categories: local zeta

functions and global zeta functions.

By local we mean that we are considering the series over finite fields Fq. The

local zeta function Z(t) is a function whose logarithmic derivative is a generating

function of some algebraic variety X over all k-extensions of the field Fq. By this we

mean that if we are given some algebraic variety X over Fq and let |Xqk | represent

the number of solutions in Fqk , then we can build the generating function

G(t) = |Xq|t +
|Xq2 |t2

2
+

|Xq3 |t3
3

+ ... .

3



From here we are able to define the local zeta function of X paired with the initial

finite field Fq as

ζ(Xq, t) = exp

( ∞
∑

n=1

|Xqn|t
n

n

)

.

Enrico Bombieri showed that this function can be algorithmically determined for any

variety Xqn [3].

Deriving the number of solutions to polynomials over finite fields is a non-

trivial problem. For example in 1925, Hasse put an upper bound on the number of

solutions of elliptic curves over Fq. His theorem states that if N is the number of

solutions then we have

|N − (q + 1)| ≤ 2
√

q.

This is equivalent to taking the absolute values of the zeroes of the local zeta function

of the elliptic curve. Despite the importance of elliptic curves in modern mathematics,

Hasse’s theorem remains a fundamental result in counting the number of solutions of

elliptic curves over Fq. This demonstrates that finding the order of the variety X is

an important problem for interesting cases of X.

Andre Weil [8] proposed several highly influential conjectures about the local

zeta function ζ(Xq, t) with reguards to its rationality, functionality, and its connection

to the Reimann hypothesis. Dwork [4] proved that if X is a non-singular projective

algebraic variety than ζ(Xq, t) is a rational function. Grothendieck [5] proved that

ζ(Xq, t) satisfies the functional equation

ζ(X,n − t) = ±q
nE
2

−Etζ(X, t)

where E is the Euler characteristic of X.

Global zeta functions, like the Reimann zeta function, take into account all

primes p. The understanding of zeta functions locally with respect to some prime

4



gives information about the global zeta function analogous to how properties of certain

integers can be determined by its prime factors. Local zeta functions can also be used

to show that the global zeta function is defined in some region {s ∈ C|ℜ(s) > K}.

In this paper we derive the Hasse-Weil zeta function, which is defined as the Euler-

product of the local zeta functions for Xp for all prime numbers p. I.e.

ζ(X, s) =
∏

p prime

ζ
(

Xp, p
−s).

1.3 The Markoff Equation

In 1879 Markov considered the Diophantine equation

x2 + y2 + z2 = 3xyz, (1.2)

which was made famous when he observed the relationship between the Markoff

triples and Diophantine approximation [7]. By a Markoff triple we mean the positive

rational integral solutions (x, y, z) satisfying the equation above. Cleary if (x, y, z) is a

Markoff triple then so are all other permutations. Less trivially if (x, y, z) is a solution

to Equation (1.2) then we can obtain the solutions (x, y, 3xy− z), (x, 3xz− y, z), and

(3xyz − x, y, z) which we easily verify:

x2 + y2 + (3xy − z)2 = x2 + y2 + 9x2y2 − 6xyz + z2

= 3xy + 9x2y2 − 6xyz

= 3xy(3xy − z).

The other two cases are identical. We can think of these substitutions as automor-

phisms on the curve defined in Equation (1.2) and define the group G = 〈σ1, σ2, σ3〉

where

σ1(x, y, z) = (x, z, y)
5



σ2(x, y, z) = (y, z, x)

σ3(x, y, z) = (x, y, 3xy − z).

After applying these automorphisms to an arbitrary solution we naturally create a

tree-like structure of integer solutions as seen below.

(1,1,1)

(1,1,2)

(1,2,5)

(1,5,13)

(2,5,29)

(1,13,34)

(5,13,194)

(2,29,169)

(5,29,433)

(1,34,89)

(13,34,1325)

(5,194,2897)

(13,194,7561)

(2,169,985)

(29,169,14701)

(5,433,6466)

(29,433,37666)

Figure 1.1: The Markoff Tree Generated by (1,1,1).

In Figure 1.3 we only consider one permutation of each triple ordered from

least to greatest, and two triples are connected if the automorphism σ3 was applied

exactly once between the two triples. Using a descent argument, Markov showed

that all integer solutions to Equation (1.2), aside from (0, 0, 0), can be generated

from the Group G acting on the fundamental solution (1, 1, 1). Other than the first

two triples, all Markov triples (a, b, c) consist of three distinct integers. The famous

unicity conjecture states that for a Markov number c, there exists exactly one Markov

triple (a, b, c) such that c is maximal.

Hurwitz (1907) was able to apply Markov’s descent argument to the more

general equation
6



x2
1 + x2

2 + · · · + x2
n = ax1x2 . . . xn. (1.3)

Hurwitz was able to show that there are no integer solutions to Equation (1.3) if

a > n.

The local zeta function for the Markoff equation over Fq was computed by

Baragar [1] as

Z(M3,0(F
3
q), t) =































1
(1−q2t)(1−ǫqt)3(1−t)

if the characteristic is not equal to 2 or 3

1
(1−q2t)(1−t)

if the characteristic is equal to 2

1
(1−q2t)

if the characteristic is equal to 3

for ǫ =
(

−1
p

)m

where q = pm and
(

−1
p

)

is the Legendre symbol for -1 modulo p.

This was done by using a birational map [2] between the set of solutions of Equation

(1.3) over Fq and P2. In this projective mapping, the solution point (0, 0, 0) acts as

a point at infinite. We sought to attempt to count the number of solutions to the

more generalized case Ma,b(F
3
q) using the same argument however we found that such

a convenient projection only applied to the special case Ma,4a−2(F3
q).

7



Chapter 2

Generalized Markoff equations over Fq

Throughout this paper we will refer to the algebraic variety of the more generalized

Markoff (or Hurwitz) equation defined by

Ma,b(F
n
q ) =

{

(x1, x2, ..., xn) ∈ Fn
q

∣

∣

∣

∣

∣

n
∑

i=1

x2
i = a

(

n
∏

i=1

xi

)

+ b

}

over Fq for degree n. Within this chapter we restrict n to degree 2 and 3.

2.1 Generalized Markoff equations of degree 3

First we note a few basic properties of Ma,b(F
3
q) and the group G acting on Ma,b(F

3
q).

First note that given a solution (x, y, z) ∈ Ma,b(F
3
q), we have that all permutations of

(x, y, z) are also solutions and again less trivially we can show that (x, y, axy − z) is

also a solution by observing

x2 + y2 + (axy − z)2 = x2 + y2 + a2x2y2 − 2axyz + z2

= axyz + b + a2x2y2 − 2axyz

= axy(axy − z) + b.

Hence we see that the group G acts on Ma,b(F
3
q) for any b ∈ Fq in the same manner

as the set of integral solutions to the original Markoff equation M3,0(Z
3). This means

that the set Ma,b(F
3
q) can also be represented as a finite Markoff tree as seen below.

Here a given component represents a particular G-orbit (notated as G {(x0, x1, x2)})

for some solution (x0, x1, x2) of the set Ma,b(F
3
q). Baragar conjectured [1] that for the

Markoff equation we have

M3,0(Zp) = G {(1, 1, 1)} ∪ {(0, 0, 0)}



(3.3.3) (4,4,3)

(2,2,2) (2,2,3) (0,0,3) (0,0,4)

(5,4,2) (5,5,2) (5,5,3)

(1,1,3) (1,1,0) (1,6,0)

(1,6,4)

(6,6,0) (6,6,3)

Figure 2.1: Markoff Tree for M3,2(Z
3
7).

(5,0,0) (6,0,0)

(8,1,1)

(8,7,1)

(4,1,1)

(8,7,0)

(10,7,1)

(4,3,1)

(10,3,1)

(10,7,3) (3,7,0)

(4,3,0)

(4,8,0)

(4,8,10)

(4,10,10) (10,8,10)

Figure 2.2: Markoff Tree for M1,3(Z
3
11).

which we clearly see cannot hold when the a, b values are changed as seen by the trees

for M1,3(F
3
11) and M3,2(F

3
7). The fact that the structure of the group G is difficult to

determine brings interest to the following questions: How many G-orbits exist for the

set Ma,b(F
3
q), can we obtain any information about G (i.e. subgroups, divisors of the

order, etc.) by looking at the orbits, and what is the size of Ma,b(F
3
q). Throughout

the next few sections we answer the last question.

9



Table 2.1: |M3,b

(

F3
p

)

| for different b and small primes p

b\p 5 7 11 13 17 19
0 41 29 89 209 341 305
1 26 22 166 118 222 438
2 36 50 144 196 222 324
3 16 64 166 222 256 400
4 6 78 78 118 358 286
5 36 78 144 256 286
6 64 100 144 324 286
7 144 144 324 286
8 100 196 290 400
9 122 222 358 438
10 144 118 324 324
11 196 256 362
12 170 324 400
13 222 324
14 256 324
15 222 400
16 358 438
17 438
18 400

We have [2] that |M3,0(F
3
q)| = q2 +3

(

−1
q

)

q+1. In table 2.1 we give the orders

of M3,b(Fq) for different values of b and over fields of order q.

To count the number of solutions to the generalized Hurwitz equation, it is

advantageous to simplify the equation as much as possible.

Observation: |Ma,b(F
3
q)| = |Mam−1,bm2(F3

q)| for any m ∈ F∗
q.

Proof: We are able to show this using the fact that (x, y, z) → (mx,my,mz) is a

10



bijective mapping and by assuming that (x, y, z) ∈ Ma,b(F
3
q). We observe that

(mx)2 + (my)2 + (mz)2 = m2(x2 + y2 + z2)

= m2(axyz + b)

= am−1(mx)(my)(mz) + bm2

Hence (mx,my,mz) ∈ Mam−1,bm2(F3
q).

This means that the two degrees of freedom for choices of a and b can be broken

down to just one. Using the mapping above, we have a bijection on the sets Ma,b(F
3
q)

and M1,ba2(F3
q), and because our goal is to find the order, we will only consider the

set M1,b(F
3
q) knowing there is a one-one correspondence to the generalized Hurwitz

sets for other values of a.

2.2 The Special case of M1,4(F
3
q)

In this case, we can use the technique applied by Baragar [1] for the Markoff equation.

In that case, the use of a birational map from M3,0(F
3
q) to P2 was applied treating

the singular point (0, 0, 0) as a point at infinite. Note that G {(0, 0, 0)} over this set

consists of only one element. So to apply this technique we sought other points in

M1,b(F
3
q) whose G-orbit is also of order 1 over all fields. In other words

(x0, x1, x2) = (x1x2 − x0, x1, x2) = (x0, x0x2 − x1, x2) = (x0, x1, x0x1 − x2)

⇒ x0 = x1x2 − x0, x1 = x0x2 − x1, x2 = x0x1 − x2

⇒ 2x0 = x1x2, 2x1 = x0x2, 2x2 = x0x1

Here we see that the only solutions to this system of equations over any finite

field is (0, 0, 0), which is always in M1,0(F
3
q); and (2, 2, 2), which is always an element

of M1,4(F
3
q). This suggests that the only candidate to use this technique is for the

11



special case M1,4(F
3
q) so we proceed in the same manner as Baragar using (2, 2, 2)

as a point at infinity in the birational mapping. (Note that for the fields Fq with

characteristic 2, the triple (2, 2, 2) is (0, 0, 0).)

First let

x̂ = 2 − x ŷ = 2 − y ẑ = 2 − z

so our equation for x2 + y2 + z2 = xyz + 4 becomes

(2 − x̂)2 + (2 − ŷ)2 + (2 − ẑ)2 = (2 − x̂)(2 − ŷ)(2 − ẑ) + 4

x̂2 + ŷ2 + ẑ2 − 4x̂ − 4ŷ − 4ẑ + 12 = 8 − 4x̂ − 4ŷ − 4ẑ + 2x̂ŷ + 2x̂ẑ + 2ŷẑ − x̂ŷẑ + 4

and after cancellation we get

x̂2 + ŷ2 + ẑ2 = 2x̂ŷ + 2x̂ẑ + 2ŷẑ − x̂ŷẑ.

Now suppose ẑ 6= 0, then we can write this equation as

(

x̂

ẑ

)2

+

(

ŷ

ẑ

)2

+ 1 = 2

(

x̂

ẑ

)(

ŷ

ẑ

)

+ 2

(

x̂

ẑ

)

+ 2

(

ŷ

ẑ

)

−
(

x̂

ẑ

)(

ŷ

ẑ

)

ẑ.

Now let

u =
x̂

ẑ
=

2 − x

2 − z
v =

ŷ

ẑ
=

2 − y

2 − z

giving us

u2 + v2 + 1 = 2uv + 2u + 2v − uv(2 − z)

u2 + v2 + 1 = 2u + 2v + uvz.

Assuming that uv 6= 0 we solve for z

z =
u2 + v2 + 1 − 2u − 2v

uv

which now enables us to put x and y in terms of u and v

x =
u2 + v2 + 1 − 2uv − 2u

v
y =

u2 + v2 + 1 − 2uv − 2v

u
.

12



We define the set L to be the set of elements taking into account our restrictions

uv 6= 0 and z 6= 2

L =
{

(u, v) ∈ F2
q| uv 6= 0, u2 + v2 + 1 − 2u − 2v − 2uv 6= 0

}

.

So now we have the one-to-one function

ϕ : L → M1,4(F
3
q)

ϕ : (u, v) 7−→
(

u2+v2+1−2uv−2u
v

, u2+v2+1−2uv−2v
u

, u2+v2+1−2u−2v
uv

)

where the elements of M1,4(F
3
q) ommitted by ϕ is the set

S =
{

(x, y, z) ∈ M1,4(F
3
q)| x = 2, y = 2, or z = 2

}

.

This leads us to a partition of the set whose order we are interested in:

|M1,4(F
3
q)| = |L| + |S|.

We proceed by finding the order of S then L.

The set S is relatively easy to count. Assuming x = 2 we get

4 + y2 + z2 = 2yz + 4

y2 − 2yx + z2 = 0

(y − z)2 = 0

but there are no zero-divisors in Fq which implies y = z, giving us q solutions. Thus

letting y = 2 gives us q many solutions, and also z = 2 gives us q many more solutions,

however the triple (2, 2, 2) was over counted twice so

|S| = 3p − 2.

13



To count the size of L we consider the complement of L, the set

Lc =
{

(u, v) ∈ F2
q| uv = 0 or u2 + v2 + 1 − 2u − 2v − 2uv = 0

}

.

Knowing that |L| + |Lc| = q2 it suffices to find |Lc| in order to find |L|.

Counting the number of (u, v) ∈ F2
q that satisfy the condition uv = 0 is not

difficult. Again there are no zero-divisors in Fq so either u = 0 or v = 0. Assuming

u = 0 there are q choices for v and like-wise for when v = 0. We double counted the

single case where (u, v) = (0, 0) giving us 2p − 1 such elements in Lc that satisfy the

first condition.

To finish our count of Lc we must count the number of non-zero solutions to

the equation given as the second condition of Lc. This is done by manipulating the

equation

u2 + v2 + 1 − 2uv − 2u − 2v = 0

u2 − 2uv + v2 + 1 + 2u − 2v = 4u

(v − u)2 − 2(v − u) + 1 = 4u

(v − u − 1)2 = 4u

v − u − 1 = ±2
√

u

v = u ± 2
√

u + 1

v = (
√

u ± 1)2

implying that the (u, v) ∈ Lc satisfying this condition must both be squares within

Fq satisfying (u, (
√

u ± 1)2). There are q−1
2

possibilities for u corresponding to the

non-zero squares in Fq and for each u we have 2 unique v except for the case when

u = (
√

u ± 1)2 which happens only when u = 4−1. This means that we double count

14



just once. Thus we have 2
(

q−1
2

)

− 1 = q − 2 solutions to the second condition of Lc

giving us

|Lc| = (2q − 1) + (q − 2) = 3q − 3

We now have enough information to compute |M1,4(F
3
q)|:

|M1,4(F
3
q)| = |L| + |S|

= q2 − |Lc| + |S|

= q2 − (3q − 3) + 3q − 2

so

|M1,4(F
3
q)| = q2 + 1.

2.3 The Two Dimensional Case

So we have the order of the sets M1,0(F
3
q) and M1,4(F

3
q). To find the order of Ma,b(F

3
q)

for all a, b ∈ Fq we first consider the two dimensional case of the generalized Hurwitz

equation. That is, we consider

x2 + y2 = axy + b

15



over Fq and find |Ma,b(F
2
q)|. The main result of this section is

Theorem 2.1: For p 6= 2, q = pm, we have

|Ma,b(F
2
q)| =































































































q a = ±2, b = 0

2q a = ±2, b is a nonzero quadratic residue

0 a = ±2, b is a quadratic nonresidue

1 b = 0, a2 − 4 is a quadratic nonresidue

2q − 1 b = 0, a2 − 4 is a nonzero quadratic residue

q − 1 b 6= 0, a2 − 4 is a nonzero quadratic residue

q + 1 b 6= 0, a2 − 4 is a quadratic nonresidue

For the first three cases, the number theory computations are elementary sowe

omit their proof:

Case 1: a = ±2 and b = 0 yields q solutions.

Case 2: a = ±2 and b is a nonzero quadratic residue yields 2q solutions.

Case 3: a = ±2 and b is a quadratic nonresidue yields no solutions.

Next we compute the number of solutions to the less trivial cases.

Case 4 and Case 5: Let b = 0 and assume a2 − 4 6= 0.

Thus we have the equation x2 +y2 = axy. Note that (0, 0) is the only solution

in which y is zero. So assume y 6= 0 and write the equation x2 + y2 = axy as

(

x

y

)2

+ 1 = a

(

x

y

)

(

x

y

)2

− a
x

y
+ 1 = 0

(

x

y

)2

− a
x

y
+
(a

2

)2

−
(a

2

)2

+ 1 = 0

(

x

y
− a

2

)2

=
a2 − 4

4
. (2.1)
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Thus the existence of any other solutions depend on whether the value a2 − 4 is a

square in Fq. The case where a2−4 is zero is covered in Case 1. If a2−4 is a quadratic

nonresidue, then Equation (2.1) has no solutions veryifying Case 4 where the only

solution is (0, 0). If a2 − 4 is a nonzero quadratic residue, then Equation (2.1) can be

evaluated as

x

y
=

a

2
±

√
a2 − 4

2

implying that we are solving the two equations

x

y
=

a

2
+

√
a2 − 4

2
and

x

y
=

a

2
−

√
a2 − 4

2

or equivalently

x

y
= c1 and

x

y
= c2

for c1, c2 ∈ F∗
q and c1 6= c2. Knowing there are only q− 1 choices for x and y (because

we have ommited 0) we can deduce that there will be 2q − 2 solutions. Now taking

into account the solution point (0, 0) implies that Case 5 gives 2q − 1 total solutions.

Before counting the number of solutions to Cases 6 and 7, we first simplify the

equation x2 + y2 = axyz + b by completing the square. So let x̄ = x −
(

a
2

)

y. Then

(

x̄ +
a

2
y
)2

+ y2 = a
(

x̄ +
a

2
y
)

y + b

x̄2 + ax̄y +

(

a2

4

)

y2 + y2 = ax̄y +

(

a2

2

)

y2 + b

x̄2 =

(

a2 − 4

4

)

y2 + b. (2.2)

Thus in order to count the number of solutions to Cases 6 and 7 we need only count

the number of solutions to Equation (2.2) under the same conditions. Note that if

a2 − 4 is a quadratic residue in Fq then so is a2−4
4

.

Case 6: Let b 6= 0 and assume a2 − 4 is a non-zero quadratic residue.
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By assumption we can let k2 = a2−4
4

with k ∈ F∗
q. Using (2.2), we can apply

another substitution where u = k (x̄ + y) and v = x̄ − y so (2.2) becomes

a2 − 4

4

(

u2 + 2uv + v2
)

=
a2 − 4

4

(

u2 − 2uv + v2
)

+ b

a2 − 4

4
(2uv) +

a2 − 4

4
(2uv) = b

uv =
b

a2 − 4

By assumption we have that b
a2−4

6= 0 and hence the equation above has exactly q−1

solutions over Fq verifying case 6.

Case 7: Let a2 − 4 be a quadratic non-residue and b 6= 0.

To count the number of solutions to Equation (2.2), we note that it is equiv-

alent to counting how often the term
(

a2−4
4

)

4y2 + b is a quadratic residue in Fq and

how many times it is equal to zero. To do this we apply Theorems 1.13 and 1.14

depending on whether −1 and b are quadratic residues. We prove Case 7 for −1 ∈ Rq

and b ∈ Nq and leave the other three cases to the reader, as the arguments are sim-

ilar. So we want to know how often
(

a2−4
4

)

y2 + b or equivalently Nq ∪ {0} + n, is

a quadratic residue for some n ∈ Nq. We know that the set Rq + n consists of q−1
2

distinct elements exactly half of which are residues implying that the complement

set Nq ∪ {0} + n must contain q−1
4

quadratic residues. Using the fact that the curve

is symmetric with respect to x and y, we conclude that every quadratic residue in

n + Nq generates 4 solutions. Also note that based on our assumptions that x = 0 is

a solution and y = 0 is not generating 2 more solutions giving us

4

(

q − 1

4

)

+ 2(1) = q + 1.

So again we have the total number of integral solutions to the generalized

Hurwitz equation of two variables
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Table 2.2: |Ma,b (F2
11) | for all a and b

b\ a 0 1 2 3 4 5 6 7 8 9 10
0 1 1 11 21 21 1 1 21 21 11 1
1 1 1 11 10 10 12 12 10 10 22 12
2 12 12 22 10 10 12 12 10 10 0 12
3 12 12 0 10 10 12 12 10 10 22 12
4 12 12 22 10 10 12 12 10 10 22 12
5 12 12 22 10 10 12 12 10 10 22 12
6 12 12 22 10 10 12 12 10 10 0 12
7 12 12 0 10 10 12 12 10 10 0 12
8 12 12 0 10 10 12 12 10 10 0 12
9 12 12 0 10 10 12 12 10 10 22 12
10 12 12 22 10 10 12 12 10 10 0 12

|Ma,b(F
2
q)| =































































































q a = ±2, b = 0

2q a = ±2, b is a nonzero quadratic residue

0 a = ±2, b is a quadratic nonresidue

1 b = 0, a2 − 4 is a quadratic nonresidue

2q − 1 b = 0, a2 − 4 is a nonzero quadratic residue

q − 1 b 6= 0, a2 − 4 is a nonzero quadratic residue

q + 1 b 6= 0, a2 − 4 is a quadratic nonresidue

. (2.3)

Table 2.3 illustrates how the seven cases are visually clear as a and b change.

Note that we apply Case 6 exactly q−3
4

times and Case 7 exactly q−1
2

times.

The way this is shown in general is by observing how often a2 − 4 is a quadratic

residue for all a ∈ Fq and this is done by applying Theorems 1.6 and 1.7.
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2.4 The order of Ma,b(F
3
q)

In this section we compute the order of the varieties M1,b(F
3
q) by slicing the equation

x2 + y2 + z2 = xyz + b (2.4)

into two dimensional cases. Let us fix z = k so Equation (2.4) becomes

x2 + y2 = kxy + (b − k2). (2.5)

This leads us to the formula

|M1,b(F
3
q)| =

∑

k∈Fq

|Mk,b−k2(F2
q)|.

From here, we need to count how many times we apply each case from Equation (2.3).

Clearly we can consider the cases when k = ±2 to arrive at

|M1,b(F
3
q)| =

∣

∣M2,b−4(F
2
q)
∣

∣+
∣

∣M−2,b−4(F
2
q)
∣

∣+
∑

k∈Fq−{±2}
|Mk,b−k2(F2

q)|

= 2
∣

∣M2,b−4(F
2
q)
∣

∣+
∑

k∈Fq−{±2}
|Mk,b−k2(F2

q)| (2.6)

but to continue isolating separate conditions of Equation (2.3), we consider four

separate cases.

Case 1: Suppose b and b − 4 are non-zero quadratic residues of Fq.

If we want to isolate Cases 2 and 3 of Equation (2.3), then we let k =
√

b.

Then Equation (2.6) becomes

|M1,b(F
3
q)| = 2

∣

∣M2,b−4(F
2
q)
∣

∣+
∣

∣M√
b,0(F

2
q)
∣

∣+
∣

∣M−
√

b,0(F
2
q)
∣

∣+
∑

k∈Fq−{±2,±
√

b}
|Mk,b−k2(F2

q)|

= 2
∣

∣M2,b−4(F
2
q)
∣

∣+ 2
∣

∣M√
b,0(F

2
q)
∣

∣+
∑

k∈Fq−{±2,±
√

b}
|Mk,b−k2(F2

q)|.
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Note that the term
∑

k∈Fq−{±2,±
√

b}
|Mk,b−k2(F2

q)| is a sum of terms consisting of Case 6

and Case 7 of Equation (2.3). We know from Section 2.3 that Case 7 applies exactly
(

q−1
2

)

times and that Case 6 applies exactly
(

q−3
2

− 2
)

, where we subtract 2 because

we already considered the case when k = ±
√

b. Lastly note the following equalities

are based on Cases 2-5 of Equation (2.3)

|M2,b−4(F
2
q)| =















0 b − 4 if is a quadratic nonresidue

2q b − 4 if is a non-zero quadratic residue

|M√
b,0(F

2
q)| =















1 b − 4 if is a quadratic nonresidue

2q − 1 b − 4 if is a non-zero quadratic residue

so since b−4 is a quadratic residue we have |M2,b−4(F
2
q)| = 2q and |M√

b,0(F
2
q)| = 2q−1.

Now we compute

|M1,b(F
3
q)| = 2

∣

∣M2,b−4(F
2
q)
∣

∣+ 2
∣

∣M√
b,0(F

2
q)
∣

∣+
∑

k∈Fq−{±2,±
√

b}
|Mk,b−k2(F2

q)|

= 2 (2q) + 2 (2q − 1) +

(

q − 3

2
− 2

)

(q − 1) +

(

q − 1

2

)

(q + 1)

= 4q + 4q − 2 +
q2 − 8q + 7

2
+

q2 − 1

2

= q2 + 4q + 1.

Case 2: Suppose b is a quadratic residue of Fq and b− 4 is a quadratic non-residue.

There are a couple of differences in calculation from these two cases. First

note

|M2,b−4(F
2
q)| =















0 b − 4 is a quadratic nonresidue

2q b − 4 is a non-zero quadratic residue
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|M√
b,0(F

2
q)| =















1 b − 4 is a quadratic nonresidue

2q − 1 b − 4 is a non-zero quadratic residue

so since b − 4 is a non-residue we have |M2,b−4(F
2
q)| = 0 and |M√

b,0(F
2
q)| = 1. The

second difference is that
(√

b
)2

− 4 is not a quadratic residue and hence we must

subtract 2 from the 4th term instead of the third, so

|M1,b(F
3
q)| = 2

∣

∣M2,b−4(F
2
q)
∣

∣+ 2
∣

∣M√
b,0(F

2
q)
∣

∣+
∑

k∈Fq−{±2,±
√

b}
|Mk,b−k2(F2

q)|

= 2 (0) + 2 (1) +

(

q − 3

2

)

(q − 1) +

(

q − 1

2
− 2

)

(q + 1)

= 2 +
q2 − 4q + 3

2
+

q2 − 4q − 5

2

= q2 − 4q + 1.

Case 3: Suppose b is a quadratic nonresidue and b−4 is a non-zero quadratic residue

of Fq.

Note that the term
∣

∣M√
b,0(F

2
q)
∣

∣ in our first two cases will not exist when b is

not a quadratic residue. This also means that we will not double count and hence

not need to subtract by 2 as in the last two cases. Hence we have that

|M1,b(F
3
q)| = 2

∣

∣M2,b−4(F
2
q)
∣

∣+
∑

k∈Fq−{±2,±
√

b}
|Mk,b−k2(F2

q)|

= 2 (2q) +

(

q − 3

2

)

(q − 1) +

(

q − 1

2

)

(q + 1)

= 4q +
q2 − 4q + 3

2
+

q2 − 1

2

= q2 + 2q + 1.

Case 4: Suppose b and b − 4 are quadratic nonresidues of Fq.
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The computations in this case are similar to the previous case. The end result is

|M1,b(F
3
q)| = 2

∣

∣M2,b−4(F
2
q)
∣

∣+
∑

k∈Fq−{±2,±
√

b}
|Mk,b−k2(F2

q)|

= 2 (0) +

(

q − 3

2

)

(q − 1) +

(

q − 1

2

)

(q + 1)

= 0 +
q2 − 4q + 3

2
+

q2 − 1

2

= q2 − 2q + 1.

We can also derive both |M1,4(F
3
q)| and |M1,0(F

3
q)| using this slicing method.

This gives us the formula

|M1,b(F
3
q)| =































q2 + 3ǫq + 1 b = 0

q2 + 2ǫq + 1 b is a quadratic nonresidue

q2 + 4ǫq + 1 b is a nonzero-quadratic residue

where ǫ =































1 b − 4 is a quadratic residue of Fq

−1 b − 4 is a quadratic nonresidue of Fq

0 b − 4 = 0

.

We showed in Section 2.1 that for a 6= 0 we have |Ma,b(F
3
q)| = |M1,ba2(F3

q)| but note

that if b is a square in Fq then so is ba2. Using these facts and the equation above,

we can derive the order of Ma,b(F
3
q) for all a, b ∈ Fq given by

|Ma,b(F
3
q)| =































q2 + 3ǫq + 1 b = 0

q2 + 2ǫq + 1 b is a quadratic nonresidue

q2 + 4ǫq + 1 b is a nonzero-quadratic residue
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where ǫ =































1 ba2 − 4 is a quadratic residue of Fq

−1 ba2 − 4 is a quadratic nonresidue of Fq

0 ba2 − 4 = 0

.

In all cases we may write this formula in a more condensed manner as

|Ma,b(F
3
q)| = q2 + (3 + δ) (ǫq) + 1 (2.7)

by defining δ =































1 b is a quadratic residue of Fq

−1 b is a quadratic nonresidue of Fq

0 b = 0

.

We further note when q = pm we have ǫ =
(

ab2−4
p

)m

and δ =
(

b
p

)m

(here we are

using the Legendre symbol again).

2.5 The Zeta Function of Ma,b

(

F3
q

)

Using Section 1.3, we compute the generating function of the variety Ma,b(F
3
q) to be

G(t) =
∞
∑

n=1

∣

∣Ma,b(F
3
qn)
∣

∣

tn

n
.

This series is computed over Q, and our formula for |Ma,b(F
3
qn)| depends on the

quadratic reciprocity of b and ab2 − 4 in Fqn as the positive integer n increases. So

again let us write q = pm with p 6= 2. Then we have

|Ma,b(F
3
q)| = q2 + (3 + δ) (ǫq) + 1.

This gives us the generating function

G(t) =
∞
∑

n=1

(q2n + (3 + δn) (ǫq)n + 1) tn

n

G(t) =
∞
∑

n=1

(

(q2t)n

n
+ 3

(ǫqt)n

n
+

(δǫqt)n

n
+

tn

n

)

.
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Using log(1 − t) = −
∞
∑

k=1

tk

k

G(t) = − log(1 − q2t) − 3 log(1 − ǫqt) − log(1 − ǫδqt) − log(1 − t)

Which means we can solve for the local zeta function given by

Z
(

Ma,b(F
3
q), t
)

= eG(t)

=
1

(1 − q2t)(1 − ǫqt)3(1 − ǫδqt)(1 − t)
.

A few more formulas that are necessary for the completion of the Hasse-Weil

zeta function are for the case when a = 0 and when the characteristic is equal to 2.

The following is derived via the slicing technique on Fq with characteristic not

equal to 2. The derivation for this formula is easier then that in section 2.5 so we

omit the proof:

|M0,b(F
3
q)| = q2 + δq.

When q = 2m with a, b ∈ Z2 we have

|Ma,b(Z
3
2)| =















q2 + δ(−1)m + 1 if 2 6 |a

q2 if 2|a.

Thus the Hasse-Weil zeta function for the variety is

ζ
(

Ma,b(Q
3), s

)

=

Z2(s)
∏

p|a

1

(1 − p2−s)(1 − δp1−s)

∏

p 6|a

1

(1 − p2−s)(1 − ǫp1−s)3(1 − ǫδp1−s)(1 − p−s)

where

Z2(s) = Z(Ma,b(Z
3
2), s) =















(

1
(1−22−s)(1−δ21−s)(1−2−s)

)

if 2 6 |a
(

1
1−22−s

)

if 2|a.
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2.6 Discussion on Future Work

We have |Ma,b(F
3
q)| for all a and b in Fq so a natural question is whether we can apply

the same slicing method on the variety Ma,b(F
4
q) as well as higher values of n and we

observe the difficulties that are encountered. Following the same technique in Section

2.4, we would proceed with the variety |M1,0(F
4
q)| by fixing the variable w = k like

so;

x2 + y2 + z2 + w2 = xyzw

x2 + y2 + z2 = kxyz − k2

and after applying Equation (2.7) we get

|M1,0(F
4
q)| =

∑

k∈Fq

|Mk,−k2(F3
q)|

= q2 +
∑

k∈F∗

q

(

q2 + (3 + δ) (ǫq) + 1
)

.

Recall that

ǫ =































1 −k4 − 4 is a quadratic residue of Fq

−1 −k4 − 4 is a quadratic nonresidue of Fq

0 −k4 − 4 = 0

and

δ =































1 −1 is a quadratic residue of Fq

−1 −1 is a quadratic nonresidue of Fq

0 −1 = 0

.

so in order to find |M1,0(F
4
q)| we would need to count how often the term −k4 − 4 is

a quadratic residue. We relied on Theorems 1.6 and 1.7 for previous cases but they

cannot be applied here. This demonstrates that the difficulty in computing |Ma,b(F
n
q )|
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for higher values of n arise when trying to predict the terms that will be necessary

to count.

Also there was a one-to-one correspondance between different varieties noticed

in Section 2.1 that cannot always be applied here when n > 3 implying that there

are still two degrees of freedom for Ma,b(F
n
q ) in most cases.
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