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Abstract 

The objective of this research was to evaluate the risk for asthma-related 

Emergency Department visits and their association with ambient air pollution 

within the Las Vegas metropolitan area. All data were aggregated by date and ZIP 

Code.  The association was analyzed by applying the distributed lag non-linear 

model in an attempt to identify elevated concentrations of specific air pollutants 

as triggers and their delayed effects (lag days). Relative Risk (RR) and 95% 

confidence intervals were produced, while adjusting for socioeconomic status. 

This ecological population-based study analyzed daily asthma counts of 

Emergency Department visits from January 1st, 2009 to December 31st, 2014 (N= 

109,550). The exposure-outcome analysis found that when PM10 reaches 265 

μg/m3,  RR is greater than 1, between 0-2 days lag, dissipates, and peaks between 

5-7 days lag. At initial exposure, PM10 had a RR of 2.83 (95% CI = 1.11, 7.20). At

7 days lag, PM10 reached a RR of 2.91 (95% CI= 1.21, 7.02), supporting that these 

associations present a non-linear lag effect. Understanding the adverse effects 

caused by elevated concentrations of criteria air pollutants, particularly when they 

exceed federal standards, and recognizing that a lag time exists, is a call to action 

for healthcare providers to educate their patients as to proper exposure prevention 

strategies and the development of tailored asthma management plans. 
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Chapter 1.  Introduction 

Asthma is a chronic respiratory and lung disease induced by an 

inflammation and narrowing of the airways leading to bronchial hyper 

responsiveness and reversible airflow obstruction, and resulting in recurrent 

symptoms of shortness of breath, chest tightness, wheezing, and coughing 

(Alhassan et al., 2016; Centers for Disease Control and Prevention (CDC), 2017). 

Chronic lower respiratory diseases are the third leading cause of death in the 

United States (US), a significant health burden to both adults and children (CDC, 

2016). In 2014, there were 2 million emergency department (ED) visits with 

asthma as the primary diagnosis – an 11.1% increase from 1.8 million in 2004, in 

spite of newer methods of detection, intervention and treatment (CDC, 2015; 

CDC, 2005). Current prevalence has been noted to be higher among some race 

and ethnic subgroups, such as Puerto Rican heritage (18.8%), black non-Hispanic 

(11.9%), and those under poverty level (12.4%) (Alhassan et al., 2016). “The 

strongest risk factors for developing asthma are a combination of genetic 

predisposition, obesity, viral respiratory infections, allergies, and environmental 

exposure to inhaled substances and particles that may provoke allergic reactions 

or irritate the airways,” (World Health Organization (WHO), 2017).  

The WHO defines ambient air pollution as “a contamination of the 

environment by any chemical, physical, or biological agent that modifies the 
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natural characteristics of the atmosphere,” (WHO, 2017). Air pollutants of major 

public health concern include particulate matter (PM), inhalable particles with a 

diameter less than 10 aerodynamic micrometers (PM10), or 2.5 aerodynamic 

micrometers (PM2.5). PM is comprised of dust, dirt, soot, smoke and other 

particles and liquid droplets that are easily inhaled and that may lead to serious 

health problems. PM2.5, also known as “fine particle” poses the greatest problem 

as it can penetrate deep into the lungs, possibly entering the bloodstream (Pope & 

Dockery, 2006). Other criteria air pollutants, like carbon monoxide (CO), ozone 

(O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), are also hazardous. The 

respiratory tract is most susceptible to air pollution as it is continually exposed to 

the ambient environment. O3, NO2, and PM2.5 can induce airway inflammation, 

while O3 and NO2, can induce airway hyper-responsiveness – two characteristic 

features of asthma (Guarnieri & Balmes, 2014; Noyes et al., 2009). 

Asthma affects people of every age, gender and race, but utilization of 

emergency department (ED) services is disproportionate. In Southern Nevada, for 

the years 2000-2008, Blacks and Hispanics had increased rates for hospitalization 

and ED use (Moonie, Segev, Shan, Pergola & Teramoto, 2015). Low income and 

minority populations showed increased rates for ED visits and decreased rates in 

access to primary care. This validates an existing health disparity among the 

uninsured or underinsured who rely on ED visits for treatment as opposed to 
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accessing a primary care physician for asthma care and management. This finding 

is consistent with a higher prevalence of asthma among those below the 100% 

poverty level. The longitudinal trend also revealed that children’s asthma-related 

ED visits significantly increased over time (Moonie, Seggev, Shan, Pergola, & 

Teramoto, 2015). Among Nevadans, of whom 8.1% are asthmatic, lack of 

exercise correlates  with an increased prevalence of asthma (Teramoto & Moonie, 

2011), and “children with asthma have a greater risk of absenteeism associated 

with grade retention,” (Moonie,Cross, Guillermo & Gupta, 2010). However, the 

effects of other risk factors, such as ambient air pollution, have not been assessed 

sufficiently for the Las Vegas Valley, where three fourths of Nevadans reside. 

According to the CDC, more than half of asthmatic children reported one or more 

attacks in 2016, and every year, 1 in 6 children with an asthma diagnosis has an 

ED visit (CDC, 2018). The average medical cost of asthma approximated $1,000 

per child in 2012, not including indirect costs such as missed school days and 

parents’ missed work days (CDC, 2018). 

While changes in government policy would have the most significant 

impact, education, prevention and proper asthma management are individual-level 

interventions that mitigate effects to air pollution exposure. In 2013, only 51% of 

asthmatic children were given an action plan by their healthcare provider and only 

46% were given advice on environmental control. In contrast, 76% were taught to 
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recognize early signs and symptoms of an attack and 80% were taught how to best 

respond (CDC, 2018). These numbers illustrate the gap between prevention and 

treatment. A better understanding of the adverse effects of air pollution at high 

concentrations as well as the duration of these effects can improve exposure 

reduction strategies as part of asthma action plans. 
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Chapter 2. Background 

In metropolitan cities that have and continue to experience urbanization 

and expansion, such as Las Vegas, traffic-related air pollution (TRAP) is of 

significant health concern (Green et al., 2013). Oxidative stress, which occurs in 

severe asthmatic cases, has been associated with exposures to O3, NO2, and PM2.5 

(Guarnieri & Balmes, 2014). Over the years, research has suggested that ambient 

air pollutants aggravate pre-existing asthma, but not until recently, has the idea 

been explored that ambient air pollution causes new onset of asthma symptoms. 

Environmental exposures affect the development of lung function in early 

childhood and into adulthood, which is a major determinant of future respiratory 

health (Abelsohn & Stieb, 2011; Gauderman et al., 2004). “TRAP, particularly 

PM2.5, negatively affects lung development with potential consequences for the 

development of asthma and chronic obstructive pulmonary disease,” (Burbank, 

Sood, Kesic, Peden, & Hernandez, 2017; Dong et al., 2011; Q. Yu et al., 2017). 

The southwest United States exemplifies the existing relationship between 

climate change and asthma. Global warming, combined with other weather 

conditions influenced by greater temperature variations caused by El Nino and La 

Nina, have increased forest fires (Barne et al., 2013). Wildfire smoke occasionally 

causes PM2.5 levels to exceed far beyond National Ambient Air Quality Standards 

set by the US Environmental Protection Agency (Garfin, 2013). Climate change 
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continues to increase temperature extremes (i.e., heat waves) and impacts the 

environmental distribution and biological effects of chemical toxins. By altering 

temperature, air circulation patterns, precipitation, and salinity, global warming 

will increase the risk  of O3 and particulate matter (Noyes et al., 2009). All of 

these exposures have subsequent effects on respiratory health, specifically those 

at risk for asthma. 

An exposure-response effect to ambient air pollution has been identified in 

asthmatics as well as in healthy individuals. Exposure to elevated concentrations 

of criteria air pollutants correlates with reduced air flow of the lungs, with the 

most significant exposures being ozone and particulate matter (McDonnell, 

Stewart, & Smith, 2007; Schelegle, Morales, Walby, Marion, & Allen, 2009). In 

the literature, relationships between higher ozone levels and increased ED visits 

and hospital admissions for asthma have been investigated. Inversely, improved 

air quality correlates with a drop in ED visits as observed in both controlled 

experimental exposure studies (chamber studies) and within the natural 

environment (field studies) (Gauderman et al., 2015; Li, Wang, Kan, Xu, & Chen, 

2010). More specifically, during the 2008 Olympic and Paralympic Games, when 

the Chinese government placed restrictions on transportation and industrial 

emissions in an effort to mitigate poor air quality and associated negative effects. 

Li et. al reported a drop in the average of asthma-related outpatient visits from 
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12.5 -prior to government imposed restrictions, to 7.3 during the time of the 

games, after restrictions were in effect.  (Li, Wang, Kan, Xu, & Chen, 2010). 

Studies have suggested that the exposure-response relationship between 

air pollutants and respiratory disease is non-linear, meaning negative health 

outcomes (such as ED visits) do not increase in proportion to pollutants’ level of 

concentration but rather increase more or less rapidly than a linear relationship 

would predict (Nasari et al., 2016; Rabinovitch, Silveira, Gelfand, & Strand, 

2011; H. L. Yu & Chien, 2016). Comparing a linear fit and log-linear fit model 

to illustrate the association among ambient air particulate matter and asthma 

mediators, Rabinovitch et al. (2011) found such relationship to be the steepest at 

lower PM2.5 exposure while tapering off at the highest levels of exposure, 

producing a curve and suggesting a nonlinear dose-response relationship. 

Nonlinear exposure-response curves with similar properties are found in recent 

literature that calls for future research to better understand the underlying 

mechanisms leading to nonlinear forms and statistical models that better 

estimate the “shape of the exposure-response function,” (Nasari et al., 2016; 

Pope et al., 2009; Smith & Peel, 2010). 

Associations between increased concentrations of criteria air pollutants 

and negative health effects on the respiratory system are present not only on days 

when concentrations peak at lag “0” (meaning effects were observed on the same 
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day of exposure), but some persons may experience a delayed effect, where 

clinical symptoms manifest days after initial exposure. There is some variability 

within the literature as to how many days lag before an increase in ED visits is 

observed. While much of the literature indicates an increase in ED visits occurs at 

peak exposure or within several days, fewer studies have explored delayed effects 

taking place at as long as 21 and 30 days (Liu,2016; Xu, 2013; Zhang, 2013). 

Because these studies are few, and delayed effects can be potentially observed 

past the 21 days, more studies evaluating a longer lag are needed. A recent study 

investigated the association between asthma hospital visits and O3 concentration 

in Maricopa County, Arizona for the years 2007–2012, finding that  the effect of 

higher O3 levels on asthma-related hospital visits  may persist after initial 

exposure (Mohamed, Goodin, Pope, Hubbard, & Levine, 2016), which is 

consistent with previous findings (Qiu et al., 2015; Q. Xu et al., 2016). For a more 

comprehensive analysis of air pollutant effects on asthma-related ED visits, we 

will consider multiple air pollutants and explore a lag period of  at least 3 weeks. 

Objective 

The objective of this research is to evaluate the association between 

asthma-related ED visits and ambient air pollution within the Las Vegas, 

metropolitan area during the years 2009-2014. This study aims to identify the 

leading air pollutant in predicting asthma incidence. As a secondary aim, this 
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research hopes to establish how many days lag before a peak in asthma incidence 

occurs after a particular concentration of an air pollutant is observed. Currently, 

an existing lag time between exposure-response effects has not yet been 

established. Findings within this study  may possibly contribute to the growing 

literature on the health effects of air pollution on asthma. 

Research Questions 

Question #1: Is the length of lag effect that must be considered for each air 

pollutant 7, 14, 21 or 28 days? 

Question # 2: Based on the chosen length of lag, is a significant non-linear 

association between air pollutant concentration and ED visits observed? 

Question # 3:  Does incorporating additional air pollutants for a multivariate 

analysis render a better model in comparison to a univariate model? 

Hypothesis 

H10: The length of lag, time between exposure and response effect, which must 

be considered for all pollutants is 21 days.

H1a: The length of lag effect that must be considered for all pollutants is not 21 

days.  
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Expected outcome: Associations between criteria air pollutants and asthma will 

vary by type of pollutant quantitatively. Certain pollutants may have an exposure-

response effect, where higher concentrations will increase the risk of ED visits but 

may take up to 21 days.  

H20: Based on the chosen length of lag, a significant non-linear association 

between air pollutant and ED visits will not be observed. 

H2a: Based on the chosen length of lag, a significant non-linear association 

between air pollutant concentration and ED visits will be observed. 

Expected outcome:  While considering temporal dependency, it is expected that 

the association between air pollutant and ED visits will be non-linear as supported 

in the literature. 

H30: Incorporating additional air pollutants for multivariate analysis does not 

render a model that is better fit to explore the association when compared to a 

univariate model. 

H3a: Incorporating additional air pollutants for multivariate analysis renders a 

model that is better fit to explore the association when compared to a univariate 

model. 
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Expected Outcome:  It is expected that a multivariate analysis including additional 

pollutant(s) wouldbe a better model to explore the association than a univariate 

model, being that more predictors are being considered. 
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Chapter 3. Methods 

Study Design 

This ecological population-based study takes place within the Las Vegas 

metropolitan area using aggregate count data. The time-series design uses daily 

counts of asthma ED visits from January 1st, 2009 to December 31st, 2014 as the 

dependent variable. Independent variables include air pollutants O3, PM10, PM2.5

at 1 hour and 24 hours, and CO at 1 hour and 8 hours. The association was 

analyzed using the distributed lag non-linear model (DLNM) (Gasparrini, 2011) 

and controlled for socioeconomic status (SES), in other words, the effect that age, 

race, gender, household income and insurance coverage would have on ED visits 

in the calculation of RR with 95% confidence intervals (CIs) to determine 

significance. 

Study Area 

Las Vegas is located in Nevada’s Mojave Desert, within a basin, in the 

southern tip of Nevada as illustrated in Figure 1. It is surrounded by mountains on 

all sides with a rocky landscape, desert vegetation, wildlife and sits in a wide pass 

that leads to Lake Mead and Hoover Dam (McNamee, 2018). Las Vegas is the 

28th most populated city in the US with an estimated 632,912 inhabitants (U.S. 

Census Bureau, 2016) and is the county seat for Clark County, which also 

includes the city of North Las Vegas, Henderson, and several unincorporated 

towns. As an agglomeration, this metropolitan area is known as Las Vegas 
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Valley. The population estimate is 2,155,664 inhabitants, of which 43.6% are 

White Non-Hispanic, 30.9% are Hispanic or Latino, 12.2% are black or African- 

American and 10.3% are Asian (U.S. Census Bureau, 2016). Clark County 

continues to be the fastest growing metropolis of the US since the end of the last 

century, with Las Vegas as an economic engine, making it a world-renowned 

tourist destination with an established presence in commerce, international 

business, entertainment, and urban development (McNamee, 2018). 

Data Sources 

Socioeconomic status variables for the Las Vegas Metropolitan Area were 

extracted from PolicyMap, a geographic information system (GIS) tool that 

facilitates data mapping in order to explore geospatial relationships between 

Figure 1. Las Vegas, Nevada 

Source: Google Maps (2018) 
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social phenomena (www.policymap.com). PolicyMap data sets are supplied by 

both public and private sources. The demographic data used in this study (race, 

gender, age, household income and health insurance) was extracted from The 

American Community Survey where race and gender were percent calculations 

for all people in 2010, while values for age, household income and health 

insurance were the estimated typical values between 2011-2015. 

Air quality data were acquired from the Environmental Protection Agency 

(EPA) Air Quality System (AQS). The Clark County Air Quality Department 

Figure 2. Zip Code Map of Air Pollution Monitoring Stations in Las Vegas 
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(CCDAQ) operated an air quality monitoring network measuring hourly criteria 

air pollutants in the Las Vegas Valley. Figure 2 is a ZIP Code map showing the 

matrix of monitoring sites and data coverage. The blue dots represent the location 

of the 21 pollution monitoring stations, two of which were located within the 

same zip code and for which an average of the two daily measurements were 

used. After quality assurance, these data were reported to EPA AQS and made 

available to the public.   

Daily asthma counts of ED visits from January 1st , 2009 through 

December 31st,  2014, were obtained from Center for Health Information Analysis 

(CHIA) at the University of Nevada, Las Vegas (UNLV). The State of Nevada, 

Department of Health and Human Services, Division of Healthcare Financing and 

Policy, contracts the services of CHIA “in the collection, and analysis of patient 

billings claims data from Nevada hospitals and Ambulatory Surgical Centers 

(ASC's) pursuant to NRS 449.485 and NAC 449.951-449.969,” 

(www.chiaunlv.com). This mandates all Nevada hospitals and ASCs send CHIA 

every patient billing record that is produced. Daily values for asthma ED visits are 

aggregate count data. The original data are individual data where personal 

identifiers were de-identified and anonymized. 

 An IRB approval was not sought. 
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Theoretical Framework 

The DLNM is a modelling framework that permits for the analysis of an 

exposure-response relationship of which effects may be delayed, also termed an 

exposure lag-response association. DLNM relaxes the linearity assumption and 

better incorporates the time dimension, recognizing a relationship across lags/ lag 

days as opposed to them being independent values (Chien, 2016; Gasparrini, 

2011). Such flexibility accommodates the effect variations that simultaneously 

occur along the space of the predictor variable as well as in the lag dimension of 

occurrence. Combining the basis functions of these two dimensions (i.e., air 

pollutants and lag days) creates a cross-basis function, the foundation for the 

DLNM modelling framework.  

Statistical Analysis 

The DLNM incorporates exposure, confounders, and time, and adopts “a 

bi-dimensional perspective to represent associations which vary non-linearly 

along the space of the predictors and lags,”(Gasparrini, 2011). Attempting to 

compute the RR of ED visits, we assume that Yit represents the count of ED visits 

at time t and location i, and follows a Poisson distribution by Yit ~ Poisson(μit), 

and we use the following model: 

Log(μit) = α + Σf(APit, lag=Ɩ) + f(t) + Σβ(SES)i + αi + offset 
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where μit is the expected value of Yit and α is the intercept of the model. The 

function f(APit, lag= Ɩ), is the cross-basis function of an air pollutant, which 

simultaneously describes the dependency among the space of the air pollutant and 

lag dimension, capturing both non-linear and delayed effects of air pollutants on 

ED visits. Lags will be explored from zero (present day) up to 28 days, and we 

may consider at most two air pollutants in the same model. The time smoother, 

f(t), is a cubic spline for controlling temporal autocorrelations (Chien & Yu, 

2014). Covariate vector (SES)i, represents socioeconomic variables, and β is the 

corresponding coefficient vector. The random effect term, αi, is in place to 

explain remaining variations of asthma incidence by unobserved predictors. The 

offset is the logarithm of population (Chien & Yu, 2014). 

For over-dispersed count data, a quasi-Poisson link function will be used 

rather than a Poisson link function in the DLNM. Quasi-Akaike Information 

Criterion (QAIC) estimates the quality of a model among various statistical  

QAIC = −2(log-likelihood function) + 2(# of parameters) × (over dispersion coefficient) 

models tested for the same set of data, providing a means for model selection. To 

compare full and reduced models, we will rely on QAIC values, as the least QAIC 

value will indicate which is the optimal model.  

Statistical computing and graphics for this analysis are supported by R 

programming language. R 3.4.2 with packages “dlnm”, “mgcv” (Mixed GAM 
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Computation Vehicle with automatic smoothness estimation) and “splines” 

(function that describes smooth curves) will be used, facilitating the creation of 

high level functions with multiple parameters. Three-dimensional (3D) graphical 

representations and contour plots of overall and lag-specific effects will depict the 

association. 
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Chapter 4. Results 

Summary Statistics 

Summary statistics for SES variables and criteria air pollutants are 

presented in Table 1. In 2010, it is estimated that 60.9% of the population was 

white, 50.2% were male and the average age was 37 years. Between 2011 and 

2015, the estimated typical value of household income was $54,124.00 and 81.1% 

of the population had health insurance coverage. Mean values for all criteria air 

pollutants are under National Ambient Air Quality Standard (NAAQS) as set by 

the EPA, however the max values for O3 (0.080 ppm), PM10 (267.00 ug/m3) and 

1hr PM2.5 and 24hr PM2.5 (78.75 ug/m3 and 78.70 ug/m3) are in excess from the 

recommended standard of 0.070 ppm for O3, 150 ug/m3 for PM10 and 35 ug/m3

for 24hr PM2.5. The total sample size is 109,550 as 6 years of daily measurements 

were taken for 50 ZIP Codes (2,191 days × 50 ZIP Codes).  There were 21 air 

pollution monitoring stations, resulting in 29 (58%) ZIP Codes obtaining an 

imputed estimation from surrounding monitoring stations as they did not have a 

station of their own. A correlation matrix of air pollutants and asthma ED visits is 

shown in Table 2, indicating that O3 is negatively correlated to 1hr CO 

(correlation coefficient = -0.75) and 8hr CO (correlation coefficient = -0.74), as 

well as a strong correlation between 1hr CO and 24hr PM2.5 (correlation coefficient 

= 0.80). Naturally, the same air pollutant will be highly correlated to itself as 

observed at different time interval measurements for CO and PM2.5. 
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Mean SD Min Q1 Median Q3 Max 

SES 

White%   * 60.90 12.33 28.92 53.75 59.39 71.61 85.30 

Male%    * 50.24 2.06 46.48 49.21 49.72 50.32 59.11 

Age        ** 37.22 5.63 27.00 34.00 37.00 41.00 63.00 

Household   ** 

Income       54,124.00 

16,315.3

6 22,392 42,145 53,082 65,410 88,899 

Health         ** 

Insurance% 81.14 8.31 62.7 73.73 83.02 87.63 93.44 

Pollutant 

Daily CO (ppm)

 based on 1hr data 0.55 0.29 0.00 0.33 0.48 0.72 3.10 

Daily CO (ppm) 

based on 8hr data 0.56 0.30 0.00 0.33 0.47 0.72 3.11 

Daily O3 (ppm) 0.03 0.01 0.00 0.02 0.03 0.04 0.08 

Daily PM10 (ug/m
3
) 22.37 8.32 0.00 17.00 21.91 26.84 267.00 

Daily PM2.5(ug/m
3
) 

based on 1hr data  

8.21 2.64 

0.00 6.31 7.77 9.58 78.75 

24hr PM2.5 (ug/m
3

) 

 based on 24hr data  

8.25 2.48 

0.00 6.71 7.89 9.34 78.70 

Table 2. Correlation Matrix of Criteria Air Pollutants and Asthma ED count. Abbreviations: Carbon 

monoxide (CO); Ozone (O3); Particulate matter with inhalable particles < 10 aerodynamic micrometers 

(PM10); and Particulate matter with inhalable particles < 2.5 aerodynamic micrometers (PM2.5). (*) Denotes 

highly correlated variables.

1hr CO 8hr CO O3 PM10 1hr PM2.5 24hr PM2.5 Asthma ED 

1hr CO 1.00 0.97* -0.75* 0.04 0.21 0.26 -0.09

8hr CO 1.00 -0.74* 0.04 0.21 0.25 -0.08

O3  1.00 0.04 -0.11 -0.12 -0.03

PM10  1.00 0.43 0.44 -0.05

1hr PM2.5  1.00 0.80* 0.03

24hr PM2.5  1.00 0.03

Asthma ED 1.00

Table 1. Summary Statistics for Air Pollutants and SES. Abbreviations: Carbon monoxide (CO); 

Ozone (O3); Particulate matter with inhalable particles < 10 aerodynamic micrometers (PM10); and 

Particulate matter with inhalable particles < 2.5 aerodynamic micrometers (PM2.5). *Denotes percent 

taken of all people in 2010. **Denotes estimated typical values between 2011-2015.
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Time series plots in Figure 3 show a clear seasonality in the temporal 

variation of asthma ED visits and individual criteria air pollutants. The study area 

had 0.75 daily asthma-related ED visits (SD = 1.23). Higher counts for ED visits 

Figure 3. Temporal Variation of Asthma ED Visits and Individual Criteria Air Pollutants, 2009- 

2014. 
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seem to have occurred in spring and in winter. Both asthma ED visits and 

individual criteria air pollutants show a steady incline as of February and peak in 

spring when criteria air pollutants are likely to exceed ambient air quality 

standards. 

Question #1: Is the length of lag effect that must be considered for each air 

pollutant 7, 14, 21 or 28 days? 

Lag effect was explored at 7, 14, 21 and 28 days lag for all pollutants and 

determined by least QAIC values as shown in Table 3. All pollutants rendered the 

least QAIC value at 7 days lag, rejecting H10, which hypothesized 21 days as the 

lag effect to be considered for all pollutants. Three degrees of freedom (df) for lag 

space were adopted from the literature (Wang & Lin, 2014; Z. Xu et al., 2013) 

while 3df, 4df and 5df were explored for all pollutants and determined by QAIC 

values as shown in Table 4. The optimal degrees of freedom for all pollutants was 

3df and of all pollutants, PM10 , had the least QAIC indicating PM10 is the best 

univariate model to explore the association. 

Question # 2: Based on the chosen length of lag, is there a significant non-linear 

lag effect? 

In the univariate model, Figure 4 shows the distributed lag non-linear model 

results of pollutant PM10 effect (2009-2014). Figure 4(a) demonstrates the effect 
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of PM10 concentration change on the risk for ED visits, and suggests that a drastic 

increase in risk occurred when PM10 exceeded 200 μg/m3 at both day of initial 

exposure (lag 0) and at 7 days lag. In figure 4(b), the RR reached its maximum  

Table 3. Model selection for days lag by Quasi-Akaike information criterion (QAIC). Value are set at 7, 

14, 21 and 28 days lag across all pollutants. Abbreviations: Carbon monoxide (CO); Ozone (O3); 

Particulate matter with inhalable particles < 10 aerodynamic micrometers (PM10); and Particulate matter 

with inhalable particles < 2.5 aerodynamic micrometers (PM2.5). * Denotes the least QAIC value per 

pollutant. 

Air Pollutant 7 days lag 14 days lag 21 days lag 28 days lag 

1hr CO (ppm) 2684443* 2684594 2684926 2685283 

8hr CO (ppm) 2684393*  2684520   2684941 2685337 

O3 (ppm) 2683778* 2683943 2684357 2684821 

PM10 (μg/m3) 2683038* 2683212 2683747 2684318 

1hr PM2.5 (μg/m3) 2684502* 2684703 2685084 2685366 

24hr PM2.5 (μg/m3) 2684683* 2684947 2685390 2685770 

Table 4. Model selection for degrees of freedom by Quasi-Akaike information criterion (QAIC). Degrees 

of freedom (df) in the basis function of lag are set at 3 and the (df) in the basis function of air pollutants 

are tested at 3df, 4df and 5df across all pollutants. Abbreviations: Carbon monoxide (CO); Ozone (O3); 

Particulate matter with inhalable particles < 10 aerodynamic micrometers (PM10); and Particulate matter 

with inhalable particles < 2.5 aerodynamic micrometers (PM2.5). *Denotes the model with the least QAIC 

value. 

Air Pollutant 3df 4df 5df 

1hr CO (ppm) 2684443 2684808 2685178 

8hr CO (ppm) 2684393 2684736 2685116 

O3 (ppm) 2683778 2684190 2684573 

PM10 (μg/m3) 2683038* 2683440 2683851 

1hr PM2.5 (μg/m3) 2684502 2684907 2685283 

24hr PM2.5 (μg/m3) 2684683 2685049 2685367 
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when PM10 concentrations were > 250 (μg/m3), as observed in red during initial 

exposure (lag 0), which gradually dissipates by 2 days lag and gradually increases 

as of 5 days lag, reaching a similar maximum at 7 days lag. Figure 4(c) 

demonstrates that when PM10 reached 265 μg/m3, the RR was greater than 1 

between 0-2 days lag and again between 5-7 days lag. At initial exposure, PM10 

had a RR of 2.83 (95%CI= 1.11, 7.20). At 7 days lag, PM10 reached a RR of 2.91 

(95% CI= 1.21, 7.02), meaning that PM10 concentrations of 265 μg/m3, are  

a. 3D Graph (PM10) b. Contour Plot (PM10) c. Slice Plot (PM10)

Figure 4. Univariate analysis: 3D graph, contour plot and slice plot illustrating relative risk (RR) of 

asthma-related ED visits at lagged days along pollutant concentration, where the reference levels are 

PM10 at mean value, 22.37(μg/m3) and present day (lag 0). (a) 3D plot depicts variation of RR of asthma 

related ED visits along with pollutant concentration and lagged day; (b) The contour plot shows hot 

spots of RR of asthma related ED visits with pollutant concentration along the x-axis and lag days along 

y-axis. (c) Exposure-outcome analysis (x-axis indicates days lagged, y-axis indicates the RR outcome.

The grey zone indicates the 95% confidence interval of estimated RR under the specific exposure-

outcome value.
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associated with a more than doubled risk for an asthma related ED visit at both 

initial exposure and at 7 days lag. These results support H2a in that a significant 

non-linear association between air pollutant concentration and ED visits will be 

observed. 

Question #3: Does incorporating additional air pollutants for a multivariate 

analysis render a better model in comparison to a univariate model? 

Table 5 shows the 29 models considered for multivariate analysis. It was 

determined that the model with 2 cross-basis functions, including PM10 and 1hr 

PM2.5, was  the optimal multivariate model as it rendered the lowest QAIC value. 

However, compared to the univariate model, the multivariate model had a higher 

QAIC value, supporting H30, in that incorporating additional air pollutants for 

multivariate analysis does not render a model that is better fit to explore the 

association. For comparison, distributed lag non-linear models for the multivariate 

model were plotted and are shown in Figure 5 for predictions of PM10, while 

predictions of 1hr PM2.5  are shown in Figure 6. Based on QAIC values, the 

alternative multivariate model with 2 cross-basis functions included pollutants 

PM10 and O3, see Supplement Figure 1 in Appendix for PM10 prediction results. 

Figure 5(a) demonstrates the variation of the RR along with 1hr PM10  

concentration and lag. Figure 5(b) presents a hot spot at initial exposure between 

lag 0-1,  when 1hr PM10 levels exceeded 250 μg/m3, and another between lag 6 
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and 7. The corresponding 265 μg/m3 slice plot, figure 5(c), indicates the RR was 

greater than 1 as of initial exposure and up until 1.5 days lag with a RR of 2.60 

(95%CI= 1.01, 6.55) and again after 5 days lag, reaching a RR of 2.14 (95%  

2 cross-basis functions QAIC 3 cross-basis functions QAIC 

1hr CO + O3 2685396 1hr CO + O3 + PM10 2685670 

1hr CO + PM10 2684665 1hr CO + O3 + 1hr PM2.5 2687390 

1hr CO + 1hr PM2.5 2686227 1hr CO + O3 + 24hr PM2.5 2687353 

1hr CO + 24hr PM2.5 2686450 1hr CO + PM10 + 1hr PM2.5 2685873 

8hr CO + O3 2685331 1hr CO + PM10 + 24hr PM2.5 2686481 

8hr CO + PM10 2684617 8hr CO + O3 + PM10 2685630 

8hr CO + 1hr PM2.5 2686190 8hr CO + O3+ 1hr PM2.5 2687332 

8hr CO + 24hr PM2.5 2686400 8hr CO + O3 + 24hr PM2.5 2687290 

O3 + PM10 2684614 8hr CO + PM10 + 1hr PM2.5 2685836 

O3 + 1hr PM2.5 2685660 8hr CO + PM10 + 24hr PM2.5 2686446 

O3 + 24hr PM2.5 2685823 O3 + PM10 + 1hr PM2.5 2685309 

PM10 + 1hr PM2.5  2684519* O3 + PM10 + 24hr PM2.5 2685768 

PM10 + 24hr PM2.5 2685009 

4 cross-basis functions QAIC 

1hr CO + O3 + PM10 + 1hr PM2.5 2687334 

1hr CO + O3 + PM10 + 24hr PM2.5 2687707 

8hr CO + O3 + PM10 + 1hr PM2.5 2687296 

8hr CO + O3 + PM10 + 24hr PM2.5 2687665 

Table 5. Model selection by Quasi-Akaike information criterion of 2,3 and 4 cross-basis functions. 

Abbreviations: Carbon monoxide (CO); Ozone (O3); Particulate matter with inhalable particles < 10 

aerodynamic micrometers (PM10); and Particulate matter with inhalable particles < 2.5 aerodynamic 

micrometers (PM2.5). *Denotes the lowest QAIC value. 
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CI=0.89, 5.14). Figure 6(a) demonstrates the variation of RR along 1hr PM2.5  

concentration and lag. The contour plot, figure 6(b), shows a hot spot as of initial 

exposure which extends through 3 days lag, dissipates, and returns at 7 days lag  

a. 3D Graph (PM10) b. Contour Plot (PM10) c. Slice Plot (PM10)

when 1hr PM2.5 levels surpass 50 μg/m3. The corresponding slice plot, figure 6(c), 

indicates the RR was greater than 1 between 0-3 days lag, having a maximum RR 

of 1.24 (95% CI= 0.62, 2.47) at 1 day lag and a RR of 1.20 (95%CI= 0.46, 3.15) 

Figure 5. Multivariate Analysis Predicting PM10: 3D graph, contour plot and slice plot illustrating 

relative risk (RR) of asthma-related ED visits at lagged days along pollutant concentration, where 

reference levels are PM10 at mean value, 22.37μg/m3 and present day (lag 0). (a) 3D plot depicts 

variation of RR of asthma related ED visits along with pollutant concentration and lagged day; (b) The 

contour plot shows hot spots of RR of asthma related ED visits with pollutant concentration along the x-

axis and lag days along y-axis. (c) Exposure-outcome analysis (x-axis indicates days lagged, y-axis 

indicates the RR outcome. The grey zone indicates the 95% confidence interval of estimated RR under 

the specific exposure-outcome value. 
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at 7 days lag, however, the range for confidence intervals falls below the value of 

1, rendering this result insignificant. 

a. 3D Graph (1hr PM2.5) b. Contour Plot (1hr PM2.5) c. Slice Plot (1hr PM2.5)

Figure 6. Multivariate Analysis Predicting 1hr PM2.5: 3D graph, contour plot and slice plot illustrating 

relative risk (RR) asthma-related ED visits at lagged days along pollutant concentration, where reference 

levels are 1hr PM2.5 at mean value, 22.37μg/m3 and present day (lag 0). (a) 3D plot depicts variation of 

RR of asthma related ED visits along with pollutant concentration and lagged day; (b) The contour plot 

shows hot spots of RR of asthma related ED visits with pollutant concentration along the x-axis and lag 

days along y-axis. (c) Exposure-outcome analysis (x-axis indicates days lagged, y-axis indicates the RR 

outcome). The grey zone indicates the 95% confidence interval of estimated RR under the specific 

exposure-outcome value. 
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Chapter 5. Discussion 

This study aimed to explore the association between critical air pollutants 

and asthma ED visits while considering the temporal dependency between 

exposure and outcome. The analysis determined, by means of QAIC values, that 7 

days was the appropriate duration of lag effect to be considered for all pollutants. 

Based on this lag, a significant non-linear lag effect was found. When additional 

pollutants were incorporated in the analysis, they did not enhance the model to 

better explore the association. 

Using QAIC values, it was determined that 7 days was the appropriate 

duration of lag effect to be considered as each pollutant rendered their smallest 

QAIC at 7 days lag, with PM10 being the best univariate model to explore the 

association. There are few studies that have used DLNM to study the association 

between criteria air pollutants and asthma related health outcomes. One study 

explored the delayed effects of PM10 on asthma ED visits up to 21 days lag and 

similar to our study, reported significant findings at lag 0 (Xu, 2013), while 

another explored the delayed effects of PM10 on primary healthcare visits with 15 

days lag and observed a statistically significant increase in the number of asthma 

primary healthcare visits through day 15 (Taj, 2016). Difference in results may be 

attributed to the difference in outcome variables. Among studies that use ED 

visits as outcome, most significant findings occur within a relatively shorter lag 

time, if not at immediate exposure. In contrast, our study had significant findings 
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at 7 days lag as well, refuting the notion that severe asthma attacks among those 

susceptible, occur at immediate exposure. 

Based on the chosen length of lag, this study revealed non-linear behavior 

when analyzing the associations between PM10 and ED visits of asthma, which 

concords with similar studies where concentration-response curves suggest non-

linear relations between PM exposures and respiratory disease outcomes (Ge et 

al., 2018; Guarnieri & Balmes, 2014; Nasari et al., 2016; Pope et al., 2009; 

Smith & Peel, 2010; H. L. Yu & Chien, 2016). The drastic increase in risk that 

occurred when PM10 exceeded 200 μg/m3 at lag 0, is consistent with most studies 

in the literature whose findings report asthma related ED visits to occur in those 

most fragile at initial exposure (Ge et al., 2018; Q. Xu et al., 2016). Such 

concentrations of PM10 are well over the 150 μg/m3 limit indicated by the EPA’s 

National Ambient Air Quality Standard.  When PM10 concentrations were at 150 

μg/m3, our model showed a decrease in level of risk as RR approximated the 

value of “1” for all days lag. In our study, this pollutant’s effect showed to 

gradually dissipate after initial exposure, then gradually increased to reach a 

similar maximum at 7 days lag, finding which supports that there are others at 

similar risk of asthma-related ED visit outcomes up to 7 days later, as found in a 

similar study with PM2.5 (Chien, Chen, & Yu, 2018).  This emphasizes the need 

for susceptible individuals and healthcare practitioners to better understand the 

long-term impact of criteria air pollutants in order to implement best health 
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practices. Although this study shows PM10 exposure is associated with the risk of 

ED visits due to asthma, only 14 days exceeded NAAQS for  PM10, reason why 

the overall health impact within the Las Vegas metropolitan area may not 

necessarily be considered significant. Nonetheless, with further urbanization and 

expansion in the Las Vegas metropolitan area, extreme temperatures due to global 

warming and a continuance of forest fires in California, the number of days per 

year that exceed NAAQS may be on the rise. 

Asthma-related ED visits are not only a key indicator of poor asthma 

management but also of populations at risk for future asthma attacks. Elevated 

concentrations of criteria air pollutants have a public impact on the community. 

Negative health outcomes such as asthma-related ED visits burden the healthcare 

system and have serious cost implications, especially when uninsured and 

underinsured individuals rely on ED visits for asthma treatment. Those most 

susceptible, particularly children, would benefit most from improved air quality 

considering the negative effects poor air quality  has on the development of lung 

function, a major determinant of life long respiratory health. Changes in 

government policy / further EPA restrictions would have the most significant 

impact as a reduction in the concentrations of criteria air pollutants may reduce 

ED visits. 
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It was expected that including additional pollutant(s) to the original model 

would render a model better fit to represent and explore the association. Studies 

comparing univariate models to multivariate models specifically for the 

association between PM2.5 -PM10 and asthma ED visits were not found in the 

literature. In theory, multivariate models are more complex, aiming to integrate 

additional contributing factors and multiple parameters that render a better 

explanation of the association than do simpler univariate models (Gasparrini, 

2011; Lowe et al.; 2018). However, the QAIC value indicated the univariate PM10 

model better minimized the trade-off function between number of parameters and 

goodness of fit than did the PM10 - 1hr PM2.5 multivariate model in our study. This 

could be due to limitations in our baseline model or collinearity as additional 

pollutants are integrated. 

To the author’s knowledge, this is the first study to explore the effects of 

criteria air pollutants on ED visits using DLNM within the Las Vegas 

metropolitan area. DLNM allows for imputed air pollution data to consider 

regional variation. Lagged and non-linear effects were explored using advanced 

statistical methods to better explain exposure-response relationships of which 

effects may be delayed. Compared to similar studies, this study looked at various 

pollutants for a more comprehensive analysis. The results of this study contribute 

to the growing literature on the health effects of air pollution on asthma, being 

that existing lag time between exposure-response effects have not yet been 
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established. The findings could help medical providers and those most susceptible 

better understand the lag effects of high concentrations of pollutants so that 

appropriate asthma management plans can be developed at the individual level. 

Several limitations should be acknowledged. First, the count for ED visits 

obtained from CHIA consisted only of Nevada hospitals, which excludes urgent 

care centers and consequently, a higher asthma count which may impact the 

association our study aimed to explore. Second, with only 21 monitoring 

stations, 58% of ZIP codes received imputed data, being that the dlnm is a 

modelling framework that depends on variability, its predicting power may have 

been limited. In terms of measurement error, monitoring stations may not exactly 

represent the real individual inhalation measurement. Third, this study did not 

control for environmental factors that could potentially confound the effect of 

PM10 on ED visits. Initially, daily weather data from 11 stations was collected, 

but because the imputed weather data in each ZIP code was limited, weather 

variables were not considered in the models. With the use of aggregate data, and 

thus aggregate exposure, potential confounders at the individual level 

(comorbidities, repeat visits) were not controlled for. The possibility of 

integrating other statistical software/programs was considered but not 

incorporated, in part because of its complexity, timing and uncertainty as to its 

impact on the model’s predicting power. Individual-level confounding variables, 

(ie., smoking), only have valid data by county level, and not zip code level. In an 
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attempt to explain remaining variations of asthma incidence by unobserved 

predictors, (i.e., weather conditions, or individual risk factors such as smoking), 

a random-effect intercept was included in the models. 

Outcomes from this study may prompt further research so we may better 

understand the behavior of such associations. Future research may include 

incorporating a spatial function as part of the model in order to consider spatial 

heterogeneity and to establish spatial vulnerability (variation of ED visits that 

isn’t explained by non-spatial predictors) as the spatial variation of ED visits is 

not entirely attributed solely by criteria air pollutant exposure. Including a spatial 

function would consider geographic data as an independent variable in the model. 

In conclusion, the study shows that within the Las Vegas metropolitan 

area, PM10 exposure is associated with the risk of ED visits due to asthma, and 

PM10 has a nonlinear lagged effect for asthma occurrences. Understanding the 

existence of a lag time is imperative for healthcare providers to emphasize and 

educate their patients as to proper prevention and asthma management practices. 
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Appendix 

a. 3D Graph (PM10) b. Contour Plot (PM10) c. Slice Plot (PM10)

SF1. Alternative Multivariate Analysis Predicting PM10: 3D graph, contour plot and slice plot illustrating 

relative risk (RR) of asthma-related ED visits at lagged days along pollutant concentration, where 

reference levels are PM10 at mean value, 22.37μg/m3 and present day (lag 0). (a) 3D plot depicts 

variation of RR of asthma related ED visits along with pollutant concentration and lagged day; (b) The 

contour plot shows hot spots of RR of asthma related ED visits with pollutant concentration along the x-

axis and lag days along y-axis. (c) Exposure-outcome analysis (x-axis indicates days lagged, y-axis 

indicates the RR outcome. The grey zone indicates the 95% confidence interval of estimated RR under 

the specific exposure-outcome value. At initial exposure, lag 0, RR is 2.59 (95%CI= 1.03, 6.55); Lag 7, 

RR is insignificant at 2.14(95%CI= 0.89, 5.14) 
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