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Abstract 

As the prevalence of osteoporosis is expected to increase over the next few 

decades, the development of novel therapeutic strategies to combat this disorder becomes 

clinically imperative.  These efforts draw extensively from an expanding body of 

knowledge pertaining to the physiologic mechanisms of skeletal homeostasis.  To this 

body of knowledge, we contribute that cells of hematopoietic lineage may play a crucial 

role in balancing osteoblastic bone formation against osteoclastic resorption.  

Specifically, our laboratory has previously demonstrated that megakaryocytes can induce 

osteoblast proliferation in vitro, but do so only when direct cell-to-cell contact is 

permitted.  To further investigate the nature of this interaction, we have effectively 

neutralized several adhesion molecules known to function in the analogous interaction of 

megakaryocytes with another cell-type of mesenchymal origin - the fibroblast.  Our 

findings implicate the involvement of fibronectin/RGD-binding integrins including α3β1 

(VLA-3) and α5β1 (VLA-5) as well as glycoprotein IIb (CD41), all of which are known to 

be expressed on megakaryocyte membranes.  Furthermore, we demonstrate that IL-3 can 

enhance megakaryocyte-induced osteoblast activation in vitro, as demonstrated in the 

megakaryocyte-fibroblast model system.  Taken together, these results suggest that 

although their physiologic and clinical implications are very different, these two models 

of hematopoietic-mesenchymal cell activation are mechanistically analogous. 
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Introduction  

Skeletal fragility has emerged as a major limitation to quality of life as we age. 

Osteoporosis currently affects approximately 10 million people in the United States 

alone; another 34 million Americans have low bone density, placing them at increased 

risk of the disease. Together, more than 55 percent of the population aged 50 years and 

older are affected or at risk of osteoporosis. The disease carries a significant financial 

burden. In 2005, osteoporosis-related fractures were responsible for approximately 19 

billion dollars in health care costs; this number is expected to increase to more than 25 

billion dollars by 2025. More importantly, osteoporosis and the ensuing hip, wrist, and 

vertebral fractures are significant sources of morbidity and pain among the elderly: such a 

fracture can be the sentinel event that transforms a relatively healthy, independent senior 

citizen into a person requiring significant assistance for daily living.  This downward 

spiral is evidenced by a one-year post-hip fracture mortality of 24 percent. Further, as 

many as 20 percent of individuals who were previously ambulatory require long-term 

care after a hip fracture (1). 

 

As the prevalence of osteoporosis is expected to increase over the next few 

decades, the development of novel therapeutic strategies to combat this development of 

this disorder becomes clinically imperative.  These efforts draw extensively from an 

expanding body of knowledge pertaining to the physiologic mechanisms of skeletal 

homeostasis.  To this body of knowledge, we contribute that cells of the hematopoietic 

lineage may play a crucial role in balancing osteoblastic bone formation against 

osteoclastic resorption. 
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Over the past decade, a new paradigm has emerged wherein megakaryocytes have 

been found to play a regulatory role in skeletal homeostasis.  Cumulatively, the data 

demonstrate that megakaryocytes may act to stimulate bone formation by expressing and 

secreting bone-related proteins to enhance osteoblastic proliferation and differentiation 

directly (2-10)  

 

Several bone-related proteins are produced or secreted by megakaryocytes to 

influence bone mineralization and catabolism. Osteocalcin is a bone matrix protein 

considered to be a marker of bone turnover. Previously, this protein was thought to be 

synthesized exclusively by osteoblasts at mineralizing surfaces; however, osteocalcin 

mRNA transcripts have been found to be enriched in platelet-producing megakaryocytes 

within peripheral blood. The levels of megakaryocyte-associated osteocalcin in blood 

increased during periods of rat growth, suggesting that megakaryocytes function in the 

regulation of bone remodeling and turnover. (2) 

.  

Osteonectin, a secreted calcium-binding glycoprotein, is a component of bone 

extracellular matrix. This protein binds extracellular matrix, via protein-protein 

interactions with type I collagen, to inhibit the growth of hydoxyapatite crystals, 

implicating osteonectin in the control of bone anabolism. While this glycoprotein is 

produced by both osteoblasts and megakaryocytes, the two forms of the protein differ in 

both complex glycosylation structure (3) and immunogenicity (4). Within platelets, 

osteonectin forms a calcium-dependent complex with the platelet-specific protein 

thrombospondin (4).  While the implications of these differences are not clear, the 
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regulated production of this protein by megakaryocytes, its inclusion into platelets, and 

its unique associations within those cells again implicates a unique role for 

megakaryocytes and megakaryocyte-derived osteonectin in the regulation of bone growth 

(3).  

 

Bone sialoprotein is major component of bone and other mineralized tissues. 

While the function of this protein remains to be clarified, it has been hypothesized that 

this protein may function to nucleate apatite crystals during bone formation. This protein 

is also found within megakaryocytes and platelets (5), although it does not appear to be 

synthesized by these cells; instead it appears to be acquired by endocytosis, 

proteolytically processed, and stored in the alpha granules of platelets to be released upon 

platelet activation (11).  It is unclear if release of this protein by megakaryocytes or 

platelets plays a role in bone homeostasis, but megakaryocytes are again implicated in the 

overall regulation of bone mass.  

 

 Osteopontin, also known as secreted phosphoprotein 1 (SPP1), was originally 

isolated as a structural component of bone synthesized by osteoblasts.  Synthesis of this 

protein is enhanced by activated vitamin D.  Osteopontin is thought to act as a “bridge” 

anchoring osteoclasts to bone.  This protein has since been found to be expressed by 

multiple cell types, including bone marrow megakaryocytes (6). It has been hypothesized 

that megakaryocytes secrete factors that influence osteoblast activity, but that close 

proximity to bone stromal cells is required for this effect.  Expression of osteopontin by 

megakaryocytes may serve to localize these cells to regions of bone formation, 
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facilitating megakaryocyte function in bone mineralization. megakaryocytes express 

osteocalcin and secrete the bone matrix proteins osteonectin, osteopontin, and bone 

sialoprotein.   

 

 megakaryocytes also produce bone morphogenic proteins (BMPs); proteins that 

induce ectopic osteogenesis. BMP mRNA and proteins can be detected within both 

megakaryocytes and platelets by in situ hybridization and immunoblotting.(7) GATA-1- 

and NF-E2-deficient mice, which both display increased numbers of immature marrow 

megakaryocytes, exhibit increased BMP production and excessive bone formation with a 

200-300% increase in bone volume and growth parameters (8). GATA-1 and NF-E2 are 

transcription factors required for the normal differentiation of megakaryocytes.  Deficient 

animals exhibited normal osteoblast and osteoclast numbers and function.  However, the 

proliferation of osteoblasts wild-type and mutant, increased approximately six-fold upon 

co-culture with megakaryocytes from deficient mice (8). These results indicate that an 

interaction, either direct or indirect, between osteoblasts and megakaryocytes results in 

osteoblast proliferation and increased bone formation. Cultures of osteoblasts with 

conditioned medium from mutant megakaryocytes failed to produce this increase in 

osteoblast proliferation; direct contact between megakaryocytes and osteoblasts was 

required for this effect. Thus, direct contact between megakaryocytes and osteoblasts 

results in an increase in osteoblast proliferation, leading to increased bone mass. This 

finding may help explain the osteosclerosis observed in human patients with forms of 

myelongenous leukemias associated with increased numbers of marrow megakaryocytes 

megakaryocytes (12).  
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 Such an interaction between osteoblasts and megakaryocytes is also supported by 

work from Miao et al. (9) examining osteoblast colony formation and alkaline 

phosphatase expression. Aggregates of bone marrow stromal cells, which contain 

megakaryocytes, formed large colonies expressing abundant alkaline phosphatase. When 

these aggregates were dissociated, allowing osteoblast precursors to grow as single-cell 

suspensions, colonies still formed, but were smaller and expressed only minimal amounts 

of alkaline phosphatase. These data suggest that removing the supportive influence of 

megakaryocytes reduces the osteoblastic differentiation of bone marrow stromal cells. 

Again, these results point to an interaction of osteoblasts with megakaryocytes to achieve 

maximal osteoblast differentiation and activity. 

 

 Our own laboratory has recently examined the role of gap junction intracellular 

communication (GJIC) between osteoblasts and megakaryocytes (45).  This work has 

demonstrated that megakaryocytes  and osteoblasts can communicate by GJIC and that 

GJIC may serve to inhibit megakaryocyte-mediated enhancement of osteoblast 

proliferation, but does not appear to alter megakaryocyte-mediated reductions in 

osteoblast differentiation. Additionally, megakaryocytes were observed to inhibit 

osteoblast differentiation when co-cultured for extended durations.   

 

 In addition to increasing osteoblast proliferation, megakaryocytes appear to 

influence osteoblastic activity. Osteoblast activity was assessed by measuring the 

expression of type-I collagen, and ostoprotegerin, proteins associated with increased bone 
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formation activity, and RANKL, which is upregulated during bone remodeling and 

resorption. osteoblasts cultured with CD61-positive megakaryocytes exhibited increased 

intensity of type-I collagen expression over that seen by osteoblasts cultured alone or 

with control non-megakaryocytic cells. Co-culture with megakaryocytes also increased 

both the proportion of osteoblasts producing osteoprotegerin and the intensity of OPG 

expression by those cells. In addition, RANKL expression by osteoblasts was suppressed 

by co-culture with megakaryocytes.   

 

 Megakaryocytes can also produce OPG to influence osteoblastic and osteoclastic 

activity directly (13).  High levels of OPG mRNA are seen in both platelets and 

megakaryocytes.  Strong immunostaining for OPG could be seen in mature 

megakaryocytes. OPG staining in megakaryocytes was enhanced by treatment with 

thrombopoietin, a megakaryocyte-specific growth factor, indicating that megakaryocyte 

maturation correlates with increased OPG expression.  Thus, in addition to indirectly 

affecting osteoclast and osteoblast function, megakaryocytes can directly stimulate 

osteoblast differentiation and inhibit osteoclast function through the production of 

osteoprotegerin.  

 

Estrogen deficiency is well known to play a role in the pathogenesis of 

osteoporosis, resulting in increased bone resorption and bone loss.  Estrogen participates 

in the maintenance of bone mass and inhibits bone resorption. Estrogen therapy, although 

associated with other risks, is effective at increasing bone mass or at least stopping bone 

loss in post-menopausal women (14).  Recent studies have begun to elucidate some of the 
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underlying mechanisms of these results.  The effect of estrogen on human osteoblast 

cultures was assessed by measuring factors involved in bone homeostasis. These data 

revealed that osteoblasts treated with estradiol exhibit a sustained increase in OPG 

expression at both 24 and 48 hours after stimulation. A significant increase in RANKL 

expression at 24 hours was also observed; however, this increase was not sustained at 48 

hours. These effects could be specifically inhibited with an estrogen antagonist. Thus, 

estrogen may exert an anti-resorptive effect on bone by stimulating the production of 

factors involved in bone anabolism in excess of catabolic factors (15).  The molecular 

mechanism underlying this effect is unclear, but may be mediated at least in part by 

interactions with megakaryocytes. The addition of estrogen to cultures of hematopoietic 

stem cells stimulates the colony-forming potential to a megakaryocytic phenotype, 

implicating megakaryocytes in estrogen-induced bone formation (16). In addition to 

encouraging megakaryocyte differentiation, estrogen significantly increased OPG 

expression and suppressed RANKL expression by megakaryocytes (17).  Thus, the 

function of estrogen in the maintenance of bone mass may be mediated, at least in part, 

by the stimulation of megakaryocytopoiesis and the upregulation of factors involved in 

bone formation and the downregulation of osteoclastogenesis.  

 

Simultaneously, megakaryocytes may regulate bone resorption by 

expressing/secreting several factors known to be involved in osteoclastogenesis, and 

recent studies demonstrate that megakaryocytes can inhibit osteoclast formation in vitro 

(13, 15-24).  Co-cultures of megakaryocytes with spleen cells from wild-type C57BL/6 

mice resulted in a 10-fold reduction in osteoclastogenesis under conditions that produce 
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ample osteoclasts in the absence of megakaryocytes (24). This effect could be reproduced 

by the addition of conditioned media from megakaryocytes to spleen cell cultures, 

indicating that the inhibition of osteoclast development by megakaryocytes was mediated 

by a soluble factor. While osteoprotegrin, which is know to inhibit osteoclast 

proliferation, was present in megakaryocyte-conditioned media, this factor was not 

responsible for megakaryocyte-mediated growth inhibition, as conditioned media from 

OPG-deficient mice and conditioned media containing OPG-neutralizing antibodies were 

still able to inhibit osteoclastogenesis in vitro.  Similarly, neutralization of TGF-β, which 

was also present in conditioned media, was also unable to abrogate the growth inhibitory 

effect of megakaryocytes on osteoclasts (24).   

 

The role of megakaryocytes in bone growth and catabolism was confirmed by 

studies in mice deficient in p45 NF-E2, a key transcription factor required for 

megakaryocyte differentiation (25).  These mice are characterized by increased numbers 

of immature megakaryocytes and the absence of functional platelets.  As mentioned 

above, these animals display an increased bone mass, and increased bone formation rate.  

Increased bone formation, however, was only observed in sites of hematopoiesis, not in 

flat bones, such as calvariae, again confirming the role of megakaryocytes in bone 

homeostasis. This phenotype of increased bone mass and growth could be adoptively 

transferred into recipient irradiated wild-type mice with the hematopoietic cell 

population, again implicating megakaryocytes as the responsible cell lineage. The net 

result, as demonstrated in vivo, is that increases in megakaryocyte number lead to 

concomitant increases in bone mass (8, 25)  
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In attempting to identify molecules involved in the megakaryocyte-osteoblast 

interactions that regulate bone homeostasis, we look to the interactions of 

megakaryocytes with fibroblasts, another cell of mesenchymal origin.  Through 

examination of the pathogenesis of myelofibrosis, the molecular mechanisms underlying 

both the paracrine and direct cell-cell interactions of megakaryocytes with fibroblasts 

have been elucidated.  These mechanisms may represent a generalized mechanism by 

which megakaryocytes influence the function and proliferation of neighboring cells. 

 

Myelofibrosis, characterized by bone marrow fibrosis, extramedullary 

hematopoiesis, splenomegaly, and increased peripheral blood immature hematopoietic 

progenitors, is a secondary phenomenon that accompanies the clonal transformation of 

hematopoietic lineage cells in chronic myeloproliferative disorders.  In this disease, 

excessive fibroblast cell proliferation and increased secretion of matrix proteins, such as 

collagen and reticulin, reduces the ability of the bone marrow to produce functional cells, 

leading to bone marrow failure and multiple cytopenias.  The correlation of fiber density 

and megakaryocyte number first linked the reactive proliferation of fibroblasts in this 

condition to interactions with megakaryocytes (26).  In addition, mice given bone marrow 

grafts of cells infected with a retrovirus expressing exogenous thrombopoietin, the 

primary stimulator of megakaryocytopoiesis, develop a lethal myeloproliferative disorder 

resembling human idiopathic myelofibrosis (27).  Subsequent studies demonstrated that 

megakaryocytes could stimulate fibroblast proliferation (28).  Homogenates of 

megakaryocytes were found to support fibroblast growth, which was initially attributed to 
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cytokines and growth factors, such as platelet-derived growth factor (PDGF) and 

transforming growth factor-β (TGF-β) (22, 28).   Megakaryocyte-dependent growth 

promotion was effectively abrogated by neutralizing antibodies directed against these 

proteins, demonstrating the critical role of these growth factors in fibroblast proliferation 

(29).   

To determine additional cytokines that may function in the megakaryocyte-

dependent enhancement of fibroblast proliferation, Schmitz et al. examined the effect of a 

barrage of cytokines on fibroblasts and fibroblast-megakaryocyte co-cultures.  While 

many of these cytokines, such as IL-1, did not have any effect on fibroblast proliferation, 

recombinant human IL-3 (rhIL-3) significantly increased the number of fibroblasts in co-

cultures.  No enhancement of fibroblast proliferation could be detected with the addition 

of rhIL-3 in the absence of megakaryocytes, suggesting that IL-3 induced 

megakaryocytes to undergo changes that promoted fibroblast growth.  Interestingly, the 

effect of IL-3 could be inhibited by the addition of neutralizing antibodies against PDGF 

and TGF-β, suggesting that IL-3 stimulation of megakaryocytes induced the secretion of 

growth factors that enhanced fibroblast proliferation.  

 

For years, lymphocytes have been thought to be the major sources of cytokines 

within the bloodstream and the bone marrow. Substantial evidence, as detailed above, is 

now accumulating that megakaryocytes may produce a barrage of cytokines that 

influence both hematopoietic cells and surrounding stromal cells in autocrine and 

paracrine mechanisms. While the role of IL-3 in megakaryocyte-osteoblast interactions is 

unclear, it is clear that this cytokine plays a key role in controlling the production of 
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soluble growth factors by megakaryocytes. Wickenhauser et al. (23) examined the effect 

of rhIL-3 on megakaryocyte activity by looking at the resulting stimulation of cytokine 

production. Following stimulation with IL-3, megakaryocytes demonstrated significantly 

increased production of IL-3 itself, granulocyte-macrophage colony stimulating factor 

(GM-CSF), and IL-6.  Likewise, TGF-β, whose production is also stimulated by IL-3 

treatment (22), upregulated megakaryocyte production of IL-6, IL-1, and GM-CSF (20). 

A megakaryocyte-like cell line, HU3, was shown to produce IL-1β, IL-6, IL-10, and 

TNF-α, while a bipotential progenitor-type cell line, MB02, did not. This secretion could 

be enhanced following treatment with thrombopoietin, indicating the association between 

cytokine secretion and megakaryocyte differentiation (21). Also, these factors also act in 

a positive feedback mechansism in concert with thrombopoietin to enhance 

megakaryocyte differentiation (30).  Estrogens have previously been shown to control the 

production of cytokines, such as IL-1 and IL-6, that modulate bone homeostasis  (31). 

These cytokines appear to act in both an autocrine fashion, acting as a positive feedback 

loop encouraging additional cytokine secretion by megakaryocytes, and a paracrine 

fashion, possibly acting on osteoblasts and osteoclasts to influence their proliferation and 

function.   

 

Despite substantial evidence implicating soluble factors such as cytokines in 

fibroblast proliferation, the addition of soluble factors alone to fibroblast cultures was 

unable to produce the substantial enhancement of fibroblast proliferation seen with intact 

megakaryocytes (32)  These results and the close proximity of fibroblasts and 

megakaryocytes within the bone marrow, however, suggested a more intimate associate 
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might be required for the enhancement of proliferation.  Indeed, in the cytokine studies 

detailed above, inhibition of cell-cell contact in both unstimulated and IL-3-stimulated 

cultures significantly impaired megakaryocyte-induced fibroblast proliferation (32). 

Using a transwell assay system, cell-cell contacts were inhibited via tissue culture inserts, 

generating a substantial impairment in fibroblast growth, even in the presence of IL-3 

(33).  Identification of the cell surface receptors functioning in fibroblast- megakaryocyte 

interactions may identify candidate molecules that may control the interactions of 

megakaryocytes with osteoblasts.  

 

Integrins are abundant cell-surface proteins that interact with both other cell 

surface receptors and components of the extracellular matrix. These proteins are also 

well-known to initiate multiple conserved signal transduction pathways that trigger cell 

activation and proliferation.  The α3β1 and α5β1 integrins were implicated in direct cell-

cell interactions utilizing blocking studies with specific anti-α3 and anti-α5 antibodies.  

Such antibodies not only inhibited the megakaryocyte-mediated enhancement of 

fibroblast proliferation, but significantly disrupted megakaryocyte attachment to the 

adherent fibroblast monolayer (34).  β1-containing integrins bind to fibronectin through 

recognition of a conserved peptide sequence of Asp-Gly-Asp (RGD). Addition of a 

soluble oligomer, Asp-Gly-Asp-Ser (RGDS), interferes with this interaction, blocking the 

interaction of β1 integrins with their substrates.  Megakaryocyte-associated fibroblast 

proliferation, although not adhesion, was significantly inhibited by the addition of RGDS 

to megakaryocyte-fibroblast co-cultures (34).  Wickenhauser et al. also confirmed the 

role of the glycoprotein CD41 (glycoprotein IIb) in megakaryocyte-fibroblast 
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interactions, as specific anti-CD41 monoclonal antibodies completely blocked fibroblast 

proliferation in megakaryocyte-fibroblast co-cultures (35).   

 

While all of these studies were performed in in vitro cultures, in total, these 

experiments provide substantial evidence that megakaryocytes play an important role in 

bone remodeling, directly affecting osteoblastic proliferation and function, osteoclast 

growth and development, and the expression of factors involved in both bone formation 

and resorption.  

 

While substantial evidence points to an overall anabolic effect of megakaryocytes, 

there remains conflicting evidence for a pro-catabolic influence of megakaryocytes on 

bone homeostasis as well.  While p45 NF-E2-deficient animals exhibit a clear increase in 

both bone mass osteoblast numbers, the quantity of osteoclasts is also increased.  These 

catabolic cells appear to exhibit normal functioning in vitro, which suggests that 

megakaryocytes also encourage osteoclast growth (7).  Megakaryocytes have been 

demonstrated to produce RANKL, which exerts a positive influence on osteoclast growth 

and function (19).  In addition, while one might expect that animals lacking normal 

functioning megakaryocyte would exhibit increased or more rapid-onset osteoporosis, 

mice deficient in platelet activating factor receptor develop only mild osteoporosis. 

Osteoclast survival in such mice is diminished; osteoclastic bone resorption is impaired 

(reviewed in (36).  In addition, the production of cytokines, such as IL-1, IL-6 and TNFα, 

also stimulates the production of RANKL by osteoblasts (37),, which promotes osteoclast 

development and function.  In multiple myeloma, neoplastic cells induce bone 
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destruction through the upregulation of factors such as RANKL also known as tumor 

necrosis factor-related activation-induced cytokine (TRANCE), the production of which, 

as the name suggests, can be upregulated by cytokines such as TNFα (18).  Overall, there 

is likely to be a highly complex interplay between megakaryocytes and the network of 

cells regulating bone formation and turnover.  

 

In this study, we have focused our efforts on the characterization of the contact-

dependant mechanism(s) by which megakaryocytes induce osteoblast 

proliferation/differentiation.  To this end, we have effectively neutralized several 

adhesion molecules known to function in the analogous interaction of megakaryocytes 

with fibroblasts.  Furthermore, we have explored the effect of interleukin (IL)-3 on our 

megakaryocyte-osteoblast model system.  These new data provide a new outlook on the 

mechanism(s) of megakaryocyte-osteoblast interactions and the role of this interplay in 

bone disease, such as in osteoporosis. 
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Statement of Purpose 

This study attempts to characterize the specific contact-dependent mechanisms by which 

megakaryocytes might induce osteoblast activation. To this end, we have selectively 

disrupted the function of several candidate cell surface proteins and examined the effect 

of said disruptions on megakaryocyte-induced enhancement of osteoblast proliferation in 

vitro as assayed by incorporation of a radio-labeled nucleotide. Furthermore, we examine 

the response of this model system to IL-3 as a potential mechanism of paracrine 

influence. 

 

Specific Aim 1: Assay megakaryocyte-induced osteoblast proliferation in the presence of 

EDTA, soluble RGDS tetrapeptide, and neutralizing antibodies against integrin 

α3 chain/CD49c, integrin α5 chain/CD49e, and glycoptotein (gp) IIb/integrin αIIb 

chain/CD41, respectively. This is intended to demonstrate the involvment of Ca-

dependent adhesion/signaling in general, RGD-binding receptors, and the relevant 

specific integrins, respectively.  

 

Specific Aim 2: Assay megakaryocyte-induced osteoblast proliferation in the presence of 

IL-3. This is intended to examine this cytokine as a potential mechanism of paracrine 

regulation of megakaryocyte-induced osteoblast proliferation.  
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Materials and Methods  

 

Animals 

C57BL/6 mice were obtained from Jackson Labs (Bar Harbor, ME) and housed under 

standard conditions under a 12/12 hour light-dark cycle. Animals were allowed access to 

standard chow and water ad libitum.  

 

Primary osteoblast cultures 

C57BL/6 murine calvarial cells were prepared by sequential collagenase digestion 

(Worthington Biomedical) as previously described (38).  Three- to five-day-old mice 

were anesthetized by hypothermia and sacrificed by cervical decapitation. Calvariae 

isolated from these 3- to 5-day old C57BL/6 mice were treated with 4 mM ethyl 

disodium acetate (EDTA) in PBS for 10 minutes.  After repeating this treatment two 

additional times, samples were then subjected to sequential digestion with 200 U/ml 

CLS-2 bacterial collagenase (Worthington Biomedical Corp, Freehold, NJ) in PBS for 75 

minutes.  After the second 15 minutes period, the supernatant was harvested and 

designated fraction 1.  The solution was then replaced; after an additional 15 minutes, 

cells released during that time frame were designated fraction 2.  This was repeated three 

additional times, for a total of five fractions.  Fractions 1 and 2 were discarded; cells 

collected from fractions 3-5 were used as the starting population for OB/osteoprogenitor 

cultures.  After washing extensively in culture medium [α-Minimum Essential Media 

(αMEM, Sigma Chemical Co., St. Louis, MI) supplemented with 10% newborn calf 
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serum (HyClone, Logan, UT)], cells were plated at low density (approximately 2 x 104 

cells per ml; 2 x 103 per well in 96-well plates) and grown to confluence (typically 5-7 

days).  

 

Primary megakaryoctyte cultures  

C57BL/6 breeding pairs were set-up by placing four females and one male C57BL/6 

mouse in a cage together; the timing of pregnancies were determined by observing the 

presence of a mucus plug on female mice. At this point, the male mouse was removed, 

pregnant C57BL/6 mice were housed in individual cages, then sacrificed between 

embryonic days 13-15. Whole livers recovered from mouse fetuses at embryonic days 13 

and 15 were homogenized by successive passages through a 25-gauge needle to obtain a 

single cell suspension.  The resulting cells were maintained in Dulbecco’s modified 

Eagle’s medium (DMEM, Life Technologies Inc., Gaithersburg, MD) supplemented with 

10% FCS (HyClone) and 1% conditioned medium (CM) from a murine thrombopoietin-

secreting fibroblast cell line.  After five days in culture, megakaryocytes were harvested 

by low-speed centrifugation at 400 rpm for 10 minutes, then overlayed on a 

discontinuous bovine serum albumin (BSA, Sigma) density gradient with consecutive 

layers of 0%, 1.5%, and 3.0% BSA dissolved in PBS.  Megakaryocytes were highly 

enriched in the cells that settled to the bottom within 40 minutes at 1 x gravity, making up 

more than 90% of the cells as determined by visual inspection and, in prior studies by 

FACS analysis.  Final cultures of megakaryocytes were collected by centrifugation and 

resuspended in α-Minimum Essential Medium (αMEM, Life Technologies Inc.) 

supplemented with 0.5% BSA prior to experimentation (39, 40).   
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Proliferation Assays 

2x103  osteoblasts/well were co-cultured in the presence or absence of 5 x 103 

megakaryocytes/well in 96-well tissue culture plates. As negative controls, 5 x 103 

megakaryocytes/well were cultured alone. After four days in culture, 5-8 Ci/mmol 

tritiated (3H)-thymidine was added to each well to a final target concentration of 1 

µCi/well. After an additional 16 hours in culture, megakaryocytes, which are non-

adherent, were removed by extensive washing to ensure measurement of osteoblast 

proliferation alone (8). Osteoblast cultures were then frozen at -20°C until measurement, 

at which time cultures were thawed to 37°C and incorporated radioactivity was 

determined by scintiography. All experiments were performed in triplicate and averaged. 

Significant differences in tritium incorporation were determined by one-tailed Student’s 

T-test (p < 0.05).  

 

OB proliferation time course 

2 x 103 osteoblasts/well were cultured in the presence or absence of 5 x 103 

megakaryocytes/well in 96-well tissue culture plates. As negative controls, 5 x 103 

megakaryocytes/well were cultured alone. 3H-thymidine was added to cultures at 1, 2, 3, 

4, and 5 days of culture, then tritium incorporation was assessed as described above.  

 

Transwell Assays 
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To determine if direct cell-cell contact was a requisite to megakarycyte induction of 

osteoblast proliferation, megakaryocytes and osteoblasts were cocultured while separated 

by a cell-impermeable membrane (pore sizes 0.1 or 0.4 µm, Corning) 3H-thymidine was 

added to the osteoblast cultures after 2 and 4 days. Tritium incorporation was assessed as 

described above.  

 

Integrin Inhibition  

The bivalent cation chelator ethylenediaminetetraacetic acid (EDTA, Sigma) was added 

to megakaryocyte-osteoblast co-cultures and osteoblast control cultures to examine the 

effect of non-selective integrin inhibition on megakaryocyte-induced osteoblast 

activation.  EDTA was added at low-dose (0.0125 mM) and high-dose (0.125 mM) 

quantities at the beginning of the four day culture period.  Control cultures were treated 

with vehicle alone (PBS).  EDTA remained in the culture medium throughout the 16-hour 

tritium incorporation under the culture conditions described above.  

 

As a subset of integrins bind to a conserved peptide sequence of Arg-Gly-Asp (RGD), we 

examined the effect of blockade of such receptors under the culture conditions described 

above.  To elucidate the involvement of RGD-binding receptors in our model system, the 

soluble tetrapeptide Arg-Gly-Asp-Ser (RGDS; Sigma) was titrated into co-cultures and 

osteoblast controls at a high dose (0.0625 mM) or low dose (0.0125 mM) at the 

beginning of a four-day culture period.  Controls were treated with vehicle alone (PBS). 

3H-thymidine was added as described above on the fourth day of culture; samples were 

cultured for an additional 16 hours before harvesting.  
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Neutralizing Antibody Studies 

To determine the identity of those integrins functioning in the osteoblast- megakaryocyte 

interaction, we tested the effect of several neutralizing antibodies directed against specific 

adhesion molecules. The following antibodies were applied to co-cultures and osteoblast 

controls: integrin α3 chain/CD49c (10 µg/mL; polyclonal; R and D Systems), integrin α5 

chain/CD49e (20 µg/mL; clone: 5H10-27 MFR5; BD Pharmingen), and glycoptotein (gp) 

IIb/integrin αIIb chain/CD41 (10 ng/mL; clone: MWReg30; BD Pharmingen).  Goat IgG 

fraction was added to control cultures at equivalent concentrations to assure that blocking 

was antigen-specific.  After four days in culture, 1 µCi 3H-thymidine was added to each 

well; then cultures were incubated at 37ºC for an additional 16 hours, and tritium 

incorporation was measured by scintiography. 

 

IL-3-mediated proliferation  

To explore the effect of the cytokine IL-3 on megakaryocyte-induced osteoblast 

activation, recombinant murine IL-3 (R&D Systems) was titrated into co-cultures and 

controls at 0, 10, and 30 ng/mL.  After a four-day incubation, 3H-thymidine was added to 

cultures for 16 hours prior to harvesting and quantitation of incorporated radioactivity. 
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Results 

 

Enhancement of osteoblast proliferation by co-culture with megakaryocytes 

 First, we confirmed the enhancement of osteoblast proliferation following co-

culture with megakaryocytes. Osteoblast proliferation was measured by tritium 

incorporation after 1, 2, 3, 4, and 5 days at 37ºC. In comparison to osteoblast cultured 

alone, co-culture with megakaryocytes enhanced osteoblast proliferation by 335% at five 

days (p=0.012; Figure 1A).  Minimal proliferation, which became detectable only after 

the five-day culture period, could be seen in the absence of megakaryocytes. As 

megakaryocytes are not adherent, the substantial washing performed prior to 

measurement of incorporated radioactivity should remove any megakaryocytes from 

cultures, ensuring that the detected signal was derived entirely from the contained 

osteoblasts.  The absence of any significant tritium incorporation in cultures of 

megakaryocytes alone confirmed the specificity of this assay, demonstrating that the 

increased radioactivity seen in osteoblast-megakaryocyte co-cultures was due to 

increased osteoblast proliferation in the presence of megakaryocytes.  

 

Requirement for cell-cell contact for MK enhancement of osteoblast growth 

The enhancement of osteoblast proliferation by megakaryocytes was dependent 

on direct cell-cell contact as the separation of these two cell types by a membrane 

abrogated the enhancement of osteoblast growth.  By measuring cell proliferation via 

tritium  incorporation  after  two  and  four  days  in  culture,  we  again  confirmed  the  
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Figure 1. Megakaryocytes induce osteoblast activation via contact-dependent 
mechansism(s). (A) Osteoblast prolifeferation increased more than three-fold by co-
culture with megakaryocytes for five days. (B) Proliferation was not enhanced, however, 
by co-culture with megakaryocytes across a cell-impermeable membrane.  
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enhancement of osteoblast proliferation by co-culture with megakaryocytes over the 

levels seen by osteoblasts cultured alone. Separation of these two cell types in a transwell 

system, which allows free exchange of soluble factors, but prevents direct cell-cell 

contact, abrogated any enhancement of osteoblast growth.  Tritium incorporation in these 

cultures was not significantly different from osteoblasts cultured alone, again confirmed 

the requirement for a direct interaction between megakaryocytes and osteoblasts to 

stimulate ostoblast growth and function.  

 

Implication of Cell Adhesion in megakaryocyte-mediated osteoblast proliferation 

Integrins are cell surface adhesion molecules that have been implicated as 

candidate molecules involved in the contact-dependent enhancement of osteoblast 

proliferation and activity by megakaryocytes.  To interfere with the calcium-dependent 

interactions of integrins and their substrates, we utilized the bivalent cation chelator 

EDTA as a mechanism of inducing non-selective integrin inhibition in megakaryocyte-

osteoblast co-cultures.  EDTA was titrated into megakaryocyte-osteoblast co-cultures and 

osteoblast controls during a four-day culture period.  As measured by tritium 

incorporation during an additional 16-hour culture period, the addition of 12.5µM EDTA 

failed to inhibit megakaryocyte-induced activation. Incubation with 125µM EDTA 

significantly (p=0.048) reduced tritium incorporation in co-cultures by 18% without 

affecting osteoblast controls (Fig. 2A), suggesting that disruption of calcium-dependent 

protein-protein interactions abrogated the effect of megakaryocytes of osteoblast 

proliferation.  At higher concentrations tested, EDTA began  to  inhibit  osteoblast 

proliferation in mono-culture. 



 
 

28 

 
 
Figure 2.  Integrin involvement in MK-induced OB activation.  (A) 12.5µM EDTA was 
not sufficient to disrupt MK-induced OB proliferation, however 125µM EDTA 
diminished MK-induced proliferation by 18%. Tritium incorporation by OB 
monocultures was not affected at either concentration reported.  (B) Soluble tetrapeptide 
RGDS caused a dose-dependant inhibition of MK-induced proliferation with 12.5µM and 
62.5µM decreasing tritium incorporation in co-cultures by 26% and 50%, respectively.  
Again, OB monoculture proliferation remained unaffected at both concentrations 
reported. 
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proliferation (data not shown), however, at the lower dose tested, the inhibition was 

specific to osteoblast-megakaryocyte co-cultures. 

 

Involvement of integrins in megakaryocyte-enhanced osteoblast growth 

 A subset of integrins bind to a conserved sequence composed of a Arg-Gly-Asp 

(RGD) binding sequence, including integrins α3 (CD49c), α5 (CD49e), and glycoptotein 

(gp) IIb/integrin αIIb chain (CD41). To elucidate the involvement of RGD-binding 

receptors in our model system, we titrated the soluble tetrapeptide Arg-Gly-Asp-Ser 

(RGDS; Sigma) into co-cultures  and  osteoblast  controls as  a  competitive  inhibitor  of  

these interactions.  RGDS caused a dramatic, dose-dependant inhibition of proliferation 

in co-cultures. Addition of 12.5µM and 62.5µM decreased megakaryocyte-induced 

activation in a dose-dependent manner, resulting in 26% (p=0.032) and 50% (p=0.014) 

reduction in osteoblast proliferation. RGDS had no effect on osteoblast control 

monocultures (Fig. 2B).  Further increases in RGDS concentration did not result in 

additional inhibition of proliferation in co-cultures.  These results support the hypothesis 

that RGD-binding integrins mediate the megakaryocte-dependent enhancement of 

osteoblast proliferation.  

 

Neutralization of specific adhesion molecules abrogated megakaryocyte 

enhancement of osteoblast growth 

To achieve more specific inhibition of cell adhesion molecules, we added 

neutralizing antibodies directed against the following specific adhesion molecules to co-
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cultures and osteoblast controls: integrin α3 chain/CD49c (10µg/mL), integrin α5 

chain/CD49e (20µg/mL), and glycoptotein (gp) IIb/integrin αIIb chain/CD41 (10ng/mL).  
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Figure 3. Involvement of specific adhesion molecules in MK-induced OB activation.  
Application of neutralizing antibodies against integrin α3 chain (A), integrin α5 chain (B), 
and CD41 (C) each diminished MK-induced OB proliferation by approximately 20%, 
without affecting tritium incorporation in OB monocultures. 
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Goat IgG fraction was added to separate controls at equivalent concentrations to assure 

that blocking was antigen-specific.  Each of the neutralizing antibodies tested yielded 

virtually identical results, causing moderate reductions in co-culture proliferation without 

affecting osteoblast monocultures.  A maximal suppression of 21% (p=0.045) was seen 

with the addition of anti-α3 antibodies at 10µg/mL, 20% (p=0.023) with anti-

α5 antibodies at 20µg/mL, and 20% (p=0.036) by anti-CD41 antibodies at 10ng/mL (Fig. 

3).  Non-specific IgG did not affect tritium incorporation in co-cultures or osteoblast 

monocultures when added at respective control concentrations (data not shown).  These 

results implicated the involvement of fibronectin/RGD-binding integrins, including α3β1 

(VLA-3) and α5β1 (VLA-5) as well as glycoprotein IIb (CD41), all of which are known to 

be expressed on megakaryocyte membranes, in the cell contact-dependent interactions 

required for the megakaryocyte-mediated enhancement of osteoblast proliferation and 

function.   

 

IL-3 enhances megakaryocyte-mediated osteoblast proliferation 

Lastly, recombinant murine IL-3 (R and D Systems) was titrated into co-cultures 

and controls to explore the effect of this cytokine on megakaryocyte-induced osteoblast 

activation.  Finally, 10 ng/mL and 30 ng/mL IL-3 enhanced megakaryocyte-induced 

osteoblast proliferation by 41% (p=0.025) and 37% (p=0.034) respectively, while 

osteoblast monocultures remained unaffected (Fig. 4).  Further increasing IL-3 

concentration did not yield additional enhancement of megakaryocyte-induced activation.  
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Figure 4.  IL-3 enhances MK-induced OB activation.  At 10ng/mL and 30ng/mL, IL-3 
enhanced MK-induced OB proliferation by 41% and 37%, respectively.  Tritium 
incorporation by OB monocultures remained unaffected at both concentrations reported. 
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Discussion 

 Our laboratory has previously demonstrated that megkaryocytes can induce 

osteoblast proliferation, but do so only when direct cell-to-cell contact is permitted (8) To 

further investigate the nature of this interaction, we have systematically disrupted known 

mechanisms of megakaryocyte-fibroblast adhesion/signaling in our megakaryocyte-

osteoblast co-culture model system.  We began our investigation with the addition of 

EDTA to co-cultures and controls.  This chelating agent reduces the availability of 

bivalent cations necessary for proper dimerization and ligand-binding of integrin 

heterodimers (41, 42) and has been shown to inhibit megakaryocyte-fibroblast adherence 

and signaling in vitro.(32).  The ability of EDTA to diminish megakaryocyte-induced 

osteoblast proliferation without affecting osteoblast monocultures thus implicates integrin 

involvement in megakaryocyte-osteoblast adherence/signaling.  Refining the scope of our 

investigation, we next examined the role of RGD-binding receptors in our model system.  

The conformation of the RGD sequence of fibronectin is approximated in a soluble form 

by the tetrapeptide RGDS (43), which serves to inhibit the interaction of fibronectin-

binding intergrins with their substrates.  Therefore, our finding that the addition of this 

tetrapeptide inhibits megakaryocyte-induced proliferation without affecting osteoblast 

monocultures implicates specifically, although not exclusively, RGD-binding integrins.  

These data are again consistent with those pertaining to megakaryocyte-fibroblast 

adherence/signaling (34).  The respective roles of megakaryocyte-expressed, fibronectin-

binding integrins α3β1 (VLA-3) and α5β1 (VLA-5; an RGD receptor integrin) were then 

examined by application of neutralizing antibodies to co-cultures and controls. This 

resulted in significant reductions in megakaryocyte-induced proliferation.  As osteoblast 
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mono-cultures were not affected by these antibodies, and non-specific IgG affected 

neither co-cultures nor osteoblast controls, we conclude that these specific integrins 

directly contribute to megakaryocyte-osteoblast adhesion/activation, as demonstrated in 

the megakaryocyte-fibroblast model system (34).  Employing the same technique and 

reasoning, we next elucidated the involvement of the megakaryocyte-expressed 

glycoprotein CD41.  This molecule, also known as gpIIb, is retained on the surfaces of 

mature platelets where it complexes with CD61 (gpIIIa) forming a heterodimeric receptor 

capable of recognizing a host of extracellular proteins (fibrinogen, fibronectin, von 

Willebrand factor, vitronectin, etc.) with affinities modulated by the state of platelet 

activation.  In agreement with megakaryocyte-fibroblast interaction findings (35)  we 

conclude that this glycoprotein also plays an important role in megakaryocyte-induced 

adherence/activation. 

 

 Lastly, our data demonstrate that IL-3 significantly enhances megakaryocyte-

induced osteoblast proliferation without affecting osteoblast monocultures.  Although we 

have not demonstrated that this enhancement is contingent upon direct cell-cell contact, 

Schmitz et al. (32) showed that IL-3 could not enhance fibroblast proliferation when 

megakaryocyte-fibroblast co-cultures were divided by cell-impermeable membranes.  

Furthermore, the prerequisite of direct cell-cell contact in no way excludes an additive 

effect of signaling via soluble factors as a mechanism for megakaryocyte-induced 

mesenchymal cell activation.  To the contrary, Schmitz et al. (32) speculate that adhesion 

may serve principally to expose fibroblasts to supra-threshold levels of megakaryocyte-

derived growth factors such as PDGF and TGFβ.  Our laboratory is currently performing 
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a series of real-time PCR studies on IL-3-treated versus untreated megakaryocytes to 

explore these and other possibilities.  While many such details of our own model - and 

skeletal homeostasis in general - remain obscure, we propose the following model of 

skeletal homeostasis, in which a complex network of both direct and indirect interactions 

between megakaryocytes and osteoblasts control bone homeostasis (Figure 5). 

Megakaryocytes induce osteoblast proliferation/differentiation via a contact-dependant 

mechanism(s), characterization of which is the subject of this investigation.  While 

additional factors may contribute, the fibronectin-binding integrins α3β1 (VLA-3) and 

α5β1 (VLA-5) and the gpIIb (CD41)/gpIIIa (CD61) heterodimer function to increase 

osteoblast proliferation and differentiation through direct cell-cell interactions.  Cytokines 

produced by megakaryocytes act indirectly on osteoblasts to promote bone growth, both 

by enhancing osteoblast proliferation and by increasing the deposition of matrix proteins, 

such as collagen and osteocalcin.  Megakaryocytes also elaborate an unidentified soluble 

factor(s) of 10-50kDa (red) which inhibits osteoclast formation.  Megakaryocytopoiesis is 

promoted by thrombopoietin, which is produced within the marrow space by 

osteoblast/stromal cells.  The stimulation of megakaryocytopoiesis by thrombopoietin 

enhances the production of cytokines by megakaryocytes, which act in a positive 

feedback manner to enhance megakaryocyte differentiation additively.  Lastly, 

osteoblasts induce osteoclast formation via RANK/RANK-ligand interaction. 

Megakaryocyte may also contribute to increased osteoclast differentiation and function 

through elaboration of proteins such as RANKL.  Estrogen, deficiency in which produces 

bone loss and fragility, has been shown to enhance megakaryocyte differentiation and 
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increase the production of osteoblast growth factors by megakaryocytes, again 

implicating a central role for megakaryocytes in the regulation of bone density. 

 

 
 
Figure 5.  The evolving role of MKs in skeletal homeostasis.  MKs induce OB 
proliferation/differentiation via a contact-dependant mechanism(s) (yellow), 
characterization of which is the subject of this investigation.  MKs also elaborate an 
unidentified soluble factor(s) of 10-50kDa (red) which inhibits OC formation.  
Megakaryopoiesis is promoted by thrombopoietin (TPO; green) elaborated within the 
marrow space by OB/stromal cells.  Lastly, OBs induce OC formation via 
RANK/RANK-ligand (blue) interaction. 
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Multiple studies in vitro and in mutant mice demonstrate that the bone density 

correlates well with the overall numbers of megakaryocytes and the amount of 

megakaryocytopoiesis.  GATA-1- and NF-E2-deficient mice possess increased numbers 

of megakaryocytes, which correlates with excessive bone formation (8). Thrombopoietin, 

a megakaryocyte-specific growth factor that is the primary stimulator of 

megakaryocytopoiesis in vivo, exerts a substantial effect on bone homeostasis through 

direct modification of megakaryocyte growth and activity.  The receptor for 

thrombopoietin, c-Mpl, is constitutively expressed by megakaryocytes at all stages of 

development and can be upregulated by thrombopoietin stimulation.  The receptor then 

undergoes a conformational change to initiate signal transduction through via Janus 

kinase (JAK) family kinases that are constitutively bound to the cytoplasmic tail of c-

Mpl. Activated JAK in turn phosphorylates the receptor and other signaling molecules, 

such as signal transducers and activators of transcription (STATs), phosphoinositide-3-

kinase (PI3K) and mitogen-activated protein kinases (MAPKs), eventually resulting in 

the activation of the transcriptional regulators GATA-1 and NF-E2 that are key 

controllers of megakaryocyte-specific gene expression.  These signaling pathways lead to 

cell survival and proliferation as well as the stimulation of cytokine production.  

Eventually, kinase activity activates the SHP1 and SHIP1 phosphatases as well as 

suppressors of cytokine signaling (SOCSs) to terminate cell signaling (reviewed in 

reviewed in 44.).  While the signal transduction molecules functioning downstream of 

thrombopoietin are common, highly-conserved proteins that function downstream of 
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multiple important cell surface receptors, both the downstream transcriptional regulators 

(GATA-1 and NF-E2) and initiators of transcription (thrombopoietin, c-Mpl) appear to 

function relatively specifically in megakaryocytopoiesis, making these proteins good 

potential sites for therapeutic manipulation.  While inhibition or enhancement of 

megakaryocytopoiesis might have the desired effect on bone homeostasis, it would also 

have undesirable effects on hemostasis, leading to either thrombocytopenia and resultant 

bleeding or thrombocytosis and possible myelofibrosis, significant complications with 

profound sequelae.  

 

Megakaryocytes appear to exert their effects on osteoblasts via both direct 

intracellular interactions and indirect paracrine manipulation. Our studies implicate the 

megakaryocyte-expressed, fibronectin-binding integrins α3β1 (VLA-3) and α5β1 (VLA-5; 

an RGD receptor integrin) and the gpIIb (CD41)/gpIIIa (CD61) heterodimer as critical 

cell surface molecules on megakaryocytes mediating the cell-cell contacts functioning to 

enhance osteoblast growth and function.  Although these cell adhesion molecules also 

function in multiple cellular systems throughout the body, it has been proposed that cell 

adhesion in the interactions of megakaryocytes with osteobalsts may serve only to 

facilitate localized secretion of soluble mediators, resulting in an increased local 

concentration of paracrine factors that exceeds the cellular threshold required for 

activation (25) If this hypothesis is true, it may be possible to facilitate cell-cell 

interactions with the rational design of bivalent agents that interact with cell surface 

proteins on both cells, increasing cell adhesion and the downstream bone anabolism that 
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follows.  Such an approach is as yet hypothetical, but could be attempted with minimal 

effects on other organ systems.  

 

Megakaryocytes also influence osteoblast activity through the elaboration of 

multiple soluble factors, both autocrine, such as IL-3 and IL-6, and paracrine factors, 

including osteoprotegerin, osteocalcin, and osteonectin. We have specifically 

demonstrated the importance of IL-3 as a key upstream regulator in this process, Given 

the role of interleukins in multiple tissues, as in the immune system, treatment with 

exogenous cytokines could have substantial undesirable systemic side effects.  Thus, it 

would be more desirable to attempt manipulation of more bone-specific factors.  

Osteoprotegerin is a central regulator of bone homeostasis, maintaining the careful 

balance between bone anabolism and catabolism. Manipulation of the production of some 

of these soluble, bone-specific proteins produced by megakaryocytes might be sufficient 

to increase bone density without interfering with platelet production or function, allowing 

for the selective treatment of osteoporosis and other diseases of bone loss. 

 

Estrogens have also been shown to influence megakaryocytes and the regulation 

of bone homeostasis by megakaryocytes.  While estrogen replacement is an effective 

treatment for osteoporosis associated with reductions in endogenous hormone levels, this 

treatment is administered with caution due to the unfortunately side effects that include 

an increased incidence of certain cancers and increased heart disease in certain 

individuals.  A better understanding of the mechanisms by which estrogens influence 

megakaryocyte function and in turn affect bone density may allow us to activate only 
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these pathways selectively, resulting in effective treatment for osteoporosis and reduced 

systemic side effects.  

 

While the fine details of the molecular mechanisms governing the regulation of 

bone homeostasis by megakaryocytes remain unclear, these studies could have a 

significant impact on the treatment of disease of decreased bone mass, such as 

osteoporosis. The identification of the pathways and substrates on bone stromal cells 

functioning in the regulation of osteoclast and osteoblast function by megakaryocytes has 

identified new potential targets that may be manipulated pharmacologically in the 

treatment of bone diseases. In addition, better understanding of the soluble molecules 

produced by megakaryocytes to regulate bone homeostasis provides us with starting 

points for the rational design of drugs that could be used to manipulate any abnormalities 

of bone, from osteopenia and the lytic bone destruction of multiple myeloma to the 

excessive bone production seen in diseases such as Paget’s disease.  While significant 

research still remains before we can manipulate these pathways with ease, we remain 

ambitious that our efforts will contribute to a higher standard of clinical care for 

osteoporotic patients in the coming years. 
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