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ABSTRACT 

The Effect of Acute LPS-Induced Immune Activation and Brain Insulin Signaling 

Disruption in a Diabetic Model of Alzheimer’s Disease 

by 

Andrew Scott Murtishaw 

Dr. Jefferson Kinney, Examination Committee Chair 
Assistant Professor of Psychology 
University of Nevada, Las Vegas  

 

 Alzheimer’s disease (AD) is a neurodegenerative disorder marked by progressive 

cognitive impairments and pathological hallmarks that include amyloid plaques, 

neurofibrillary tangles, and neuronal loss. Several well-known mutations exist that lead to 

early-onset familial AD (fAD). However, these cases only account for a small percentage 

of total AD cases. The vast majority of AD cases are sporadic in origin (sAD) and are 

less clearly influenced by a single mutation but rather some combination of genetic and 

environmental risk. 

 The etiology of sAD remains unclear but numerous risk factors have been 

identified that increase the chance of developing AD. Among these risk factors, Type II 

Diabetes Mellitus (DM) and chronic inflammation of the brain have been implicated as 

two leading risk factors. Longitudinal studies have identified that patients with T2DM 

have nearly twice the risk of developing AD. DM is a common metabolic disorder that 

affects a quarter of the elderly population with symptoms that include insulin 

dysregulation and altered glucose metabolism.  Numerous studies link insulin resistance 

in the brain with an increased risk of AD. Intracerebroventricular (ICV) administration of 

the diabetogenic drug streptozotocin (STZ) leads to brain insulin resistance and several 
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AD-like pathologies including progressive deterioration of memory, increased Aβ load 

and hyperphosphorylated tau. STZ has been proposed to be a relevant animal model of 

sAD.  

 Additionally, neuroinflammation has been implicated in playing a fundamental 

role in the progression of the neuropathological changes observed in AD brains. 

Neuroinflammation is typically thought to be a result of one or more of the other AD 

pathologies and serves to rapidly progress the disease. Lipopolysaccharide (LPS) is 

capable of mounting an immune response through the activation of Toll-like receptor 4 

(TLR4). Studies involving transgenic models routinely activate the immune system by 

administering LPS to exacerbate AD-like deficits to better understand the role of 

neuroinflammation in AD. 

 The majority of AD models rely on genetic mutations and provide valuable 

information regarding the role of Aβ and tau pathologies but do not represent the 

prevailing sAD. Considerable research has been conducted to help elucidate the risk 

factors associated with sAD, including DM and neuroinflammation. However, there is a 

lack of research regarding the role of neuroinflammation in this particular model of sAD. 

The purpose of this study was to investigate the effects of a one-time immune activation 

in the STZ model on learning and memory and proteins associated both with AD 

hallmarks and with various neurotransmitter systems. Results indicated that an acute 

inflammatory response played a beneficial role in spatial learning and in several of the 

investigated proteins. These data may help shed light on the role of brain inflammation in 

AD. 
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CHAPTER 1 

INTRODUCTION 

 Alzheimer’s disease (AD) is a neurodegenerative disorder that currently affects 

nearly 5.2 million people in the United States and is expected to triple to 13.8 million by 

2050 as the life expectancy continues to increase 1. Worldwide estimates are even more 

staggering with a current incident rate of 35.6 million and a 2050 projection of nearly 115 

million individuals 2. Symptoms of AD include progressive memory loss, cognitive 

decline as well as behavioral perturbations 3,4. Behavioral alterations include anxiety, 

psychoses, confusion and apathy 4. Pathological hallmarks of this disorder include 

amyloid plaques, neurofibrillary tangles (NFTs), and neuronal loss 5-9.   

 The average age of AD onset is 65 years and is typically referred to as either late-

onset AD (LOAD) or sporadic AD (sAD). A small percentage of AD, 1-5%, occurs 

earlier and is referred to as early-onset AD (EOAD), also known as familial AD (fAD). 

Several well-studied genetic mutations exist that lead to fAD, including mutations in the 

amyloid precursor protein, presenilin 1 and presenilin 2 genes. Mutations in these genes 

all lead to the same outcome, increased Aβ peptides that result in amyloid plaque 

deposition. sAD accounts for the vast majority of AD cases (99%) and is thought to 

develop due to a number of risk factors. Two of the leading age-related risk factors for 

developing sAD include Type II Diabetes Mellitus (DM) 10-13 and chronic inflammation 

of the brain 14,15. 

 Numerous studies have established high comorbidity between AD and DM 16-20  

and have demonstrated links between insulin resistance in the brain and AD 21-24. Patients 

with DM have nearly double the risk of developing AD, making it one of the top risk 
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factors 16,17,25. Several mechanisms indicate overlap between AD and DM. In particular, 

insulin is capable of regulating the activity of GSK3-β, which is responsible for 

phosphorylating tau at multiple sites that are characteristic of the NFTs seen in AD 26-29.  

 Neuroinflammation has been implicated in exacerbating AD pathologies and 

rapidly accelerating the disease progression14,30. A growing body of research indicates 

that chronic inflammation facilitates both tau phosphorylation and Aβ deposition 31-33. 

Neuroinflammation has also been implicated in the worsening of learning and memory 

deficits seen in both normal aging and AD 34-36, and is likely related to the above 

pathologies37,38. There are benefits of short-term inflammation in the brain, including 

microglia that degrade Aβ and remove the debris of dead and dying cells, reducing the 

likelihood of further cell loss 39-41. Neuroinflammation can become neurotoxic, however, 

when the response becomes chronic and uncontrolled, leading to increased Aβ and senile 

plaque production, neuronal injury, and cell death 30,42. 

 Considerable progress has been made investigating each of the above risk factors, 

DM and neuroinflammation, as they each relate to AD. However, there have been no 

investigations capitalizing on the combination of the above risk factors to investigate 

their interplay with each other, leading to behavioral and pathological characteristics of 

AD. The purpose of this study was to evaluate the effects of neuroinflammation in a DM 

animal model of AD. A widely accepted diabetic model of AD, utilizing streptozotocin 

(STZ) to disrupt insulin production and signaling in the brain, is often used to investigate 

the role that DM plays in the development of sAD. The below experiment investigated 

the effect of acute brain inflammation in this diabetic model of sAD by inducing an 

inflammatory response with lipopolysaccharide (LPS), a potent immune activator. We 
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examined learning and memory in multiple hippocampally-dependent tasks, including the 

Morris water maze (MWM) and novel object recognition (NOR), to assess whether one-

time immune activation was sufficient to exacerbate deficits exhibited in this DM model 

of AD. We also examined hippocampal protein levels of Aβ, phosphorylated tau (pTau), 

and numerous other neurotransmitter specific proteins to determine if alterations in these 

proteins occurred.  
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CHAPTER 2 

REVIEW OF RELATED LITERATURE 

Amyloid β Hypothesis 

 Amyloid plaques, also known as senile plaques, are one of the defining 

pathological hallmarks of AD. Senile plaques were first described in 1907 by Alois 

Alzheimer and have been central to the postmortem diagnosis of AD to date 43. Amyloid 

plaques accumulate extracellularly, resulting in cell damage and neuronal loss.  

 The Aβ peptide was first purified from the brains of AD and Down’s syndrome 

individuals in 1984 44, leading to the isolation of Aβ from senile plaques the following 

year, providing the groundwork that Aβ forms the core of amyloid plaques8. The current 

leading hypothesis, the amyloid cascade hypothesis, posits that early Aβ deposition not 

only leads to the formation of amyloid plaques but the formation of NFTs, 

neurodegeneration and cognitive decline 45,46. 

 Early observations that individuals with Down’s syndrome, a disorder due to three 

copies of chromosome 21, often develop dementia similar in nature to Alzheimer’s 

disease and develop virtually identical amyloid plaques, initially drew the focus towards 

chromosome 21 as a potential locus for AD development 47. This focus on chromosome 

21 lead to the discovery of the amyloid precursor protein (APP) gene, which is 

responsible for the protein, amyloid precursor protein (APP), that is eventually broken 

down into Aβ peptides 48-51. 

 APP is a transmembrane protein containing a large extracellular N-terminal 

domain, a hydrophobic transmembrane domain and a relatively short intracellular C-

terminal domain 52,53. Due to alternative splicing during posttranslational modification, 
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there are three major APP isoforms: 695, 751 and 770 (referring to the number of amino 

acid residues). The isoforms containing 751 and 770 amino acids are widely expressed in 

non-neuronal cells but appear to be present in neurons as well, whereas the 695 amino 

acid isoform is more commonly found in neurons than in other cell types 54. The 

physiological function of APP remains largely unknown despite extensive research, 

although it appears to be involved in cellular processes such as long-term potentiation 

(LTP). LTP is a mechanism widely believed to be integral to learning and memory 

processes by enhancing the magnitude of excitatory postsynaptic potentials thus resulting 

in increased synaptic efficiency 55-57. Additionally, APP has been proposed to play a role 

in cellular adhesion due to its ability to form homodimers and colocalization with 

proteins known to be involved with cellular coupling, such as β1 integrins 58,59. 

 APP undergoes a series of enzymatic events during degradation. Membrane 

bound APP is degraded at the plasma membrane but APP has been localized to other 

areas of the neuron such as the trans-Golgi network, endoplasmic reticulum and 

mitochondria 60. APP degradation is primarily carried out by enzymes called secretases 

61,62. Each individual secretase (α-, β-, γ-) cleaves APP at different cleavage sites and 

thus, depending on which secretase exerts its activity and in which order, can result in 

different proteolytic fragments of various sizes. 

 Each secretase is an assembly of unique enzymes, allowing them to exert 

differential effects on APP proteolysis. Enzymes associated with α-secretase are 

associated with members of the ADAM (a disintegrin and metalloproteinase) family, 

which are known to target and cleave extracellular protein domains 63,64. β-secretase 

activity has been linked to β-site APP-cleaving enzyme 1 (BACE1), which also targets 
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extracellular protein regions 65,66 while γ-secretase is composed of numerous enzymes, 

including presenilin 1 or 2 67,68.  

 APP is subject to two possible degradation pathways, a non-amyloidgenic (non-

pathogenic) pathway which involves α-secretase and γ-secretase cleavage or a 

amyloidgenic (pathogenic) pathway involving β-secretase and γ-secretase activity 69. For 

APP to be degraded via the more prevalent non-amyloidgenic pathway, α-secretase first 

cleaves APP at a site approximately 83 amino acids away from the C-terminus directly 

within the sequence of Aβ. This cleavage by α-secretase results in a short, membrane 

retained C-terminus fragment (CTF) of 83 amino acids (C83) and a larger N-terminal 

soluble ectodomain fragment (sAPPα). CTF is further cleaved by γ-secretase forming yet 

smaller fragments, p3 and APP intracellular domain (AICD). In this non-amyloidgenic 

pathway, all of the cleavage byproducts are easily removed and managed by microglia 

and other phagocytic cells 70. The initial cleavage of APP within the Aβ sequence 

prevents the formation of Aβ peptides 71. Alternatively, in the amyloidgenic pathway of 

APP processing, APP is cleaved by β-secretase at a site 99 amino acids away from the C-

terminus resulting in an alternative CTF (C99) that is retained in the membrane and an 

alternative N-terminal soluble ectodomain fragment (sAPPβ). The site of β-secretase 

activity begins just prior to the first amino acid residue of Aβ, leaving the entire Aβ 

sequence intact within the C99 fragment. The Aβ peptide is formed when γ-secretase 

further cleaves the C99 fragment releasing the Aβ fragment 66,71. 

 Furthermore, depending on the site of cleavage, γ-secretase can produce Aβ 

peptides of various sizes. The majority of Aβ produced are 40 amino acids long (Aβ40) 
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though a slightly longer variant of 42 amino acids (Aβ42) can be formed 72. Research 

supports the idea that amyloid plaques are predominately comprised of the longer variant, 

Aβ42 72,73.  

 The majority of APP proteolysis occurs at the plasma membrane but, because 

APP is also found in other cellular structures, degradation can occur intracellularly as 

well. Aβ is also produced in both endosomes and the trans-Golgi network where all three 

secretases can be found but where β- and γ-secretase seem to be more abundant, leading 

to an increased intracellular amyloidgenic processing 74,75.  

 Aβ peptides appear to be part of normal brain physiology. For instance, Aβ is 

implicated in regulating synaptic function 76. Increased neuronal activity, particularly 

NMDA receptor activation, appears to promote an increased production of Aβ by 

inhibiting α-secretase while simultaneously stimulating β-secretase cleavage of APP, 

which in turn depresses excessive activity in a negative feedback manner 77. It has been 

proposed that as neurons lose sensitivity to this Aβ negative feedback, the elevated 

activity remains unchecked, leading to excitotoxicity and a further elevation of Aβ levels 

which can form neurotoxic fibrils 78-81. Supporting the theory that elevated neuronal 

activity increases Aβ production, patients with temporal lobe epilepsy can develop large 

amounts of plaques in seizure focal areas as early as 30 years of age 82,83. Furthermore, 

areas of the brain that tend to show the greatest amount of Aβ plaques exhibit the highest 

amount of resting baseline metabolic activity in both healthy and epileptic brains 84,85. 

 Not only is APP important for LTP, as mentioned earlier, it appears that Aβ 

peptides may play a vital role as well. In vitro studies have shown that endogenous, low 

level Aβ is necessary for the induction, but not maintenance, of LTP within the 
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hippocampus 86. Furthermore, Puzzo et al. demonstrated that Aβ42 is vital for both 

reference and associative memory.  

 While there appears to be a physiological role for Aβ, the balance of Aβ 

production to degradation, as well as the ratio of Aβ40 to Aβ42, appears to be crucial for 

the development of both amyloid plaques and of AD onset. While both Aβ40 and Aβ42 are 

the primary constituents in amyloid plaques, a common finding in AD patients is a shift 

towards an increased Aβ42/Aβ40  ratio 73,87,88. This shift towards greater Aβ42 is 

particularly important because Aβ42 appears to be the more toxic form of Aβ monomers 

due to its early deposition in amyloid plaques and the ability to aggregate into fibrils 

more readily than Aβ40  
73,87. Differences in the initial aggregation of the two monomeric 

Aβ species, referred to as Aβ oligomers (Aβo), have been observed. For example, when 

Aβ40 starts to aggregate, the resulting oligomers are more compact than those formed by 

Aβ42 oligomers. Interactions of the Aβ42 N-termini appear to allow the conformation of 

the oligomers to remain relatively loose due to their increased amino acid length thus 

freeing up the C-termini, a site necessary for protofibril and fibril formations 89.  

  It is these Aβ fibrils, characterized by a distinctive cross-β structure, that form the 

dense amyloid plaques within the brain and accumulate along the walls of cerebral blood 

vessels 90,91. Fibrillation is a complex pathway leading up to Aβ fibrillogenesis; Aβ fibrils 

are preceded by a number of intermediate structures that include Aβ dimers and trimers, 

Aβo and protofibrils 92,93. It has been proposed that because monomeric Aβ is produced 

under normal physiological condition and may serve a functional role that the 

aggregation of Aβ is required for the peptide to become neurotoxic 94.  
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 When referring to Aβ, the term “soluble” refers to any Aβ that is soluble in an 

aqueous buffer and remains soluble after high-speed centrifugation, indicating that it is 

not part of the fibrillar Aβ 95. Thus, insoluble Aβ simply refers to Aβ fibrils and Aβ 

plaques that are not soluble in an aqueous solution. Soluble Aβo are assemblies of Aβ 

monomers ranging anywhere from dimers to 24-mers, though larger Aβo have been 

reported 96,97.  

 Despite amyloid plaques being considered a pathological hallmark of AD, 

insoluble Aβ plaques do not correlate well to neuronal death, synaptic loss, or cognitive 

impairments 97,98. Soluble Aβo, on the other hand, do appear to correlate well with 

disease progression and severity of dementia 75,98-100. Soluble Aβo are becoming 

increasingly accepted as an additional pathological hallmark separate from amyloid 

plaques 60. Brains and CSF of patients with AD show increased levels of soluble Aβo as 

high as 70-fold compared to controls 101,102. Elevated levels of soluble oligomers appear 

to be specific to brain regions associated with cognitive impairments in AD brain such as 

the prefrontal cortex and hippocampus but are not detectable in the cerebellum 103,104.  

 The neurotoxicity of Aβo is becoming increasingly well researched. In vitro 

studies have shown that soluble Aβo, in the form of dimers and trimers, has the ability to 

reduce spine density of neurons at relatively low concentrations and induce long-term 

depression 105. Low-weight Aβo bind predominately to post-synaptic structures in the 

hippocampus resulting in changes in spine shape and reductions in spine density 104. 

Complimenting these studies, Ono et al. 106 demonstrated that Aβ dimers are three times 

more damaging than monomers, while trimers and tetramers are almost 13-fold more 

neurotoxic in vitro. Mice expressing a variant of human APP linked to AD (Tg2576) 
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were found to have significantly elevated levels of 12-mers (~56 kD), which correlated 

highly with spatial learning impairments 107. Aβo of various sizes can disrupt membrane 

stability and allow aberrant ion flow, such as Ca2+ influx which can lead to excitotoxicity 

108,109. 

 As mentioned, the amyloid cascade hypothesis (ACH) is currently the leading 

hypothesis for the development of AD. The ACH, established in 1992, posits that Aβ 

fibril formation leads to the neuronal death, memory loss, and dementia seen in the 

disease 45. Due to the overwhelming research highlighting that Aβ fibrils and plaques do 

not correlate well to severity of dementia, the ACH has been modified to propose that the 

small, soluble Aβo is driving the memory loss and dementia severity 60,110. Specifically, 

the updated ACH implicates that early memory loss is due to synaptic failure rather than 

neuronal death and that this synaptic failure is driven by the Aβo rather than the fibrils 

103,110.  

 As the role of Aβ in AD moves away from the damaging effects of extracellular 

Aβ deposition (Aβ plaques) and more towards intracellular accumulation of Aβ initiating 

pathological processes, the possibility that intracellular Aβ could be found within a 

neuron was initially met with skepticism. However, numerous studies have provided 

evidence that intracellular Aβ does in fact exist within the human brain 111-113. 

Furthermore, Aβ42 has been demonstrated to be the primary Aβ monomer located within 

neurons 112. Accumulations of intraneuronal Aβ42 have been shown to precede both NFTs 

and amyloid plaque formation in AD brains as well as the plaque formation in young 

Down’s syndrome patients 112,114. Neurons in brain regions susceptible to AD 
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pathologies, such as the hippocampus and prefrontal cortex, appear to be particularly 

prone to accumulating Aβ42 peptides 92. 

 Numerous animal models of AD lend support to the theory of early intraneuronal 

Aβ42 leading to other AD-like pathologies. Double transgenic mice harboring both human 

APP and PS1 mutation display typical plaque formation seen in AD brains, but these 

plaques are preceded by intraneuronal accumulation of Aβ42 115. Similarly, transgenic 

mice with Arctic and Swedish mutations (explained below) show strong correlations 

between intracellular Aβ42 and cognitive impairments which both precede amyloid plaque 

formation 116. Additionally, triple transgenic (3xTg-AD) mice (expressing mutations in 

PS1, APP, and tau), which are known to progressively develop both amyloid plaques and 

NFTs, exhibit synaptic dysfunction before plaques and NFTs and is correlated strongly 

with the accumulation of intraneuronal Aβ levels 117.  

 Genetic causes of fAD have been extensively studied in the last few decades. 

Specific mutations in three genes (APP, PS1 and PS2) are all known to cause fAD. The 

common denominator in each of these genes is that they all affect either the metabolism 

or stability of Aβ, or both. All APP mutations that are observed in fAD alter the 

processing of APP and thus lead to the overproduction of Aβ42 118. One of the more 

common APP mutations, the Swedish mutation (APPswe), is a double mutation that 

resides on APP, prior to the Aβ region, which leads to increased cleavage by β-secretase 

resulting in increased Aβ production 119. Another APP mutation, the Arctic mutation 

(APParc) leads to a particularly aggressive form of fAD with accelerated Aβ production 

and increased Aβo and protofibril formation 120-122. APParc is located near the α-

secretase cleavage site and affects APP processing by slightly altering the localization of 
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APP to areas of the cell, like endosomes and the trans-Golgi network, that favor 

proteolytic processing by β-secretase 123. 

 Numerous other APP mutations have been identified including the London 

mutation which lies just outside the Aβ domain and shifts production towards Aβ42 124, 

the Flemish and Dutch mutations which lie within the Aβ sequence close to α-secretase 

cleavage site impairing enzymatic cleavage and thus shifting APP processing towards the 

amyloidgenic pathway 125,126. In all, ~25 specific mutations occurring on APP are known 

to cause fAD 127. Interestingly, there is one mutation located near the β-secretase site 

impairing amyloidgenic processing of APP in an Icelandic study that has shown to be 

protective against age related cognitive decline and AD 128. 

 Presenilin mutations account for the greatest number of fAD cases. There have 

been to date, over 180 pathogenic mutations in PSN1 (housed on chromosome 14), 

accounting for nearly 50% of fAD cases while 13 mutations in PSN2 (located on 

chromosome 1) accounts for just 1% of all fAD cases 129. The first mutations in both the 

PSN1 and PSN2 genes were discovered in 1995 130-132. As previously covered, PSN1 and 

PSN2 are proteins that comprise the components of the catalytic core of γ-secretase. 

PSN1 mutations lead to particularly aggressive early-onset AD with severe cognitive 

impairments that can begin as early as age 30 and often give rise to atypical symptoms 

such as ataxia and spastic paraparesis 127. One particularly aggressive PSN1 mutation, 

L166P, generally manifests during adolescence and results in exceptionally high Aβ42 

production 133. As with APP mutations, PSN mutations generally lead to an increased 

Aβ42/Aβ40 ratio. PSN mutations are most commonly the result of missense mutations of 
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single amino acid substitutions throughout the PSN proteins 134-136. PSN2 mutations tend 

to be relatively rare and have a later age of fAD onset compared to PSN1 mutations 137. 

 The genetics of sAD appears to be much more complex than fAD. The vast 

majority of sAD occurs with no family history of AD and is likely to be an interaction of 

genetic susceptibility of multiple gene with the environment. To date, there is only one 

proven genetic risk factor associated with sAD, the ε4 allele of the apolipoprotein 

(APOE) gene 138,139.  

 APOE is a lipoprotein that is expressed in many organs, with the highest 

expression occurring in the liver followed by the brain 140. In the brain, APOE is 

produced primarily by astrocytes and microglial cells and is a key lipoprotein in the 

regulation of lipid metabolism by directing transportation, distribution and delivery from 

one cell or tissue type to another through APOE receptors 141,142. The APOE gene is 

located on chromosome 19 and contains four exons that make up the APOE protein. 

APOE is has three possible alleles (ε2, ε3, ε4) that differ only by two single nucleotide 

polymorphisms on exon 4 127.   

 APOE ε3 is the most common form of the allele and is present in a range of 

nearly 50-90% of the population, while ε4 and ε2 are expressed far less in the population, 

3.35% and 1-5% respectively140. APOE ε3 appears to confer no risk to developing AD, 

whereas APOE ε4 has been repeatedly implicated as a genetic risk factor for developing 

sAD 143-144,145. APOE ε4 has been found to be present in as high as 50% of patients with 

sAD and the presence of one copy of the allele increases chances of developing AD by 

three times, while carrying two copies increases that risk to nearly 12 times 143.  
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 The mechanism by which APOE ε4 increases the risk of developing AD is not 

entirely understood despite the recent intensity of research directed towards it.  In vitro 

and in-vivo animal studies indicate that APOE plays a role in the conversion of 

monomeric Aβ into oligomers as well as a role in Aβ fibrillogenesis 146-148. 

Animal models that express human APOE have demonstrated that the various isoforms 

can have differing effects on Aβ accumulation with ε4>ε3>ε2 149,150. APOE ε4 is neither 

necessary nor sufficient for the development of AD and is thus only considered a risk 

factor and not causal as the genetic mutations linked to fAD. Polymorphisms in APOE 

alleles cannot be used alone for diagnosis or for presymptomatic diagnosis such as 

genetic testing of the known mutations that cause fAD 151. 

 The vast majority of AD research has been directed at understanding the role that 

Aβ plays in the development of the disease. While amyloid plaques have long been 

considered the pathological hallmark of AD, there is still debate on their causative nature 

due to the lack of strong correlation with dementia severity. Given that the leading 

hypothesis, the ACH, has been revised to accommodate earlier Aβ products such as the 

oligomers and protofibrils, which do correlate well with dementia severity, there is little 

doubt that Aβ peptides play a role in AD pathogenesis.  

Tau Hypothesis 

 Another major neuropathological hallmark of AD is the presence of 

neurofibrillary tangles (NFTs). Tau was first discovered in 1975 as a microtubule-

associated binding protein that directly affected the way that tubulin was able to 

polymerize into microtubules 152. Not until the mid 1980’s were several laboratories able 

to identify that NFTs, seen so prominently in AD brains, were primarily composed of tau 
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7,153. A considerable amount of research has been conducted in unraveling the role that 

tau plays in both a healthy brain and in AD pathology.  

 Microtubules, composed of tubulin subunits, are the primary support structures in 

eukaryotic cells 154. Microtubules help maintain cell morphology, establish cellular 

polarity and neurite outgrowth in differentiating neurons 155,156. In neurons, microtubules 

not only give structural stability to the cell but also serve as transportation tracts for 

nutrients, neurotransmitters and various organelles such as mitochondria 157,158. Tau has 

been shown to bind to microtubules to facilitate the assembly and stability of the tubulin 

subunits 159. 

 The tau gene is located on chromosome 17 and contains a total of 15 exons that 

can be alternatively spliced to form six possible tau isoforms, ranging from 352-441 

amino acids 160. Tau mRNA is readily expressed in neurons, particularly within the axon 

161 but has also been found in oligodendrocytes, which support neurons by wrapping 

axons to form the myelin sheath 162. During development, only the shortest isoform of tau 

is expressed while the adult brain expresses all six isoforms, suggesting that tau is 

developmentally regulated 163. Tau is composed of either three or four microtubule-

binding domains, depending on the isoform, which is a result of alternative splicing of 

exon 10, located on the carboxy-terminal one-third of the protein 164. The other region, 

the amino-terminal, comprising two-thirds of the molecule, is referred to as the flanking 

domain (or projection domain) and varies by isoform depending on how exons 2 and 3 

are spliced, resulting in a differing number of amino acids in the terminal end of tau 

161,165. 
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 Tau is a phosphoprotein, meaning that function is regulated by the addition and 

removal of phosphate groups, which primarily occurs on the projection domain. 166. The 

addition of phosphate groups, performed by proteins called kinases, lessens tau’s affinity 

for tubulin and thus reduces the binding to microtubules 167. Phosphatases remove the 

phosphate groups which restore tau’s affinity for microtubule binding 168. While tau 

binding has been found to provide stability to the assembled microtubules, this binding 

interferes with the ability of the motor protein kinesin to also bind to the microtubules 169. 

Kinesin, like other motor proteins, bind to microtubules and “walk” along the tracts with 

vesicles to deliver cargo vesicles to various parts of the cell 170,171. The interplay of 

constantly phosphorylating tau to allow kinesin to pass and dephosphorylating tau to 

provide microtubule stability is a key aspect to a healthy functioning neuron. This 

balance between kinase and phosphatase appears to be disrupted in AD 172,173.  

 Tau is found to be abnormally hyperphosphorylated in the brains of AD patients, 

about three- to four-fold higher than control brains 7,167,174. Tau hyperphosphorylation 

leads to tau disassociation from microtubules and disassembly of microtubules, which 

leads to impaired axonal transport and cell death 153,174. In vitro studies have shown that 

tau phosphorylation can occur on up to 85 residues, typically a serine or threonine amino 

acid; however, only about 10 sites have been identified in post-mortem control brains due 

to the fact that tau extracted from post-mortem tissue becomes rapidly dephosphorylated 

175,176. There are currently ~45 known sites of tau hyperphosphorylation in AD brains, a 

number that far exceeds the number of identifiable sites in healthy brains 102,166. 

Theoretically, this abnormal phosphorylation could be due to decreased phosphatase 

activity, increased kinase activity, or a combination of the two.   
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 In vitro studies have shown that more than a dozen different kinases and almost 

all known phosphatases are able to regulate tau phosphorylation 165,177,178. In vivo studies 

indicate that the most important kinases involved in tau phosphorylation include mitogen-

activated protein kinase (MAPK), GSK3-β, cyclin-dependent kinase 5 (cdk5), cAMP-

dependent protein kinase (PKA) and calcium/calmodulin-dependent kinase II (CaMK-II) 

which collectively are known to phosphorylate all sites implicated in AD 179.  

 GSK3-β is a kinase that has been emerging as a key player in AD research, as it 

serves a role in regulating tau phosphorylation in both normal physiology and 

pathological condition. GSK3-β has been proposed to occur via both primed and 

unprimed phosphorylation. Primed phosphorylation occurs when GSK3-β activity 

follows phosphorylation by another kinase, allowing GSK3-β to recognize the newly 

phosphorylated residue 180. Primed GSK3-β phosphorylation typically occurs at 

threonine-231 and affects the ability for tau to bind to microtubules. Cdk has been 

implicated as a kinase that can prime tau for further phosphorylation by GSK3-β 181. 

Unprimed phosphorylation occurs independent of other kinase activity at sites serine-386 

and serine-404 182,183. All of these sites are commonly hyperphosphorylated in AD 179. 

 Protein phosphatase 2A (PP2A), one of the major tau phosphatases, appears to 

work against the kinase activities of MAPK, GSK3-β and CaMK-II 184,185. Calcineurin, 

also known is PP2B, is capable of dephosphorylating several sites of 

hyperphosphorylation and has been shown to have impaired function in AD brains 186. 

Calcieneurin is the most abundant phosphatase found in the brain, particularly in the 

cortex and hippocampus, both areas heavily disrupted in AD progression 187,188.  
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 Hyperphosphorylation affects the processing of tau in several ways. Firstly, the 

conformational changes that follow the phosphorylation of tau hinder the degradation by 

proteases thus making hyperphosphorylated tau more resistant to proteolysis than 

unphosphorylated tau 178,189. Secondly, the hyperphosphorylation is essential for the self-

aggregation of tau protein into paired-helical filaments (PHFs), which in turn makes up 

the characteristic NFTs seen in AD 7,190. Hyperphosphorylation of tau results in a 

conformational change of increased α-helices in the secondary structure, which is found 

to be considerably increased in the tau isolated from PHFs 191-193. PHFs also demonstrate 

a characteristic β-sheet structure that is thought to be necessary in its formation194. 

Electron microscopy studies indicate that PHF appear as two hyperphosphorylated tau 

proteins wound together in a left-hand helical sense and the excessive phosphorylation is 

the only detectable posttranslational modification between normal tau and PHF-tau 195. 

 Numerous investigations have established that PHFs are cytotoxic and likely 

contribute to the neurodegeneration in AD 196,197. The cytotoxicity of PHF could be due 

to the hyperphosphorylation itself or the formation of the aberrant aggregates, though it is 

likely a combination of both. In vitro studies have shown that hyperphosphorylated tau is 

capable of inducing apoptotic pathways resulting in cellular death 198. The self-

aggregation of PHFs and formation of NFTs typically occur intracellularly. There is also 

an inverse correlation between extracellular tangles and the number of surviving neurons 

in areas of the AD brain with typically high intracellular NFTs 199,200.  This suggests that 

the intracellular NFTs precede the cell death and the extracellular NFTs are a result of 

cell lysis. Abnormal aggregations of hyperphosphorylated tau also attract normal tau and 

other microtubule-associated proteins (MAPs), specifically MAP1B and MAP2, to the 
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tangles which lead to the further destabilization of microtubules as well as morphological 

changes in the cell that lead to disruptions in transport delivery and synaptic contacts 

201,202. 

 Another form of tau, truncated tau, is known to be a major component of PHF 203. 

Truncated tau, occurring when the carboxy terminus is cleaved typically at residue 391, 

has been shown to aggregate much faster and to a greater extent than wild-type tau with 

an intact carboxy tail 204,205. Tau truncation at E391 occurs throughout the AD progression 

but is particularly prevalent during the later stages 206,207. Additionally, at least two other 

forms of truncated tau, cleaved at D25 and D421, have been identified to be more abundant 

in the brains of AD patients 208,209.  

 Various members of the caspase family, including caspase-3, have been found to 

cleave tau at all three truncation sites 210-212. Caspases are proteases that are induced 

during apoptosis and are a key participant in the proteolytic cascade leading to cell 

death213. In neurons, caspase-3 is considered the major “killer caspsase” 213. Caspase-3 is 

elevated in AD brains and has been found to be critical for Aβ-induced apoptosis 

211,214,215. Though some studies indicate that tau truncation becomes more prevalent as the 

disease progresses, at least two studies indicate that truncation is an early event of NFTs 

formation as a result of accumulating Aβ peptides 216,217. Because evidence suggests that 

Aβ accumulation typically proceeds NFTs formation in AD brains 112,218 and that Aβ-

induced neurodegeneration rarely occurs without the presence of NFTs in 3xTg mice 

117,219,220, truncated tau may be an early step in NFTs formation as intracellular Aβo 

activate caspases. 
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 Abnormal tau phosphorylation, amounts of tau, splicing of tau and even mutations 

in the tau gene can lead to a number of disorders, collectively called tauopathies 165. 

Tauopathies includes diseases such as AD, Down’s syndrome and Pick’s disease. Several 

mutations in the tau gene were discovered in 1998 in frontotemporal dementia and 

parkinsonism linked to chromosome 17 (FTDP-17), a related but distinct tauopathy, 

providing the first direct evidence that neurodegeneration could be linked, in part, to 

abnormal tau 221-223. There have now been 25 identified mutations associated with FTDP-

17 and tend to be missense mutations that occur in the microtubule-binding domain, 

which leads to decreased tau affinity for microtubules, alters binding to other proteins 

that bind to the region, and leads to increased self-aggregation 221,224-226.  

 Several transgenic lines of mice have been established attempting to model the 

abnormal tau seen in AD.  One of the more promising lines appears to contain the 

mutation P301L, a mutation based on one identified in FTDP-17 patients that is located 

in the microtubule-binding domain and reduces the affinity of tau for microtubules 227,228. 

Mice expressing the P301L mutation experience an age-dependent progression of tau 

pathology similar to that seen in various tauopathies including excessive extractable 

PHF-like tau aggregates, deficits in spatial reference memory, forebrain atrophy, and 

hippocampal neuronal loss 229-231. 

 Unlike Aβ plaques, which do not correlate well with severity of dementia, tau 

aggregates and NFTs do correlate well with dementia severity, cognitive decline, and 

regional progression of AD 5,232,233. The earliest noticeable neuronal loss in AD brains 

occurs within the entorhinal cortex of the hippocampus, which is also where NFTs are 

first observed. Aβ plaques, on the other hand, are not found within the hippocampus until 
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late stages of the disease 234. Tau pathology in the AD brain appears to follow a very 

specific pattern: starting in the entorhinal cortex, then other areas of the hippocampus, 

followed by the anterior temporal cortex and finally spreading into other cortical regions 

with the motor and sensory cortex typically being the last areas affected 235,236. Severity 

of dementia strongly correlates with the progression of NFTs through the various brain 

regions 236. 

 Unfortunately, there are limitations to the tau hypothesis. NFTs can be seen in 

non-demented individuals, similar to amyloid plaques in healthy individuals 237. 

Additionally, animal models of tauopathies do not develop typical Aβ pathology, global 

neuronal loss, or the typical progression of NFTs through the discrete brain regions 229. 

Despite considerable progress investigating both of the above pathologies neither is 

sufficient to account for all the symptoms observed in AD 

 Unraveling the role that Aβ pathology and tau pathology have in AD development 

and progression will undoubtedly be key to understanding the disease. The interplay of 

how these two pathologies interact is already beginning to unfold. The previously 

discussed ACH is essentially a serial model, which posits that Aβ plaques leads to NFTs, 

leading to cellular death and neuronal loss, and has already been amended to account for 

Aβo and other intracellular Aβ species playing a causal role. More recently a dual 

pathway model has been proposed suggesting that increased Aβ load and increased 

hyperphosphorylated tau and NFTs can be linked by common upstream mechanisms, 

resulting in synaptic and cellular loss 238.  

 APOE has been proposed as one of those common upstream mechanisms. As 

discussed above with regards to its role in Aβ pathology, carrying the APOE ε4 allele is 
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also strongly associated with an NFTs load 239. There is a strong correlation between 

increased tau levels found in the CSF of AD patients with APOE ε4 and the degree of 

cognitive decline 240,241. Interestingly, one study indicated that young individuals with at 

least one APOE ε4 allele, but showing no signs of dementia or cognitive impairments, 

had significantly higher NFTs in the entorhinal cortex than age matched controls 

indicating the importance of the ε4 allele in the early stages of pathological development, 

particularly in early NFTs formation preceding cognitive impairments 242.  

Cholinergic Hypothesis 

 Cholinergic cell loss is another characteristic feature found in the brains of 

patients with AD. The neuronal loss seen in AD typically begins in the basal forebrain 

before spreading to the hippocampus and other regions of the cortex 243,244. Reductions in 

enzymes responsible for the production and degradation of ACh, primarily choline 

acetyltransferase (ChAT) and aceytlcholinesterase (AChE), are reduced in postmortem 

analyses of AD brains, which indicate that there is an overall reduction in cholinergic 

signaling in the cortex and hippocampus 245,246. Investigations of post-mortem tissue from 

patients recently diagnosed with AD indicate that there is a selective disruption to the 

cholinergic neurotransmitter system, whereas brains from later stage AD patients 

demonstrate disruptions to multiple other neurotransmitter systems 247,248. Additionally, 

the degree of cholinergic loss correlates well with the severity of dementia seen in AD 

patients 246,249. 

 The reason for the selective cholinergic perturbations is currently unknown but 

has lead to considerable research investigating the reason that cholinergic systems appear 

to be disrupted first as well as towards treatments that potentiate the cholinergic system. 
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Early attempts focused primarily on replacing ACh precursors, such as choline and 

lecithin but ultimately failed to increase cholinergic activity nor did they improve AD 

deficits 250. Alternative approaches investigated elevating cholinergic tone by blocking 

enzymatic breakdown of ACh using AChE inhibitors (AChEI). AChEI were introduced 

in 1997 and have demonstrated promise in slowing the progression of AD deficits 

compared to other investigational therapies. AChEI work by delaying the degradation of 

ACh released within the synaptic cleft by AChE, thereby enhancing cholinergic 

transmission. AChE inhibitors do not prevent the progression of the disease, but can slow 

the progression of symptoms for mild to moderate AD patients 251-254. 

 The cholinergic hypothesis is not able to account for all the deficits and 

pathological markers seen in AD but has provided valuable insight into the some of the 

mechanisms that underlie the disease. Investigations into other contributing mechanisms, 

such as risk factors like Diabetes Mellitus and neuroinflammation, particularly as they 

relate to sAD, will no doubt continue to provide valuable insight into understanding the 

disease development and progression.   

Diabetes Mellitus Risk Factor 

 Diabetes Mellitus (DM) is a common metabolic disorder affecting nearly 40-50% 

of the elderly population. DM exhibits characteristic symptoms of hyperglycemia, 

impaired insulin secretion and insulin resistance. Mild to severe cognitive impairments 

have been reported in patients with both Type I- and Type II-DM 255-257. Additionally, the 

effects of DM on the brain and cognition are most pronounced in aging brains and could 

be due to the interaction between DM and a normally aging brain 256,258 
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 Numerous studies have shown high levels of AD and DM comorbidity 16,17,20,25. 

The lifetime risk for patients with TII-DM is thought to be around 38% in developing AD 

259 though certain populations have been reported to have nearly double the risk 17,25. 

Interestingly, there is an increased risk for developing DM by racial ethnicity with 

African-Americans and Hispanic-Americans developing DM at nearly double, 1.9 and 

1.6 respectively, compared to Caucasian-Americans 260,261. This increased risk for DM by 

race is particularly telling as this pattern is almost perfectly mirrored by the racial 

incident rates of AD 262,263. 

 Because DM is a complex metabolic disorder with a varied symptomology that 

includes hyperglycemia, abnormal insulin signaling, cardiovascular disease and weight 

abnormalities, it is difficult to tease apart exactly which factors associated with DM could 

lead to an increased risk of AD. One factor that is increasingly implicated is insulin 

dysregulation and resistance. Numerous studies now link insulin resistance in the brain 

with increased risk of AD 11,18,21,22,24.  

 The role of insulin in the periphery as it relates to glucose metabolism and 

disorders such as DM is well-studied but within the brain the role of insulin signaling is 

less well characterized 264,265. Increasing evidence indicates that insulin is involved in 

several brain mechanisms independent of its glucoregulatory role including 

neuromodulatory roles, neurotrophic and metabolic functions, synaptic plasticity, and 

memory consolidation 22,266-269. 

 The main source of insulin in the brain is produced by the pancreatic beta cells 

and is known to cross the blood brain barrier through transendothelial passage into the 

brain capillaries 270. The insulin transporters are unevenly distributed throughout the 



$

$ 25$

brain, with areas such as the olfactory bulb showing the highest transport rate 271. The 

brain is also capable of producing a small amount of insulin as evidenced from insulin 

mRNA found in areas such as the hippocampus, medial prefrontal cortex, thalamus and 

olfactory bulb 270,272-274. Insulin receptors (IR) are also widely distributed throughout the 

brain and are found particularly densely in the hippocampus, prefrontal cortex, 

hypothalamus and olfactory bulbs 275.  

 Two types of IR have been identified in the mammalian brain: a neuron specific 

type and a peripheral type, which is also found on glial cells. Investigations of these 

receptors have elucidated that differences exist between IR found in brain and those in 

the periphery. For example, the neuron specific brain type IR is not down-regulated by 

insulin, whereas the peripheral type IR is down-regulated upon insulin binding 276. Both 

IR types contain an α-subunit and a β-subunit. Insulin binds to the extracellular IR α-

subunit, which induces autophosphorylation of the intracellular β-subunit leading to 

receptor activation277. IR located in non-brain tissue are almost structurally identical to IR 

located within the brain, with the main difference being the downstream targets activated 

once the receptor has bound insulin 278.  

 Insulin binding is capable of regulating the activity of multiple kinases 

responsible for tau phosphorylation 279. Insulin receptor activity involves a cascade that 

includes Akt and GSK-3, each of which has the capacity to impact the phosphorylation 

state of tau. Akt is a protein that is activated via insulin signaling and inhibits GSK-3 

activity by phosphorylating GSK-3 280. Though originally identified for its role in glucose 

metabolism, GSK-3 is found throughout the body with the highest levels being in the 

brain 281,282. Two forms of GSK-3 have been identified, GSK-3α and GSK-3β 283. GSK-
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3β is capable of phosphorylating tau at multiple sites that are characteristic of the PHF 

seen in AD 28,29. Interestingly, Aβ peptides have been shown to activate GSK3-β and 

promote the hyperphosphorylation of tau, indicating a point of overlap between the two 

major pathologies in AD 284,285. Other evidence suggests that PS1 binds both GSK3-β and 

tau, serving as the means to bring the two proteins into close proximity, linking both the 

amyloid and tau hypotheses 286. Increasing PS1 via transfection experiments not only 

increases the PS1/ GSK3-β binding interaction but also levels of phosphorylated tau 286. 

All of the above highlight that alterations in insulin signaling has the potential to impact 

both Aβ processing and tau phosphorylation. 

 As previously discussed, APOE ε4 is implicated in playing an important role in 

the development of AD and also has ties to DM. One study by Luchsinger et al 13 found 

that patients with DM and APOE ε4 were 3.8 times more likely to develop AD, while 

DM patients without the APOE ε4 allele were 1.8 times more likely to develop AD. 

Another study demonstrated that DM patients with one APOE ε4 allele have an increased 

impairment of insulin sensitivity compared to controls while DM patients with two 

APOE ε4 have an even greater impairment 287. Post-mortem studies have shown that 

brains of DM+AD patients who also had at least one APOE ε4 allele had greater amyloid 

plaque deposition and NFTs than those without the APOE ε4 allele 288.  

 In addition to the links between insulin receptor function and AD, insulin 

degrading enzyme (IDE) is known to be a major degrading enzyme for extracellular 

amyloid peptides 289,290 and is upregulated by the presence of insulin 291.  IDE mRNA 

levels are reduced in patients with sAD within the hippocampus while patients with 

sAD+APOE ε4 have a reduction in IDE mRNA levels of nearly 50% 292,293. 
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 An animal model has been developed to mimic DM as a risk factor for developing 

sAD, utilizing a compound called streptozotocin (2-Deoxy-2-

methylnitrosaminocarbonylamino-D-glucopyranose; STZ). When given systemically, 

STZ generates a cytotoxic product that is selective for pancreatic β-cells 278. STZ enters 

the cell via glucose transporter (GLUT2), where it alkylizes DNA, which triggers 

activation of ADP-ribosylation leading to NAD-+ and ATP depletion, and ultimately 

leading to cell death resulting in a model DM 294,295. STZ has been found to exert its 

effects via several mechanisms including inhibition of insulin synthesis, suppression of 

insulin responsive cells with GLUT2 and a decrease in the ability of IR to 

autophosphorylate itself 294-296.  

 In order to study the effects of STZ on the brain without causing systemic DM, 

STZ can be administered directly into the brain intracerebroventricularly (ICV).  ICV 

administration of STZ induces a state of brain specific insulin dysregulation by inhibiting 

IR tyrosine kinase activity which is thought to be responsible for IR autophosphorylation 

278,297-300. This model produces profound cognitive impairments including deficits in 

spatial learning, active avoidance, inhibitory avoidance, reference memory, and working 

memory 298,301-303. STZ has also been shown to increase various epitopes of 

hyperphosphorylated tau and increase the amounts of truncated tau 278,304,305. Rodent pups 

administered STZ exhibited striking neuronal loss, cerebral atrophy, and structures that 

resemble senile plaques in the brain, which is a particularly interesting finding since rats 

do not typically develop senile plaques even in other models of AD 306. APP, Aβ42 and 

various Aβo have all been demonstrated to be increased following STZ administration 

and appear to be mediated through increased GSK-3β activity 307-309. While not a perfect 
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model of sAD, STZ-induced insulin dysregulation does show deficits associated with 

sAD and is helping to elucidate the mechanisms of DM and insulin dysregulation as a 

risk factor.   

Neuroinflammation Risk Factor 

 Recent studies point to the involvement of neuroinflammatory response playing a 

fundamental role in the progression of the neuropathological changes observed in AD. 

There have been reports of immune-related proteins and cells located within and near 

amyloid plaques in AD brains since the 1980’s 310-312. In the 1990’s, several large 

observational and epidemiological studies were published suggesting that anti-

inflammatory approaches, such as long-term anti-inflammatory treatment for rheumatoid 

arthritis, may be protective against developing AD, which has demonstrated as much as a 

six-fold sparing of AD 313-316. A seminal study published in 2001 317 demonstrated that 

NSAIDs had the ability to prevent, or at least retard, the age of onset of AD by reducing 

the risk to 0.2%.  This lead to human trials and transgenic animal studies with non-

steroidal anti-inflammatory drugs (NSAIDs) that demonstrated that NSAIDs can reduce 

AD pathology 318.   

 These epidemiological studies, retrospective observational studies and clinical 

trials all support the role that neuroinflammation plays, shedding light on another risk 

factor for developing sAD. Unlike other risk factors and genetic causes, 

neuroinflammation is not typically thought to be causal in nature but rather a result of one 

or more of the other AD pathologies and serves to rapidly progress the disease 319,320. 

Meaning that chronic brain inflammation itself may not be sufficient to develop AD, but 

rather, when neuroinflammation is present, the course of the disorder, namely cognitive 
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decline and pathological hallmarks, are exacerbated both in the magnitude and the pace at 

which AD progresses.  

 The brain was originally considered an “immune privileged” organ in early 

neuroscience approaches. Due to the lack of lymph nodes and the blood brain barrier, it 

was thought that the brain was not susceptible to inflammation or immune-activation. It is 

now well accepted that brain is fully capable of mounting an innate immune response. 

Inflammation that occurs within the brain differs from inflammation occurring within the 

periphery.  The classical signs of inflammation such as swelling, redness, heat and pain 

are typically not seen in the brain but rather characterized by an increase in size and 

shape of microglia 14,321. 

 Microglia are considered the first line of defense for the CNS against foreign 

objects and pathogens and are characterized by their ability to mount a rapid response to 

even the slightest change 321. Microglia typically exist in a resting state, characterized by 

a distinct ramified morphology, where they constantly monitor the brain environment. 

Upon activation they demonstrate a rapid change in morphology to an amoeboid-like cell 

with engorged processes 322,323. Activated microglia are able to express a wide range of 

proteins involved with a mounted immune response including major histocompatibility 

complex II (MHC II), pro-inflammatory cytokines, chemokines, compliment factors, 

reactive oxygen factors, proteases and C-reactive proteins 14,70,321. 

 Cytokines in particular are small, nonstructural proteins secreted from a variety of 

both immune and non-immune cells, including neurons and glial cells 324. Cytokines have 

diverse roles which can include either the stimulation or inhibition of cell proliferation, 

apoptosis, and inflammatory responses 324. Cytokines consist of several classes including 
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interleukins (ILs), interferons (IFNs) and tumor necrosis factors (TNFs) 325,326. Cytokines 

can generally be classified into proinflammatory (IL-1α, IL-1β, TNF-α) or anti-

inflammatory (IL-1ra, IL-4, IL-10); IL-6 can be either proinflammatory or anti-

inflammatory depending on the amount and condition in which it was released 324.There 

are numerous studies reporting increased levels of numerous proinflammatory cytokines 

including IL-1α, IL-1β, IL-6, TNF-α in AD brains, blood, and CSF 15,321. 

 Brain inflammation appears to be a double-edged sword, with a neuroprotective 

role when a limited acute-phase response occurs but with a detrimental role when a 

chronic response is mounted 30,327. The benefits of short term inflammation in the brain 

are significant and include microglia that degrade Aβ, remove the debris of dead and 

dying cells which reduces the likelihood of further cell loss, regulate brain development, 

and enhance neuronal survival 39-41,328-330. However, neuroinflammation can become 

neurotoxic when the response becomes chronic and uncontrolled leading to increased Aβ 

and senile plaque production, neuronal injury, and even cell death 42. Chronically 

activated glial cells can kill adjacent neurons by secreting toxic products such as reactive 

oxygen intermediates, nitric oxide (NO) and proteolytic enzymes which can contribute 

towards the neuronal loss seen in AD 42,70,331,332. In disease states such as AD, 

Parkinson’s disease and Prion disease, brain inflammation is a chronic rather than acute 

response characterized by an increase in not only the number and size of microglia but a 

sustained activation that does not readily terminate 327,333. 

 Early stage AD appears to exhibit a significant increase of activated microglia, 

before severe cognitive decline appears or neuronal loss is evident 334,335. Prior to 

development of symptoms, microglia are found clustered at the site of aggregated Aβ 336. 
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Furthermore, amyloid plaques contain several proteins associated with the inflammatory 

response including activated compliment proteins and pro-inflammatory cytokines 337. 

 Because AD and other neurodegenerative disorders increase in prevalence with 

age, it is interesting to note that normal aging in the brain is accompanied with an 

increased number of activated microglia, particularly those that overexpress IL-1β 338,339. 

Studies following microglial activity throughout the rodent lifespan reveal a progressive 

increase of microglial activation with age 340-342. 

 Microglia-mediated neurotoxicity, both in animal models and in vitro studies, 

tends to be progressive in nature, which parallels the progression in AD and other 

neurodegenerative diseases 343-345. To demonstrate the neurotoxic role of overactivated 

microglia, lipopolysaccharide (LPS) is often used in animal studies. LPS, derived from 

the outer membrane of gram-negative bacteria, is capable of mounting an immune 

response through the activation of Toll-like receptor 4 (TLR4) 346. Toll-like receptors are 

among the most well studied pattern recognition receptors (PRR), which are proteins that 

are expressed by cells of the innate immune system to recognize infectious agents and 

markers of cellular stress 347,348. There are currently 12 known TLRs and microglia have 

been identified expressing TLRs 1-9 348,349. LPS studies have demonstrated that only in 

the presence of microglia is there a neurotoxic effect indicating that microglia are 

necessary for the initiation of neuronal damage to occur 350,351. LPS activation of TLR4 

has also demonstrated a progressive loss of neurons, particularly dopaminergic neurons 

352,353. TLR4 activation has also been shown to have a neuroprotective role by promoting 

myelin repair and removing myelin debris in an animal model of brain injury following 

LPS administration 354. 
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 Additional support for the neuroinflammatory hypothesis is that head trauma and 

traumatic brain injury are environmental risk factors that have long been associated with 

AD 355. In deceased patients, there is an increase of Aβ deposits 1-3 weeks post-injury in 

the cerebral cortex and it has been demonstrated that elevated IL-1 levels are directly 

responsible for this increased APP production and Aβ load 355-357. IL-1 induces an 

increase of Aβ deposits, which in turn increase cytokine levels through microglial 

activation, thus creating a vicious, self-propagating cycle known as reactive microgliosis 

358-360. Overexpression of IL-1 has also been shown to increase IL-6 production, stimulate 

iNOS activity, and additional IL-1 production, further adding to the self-propagating 

cycle 361. Additionally, both IL-1 and IL-6 overproduction have been shown to stimulate 

the activation of cdk5 and kinase p38, both known to hyperphosphorylate tau 362,363. 

Reactive microgliosis is proposed to be one of the ways that neuroinflammation is 

implicated in accelerating the disease progression in AD brains 41,336,364.  

 Neuroinflammation appears to be initiated by Aβ pathology but serves a role in 

exacerbating both further Aβ production as well as tau hyperphosphorylation and NFTs 

formation. This dual role suggests that neuroinflammation could be a key link to the two 

leading AD pathologies, amyloid plaques and NFTs, as a risk factor for developing and 

progressing both types of AD. 

Experimental Hypotheses and Implications 

 The vast majority of animal models of AD rely on genetic mutations that occur in 

fAD and provide valuable information regarding the role of Aβ and tau pathologies in the 

disease. These genetic models, however, do not represent the prevailing sporadic, late-

onset AD. Considerable research has been conducted to help elucidate some of the risk 
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factors involved with sAD development, including DM (STZ) and neuroinflammation 

(LPS). Studies involving transgenic models of AD routinely activate the immune system 

to exacerbate AD-like deficits to better understand the role that neuroinflammation plays 

in AD. While considerable research has been invested in the STZ model of AD, an 

investigation of neuroinflammation in this particular model has yet to be conducted. 

Therefore, the purpose of this study was to begin a series of investigations on the effects 

of neuroinflammation in the DM animal model of AD. The necessary first step in these 

investigations was to determine whether an acute inflammatory response may be capable 

of altering AD like deficits in the DM animal model. 

 In order to disrupt insulin signaling in the brain, STZ-ICV was administered to 

adult male rats at a dose of 25 mg/mL (8µL per ventricle) consistent with the literature to 

induce a diabetic-like state within the brain. One week following surgery, animals 

received an immune challenge with a single administration of lipopolysaccharide (1 

mg/mL, i.p.). Two weeks following the LPS challenge, animals began behavioral testing. 

Learning and memory were evaluated in the novel object recognition and Morris water 

maze tasks. We hypothesized that not only would the DM (STZ-treated animals) show 

learning and memory deficits but that the DM animals that received an immune challenge 

(STZ/LPS) would show more pronounced deficits in these tasks. 

 Following behavioral testing, we investigated protein changes consistent with 

those seen in AD. Specifically we evaluated Aβo, phosphorylated tau, receptor subunits 

of various neurotransmitter systems, and related proteins. We predicted that the DM 

animals (STZ) would show an increase in these particular protein markers and that the 

combination of STZ+LPS would further exacerbate these changes. 



$

$ 34$

Hypothesis 1: We hypothesized that STZ, administered ICV, would replicate previous 

findings that lead to impairments in learning and memory, increased pTau, and increased 

Aβ peptides, consistent with AD. Furthermore, we anticipated alterations to various 

neurotransmitter systems that have been implicated in AD.  

Implications for Hypothesis 1: If central infusion of STZ produces behavioral and 

AD-like pathological features, we add to the literature that suggests that 1) insulin 

signaling in the brain plays a role in learning and memory and 2) the disruption of 

insulin signaling in the brain leads to outcomes that are seen in AD, namely Aβ 

and tau pathologies, which may underlie DM as a risk factor for AD. 

Furthermore, replication of STZ-induced deficits allows us to investigate the role 

of inflammation (see Hypothesis 2) in this DM model. 

Hypothesis 2: We hypothesize that by acutely activating the immune system via LPS in 

the STZ-model of AD, we will see an exacerbation of learning and memory deficits, as 

well as further elevations of both Aβ and tau pathologies. 

Implications for Hypothesis 2: If we see an exacerbation of AD-like deficits, both 

behavioral and histopathological, in STZ-treated animals that also received LPS 

(STZ/LPS), then this experiment will add support that immune activation, even 

one-time, may be detrimental in a brain that is already at risk due to altered 

insulin signaling. If no further deficits are detected, then an acute immune 

activation is insufficient to have a profound negative affect on patients with DM. 

The possibility exists that acute immune activation will have no long term affects 

on this model of sAD but is a necessary first step in understanding the role of the 

immune system when combined with DM as risk factors.  
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CHAPTER 3 

MATERIALS AND METHODS 

Subjects 

 44 male Sprague-Dawley rats (n=11 per group) approximately 8 weeks in age and 

weighing 200-250 g were purchased from Taconic (Oxnard, CA). Rats were pair-housed 

in a temperature (22 ± 1°C) and humidity controlled facility until surgeries, after which 

they were individually housed with food and water available ad libitum. Lights were 

maintained on a 12:12 light/dark cycle, lights on at 7:00 am. All procedures were 

approved by the University of Nevada, Las Vegas Institutional Animal Care and Use 

Committee and carried out in accordance with NIH guidelines for the appropriate care 

and use of animals. 

Surgery 

 Surgeries were performed under aseptic conditions. Anesthesia was a cocktail of 

ketamine (71 mg/kg) and dexmedetomidine (0.3 mg/kg) administered intraperitonealy 

(i.p.), as previously described 365,366. Bilateral intracerebroventricular infusions were 

performed by lowering a guide cannula into each lateral ventricle using the coordinates 

0.7 mm posterior and 1.5 mm lateral and 3.5 mm ventral to the surface of the skull 367. 

Using a 25 µL Hamilton syringe attached to a cannula and line, drugs were slowly 

infused at a rate of 1 µL every 10 seconds followed by 1 minute before removing the 

cannula. Burr holes were covered with dental acrylic, and the wound sutured closed. 

Atipamezole (0.5 mg/kg) was administered to reverse the effects of the anesthetic 

following the completion of the surgery. Upon ambulation, rats were administered an 

analgesic of Buprenorphine (0.05 mg/kg; i.p.) and then returned to the colony room. 
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Buprenorphine (0.05 mg/kg; i.p.) was administered for an additional two days to alleviate 

post-operative pain. Animals were individually housed following surgery and monitored 

for any post-operative complications. 

Immune Activation 

 One week following the last surgery, animals received either saline or 

lipopolysaccharide (LPS) and were monitored for 4 hours for symptoms of general 

malaise and immune activation. Weights and temperatures were monitored every twenty-

four hours following LPS administration, until there was no longer a difference in 

temperature, followed by a final temperature reading one week after return of 

temperature to baseline. 

Treatment Groups 

 Streptozotocin (Sigma-Aldrich, St. Louis, MO) was dissolved in artificial cerebral 

spinal fluid (ACSF) to a concentration of 25 mg/mL. Animals received a bilateral ICV 

infusion of 8 µL (per ventricle) of either ACSF or STZ. One week following surgery, 

animals received either saline (1 mg/mL; i.p.) or LPS (1 mg/kg; i.p.).  

Behavioral Testing 

 One week following immune activation, animals were handled three times prior to 

the start of behavioral testing to reduce any possible anxiety in order to produce 

consistent data. Three weeks following STZ infusion, behavioral testing began consisting 

of open field (OF), novel object recognition (NOR), and Morris water maze (MWM). A 

simple timeline is provided below to show the basic outline of this experiment. 
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Figure 1. Experimental Timeline.  

Open Field 

 Animals were placed in a large open chamber for five minutes to measure overall 

ambulatory activity and anxiety-like behavior. A tracking system (Smart, San Diego 

Instruments, San Diego, CA) was mounted above the chamber in order to track 

movement of the animal. Analyzed data included time spent in perimeter and overall 

distance traveled.  

Novel Object Recognition 

 After introduction to the chamber during the open field task, NOR testing began 

24 hours later. NOR consisted of a training day (Day 1) and a testing day (Day 2). During 

training, a pair of two identical objects (Object A) was placed in opposite corners of the 

chamber and animals were allowed to freely explore for five minutes, while the time 

spent exploring objects was recorded. Objects (Lego or PCV cylinder) were 

counterbalanced across groups as well as corner placements. 24 hours later, a long-term 

memory test was conducted consisting of a novel object (Object B) paired with an 

original object (Object A). Both NOR days were recorded by the tracking system and 

data analyzed included total time spent investigating object(s) and novel object 

preference. Manual scoring of object investigation time was conducted by multiple 

observers to ensure accurate data. Object investigation was defined as direct contact with 

the object or sniffing of the object within 2 cm of the animal’s head.  

 

 Week 1  Week 2  Week 3 

Animals arrive STZ ICV Immune Activation 
(LPS) 

 Week 4  Week 5 

Begin behavioral testing 

 Week 6 

Tissue collection 
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Morris Water Maze 

The Morris water maze task was conducted in a circular tank, 1.8 m in diameter 

and 76 cm in height, made of white polyethylene 4.7 mm in thickness (San Diego 

Instruments). Tap water, 48 cm deep, was maintained at a temperature of 25°C and made 

opaque by the addition of white non-toxic paint (Fresco Tempera Paint, Rich Art Color 

Company, Northvale, NJ), and changed every other day. The escape platform, a square 

platform 10 cm in diameter made of clear plastic, was placed in the center of one of the 

four quadrants (target quadrant), 30 cm from the inside wall of the maze and 1.5 cm 

below the surface of the water. For visible platform training, a large black and white 

cover was attached to the top of the platform and protruded 2 cm above the water.  

 Trials were recorded and captured using the video tracking system (Smart) 

recorded from a Sony Handycam camera connected to a Cobalt Instruments computer. 

Data collected for each trial consisted of a track of the animal, which includes the latency 

and distance traveled to locate the platform, speed of swimming, and thigmotaxis. On the 

probe trial the tracking system also recorded the amount of time subjects spent in each of 

the four quadrants of the maze, as well as the number of times the animal’s path crossed 

over the previous platform location and its analogous location in each quadrant. 

For the MWM procedure, subjects were taken individually from the colony room 

to a dedicated testing room containing the water maze, a computer desk, a table with the 

heating cage, and large geometric shapes positioned on each of the four walls, all serving 

as distal spatial cues. The rat was placed into the maze at one of three randomized 

locations, in the center of a quadrant that did not contain the escape platform (non-target 

quadrant). The rat was allowed to swim in the maze until it reached the hidden platform 
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and placed its forepaws on the platform. If after 60 seconds the animal did not locate the 

hidden platform, it was guided to the platform by the experimenter. The rat was given 20 

seconds on the platform to orient to distal spatial cues and then placed under a heat lamp 

for a total of 30 seconds between trials.  

Three additional trials were conducted in an identical fashion, for a total of four 

training trials per day. Following the fourth trial, the animal was dried and returned to its 

home cage. The training trials for the hidden platform were conducted until control 

subjects reached a latency criterion of less than 15 seconds (4-trial group mean). A probe 

trial was conducted twenty-four hours following achievement of this criterion. For the 

probe trial, the rat was placed in the maze in the same fashion as during training, but the 

escape platform was absent. The single probe trial was 60 seconds in duration, after 

which the rat was dried and returned to its home cage.  

 The day after completion of the probe trial, a two-day visible platform training 

protocol was employed. A visible platform that extends above the surface of the water 

(intra-maze cue) was placed into the maze instead of the hidden platform. Four trials per 

day were conducted for each animal in the same fashion as during the hidden platform 

training, with the exception that the platform location was changed on each trial. Visible 

platform training was conducted in order to detect any deficits in visual ability and motor 

function.  

Tissue$Collection$

! Animals$were$humanely$euthanized$via$carbon$dioxide$asphyxiation$the$day$

following$ completion$ of$ MWM.$ Brains$ were$ quickly$ removed$ and$ the$ cortex,$
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hippocampus,$ and$ cerebellum$were$ dissected$ out$ and$ flash$ frozen$ in$ dry$ ice.$ The$

dissected$tissue$was$stored$at$-80°$C$until$SDS/PAGE.$

SDS-PAGE$(Western$Blots)$

$ Tissue$ was$ homogenized$ in$ a$ non-denaturing$ lysis$ buffer$ consisting$ of$ 1X$

RIPA$buffer$(Cell$Signaling;$20$mM$Tris-HCL$pH$7.5,$150$mM$NaCL,$1$mM$Na2$EDTA,$

1$mM$EGTA,$1%$NP-40,$1%$sodium$deoxycholate,$2.5$mM$sodium$pyrophosphate,$1$

mM$β-glycerophosphate,$1$mM$Na3VO4,$and$1$µg/ml$ leupeptin),$1$mM$DTT,$1$mM$

phenylmethylsulfonyl$ fluoride$ (PMSF),$ 20$ µg/ml$ aprotinin$ and$ 0.1%$ sodium$

dodecyl$sulfate$(SDS).$Lysates$were$centrifuged$at$15,000$x$g$for$15$minutes$at$4°C,$

the$supernatant$were$collected,$and$a$protein$assay$to$determine$concentration$was$

performed$using$ the$ biciconinic$ acid$method$ (BCA;$ Pierce,$ Rockford,$ IL).$ Samples$

(20$ µg)$ were$ separated$ on$ 12-16%$ SDS-PAGE$ gels,$ depending$ on$ the$ protein$ of$

interest.$ Proteins$ were$ then$ electro-transferred$ to$ nitropure$ 45$ micron$

nitrocellulose$membranes,$which$were$blocked$in$5%$milk$ in$PBS$with$0.05%$and$

0.1%$sodium$azide$for$two$hours.$$

$ Individual$membranes$were$ then$probed$overnight$ at$4°$C$with$one$of$ the$

following$ primary$ antibodies$ diluted$ in$ 5%$milk$ in$ PBS$with$ 0.2%$ Tween$ (rabbit 

anti-amyloid oligomer 1:500, Millipore; goat anti-ChAT, 1:1,000, Millipore; rabbit anti-

GABAB1, 1:2000, Cell Signaling; rabbit anti-GABAB2, 1:1000, Cell Signaling; mouse 

anti-GAD65, 1:2000, BD Pharmingen; rabbit anti-GIRK2, 1:1,000, Abcam; rabbit anti-

GluR4, 1:1000, Cell Signaling; rabbit anti-IL-6, 1:250, Abcam; rabbit anti-NMDAR1 

(NR1), 1:1000, Cell Signaling; rabbit anti-NMDA2A (NR2A), Cell Signaling; rabbit 

anti-NMDA2RB (NR2B), 1:1000, Cell Signaling; rabbit anti-phospho-GSK-3β, 1:500, 
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Cell Signaling; rabbit anti-phospho-Tau (pSer404), 1:1000, Sigma; rabbit anti-PP2A, 

1:1,000, Cell Signaling; mouse anti-tau-5, 1:8,000, Millipore; mouse anti-TNFR1, 

1:1000, ProteinTech; mouse or rabbit anti-β-actin, 1:20,000, ProteinTech). Detection$of$

specific$binding$was$performed$by$ incubation$with$ IRDye$near-infrared$secondary$

antibodies$ (1:5000$ or$ 1:10,000,$ LiCor$ Biosciences,$ Lincoln,$ NE)$ for$ two$ hours$ at$

room$temperature.$Following$washes$in$PBS+tween,$membranes$were$imaged$on$an$

Odyssey$ CLx$ Infrared$ Imaging$ System$ (LiCor)$ and$ an$ average$ intensity$ was$

obtained$for$each$sample.$Each$sample$was$run$ in$duplicate$with$β-actin$or$tau$to$

normalize$protein$levels.$$$

Statistical$Analyses$

$ Differences$ in$ rectal$ temperature$ or$ weight$ were$ analyzed$ by$ one-way$

between$subjects$analysis$of$variance$(ANOVA)$with$group$as$the$factor.$Open$field$

data$were$analyzed$by$one-way$between$subjects$ANOVA$with$group$as$the$factor.$

The$performance$index$(PI)$of$each$group$for$NOR$testing$was$analyzed$by$paired$

sampled$ t-tests$ compared$ to$ chance$ levels.$ MWM$ hidden$ and$ visible$ platform$

training$ data$ were$ analyzed$ by$ a$ repeated$ measures$ analysis$ of$ variance$ (RM-

ANOVA)$with$days$as$the$within$subjects$factor$and$group$as$the$between$subjects$

factor.$ Probe$ trial$ data$ were$ analyzed$ by$ one-way$ ANOVA$ with$ percent$ time$ in$

quadrant$ or$ annulus$ crossings$ as$ the$ factor.$Western$ blot$ data$were$ analyzed$ by$

one-way$ between$ subjects$ ANOVA$ with$ group$ as$ the$ factor.$ Tukey$ post-hoc$

comparisons$of$treatment$groups$were$performed$following$any$significant$ANOVA$

to$determine$points$of$significance.$$

$
$
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CHAPTER 4 
 

RESULTS 
 

Temperatures 
 

 Immediately prior to LPS administration, no differences in baseline temperature 

were found (F3,38=0.552, p>0.05; see figure 2). Twenty-four hours following LPS, both 

LPS treated groups experienced significantly elevated temperatures (F3,38=25.185, 

p<0.001; Tukey post-hoc: controls vs LPS p<0.001, controls vs STZ/LPS p<0.001; see 

figure 2). Temperatures remained elevated forty-eight hours later for both groups 

administered LPS (F3,38=17.691, p<0.001; Tukey post-hoc: controls vs LPS p<0.001, 

controls vs STZ/LPS p<0.001, see figure 2). By the third day after LPS, there was still a 

significant difference (F3,38=4.165, p<0.05, see figure 2) but Tukey post-hoc comparisons 

did not reveal any significant differences between controls and the other treatment 

groups. By ten days later, all signs of a mounted fever response had completely 

disappeared (F3,38=0.848, p>0.05, see figure 2). 

Weights 
 

  Weights were tracked along with temperatures to determine if LPS had any effect 

on body weight. Baseline weights prior to the administration of LPS revealed no 

differences (F3,38=1.296, p>0.05; see figure 3). This baseline was established one week 

following surgery, indicating that STZ infusion had no immediate effect on weights.  

Immediately following immune activation, a significant difference in weights emerged 

with STZ/LPS having a lower body weight than controls (F3,38=3.044, p<0.01; Tukey 

post-hoc: controls vs STZ/LPS p<0.01, see figure 3). Additionally, Tukey post-hoc 

analysis revealed that STZ-treated animals had significantly higher weights than STZ/LPS 
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(p<0.05, see figure 3).  

 
Figure 2. Temperature Data. Prior to LPS administration (Pre-LPS), no significant 
differences (± SEM) existed between treatment groups. Following LPS injection, LPS- 
and STZ/LPS-treated animals had significantly elevated temperatures for 48 hours, after 
which temperatures began to return to baseline. * = significantly different than controls 
(p<0.05). 
 

 
Figure 3. Weight Data. Prior to LPS administration, no significant differences in average 
weight (± SEM) were noted. Following LPS injection, STZ/LPS experienced a 
significantly lowered body weight. * = significantly different than controls (p<0.05). # = 
STZ significantly different than STZ/LPS 
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Other than the transient increase in temperature, one-time LPS administration 

alone did not have any additional effects in measures of open field, spatial learning in 

MWM, or Western blots. We analyzed controls versus LPS-treated animals and found no 

additional significant differences. No differences were observed during open field in 

distance traveled (F1,19=3.716, p>0.05) or time spent in perimeter (F1,19=2.072, p>0.05). 

No differences were observed in Day 1 NOR exploration time (F1,19=0.046, p>0.05), Day 

2 Performance Index compared to controls (F1,19=0.022, p>0.05), and performance in 

Day 2 Performance Index was above chance levels, similar to controls (t10=4.545, 

p<0.01).  No differences were observed in the MWM in hidden training latency 

(F1,57=1.531, p>0.05), hidden training speed (F1,57=0.256, p>0.05), hidden training 

thigmotaxis (F1,57=1.409, p>0.05), visible training latency (F1,82=0.058, p>0.05), visible 

training speed (F1,82=0.351, p>0.05), and visible training thigmotaxis (F1,82=3.169, 

p>0.05). The LPS-treated animals demonstrated a selective search during the MWM 

probe by spending significantly more time in the target quadrant (F3,40=26.125, p<0.05; 

Tukey post-hocs of target quadrant versus each quadrant p<0.01) and in annulus 

crossings (F3,40=18.052, p<0.001), indicating that acute immune activation did not impair 

any measure of learning and memory observed in this study. No significant differences 

between controls and LPS in levels of total oligomeric species (F1,18=3.765, p>0.05) nor 

in the individual oligomeric species analyzed (7mer (F1,18=0.234, p>0.05), 8mer 

(F1,18=0.197, p>0.05), 9mer (F1,18=0.573, p>0.05), 10mer (F1,18=2.056, p>0.05), 11mer 

(F1,18=3.957, p>0.05), 12mer (F1,18=0.049, p>0.05), 16mer (F1,18=0.045, p>0.05), 18mer 

(F1,18=0.974, p>0.05), 20mer (F1,18=0.505, p>0.05), 22mer (F1,18=0.082, p>0.05), 24mer 

(F1,18=0.052, p>0.05), 26mer (F1,18=1.473, p>0.05)). Additionally, there were no 
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differences in levels of tau (F1,18=0.000, p>0.05), pTau Ser404 (F1,18=0.081, p>0.05), 

pGSK-3β (F1,18=0.34, p>0.05), NR1 (F1,18=0.528, p>0.05), NR2A (F1,18=1.228, p>0.05), 

NR2B (F1,18=0.127, p>0.05), GluR4 (F1,18=0.34, p>0.05), GABAB1a (F1,18=0.193, 

p>0.05), GABAB1b (F1,18=0.05, p>0.05), GABAB2 (F1,18=0.594, p>0.05), GAD65 

(F1,18=0.67, p>0.05), ChAT (F1,18=0.308, p>0.05), PP2A (F1,18=0.004, p>0.05), GIRK2 

(F1,18=0.955, p>0.05), IL-6 (F1,18=0.002, p>0.05), and TNFR1 (F1,18=0.758, p>0.5). 

Because the control group and LPS-treated animals were statistically 

indistinguishable from one another in all behavioral tasks and protein level analyses, LPS 

was removed from all further analyses to remove additional variance. Analysis of 

controls vs LPS alone was necessary to cut down costs and excessive use of animals in 

future experiments by ensuring that a one-time LPS injection did not result in any long-

lasting measurable changes. Studies that administer LPS to transgenic AD models 

typically do not include an LPS-alone group 368-372, however, we wanted to verify that we 

would be able to eliminate this particular group from this study and any future acute 

inflammatory studies by confirming that an acute LPS administration was indeed 

statistically indistinguishable from controls. All analyses conducted below include only 

controls, STZ, and STZ/LPS.  

Open Field 
 

Open field testing was conducted to both measure overall exploratory behavior and to 

determine if any differences in anxiety-like behavior exists. No differences were 

observed in the time that the animals spent in the perimeter of the arena (F2,27=0.41, 

p>0.05; see figure 4a).  Additionally, no differences were observed in the overall distance 

that the animals traveled throughout the arena (F2,27= 2.165, p>0.05; see figure 4b). 
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Figure 4. Open Field Data. No significant differences were observed in (a) the percent 
time spent (± SEM) in the perimeter of the open field arena or (b) the total distance 
travelled (± SEM).  
 

Novel Object Recognition 
 

On the first day of novel object recognition (NOR), animals were placed into the 

same arena used for open field with two identical objects (either identical Lego blocks or 

identical PVC cylinders). No significant differences were observed in the total amount of 

time that animals spent investigating the identical objects (F2,27=0.014, p>0.05; see figure 

5a). Twenty-four hours later, animals were exposed to one of the objects from the 

previous day and a novel object (one of the objects that wasn’t previously presented). The 

controls spent significantly more time with the novel object than chance levels would 

predict (t9=2.268, p<0.05, see figure 5b). STZ and STZ/LPS failed to investigate the 

novel object more than chance levels (t9=-.985; p>0.05 and t9=-1.742; p>0.05, 

respectively, see figure 5b). Additional analysis regarding the novel object performance 

index showed that STZ and STZ/LPS spent significantly less time with the novel object 

compared to controls (F3,37=6.592, p<0.01; Tukey post-hoc: controls vs STZ p<0.05, 

controls vs STZ/LPS p<0.01, see figure 5b). 

(a) (b) 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 
Pe

rc
en

t T
im

e 
Sp

en
t i

n 
Pe

ri
m

et
er

 

Control STZ STZ/LPS 

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

To
ta

l D
is

ta
nc

e 
Tr

av
el

ed
 (c

m
) 

Control STZ STZ/LPS 



$

$ 47$

 
Figure 5 Novel Object Recognition Data. (a) Day one NOR, no significant differences 
were observed in the Day 1 total exploration (± SEM) of two Object A. (b) Day two 
NOR, controls spent significantly more time with the novel object (Object A) than the old 
object (Object B) than chance levels. STZ and STZ/LPS spent significantly less time 
exploring the novel object compared to controls. # = significantly greater than chance 
levels (p<0.05). * = significantly different than controls (p<0.05).  
 

Morris Water Maze 
 

Latency to locate the hidden platform across successive days was measured for six 

consecutive days. STZ and STZ/LPS exhibited significantly longer latencies to find the 

hidden platform (F2,121=10.613, p<0.001; Tukey post-hoc: controls vs STZ p=0.01, 

controls vs STZ/LPS p<0.01, see figure 6a). The overall distance traveled to locate the 

platform was significantly longer for the STZ group alone (F2,89=4.559, p<0.05; Tukey 

post-hoc: controls vs STZ p<0.05, see figure 6b). However, it should be noted that 

technical difficulties arose with the tracking system on Day 5 of hidden training and 

distance data of the path length of 8 animals was lost, potentially influencing these data. 

No differences were identified in swim speed during hidden platform training 

(F2,89=1.064; p>0.05, see figure 6c). Thigmotaxis, the time spent swimming in the outer 

perimeter of the maze, was significantly elevated for STZ during hidden training 

(F2,89=10.227; p=0.001; Tukey post-hoc: controls vs STZ p<0.001, see figure 6d).  
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 Twenty-four hours after the completion of the last day of hidden training, a probe 

trial was conducted. The STZ group failed to demonstrate a selective search as measured 

by spending significantly more time in the target quadrant (where the platform was 

previously located) compared to all the other non-target quadrants (F3,36=6.442, p<0.05; 

Tukey post-hoc: target vs adjacent left p<0.05, target vs opposite p>0.05, target vs 

adjacent right p<0.05, see figure 7a). Controls and STZ/LPS displayed a selective search 

during the probe trial (Controls: F3,36=15.427, p<0.001, Tukey post-hoc: target vs 

adjacent left p<0.001, target vs opposite p<0.001, target vs adjacent right p<0.001; 

STZ/LPS: F3,40=11.348, p<0.001; Tukey post-hoc: target vs adjacent left p<0.001, target 

vs opposite p<0.001, target vs adjacent right p<0.001, see figure 7a). 

Annulus crossings, the number of times that the animal crosses the location where 

the hidden platform was previously located as well as the analogous location in each of 

the three non-target quadrants, is another measure of probe trial performance. Similarly to 

time spent in target quadrant, STZ failed to demonstrate a selective search when annulus 

crossings were analyzed (F3,36=2.468, p>0.05, see figure 7b). Controls and STZ/LPS 

displayed a selective search during the probe trial when annulus crossings were measured 

(Controls: F3,36=7.382, p<0.001, Tukey post-hoc: target vs adjacent left p<0.01, target vs 

opposite p<0.01, target vs adjacent right p<0.001; STZ/LPS: F3,40=8.789, p=0.000; Tukey 

post-hoc: target vs adjacent left p<0.001, target vs opposite p<0.001, target vs adjacent 

right p<0.000, see figure 7b). 

 Following the probe trial, visible platform training was performed to assess 

visuomotor abilities. Significant differences were found in the latency to find the visible 

platform in the STZ/LPS group (F2,121=6.058, p<0.05; Tukey post-hoc: controls vs 
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STZ/LPS p<0.01, see figure 6a). Due to the difference in visible latency, a forepaw reach 

was performed but no differences in basic visual function were observed. Path length to 

locate the visible platform was also elevated in STZ/LPS (F2,121=6.313, p<0.01; Tukey 

post-hoc: controls vs STZ/LPS p<0.01, see figure 6b). No differences were observed in 

swim speed during visible training (F2,89=1.064, p>0.05; see figure 6c). Thigmotaxis was 

significantly elevated for both STZ and STZ/LPS during visible training (F2,121=11.647, 

p<0.001; Tukey post-hoc: controls vs STZ p<0.001, controls vs STZ/LPS p<0.001, see 

figure 6d). 

 
Figure 6 Morris Water Maze Data: Hidden and Visible Training. (a) Mean latency 
(±SEM) to find the platform. STZ and STZ/LPS had significantly longer latencies in 
hidden training, while STZ/LPS had a significantly longer visible latency. (b) Mean path 
length (±SEM) to find the platform. STZ showed a longer path length during hidden 
training; STZ/LPS demonstrated a longer path length during visible training. (c) Mean 
swim speed (±SEM) yielded no significant differences. (d) Percent thigmotaxis (±SEM). 
STZ displayed a significant increase in thigmotaxis during hidden training. Both STZ and 
STZ/LPS displayed a significant increase in perimeter swimming during visible training. 
* = Significantly different than controls (p<0.05) 
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Figure 7 Morris Water Maze Data: Probe Trial. (a) Mean proportion time spent in target 
quadrant compared to the other non-target quadrants. Controls and STZ/LPS displayed 
selective searches while STZ failed to demonstrate a selective search. (b) Mean number 
of annulus crossings in target quadrant compared to analogous areas in non-target 
quadrants. Controls and STZ/LPS displayed a selective search while STZ did not 
demonstrate a selective search. * Target quadrant is significantly different than all three 
non-target quadrants (p<0.05). 
 
 

SDS-PAGE (Western Blots) 
 

 Protein levels of the three major pathological hallmarks: Aβ deposition, 

hyperphosphorylated tau and cholinergic loss were examined in the hippocampus. To 

explore the effects on Aβ, oligomeric Aβ was probed. Aβ oligomers can be identified in 

these western blots starting at 7mer and increasing up to 24mer. STZ and STZ/LPS 

groups showed significant elevations when all oligomeric species were combined 

(F2,387=26.209, p<0.001; Tukey post-hoc: controls vs STZ p<0.001, controls vs STZ/LPS 

p<0.001, see figure 8a). Post-hoc analysis also revealed that while both STZ and 

STZ/LPS were significantly elevated, there was a significant difference between the STZ 

group and the STZ/LPS group in total oligomeric Aβ species (Tukey post-hoc: STZ vs 

STZ/LPS p<0.05, see figure 8a). Analysis of individual oligomeric species indicated a 

significant increase for both STZ and STZ/LPS, including the 11mer (F2,27=5.816, 
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p<0.01; Tukey post-hoc Controls vs STZ p<0.05, Controls vs. STZ/LPS p<0.05), and 

16mer (F2,27=8.943, p<0.01; Tukey post-hoc Controls vs STZ p<0.05, Controls vs. 

STZ/LPS p<0.05). Interestingly, only STZ alone showed significantly elevated levels of 

10mer (F2,27=3.828, p<0.05; Tukey post-hoc Controls vs STZ p<0.05) and 22mer 

(F2,27=4.985, p=0.014; Tukey post-hoc Controls vs STZ p<0.05), indicating that the acute 

immune response may have prevented the increase in certain Aβ oligomeric species 

observed in the STZ alone group. No differences were observed in 7mer (F2,27=2.399, 

p>0.05), 8mer (F2,27=1.252, p<0.05), 9mer$ (F2,27=2.872, p>0.05), 12mer (F2,27=2.476, 

p>0.05), 18mer (F2,27=1.793; p<0.05), 20mer (F2,27=2.518, p<0.05), 24mer (F2,27=0.504, 

p>0.05) and 26mer (F2,27=1.046, p=0.365). Please refer to Table 1 below, for a complete 

summary of oligomeric species. 

 
 
Table 1 Aβ Oligomers. Western blot data from the hippocampus showing mean Aβ 
oligomers (±SEM). Values shown are proportion to controls, which is set at 1. STZ and 
STZ/LPS showed elevated levels for species 11mer and 16mer. STZ showed further 
increases for 10mer and 22mer. 
 
 Levels of choline acetyltransferase (ChAT) were also evaluated to determine if 

there were alterations to cholinergic signaling. No differences were found in levels of 

ChAT between any of the groups (F2,27=1.23, p>0.05,  see figure 9a). 

Oligomer STZ STZ/LPS F value p value
8mer 1.76 (±.14) 1.37 (±.47) 1.252 >0.05
9mer 2.35 (±.13) 1.55 (±.36) 2.872 >0.05

10mer 2.90 (±.26)** 1.73 (±.40) 3.828 <0.05*
11mer 1.64 (±.15)** 1.75 (±.23)** 5.816 <0.01*
12mer 1.46 (±.10)** 1.26 (±.22) 2.476 >0.05
16mer 1.76 (±.13)** 1.50 (±.15)** 8.943 <0.001*
18mer 1.45 (± .23) 1.78 (± .42) 1.793 >0.05
20mer 1.7 (± .25) 1.47 (± .29) 2.518 >0.05
22mer 2.04 (± .27)** 1.61 (± .27) 4.985 <0.05*
24mer 1.07 (±.14) 1.17 (± .14) 0.504 >0.05
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Figure 8 Western Blot Data: Aβ Oligomers (a) Total oligomers were elevated for both 
STZ and STZ/LPS. STZ/LPS experienced significantly less of an increase compared to 
STZ. (b) 10mer, a representative species of those significantly elevated in STZ but not in 
STZ/LPS. (c) Representative western blot of Aβ oligomers. (d) 16mer, a representative 
species of those significantly elevated in both STZ and STZ/LPS. * = significantly 
different than controls (p<0.05). # = STZ significantly different than STZ/LPS (p<0.05). 
 

 Evaluation of phosphorylated tau, specifically at the Serine 404 phosphorylation 

site, revealed significantly elevated levels in the hippocampus of both STZ and STZ/LPS 

(F2,27=8.83, p<0.01; Tukey post-hoc: controls vs STZ p<0.01, controls vs STZ/LPS 

p<0.01, see figure 9b). The amount of phosphorylated tau was investigated as a ratio to 

overall tau levels (pTau/Tau). Because overall tau levels served as the housekeeping 

protein, we also analyzed overall tau levels separately to ensure there was not a baseline 

bias when calculating pTau/Tau. Analysis of overall tau levels did not reveal any 

significant differences (F2,27=0.063, p>0.05, data not shown). 
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Figure 9. Western Blot Data: ChAT, pTau, PP2A, pGSK-3β. (a) Proportion (±SEM) and 
representative blot of ChAT. No differences were observed. (b) Proportion (±SEM) and 
representative blot of pTau/Tau. Levels of pTau were significantly elevated in both STZ/ 
and STZ/LPS. (c) Proportion (±SEM) and representative blot of PP2A. No differences 
were observed. (d) Proportion (±SEM) and representative blot of pGSK-3β. There was a 
non-significant trend towards a decrease in both STZ and STZ/LPS. * = significantly 
different than controls (P<0.05). 
 

 Evaluations of both a phosphatase, responsible for dephosphorylation of tau, and 

kinase, involved in tau phosphorylation, were conducted to investigate potential 

mechanisms behind the elevated pTau levels. GSK-3β, a kinase that phosphorylates tau at 

almost every known phosphorylation site, is itself inactivated when phosphorylated. We 

examined phosphorylated GSK-3β and found non-significant decrease (F2,27=1.805, 

p>0.05, see figure 9d) indicating that a reduction in the amount of inactive 

phosphorylated GSK-3β would signify higher amounts of non-phosphorylated GSK-3β. 

This could account for the increased phosphorylated tau levels seen previously. Protein 
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phosphatase 2 (PP2A) is known to remove dephosphorylate tau. No significant 

differences were found in PP2A levels (F2,27=1.096, p>0.05, 9c).  

 
Figure 10 Western Blot Data: Glutamatergic Related Proteins. (a) Proportion (±SEM) 
and representative blot of NR2A receptor subunit. Expression of NR2A in STZ was 
significantly reduced. (b) Proportion (±SEM) and representative blot of NR2B receptor 
subunits. No significant differences were observed. (c) Proportion (±SEM) and 
representative blot of NR1 receptor subunit. Expression of NR1 in STZ/LPS was 
significantly reduced. (d) Proportion (±SEM) and representative blot of GluR4. No 
significant differences were observed. * = significantly different that controls (p<0.05). 
  

Protein levels of multiple specific receptor subtypes related to glutamatergic 

signaling were also analyzed in an effort to determine connections between the 

behavioral and biochemical changes. The evaluation of the NR2A subunit of NMDA 

receptors revealed a significant reduction in STZ (F2,27=4.751, p<0.05; Tukey post-hoc: 

controls vs STZ p<0.05, see figure 10a). There was also a significant decrease of the NR1 

receptor subunit in the hippocampus for STZ/LPS (F2,27=4.192, p<0.05; Tukey post-hoc 
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Controls vs STZ/LPS p<0.05, see figure 10b). No differences were observed in 

hippocampal NR2B subunit levels (F2,27=1.637, p>0.05, see figure 10c). Additionally, the 

AMPA receptor subunit GluR4 did not show any differences between groups 

(F2,27=0.324, p>0.05, see figure 10d). 

Examinations of multiple receptors and proteins related to GABAergic signaling 

were conducted. Examination of the GABAB1a subunit revealed a significant increase in 

the STZ group (F2,30=3.813, p<0.05; Tukey post-hoc: controls vs STZ p<0.05, see figure 

11a). Levels of GABAB1b were also significantly elevated for the STZ group (F2,30=3.656, 

p<0.05; Tukey post-hoc: controls vs STZ p<0.05, see figure 11a), Additionally, Tukey 

post-hoc revealed that GABAB1b  levels were significantly different between STZ and 

STZ/LPS (Tukey post-hoc: STZ vs STZ/LPS p<0.05, see figure 11a).  Evaluation of the 

GABAB2 receptor did not reveal any significant differences in any of the groups, despite 

a trend towards an increase in the STZ group (F2,27=3.081, p>0.05, see figure 11b). No 

differences were found in levels of GIRK2, an inwardly-rectifying potassium channel 

regulated by GABAB (F2,27=0.436, p>0.05, see figure 11d). Similarly, no differences 

were detected in GAD65 levels (F2,27=0.537, p>0.05, see figure 11c).  

Several inflammatory markers were also investigated to determine if there were 

any lasting changes to the immune response. Examination of interleukin-6 did not yield 

any significant differences (F2,27=1.224, p>0.05, see figure 12a). The evaluation of tumor 

necrosis factor receptor 1 (TNFR1), a receptor for TNF-α, did not reveal any differences 

between treatment groups (F2,27=0.334, p=0.719, see 12b). 
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Figure 11 Western Blot Data: GABAergic Related Proteins. (a) Proportion (±SEM) and 
representative blot of GABAB1a and GABAB1b receptor subunits. There was a significant 
elevation of GABAB1a and GABAB1b in STZ. Additionally, expression of GABAB1b was 
significantly different between STZ and STZ/LPS. (b) Proportion (±SEM) and 
representative blot of GABAB2. A non-significant increase was observed for STZ. (c) 
Proportion (±SEM) and representative blot of GAD65. No significant differences were 
observed. (d) Proportion (±SEM) and representative blot of GIRK2. No significant 
differences were observed. * = significantly different than controls (p<0.05). # = STZ 
significantly different than STZ/LPS (p<0.05). 
 
 

 
Figure 12 Western Blot Data: Inflammatory Related Proteins. (a) Proportion (±SEM) and 
representative blot of IL-6. No significant differences were observed. (b) Proportion 
(±SEM) and representative blot of TNFR1. No significant differences were observed. 
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CHAPTER 5 

DISCUSSION, CONCLUSION, AND FUTURE DIRECTIONS 

 The above study was designed to investigate the effects of an acute inflammatory 

response in a diabetic model of sporadic Alzheimer’s disease. Specifically, we found that 

the infusion of STZ-ICV (Hypothesis 1) led to an impairment in non-spatial (NOR) and 

spatial (MWM) learning, alterations in several pathological hallmarks of AD, and 

disruptions to both glutamatergic and GABAergic signaling. Further, we hypothesized 

that a one-time administration of LPS to STZ-ICV animals (STZ/LPS) would further 

exacerbate the STZ-induced deficits (Hypothesis 2), however, we saw a subtle 

improvement in spatial learning, a reduction in Aβ levels compared to the diabetic alone 

model, and restoration of several NMDA and GABA receptor subunits. 

 The diabetic model of AD utilizes streptozotocin, a diabetogenic compound. It has 

been reported that STZ-ICV disrupts glucose utilization through an insulin-dependent 

mechanism and targets myelin in the cerebral cortex and hippocampus302 , leading to 

memory and protein changes similar to those found in sAD.  In this study, STZ induced 

both learning and memory deficits, as well as an increase in several pathological features 

of AD without any differences in weight. 

 Temperatures and weights were tracked following LPS injection to determine if an 

immune response was induced. Indeed, following LPS administration, temperatures were 

significantly elevated in both LPS-treated groups (LPS and STZ/LPS) for the first 48 

hours and then began to return to baseline after 72 hours. One week later, temperatures 

had completely returned to baseline levels. This temperature data supports other studies 

showing that following LPS administration, fever peaks between 6-8 hours and then 
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gradually returns to baseline 373,374. Additionally, body weights decreased slightly in the 

STZ/LPS treatment group immediately following LPS but began to return to normal after 

a week, completely returning to normal body weights by the end of the experiment. 

Literature supports that LPS has a pyrogenic effect, attributable weight loss, and induces 

the release of numerous proinflammatory cytokines, including TNF-α, IL-1β and IL-6 

375,376. More importantly, peripheral LPS induces neuroinflammation by increasing brain 

cytokine levels of TNF-α, IL-1β and IL-6 377-380 and activating microglia 381,382. We can 

thus assume, based upon the weight loss and increased body temperatures following LPS 

administration, cytokine levels were elevated in both plasma and in the brain and that 

microglia were activated throughout the brain. 

 Animals were tested in the open field for locomotor deficits and anxiety-like 

behavior. Because no differences we observed in this task, any differences observed in 

the learning and memory tasks (NOR and MWM) cannot be attributed to differences in 

either exploratory behavior or motoric abilities.  

 The same testing arena used for OF was also used for NOR, the first learning and 

memory task. On the first day of NOR, also referred to as the familiarization phase, the 

subject was placed in the arena with two identical objects (A+A or B+B) and allowed to 

freely explore for 5 minutes. No differences were observed in exploration time, indicating 

that no treatment group showed a preference for one object over the other which would 

suggest a bias towards one side of the chamber (place preference). Additionally, 

regardless of which objects were presented during Day 1 (A+A or B+B) there was no 

difference in total time spent investigating the objects (object preference). Twenty-four 

hours later, animals were placed back in the arena with one old object and one novel 
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object (A+B). STZ and STZ/LPS exhibited significant reductions in their preference for 

exploring the novel object. NOR is one way of testing recognition memory in rodents, 

which has been shown to be mostly dependent upon the perirhinal cortex and 

hippocampus 383,384. Previous work demonstrates that the perihinal cortex initially 

encodes basic information about familiarity or novelty of an object but decays relatively 

quickly, while the hippocampus encodes object memory through information about the 

experience of interacting with the object and maintains strong novel object preference 

after long delays 383. 

 Studies have shown that NMDA receptor 1 subunit (NR1) knockout-mice in the 

CA1 region of the hippocampus significantly impaired object recognition 385. While 

analysis only revealed a strong trend rather than a significant reduction of NR1 in STZ 

and a significant reduction in STZ/LPS, NR1 levels in the hippocampus was one of the 

few receptor subunits (GABAergic or glutamatergic) that showed large alterations in both 

STZ and STZ/LPS. This reduction in hippocampal NR1 protein levels might explain the 

NOR impairments seen in this experiment by both STZ and STZ/LPS. In this non-spatial, 

hippocampal-dependent task, both STZ and STZ/LPS failed to investigate the novel 

object more than the familiar object, suggesting that the one-time immune activation did 

not play a significant role in improving or further impairing learning in this simple task. 

Deficits in object recognition is commonly seen in patients with AD 386 and used to 

validate transgenic models of AD 387-389. 

 Spatial learning and memory results from the Morris water maze yielded interesting 

findings. During the hidden platform training, the animals learn to locate and navigate 

towards a platform located just beneath the surface of the water. In this experiment, STZ 
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and STZ/LPS had significantly longer latencies to locate the hidden platform indicating 

that both groups experienced impairments in spatial learning. Furthermore, path length 

data suggests that the STZ/LPS animals may have taken a more direct route in their 

search strategy as the significant impairment seen in latency is no longer evident. There 

are multiple search strategies that an animal can adopt; the most efficient search strategy 

is to immediately orient to the extramaze cues and swim directly to the hidden platform. 

Another strategy, albeit less efficient, is for the subject to swim the perimeter of the maze 

until a specific location or cue is found and then orient itself toward the hidden platform 

390. Indeed, we see that the STZ group had significantly elevated thigmotaxis, whereas the 

STZ/LPS-treated animals did not explore the perimeter of the maze while orienting 

themselves to the same degree. 

 Even more compelling than the hidden platform latency impairments for both STZ 

and STZ/LPS are the probe trial data. In two different measures of probe performance, 

time spent in target quadrant and annulus crossings, STZ does not produce a statistically 

significant selective search, further indicating impairment in this spatial learning task. 

However, in both probe trial measures STZ/LPS demonstrated a selective search, 

performing at equivalent levels to the control animals. The difference between the two 

groups could be due to the difference in search strategies as previously discussed. STZ 

demonstrated a search strategy of swimming along the perimeter slightly longer than the 

other groups before finally locating the target location. Thigmotaxis, the amount of time 

spent swimming along the perimeter of the maze, can be measured to look for anxiety-

like behavior in this task. However, open field data demonstrated no differences in 

overall anxiety or exploratory behavior, allowing us to interpret the increased perimeter 
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swimming time simply as a difference in search strategy 391,392. 

 It is not entirely clear why in two hippocampal-dependent tasks, one non-spatial 

(NOR) and one spatial (MWM), the simpler non-spatial task revealed deficits in both 

STZ and STZ/LPS, but a subtle, yet significant, improvement for STZ/LPS in the more 

difficult spatial task, while the STZ did not experience that same benefit. It is possible 

that in the more complex MWM task, considerably more brain regions than just the 

hippocampus, including the amygdala, thalamus, locus coeruleus, basal forebrain, are 

recruited in order to carry out this cognitive task 393.  

 One possible mechanism that may underlie the learning impairments discussed 

above is the differing presence of Aβ oligomers between treatment groups.  As 

mentioned above in the introduction, research regarding the role of Aβ in AD has focused 

primarily on the presence of large aggregated amyloid plaques. Recent research, 

however, suggests that early AD memory loss can be better explained by the presence of 

small, soluble forms of Aβ including monomers, dimers, and smaller oligomers 394. 

Central administration of oligomeric Aβ results in MWM deficits in both hidden training 

and the probe trial 395. Lesne and colleagues found that infusion of Aβ 12mer (which they 

term Aβ*56) did not affect subjects ability to find the hidden platform in the MWM 

across days 107. Furthermore, they found that infusion of Aβ 12mer two hours prior to the 

probe trial resulted in impairments in probe performance. We saw an overall increase in 

total Aβ oligomers in both STZ and STZ/LPS that may have impaired performance 

during the hidden training for both groups. Additionally, we saw an elevation of certain 

oligomers only in STZ, including 10mer and 22mer, which may give rise to the probe 

performance deficits seen only in STZ and not in STZ/LPS. 
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 Additionally, NMDA receptors have been extensively studied because of their 

critical role in spatial learning. NMDA receptors are composed of subunits NR1, NR2 

and NR3. Functional NMDA receptors contain one NR1 subunit and another one of 

several possible subunits, including NR2 (2A, 2B, 2C or 2D) or NR3. In the above 

experiment, there is a marked decrease in the NR2A receptor subunit in STZ animals. 

The use of NMDA receptor antagonists results in deficits in both hidden training and 

probe trial performance 396,397. The reduction of NMDA receptor subunit NR2A in the 

STZ group could be a possible explanation for the impaired hidden and probe 

performance, especially due to the fact that STZ/LPS did not experience a decrease in 

NR2A levels and demonstrated a selective probe search. Furthermore, Aβ oligomers 

initially disrupt NMDA receptor function but ultimately results in the removal of NMDA 

receptors from dendrites 398,399. Specifically, the NR1 subunit is a necessary component to 

the receptor complex or necessary for the assembly of the receptor complex that binds 

oligomers and allows for dendritic targeting of neurons 400,401. NMDA receptors aren’t 

themselves thought to bind Aβ oligomers but rather act as a key player in the process, 

thus the endocytosis of NMDA receptors is likely an attempt to avoid further oligomeric 

targeting of the dendrites. In the above study, STZ treatment results in an elevation of 

oligomeric species, which likely targets dendrites via NMDA receptors, followed by the 

compensatory reduction in NMDA receptors, which ultimately manifests as cognitive 

disruptions in hippocampal-dependent learning tasks. 

 Postmortem studies of AD brains have revealed an increase in the GABAB1a 

receptor subunit during the Braak stages III and IV 402. Braak staging was first described 

in 1991 and is used to describe the degree and distribution of NFTs in AD brains. Braak 
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found that NFTs followed a characteristic pattern of distribution. In stages I and II, NFTs 

are limited to the transentorhinal cortex. Stages III and IV are marked by NFTs in the 

entorhinal cortex and limbic system. In the final stages, V and VI, NFTs are found 

throughout all cortical areas. Iwakiri and colleagues 402 found that the increase in 

GABAB1a subunits during Braak III and IV was transient, followed by reductions in 

GABAB1a in the later Braak stages. These alterations in GABAB1a  suggest that GABAB1a 

expression changes with progression of NFTs in the hippocampus and cortex, 

contributing to the hippocampal circuitry dysfunction seen in AD patients. The elevated 

levels of GABAB1a exhibited in the STZ animals may mirror this transient increase of 

GABAergic tone seen in post-mortem AD brains.  

 It has been hypothesized that decreased function of NMDA receptors reduces 

activation of GABAergic neurons, lowering overall inhibitory drive, and thus leading to 

the symptoms seen in schizophrenia 403. Building off of this hypothesis, it is entirely 

possible that the decrease in NMDA receptors found on GABAergic neurons are resulting 

in less activation of these inhibitory neurons. Neurons downstream from the GABAergic 

interneurons have not yet been affected like the GABAergic neurons that express the 

NMDA receptors and thus increase GABA receptors to compensate for a decrease in 

GABAergic tone. As previously discussed, oligomeric Aβ initially causes an increase in 

NMDA activity that ultimately leads to a decrease in NMDA receptor subunits 398. 

Further, over-activation of excitatory amino acid receptors, namely NMDA receptors, 

leads to a compensatory activation of inhibitory tone in an attempt to counter the 

excessive excitatory activity 402. Thus, the increase in GABAergic signaling in the STZ-

treated animals could be a result of increased Aβ oligomers, which would first increase 
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NMDA activity causing the compensatory activation of inhibitory tone before 

internalizing the NMDA receptors. It is possible that the time course of the experiment 

captured the brief window of increased compensatory GABAergic tone before being 

downregulated following internalization of NMDA receptors, which might be the same 

small, transient window that Iwakiri and colleagues found elevated GABAB1a in the 

earlier Braak stages prior to reductions in GABAB1a levels.  

 It is possible that the increase in GABAB receptors seen in the STZ may be due to 

an entirely different mechanism that hasn’t been explored yet. It has been shown that an 

increase in TNFα leads to the endocytosis of GABAA receptors and an overall decrease 

in inhibitory synaptic strength 404.  IL-1β has been shown to reduce GABA inhibition in 

the hippocampus, though these studies utilized patch clamp recordings and didn’t 

investigate whether GABA receptors were being removed from the synapse 405,406. LPS 

triggers the release of several cytokines, including both IL-1β and TNFα, which may lead 

to the decrease of GABA receptor subunits (elevated due to STZ-treatment), bringing 

expressed levels back to levels that mirror controls in the STZ/LPS group.    

 We found elevated levels of tau phosphorylated at site Threonine 231 in both STZ-

treated groups. This finding is consistent with other STZ studies demonstrating an 

increase in pTau levels at numerous phosphorylation sites 278,304,305. Additionally, LPS 

has been shown to increase the amount of phosphorylated tau through numerous kinases 

including GSK-3β and cdk5 28,29,368. The amount of phosphorylated tau following STZ 

did not seem to be affected by subsequent treatment with LPS, suggesting that microglia 

activation played no role in either the rescue nor the exacerbation of tau pathology.  

 Additionally, we were interested to see if either STZ-treatment, alone or with 
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subsequent treatment with LPS, led to long-lasting changes in immune-related markers. 

We looked at levels of IL-6, a proinflammatory cytokine, which is released by LPS-

induced activation of microglia cells and repeatedly reported elevated in patients with 

AD. No changes were noted in IL-6 levels in any treatment groups. We also investigated 

levels of TNFR1, one of two possible receptors for TNFα. TNFR1 promotes the 

activation of transcription factor nuclear factor-κB (NF-κB), which in turn promotes 

further production of proinflammatory cytokines 407. We found no differences in 

expression of TNF1. Thus, the immune activation via LPS was indeed transient and did 

not cause long-lasting changes to these markers of immune function.  

 In the above studies, we hypothesized that an acute inflammatory response would 

be sufficient to mount a microglia response resulting in exacerbated behavioral and 

pathological changes when combined with STZ. As has been thoroughly described 

above, we did not see further deficits in the STZ/LPS but rather a subtle rescue in spatial 

learning during the MWM probe, significantly less elevated Aβ oligomers, and 

restorations of the alterations of several NMDA- and GABA-receptor subunits that were 

changed in the STZ group. Lowered levels of Aβ oligomers following immune activation 

may initially seem counterintuitive to the neuroinflammation hypothesis that an 

inflammatory response exacerbates and progresses AD pathologies, including Aβ 

products. However, we know that an acute inflammatory response in the brain, when 

microglia are activated and then return to a resting state, is beneficial and plays a 

neuroprotective role. Indeed, numerous studies demonstrate that activated microglia will 

phagocytose and degrade Aβ through activation of TLRs (TLR2, TLR4, and TLR9) 408-

410. Furthermore, inactive TLR4 in APPswe/PSEN1dE9 mice exhibited increased 
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hippocampal Aβ burden than mice with an intact TLR4 gene 410. Intrahippocampal 

infusion of LPS into APP+PS1 transgenic mice resulted in activated microglia and 

resulted in a reduction of Aβ load in the hippocampus 411,412. Quinn and colleagues 413 

demonstrated that seven days following intraperitoneal injection of LPS resulted in 

dramatic reductions of amyloid deposition in the cortex of Tg2576 mice (transgenic mice 

that carry the APP Swedish mutation).  In the present study, it is clear that the overall 

elevation of total oligomers is markedly less when TLR4 is activated by LPS following 

STZ-treatment, presumably through microglia-mediated phagocytosis.  

 Our study set out to examine the role that insulin signaling perturbation plays in the 

development of AD-like deficits, both separately and in tandem with an inflammatory 

response, as neuroinflammation is implicated in accelerating the disease. Rather than an 

exacerbation of cognitive deficits and pathological markers, we saw benefits to spatial 

learning and several proteins that were restored following an acute inflammatory 

response in the STZ-treated animals. This finding, while initially surprising, compliments 

existing literature suggesting a brief immune activation that is quickly attenuated can play 

a beneficial role by activating microglia that can remove and degrade Aβ peptides. To 

our knowledge, this is one of only a few studies to investigate an immune response in the 

STZ-model, as it pertains to AD. These results help elucidate the role that the immune 

response may play in the pathogenesis of AD and pave the way for future studies to better 

understand the interplay of microglia and immune-related proteins with the disrupted 

insulin signaling seen in patients with DM. The interplay of inflammation in the brain 

and DM may elucidate common pathways and proteins between the two risk factors that, 

in turn, may lead to studies investigating potential therapeutic options. 
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 Additional studies are necessary to determine when an inflammatory response shifts 

from being neuroprotective, as seen in the present study, to a neurotoxic role. 

Examination of chronic LPS injections following STZ-treatment may shed light on when 

this shift may occur, allowing us to create a timeline of beneficial microglia activation 

versus detrimental microglia activity. Additionally, a chronic LPS study would benefit 

from collecting whole brains and probing for activated microglia, by using an antibody 

for Iba1, to determine the extent of microglia activation that is occurring and in what 

regions of the brain.  

 Furthermore, limitations to the present study include the lack of data regarding 

insulin signaling. We cannot rule out that microglia activation may have partially restored 

insulin signaling or blocked some activity of STZ on insulin receptor signaling. Recent 

evidence suggests that fractalkine, a CXC3 chemokine that mediates interactions between 

neurons and microglia, plays an essential role in insulin signaling 414. In future studies, 

examination of proteins related to insulin signaling should be included to support or rule 

out this possibility. Additionally, we found no differences in immune markers several 

weeks following the initial LPS treatment. Thus, it would be useful in a future study to 

remove brains shortly after the LPS administration to determine what cytokines and other 

immune related proteins, including fractalkines, were altered during that brief period that 

may have played a beneficial role. 

 Of particular interest for possible future studies would be to examine DM as a risk 

factor in a more translational approach by administrating STZ systemically rather than 

ICV. Peripheral STZ targets insulin producing cells in the pancreas and might be a better 

model of Type 1 DM. Furthermore, Type II DM is more often implicated as a risk factor 
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than T1DM and can be induced by feeding rats high-fat chow. While both of these 

approaches would be extremely useful in creating models that can be easily translated to 

the human population, disrupting insulin signaling directly in the brain (STZ-ICV) allows 

for the elucidation of the role that brain insulin plays in normal functioning and when 

disrupted, its role in AD. Regardless of the route that insulin disruption is created (high-

fat diet, peripheral STZ, STZ-ICV), understanding the intricate relationship that the 

nervous system has with the immune system is critical to our understating of AD and 

other neurological disorders.   
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Curriculum!Vitae!
Andrew!S.!Murtishaw!

!
(702)$217-5922$

Email:$Andrew.Murtishaw@unlv.edu$
$
Professional!Information:!
$
University$of$Nevada,$Las$Vegas$
4505$S$Maryland$Pkwy$Box$455030$ $
Las$Vegas,$NV$89154-5030$
Phone$(702)$895-5523$
$
Education:$
$
Ph.D.$student$in$Experimental$Psychology,$Neuroscience$emphasis$$
(2011$–$present;$expected$date$of$graduation:$May$2016).$$
University$of$Nevada,$Las$Vegas,$Las$Vegas,$NV$89154$
$
B.A.$Psychology$with$Biology$minor$(May$2011).$
University$of$Nevada,$Las$Vegas,$Las$Vegas,$NV$89154$
!
Teaching!Experience!
!
! Psychology$101$(Fall$2013,$2$courses;$Spring$2014,$2$courses)$

o Full$responsibility$for$all$aspects$of$the$course,$including$preparing$
lectures,$giving$lectures,$grading,$and$holding$office$hours.$Class%size:%35$

$
Research!Skills/Techniques:!
$
! Extensive$experience$with$the$appropriate$care$and$use$of$animal$subjects,$

including$rats,$mice,$and$ground$squirrels;$
! Skilled$in$research$design,$implementation,$and$data$analysis$in$animal$learning;$
! Expertise$in$several$behavioral$tasks$with$rodents$including$the$Morris$water$

maze,$Barnes$maze,$radial$arm$maze,$cued$and$contextual$fear$conditioning,$
acoustic$startle,$pre-pulse$inhibition,$open$field,$novel$object$recognition,$odor$
recognition,$tail$flick$nociception$task,$and$general$screening$to$examine$basic$
sensory$function$and$reflexes;$

! Experienced$in$rodent$breeding$and$sexing;$
! Experienced$in$aseptic$surgical$techniques;$
! Proficient$in$stereotaxic$surgical$procedures,$including$chronic$cannula$

placement$and$osmotic$mini-pump$implantation$in$rats;$
! Experienced$in$multiple$wound$closure$techniques$associated$with$stereotaxic$

surgery,$including$suture$closure$and$dental$acrylic$application;$
! Considerable$expertise$in$neural$tissue$collection,$including$transcardiac$

perfusion$and$dissection$of$specific$brain$structures;$
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! Experienced$in$the$frozen$sectioning$of$neural$tissue$for$histological$analyses;$
! Extensive$experience$utilizing$immunohistochemistry$techniques,$including$the$

use$of$DAB$and$immunofluorescence;$
! Proficient$in$light$and$fluorescent$microscopy,$including$conventional$and$

confocal$microscopes;$
! Expertise$in$tissue$homogenization$and$protein$concentration$assays;$
! Skilled$in$western$blotting$and$gel$electrophoresis$techniques;$
! Trained$on$multiple$western$blot$imaging$techniques,$including$the$Typhoon$

variable$mode$imaging$system,$the$Odyssey$IR$Imaging$system,$and$the$UVP$
imaging$system;$

! Trained$in$labeling$techniques$for$demonstration$of$neurogenesis$utilizing$BrdU;$
! Experienced$in$programming$of$software$for$behavioral$testing;$
! Proficient$with$ELISA$technique$and$interpretation;$
! Expertise$in$annotative$work,$including$detailed$annotation$of$the$central$

nervous$system.$
!
Research!Experience!
!
! Aug.$2011-Present:$Doctoral$student$and$graduate$assistant$in$a$behavioral$

neuroscience$laboratory$under$the$direction$of$Dr.$Jefferson$Kinney.$Our$lab$
primarily$investigates$the$neurobiology$of$learning$and$memory$with$an$
emphasis$on$the$biological$basis$of$neurological/psychological$diseases$such$as$
Alzheimer’s$disease$and$schizophrenia.$

! Jan.$2009-July$2011:$Undergraduate$research$assistant$in$a$behavioral$
neuroscience$laboratory$under$the$direction$of$Dr.$Jefferson$Kinney.$

! Summer$2007:$Research$assistant$for$the$FACE$(Free-Air-Carbon$dioxide-
Emission)$project$under$the$supervision$of$Dr.$Stan$Smith$and$Dr.$Dene$Charlet.$
FACE$project$was$a$joint$effort$between$the$Department$of$Energy$and$UNLV,$to$
study$the$effects$of$carbon$dioxide$levels$on$the$desert$ecosystem.!

!
Publications:!
!
Murtishaw,!A.S.,$Heaney,$C.H.,$Bolton,$M.M.,$Sabbagh,$J.J.,$Langhardt,$M.A.,$and$

Kinney,$J.W.$An$acute$inflammatory$response$improves$learning$and$memory$
deficits$and$reduces$pathological$markers$in$a$diabetic$animal$model$of$
Alzheimer’s$disease.$Submitted%to%Neurobiology%of%Aging,%May$2014.$(Impact$
factor=6.166)$

$
Hensleigh,$E.,$Murtishaw,!A.S.,!Treat,$M.,$Heaney,$C.H.,$Bolton,$M.M.,$Sabbagh,$J.J.,$

Kinney,$J.W.,$and$van$Bruekelen,$F.$The$effect$of$torpor$on$spatial$memory$in$
ground$squirrels$(Spermophilus%lateralis)$throughout$a$hibernation$season.$
Submitted%to%Animal%Behavior,%May$2014.$(Impact$factor=3.405)$

$
$
$
$
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Bolton,$M.M.,$Heaney,$C.F.,$Murtishaw,!A.S.,$and$Kinney,$J.W.,$Magcalas,$C.M.,$and$
Kinney,$J.W.$Postnatal$alterations$in$GABAB$receptor$tone$produce$behavioral$
deficits$and$protein$level$differences$in$adulthood.$Submitted%to%
Developmental%Neuroscience,%June$2014.$(Impact$factor=3.41)$

$
Sabbagh,$J.J.,$Murtishaw,!A.S.,$Bolton,$M.M.,$Heaney,$C.F.,$Langhardt,$M.A.,$and$

Kinney,$J.W.$Chronic$ketamine$produces$altered$distribution$of$parvalbumin-$
positive$cells$in$the$hippocampus$of$adult$rats.$Neuroscience%Letters$2013;$
550:$69-74.$(Impact$factor=2.146)$

$
Bolton,$M.M.,$Heaney,$C.F.,$Sabbagh,$J.J.,$Murtishaw,!A.S.,$and$Kinney,$J.W.$Deficits$in$

emotional$learning$and$memory$in$an$animal$model$of$schizophrenia.$
Behavioral%Brain%Research$2012;$233(1):35-44.$(Impact$factor=3.327)$
$

Heaney,$C.F.,$Bolton,$M.M.,$Murtishaw,!A.S.,$Sabbagh,$J.J.,$Magcalas,$C.M.,$and$Kinney,$
J.W.$Baclofen$administration$alters$fear$extinction$and$GABAergic$protein$
levels.$Neurobiology%of%Learning%and%Memory$2012;$98(3):261-71.$(Impact$
factor=3.860)$

$
Sabbagh,$J.J.,$Heaney,$C.F.,$Bolton,$M.M.,$Murtishaw,!A.S.,$Ure,$J.A.,$and$Kinney,$J.W.$

Differences$in$the$effects$of$galanin$and$donepezil$following$changes$in$
cholinergic$tone.$International%Journal%of%Neuroscience$2012;$122(12):742-7.$
(Impact$factor=1.216)$

$
Sabbagh,$J.J.,$Heaney,$C.F.,$Bolton,$M.M.,$Murtishaw,!A.S.$and$Kinney,$J.W.$

Examination$of$spatial$learning$deficits$in$an$animal$model$of$schizophrenia.$
Physiology%and%Behavior$2012;$107(3):355-63.$(Impact$factor=3.160)$

$
Poster!Presentations:!
!
Murtishaw,!A.S.,!Heaney,$C.F.,$Bolton,$M.M.,$Belmonte,$K.D.,$Hagins,$P.,$Langhardt,$

M.A.,$and$Kinney,$J.W.$Chronic$inflammation$in$a$diabetic$model$of$
Alzheimer’s$disease.$Poster$at$the$International$Behavioral$Neuroscience$
Society$annual$meeting$Las$Vegas,$NV,$Summer$2014.$

!
Belmonte,$K.D.,$Murtishaw,!A.S.,$Heaney,$C.F.,$Bolton,$M.M.,$Kinney,$J.W.$An$acute$

inflammatory$response$in$a$diabetic$model$of$Alzheimer's$disease.$Poster$
presented$at$the$Nevada$IDeA$Network$of$Biomedical$Research$Excellence$
Undergraduate$Research$Opportunity$Program$Poster$Symposium,$Summer$
2013.$

$
Belmonte,$K.D.,$Murtishaw,!A.S.,$Heaney,$C.F.,$Bolton,$M.M.,$Kinney,$J.W.$An$acute$

inflammatory$response$in$a$diabetic$model$of$Alzheimer's$disease.$Poster$
presented$at$the$McNair$Scholars$Summer$Research$Program$Poster$
Symposium,$Fall$2013.$

$
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Bolton,$M.M.,$Heaney,$C.F.,$Murtishaw,!A.S.,!Langhardt,$M.A.,$Kinney,$J.W.$
Developmental$alteration$of$GABAB$receptor$function$results$in$behavioral$
deficits$in$adulthood.$Poster$presented$at$Society$for$Neuroscience$annual$
meeting$San$Diego,$CA$2013.$

$
Heaney,$C.F.,$Bolton,$M.M.,$Murtishaw,!A.S.,$Kinney,$J.W.$The$effects$of$baclofen$and$
$ phaclofen$on$performance$in$the$Morris$water$maze.$Poster$presented$at$

Society$for$Neuroscience$annual$meeting$San$Diego,$CA$2013.$
$
Langhardt,$M.A.,$Bolton,$M.M.,$Heaney,$C.F.,$Murtishaw,!A.S.,$Nagls,$S.,$Kinney,$J.W.$
$ Evaluation$of$ketamine-induced$changes$in$spatial$working$memory$and$

GABAergic$systems.$Poster$presented$at$Society$for$Neuroscience$annual$
meeting$San$Diego,$CA$2013.$

$
Langhardt,$M.A.,$Bolton,$M.M.,$Murtishaw,!A.S.,$Heaney,$C.F.,$Kinney,$J.W.$Ketamine$

Induced$Deficits$in$Working$Memory$with$Relevance$to$Schizophrenia.$Oral$
presentation$at$the$21st$Annual$University$of$California,$Berkeley$McNair$
Scholars$Symposium,$August$2013.$
$

Langhardt,$M.A.,$Bolton,$M.M.,$Heaney,$C.F.,$Murtishaw,!A.S.,$Kinney,$J.W.$(2013)$
Ketamine-induced$deficits$in$working$memory$with$relevance$to$
schizophrenia.$Poster$presented$at$the$2013$UNLV$McNair$Scholars$Research$
Symposium.$

$
Murtishaw,!A.S.,!Heaney,$C.F.,$Bolton,$M.M.,$Langhardt,$M.A,$Belmont,$K.C.D,$Kinney,$

J.W.$An$acute$LPS-induced$inflammatory$response$in$a$diabetic$model$of$
Alzheimer’s$disease.$Poster$presented$at$Society$for$Neuroscience$annual$
meeting$San$Diego,$CA$2013.$

$
Bolton,$M.M.,$Heaney,$C.F.,$Sabbagh,$J.J.,$Murtishaw,!A.S.,$Magcalas,$C.M.,$Kinney,$J.W.$

Comparison$of$postnatal$ketamine$dosage$on$behavioral$deficits$in$
adulthood.$Poster$presented$at$Society$for$Neuroscience$annual$meeting$New$
Orleans,$LA$2012.$

!
Heaney,$C.F.,$Bolton,$M.M.,$Murtishaw,!A.S.,$Sabbagh,$J.J,$Magcalas,$C.M.,$Kinney,$J.W.$

Changes$in$GABAB$receptor$tone$in$development$produce$behavioral$deficits$
in$adulthood.$Poster$presented$at$Society$for$Neuroscience$annual$meeting$
New$Orleans,$LA$2012.$

!
Magcalas,$C.M.,$Heaney,$C.F.,$Bolton,$M.M.,$Murtishaw,!A.S.,$Sabbagh,$J.J.,$and$Kinney,$

J.W.$Alterations$in$GABAB$in$development$produce$behavioral$and$protein$
changes$in$adulthood.$Poster$presented$at$the$Undergraduate$Research$
Opportunity$Program$session,$(Nevada$InBRE),$UNLV$August$2012.$

!
!
!
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Murtishaw,!A.S.,$Sabbagh,$J.J.,$Heaney,$C.F.,$Bolton,$M.M.,$Magcalas,$C.M.,$Langhardt,$
M.A.,$Kinney,$J.W.$Ketamine-induced$behavioral$impairments$and$alterations$
in$hippocampal$GABAergic$neuron$distribution.$Poster$presented$at$Society$
for$Neuroscience$annual$meeting$New$Orleans,$LA$2012.$
$

Sabbagh,$J.J.,$Murtishaw,!A.S.,$Heaney,$C.F.,$Bolton,$M.M.,$Magcalas,$C.M.,$Kinney,$J.W.$
Chronic$calcium$dysregulation$produces$cognitive$deficits$and$biochemical$
changes$relevant$to$Alzheimer’s$disease.$Poster$presented$at$Society$for$
Neuroscience$annual$meeting$New$Orleans,$LA$2012.$

!
Bolton,$M.M.,$Heaney,$C.F.,$Sabbagh,$J.J.,$Murtishaw,!A.S.,$Kinney,$J.W.$Comparison$of$

an$adult$and$developmental$animal$model$of$schizophrenia.$Poster$presented$
at$Society$for$Neuroscience$annual$meeting$Washington,$D.C.$2011.$

!
Heaney,$C.F.,$Bolton,$M.M.,$Murtishaw,!A.S.,$Sabbagh,$J.J,$Kinney,$J.W.$An$

investigation$of$the$effects$of$alterations$in$GABAB$receptor$function$on$
learning$and$memory.$Poster$presented$at$Society$for$Neuroscience$annual$
meeting$Washington,$D.C.$2011.$

!
Sabbagh,$J.J.,$Bolton,$M.M.,$Heaney,$C.F.,$Murtishaw,!A.S.,$Kinney,$J.W.$Deficits$in$

emotional$learning$and$memory$in$an$animal$model$of$schizophrenia.$Poster$
presented$at$Society$for$Neuroscience$annual$meeting$Washington,$D.C.$
2011.$
$

Heaney,$C.F.,$Sabbagh,$J.J.,$Bolton,$M.M.,$Murtishaw,!A.S.,$Santa-Ana,$I.,$Kinney,$J.W.$
An$investigation$of$alterations$in$GABAergic$tone$in$an$animal$model$of$
schizophrenia.$Poster$presented$at$Society$for$Neuroscience$annual$meeting$
San$Diego,$CA$2010.$

!
Sabbagh,$J.J.,$Heaney,$C.F.,$Bolton,$M.M.,$Murtishaw,!A.S.,$Ure,$J.A.,$Kinney,$J.W.$

Donepezil$and$galanin$interactions$in$learning$and$memory$and$a$model$of$
cholinergic$loss.$Poster$presented$at$Society$for$Neuroscience$annual$
meeting,$San$Diego,$CA$2010.$

!
Oral!Presentations:!
$
Murtishaw,!A.S.!Chronic$inflammation$in$a$diabetic$model$of$Alzheimer’s$disease.$
Department$of$Psychology$Research$Highlights.$University$of$Nevada,$Las$
Vegas,$March$2014.$
!
Murtishaw,!A.S.!LPS-induced$chronic$inflammation$in$a$model$of$sporadic$
Alzheimer’s$disease.$GPSA$Research$Forum,$University$of$Nevada,$Las$Vegas,$March$

2014$
$
!
!
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Murtishaw,!A.S.!Ketamine-induced$behavioral$impairments$and$alterations$in$
hippocampal$$GABAergic$neuron$distribution.$GPSA$Research$Forum,$
University$of$Nevada,$Las$Vegas,$May$2013.$

$
Murtishaw,!A.S.!Acute$inflammation$in$a$diabetic$model$of$Alzheimer’s$disease.$

Department$of$Psychology$Proseminar,$University$of$Nevada,$Las$Vegas,$
February,$2013.$
$

Murtishaw,!A.S.!GABAergic$alteration$and$behavioral$impairments$from$ketamine:$
A$possible$mechanism$for$efficacy$in$treatment$resistant$depression?$
Department$of$Psychology$Proseminar,$University$of$Nevada,$Las$Vegas,$May$
2013.$

!
Service:$
!
! Organizing$committee$for$first$annual$Las$Vegas$Brain$Bee$(Spring$2014).!
! Honors$Thesis$Committee$Member$for$Krystal$Belmonte$(Spring$2014-Fall$

2014).!
! Mentor$for$undergraduate$recipients$of$Nevada$IDeA$Network$of$Biomedical$

Research$Excellence$Undergraduate$Research$Opportunity$Program$(Summer$
2013,$Krystal$Belmonte;$Summer$2014,$Patrick$Hagins).!

! Mentor$for$undergraduate$McNair$Scholars$(Summer$2013,$Krystal$Belmonte).!
! Head$of$Organizing$Committee$for$LGBT$Social$to$be$held$at$Society$for$

Neuroscience$2014$Annual$Conference$(Fall$2013-Present).!
! Founding$member$and$Board$member$of$Nevada$Brain$Bee$Association$(Fall$

2013-Current).!
! Serve$as$a$member$of$Q:UNLV.$Q:UNLV$is$a$council$steered$by$UNLV’s$Vice$

President$to$promote$diversity$and$inclusion$for$the$LGBTQ$staff$and$faculty$at$
UNLV$(2012-current).!

! Organized$outreach$program$as$part$of$Society$for$Neuroscience$Brain$
Awareness$week$of$presentations$elementary$schools$across$Las$Vegas$(2012,$
2013,$2014).!

! Supervision$and$training$of$undergraduate$research$assistants$on$several$
techniques,$including$the$Morris$water$maze,$radial$arm$maze,$Barnes$maze,$
cued$and$contextual$fear$conditioning,$acoustic$startle,$neural$tissue$collection,$
cryostat$sectioning,$western$blotting,$ELISA,$and$immunohistochemistry.$

! Founding$member$of$the$University$of$Nevada,$Las$Vegas$Graduate$Neuroscience$
Association$(2011$–$present).$

! Teaching$and$guidance$of$undergraduate$students$as$a$graduate$student$
member$of$the$University$of$Nevada,$Las$Vegas$Neuroscience$Journal$Club$
(2009-2011).$

$
Awards:!
$
! International$Behavioral$Neuroscience$Society$2014$Conference$Presentation$

Winner,$2nd$place.$



$

$ 103$

! Awarded$a$travel$grant$from$the$University$of$Las$Vegas$Graduate$and$
Professional$Student$Association$to$attend$and$present$at$the$2014$Society$for$
Neuroscience$annual$conference$in$New$Orleans,$LA.$

! Awarded$a$travel$grant$from$the$University$of$Las$Vegas$Graduate$and$
Professional$Student$Association$to$attend$and$present$at$the$2014$Society$for$
International$Behavioral$Neuroscience$Society$in$Las$Vegas,$NV.$

! Dean’s$Graduate$Research$Stipend$Award$(Summer$2014)$
! UNLV$GPSA$2014$Research$Forum$Outstanding$Presentation,$2nd$place.$
! Awarded$a$travel$grant$from$the$University$of$Las$Vegas$Graduate$and$

Professional$Student$Association$to$attend$and$present$at$the$2013$Society$for$
Neuroscience$annual$conference$in$San$Diego,$CA.$

! Awarded$a$travel$grant$from$the$University$of$Las$Vegas$Graduate$and$
Professional$Student$Association$to$attend$and$present$at$the$2012$Society$for$
Neuroscience$conference$in$New$Orleans,$LA.$

!
Memberships!in!Professional!and!Scientific!Societies:!
$
! Member$of$International$Society$of$Neuroimmunology$(2014$–$Current)$
! Member$of$PsychoNeuroImmunology$Research$Society$(2014$–$Current)$
! Member$of$Alzheimer’s$Association$International$Society$to$Advance$Alzheimer’s$

Research$and$Treatment$(2014$–$Current)$
! Member$of$National$Organization$of$Gay$and$Lesbian$Scientists$and$Technical$

Professionals$(2013$–$Current)$
! Member$of$International$Behavioral$Neuroscience$Society$(2013$–$Current)$
! Member$of$Sierra$Nevada$chapter$of$the$Society$for$Neuroscience$(2009$–$

Current).$
! Member$of$Society$for$Neuroscience$(2008$–$Current);$
!
Professional!References!
!
Dr.$Jefferson$W.$Kinney,$Assistant$Professor$
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