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ABSTRACT 
 

A Comparison of the Effects of Different Doses of GABAB Receptor Ligands on Spatial 

Learning and Memory and Memory Flexibility 

 
by 
 

Chelcie Faith Heaney 
 

Dr. Jefferson Kinney, Examination Committee Chair 
Assistant Professor of Psychology 
University of Nevada, Las Vegas 

 
 The principal inhibitory neurotransmitter in the brain, gamma amino-butyric acid 

(GABA), mediates several types of learning and memory. Of the two main receptor 

subtypes for GABA, the in vivo role of GABAB receptor in learning and memory is less 

well characterized and the current data often conflict. Based on the current literature, it is 

unclear, for instance, whether enhancing GABAergic activity via the GABAB receptor 

could be beneficial for or detrimental to learning and memory. Hippocampally-dependent 

learning and memory tasks are of particular interest due to their clinical relevance to 

patients with schizophrenia or Alzheimer’s disease, who exhibit impaired performance in 

hippocampally-dependent spatial tasks. Further, these clinical populations exhibit 

alterations to GABAergic and GABAB receptor markers throughout the brain, including 

the hippocampus. Before conclusions can be drawn regarding the effect these changes 

have on these clinical populations, it is crucial that the role of the GABAB receptor in 

learning and memory in an unaltered system is understood first. We examined the effect 

of altered GABAB receptor activity using several doses of a GABAB receptor agonist 

(baclofen) and a GABAB receptor antagonist (phaclofen) on performance in a 

hippocampally-dependent learning and memory task, the Morris water maze. Further, we 
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examined the impact of these ligands on memory flexibility by utilizing reversal training 

in the Morris water maze. In our first experiment, Sprague-Dawley rats received a dose of 

baclofen that significantly impaired performance in the Morris water maze, whereas the 

animals receiving phaclofen exhibited significantly improved performance. Additionally, 

the phaclofen-treated group demonstrated increased learning flexibility when the rules of 

the task were changed during reversal training. The goal of the second experiment was to 

determine whether a lower dose of baclofen would decrease the deficit observed, or 

whether a higher dose of phaclofen could enhance the enhancement observed. The lower 

dose of baclofen failed to produce a behavioral deficit, and the higher dose of phaclofen 

impaired task performance. Interestingly, while the lower dose of baclofen did not affect 

time to find the hidden platform, it did produce a subtle enhancement of performance 

during reversal training. Finally, we examined protein levels to determine whether any 

alterations were related to task performance. Animals treated with a low dose of baclofen 

or phaclofen and exhibited improved performance during the reversal training also 

demonstrated a reduction in the glutamate receptor subunit AMPA GluR4 and the 

phosphorylated serine 892 on the GABAB2 receptor subunit. In addition to indicating a 

role for the GABAB receptor in memory flexibility and spatial learning and memory, 

these results suggest a finite range of GABAB receptor activity that is capable of 

improving learning. 
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CHAPTER 1 

INTRODUCTION 

 Learning and memory are important functions for the survival of any organism; 

for instance, animals must be able to learn to utilize and recall information from their 

environment in order to avoid predators or to collect food. Impaired spatial learning and 

memory and an inability to update previously learned information are prominent 

symptoms of several diseases and disorders. In order to understand the mechanisms 

underlying the altered learning and memory in these illnesses, it is important to 

understand how these processes normally occur. This insight may then allow for the 

development of treatments directed at improving the deficits in learning and memory. 

Further, determining the mechanisms involved in normal learning and memory may help 

researchers understand why some psychological diseases and disorders exhibit certain 

alterations to learning and memory.  

 Of particular interest is spatial learning, which depends upon a functional 

hippocampus, and which is impaired in schizophrenia and Alzheimer’s disease (AD). 

This type of learning is easily investigated in rodents, who must learn to navigate their 

environment in order to forage for food. Further, this type of learning is readily 

quantifiable simply based on how much time a rodent spends searching in a specific 

location for a given reinforcement. 

 Damage to or malfunction of the hippocampus can greatly affect performance on 

tasks that require spatial navigation. Further, the cellular circuitry within the 

hippocampus must be tightly regulated in order to function properly. This regulation 

appears to be due to the cooperative actions of the excitatory neurotransmitter glutamate 
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and the inhibitory neurotransmitter gamma amino-butyric acid (GABA). Interestingly, 

studies demonstrate that patients with schizophrenia or AD exhibit alterations to 

metabotropic GABAB receptors within the hippocampus. Possibly, altered activity of 

these receptors may contribute to the symptoms or etiology of the learning and memory 

deficits in these disorders. A better understanding of the effect of altered GABAB 

inhibitory tone is necessary in order to understand the impact the GABAB receptor 

changes have on the clinical populations.  

 

Research Questions 

In order to examine the effect of altered GABAB receptor activity in spatial 

learning and memory, we administered the GABAB agonist baclofen or the antagonist 

phaclofen to rats prior to running them in the Morris water maze task. We also examined 

behavior in an open field to determine any motoric effects of the ligands. We had a total 

of two experiments, each run in a separate cohort. 

 In Cohort 1, animals received a high dose of baclofen (2.0 mg/kg) or a low dose 

of phaclofen (0.9 mg/kg) via subcutaneous (SC) administration 30 minutes prior to 

testing in the Morris water maze. In order to determine whether the behavioral effects of 

baclofen could be reduced and those of phaclofen increased, we tested different doses of 

the ligands in Cohort 2. In Cohort 2, the dose of baclofen was reduced to 1.0 mg/kg, and 

the phaclofen dose was increased to 1.25 mg/kg. GABAB ligands were administered each 

day before an animal underwent behavioral testing.  
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CHAPTER 2 

REVIEW OF RELATED LITERATURE 

GABA Receptors 

 The primary inhibitory neurotransmitter in the central nervous system (CNS) 

gamma-aminobutyric acid (GABA) was discovered in 1950 (Roberts, 1956).  GABA 

must be synthesized in neurons via the decarboxylation of glutamate because it cannot 

cross the blood brain barrier (Olsen, 2002; Roberts, 1956; Watanabe, Maemura, Kanbara, 

Tamayama, & Hayasaki, 2002). The ionotropic GABAA and metabotropic GABAB 

receptors are the two main receptors for GABA (Enna, 2007; Olsen, 2002).

 GABAA receptors are proteins that span the cellular membrane four times and 

have several distinct subunits that associate heterogeneously into pentamers (Enna, 2007; 

Olsen, 2002).  The receptors can be made up of any of the subunits, but the major 

subtypes include α, β, and γ, with the bulk of the receptors being made up of at least one 

α and one β subunit (Enna, 2007; Olsen, 2002).  The composition of the subunits of the 

GABAA receptor dictates which ligands can bind to that particular receptor, in addition to 

determining where the receptors will be located (Möhler, 2009; Olsen, 2002). 

 Functionally, the GABAA receptors are ligand-gated ionotropic chloride channels 

(Enna, 2007; Olsen, 2002). The GABAA receptors are responsible for the fast-acting 

inhibitory currents within the CNS (Hevers & Lüddens, 1998; Watanabe et al., 2002). As 

soon as a ligand (e.g. GABA) binds, the channel opens immediately; however, while the 

mechanism of action of this receptor is instantaneous, the effects of these channels are 

very short-lived because as soon as the ligand is dislodged, the channel immediately 

closes (Watanabe et al., 2002). GABAA receptors are postsynaptic (Enna, 2007; 



 
 

4 
 

Watanabe et al., 2002), and are found throughout the entire CNS (Bowery, Hudson, & 

Price, 1987; Chu, Albin, Young, & Penney, 1990; Enna, 2007; Hevers & Lüddens, 1998; 

Olsen & Tobin, 1990). Although there are generally more GABAA receptors than 

GABAB, GABAB receptors typically have a stronger affinity for GABA than GABAA 

(Bowery et al., 1987; Chu et al., 1990; Isaacson, Solís, & Nicoll, 1993).   

GABAB receptors are ligand-gated metabotropic G-protein coupled receptors 

(GPCRs) that are obligate heterodimers. A functional receptor is comprised of two 

receptor subunits, GABAB1 and GABAB2 (Bowery et al., 2002; Couve, Moss, & 

Pangalos, 2000; Enna, 2007; Kohl & Paulsen, 2010). The GABAB1 subunit has several 

isoforms (Farb et al., 2007; Jiang et al., 2012), but the two most common are GABAB1a 

and GABAB1b (Bowery et al., 2002; Couve et al., 2000; Enna, 2007; Kohlmeier & 

Kristiansen, 2010). The main difference between the two GABAB1 subtypes appears to be 

related to the receptor’s synaptic location; GABAB1a/2 receptors generally inhibit 

presynaptically, whereas GABAB1b/2 receptors appear to primarily inhibit 

postsynaptically (Kohl & Paulsen, 2010; Ladera et al., 2008; Pérez-Garci, Gassmann, 

Bettler, & Larkum, 2006; Vigot et al., 2006). The make up of the receptor is also 

influenced by neural region (Foster, Kitchen, Bettler, & Chen, 2013; Vigot et al., 2006), 

and whether the presynaptic neuron is GABAergic or glutamatergic (Waldmeier, 

Kaupmann, & Urwyler, 2008). 

 Each subunit demonstrates a unique function that leaves the receptors essentially 

non-functional unless it forms a heterodimer with the other subunit type; that is, both a 

GABAB2 subunit and either a GABAB1a or a GABAB1b subunit must couple together to 

form a working receptor (Enna, 1997; Jones et al., 1998; Kaupmann et al., 1998; Pinard, 
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Seddik, & Bettler, 2010; Villemure et al., 2005; White et al., 1998). The GABAB1 

subunits contain the ligand binding sites, whereas the GABAB2 subunit couples the 

receptor complex to G-proteins, as well as brings the heterodimer complex to the cell 

surface from the endoplasmic reticulum (Bowery et al., 2002; Galvez et al., 2001; Kohl & 

Paulsen, 2010; Pinard et al., 2010; Robbins et al., 2001). If two GABAB2 subunits or any 

combination of two GABAB1 subunits bind together, the resultant GABAB receptor is 

dysfunctional.  In GABAB1-knockout mice, the typical G-protein-linked current is absent; 

GABAB2-knockout mice demonstrate “atypical GABAB1-mediated responses,” 

suggesting that GABAB1 is capable of coupling to other G-proteins in the absence of 

GABAB2 (Pinard et al., 2010). The GABAB receptor does not appear to behave like 

traditional GPCRs when chronically activated or inhibited (Benke, Zemoura, & Maier, 

2012). For instance, chronic activation of the GABAB receptor does not induce the 

typical down-regulation of the receptor (Fairfax et al., 2004). Interestingly, however, 

GABAB receptors may be more sensitive to glutamatergic signaling. Recent data suggest 

that GABAB receptors rapidly undergo endocytosis in response to the activation of 

glutamatergic receptors present in the same dendritic spine (Guetg et al., 2010; Terunuma 

et al., 2010b). Several serine residues on the intracellular, C-terminus tails of both the 

GABAB1 and GABAB2 subunits are the targets of phosphorylation that influence receptor 

stability (Benke et al., 2012; Calver et al., 2001; Couve, Moss, & Pangalos, 2007; Couve 

et al., 2002; Fairfax et al., 2004; Gassmann & Bettler, 2012; Guetg et al., 2010; Kuramoto 

et al., 2007; Terunuma et al., 2010b; Terunuma, Pangalos, & Moss, 2010a). For example, 

glutamatergic signaling triggers the phosphorylation of both the GABAB receptor 

subunits to promote endocytosis. A GABAB1 target, serine 867, is phosphorylated via 
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CaMKII (a calcium-dependent kinase) in response to activated glutamatergic receptors 

(Terunuma et al., 2010b); increased intracellular calcium concentration via glutamate and 

calcium channels induces the phosphorylation of serine 783 of the GABAB2 subunit via 

AMPK, which promotes recycling of the GABAB receptor (Benke et al., 2012). However, 

once endocytosed, if the serine 783 residue is dephosphorylated through the actions of 

protein phosphatase 2A (PP2A), the receptor undergoes degradation instead of recycling 

(Benke et al., 2012). 

The GABAB receptor is slower acting because the effects of cascade sequences 

activated by the α or β and γ subunits of the coupled G-protein are not immediately 

evident (Brown & Sihra, 2008).  However, the effects of metabotropic receptors are long 

lasting compared to ionotropic receptors.  When a ligand is dislodged from a receptor’s 

binding site, the intracellular signal cascade may still be amplified and propagate, and 

will persist until it is inactivated within the cell (Brown & Sihra, 2008). Thus, while the 

metabotropic GABAB receptors are responsible for a slow inhibitory current, the 

magnitude of effect is enhanced and longer lasting due to intracellular signal cascades 

(Bettler, Kaupmann, Mosbacher, & Gassmann, 2004; Couve et al., 2000).  

GABAB receptors are found both pre- and postsynaptically, though there are 

different mechanisms of action depending on location (Enna, 2007; Kohl & Paulsen, 

2010; Misgeld, Bijak, & Jarolimek, 1995; Watanabe et al., 2002).  Presynaptic GABAB 

receptors may act in a feedback loop as autoreceptors mediating the presynaptic release 

of GABA (Davies, Starkey, Pozza, & Collingridge, 1991; Kohl & Paulsen, 2010; 

Misgeld et al., 1995; Zarrindast, Bakhsha, Rostami, & Shafaghi, 2002), or as 

heteroreceptors mediating the presynaptic release of other neurotransmitters (Bowery, 
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2010; Kohl & Paulsen, 2010; Sakaba & Neher, 2003; Tiao & Bettler, 2007) such as 

glutamate  (Sakaba & Neher, 2003) or acetylcholine (Morton, Manuel, Bulters, Cobb, & 

Davies, 2001).  These receptors appear to need strong stimulation and large amounts of 

GABA in the synapse in order to be activated, suggesting some may be located 

extrasynaptically (Ladera et al., 2008; Misgeld et al., 1995; Pinard et al., 2010). 

Presynaptic GABAB receptors inhibit voltage-gated calcium conductance via the β and γ 

subunits of Gi/o G-proteins, the consequence of which is decreased release of vesicular 

neurotransmitter (Bettler et al., 2004; Couve et al., 2000; Enna, 2007; Padgett & 

Slesinger, 2010). Depending on which neurotransmitter is prevented from being released, 

this effect can have an excitatory effect or an inhibitory effect on the subsequent 

postsynaptic neuron. For instance, if an autoreceptor inhibits the release of GABA onto a 

postsynaptic neuron, that postsynaptic neuron will have a greater likelihood of 

depolarizing. This effect is termed disinhibition because the postsynaptic cell is being 

released from the inhibiting effects of GABA. Conversely, if a heteroreceptor inhibits the 

release of glutamate, the postsynaptic cell is likely to experience less depolarization due 

to the lack of excitatory input. 

 Postsynaptically, a GABAB receptor can activate inwardly-rectifying potassium 

channels via the dissociated β and γ subunits of the G-protein complex (Brown & Sihra, 

2008; Dascal, 1997; Kohl & Paulsen, 2010; Lewohl et al., 1999; Mark & Herlitze, 2000; 

Reuveny, 2013), which allows for potassium to efflux out of the cell, leading to 

hyperpolarization (Bettler et al., 2004; Pinard et al., 2010; Reuveny, 2013). GABAB 

receptors also act by inhibiting adenylyl cyclase (Bettler et al., 2004; Enna, 2007; Padgett 

& Slesinger, 2010).  The α subunit dissociates from a G-protein complex and inhibits 
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adenylyl cyclase, which normally initiates a number of other intracellular cascades, 

including those that affect short- and long-term memory (Birnbaumer, 2007; Kinney, 

Starotsa, & Crawley, 2003; Padgett & Slesinger, 2010; Vianna et al., 2000).  This 

mechanism of action may be present at both pre- and postsynaptic neurons, as it has been 

suggested that the cyclic adenosine monophosphate (cAMP) cascade (which is activated 

by adenylyl cyclase) may play a role in synaptic signaling via neurotransmitter release, 

and neuronal excitation (Padgett & Slesinger, 2010; Ulrich & Bettler, 2007). 

 These studies demonstrate the molecular mechanisms of GABAB receptors. The 

overall result of these processes produces a slow, long lasting hyperpolarization of the 

postsynaptic cell. However, the functional relevance of these receptors to complex 

behaviors, such as learning and memory, has not been completely determined. Based on 

the variety and complexity of potential effects of the activation of GABAB receptors, it is 

clear why the role of the GABAB receptor in learning and memory may be convoluted 

and difficult to unravel.  

 

GABAB in the Hippocampus 

The hippocampus is split into several subregions through which information flows 

nearly unidirectionally (Andersen, 2007). Incoming stimuli from the entorhinal cortex 

(EC) enter the hippocampus via the perforant pathway that feeds into the dentate gyrus 

(DG). From the DG, information is routed through to Cornu Ammonis (CA) area 3 (CA3) 

via mossy fiber connections. CA3 then projects to CA1 through the Schaffer collaterals; 

finally, CA1 projects back to the EC. GABAB receptors are located throughout the entire 

CNS, including the hippocampus (Bowery et al., 1987; Chu et al., 1990), and the DG and 
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CA1 demonstrate higher concentrations of GABAB receptors than CA3 (Sloviter, Ali-

Akbarian, Elliott, Bowery, & Bowery, 1999).  

Proper functioning of the hippocampus is required for spatial learning and 

memory (Barak et al., 2013; Lee, Hunsaker, & Kesner, 2005; Tsien, Huerta, & 

Tonegawa, 1996). Further, participating in a spatial learning and memory task enhances 

synaptic plasticity in the hippocampus (Kenney & Manahan-Vaughan, 2013), which may 

relate to the formation of spatial-related memories (Eyre, Richter-Levin, Avital, & 

Stewart, 2003). The DG undergoes neurogenesis (Kempermann, Kuhn, & Gage, 1997), a 

process regulated by GABAB receptors (Felice, O'Leary, Pizzo, & Cryan, 2012; Giachino 

et al., 2014). Neurogenesis is correlated with spatial learning and memory (Clelland et al., 

2009; Jessberger et al., 2009; Nilsson, Perfilieva, Johansson, Orwar, & Eriksson, 1999), 

which can also be affected by GABAB receptors (Arolfo, Zanudio, & Ramirez, 1998).  

As described in more detail in the sections below, long-term potentiation (LTP) 

and synchronous, oscillatory neural firing are well characterized in the hippocampus. 

These neural correlates to learning and memory, as well as learning and memory 

behavior, can be affected by altered GABAB receptor function. Further, several clinical 

populations that demonstrate spatial learning and memory deficits also exhibit altered 

GABAB markers. 

 

GABAB in Learning and Memory 

Oscillatory, synchronous activity is theorized to promote synaptic plasticity such 

as long-term potentiation (LTP), which in turn is the leading model for the in vivo 

mechanics of learning and memory formation (Buzsaki, 1989; Malenka & Bear, 2004). In 
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vitro (Larson, Wong, & Lynch, 1986) and in vivo (Greenstein, Pavlides, & Winson, 1988; 

Pavlides, Greenstein, Grudman, & Winson, 1988; Stepan et al., 2012) theta frequency 

stimulation induces LTP within the hippocampus. This effect appears to require 

stimulation during the peak of, but not at the trough of, the theta oscillation (Hölscher, 

Anwyl, & Rowan, 1997; Hyman, Wyble, Goyal, Rossi, & Hasselmo, 2003; Orr, Rao, 

Houston, McNaughton, & Barnes, 2001; Pavlides et al., 1988).  

GABA plays an important role in regulating oscillations that influence learning 

and memory. Synchronized inhibitory postsynaptic potentials (IPSPs) generated by 

GABA moderate gamma (30-100 Hz) (Mann & Mody, 2010; Traub, 2003; Whittington, 

Traub, & Jefferys, 1995) and theta (3-12 Hz) (Gong et al., 2009; Xiao et al., 2012) 

activity in the hippocampus. These frequencies are related to the formation of memories 

both in humans (Jutras & Buffalo, 2010; Rutishauser, Ross, Mamelak, & Schuman, 2010; 

Sederberg et al., 2007) and rodents (Axmacher, Mormann, Fernández, Elger, & Fell, 

2006; Tort, Komorowski, Manns, Kopell, & Eichenbaum, 2009). For instance, GABAB 

antagonism facilitates learning and memory driven by theta rhythms in vivo (Staubli, 

Scafidi, & Chun, 1999). Further, in vivo, theta rhythms correlate with better task 

performance (Olvera-Cortes, Cervantes, & Gonzalez-Burgos, 2002), and blocking theta 

rhythms impairs learning and memory (Winson, 1978). 

The GABAB receptor also helps regulate and modulate oscillatory activity (Kohl 

& Paulsen, 2010). For instance, the cooperation of GABAA and GABAB receptors 

increases the synchronization of theta activity in the rat occipital lobe (Xiao et al., 2012).  

Within the EC, GABAA receptors control the duration of oscillatory activity, and GABAB 

receptors terminate this synchronous activity (Mann, Kohl, & Paulsen, 2009). GABAB 
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receptors are also capable of altering serotonergic-generated hippocampal theta rhythms 

via disinhibition of serotonergic neurons within the median raphe nuclei (Li, Varga, Sik, 

& Kocsis, 2005). 

Activation of hippocampal GABAB receptors is capable of abolishing gamma 

activity, whereas the blockade of these receptors decreases the number of repetitive 

stimuli needed to produce gamma activity (Brown, Davies, & Randall, 2007), thus 

requiring less input to entrain the synchronous activity. In vivo recordings of mobile, 

awake rats indicate that intracerebroventricular (ICV) or intrahippocampal infusions of a 

GABAB antagonist induces theta and increases gamma (respectively) rhythms in CA1 

(Leung & Shen, 2007). Although the blockade of GABAB receptors allows for easier 

entrainment of synchronous activity, the activation of these receptors is also necessary to 

regulate the persistence of synchronous activity. Together these data suggest that an 

appropriate amount of activation of GABAB receptors is crucial for synchronous neural 

activity associated with learning and memory formation.  

 GABAB receptor activity can also induce plasticity between neurons via paired-

pulse stimulation, in addition to LTP. These effects, however, appear to be region 

specific. For instance, studies clearly indicate that GABAB receptor antagonism in the 

CA1 enhances synaptic plasticity and LTP (Leung, Peloquin, & Canning, 2008; 

Morrisett, Mott, Lewis, Swartzwelder, & Wilson, 1991; Olpe et al., 1993; Staubli et al., 

1999). Overexpression of the GABAB1a (Wu et al., 2007) and the GABAB1b (Stewart et 

al., 2009) receptor subunits reduce LTP in the CA1 region of the hippocampus of 

transgenic mice. While GABAB1b
-/- mice with intact presynaptic GABAB receptors 

demonstrate the ability to induce LTP in the CA1, GABAB1a
-/- mice are unable to induce 
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LTP, though they exhibit paired-pulse plasticity (Vigot et al., 2006). Taken together, 

these data demonstrate that blocking GABAB receptor function within the CA1 enables 

plasticity, LTP, and the entrainment of synchronous activity associated with learning. 

Conversely, activating GABAB receptors impairs these measures of synaptic plasticity.  

In addition to LTP of excitatory currents described above, the CA1 has been 

shown to undergo calcium- and N-methyl-D-aspartate (NMDA)-dependent LTP of 

GABAB-mediated slow inhibitory postsynaptic currents (sIPSCs); sIPSCs are required to 

induce LTP between cortico-CA1 synapses (Remondes & Schuman, 2003). LTP of 

sIPSCs has been suggested to produce a finite window for postsynaptic detection of 

excitatory inputs to perhaps help modulate rhythmic activities (Huang et al., 2005). For 

example, rapid excitatory stimulation induces an sIPSC, which then minimizes the impact 

of any late-arriving excitatory inputs. Similarly, high frequency stimulation of the lateral 

septal nucleus prevents LTP, an effect that is in part mediated by the activation of 

GABAB receptors, and which has been suggested as a regulatory mechanism to prevent 

an overflow of information from CA3 into other regions (Hasuo & Akasu, 2001). Thus, 

GABAB-mediated sIPSCs appear to help transmit only pertinent information to and 

within the hippocampus, which suggests that GABAB receptors moderate plasticity 

related to learning and memory.  

In contrast to the CA1, in vitro activation of GABAB receptors is necessary for the 

development of LTP in the DG (Burgard & Sarvey, 1991; Mott & Lewis, 1992; Mott, 

Lewis, Ferrari, Wilson, & Swartzwelder, 1990; Mott, Xie, Wilson, Swartzwelder, & 

Lewis, 1993). These effects are due to disinhibition – the activated GABAB receptor is 

inhibiting other inhibitory processes, producing a net excitatory effect. Further, 
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stimulating these cells at frequencies resembling endogenous theta oscillations induces 

maximal LTP (Mott et al., 1990). Recordings from anesthetized animals demonstrate that 

a systemically administered GABAB agonist can produce paired-pulse disinhibition of 

EPSPs in the DG, whereas systemic administration of a GABAB antagonist prevents 

paired-pulse disinhibition (Brucato et al., 1996; Brucato, Mott, Lewis, & Swartzwelder, 

1995). Similarly, systemic administration of a GABAB antagonist decreases the amount 

of theta-burst stimulation-induced LTP recorded in the DG (Brucato et al., 1996). These 

facilitatory effects are likely produced only by presynaptic receptors, however, because 

the activation of postsynaptic GABAB receptors in the DG produces increased inhibitory 

current into the neuron (Tao, Higgs, Spain, & Ransom, 2013). Blocking the activation of 

GABAB receptors using antagonists is usually effective at reversing the facilitatory effect 

of GABAB agonists (Brown et al., 2007; Mott & Lewis, 1992), and antagonists, alone, 

typically produce no effect (Brown et al., 2007) or impair (Brucato, Morrisett, Wilson, & 

Swartzwelder, 1992; Mott & Lewis, 1991) LTP and plasticity. The DG, therefore, 

requires the activation of GABAB receptors to produce plastic activity  

Behaviorally, alteration of GABAergic tone by GABAB ligands modifies how 

well an animal learns a task. A general pattern of impaired learning and memory is found 

with GABAB agonists (Castellano, Cabib, & Puglisi-Allegra, 1996; Heaney et al., 2012; 

McNamara & Skelton, 1996; Myhrer, 2003; Stuchlik & Vales, 2009) and enhanced 

learning and memory after administering GABAB antagonists (Castellano et al., 1996; 

Getova & Bowery, 1998).  However, the results from GABAB investigations are not well 

replicated.  In a review, four studies attempting to demonstrate the effects of baclofen (a 

GABAB agonist) on the same passive avoidance task found that baclofen either improves, 
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impairs, or does not alter performance (Myhrer, 2003).  Since these four studies utilized 

the same task in the same manner and all administered baclofen systemically, the 

differing results could be do to the dosages or strain of animal used, or even to what 

extent baclofen reached the different regions of the hippocampus. 

 Additionally, very few studies utilize GABAB antagonists administered alone in 

learning and memory tasks, and there are inconsistent results among those studies that 

have been conducted.  For instance, a GABAB antagonist administered after a passive 

avoidance task enhanced memory, as measured by increased step-through latencies 

(Mondadori, Möbius, & Borkowski, 1996).  However, another study utilized the same 

task and found no effect on behavior at low doses of an administered GABAB antagonist, 

whereas high doses actually decreased performance (Zarrindast et al., 2002).  Differences 

between these two studies include route of administration (systemic versus intracranial), 

gender of the animals, and type of animals used (mice versus rats).  

 Our previous research indicates that altering GABAB receptor activity affects cued 

and contextual fear conditioning (Heaney et al., 2012). In this paradigm, a tone is paired 

with a footshock within a specific environment. The animal is tested for the strength of 

the association between the tone and footshock (cued association), as well as between the 

original environment and the footshock (contextual association). If the associations were 

adequately made, an animal will freeze to the presentation of the tone when presented in 

a novel environment, demonstrating that the animal recognizes the tone as a predictor of 

the footshock. Additionally, the animal should freeze when it is placed back into the 

original training environment, indicating that it remembers the environment where the 

footshocks occurred. Extinction occurs after repeated presentation of the tone without the 
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footshock, or being in the original environment without receiving more footshocks; the 

animal should slowly demonstrate less fear, as indicated by decreased time spent 

freezing. Impaired performance in this task is marked by a reduction of freezing behavior 

to either the tone or the original environment before extinction, or increased freezing 

behavior after extinction. 

 Systemic pretreatment of baclofen did not affect the acquisition of the 

associations (Heaney et al., 2012). However, baclofen pretreatment did impair the ability 

to extinguish or alter the memory of both the cued and contextual associations. Further, 

administration of baclofen after the initial acquisition only impaired extinction of the 

contextual association. Acquisition and extinction of contextual fear is guided by the 

hippocampus (Corcoran & Maren, 2001; Corcoran, Desmond, Frey, & Maren, 2005; 

Phillips & LeDoux, 1992), as well as by GABA signaling (Makkar, Zhang, & Cranney, 

2010). These data suggest that GABAB receptors may have a role in memory flexibility 

and updating previously acquired memories that depend on the hippocampus.  

 Another type of learning and memory that requires the hippocampus is spatial 

learning and memory (Barak et al., 2013; Lee et al., 2005; Tsien et al., 1996). One of the 

more prominently used tasks to measure spatial learning and memory in rodents is the 

Morris water maze (MWM). The MWM was developed by Richard Morris in the 1980s 

as a way to examine rodent spatial learning and memory (Morris, 1981). This task 

requires animals to utilize extra-maze cues to locate a hidden platform submerged under 

opaque water. Rodents are good, yet reluctant, swimmers and are motivated to escape the 

water as quickly as possible. The MWM task is usually conducted over several days 

using a circular tank that has been virtually divided into quadrants. Time taken to find the 
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hidden platform (latency) and performance on a probe trial are the main measures of task 

comprehension. The faster an animal finds the hidden platform, the more accurately it has 

learned the spatial location of the hidden platform. Probe trials are usually conducted 24 

hours after the last training session. During the probe trial, the hidden platform is 

removed from the tank and the animals are allowed a free swim period; the amount of 

time spent in the quadrant of the platform’s previous location is measured. The more time 

spent in the quadrant where the platform used to be located as compared to the other 

quadrants, the better the animal has learned the task. Further, learning flexibility can be 

tested in this paradigm by simply changing the location of the hidden platform after the 

task has been learned. This phase of the MWM is called reversal training and 

performance can be measured by latency and a probe trial, as done in the initial training 

phase. Impaired performance is marked by increased latencies compared to controls to 

find the hidden platform, as well as by equal time spent in all quadrants during the probe 

trial. 

 Systemic injections (McNamara & Skelton, 1996; Nakagawa & Takashima, 1997; 

Nakagawa, Ishibashi, Yoshii, & Tagashira, 1995) and intra-cerebral infusions (Arolfo et 

al., 1998; Deng et al., 2009) of baclofen, a GABAB agonist, consistently impair 

performance in this task. The effect of GABAB antagonists on performance in this task is 

more complicated. Depending on the strain of animal used, the same antagonist can 

produce different effects. For instance, the GABAB antagonist CGP 36742 has no effect 

on performance of BALB/c and CF1 mice (Sunyer et al., 2007), whereas C57BL/6J and 

OF1 mice perform better than controls (John, Sunyer, Höger, Pollak, & Lubec, 2009; 

Sunyer et al., 2007; Sunyer, Shim, An, Höger, & Lubec, 2009b), and CD1 and DBA/2 
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mice demonstrate impaired task performance (Sunyer et al., 2007). One of the differences 

between these strains is the amount of NMDA NR1 receptor subunit and GABAB2 

receptor subunit proteins in the hippocampus (Sunyer, An, Kang, Höger, & Lubec, 

2009a). Compared to C57BL/6J mice, naïve DBA/2 mice demonstrate decreased levels 

of NR1 and increased levels of GABAB2, which could explain the behavioral differences. 

However, also compared to C57BL/6J mice, OF1, CD1, and CF1 mice also demonstrate 

increased GABAB2 protein levels in the hippocampus. Thus, there must be other 

differences between these strains of mice that lead to the behavioral differences due to the 

GABAB antagonist.  

When administered systemically to female rats, CGP 46381, a GABAB 

antagonist, increases latency to find the hidden platform (Brucato et al., 1996). The 

protocol utilized in this study, however, may influence the results. For instance, the rats 

were only trained for one day, and then immediately given a probe trial after the last 

training trial. During the training trials, the animals were released from the same quadrant 

each time, making the task less dependent on the extra-maze spatial cues. Furthermore, 

the animals were not impaired on the probe trial, indicating they spent more time in the 

quadrant where the platform had been located as compared to the other quadrants. What 

is more, the ligand utilized in this study is not commonly used in vivo and its effects 

cannot be compared to other studies. However, CGP 46381 is rather potent compared to 

other antagonists (Olpe et al., 1993); it is, therefore, possible that this antagonist is 

binding to both autoreceptors and postsynaptic receptors to produce the memory 

impairment. 
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Although these data demonstrate the variation in results typically seen within the 

GABAB literature, they also solidify the idea that proper hippocampal GABAB receptor 

function is necessary for spatial learning and memory. However, these data do not 

provide consistent results regarding how altering GABAB receptors affects behavior. 

Additionally, none of these studies examine memory flexibility via reversal training. 

Impaired memory flexibility is often associated with the clinical populations that also 

exhibit impaired spatial learning and memory. Therefore, these deficits may be linked 

and can be examined together given that memory flexibility and spatial learning and 

memory are readily measured using the MWM. Determining the role of GABAB 

receptors in this type of learning may help lead to better treatment options for these 

clinical populations. 

 

 

Clinical Relevance 

 Impaired memory flexibility and spatial learning and memory deficits are 

hallmarks of both schizophrenia and AD (Addington & Addington, 1999; Albert, 1996; 

Cherrier, Mendez, & Perryman, 2001; deIpolyi, Rankin, Mucke, Miller, & Gorno-

Tempini, 2007; Hanlon et al., 2006; Spieker, Astur, West, Griego, & Rowland, 2012). 

While these deficits likely stem from a number of pathways, these populations 

demonstrate changes to GABAB markers. These alterations could be a result of the 

particular disorder, or changes to GABAB receptors and GABAB receptor function could 

lead to the development of these disorders. Therefore, determining how altered GABAB 
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receptor function affects learning and memory could provide valuable information 

regarding the affected GABAB mechanisms within these disorders. 

Expression of GABAB receptors is reduced in the pyramidal cells of the DG, CA 

subregions, EC, and within the inferior temporal cortex of postmortem brain tissue from 

patients with schizophrenia (Kantrowitz, Citrome, & Javitt, 2009; Mizukami et al., 2000). 

Further, the prefrontal cortex exhibits a decrease in levels of GABAB1a receptor subunits 

as compared to controls (Ishikawa, Mizukami, Iwakiri, & Asada, 2005), and examination 

of the cerebellum reveals decreased amounts of GABAB1 and GABAB2 (Fatemi, Folsom, 

& Thuras, 2011).  

Further, patients with schizophrenia demonstrate other GABAergic alterations. 

For instance, patients with schizophrenia have decreased parvalbumin and GAD67 

expression in GABAergic interneurons (Cherlyn et al., 2010; Gonzalez-Burgos, 

Hashimoto, & Lewis, 2010; Guidotti et al., 2005; Torrey et al., 2005; Zhao et al., 2007), 

as well as deficits in frontal cortex chandelier neurons that give rise to oscillatory gamma 

activity (Kantrowitz et al., 2009). Further changes are apparent in other GABAergic 

markers like GABAA receptors (Cherlyn et al., 2010; Deng & Huang, 2006; Gonzalez-

Burgos et al., 2010; Zhao et al., 2007), GABA concentration (Öngür, Prescot, McCarthy, 

Cohen, & Renshaw, 2010),  reuptake sites (Wassef, Baker, & Kochan, 2003), and GABA 

currents (Benes, 2010). Together, these results indicate widespread changes to the 

GABAB receptor and GABAergic functioning within this population. 

 Liu and colleagues (2009) examined the effect of transcranial magnetic 

stimulation (TMS) of the primary motor cortex on cortical inhibition in controls, 

medicated, and unmedicated schizophrenia patients. The long-interval cortical silent 
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period (CSP) is an indication of GABAB function (Premoli et al., 2014). Medicated 

patients exhibited an enhanced long-interval CSP as compared to the unmedicated 

patients. Further, negative symptoms were inversely correlated with the GABAB-

mediated transmission, indicating that GABAB dysfunction could underlie the 

pathophysiology of these symptoms. Additional differences were evident in the GABAA-

mediated short interval CSP, which were weakly correlated with positive symptoms. The 

authors suggest that the inhibitory currents provided by the GABA receptors could 

regulate different symptoms of schizophrenia.  

Another study examined the effect TMS of the primary motor cortex on CSP 

between patients at-risk for schizophrenia, first-episode schizophrenia patients and 

controls (Hasan, Wobrock, et al., 2012b). This study found reductions in the GABAA-

mediated CSP in the at-risk and first-episode patients. Compared to both controls and at-

risk patients, first-episode patients exhibited an increase in the GABAB-mediated CSP. 

Further, a similar study found prolonged CSP and impaired LTD-like plasticity in 

medicated patients compared to controls (Hasan, Nitsche, et al., 2012a). Antipsychotic 

naïve patients also exhibit deficits in the GABAA-mediated CSP, which were negatively 

correlated with social cognition (Mehta, Thirthalli, Basavaraju, & Gangadhar, 2014). 

Further, evidence suggests that presynaptic GABAB receptors may inhibit GABAA-

mediated CSPs, whereas postsynaptic GABAB receptors may inhibit the TMS-induced 

motor-evoked potentials (Chu, Gunraj, & Chen, 2008). These data suggest that early 

disease symptomology may be related to GABAA-mediated or presynaptic GABAB-

mediated dysfunction, whereas disease progression may be more affected by altered 

postsynaptic GABAB functioning.  
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 While the above experiments examined the CSP only within the primary motor 

cortex, disturbances to cortical function are also found within the frontal cortex. For 

instance, patients with schizophrenia exhibit altered gamma activity compared to controls 

when performing working memory tasks (Barr et al., 2010; Basar-Eroglu et al., 2007; 

Chen, Stanford, Mao, & Abi-Dargham, 2014; Cho, Konecky, & Carter, 2006). Gamma 

activity within the frontal cortex (Chen et al., 2014) and working memory (Rogasch, 

Daskalakis, & Fitzgerald, 2014) are related to GABA activity, and deficits may be 

ameliorated with GABAergic drugs (Lewis et al., 2008).  

 Animal models of schizophrenia have demonstrated that GABAB receptor activity 

can alter dopamine hyperactivity (Balla et al., 2009; Javitt, Hashim, & Sershen, 2005) 

and altered glutamatergic activity (Roenker, Gudelsky, Ahlbrand, Horn, & Richtand, 

2012), which are both suspected to contribute to symptoms of schizophrenia. 

Additionally, patients with schizophrenia often exhibit impaired sensorimotor gating. 

These deficits are recused in animal models by GABAB receptor activation (Arai et al., 

2008; Bortolato, Frau, Aru, Orrù, & Gessa, 2004; Bortolato et al., 2007; Fejgin et al., 

2009; Frau et al., 2014), and enhanced with GABAB receptor blockade (Ma & Leung, 

2011). An experimental drug that promotes neurite growth was found to rescue 

sensorimotor gating deficits; the authors suggest this effect was due to reversing the loss 

of GABAergic neurons typically seen in the animal model used (Uehara et al., 2012). 

Further, baclofen improves behavioral deficits suggested to arise from disrupted 

excitatory-inhibitory signaling induced by altered glutamatergic activity, and restored the 

disrupted excitatory-inhibitory signaling (Gandal et al., 2012). These data strongly 

implicate the GABAB receptor as a potential target in the treatment of schizophrenia.  



 
 

22 
 

 GABAB markers are also altered in AD. In a postmortem examination, 

hippocampal tissue from brains of AD patients was characterized by increases of 

GABAB1 proteins in the CA4 and CA3/2 subfields, which were associated with the 

progression of neurofibrillary tangle pathology (Iwakiri et al., 2005). Subregions of the 

DG and CA1 (Chu, Penney, & Young, 1987b) and the superior frontal gyrus (Chu, 

Penney, & Young, 1987a) had fewer GABAB receptors; and specifically within the CA1, 

GABAB1 receptors were decreased compared to control tissue (Iwakiri et al., 2005).  

A non-coding RNA discovered to produce an alternative splicing of the GABAB 

receptor is upregulated in the frontal and temporal cortices of patients with AD (Massone 

et al., 2011). This alternative splicing is triggered by inflammatory stimuli and results in 

altered GABAB-mediated signaling, increases amyloid-β (Aβ) secretion, and increases 

the Aβ42/40 ratio. In a study utilizing TMS, AD patients demonstrated an increase in the 

GABAB-mediated CSP, which was inversely related to scores on a measure of 

neurological ability (Khedr, Ahmed, Darwish, & Ali, 2011). These studies suggest that 

GABAB signaling is altered in AD. 

AD affects other GABAergic markers, as well. GABA is decreased in the 

temporal lobe, parietal lobe, occipital lobe, and cerebellum (Bai et al., 2014; Seidl, 

Cairns, Singewald, Kaehler, & Lubec, 2001).  Decreased amounts of GABAA receptors 

and GABAergic neurons are observed in the hippocampus (Chu et al., 1987b; Inaguma, 

Shinohara, Inagaki, & Kato, 1992). The enzymes responsible for synthesizing and 

breaking down GABA are decreased within the cerebellum and hippocampus (Burbaeva 

et al., 2014; Schwab, Yu, Wong, McGeer, & McGeer, 2013). Recent evidence also 

implicates altered glial function in AD. Postmortem tissue exhibits increased 
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concentrations of GABA within astrocytes in the hippocampus and temporal cortex (Jo et 

al., 2014; Wu, Guo, Gearing, & Chen, 2014). Additionally, hippocampal astrocytes also 

express increased amounts of GAD67 and the astrocytic GABA transporter (Wu et al., 

2014).  

 Aβ produces changes to inhibitory signaling that is similar to the changes 

observed when GABAB-mediated potassium conductance (via GIRK channels) is altered 

(Nava-Mesa, Jiménez-Díaz, Yajeya, & Navarro-Lopez, 2013). Additionally, 

intrahippocampal injections of Aβ decreases the number of neurons expressing 

GABAergic markers (Villette et al., 2012). Transgenic mice expressing Aβ exhibit 

impaired neurogenesis and excitatory-inhibitory imbalance in the hippocampus, which is 

normalized when GABAergic signaling is blocked (Sun et al., 2009).   In transgenic mice 

expressing apolipoprotein E4 (apoE4) and tau, administration of a GABAA receptor 

agonist rescues learning and memory deficits (Andrews-Zwilling et al., 2010). When tau 

expression is removed from this transgenic strain, GABAergic neuron loss and learning 

and memory deficits are reversed. However, the administration of a GABAA antagonist 

eliminates the beneficial effects of the lack of tau. These data suggest that traditional 

markers of AD may interact with and affect GABAergic signaling. 

 Similar to the postmortem findings, animal models of AD also display changes to 

glial function. For instance, hippocampal reactive astrocytes exhibit high GABA content 

(Jo et al., 2014; Wu et al., 2014), which contributes to increased tonic GABA inhibition, 

impaired LTP, and learning and memory deficits. Decreasing GABA rescues these 

deficits.  
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 Patients with Down syndrome (DS) exhibit AD-like neurodegeneration. While 

postmortem investigations do not necessarily indicate the same changes to GABAergic 

markers as AD patients (Seidl et al., 2001), animal models do suggest altered GABAergic 

signaling contributes to the disorder. Transgenic animals exhibit several upregulated 

GABAergic markers within the hippocampus (Hernández-González et al., 2014), and 

learning and memory deficits are mediated by the DG (Smith, Kesner, & Korenberg, 

2013). Normalizing GABA release rescues hippocampal-dependent learning and memory 

deficits (Begenisic et al., 2013). Animal models exhibit increased GABAB-mediated 

GIRK current and GIRK expression within the hippocampus (Best, Cramer, Chakrabarti, 

Haydar, & Galdzicki, 2012; Best, Siarey, & Galdzicki, 2007; Kleschevnikov, Belichenko, 

Gall, et al., 2012b), which are suggested to mediate cognitive deficits. When 

administered a GABAB receptor antagonist, transgenic animals display normal learning 

and memory behavior in several domains (Kleschevnikov, Belichenko, Faizi, et al., 

2012a). 

Interestingly, one of the more extensively studied GABAB antagonists, CGP 

36742, had progressed to Phase II trials to treat AD (Davies, Castaner, & Castaner, 2005; 

Froestl et al., 2004). Compared to placebo, it improved working memory and attention. 

However, it has since failed to progress to Phase III testing (Sabbagh, 2009). These data 

indicate that some of the memory impairments seen in AD patients could be the result of 

GABA dysfunction, which may be rectified with GABAergic therapeutics. 

 Together these data indicate that altered GABAB receptor function is common to 

patients with schizophrenia and AD. New treatments could focus on these receptors, and 

the data from the experiments outlined below help identify potential targets within the 
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GABAB receptor signaling cascade. These experiments were designed to investigate the 

impact of altered GABAB receptor activity on memory flexibility and spatial learning and 

memory, behavioral paradigms that are affected in clinical populations.  

 

 

Hypotheses  

 We were interested in determining whether altered GABAB receptor activity 

would affect both memory flexibility and spatial learning and memory. Based on 

previous research and data from our lab (Heaney et al., 2012), we predicted that the 

GABAB agonist baclofen would impair performance in the MWM and be detrimental to 

memory flexibility. Additionally, we predicted that phaclofen would improve 

performance and memory flexibility.  Further, we predicted that we would find protein 

level changes within the hippocampus that relate to the behavioral outcomes. 

Specifically, we examined proteins related to GABAergic and glutamatergic signaling, as 

well as GABAB receptor subunits, targets within the GABAB signaling cascade, and 

markers of synaptic plasticity. Increases to markers that enhance GABA signaling should 

be related to impaired performance and increased glutamatergic markers should relate to 

improved performance. Additionally, we predicted to find increases in markers related to 

synaptic plasticity in groups that demonstrate improved behavioral performance.  
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CHAPTER 3 

MATERIALS AND METHODS 

Subjects 

 Sixty male Sprague-Dawley rats (Taconic Laboratories, Cambridge City, Indiana) 

weighing approximately 250-300 g were used.  Rats were housed in a temperature and 

humidity controlled facility (22 ± 1° C), and food and water was provided ad libitum.  

Animals were housed in pairs and kept on a 12:12 light/dark cycle, lights on at 7:00 AM. 

All procedures were approved by the Institutional Animal Care and Use Committee and 

were carried out in accordance with NIH guidelines for the care and use of animals. 

 

Drug Treatments 

 R(+)-Baclofen hydrochloride (Sigma-Aldrich, St. Louis, MO) was dissolved in 

0.9% physiological saline vehicle at a concentration of 1 mg/mL or 2 mg/mL. Phaclofen 

(Sigma-Aldrich) was dissolved in vehicle at a concentration of 0.9 mg/mL or 1.25 

mg/mL. Compounds were administered 1 mL/kg body weight via subcutaneous (SC) 

injections each day 30 min before behavioral testing throughout the experiment. Animals 

were randomly assigned to one of three treatment groups (saline, baclofen, or phaclofen; 

n=10) in one of two experiments (for a total of n=30 per cohort). In Cohort 1, the 

baclofen group received 2 mg/kg, and the phaclofen group received 0.9 mg/kg. Based on 

the behavioral outcomes in Cohort 1, we tested a lower concentration of baclofen (1.0 

mg/mL) and a higher concentration of phaclofen (1.25 mg/mL). Due to technical errors 

during the experiment, data were lost for two of the 1.25 mg/kg phaclofen-treated 

animals, so they were removed from the analyses.  
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Morris Water Maze 

The MWM task was conducted in a plastic, circular tank (1.8 m diameter and 91 

cm tall; San Diego Instruments, San Diego, CA). The tank was filled to a depth of 48 cm 

with water made opaque using non-toxic tempera paint and temperature held at 25° C ± 

2°. A clear, Plexiglas platform was submerged 2.5 cm below the surface of the water. 

Platform location was randomized between two starting quadrants such that half of the 

animals from each treatment group started in each location. For each animal, the location 

of the hidden platform was held constant over successive training days except where 

noted. Data collected included swim speed, path length, latency to locate the platform, 

amount of time spent in each quadrant, and amount of time spent swimming around the 

perimeter of the tank (thigmotaxis). 

 

Open Field 

All animals were tested in an open field apparatus consisting of white Plexiglas 

walls 60 cm x 61 cm x 46 cm. Data collected for each trial included average speed, 

percent time spent around the perimeter of the maze, and path length.  

 

Behavioral Testing 

All procedures were consistent with previous investigations (Kinney et al., 2009; 

Sabbagh, Heaney, Bolton, Murtishaw, & Kinney, 2012a; Sabbagh et al., 2012b). Across 

consecutive days, animals were trained to locate a hidden escape platform utilizing distal 

spatial cues located around the testing room. Each day, animals received one session 

consisting of four trials; if a subject failed to locate the hidden escape platform within 60 
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s, an experimenter guided the animal to the platform. The animals were given 20 s on the 

platform to orient to the distal spatial cues. Animals were given 30 s under a heat lamp in 

between trials. Training continued until the control group reached a criterion level of 

average group performance of less than 15 s to locate the hidden platform. Once the 

criterion was met, a probe trial was conducted 24 h later to examine whether the animals 

learned the spatial location of the platform or were utilizing a different escape strategy. 

During the single 60 s probe trial, the escape platform was removed and the animals were 

allowed to swim freely.  

Twenty-four hours following the probe trial, reversal platform training began. The 

hidden platform was placed into the center of the quadrant 180° from the original training 

location. Subjects were trained for two days to learn the new location of the hidden 

platform. Twenty-four hours after the second reversal training day, animals underwent a 

second probe trial in the same manner as previously described. Immediately after the 

reversal probe was completed, animals began visible platform training and, thus, only 

received three trials on this day. The second day of visible training consisted of four 

trials. The hidden platform was replaced with a visible platform that protrudes from the 

surface of the water. The visible platform was moved to a new quadrant for each trial and 

never started in either of the two target quadrants used for hidden or reversal training. 

Visible platform training was performed to ensure that all subjects were capable of 

performing the task with similar motoric and visual abilities.  

Once MWM training was complete, animals were tested in the open field. 

Animals were placed into the center of the apparatus and given a single five-minute 

session. Animals were allowed to move around freely.  
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Tissue Collection 

 Following the open field test, rats were euthanized via CO2 asphyxiation.  Tissue 

was rapidly dissected out and flash frozen for western blotting analyses. Right 

hippocampi were used for analyses due to previous research indicating that the right 

hippocampus is more involved in spatial learning and memory than the left hippocampus 

(Bohbot et al., 1998; Burgess, Maguire, & O'Keefe, 2002; Shinohara et al., 2010).  

 

SDS-PAGE/Western Blotting 

  Brain tissue was homogenized in RIPA lysis buffer (Cell Signaling, 

Danvers, MA) with 1 mM DTT, 1 mM PMSF, 20 µg/mL aprotinin, and 0.1% SDS added. 

Lysates were centrifuged at 15,000xg for 15 minutes at 4°C; the supernatants were then 

collected and protein concentrations were determined using the bicinchoninic acid assay 

(Pierce, Rockford, IL). Samples were loaded at a total of 20 µg into 8% or 10% 

acrylamide gels (gel percentage was based on target protein size) and separated via SDS-

PAGE (Laemmli, 1970).  

For membranes imaged using the Typhoon 9410 Variable Mode Imager (GE 

Healthcare Life Sciences, Piscataway, NJ), proteins were then transferred to a 

nitrocellulose membrane and blocked in 1x TBS with 5% BSA, 0.05% Tween-20, and 

0.02% sodium azide. Membranes were incubated in primary antibody overnight mixed in 

1x TBS with 5% BSA and 0.05% Tween-20 (rabbit anti-GABAB1, 1:2000, Cell 

Signaling; rabbit anti-GABAB2, 1:1000, Cell Signaling; rabbit anti-phosphoserine 892-

GABAB2, 1:1000, Novus Biologicals, Littleton, CO; mouse anti-GAD67, 1:2000, 

Millipore, Billerica, MA; mouse or rabbit anti-β-actin, 1:10,000, ProteinTech, Chicago, 
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IL). The next day, membranes were incubated in HRP-conjugated secondary antibodies 

mixed in 5% milk-TBS-Tween-20 (goat anti-mouse or goat anti-rabbit, 1:5000, Vector 

Laboratories, Burlingame, CA) and then probed with Amersham ECL Plus (GE 

Healthcare Life Sciences) and imaged via the Typhoon 9410 Imager (GE Healthcare Life 

Sciences). Band intensity was determined via ImageQuant 5.2 (GE Healthcare Life 

Sciences).  

For membranes imaged using the Odyssey CLx Infrared Imager (Li-Cor 

Biosciences, Lincoln, NE), proteins were transferred to a nitrocellulose membrane and 

blocked in 5% non-fat skim milk mixed in 1x PBS with 0.01% sodium azide. Membranes 

were incubated in primary antibody overnight mixed in the blocking solution with 0.1% 

Tween-20 added (rabbit anti-AMPA receptor GluR4, 1:1000, Cell Signaling; rabbit anti-

GIRK2, 1 µg/mL, Abcam, Cambridge, MA; rabbit anti-kalirin, 1:750 for kalirin-5 and 

1:7000 for kalirin-7, 9, and 12, Millipore; mouse or rabbit anti-β-actin, 1:20,000, 

ProteinTech). The next day, membranes were incubated in IRDye near-infrared 

secondary antibodies (IRDye 680 goat anti-mouse, 1:10,000, IRDye 800 donkey anti-

goat, and IRDye 800 goat anti-rabbit, 1:5000, Li-Cor Biosciences) mixed in the blocking 

solution plus 0.1% Tween-20 and then imaged via the Odyssey CLx Infrared Imaging 

System (Li-Cor Biosciences).  

 All western blots were analyzed by normalizing the densities of the protein of 

interest to the density of β-actin for each individual sample. A proportion was determined 

for each normalized value of the treatment group protein bands compared to the averaged 

normalized values for saline control groups run in the same gel. These proportional 

values were used for analysis.  
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Statistical Analyses 

 All measures of hidden, reversal, and visible platform performance (path length, 

latency, thigmotaxis, and swim speed) were analyzed using repeated measures analysis of 

variance (RM-ANVOA) across days. Probe trial time in target quadrant as compared to 

time in the other quadrants and annulus crossings data were analyzed using within-

subjects one-way ANOVA. Measures of open field data (speed, percent time in 

perimeter, path length) were analyzed via one-way ANOVA. Western blot results were 

analyzed using one-way ANOVA. Tukey post-hoc comparisons were performed 

following a significant one-way ANOVA result where applicable. In order to better 

detect subtle differences, the hidden platform latency across days was also analyzed 

separately between the 0.9 mg/kg phaclofen group and controls with RM-ANOVA, and 

all western blot analyses were performed between a single treatment group and the 

control. Although there were planned comparisons to compare performance between 

ligand groups, the two control groups were significantly different; therefore, these 

analyses were not conducted.  
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CHAPTER 4 

RESULTS 

Morris Water Maze 

Hidden Platform Training and Probe 

Performance of the two control groups were analyzed in order to determine 

whether we could combine groups and compare within ligand groups. The control group 

for Cohort 1 (2.0 mg/kg baclofen, 0.9 mg/kg phaclofen) had a significantly lower latency 

across days compared to the Cohort 2 (1.0 mg/kg baclofen, 1.25 mg/kg phaclofen) 

controls (F1,78=4.407, p<0.05; see fig. 1). Therefore, we were unable to compare the 

different concentrations of the ligands together and analyzed each cohort separately.  

 

Figure 1. Morris Water Maze Latency of the Saline Controls from Both Cohorts. 
Compared to the controls from Cohort 1, the average latency (± SEM) for the controls 
from Cohort 2 was significantly increased across hidden training days. * = p<0.05 
compared to Cohort 1.  
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The 2.0 mg/kg baclofen-treated group was significantly impaired in the training 

phase across days as compared to the control group (see fig. 2a; F2,117=79.748, p<0.001; 

Tukey post-hoc saline vs baclofen p<0.001). The group that received the 1.0 mg/kg 

baclofen dose (fig. 2b), however, did not exhibit this deficit and was not significantly 

different from the control group (F2,109=1.704, p>0.05). Treatment with 0.9 mg/kg of 

phaclofen (fig. 2a) produced a learning and memory enhancement during the hidden 

platform training across days compared to the control group (F1,78=5.046, p<0.05). While 

the 1.25 mg/kg phaclofen-treated group did not significantly differ from the controls 

(F2,109=1.704, p>0.05), this dose of phaclofen did not produce the enhancement seen with 

the lower dose (fig. 2b).  
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Figure 2. Morris Water Maze Latency of Each Group During Hidden, Reversal, and 
Visible Training. Average latency (± SEM) was increased by administration of 2.0 mg/kg 
baclofen, but decreased by 0.9 mg/kg phaclofen (a) during hidden training. Latency 
remained significantly elevated for reversal and visible training for the 2.0 mg/kg 
baclofen group. Administration of 1.25 mg/kg phaclofen significantly increased latency 
during reversal training (b). Treatment of 1.0 mg/kg baclofen did not impair performance. 
* = p<0.05 compared to saline controls. 

 

 

During the probe trial (see fig. 3a), the 0.9 mg/kg phaclofen-treated (F3,36=15.477, 

p<0.001), 1.0 mg/kg baclofen-treated (F3,36=20.075, p<0.001), and control groups 

demonstrated a selective search (cohort 1 saline: F3,36=14.657, p<0.001; cohort 2 saline: 

F3,36=16.095, p<0.001; for all: Tukey post-hoc percent time in target quadrant vs percent 
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time in each non-target quadrant p<0.01). The 2.0 mg/kg baclofen-treated (F3,36=11.189, 

p<0.001) and 1.25 mg/kg phaclofen-treated (F3,28=3.804, p<0.05) groups did not exhibit a 

selective search for the target quadrant (Tukey post-hoc analyses show that percent time 

in target quadrant is not p<0.05 vs all non-target quadrants). However, all groups except 

the 2.0 mg/kg baclofen-treated group (F3,36=0.545, p>0.05) demonstrated a significant 

number of annulus crossings (fig. 3b) over the physical space where the platform was 

previously located versus analogous locations in other quadrants (cohort 1 saline: 

F3,36=9.199, p<0.001; 0.9 mg/kg phaclofen: F3,36=5.974, p<0.01; cohort 2 saline: 

F3,36=15.468, p<0.001; 1.0 mg/kg baclofen: F3,36=11.917, p<0.001; 1.25 mg/kg 

phaclofen: F3,28=6.13, p<0.01; Tukey post-hoc analyses show that number of annulus 

crossings in target quadrant vs all other quadrants p<0.05 for all groups). These data 

suggest that the only group that was impaired in learning the location of the hidden 

platform was the 2.0 mg/kg baclofen-treated group. 
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Figure 3. Hidden and Reversal Probe Trial Performance. Average percent time (± SEM) 
spent in each quadrant (a, c) during the hidden training probe was significant for the 
control, 0.9 mg/kg phaclofen, and the 1.0 mg/kg baclofen groups; the 2.0 mg/kg baclofen 
and 1.25 mg/kg phaclofen groups did not exhibit a significant search. The controls, 0.9 
mg/kg phaclofen, 1.0 mg/kg baclofen, and 1.25 mg/kg phaclofen groups did display 
significant average number of crossings (± SEM) over the analogous location of the 
platform (b, d). Average percent time (± SEM) spent in each quadrant during the reversal 
training probe (c) was not significant for any group, but average number of crossings (± 
SEM) over the analogous location of the platform (d) during the reversal training probe 
was significant for the 0.9 mg/kg phaclofen- and 1.0 mg/kg baclofen-treated groups only. 
* = p<0.05 for percent time or number of crossings for the target quadrant as compared to 
the non-target quadrants. 
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Reversal Platform Training and Probe 

Across the two days of reversal training, the 2.0 mg/kg baclofen-treated 

(F2,117=20.244, p<0.001; Tukey post-hoc analysis saline vs 2.0mg/kg baclofen p<0.001) 

and the 1.25 mg/kg phaclofen-treated (F2,109=3.226, p<0.05; Tukey post-hoc analysis 

saline vs 1.25 mg/kg phaclofen p<0.05) required significantly more time to find the 

platform as compared to the control group (see fig. 2). We further examined reference 

memory between groups by analyzing latency to find the hidden platform during first 

trial of the second day of reversal training (see fig. 4). As compared to controls, the 0.9 

mg/kg phaclofen-treated group (F2,27=17.471, p<0.001, Tukey post-hoc analysis saline vs 

0.9 mg/kg phaclofen p<0.01) appeared to learn the new spatial location of the platform 

during the reversal training more effectively. This effect was not seen in the 1.25 mg/kg 

phaclofen-treated group (F2,25=1.015, p>0.05). Further, the 2.0 mg/kg baclofen-treated 

group was significantly impaired compared to controls (F2,27=17.471, p<0.001, Tukey 

post-hoc analysis saline vs 2.0 mg/kg baclofen p<0.05), but the 1.0 mg/kg baclofen-

treated group was not (F2,25=1.015, p>0.05). These data suggest that treatment with 0.9 

mg/kg phaclofen significantly improved memory flexibility for the new platform 

location, whereas 2.0 mg/kg baclofen significantly impaired performance similar to 

acquisition. 
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Figure 4. Additional Reversal Training Performance Analysis. Average latency (± SEM) 
to find the platform during the first trial of the second day of reversal training was 
significantly increased by 2.0 mg/kg baclofen treatment but decreased by 0.9 mg/kg 
phaclofen treatment. * = p<0.05 compared to saline controls. 

 

 

During the reversal probe trial (see fig. 3c), none of the groups demonstrated a 

selective search based on percent time spent in the target quadrant compared to the non-

target quadrants (cohort 1 saline: F3,36=6.019, p<0.01; 2.0 mg/kg baclofen: F3,36=2.309, 

p>0.05; 0.9 mg/kg phaclofen: F3,36=2.852, p>0.05; cohort 2 saline: F3,36=24.551, 

p<0.001; 1.0 mg/kg baclofen F3,36=9.232, p<0.001; 1.25 mg/kg phaclofen: F3,28=4.152, 

p<0.05; for all groups with significant analyses Tukey post-hoc analysis percent time in 

target quadrant vs percent time in non-target quadrants p>0.05). This result is not 

surprising since the groups were only given two days to learn the new location of the 

platform. However, when annulus crossings were analyzed (see fig. 3d), the 0.9 mg/kg 

phaclofen-treated and 1.0 mg/kg baclofen-treated groups demonstrated a selective 
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preference for the new target location (phaclofen: F3,36=5.089, p<0.01; baclofen: 

F3,36=11.482, p<0.001; for both groups Tukey post-hoc analysis number of crossings in 

target quadrant vs number of crossings in each non-target quadrant p<0.05). The controls 

(cohort 1 saline: F3,36=4.812, p<0.05; cohort 2 saline: F3,36=4.275, p<0.05; Tukey post-

hoc analysis number of crossings in target quadrant vs number of crossings in non-target 

quadrants, p>0.05;), 2.0 mg/kg baclofen-treated (F3,36=0.872, p>0.05) and 1.25 mg/kg 

phaclofen-treated (F3,28=1.849, p>0.05) groups did not demonstrate this specificity for the 

new platform location. 

 

Visible Platform Training 

Across the two days of visible training, the 2.0 mg/kg baclofen-treated group 

required more time to find the visible platform as compared to the control group (see fig. 

2; F2,87=7.891, p<0.001; Tukey post-hoc analysis saline vs 2.0 mg/kg baclofen p<0.01). 

This effect was not seen for the 0.9 mg/kg phaclofen-treated group (F2,87=7.891, p<0.001; 

Tukey post-hoc analysis saline vs 0.9 mg/kg phaclofen p>0.05),  the 1.0 mg/kg baclofen-

treated (F2,81=1.424, p>0.05), or 1.25 mg/kg phaclofen-treated groups (F2,81=1.424, 

p>0.05). While significantly higher compared to controls, the average latency for 2.0 

mg/kg baclofen-treated group to find the platform decreases across the various stages of 

this experiment (see fig. 2). Further, performance on the first day of visible training for 

the high dose of baclofen did not significantly differ between groups (F2,87=2.868, 

p>0.05); the difference in latency as measured across days for visible training stems from 

the performance difference on the second day of visible training. If treatment with 

baclofen were impairing this group’s ability to physically solve the task, we would expect 
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performance to be stagnant across the entire experiment. Therefore, we do not believe the 

2.0 mg/kg baclofen treatment affected this group’s ability to detect the platform.  

 

Swim Speed, Thigmotaxis, and Open Field 

Open field testing was conducted to determine if drug treatment produced 

locomotor deficits or produced an anxiety-like phenotype. While the 2.0 mg/kg baclofen 

dose did result in significantly decreased swim speeds during reversal (F2,117=8.37, 

p<0.001) and visible training (F2,117=8.37, p<0.001; for both phases Tukey post-hoc 

analysis saline vs 2.0 mg/kg baclofen p<0.01; see fig. 5), there were no significant 

differences in speed during the hidden platform training (F5,585=28.185, p<0.001; Tukey 

post-hoc saline vs 2.0 mg/kg baclofen p>0.05) or during the open field task (F2,27=1.106, 

p>0.05; see fig. 6a). No significant speed differences in the open field task were detected 

for the 0.9 mg/kg phaclofen-treated group (F2,27=1.106, p>0.05),  the 1.0 mg/kg baclofen-

treated group (F2,25=3.246, p>0.05), or 1.25 mg/kg phaclofen-treated groups (F2,25=3.246, 

p>0.05). 
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Figure 5. Swim Speed Performance. Treatment with 2.0 mg/kg baclofen and 1.25 mg/kg 
phaclofen significantly decreased average (± SEM) swim speed (cm/s) during reversal 
and visible training.  

 

 

The 2.0 mg/kg baclofen-treated group exhibited significantly elevated thigmotaxis 

(see fig. 7) during hidden platform training (F2,117=6.797, p<0.001), reversal training 

(F2,117=36.942, p<0.001), and visible training (F2,117=36.942, p<0.001; for all phases 

Tukey post-hoc saline vs 2.0 mg/kg baclofen p<0.001). In order to evaluate if elevated 

thigmotaxis was associated with an anxiety phenotype, we examined anxiety-like 

behavior in an open field task. No significant differences appeared for the amount of time 

either cohort (2.0 mg/kg baclofen/0.9 mg/kg phaclofen: F2,27=0.678, p>0.05; 1.0 mg/kg 

baclofen/1.25 mg/kg phaclofen: F2,25=0.186, p>0.05) spent along the perimeter during the 

open field task compared to controls (see fig. 6b). Further, no significant differences 
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appeared for path length for either cohort (2.0 mg/kg baclofen/0.9 mg/kg phaclofen: 

F2,27=1.099, p>0.05; 1.0 mg/kg baclofen/1.25 mg/kg phaclofen: F2,25=3.248, p>0.05; see 

fig. 6c). 

 

 

 
 
 
 
 
 
 
 
 

Figure 6. Open Field Performance. Ligand treatment did not affect average speed (± 
SEM cm/s; a), percent time in perimeter (± SEM; b), or average path length (± SEM cm; 
c). 
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Figure 7. Thigmotaxis Performance. Percent thigmotaxis (± SEM) was significantly 
elevated in the 2.0 mg/kg baclofen-treated group. * = p<0.05 compared to saline controls. 
 

 

SDS-PAGE/Western Blotting 

We examined total protein levels from the right hippocampus for several 

GABAergic markers including GABAB receptor subunits, phosphorylated serine 892 

GABAB2 (pSer892), and GAD67. We also analyzed total protein levels for several kalirin 

isoforms, a marker of synapse formation (Ma, Kiraly, Gaier, Wang, Kim, Levine, et al., 

2008a; Ma, Wang, Ferraro, Mains, & Eipper, 2008b; Penzes & Jones, 2008). Effects on 

potassium channel expression were examined via GIRK2, an inwardly-rectifying 

potassium channel, which GABAB receptors activate via G-proteins (Cramer, Best, 

Stoffel, Siarey, & Galdzicki, 2010; Fowler, Aryal, Suen, & Slesinger, 2007; Lüscher, Jan, 
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Stoffel, Malenka, & Nicoll, 1997). Additionally, we investigated total expression of 

AMPA GluR4 to examine glutamatergic activity on hippocampal interneurons (Leranth, 

Szeidemann, Hsu, & Buzsaki, 1996). 

Both the 0.9 mg/kg phaclofen-treated (F1,18=4.852, p<0.05) and the 1.0 mg/kg 

baclofen-treated (F1,18=4.654, p<0.05) groups exhibited a significant reduction in the total 

expression of the AMPA subunit GluR4 as compared to the saline controls (see fig. 8a). 

No differences in GluR4 were found between the 2.0 mg/kg baclofen-treated 

(F1,18=1.845, p>0.05) or 1.25 mg/kg phaclofen-treated (F1,18=0.114, p>0.05) groups 

compared to controls.  

The 0.9 mg/kg phaclofen-treated group also exhibited a significant increase in 

GIRK2 compared to controls (see fig. 8b; F1,18=5.253, p<0.05). GIRK2 expression in the 

2.0 mg/kg baclofen-treated group (F1,18=1.076, p>0.05), 1.0 mg/kg baclofen-treated 

group (F1,18=1.018, p>0.05), or the 1.25 mg/kg phaclofen-treated group (F1,18=0.79, 

p>0.05) did not significantly differ from the control groups.  

A significant reduction of pSer892 (fig. 8c) was observed in the 0.9 mg/kg 

phaclofen-treated (F1,18=5.775, p<0.05) and 1.0 mg/kg baclofen-treated (F1,18=4.64, 

p<0.05) groups compared to controls. No differences were found for the 2.0 mg/kg 

baclofen-treated (F1,18=0.097, p>0.05) and 1.25 mg/kg phaclofen-treated (F1,18=0.153, 

p>0.05) groups. 

A significant reduction was found for the kalirin-7 isoform in the 2.0 mg/kg 

baclofen-treated group compared to controls (see fig. 8d; F1,18=5.451, p<0.05); no 

differences were found for kalirin-5, kalirin-9, or kalirin-12 (kalirin-5: F1,18=1.257, 

p>0.05; kalirin-9: F1,18=1.787, p>0.05; kalirin-12: F1,18=0.209, p>0.05). Interestingly, 
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while the 1.0 mg/kg baclofen-treated group did not exhibit the same behavioral deficits, 

the kalirin-5 (F1,18=7.501, p<0.05), kalirin-7 (F1,18=9.844, p<0.01), and kalirin-9 

(F1,18=8.308, p<0.05) isoforms were significantly decreased compared to controls; 

kalirin-12 was not changed (F1,18=0.017, p>0.05). No differences were found between the 

0.9 mg/kg phaclofen-treated (kalirin-5: F1,18=0, p>0.05; kalirin-7: F1,18=0.868, p>0.05; 

kalirin-9: F1,18=0.503, p>0.05; kalirin-12: F1,18=0.537, p>0.05) or 1.25 mg/kg phaclofen-

treated (kalirin-5: F1,18=0.003, p>0.05; kalirin-7: F1,18=0.019, p>0.05; kalirin-9: 

F1,18=0.382, p>0.05; kalirin-12: F1,18=0.002, p>0.05) groups and the controls for any of 

the kalirin isoforms.  

A significant increase in total GAD67 levels were detected for the 2.0 mg/kg 

baclofen-treated group as compared to controls (see fig. 8e; F1,18=4.585, p<0.05). No 

differences were found between the 0.9 mg/kg phaclofen-treated (F1,18=0.137, p>0.05), 

1.0 mg/kg baclofen-treated (F1,18=0.157, p>0.05) or 1.25 mg/kg phaclofen-treated 

(F1,18=1.125, p>0.05) groups compared to controls.  
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Figure 8. Western Blot Data and Representative Images. Treatment with 0.9 mg/kg 
phaclofen and 1.0 mg/kg baclofen significantly decreased the average proportion (± 
SEM) of AMPA GluR4 (a) and pSer892 (c). The average proportion (± SEM) of GIRK2 
(b) was significantly increased by 0.9 mg/kg phaclofen treatment. Baclofen treatment 
(both 2.0 and 1.0 mg/kg) decreased the average proportion (± SEM) of kalirin-7 (d); 2.0 
mg/kg baclofen significantly increased the average proportion (± SEM) of GAD67 (e).    
* = p<0.05 compared to saline controls. 
 

 

No significant differences were detected between groups for the GABAB receptor 

subunits GABAB1a (saline vs 2.0 mg/kg baclofen, F1,18=2.212; saline vs 0.9 mg/kg 

phaclofen, F1,18=0.708; saline vs 1.0 mg/kg baclofen, F1,18=3.027; saline vs 1.25 mg/kg 
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phaclofen, F1,18=0) or GABAB1b (saline vs 2.0 mg/kg baclofen, F1,18=2.53; saline vs 0.9 

mg/kg phaclofen, F1,18=0.176; saline vs 1.0 mg/kg baclofen, F1,18=1.545; saline vs 1.25 

mg/kg phaclofen, F1,18=0.091) for any group (p>0.05 for all groups; see fig. 9). The 1.0 

mg/kg baclofen treatment, however, did produce a reduction in GABAB2 (F1,18=9.113, 

p<0.05), but none of the other treatments (saline vs 2.0 mg/kg baclofen, F1,18=2.112; 

saline vs 0.9 mg/kg phaclofen, F1,18=0.013; saline vs 1.25 mg/kg phaclofen, F1,18=1.475)  

affected total amount of GABAB2 (p>0.05 for all groups; see fig. 9).  

 

 

Figure 9. Non-significant Western Blot Data and Representative Images. Ligand 
treatment did not significantly affect the average proportion (± SEM) of GABAB1 or 
GABAB2 subunits.  
 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1a 1b 2

Pr
op

or
tio

n 
G

A
B

A
B

/β
-A

ct
in

 D
en

si
ty

1a 1b 2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1a 1b 2Pr
op

or
tio

n 
G

A
B

A
B

/β
-A

ct
in

 D
en

si
ty

S B2.0 P0.9

1a 1b 2

S B1.0 P1.25

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1a 1b 2Pr
op

or
tio

n 
G

A
B

A
B

/β
-A

ct
in

 D
en

si
ty

S B2.0 P0.9

1a 1b 2

S B1.0 P1.25
Sal     Bac    Phac!

β-Actin!

GABAB2!
Sal     Bac    Phac!

β-Actin!

GABAB1a!

Sal     Bac    Phac!

β-Actin!

GABAB1b!



 
 

48 
 

CHAPTER 5 

SUMMARY, DISCUSSION, AND FUTURE DIRECTIONS 

In the above studies, we investigated the effect of different doses of baclofen (1.0 

mg/kg or 2.0 mg/kg SC) and phaclofen (0.9 mg/kg or 1.25 mg/kg SC), administered each 

day throughout the experiment, on performance of rats run in the MWM. Our study 

provides novel data indicating that the lower dose of phaclofen enhanced the acquisition 

of spatial memory, as exhibited by significantly decreased latency to find the hidden 

platform across days. The 0.9 mg/kg SC dose of phaclofen also enhanced performance in 

learning the new location of the hidden platform on the second day of reversal training. 

Furthermore, the 0.9 mg/kg phaclofen-treated animals demonstrated a preference for the 

new platform location as indicated by a significant number of annulus crossings for the 

new platform location during the reversal platform probe. These data indicate a subtle 

enhancement of learning in the initial acquisition of a spatial task, as well as when the 

conditions shift. Administration of a higher dose of phaclofen did not improve upon or 

even mimic the beneficial effect of the lower dose. Our data indicate that the 1.25 mg/kg 

dose impaired performance in locating the new platform location in the reversal phase 

while it did not alter the acquisition of the task compared to controls.  

Interestingly, while the higher dose of baclofen produced a significant 

performance deficit throughout the experiment, the lower baclofen dose did not 

negatively impact performance. Further, the low dose of baclofen did not significantly 

alter behavior during reversal training compared to controls, and may have facilitated a 

preference for the new platform location as indicated by the significant number of 

annulus crossing in the new platform location during the reversal probe. Treatment with 
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2.0 mg/kg baclofen did produce significant differences for swim speed during the 

reversal and visible sessions; because there were no swim speed differences during the 

initial hidden platform training, these results are inconsistent with a gross motor 

impairment that could be impairing MWM performance. Evaluation of performance in 

the open field task also did not indicate a motoric deficit due to baclofen. Therefore, it is 

unlikely that motoric impairment contributed to the deficits observed. Similarly, the 

elevated thigmotaxis in the MWM appears to reflect an altered search strategy by the 2.0 

mg/kg baclofen group, rather than an anxiety phenotype, since no differences in anxiety-

like behavior were observed in the open field test. Overall, the higher doses of both the 

agonist and antagonist produced some impairment in spatial learning. However, lower 

doses of those same compounds exhibited positive behavioral impacts and appeared to 

facilitate learning. These data suggest that there is an optimal, finite range of activation 

within which the GABAB receptor must operate for proper functioning or to enhance 

learning. That is, too little or too much activation may be as deleterious as too little or too 

much antagonism to spatial learning and memory. This possible finite range may account 

for some of the differences observed in previous investigations.  

In order to identify potential mechanisms responsible for the behavioral data, we 

also examined alterations to total protein targets due to ligand administration. 

Interestingly, both the administration of 0.9 mg/kg phaclofen and 1.0 mg/kg baclofen 

throughout the MWM task produced a significant decrease in the total hippocampal 

expression of the AMPA receptor subunit GluR4. Though only the 0.9 mg/kg phaclofen-

treated group exhibited a significant enhancement in reference memory during reversal 

training, both groups demonstrated a significant preference for the new platform location 
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during the reversal platform probe based on the annulus crossings. These data suggest a 

possible beneficial alteration in the interplay between the GABAergic and glutamatergic 

systems. Sagata et al. (2010) found that GluR4 knockouts behaved normally, and even 

exhibited a subtle, yet significant, spatial learning and memory enhancement. The authors 

also concluded that the GluR4 knockouts demonstrated “weaker perseveration tendency 

and higher behavioural flexibility” compared to controls (Sagata et al. 2010), which is 

consistent with the data obtained in the present study. The decreased expression of GluR4 

in the present study may therefore be related to the enhanced spatial learning and memory 

and learning flexibility.  

Further, both of these treatment groups that exhibited enhanced flexibility also 

exhibited a decrease in pSer892. Phosphorylation of serine 892 on the GABAB2 receptor 

is implicated in stabilizing GABAB receptors at the surface of the cell membrane (Couve 

et al., 2002; Fairfax et al., 2004). Recent evidence suggests that pSer892 decreases 

desensitization of the GABAB receptor (Benke et al., 2012) by preventing the uncoupling 

of the GABAB receptor from G protein-coupled inwardly rectifying potassium channels 

(GIRK), a process guided by K+ channel tetramerization domain 12 (KCTD12; 

Adelfinger et al., 2014; Turecek et al., 2014). KCTD12 may also aid in the signaling 

precision of GABAB receptors by preventing receptor internalization and promoting 

desensitization (Ivankova et al., 2013; Schwenk et al., 2010). Therefore, it is possible that 

the decrease in pSer892 may encourage receptor desensitization, decreased GIRK 

signaling, and enhanced signaling precision via the mechanisms of KCTD12 (see fig. 10). 
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Figure 10. Proposed Effect of Ligands on pSer892. Phosphorylation at Serine 892 on the 
GABAB2 receptor subunit inhibits KCTD12 (a). With less pSer892, KCTD12 is able to 
prevent potassium channel activation by inhibiting the beta-gamma G-protein subunits 
(b). Dashed lines represent less activity. 

 

 

Interestingly, the 0.9 mg/kg phaclofen-treated group also showed a significant 

increase in GIRK2 expression. This potassium channel is activated by Gi/o G-proteins 

(Cui, Ho, Kim, & Cho, 2010; Jelacic, Kennedy, Wickman, & Clapham, 2000; Mark & 

Herlitze, 2000), and over-expression is typically associated with impaired learning and 

memory (Best et al., 2012; Harashima, Jacobowitz, Stoffel, et al., 2006a; Harashima, 

Jacobowitz, Witta, et al., 2006b). Possibly, the up-regulation of the GIRK subunit 

identified in this experiment is in response to the loss of the Gi/o signal due to the 

antagonist treatment. In vitro studies demonstrate that GABAB receptors do not respond 

to chronic agonist activation by down regulating overactive receptors, the typical 

response for other G-protein coupled receptors (Fairfax et al., 2004). It may be likely, 

therefore, that targets downstream of the G-protein signal cascade up- or down-regulate 
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pSer892, which could enhance the uncoupling mechanism of KCTD12 described above, 

it is possible that the increase in this GIRK subunit may be an attempt to regain function 

of an overly-silenced channel.  

Treatment with 1.0 mg/kg baclofen or 0.9 mg/kg phaclofen may enhance synaptic 

plasticity as indicated by the decreases in AMPA GluR4 and pSer892, as well as the 

increase in GIRK2 for the phaclofen-treated group. The regulation of AMPA at a synapse 

is a well known marker of synaptic plasticity (Kessels & Malinow, 2009). Because 

pSer892 is implicated in receptor stability, decreased expression could demonstrate 

changes related to the strengthening or weakening of plastic synapses (Gerrow & Triller, 

2010; Mao et al., 2009). Further evidence that the 0.9 mg/kg phaclofen treatment may be 

facilitating synaptic plasticity stems from the changes observed to GIRK expression. 

GIRK has been demonstrated to be necessary for the depotentiation of long-term 

potentiation (Chung et al., 2009a), and increased NMDA receptor activity upregulates 

GIRK channels (Chung, Qian, Ehlers, Jan, & Jan, 2009b). Therefore, the altered 

expression of AMPA GluR4, pSer892, and GIRK2 could indicate increased synaptic 

plasticity due to the administration of low doses of GABAB receptor ligands.  

The above data may also indicate alterations to presynaptic GABAB receptors. If 

the low dose of phaclofen blocks both pre- and postsynaptic receptors, it is possible 

phaclofen antagonism is creating a synergistic effect to enhance learning and memory. 

For instance, phaclofen may antagonize the activity of presynaptic heteroreceptors on 

glutamatergic neurons, leading to the prevention of GABAB receptor-mediated reduction 

in glutamate release. This blockade would result in more glutamate reaching the 

postsynaptic neuron (Vigot et al., 2006; Waldmeier et al., 2008). Phaclofen blockade of 
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postsynaptic GABAB receptors decreases the hyperpolarizing effects of endogenous 

GABA receptor activation, thus enabling the postsynaptic neuron to depolarize more 

easily. Other studies demonstrate that the antagonism of GABAB receptors could enhance 

NMDA-mediated spatial learning and memory (Davis, Butcher, & Morris, 1992; 

McNamara & Skelton, 1993; Shapiro, 2001; Vorhees & Williams, 2006). Furthermore, 

GABAB-induced potassium conductance appears to have a negative relationship with 

NMDA receptor conductance (Sanders, Berends, Major, Goldman, & Lisman, 2013), 

such that GABAB receptors possibly actively suppress NMDA receptor activity. It is, 

therefore, possible that phaclofen may enhance learning and memory through both pre- 

and postsynaptic mechanisms. 

Evidence suggests that low concentrations of baclofen preferentially bind to 

presynaptic receptors (Pinard et al., 2010; Yoon & Rothman, 1991). Therefore, it is 

possible that the low dose of baclofen used in this study could be selectively activating 

autoreceptors and preventing the presynaptic release of GABA. Recent evidence also 

demonstrates a direct connection between GABAB signaling and both excitatory (e.g. 

LTP, AMPA receptor number) and inhibitory (e.g. GIRK activation) mechanisms 

(Terunuma et al., 2014). Future studies could examine this relationship between GABAB 

and NMDA receptor activity on spatial learning and memory, perhaps through the dual-

administration of GABAergic and glutamatergic ligands.  

Treatment with 2.0 mg/kg baclofen produced a significant increase in 

hippocampal GAD67. The increase in GAD67 protein levels suggests an increased 

production of intracellular GABA, and it has been suggested that intracellular GABA 

concentrations can influence the release of vesicular GABA (Overstreet & Westbrook, 
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2001). Combined with the actions of baclofen (decreased presynaptic neurotransmitter 

release and increased postsynaptic inhibition) and the non-significant trend of increased 

GABAB receptor subunits, these data suggest a state of over-inhibition of hippocampal 

neurons. Intracellular GABA can also be slowly released in an action potential-

independent manner (Schoffelmeer, Wardeh, & Vanderschuren, 2001), which may 

increase the tonic levels of extracellular GABA. This increased extracellular GABA may 

then start to bind to GABA receptors; because some of the GABAB receptors are likely 

occupied by baclofen, it is plausible that the released GABA would then bind to GABAA 

receptors – again, producing more postsynaptic inhibition. It is well established that 

enhancing GABA tone via GABAA receptors impairs learning and memory (Brioni, 

Nagahara, & McGaugh, 1989; Kim et al., 2012; Torkaman-Boutorabi et al., 2013; 

Zarrindast et al., 2002). Therefore, it is plausible that the administration of 2.0 mg/kg 

baclofen could produce learning and memory deficits through the activation of both 

GABAA and GABAB receptors.  

Interestingly, the 1.0 mg/kg dose of baclofen produced a significant decrease of 

kalirin-5, kalirin-7, and kalirin-9, but did not cause an increase in GAD67 or produce a 

behavioral deficit. It is possible that the behavioral deficits seen in the 2.0 mg/kg baclofen 

group are a product of an interaction between the decrease in kalirin-7, specifically 

(described below), and the increased GAD67. Possibly, the lack of a behavioral deficit 

and subtle enhancement in the 1.0 mg/kg baclofen group could be due to an interaction of 

the decreased kalirin isoforms, pSer892, and GluR4. Or the changes to pSer892 and 

GluR4 alone could indicate changes to synaptic plasticity (as described above), perhaps 

via a presynaptic, kalirin-independent mechanism. 
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The administration of 2.0 mg/kg baclofen produced a significant decrease in 

kalirin-7, a key component to the formation of synapses, as well as a marker of excitatory 

postsynaptic density (Ma et al., 2008b). If we examine these results under the theoretical 

framework of long-term potentiation, which suggests that increased activity of neurons 

strengthens neuronal connections and synapses, in conjunction with the increased 

GAD67 data, 2.0 mg/kg baclofen treatment may be promoting the removal of over-

inhibited synapses from the synaptic network. The decrease in kalirin-7 suggests a 

decrease in synaptogenesis, a reduction of dendritic spines, or decreased ability for 

synapse rearrangement (Ma et al., 2008b), which coincides with the idea of synaptic 

pruning. Reducing neuronal connections or the decreased ability for synapses to 

reorganize, particularly in the hippocampus, could explain the spatial memory 

impairment in the 2.0 mg/kg baclofen-treated group. If a lack of synaptic strengthening 

and the pruning of those synaptic connections were to occur, a substantial learning deficit 

would result, as was demonstrated in this study. The implications of these data may shed 

light on mechanisms responsible for the spatial learning and memory decreases 

associated with certain psychiatric and neurological disorders. 

Alternatively, the impaired performance of the 2.0 mg/kg baclofen group could be 

due to a failure to adapt new strategies to escape the MWM. Given that performance on 

the last day of hidden training was so similar to the first day, the lack of improvement 

could be a result of this group using an escape strategy not predicated on locating the 

platform. Previous studies indicate that reduced synaptic plasticity is related to poor 

search strategy use (Garthe, Behr, & Kempermann, 2009; Gil-Mohapel et al., 2013; 

Santin et al., 2009). Therefore, administration of 2.0 mg/kg baclofen could negatively 
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impact synaptic plasticity, which in turn negatively affects the use of spatially-driven 

search strategies.  

Impaired memory flexibility and spatial learning and memory are key features of 

both Alzheimer’s disease and schizophrenia (Addington & Addington, 1999; Albert, 

1996; Cherrier et al., 2001; deIpolyi et al., 2007; Hanlon et al., 2006; Spieker et al., 

2012). Further, these diseases also exhibit altered GABAergic markers (Bai et al., 2014; 

Burbaeva et al., 2014; Schwab et al., 2013; Seidl et al., 2001), GABAB markers (Chu et 

al., 1987a; Massone et al., 2011; Young, 1987), and kalirin-7 (Mandela & Ma, 2012; 

Murray et al., 2012; Youn et al., 2007). Together with the data from this study, further 

examination of the impact of altered GABAergic and GABAB receptor signaling as it 

relates to spatial learning and memory in these diseases is warranted.  

A limitation to the current studies is our inability to determine whether the 

subunits of GABA receptors were part of functional or membrane-expressed receptors. 

While we attempted to address this issue by examining pSer892, which is implicated in 

membrane stability of the GABAB receptor, we cannot demonstrate that these B2 

subunits were actually expressed at the surface of the membrane. Furthermore, many of 

our of conclusions are drawn from studies examining changes demonstrated in vitro that 

have not yet been confirmed to take place in vivo. Another limitation stems from the 

route of injection utilized in these studies. While the data indicate behavioral and protein 

changes related to ligand administration, we can not determine the ligand concentration 

once it reaches the central nervous system and, therefore, the exact impact these ligands 

have on certain neural regions. 
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Possibly, GABAB receptor activation is modulated by stress. While the MWM is 

not as stressful as other tasks (like fear conditioning), the task does produce some initial 

stress as the animals learn how to escape. Future experiments could examine the effect of 

GABAB receptor ligands on other, non-stress inducing behavioral tasks, such as the radial 

arm maze. Further, investigations of how GABAB ligands alter the function of other 

markers implicated in receptor stability, and the impact those changes have on memory 

flexibility and spatial learning and memory, would help expand our knowledge of 

GABAB mechanisms of action. Additionally, the examination of the effect of altered 

presynaptic versus postsynaptic GABAB receptor activity would be another interesting 

future direction. The data from the above studies indicate an impact of altered GABAB 

receptor activity on glutamatergic targets, and examining this link could also help 

identify potential therapeutic targets. As reviewed above, in vitro investigations indicate 

that GABAB ligands produce different effects within the DG and CA1. Future 

experiments could examine the behavioral effect of GABAB ligands infused into these 

discrete brain regions to determine whether these in vitro data translate in vivo. 

The intended goal of the current experiment was to determine whether altered 

GABAB receptor activity would affect both memory flexibility and spatial learning and 

memory. Overall, our data suggest that GABAB receptor activity due to low-levels of 

ligand administration, regardless of agonist or antagonist, enhances spatial learning and 

memory. Conversely, GABAB receptor activity due to high-levels of ligand 

administration impairs spatial learning and memory. Additionally, we identified 

behavioral and molecular changes similar to what is seen in Alzheimer’s disease and 

schizophrenia. Together, these data provide insight to the in vivo mechanisms of GABAB 
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receptor activity, as well as potential mechanisms associated with GABAB receptor 

activity, memory flexibility, and spatial learning and memory.  
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