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Abstract 

Although categorization has been studied in depth throughout development in the visual domain 

(e.g., Gelman & Meyer, 2011; Sloutsky 2010), there is little evidence examining how children 

and adults categorize everyday auditory objects (e.g., dog barks, trains, song, speech) or how 

category knowledge affects the way children and adults listen to these sounds during 

development. In two separate studies, I examined how listeners of all ages differentiated the 

multidimensional acoustic categories of speech and song and I determined whether listeners used 

category knowledge to process the sounds they encounter every day. In Experiment 1, listeners 

of all ages were able to categorize speech and song and categorization ability increased with age. 

Four- and 6-year-olds were more susceptible to the musical acoustic characteristics of ambiguous 

speech excerpts than 8-year-olds and adults, but all ages relied on F0 stability and average 

syllable duration to differentiate speech and song. Finally, 4-year-olds that were better at 

categorizing speech and song also had higher vocabulary scores, providing some of the first 

evidence that the ability to categorize speech and song may have cascading benefits for language 

development. Experiment 2 demonstrated the first evidence that listeners of all ages have change 

deafness. However, change deafness did not differ with age, even though overall sensitivity for 

detecting changes increased with age. Children and adults had more error for within-category 

changes compared to small acoustic changes, suggesting that all ages relied heavily on semantic 

category knowledge when detecting changes in complex scenes. These studies highlight the 

different roles that acoustic and semantic factors play when listeners are categorizing sounds 

compared to when they are using their knowledge to process sounds in complex scenes.  
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Building categories to guide behavior: How humans build and use auditory category knowledge 

throughout the lifespan. 

Chapter 1: Introduction 

At any moment, a multitude of sounds are arriving at a listeners’ ears, and together these 

sounds create a rich representation of the surrounding acoustic landscape. When adults listen to 

acoustic scenes, attention is primarily object-based (Duncan, 2006; Shinn-Cunningham, 2008), 

with both the object’s physical characteristics and the object’s semantic category contributing 

heavily to how they attend to and make sense of their surroundings (e.g., Gregg & Samuel, 

2009). Categorization is evident when adults treat acoustically dissimilar sounds as equivalent 

(Massaro, 1987). This skill is an important tool in adults’ cognitive and perceptual repertoire 

because it aids in memory storage and retrieval and it can also guide behavior when new 

exemplars of a category are encountered (Gelman & Meyer, 2011). Yet, categorization is not just 

a feature of processing in adulthood. From their first months, infants can categorize a wide array 

of sights and sounds around them, including speech sounds, like /ba/ and /pa/ (Kuhl, 1983; 

Werker & Tees, 1984), and visual objects, like fish, dinosaurs, and cats (Fulkerson & Waxman, 

2007; Quinn, Eimas, & Tarr, 2001).  

Categorization is an important skill especially for young listeners who are still in the 

process of organizing and making sense of the sounds around them (Bornstein & Arterberry, 

2010). The ability to rapidly categorize objects can be important for highlighting relevant 

features and ignoring features that are not diagnostic of a category. For instance, when children 

are categorizing animals, they extend the category based on the shape and texture of novel 

objects, whereas only shape is important when categorizing novel artifacts (Booth & Waxman, 

2002; Jones & Smith, 2002). Similarly, children rely on color more than shape when determining 
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similarity in foods, but when the same objects are described as toys, children rely on shape more 

than color (Macario, 1991). Thus, children are able to learn the features that are most diagnostic 

or predictive of a given category and can selectively attend to those features when extending 

categories to novel objects in different contexts. 

Although there is a rich literature examining categorization for a range of visual objects 

throughout development (e.g., Ahissar & Hochstein, 2004; Gelman & Davidson, 2013; Sloutsky, 

Lo, & Fisher, 2001), there is relatively little research examining how these factors influence the 

way adults, and especially children, process everyday auditory objects (but see Berland et al., 

2014; Gygi, Kidd, & Watson, 2007; Gygi & Shafiro, 2011; Krishnan, Leech, Aydelott, & Dick, 

2013). Indeed, the majority of the research examining auditory categorization during 

development comes from consonant and vowel categories in speech perception (e.g., Holt & 

Lotto, 2010). In these studies, categorization often depends on the distribution of sounds along a 

single dimension like voice pitch, formant frequency (i.e., peak resonating frequencies of the 

vocal tract), or voice onset time (VOT; time between burst and voice onset). Even though adults 

seem to rely heavily on forming categories based on a single informative dimension (e.g., 

Idemaru & Holt, 2011), many natural categories are multidimensional in nature and require the 

listener to base their responses on multiple features or on a conjunction of dimensions (Ashby & 

Maddox, 1990).  

In auditory human communication, speech and song are two classes of human 

communicative utterances that differ on a number of dimensions. Song is typically more 

rhythmically regular, has a more stable fundamental frequency (F0), has longer utterances, and is 

higher in pitch than speech (e.g., Vanden Bosch der Nederlanden, Hannon, & Snyder, 2015a). 

Thus, these categories are not likely to be differentiated based on any single dimension, but as a 
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result of a combination of dimensions. In terms of their function, speech is considered to be 

particularly well-suited for the transaction of meaning or propositional thought, such as 

describing who is doing what to whom. In contrast, song is especially well-suited for emotional 

regulation, as demonstrated by its pervasive presence in mother-infant interactions (Trehub & 

Trainor, 1998), for regulating emotional stress in adolescence (Miranda, 2013), or for relieving 

stress in the hospital (Thoma et al., 2013). Music also facilitates joint action by providing a 

strong rhythm for coordinating the movements of several individuals as in work songs or 

marches (Jackendoff, 2009). Thus, many categories, including speech and song can be 

differentiated by both perceptual similarity and by their function or status. 

Yet, when adults direct their utterances toward infants, the lines between speech and song 

are blurred. Infant-directed (ID) speech is more rhythmically regular and higher in pitch than 

adult-directed speech, and researchers have described that the melody is the message for ID 

speech (Fernald, 1989). Even in terms of emotional valence and intensity, ID speech and song 

overlap and adults and infants perceive infant-directed utterances as more positive and more 

loving than adult-directed utterances (Corbeil, Trehub, & Peretz, 2013; Trainor, Austin, 

Desjardins, 2000). Thus, it may take time for the developing listener to categorize speech and 

song as two distinct multidimensional auditory categories.  

There is no research that examines whether children or adults can categorize speech and 

song (but see Monson, Lotto, & Story, 2012), and, yet, there is a considerable amount of 

literature within each domain in isolation. Children have a large vocabulary and sophisticated 

knowledge of syntax by age 3, although there is still significant language development from age 

3 through age 8 in terms of grammar and vocabulary (Biemiller & Slonim, 2001; Marcus et al., 

1992; Tomasello, 1999). In music, infants possess many of the skills required to perceive a 
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melody in terms of pitch and rhythm discrimination, but culture-specific musical abilities, like 

harmonic expectancies or metrical structure, are still being learned and are quite malleable in 

early childhood through age 7 (Trainor & Trehub, 1994; Hannon et al., 2012). Given the 

considerable experience children have engaging in music and language, children may 

differentiate speech and song from an early age, which would result in no developmental 

differences in the ability to categorize speech and song with age.  

However, children are not always adept at teasing apart the manner in which a sentence is 

uttered from the content of the utterance. For instance, a neutral emotional sentence like “Today 

is Wednesday” could be said in a happy way, with a fast rate of speech and high pitch, or in a sad 

way, with a slow rate of speech and low pitch. When 4- to 10-year-olds were asked to rate the 

overall emotion of a sentence with incongruent semantic and acoustic content, 4-year-olds 

exclusively used sentence content, whereas adults and older children (8-10) primarily relied on 

paralanguage, or the way the sentence was uttered (Friend, 2000; Morton & Trehub, 2001). 

Similarly, five- to ten-year-olds also based their ratings on the semantic content of songs, even 

though adults rated emotion based on melodic cues (e.g., slow tempo, minor key) for the same 

text (Morton & Trehub, 2007). Children have trouble integrating the semantic content of words 

with the manner in which they were uttered for both spoken and sung utterances. These results 

suggest that children’s limited attentional resources are captured by lexical content, which 

overshadows prosodic and melodic cues to expressive qualities of speech and song. As such, it is 

possible that children may have trouble identifying whether or not an utterance was spoken or 

sung due to their pre-occupation with semantic content of novel utterances. 

The goal of Experiment 1 was to examine whether 4- to 8-year-old children and adults 

could categorize speech and song. Speech and song are of particular interest because the input 
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children receive changes over time, which means that children must learn to distinguish speech 

from song as they encounter a larger proportion of adult-directed compared to infant-directed 

speech. Thus, I examined whether children could categorize speech and song when utterances 

were carefully controlled for acoustic, semantic, and emotional factors. Speech and song were 

matched in average pitch, total duration, and semantic content, but they differed in F0 stability 

and syllable duration. Thus, although pitch height and overall duration varied within each group 

of the speech and song exemplars used for the current study, song had more stable F0 than 

speech. Using these carefully matched spoken and sung utterances, I examined whether 

categorization ability changed with age (Aim 1). As described above, learning categories can 

facilitate the processing of category-relevant features for animals, foods, and artifacts. Similarly, 

categories for speech and song may be important for organizing and processing human 

communicative utterances. Of course, it is also possible that categorizing speech and song and 

applying category-specific knowledge rely on separate underlying processes. Further, even if 

category knowledge is present, it may take time for children to learn to apply their knowledge of 

speech and song in a context-specific manner. As such, it is important to characterize whether 

the ability to categorize speech and song is related to language proficiency. I examined whether 

children’s speech and song categorization ability was related to language learning in particular, 

as indexed by vocabulary, or whether categorization ability was primarily related to general 

cognitive abilities, as indexed by standardized measure of fluid intelligence (Aim 2).  

Although children may be able to categorize these carefully matched exemplars of speech 

and song, it would be interesting to examine how children and adults perceive the musical 

characteristics of ambiguous utterances. Thus, another goal of Experiment 1 was more 

exploratory in nature and examined how children and adults categorized ambiguous utterances 
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that vary on a number of acoustic, semantic, and emotional factors (Aim 3). To examine this 

question, listeners also categorized two classes of ambiguous utterances, ID speech and auditory 

illusions from speech to song (called illusions). Auditory illusions are speech utterances that 

have relatively stable F0 for each syllable, like song (Tierney et al., 2012). When auditory 

illusions are repeated several times in succession, listeners with a range of musical abilities 

perceive them as transforming from speech to song (Deutsch et al., 2011; Tierney et al., 2012; 

Vanden Bosch der Nederlanden et al., 2015a). As outlined above, ID speech is often described as 

musical speech due to the presence of song-like features, including high pitch, long utterances, 

and heightened emotional intensity (e.g., Corbeil et al., 2013). Ambiguous utterances are 

particularly important for examining what factors drive categorization at different stages of 

development. In particular, factors like high pitch, long syllable durations, stable F0, and 

emotional intensity may be more predictive of song earlier in development as children are still 

learning what features are most diagnostic of song and speech. In families with young children, 

song is used to make daily routines special, fun, and engaging (Custodero, 2006). Therefore, it is 

possible that children may perceive acoustic correlates of positive or intense emotions, such as 

high pitch, as sounding more song-like. Thus, to examine what features are most predictive of 

song responses at each age group, all acoustic and emotional factors that have been described in 

previous research as being related to song will be used to predict the proportion of song 

responses for all ages (Aim 4).  

Given the considerable amount of experience children have with music and language 

during their first years, it was hypothesized that children would be able to differentiate speech 

and song already at 4 years of age. It was also hypothesized that categorization performance 

would increase with age as a result of increased understanding of the differences between speech 



 

7  

and song, but also as a result of increased integration of paralinguistic and semantic information 

(e.g., Morton & Trehub, 2001). It was also anticipated that children’s categorization ability 

would correlate with their vocabulary, given previous evidence in the visual domain that well-

formed categories could have cascading effects on the ability to process category-relevant 

features (e.g., Macario, 1991). Finally, it was hypothesized that 4- and 6-year-olds would rate the 

musical acoustic characteristics in ambiguous utterances as more song-like than older listeners, 

because younger children are presumably still learning to differentiate speech and song. It was 

also anticipated that older children and adults would rely on F0 stability and rhythmic regularity, 

while children would rely on these and additional acoustic features, again, as they develop more 

distinct categories for speech and song. 
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Chapter 2: Experiment 1 

Methods 

Participants 

A total of 56 listeners (14 from each of the following age groups: 4-year-olds, 6-year-

olds, 8-year-olds, and undergraduate adults) participated in the sorting task1 and all 42 children 

also participated in a standardized IQ task for a total of one hour of participation. Adults did not 

participate in the IQ subtests because their performance on the categorization task was 

anticipated to be at ceiling. On average, 4-year-olds (6 males) were 4.48 years old (standard 

deviation: .23 years), 6-year-olds (6 males) were 6.47 years old (sd: .24 years), 8-year-olds (6 

males) were 8.48 years old (sd: .29 years), and adults (7 males) were on average 20.2 years of 

age (sd: 1.96 years). No age groups had significant music training, but on average 4-year-olds 

had 1.3 months (sd: 3.5 months), 6-year-olds had 3 months (sd: 7.3 months), 8-year-olds had 7.5 

months (sd: 11.8 months), and adults had 11.8 months (sd: 19.0 months) of musical training. All 

participants were fluent English speakers, although two 4-year-olds, five 6-year-olds, one 8-year-

old, and four adults were bilinguals. One additional 8-year-old and five 4-year-olds were 

excluded because they did not finish the task (N=5) or because they pressed only one button for 

all trials (N=1). Children were recruited from the Las Vegas area and received a small prize/toy 

and certificate for their participation. Adults were recruited from the University’s psychology 

                                                

1 Power analyses, calculated using G Power, indicated that 8 participants per group would 
be sufficient for a significant within-subjects effect of speech compared to song (estimated ηp

2 = 
.8). Additional power analyses indicated that 13 participants per group were required to find a 
significant effect for correlational analyses (estimated r2 = .65). Thus, we chose 14 participants 
for each age group so that the side of the box that was for the play and the musical could be 
counterbalanced. 
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subject pool. All listeners reported normal hearing at the time of testing. All participants or 

caregivers provided informed consent before participation and children provided assent to 

participate. The University’s Institutional Review Board approved all materials. 

Apparatus 

All participants were tested individually in a quiet room using a MacPro4.1 running 

Windows 7 Enterprise. Stimuli were presented using a custom script in Presentation (16.3), with 

images displayed on a Samsung SyncMaster XL2370 23-inch monitor. Listeners heard sounds 

presented through headphones. Children heard sounds at about 60 dB SPL (sound pressure level) 

through KidzGear headphones and adults used Sony MDR-7506 Professional headphones. A 

custom Presentation script recorded computer keyboard presses made by the experimenter and 

participants indicated their responses to the experimenter by sorting a large laminated “sound 

card” into one side of a “sound sorting box” (i.e., shoe box) labeled “Play” or “Musical” (see 

Procedure). 

Stimuli 

Four types of stimuli were used for the current experiment: speech, song, ID speech, and 

illusions. Speech and song stimuli were designed to address categorization ability when several 

features were controlled, including semantics, overall pitch, and duration, so that factors that are 

considered more song-like did not 100% covary. The two ambiguous utterance types were not 

controlled for these features and were meant to index how song-like acoustic and emotional 

factors in natural spoken utterances affected listeners’ speech and song categorization. All 

utterances are compared here to understand how they differed from one another, but overt 

(speech and song) and ambiguous (ID speech and illusions) utterances were analyzed separately 

in the results section because these groupings differ from each other in many ways. 
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For ambiguous utterances, female ID speech samples were provided through personal 

communication with S. Trehub and J. Plantinga and were excerpts of infant-present, infant-

directed speech. Male ID speech excerpts were recorded by the parent in a natural play setting 

with instructions to refrain from singing, much like Nakata & Trehub (2004). Ambiguous speech 

excerpts were provided with permission from A. Tierney, but were originally obtained from free 

online audio book websites (librivox.org and audiobooksforfree.com). As such, only male 

recordings could be obtained for this group of ambiguous utterances. 

Overt speech and song samples were recorded for the current study using a ZOOM 

H4next Audio Recorder inside a sound-attenuated booth. Samples were recorded at 44.1 Hz and 

16-bit depth. The author created 15 spoken contours from Harvard sentences (see Appendix 1; 

IEEE Subcommittee, 1969) to match the average pitch and duration of spoken and song 

sentences as closely as possible. To create these stimuli, sentences were first spoken and 

recorded by the author in an emotional manner in order to create a natural sentence contour with 

a wide pitch range. Next, while trying to preserve that natural sentence contour, the author sang 

and recorded a melodic contour that fit well with the spoken sentence contour. Four 

actors/singers (2 males and 2 females) mimicked the 15 pre-recorded spoken and sung Harvard 

sentences and provided several exemplars of each sentence. Creating spoken and sung exemplars 

in this manner allowed for the examination of acoustic features that lead to successful 

categorization of speech and song, without the possibility that stimuli could be categorized solely 

based on features that were not reliable markers of speech and song categories, such as average 

pitch or overall duration. All segments were normalized to -35 dB Total RMS amplitude and 

were presented at approximately 60 dB SPL to participants through headphones. 
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To understand how stimuli differed in subjective dimensions of emotionality and 

intended audience, five participants each rated all 60 excerpts according to the excerpt’s overall 

emotional valence (1 = negative, 2 = neutral, or 3 = positive) and emotional intensity (1 = not 

emotional to 5 = very emotional). To validate that ID speech differed from other utterances, 

these same participants rated whether or not each excerpt was intended for an infant or an adult 

(responded “I” = infant or “A” = adult). Results are displayed in Table 1, below. ID speech was 

perceived as less adult-like, more emotionally intense, and more positive than all other sound 

types (all p’s < .01), which is consistent with previous research cited above. These results also 

confirmed that these ID speech excerpts were representative of this type of utterance. Illusions 

were rated as more adult-like, less emotionally intense, and less positive than all other types (p’s 

< .01), except for speech (intensity: p = .145; valence: p = .126). This confirmed that illusions 

were representative of typical adult-directed speech and that the speech exemplars created for the 

current experiment were similar in terms of emotional content to natural speech excerpts. Speech 

and song excerpts did not differ from each other in terms of overall emotional valence (p = .123) 

or intensity (p = .191), but speech was rated as more adult-directed than song (p = .005). Thus, 

overt spoken and sung excerpts could not be categorized by overall emotional valence or 

intensity and illusions differed from ID speech on all measures. 
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Stimulus Group Percentage “Adult” 
responses 

Emotional 
intensity rating 

Emotional 
valence rating 

Song 40 (8) 2.8 (.33) 2.3 (.26) 
    

Speech 59 (21) 2.5 (.59) 2.1 (.42) 
    

Illusions 97 (7) 2.2 (.48) 1.9 (.34) 
    

ID Speech 11 (15) 3.3 (.55) 2.7 (.3) 
    

Table 1. Participants’ responses for emotional intensity, emotional valence, and intended listener. 
Although illusions and ID speech differ on emotional intensity and valence, overt song and 
speech cannot be categorized by these factors alone. 

Several acoustic characteristics were also analyzed for each sentence, allowing for the 

assessment of group-level acoustic differences (see Table 2). Fundamental frequency (F0) was 

calculated using Praat’s autocorrelation function (Boersma & Weenink, 2010) after the floor and 

ceiling Hertz (Hz) levels were determined using the procedure and plug-in suggested by 

DeLooze and Hirst (2008) called Momel-Intsint (Hirst, 2005). This procedure improved the 

calculation of F0 and prevented octave transposition errors common to pitch measurement 

software. Syllable, vocalic, and intervocalic intervals were marked by hand by the experimenter 

using Peterson and Lehiste’s (1982) guidelines for phonemic segmentation. Vocalic Normalized 

Pairwise Variability Index (vNPVI) is a standard measure of speech rhythm and was calculated 

according to the formula provided by Grabe and Low (2002).  F0 stability was calculated for 

each sentence segment by taking the standard deviation of the F0 in semitones (St) for each 

syllable and then by taking the average of the standard deviations across all syllables in an 

utterance. Note that larger values of F0 stability indicate less stability. F0 range was calculated 

by subtracting the minimum F0 recorded in an utterance from the maximum recorded F0 of the 

same utterance. 
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Stimulus 
group 

F0 
(Hz) 

Syllable F0 
stability  
(SD St) 

Syllable 
duration 

(ms) 

Total 
duration 

(s) 

Range 
(St) 

vNPVI 
 

Song 199.3 
(68.7) 

.73  
(.33) 

274  
(50) 

2.611  
(.45) 

9.9  
(2.6) 

64.4 
(19.1) 

       
Speech 196.0 

(68.6) 
1.3  

(.17) 
253  
(48) 

2.442  
(.34) 

14.0 
(2.3) 

57.1 
(16.9) 

       
Illusions 139.6 

(46.6) 
.90  

(.30) 
205  
(74) 

1.289  
(.27) 

9.7  
(1.6) 

66.1 
(23.8) 

       
ID speech 235.2 

(48.8) 
1.6  

(.75) 
491  

(383) 
1.579  
(.70) 

14.2 
(4.7) 

65.7 
(19.9) 

       
Table 2. Acoustic characteristics averaged by stimulus group. 

Song and speech did not differ in average F0, average syllable duration, total duration, or 

vNPVI (p’s > .1). However, speech had a larger F0 range and had less F0 stability than song (p’s 

< .01). Although it is initially surprising that the total range is larger in speech than song, this is 

likely due to creating speech stimuli that had the same average F0 as sung utterances. Illusions 

and songs were not different in their average range (p = .855) and ID speech and speech were not 

different from each other in terms of range (p = .892). Greater F0 stability for song compared to 

speech is consistent with previous literature (Tierney et al., 2012). It is also of interest to note 

that for F0 stability, all utterance types were significantly different from one another, except ID 

speech did not differ from speech (p = .070) and illusions did not differ from song (p = .305). 

Illusions were lower in F0 overall (p’s < .05), likely because this group was comprised of only 

male voices. ID speech was higher in pitch than illusions (p < .001) and marginally higher than 

speech (p = .075), which is consistent with previous work comparing adult-directed and infant-

directed speech (Fernald, 1989). ID speech also had significantly longer average syllable 

durations than all other groups (p’s < .01). Finally, there were no group differences in vocalic 

nPVI (p = .575). Thus, although speech and song are matched on a number of characteristics, 
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they differed in F0 stability and F0 range. Ambiguous utterances differed from one another on all 

reported measures except for total duration and vNPVI, and ID speech utterances were more 

similar acoustically to overt speech, whereas illusions were more similar to overt song. 

Procedure 

All listeners were given a story about Frankie, a sound engineer, who recorded sounds for 

a play and for a musical. Frankie needed to get the recorded clips back to the actors so that they 

could practice, but all the sound files were mixed up on the computer. All participants were 

asked to help Frankie sort the sounds by putting each sound file (a laminated card) into the 

correct part of a sound-sorting box. Instead of physically sorting laminated cards, adults simply 

pressed “M” for musical and “P” for play on the keyboard. Listeners were first trained on the 

procedure using overtly spoken Harvard sentences and overtly sung children’s songs (see 

Appendix 1). During training, participants were told that if someone was singing, the sound card 

belonged in the musical and if someone was speaking/talking the sound card belonged in the 

play. Training was repeated if participants failed to understand the difference between utterances 

that belonged in the play or the musical. The sorting task was split into 4 smaller blocks with 15 

sounds in each block, but speech, song, ID speech, and illusions were presented in a random 

order chosen by Presentation software. A trial consisted of two presentations of one of the 60 

utterances and then a prompt to sort the sound into the side of the box that was for the play or the 

side of the box that was for the musical. The side of the box dedicated to the musical and the 

play was counterbalanced. Upon completion of the sorting task, children began the Vocabulary 

and Matrix Reasoning subtests. 
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Results 

In order to assess categorization performance, the proportion of trials in which 

participants responded “song” were recorded for each utterance type. As described above, overt 

speech and song were analyzed separately from ambiguous utterances due to their acoustic, 

emotional, and semantic differences. The proportion of song responses was submitted to a 2 x 4 

(Utterance Type [song, speech] x Age [four, six, eight, adult]) mixed design Analysis of 

Variance (ANOVA) with utterance type as a within-subjects factor and age as a between-

subjects factor. A main effect of utterance type was found, F(1, 52) = 519.59, p < .001, ηp
2 = 

.909, with more song responses on song trials (87.2%) than speech trials (15.4%; see Figure 1). 

There was a main effect of age, F(3, 52) = 4.66, p = .006, ηp
2 = .212, such that the overall 

proportion of song responses increased with age. However, planned comparisons revealed that 

even though 4-year-olds had fewer song responses than all other ages (p’s < .02), all other age 

groups did not differ from one another (p > .353). Age also interacted with utterance type, F(3, 

52) = 6.20, p = .001, ηp
2 = .263, and planned comparisons indicated that there was no difference 

in the proportion of song responses for speech trials across age groups (p = .698), but there was 

an increase in the proportion of song responses with age for song trials, F(3, 52) = 9.84, p < .001, 

ηp
2 = .362, which can be seen in Figure 1. Thus, all age groups were able to categorize speech 

and song, but their ability to categorize song increased with age (r = .45, p< .001). 
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Figure 1. Proportion of song responses for overt speech and overt song utterance types for all age 
groups. Listeners became better at categorizing song with age, but not speech. 

To further understand how overall speech and song categorization ability changed with 

age, the proportion of song responses on overt song trials was subtracted from the proportion of 

song responses on overt speech trials. This song-speech difference score gives a better estimate 

of overall categorization performance than simply looking at the rate of responding song for each 

utterance type. Categorization performance increased with age, F(3, 52) = 6.20, p = .001, ηp
2 = 

.263, as is clear in Figure 2. In particular, 4-year-olds were significantly worse at speech-song 

categorization than 8-year-olds (p = .002) and adults (p < .001) but not 6-year-olds (p = .127), 6-

year-olds were worse than adults (p = .022) but not 8-year-olds (p = .093), and 8-year-olds were 

not different from adults (p = .524; see Figure 2). These results indicated that speech-song 

categorization changed with age and reached adult-like levels by age 8. Thus, even though all 

ages were able to categorize speech and song, this skill took time to fully develop.  
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Figure 2. Speech-song difference scores for each age group indicated that categorization ability 
increased with age. 

Speech and song categorization ability was compared to vocabulary and fluid intelligence 

by correlating children’s raw scores for the two WASI subtests with speech-song difference 

scores for each age group separately. Speech-song categorization ability was significantly 

correlated with 4-year-olds’ vocabulary, r(12) = .676, p = .008, but not their matrix reasoning 

subtest scores, r(12) = .043, p = .885, as is evident in Figure 3. No correlations with speech and 

song categorization were evident for 6-year-olds’ vocabulary, r(12) = .406, p = .150, or matrix 

reasoning, r(12) = .377, p = .184, or for 8-year-olds’ vocabulary, r(12) = -.148, p = .614, or 

matrix reasoning, r(12) = .429, p = .126. Although speech and song categorization did not 

correlate with vocabulary and fluid intelligence for most age groups, there was a strong 

correlation between vocabulary and speech-song categorization for 4-year-olds. These results 

suggest that 4-year-olds who were better at teasing apart speech and song also had better verbal 

abilities, providing some of the first evidence that well-formed categories for speech and song is 

related to language learning. 
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Figure 3. Four-year-olds’ speech-song categorization ability for vocabulary and matrix reasoning 
subtests. Only vocabulary correlated with speech-song categorization ability. 

To analyze ambiguous utterances, the proportion of song responses were submitted to a 2 

x 4 ANOVA with utterance type (illusions, ID speech) and age (4, 6, 8, adult) as within and 

between subjects factors, respectively. There was a main effect of utterance type, F(1, 52) = 

86.24, p < .001, ηp
2 = .624, with a greater proportion of song responses for illusions (24.9%) than 

ID speech (5.5%; see Figure 4). There was also a main effect of age, F(3, 52) = 6.63, p = .001, 

ηp
2 = .277, such that 4- and 6-year-olds had a larger proportion of song responses than 8-year-

olds and adults (p’s < .05). The two youngest (p = .196) and the two oldest (p = .767) age groups 

did not differ from each other. Finally, age interacted with utterance type, F(3, 52) = 3.91, p = 

.014, ηp
2 = .184, with a slightly stronger effect of age for illusions, F(3, 52) = 6.07, p = .001, ηp

2 

= .259, than ID speech, F(3, 52) = 3.95, p = .013, ηp
2 = .186. Further, the proportion of song 

responses for illusions and ID speech were significantly above zero for all age groups (p’s < .05), 

except for adults’ responses for ID speech (p = .336). Together these findings suggest that 

listeners’ speech and song categorization was affected by musical acoustic characteristics in 

ambiguous utterances and that younger children (age 4 and age 6) were more willing to report 

these characteristics as sounding song-like than 8-year-olds and adults. Further, although ID 
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speech was greater than zero for all children, adults’ responses were not different from 0% song 

responses. The proportion of song responses for ID speech was also very low for all ages, 

providing some of the first evidence that although ID speech and illusions may be described as 

more musical than adult-directed speech, it is not primarily perceived as song-like at any age in 

this task.  

 

Figure 4. Proportion of song responses for ambiguous utterances shown for each age group. 

To examine the possibility that listeners’ use of acoustic features in this task changed 

over the course of development, we performed Multiple Linear Regression analyses using 

acoustic (Table 2) and emotional (Table 1) variables as predictors of song-like ratings, entered in 

a stepwise fashion separately for each age group. Because ratings of infant-directed stimuli were 

at floor with minimal variability (i.e. they all sounded like speech), this analysis only included 

stimuli from the overt sung, overt spoken, and illusion conditions. As average pitch is greatly 

affected by speaker gender, a dummy variable for gender was entered in the first step of the 

model to control for this factor. For all age groups, less F0 stability and longer average syllable 

duration predicted a significant amount of song responses (See Table 3). These factors explained 

62.0% of the variance for adults, F(3, 44) = 22.258, p < .001, 61.2% of the variance for 8-year-
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olds, F(3, 44) = 21.56, p < .001, 56.0% of the variance for 6-year-olds, F(3, 44) = 17.417, p < 

.001, and 52.6% of the variance for 4-year-olds, F(3, 44) = 15.14, p < .001. Thus, the same 

factors explained a significant proportion of the variance for all ages and none of the emotional 

factors were significant predictors of performance at any age.  

Age Group Predictor 
Standardized 

Beta t Sig. 
Four Speaker Gender -0.242 -2.215 p = 0.032 

  F0 Stability -0.644 -5.724 p < .001 
  Syllable Duration 0.533 4.870 p < .001 
          

Six Speaker Gender -0.259 -2.460 p = .018 
  F0 Stability -0.694 -6.403 p < .001 
  Syllable Duration 0.522 4.773 p < .001 
          

Eight Speaker Gender -0.402 -4.072 p < .001 
  F0 Stability -0.630 -6.193 p < .001 
  Syllable Duration 0.602 5.862 p < .001 
          

Adults Speaker Gender -0.355 -3.630 p = .001 
  F0 Stability -0.645 -6.401 p < .001 
  Syllable Duration 0.625 6.153 p < .001 
     

Table 3. Regression results for best fitting models shown for each age group. After controlling 
for speaker gender, all age groups relied on average F0 stability over the course of a syllable and 
average syllable duration. 

Discussion 

Experiment 1 provides the first evidence that children are able to categorize speech and 

song from age 4, even when several acoustic characteristics were carefully constrained. Further, 

listeners’ categorization ability increased with age, reaching adult-like levels by age 8. Speech 

and song categorization appears to be particularly important for young listeners, as 4-year-olds 

with better speech and song categorization abilities also had higher vocabulary scores. The 

relation between verbal ability and speech and song categorization does not appear to be simply 
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related to general cognitive abilities as there was no relationship between categorization 

performance and matrix reasoning performance for this age group. Despite a strong relationship 

between categorization ability and vocabulary for 4-year-olds, there were no such relationships 

for other age groups. This may be related to the fact that listeners’ categorization performance 

was increasingly near ceiling for older age groups, or because vocabulary was too coarse a 

measure of verbal ability. These limitations may not have allowed for a sufficient amount of 

variability necessary for relationships to become evident for older age groups. As such, the 

relationship between speech and song categorization and verbal ability should be carefully 

examined in future studies. In particular, using more fine-grained measures of speech processing 

and using a more sensitive measure of the recruitment of speech and song category knowledge 

could more directly address whether the presence of well-formed categories for speech and song 

actually leads listeners to weigh speech-relevant or song-relevant acoustic characteristics 

differently.  

Although categorization ability increased with age, song categorization in particular got 

better with age. Thus, it appears that, although listeners were quite consistent in their 

categorization of spoken utterances, they were still learning to identify which features were 

diagnostic of song and speech when the acoustic characteristics were more constrained. This 

finding may also be related to the amount of time children hear song compared to speech in their 

daily lives. Although singing is prevalent in early childhood, parents sing more often to their 

children during the first two years of life (Custodero, Britto, & Brooks-Gunn, 2003). Thus, 

children may require a greater amount of experience with song in order to learn the features that 

are most predictive of song even though they are adept at identifying speech. However, younger 

children were also more affected by the musical acoustic characteristics of illusions when these 
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acoustic factors were unconstrained. It is possible that children still require multiple redundant 

cues to category membership, until they have more well-formed categories for speech and song 

as is the case in speech segmentation (e.g., Christiansen, Allen, Seidenberg, 1998). Thus, 

younger children may be more willing to rate the musical acoustic factors of ambiguous 

utterances as more musical due to their redundancy, even while they are still learning to tease 

apart acoustic characteristics that are more predictive of speech compared to song.  

One surprising finding from the current study was that ID speech utterances were not 

rated as very song-like at any age. ID speech is a particularly interesting type of ambiguous 

utterance because there is a long history of describing these utterances as more musical (Fernald, 

1989), due to their high pitch, repetition, and rhythmic regularity (Corbeil et al, 2013). However, 

the acoustic characteristics of ID speech (i.e., large pitch range and unstable F0) and participants’ 

categorization responses were more consistent with overt speech than with overt song. Further, 

utterances with stable F0 over the course of a syllable and with longer syllable durations were 

more likely to be rated as song, but neither emotional valence or emotional intensity were 

significant predictors. One important difference between ID speech and other utterance types 

was that ID speech differed considerably in terms of the intended speaker. Thus, it is possible 

that the obvious direction of these utterances toward infants led listeners to discount the musical 

factors present within these utterance types. Yet, song was also rated as significantly more 

infant-directed than speech, but this did not appear to have an effect on adults’ categorization 

performance. Future studies should examine the contribution of emotional valence and intensity 

when these factors are not correlated with the intended recipient of the utterance. 

Even though participants of all ages relied heavily on these acoustic characteristics when 

forming categories for speech and song, the use of category information may not depend 
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primarily on acoustic factors. Therefore, Experiment 2 was designed to address how acoustic 

similarity and category membership contributed to auditory change detection in childhood. 
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Chapter 3: Experiment 2 

Experiment 1 examined knowledge of sound categories directly by asking children to 

label auditory stimuli as speech or song. In Experiment 2, I examined the possibility that 

knowledge of sound categories indirectly influenced how children process complex scenes 

typical of everyday life. Although children have well-formed visual categories from their first 

year (Bornstein & Arterberry, 2010), category knowledge may not affect they way children listen 

to sounds in complex acoustic scenes. Change deafness, the auditory analogue to change 

blindness, is a fruitful way to observe what perceptual and cognitive factors contribute to the way 

that adults listen to the sounds around them (Snyder & Gregg, 2011). In a typical change 

deafness task, listeners are asked to detect changes between two dynamic acoustic scenes with 

multiple, simultaneously presented auditory objects (e.g., Gregg & Samuel, 2008). In adulthood, 

listeners rely heavily on basic-level semantic category knowledge (e.g., dog, train, bird) even 

more than the magnitude of an acoustic change to detect changes (Gregg & Samuel, 2009). 

There are no studies examining change deafness in childhood, which makes it unknown whether 

children would even exhibit change deafness or whether they would weigh category information 

as heavily as adults.  

In the visual domain, there are a few studies examining visual change detection in 

childhood. In these studies, children attend to object-level information and semantically 

meaningful changes in complex visual scenes (i.e., central vs. marginal regions of interest) more 

than to changes involving only parts of objects (Shore et al., 2006; Fletcher-Watson et al., 2009). 

In contrast, the visual category induction literature indicates that younger children (age 4-5) rely 

primarily on visual similarity, whereas older children (11-12) rely solely on semantic category 
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labels (Sloutsky, Lo, & Fisher, 2001). Thus, it remains unclear whether children would weigh 

semantic category membership or acoustic features more heavily when they are detecting 

changes to everyday auditory objects in complex scenes.  

Experiment 2 examined how existing category knowledge for several types of everyday 

sounds (i.e., animals, human vocalizations, musical instruments, and environmental sounds) 

affected change detection in 6-year-olds, 8-year-olds, 10-year-olds, and adults.2 The main goals 

of Experiment 2 were to demonstrate whether children exhibited change deafness (Aim 1) and to 

examine whether children relied on acoustic similarity or category membership when detecting 

changes to everyday sounds in complex scenes (Aim 2). Further, I examined whether children of 

all ages could even encode and remember individual objects within each scene (Aim 3). In a 

standard change detection task all the sounds in a scene start at the same time. As common sound 

onsets and offsets are a primary means of auditory object formation (Shinn-Cunningham, 2008), 

it is possible that children will not be able to hear distinct auditory objects in each scene. Also, in 

order to apply category knowledge, the listener must be able to stream individual objects from 

other simultaneously presented objects. To examine this ability, I used an object-encoding task. 

In these tasks, the listener is asked whether or not a single sound was present in the previous 

change detection task (Gregg, Irsik, & Snyder, 2014). This task provides a measure of whether 

the listener was able to encode individual objects in each scene, as opposed to listening for any 

                                                

2 Six-year-olds were the youngest age group tested in previous auditory object processing 
literature and they were able to classify everyday sounds into categories during a free sorting 
task (Berland et al., 2014). In the developmental change blindness literature, there are typically 
three age groups with an average of 6, 8, and 10 years of age to capture the dynamic changes in 
working memory that occur during this age window (Gathercole et al., 2004). Further, a change 
detection task is taxing on auditory working and short-term memory and our task includes a 
secondary task which increases task difficulty. Given the attentional and dual task constraints, in 
addition to previous literature, I included school-aged children starting from age 6. 
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acoustic change without attention to individual objects. Similar tasks have been used in previous 

auditory (Gregg & Samuel, 2008; Gregg, Irsik, & Snyder, 2014) and visual change detection 

literature (Mitroff, Simons, & Levin, 2004). 

Finally, the use of category information may be related to listeners’ sophistication with 

language or to their general fluid intelligence. The final aim of this study was to relate change 

detection performance in general, and category use in particular, to standardized measures of 

vocabulary and fluid intelligence (Aim 4). In particular, the vocabulary subtest of the WASI 

measures children’s vocabulary and general sophistication with language, which provides some 

insight into crystallized knowledge for everyday objects and concepts. Thus, this measure of 

vocabulary may be related to children’s ability to use category knowledge in complex scenes. Of 

course, overall performance may be simply related to a listeners’ general cognitive ability, as 

measured by performance on the matrix reasoning subtest, a test that examines participants’ 

ability to determine part and whole relationships. 

Given developmental findings from the change blindness literature, it was hypothesized 

that children would exhibit change deafness from as early as age 6 and that all listeners would be 

able to encode individual objects from complex change detection task scenes. Further, because of 

the similarity in task demands for change blindness and change deafness, it was hypothesized 

that all ages would rely primarily on semantic category knowledge compared to acoustic 

similarity. Finally, it was anticipated that vocabulary ability, as a measure of crystallized 

intelligence would correlate with listeners’ reliance on category changes for all ages. 
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Method 

Participants 

Sixty-four 6-year-olds, 8-year-olds, 10-year-olds, and adults (16 for each age group) were 

recruited from the greater Las Vegas area or from the University’s undergraduate psychology 

subject pool.3 The average age was 6.6 years (sd: .23 years) for 6-year-olds (5 males), 8.4 years 

(sd: .29 years) for 8-year-olds (8 males), 10.4 years (sd: .27 years) for 10-year-olds (7 males), 

and 19.9 years (sd: .98 years) for adults (6 males). Ten additional 6-year-olds (average age: 6.3 

years, sd: .25 years, 3 males) and three 8-year-olds (average age: 8.5 years, sd: .39 years, 1 male) 

were excluded from final analyses because they failed to understand the task, as indexed by a d’ 

(hits = responding different on change trials, false alarms = responding different on same trials) 

of 0.3 or less. Three additional children were not included because they did not want to complete 

the task (two 6-year-olds, one 10-year-old). In the final sample, 12 6-year-olds (2 males, 6.7 

years old on average), 11 8-year-olds (6 males, 8.7 years old on average), 13 10-year-olds (6 

males, 10.4 years old on average), and 16 adults (6 males, 19.9 years old on average) completed 

the standardized tests of intelligence (see Procedure). Parents/caregivers provided consent for 

their child to participate and filled out demographic questionnaires on their child’s behalf and 

children provided assent to participate. All parents reported that their child had normal hearing at 

the time of testing. Adults provided consent to participate and filled out demographic 

questionnaires. All adults reported normal hearing at the time of testing.  

Apparatus 

All participants were tested individually in the same manner as Experiment 1. 

                                                

3 Power analyses indicated that 16 participants for each group was sufficient for a 
significant within-subjects effect for 4 conditions with a small effect size (ηp

2= .2), which was 
anticipated due to the difficulty of the task and the attentional constraints of young participants. 
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Stimuli 

To examine listeners’ reliance on category knowledge and acoustic similarity, we created 

pairs of sounds that were within- or across-category changes and similar or dissimilar acoustic 

changes using 28 sounds (i.e., 14 unique categories with two exemplars for each sound category, 

see Appendix 2) for each condition. The majority of the sounds in the current study were taken 

with permission from Gregg and Samuel (2009). Two additional semantic sound categories 

(male and female, see Appendix 2) were also added in the same manner as the selection of 

stimuli in Gregg and Samuel (2008). All individual sounds were equated for total RMS 

amplitude, which is the best measure of dB SPL in a digital signal. 

 

Figure 5. Two-dimensional space (harmonicity measured in dB and the log of mean F0 measured 
in Hz) used to calculate Euclidian distance for all the sounds used in the current experiment. 
Abbreviations: Fem = Female, Mbox = Music box. 

Different trial pairings for the two acoustic similarity and category conditions relied on a 

given sound pair’s Euclidian distance, which was based on a two-dimensional (2D) space created 

from each sound’s mean F0 and harmonicity (degree of periodic information relative to noise in 
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the signal), after Gregg and Samuel (2009), as illustrated in Figure 5. F0 was calculated in the 

same manner described in Experiment 1. Euclidian distance was calculated using F0 and 

harmonicity because these dimensions are good measures of perceptual similarity for 

environmental sounds (Gygi et al., 2011; Gregg & Samuel, 2009).  

For category change trials, the 2D acoustic space was used to create 14 across-category 

sound pairs that matched our 14 within-category sound pairs in terms of the Euclidian distance in 

order to control for the magnitude of the acoustic change during category change trials. For 

example, the distance between the within-category pair of “PhoneA” and “PhoneB” in Figure 5 

was 6.39 units and the distance between its across-category counterpart “PhoneA” and “DogB” 

was 6.48 units (see Figure 5). The average Euclidian distance for all within-category different 

pairs was 6.55 units (SD = 3.77; range = 0.94 – 14.48) and the average distance for across-

category pairs was 6.45 units (SD = 3.74; range = 0.95 – 14.74), yielding no significant 

difference between groups (p = .944). The other three sounds in each scene were chosen 

randomly using a custom MatLab script, with the exception that two exemplars from a single 

category (e.g., large dog bark and small dog bark) could not both be present in a single scene. 

For acoustic similarity change trials, unique pairs were selected within a range of 0-4 

Euclidian distance units to create 14 short-distance acoustic change trials. Similarly, we selected 

unique sound object pairs within a range of 8-13 units to create 14 acoustically dissimilar 

changes. For instance, in Figure 5 “PhoneA” to “TrainA” is an acoustically dissimilar change of 

16.25 units and “PhoneA” to “FemaleA” is an acoustically similar change of 0.62 units. On 

average, Euclidian distance for acoustically similar trials was 1.29 units (SD = 1.0; range = 0.10 

– 3.21) and for acoustically dissimilar trials it was 10.14 units (SD = 1.5; range = 8.12 – 12.50). 
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No within-category exemplars were used for any of the acoustic change trials, which means that 

all acoustic change trials were also across category changes. 

Procedure 

As with previous change deafness studies (Gregg & Samuel, 2008; 2009), we used the 

one-shot paradigm to examine children’s ability to detect whether or not one auditory object 

changed from the first scene to the second scene. Both scenes were comprised of four 

concurrently presented environmental sounds and scenes were separated by a 350ms silent inter-

scene interval. Same trials had identical sounds in both scenes, while different trials had one 

sound in scene 1 replaced by a new sound in scene 2 (i.e., the other three sounds remained the 

same in scene 1 and scene 2). As described above, different trials were from any of the four 

change conditions (across-category, within-category, dissimilar acoustic change, similar acoustic 

change). After hearing both scenes, participants indicated whether the scenes were the same or 

different by pressing a green key for “same” and a red key for “different.” Overall, participants 

completed 84 change detection trials across two blocks, separated by a participant-controlled 

break. Fifty-six of the trials were change trials, with 14 trials for to each change type listed 

above. There were also 28 trials with no change (i.e., “same” trials), resulting in 33% same trials 

and 67% different trials.  

After each change detection task, an object-encoding task began. Participants heard a 

single auditory object in isolation that was either change-relevant and unique to scene 1 (12 

trials) or scene 2 (12 trials) or change-irrelevant and was presented in both scenes (16 trials) or 

neither scene (16 trials). For same trials, scene 1 and scene 2 were always identical, which only 

allowed for the assessment of objects from both scenes (14 trials) or neither scene (14 trials). 

Listeners were then asked whether or not they heard that single sound during the previous 
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change detection task. Participants used the green button to indicate that the sound was present in 

the previous change detection task (“Yes”) or the red button to indicate that the sound was not 

part of the previous change detection task (“No”). A schematic example of a single trial is 

depicted in Figure 6. 

 

Figure 6. An example of a single “same” trial, which includes both the change detection task and 
the object-encoding task. During testing no pictures of sounds were present. 

To make the task engaging for children, many of the techniques used to create exciting 

psychophysical tasks for young children were employed (Abramov et al., 1984). All participants 

were told a story about Bugsy (the yellow bug depicted in Figure 6) who was making party favor 

bags filled with toys that made sounds. Bags were the equivalent of a scene and the individual 

toys in the bags were the auditory objects. Participants were told that someone was changing the 

bags of toys and Bugsy needed someone to figure out which bags (scenes) were changed 

(different trials) and which bags were the same (same trials) so he could make all the bags the 

same for his party guests. Listeners completed two levels (i.e., two blocks) in order to get enough 

points to solve the mystery of the sound-changing bandit. All participants received non-

Were those two 

bags the same 

or different?

Was that toy in 

either of the 

last two bags?

1,000 ms 1,000 ms

350 ms

1,000 ms

Change Detection Task Object-encoding Task
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contingent feedback throughout the study. All participants were first familiarized with the testing 

paradigm during two rounds of training trials comprised of two- to four-object scenes 

accompanied by pictures. Following the computer game, participants provided responses for the 

Vocabulary and Matrix Reasoning subtests of the WASI. If children were not able to complete 

all tasks within the hour they were asked to return for a second visit to complete the WASI.  

Results 

Methodological considerations. Change deafness was operationally defined as more 

error on different than same trials, which is another way of measuring whether participants have 

a bias to respond “same” (Mitroff, Simons, & Levin, 2004). When error on same trials is low and 

uniform across conditions of interest, previous studies have simply used error on different trials 

as a direct index of what factors led participants to miss changes (i.e., error on different trials; 

Gregg & Samuel, 2009). However, because younger children are likely to have higher false 

alarm rates (as well as more misses) than older children and adults due to cognitive and 

attentional constraints, different trial error alone may be misleading as an index of change 

deafness. Previous studies have used d’ from signal detection theory (Macmillan & Creelman, 

1998) as a measure of the listeners’ overall sensitivity to detect changes (Eramudugolla et al., 

2005), but it is not a direct measure of change deafness because d’ can differ solely as a result of 

false alarms, without any difference in how many changes are missed. We therefore used both 

approaches. We used error on same versus different trials to confirm the presence of change 

deafness, whereas we used d’ as a measure of overall change detection sensitivity for comparison 

across conditions, except when false alarm rates could not be calculated.  

Change detection analyses. To determine the presence of change deafness, error rates for 

same and different trials were compared across all age groups using a mixed-design ANOVA, 
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with trial type (same, different) as a within-subjects factor and age group (6, 8, 10, adult) as a 

between-subjects factor. A significant main effect of trial type, F(1, 60) = 272.82, p < .001, ηp
2 = 

.82, determined that there was a higher error rate on different than same trials, but trial type did 

not interact with age group (p = .691). There was a main effect of age group for overall error 

rates, F(3, 60) = 15.56, p < .001, ηp
2 = .44, indicating that error decreased for all trials (whether 

same or different) as age increased (see Figure 7). Planned comparisons showed that most ages 

were significantly different from each other (all p’s < .014), except 8-year-olds were not different 

from 10-year-olds (p = .616) and 10-year-olds were not different from adults (p = .562), but there 

was no interaction between trial type and age (p = .691), suggesting that the rate of change 

deafness (i.e., greater error on different than same trials) did not differ with age. These results 

indicated that all listeners exhibited change deafness, with 34% error overall for different trials 

and 5% error on same trials, but change deafness did not decrease with age.  

 

Figure 7. Proportion of error on same and different trials shows that all ages show evidence of 
change deafness (greater error on different than same trials), but rates of change deafness are 
stable for all ages. Overall sensitivity for detecting changes, measured in d’, increased with age. 
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Because false alarm rates differed with age, participants’ sensitivity (d’) for detecting 

changes (Macmillan & Creelman, 1998) was calculated (hits = responding different on different 

trials; false alarms = different responses on same trials). The same overall decrease in error with 

age was confirmed using d’, as indicated by a main effect of age group in a one-way ANOVA, 

F(3, 60) = 20.48, p < .001, ηp
2 = .51. Again, most ages were significantly different from each 

other (all p’s < .013; see Figure 7), except that 8-year-olds and 10-year-olds (p = .254) and 10-

year-olds and adults (p = .171) did not differ in sensitivity. Together these findings indicate that 

despite relatively stable rates of change deafness, change detection sensitivity increased with age, 

and reached adult-like levels of performance by age 10. This suggests that the factors underlying 

change deafness, such as limitations on auditory memory, attention, or the ability to segregate 

individual objects in complex scenes, are already present by age 6. Further, change sensitivity 

also increased with age, presumably due to fewer behavioral mistakes and better attentional 

control with age.  

To determine whether semantic category and acoustic similarity affected change 

detection, d’ was submitted to a mixed-design ANOVA with condition (across, within, 

dissimilar, similar) and age group. A main effect of condition was found, F(3, 180) = 51.65, p < 

.001, ηp
2 = .46, but it did not interact with age group (p = .589). Sensitivity for within-category 

changes was worse than all other conditions (see Figure 8), including the similar acoustic change 

condition (p < .001), which suggests that noticing a change between sounds with similar acoustic 

characteristics is less difficult than a change between sounds from the same semantic category. 

As predicted, sensitivity was worse for within-category (1.76) than across-category (2.32; p < 

.001) changes and sensitivity was worse for changes between acoustically similar (2.20) than 

dissimilar (2.31; p = .017) pairs of sounds. There was no difference between across-category and 
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dissimilar acoustic change conditions (p = .822), but listeners were more sensitive to across-

category changes than similar acoustic changes (p = .034). A main effect of age group was also 

found, F(3, 60) = 20.73, p < .001, ηp
2 = .51, indicating that sensitivity increased with age. Six-

year-olds were less sensitive than all other ages (p’s < .012), adults were more sensitive than all 

other ages (p < .001) except 10-year-olds (p = .152), and 8-year-olds did not differ from 10-year-

olds (p = .268).  

 

Figure 8. Sensitivity was worse for within-category compared to across-category changes and 
compared to acoustically similar changes, indicating that all ages relied more heavily on category 
knowledge than acoustic similarity. 

Correlations were calculated between participants’ vocabulary raw scores, matrix 

reasoning raw scores, overall sensitivity, the difference between across-category and within-

category sensitivity, and the difference between acoustically dissimilar and similar change 

sensitivity for each age group separately. None of these correlations reached statistical 

significance (all r’s < .168, p’s > .2). Thus, change deafness did not relate to vocabulary or fluid 

intelligence outcomes. Further, these standardized measures were not related to the use of 
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semantic category knowledge or the magnitude of an acoustic change during the change 

detection task.  

Object Encoding (OE) Analyses. For OE analyses, six children (three 6-year-olds and 

three 8-year-olds) were excluded because, despite understanding the change detection task, they 

did not understand the OE task. These six children pressed the “No” or red button for nearly 

every OE question, yielding nearly perfect performance on trials presenting an object that was in 

neither scene (0% error) and nearly floor performance (100% error) on all other trials.  

To examine whether the remaining participants were able to encode individual objects 

presented in complex scenes, object-encoding sensitivity was submitted to a mixed-design 

ANOVA with OE type (change-relevant [scene 1, scene 2], change-irrelevant [both]) as a within-

subjects factor and age group (6, 8, 10, adult) as a between-subjects factor. A main effect for OE 

type was observed, F(1, 54) = 13.62, p < .001, ηp
2 = .20, but the interaction between OE type 

and age was not significant, F(3, 54) = 1.65, p = .189, ηp
2 = .08. Thus, all age groups had worse 

sensitivity for change-relevant objects (1.34) than for change-irrelevant objects (1.50; see Figure 

9b). In other words, an object presented in both scenes was more likely to be correctly identified 

than an object presented in only one scene. Age also impacted overall error rates, F(3, 54) = 

7.10, p < .001, ηp
2 = .28, with an increase in sensitivity (i.e., better object encoding) with age. 

Planned comparisons found that 6-year-olds had worse sensitivity than adults (0.86 compared to 

2.03; p < .001) and were marginally less sensitive than 10-year-olds (1.52; p = .062), although no 

other age comparisons were significantly different from each other (p’s > .305) as illustrated in 

Figure 9a. Finally, all object-encoding performance was significantly above chance (6-year-olds: 

p’s < .01; all other ages: p’s < .001). These results suggest that children were able to form 
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coherent representations for individual objects even when sounds were presented with the same 

onsets as other sounds in a complex acoustic scene. 

 

Figure 9. Object-encoding sensitivity a) increased with age and b) was worse for change-relevant 
objects compared to change-irrelevant objects. 

Discussion 

The current results provide the first evidence for the presence of change deafness in 

childhood. However, change deafness did not decrease with age, as the relationship between the 

amount of error on same compared to different trials was stable across all age groups. However, 

participants’ overall sensitivity for detecting changes increased with age and approached adult-

like levels by age 10. Sensitivity to change likely increases with age across modalities (see 

Fletcher-Watson et al., 2009; Shore et al., 2006) due to better control of attention and fewer 
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behavioral mistakes. These visual change detection studies did not include catch trials in which 

there was no change, however, which makes it possible that a change blindness paradigm that 

included no change trials would show a similarly stable change blindness effect even in the 

visual domain.  

Already by age 6, children and adults use their category knowledge to listen for changes 

to real-world sounds in complex scenes. All participants were worse at detecting changes to 

sounds from the same basic-level category compared to sounds that changed from one category 

to another. Within-category changes were even harder to detect than small acoustic changes, 

which suggests that all listeners relied more heavily on semantic category knowledge than 

acoustic similarity to detect changes. Thus, these results are in line with previous change 

deafness studies in adulthood (Gregg & Samuel, 2009) and change blindness literature in 

childhood (Fletcher-Watson et al., 2009; Shore et al., 2006), which found that participants relied 

on their semantic knowledge of individual objects to detect changes in complex scenes. All 

listeners were also able to encode individual objects within busy acoustic scenes, which is 

important for the application of category knowledge. Although overall sensitivity for encoding 

sounds increased with age, all participants were better at encoding objects that were heard in 

both scenes (i.e., change-irrelevant) compared to sounds that were only heard in one scene (i.e., 

change-relevant). 

It is important to note that although we did find a difference between acoustically similar 

and dissimilar changes, our effect was not as robust as previous studies with adults (Similar: ~2.2 

d’ units, Dissimilar: ~2.5 d’ units; Gregg & Samuel, 2009). One possible reason for this 

difference is that after each change detection task, we included an object-encoding task that 

played each object in isolation. This additional exposure to each sound may have inadvertently 
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helped listeners better individuate each object during the change detection task, reducing the 

difficulty associated with segregating simultaneously presented objects in each scene regardless 

of the size of the acoustic change (cf. Shinn-Cunningham, 2008). It is also possible that when 

listeners heard each object alone, they adopted a more object-based strategy in our change-

detection task. Thus, without the object-encoding task, it is possible that children and adults 

might have relied more equally on acoustic and semantic information. Further studies should 

examine change deafness without this object-encoding task to determine whether children are 

naturally biased toward using category knowledge or acoustic similarity, even though it is clear 

from the current study that they rely heavily on category knowledge. 

Together, the results from object-encoding and change detection tasks suggest that 

listeners of all ages rely heavily on their category knowledge to detect changes in the sounds 

around them. Given that children are able to form visual categories already in their first year of 

life, it is perhaps not surprising that children in this study, who had a considerable amount of 

experience with everyday auditory objects, relied on category knowledge to detect changes to the 

sounds in acoustic scenes. Future work should examine the reliance on category knowledge and 

acoustic similarity in infancy, when children are initially learning about everyday sights and 

sounds. 
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Chapter 4: General Discussion 

Together these experiments examined not only what factors listeners relied on to 

categorize multi-dimensional acoustic objects during development, but also whether category 

knowledge was used when listeners were performing a task that did not explicitly require 

listeners to categorize sounds. Categorization of speech and song was primarily based on 

listeners’ attention to the acoustic characteristics that were diagnostic of the category instead of 

the functional role of emotional content in speech and song. Yet, when participants were 

listening for changes to everyday sounds in complex scenes, acoustic characteristics played less 

of a role than their knowledge of the sound’s category. Thus, adults and children relied more 

heavily on acoustic characteristics to categorize auditory objects, but relied more heavily on their 

existing semantic category knowledge during a change detection task. Future studies should 

examine whether listeners can be biased to attend to the function of auditory objects during a 

categorization task or acoustic similarity during a change detection task in order to more fully 

address whether the results found here are indicative of processing biases or are task-specific. 

To further understand how categorization ability is related to the application of category 

knowledge in everyday listening situations, it would be important to examination these factors at 

the same time with the same listeners. Specifically, it would be interesting to determine whether 

children who were better at categorizing everyday acoustic categories, like dogs, cars, and 

human voices, were also better at applying that knowledge in a change detection paradigm. 

Similarly, are children who are better at categorizing speech and song also better at applying 

speech- or song-specific knowledge? Such studies would help elucidate whether the underlying 
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mechanisms involved in categorizing sounds are also active when listeners are applying that 

knowledge in daily experiences or whether they are largely task-dependent. 

Another important outcome of these studies is evidence that children can and do form 

categories for everyday objects that are multi-dimensional in nature. Previous studies on auditory 

categorization in development typically rely on a single dimension and are based in speech 

perception (e.g., Holt & Lotto, 2010). Further, there is a small literature on learning multi-

dimensional acoustic categories in adulthood, but these studies rely on either artificial acoustic 

categories created in the lab (based on duration and frequency; Goudbeek, Swingley & Smits, 

2009) or are again based on speech contrasts (pitch contour and phonetic content; 

Chandrasekaran, Yi, & Maddox, 2014). Thus, the current studies provide some of the first 

demonstrations of multi-dimensional acoustic category discrimination for everyday sounds 

during childhood and adulthood. Finally, it is also significant that children could apply category 

knowledge for individual objects even when they were presented under difficult listening 

conditions in complex scenes. 

Together these studies have the potential to inform how typically developing children 

listen to the sounds around them by providing an understanding of what factors are important for 

category formation and category use under different task and contextual demands. This research 

is important for a wide range of listeners as forming categories for complex sounds, like speech 

and song, may be a crucial step for typical language development. Children with pervasive 

developmental disorders, like autism, have trouble using knowledge in a context- or domain-

dependent manner, which is one of central deficits in several leading theories of autism spectrum 

disorder (Jarvinen-Pasley & Heaton, 2007; Happe & Frith, 2006). Deficits such as these have 

cascading effects on the way that listeners attend to important features in speech, like VOT, 
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while inhibiting irrelevant variations in pitch (Lepisto et al., 2008) or for attending to the human 

face over other visual objects in a scene (Kikuchi et al., 2009; Ro, Russell, & Lavie, 2001; New, 

Cosmides, & Tooby, 2007). The results presented here and future studies examining the 

perceptual and cognitive processes in categorization will help characterize how typically 

developing children weigh acoustic similarity and semantic category knowledge throughout the 

lifespan. Characterizing typical development is the first step toward assessing atypical 

development and designing clinical interventions for children that are developing atypically. 
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Appendices 

Appendix 1: Sentences for Experiment 1 

Training Stimuli 
Song: 

1.   Mary had a little lamb 
2.   The Itsy Bitsy Spider 
3.   Amazing Grace 

Speech: 
1.   Just hoist it up and take it away 
2.   The fruit of a fig tree is apple shaped 
3.   Our plans right now are hazy 

 
Test Stimuli 
Overt Song/Speech (same text) 

1.   Hop over the fence and jump in 
2.   Glue the sheet to the dark blue background 
3.   It’s easy to tell the depth of the well 
4.   Yell and clap as the curtain slides back 
5.   Pour the stew from the pot into the plate 
6.   The wide road shimmered in the hot sun 
7.   Madam, this is the best brand of corn 
8.   The boy was there when the sun rose 
9.   Help the woman get back to her feet 
10.  Press the pants and sew the button on the vest 
11.  The wagon moved on well-oiled wheels 
12.  The paper box is full of thumb tacks 
13.  Both brothers wear the same size 
14.  A king ruled the state in the early days 
15.  When you hear the bell come quickly 
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Illusions 
1.   Here is no less 
2.   Gave the houses 
3.   Snags and sand bars 
4.   Somehow I can get 
5.   People in the neighborhood 
6.   And one cannot help wishing 
7.   Cannot guard yourself 
8.   I have had nothing since breakfast 
9.   You would know that you had heard it 
10.  Sudden commotion on the deck 
11.  For this was the only service 
12.  And the joy it would be 
13.  He restored the pretty things 
14.  The prince continued to struggle 
15.  Nothing but a scurvy faintness 

 
Infant Directed Speech (ID speech) 

1.   Yeah, you’re a pretty cool guy 
2.   Oh, nice stretch 
3.   Oh you almost grabbed it 
4.   Yeah, come on, bud, you almost got it 
5.   Yeah this is like your little gymnasium here 
6.   Yeah he’s so flexible 
7.   Yeah it’s interesting 
8.   We had a wonderful drive on the way here this morning 
9.   Good morning, how are you? 
10.  Hi, Alexander 
11.  We gonna go to the park today? 
12.  Boo-boo, you wanna go for a car ride? 
13.  It’s nice and blue which is one of your favorite colors 
14.  What are we gonna do today? 
15.  Hello! 
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Appendix 2: Sounds for Experiment 2 

 

 

 

Category SoundA SoundB 

Human Voice 

Female Speaking “ma” Singing “la” 

Male Speaking “ma” Singing “la” 

Musical Instrument 

Bell Large church bell Small church bell 

Music Box Old time music box Ballerina music box 

Piano Legato excerpt Staccato excerpt 

Trumpet Staccato trumpet Legato trumpet 

Environmental 

Chimes Ethereal chimes Wind chimes 

Clap Quick claps Slow claps in large room 

Phone Electronic ring Old rotary dial phone ring 

Ship Barge ship horn Low ship horn 

Train Train passing Train whistle 

Animal 

Bird Songbird Seagull 

Chicken Chicken cluck Rooster call 

Dog Large dog bark Smaller terrier bark 
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