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ABSTRACT 

Effectiveness of commercially-available cosmetic cleaners on cosmetics and cosmetic 

brushes 

By 

Vanessa Ortiz 

Patricia Cruz, Ph.D., Advisory Committee Chair 

Professor, Department of Environmental and Occupational Health 

School of Community Health Sciences 

University of Nevada, Las Vegas 

 

 

The complex nature of skin contributes to the microbial population present on its surface. While 

normal skin flora is either beneficial or has no effect on the body, there are instances where 

pathogenic microorganisms are present and can cause infections. Damaged skin is more 

susceptible to infections from these microbes. Behavioral characteristics, such as the use of 

cosmetics, can affect the microbial population present on the skin. Staphylococcus aureus is the 

organism most commonly isolated from cosmetics, and it can be responsible for conjunctivitis, 

impetigo, boils, and folliculitis.  There are many ways microbial contamination of cosmetics can 

occur, such as ineffective preservatives and consumer habits. With the advent of commercially-

available cosmetic cleaning products, consumers may have a plausible means of reducing 

contamination on their cosmetics and cosmetic brushes. The objectives of this study were to 

determine the effectiveness of commercially-available cosmetic cleaners in reducing microbial 

contamination on cosmetics and cosmetic brushes. Cosmetics (i.e., eyeshadow/blush and 

lipstick) and large and small cosmetic brushes were inoculated with a known concentration of S. 

aureus, allowed a 0-, 1-, or 5-minute contact time, and treated with commercially-available 

cleaning products. Isopropyl alcohol and a cotton pad were compared to commercially-available 
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sprays, wipes, and shampoos. Unused cosmetics and brushes were inoculated with the target 

organism, and culture analysis was used to determine the reduction of microbial concentration on 

cosmetics and cosmetic brushes after cleaning. On eyeshadows, the cotton pad exhibited a 

significantly greater reduction in microbial contamination compared to spray #2; 99.44% and 

37.86%, respectively. For the lipsticks, both wipe #2 (99.77% reduction) and 70% isopropanol 

wipe (99.56%) had a significantly greater reduction in microbial concentration compared to the 

cotton pad (96.18%). For contact times, there were no statistically significant results. In addition, 

there were no statistically significant results for products used on the small brushes. On the large 

brushes, the wipes (98.01%) exhibited a greater percent reduction of microbial contamination 

compared to shampoos (89.92%). The results of this study demonstrate that cleaning products, 

regardless of contact time with the microorganisms, cleaning product type, or cleaning product 

brand, were effective in reducing microbial contamination on cosmetics and cosmetic brushes.  

These results may provide valuable information to consumers about the importance of regular 

maintenance of their cosmetics and cosmetic brushes.  
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CHAPTER 1 

BACKGROUND 

The skin is an integral and complex part of the human body. While the main function of 

the skin is to protect the internal body from infection, the skin itself is constantly colonized with 

a variety of microorganisms, which include viruses, bacteria, fungi, and protozoa (Oluwole et al., 

2013). The typical skin microbiota is usually mutualistic or commensal; this means that the 

microbial population is beneficial or has no effect on the human body (Grice et al., 2008). 

However, there are instances where pathogenic microorganisms are present and can cause 

infections. Damaged skin is most susceptible to infections from these microbes. It is in the 

presence of pathogenic microorganisms that we see the progression of skin infections, such as 

acne and dermatitis (Grice et al., 2008).   

The complex nature of skin contributes to the microbial population present; these 

characteristics include moisture, temperature, pH, sebum content, and hair follicles (Grice et al., 

2008). In addition to skin composition, there are several other factors that influence skin 

microbiota. These factors are host demographics, host genetics, transmission of non-resident 

microorganisms, environmental characteristics, and behavioral characteristics (Fredricks, 2001). 

Host demographics refer to characteristics, such as ethnicity, age, and gender; all of these factors 

are unique and vary among individuals. One study involving these factors focused on finding an 

association between host demographics and microbial populations on the skin (Rosenthal et al., 

2011). This study found that ethnicity was “a significant predictor of skin health” (Rosenthal et 

al., 2011, p. 847). Host genetics largely determines the host’s immune response. Specifically, the 

innate, or non-specific, immune response is known to be associated with regulating the microbial 
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environment on epithelial surfaces. Past studies have focused on discovering variations in the 

human genome that may influence the microbial composition on the skin (Fredricks, 2001).  

Transmission of non-resident microorganisms involves the removal, or introduction, of 

new species of microorganisms, and the interaction among species in the current microbial 

population on the skin. Direct contact with people, fomites, and the environment has the 

potential to introduce new microorganisms into the microbial population present on the surface 

of the skin. Introduction of foreign microorganisms also has the potential to cause inter-species 

interactions (Fredricks, 2001). For example, Propionibacterium acnes and Staphylococcus 

aureus have been known to work together, or synergistically, to cause significant skin lesions not 

seen with either of these bacteria alone (Rosenthal et al., 2011). Conversely, some bacteria have 

the ability to compete with other microbes present. In these instances, the microorganisms utilize 

antagonistic mechanisms, such as the production of toxic by-products, inhibition of adherence, 

and depletion of nutrients (Rosenthal et al., 2011). Environmental factors, such as ultraviolet 

(UV) radiation exposure and temperature, alter the structure of the skin, which can have a direct 

influence on the microbial population inhabiting the area. Every individual is exposed to 

different environments; for example, the microorganisms present in a classroom can vary 

significantly from that of a hospital. Therefore, the normal flora of an individual exposed to one 

of these environments can vary significantly from a person exposed to a different location.  

Behavioral characteristics are those actions carried out by the host, such as the use of 

cosmetics and hand hygiene. Hand washing works by removing the top layer of oil and 

cutaneous microflora from the skin (Oluwole et al., 2013). Other behavioral characteristics 

believed to be associated with the disturbance of the natural skin microbiota include exposure to 

the sun, smoking, and diet (Rosenthal et al., 2011). Cosmetics can become contaminated with 
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various microorganisms and can disturb the normal microbial flora of the skin which can lead to 

skin infections.  
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CHAPTER 2 

INTRODUCTION 

Normal Skin Flora  

Every individual’s skin consists of intricate and diverse microbial populations (Chen et 

al., 2013). Each habitat on the skin has its own characteristics which dictate the microbial 

diversity and variability of that area. Colonizing microbes obtain nutrients for the skin in the 

form of proteins and fats (Fredricks, 2001). In order to colonize the skin, microbes must compete 

with one another for nutrients and space. On normal skin, microbes sustain an equilibrium 

amongst themselves to maintain their environment; this is believed to help prevent pathogens 

from colonizing the area (Fredricks, 2001). At the microscopic level, the skin contains uneven 

surfaces in the forms of groves and ridges (Kong, 2011). Structures such as nails, sebaceous 

glands, and hair follicles provide unique environments for microorganisms. On a macroscopic 

level, areas such as the back, forearm, armpit, and nose have unique characteristics that provide 

an ideal habitat for specific microbes. Those areas of the skin with lower exposures to the 

environment exhibit more stable communities of bacteria. Conversely, exposed areas, such as the 

palm of the hand, exhibit a higher variability of microorganisms (Chen et al., 2013).  

Normal skin flora includes Staphylococcus aureus, Staphylococcus epidermidis, 

Propionibacterium acnes, and Pseudomonas aeruginosa (Kong, 2011). Bacterial populations are 

categorized as: resident (which grow and reproduce), temporary resident (non-resident, yet can 

colonize), and transient (contaminants that do not reproduce) flora (Kong, 2011). Researchers are 

working on elucidating the intricate relationship that exists between the host and 

microorganisms. These studies are not just focusing on pathogenic organisms, but also the 

consequences that occur due to imbalances of the commensal microbes present on the skin.   
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Skin Infections 

 It is estimated that at a given time, over a million bacteria can inhabit an area as small as 

a square centimeter on the surface of the skin (Chen et al., 2013). Microbes on the skin can cause 

noninfectious disorders such as rosacea, psoriasis, atopic dermatitis, and acne (Chen et al., 2013). 

The presence of Staphylococcus aureus and Propionibacterium acnes on the skin are the major 

causes of acne (Hillion et al., 2013). Skin conditions, such as folliculitis, furunculosis, cellulitis, 

and impetigo, have been shown to be caused by several different microorganisms; some of these 

microbes include S. aureus, S. pyogenes, and Pseudomonas aeruginosa. Most skin infections are 

multifactorial; for example, environmental factors combined with the presence of pathogenic 

microorganisms can lead to the progression of an infection. Studies have shown that over “90% 

of cultivable human skin bacteria” can be placed within the following groups:  Firmicutes, 

Actinobacteria, and Proteobacteria (Hillion et al., 2013, p. 959). 

Atopic dermatitis (AD) is a non-communicable, chronic skin condition that is believed to 

be associated with changes in the microbial population present on the skin; this condition is 

commonly known as eczema. AD affects 10-20% of children and 1-3% of adults; however, the 

prevalence of this disorder has increased three-fold within the past several years (Nutten, 2015). 

While AD is typically common among children and adolescents, the disorder can either resolve 

itself or remain throughout adulthood. In addition, adult onset of AD is also possible. Although 

the actual cause of AD is unknown, many hypothesize that “colonization of S. aureus and 

immune hypersensitivity” could be to blame for this disorder (Chen et al., 2013, p. 146). There 

are various treatments that have proven to be effective against AD and they include steroids, 

antibiotics, and dilute bleach baths. These treatment options function by reducing the bacterial 

load present on the skin thus slowing down the body’s immune response. Colonization and 
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infection with S. aureus has typically been associated with AD. During AD flares, studies have 

found that species of Staphylococcus increased from 35% to 90%; interestingly, this increase was 

largely seen with S. aureus and S. epidermidis (Chen et al., 2013).  

Acne vulgaris, a common skin condition, is characterized by blocked pores, cysts, 

papules, and pustules (Fredricks, 2001). Approximately 80% of adolescents are affected by acne. 

Some factors associated with the pathogenesis of acne include inflammation, excess sebum, and 

the presence of the microorganism Propionibacterium acnes (Numata et al., 2014).  Acne is 

clinically diagnosed by the presence of Propionibacterium and Staphylococcus species. The 

causes of acne are separated into two categories: external factors and acneiform eruptions. 

External factors are substances that block pores, such as cosmetics. Other factors include 

environmental conditions (such as temperature), the presence of mites, and prolonged physical 

contact or friction. Acneiform eruptions are typically caused by the use of medications (such as 

steroids), genetics, and hormonal imbalances. Treatment of acne is difficult and varies widely 

depending on the severity and individual characteristics of the skin (Lovecková et al., 2002). 

Rosacea, another common skin disorder, typically affects the face of adults and is characterized 

by patchy redness, visible dilation of capillaries, and inflammation (Fredricks, 2001).  

Chronic wounds were found to be less microbially diverse than healthy skin, but no 

specific organisms were found to be associated with this condition. On the other hand, the 

microbiome of follicles afflicted with acne was found to be more diverse than that of healthy 

follicles; however, acne follicles are colonized mainly by P. acnes. With psoriasis, it is still 

unknown whether there is a difference between the microbiome of psoriatic plaques and normal 

skin (Chen et al., 2013). 
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Overall, there is a lack of knowledge of how dermatological treatments affect the 

microbiome of the skin. Interestingly, the reason for the use of antibiotics for the treatment of 

these disorders is not fully understood. With the increased use of antibiotics, antibiotic resistance 

among skin flora has become a concern. It is believed that the resistant genes can be spread 

among the organisms of the normal flora and to transient or contaminant organisms (Lalitha et 

al., 2013). Elucidating the types of bacteria present on the skin with these conditions may help 

explain how antibiotic use is correlated with changes in the microbial population of the skin and 

whether this treatment option is appropriate.   

Staphylococcus aureus 

 Staphylococcal species are among the most abundant microbial species present on the 

skin. The main species present on normal skin is S. epidermidis; it is believed that this organism 

protects the host from pathogenic microbes. Several species of Staphylococcus cause a wide 

range of disease, from localized skin disorders to systemic infections (Coates et al., 2014). It is 

believed that other microbial flora can have a huge impact on S. epidermidis or S. aureus, found 

on the skin (Chen et al., 2013).  

Staphylococcus aureus infections range from asymptomatic to severe. S. aureus is 

commonly found in 20-30% of nasal passages of healthy individuals, but it can also cause skin 

infections such as impetigo or dermatitis (Kong, 2011). The increase in antibiotic resistance of S. 

aureus has led to a decrease in treatment options which makes this pathogen an important public 

health issue (Chen et al., 2013).  

As discussed above, AD, a chronic skin disease, is commonly associated with S. aureus 

infections (Kong, 2011). In order to understand how S. aureus affects AD flares, it is necessary 

to understand how it typically functions within the normal skin flora. Some studies have shown 
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that S. epidermidis has the ability to inhibit the growth and colonization of S. aureus; thus the 

theory that S. epidermidis may be an antagonist to S. aureus. However, it is still unknown exactly 

how these two species interact with one another but the two main theories are: (1) the presence 

of S. epidermidis surges due to an increase in S. aureus present on the skin or (2) S. aureus and S. 

epidermidis work together to aid in the colonization of both species (Chen et al., 2013). Other, 

non-staphylococcal, species have been seen to increase during an AD flare. More research is 

needed to understand whether (1) the increased growth of staphylococcal species causes a 

change in other species present or (2) a change on the host’s skin causes a change in the 

microbial composition, which leads to staphylococcal species growing in abundance (Chen et al., 

2013). Discovering what role S. aureus plays in the fluctuation of the skin flora can lead to new 

treatment options, such as focusing on correcting the normal microbial balance of the skin rather 

than complete elimination of the pathogen. Understanding how the skin microbiota is associated 

with AD may also help us understand other conditions like acne, psoriasis, and chronic wounds 

(Chen et al., 2013).  

S. aureus and S. pyogenes are also the cause of impetigo, a common contagious infection 

among children. Cellulitis, a bacterial infection of the skin marked by redness and inflammation, 

is also caused by these two organisms. An infection of hair follicles, or folliculitis, is mainly 

caused by S. aureus. Under normal conditions, the skin’s characteristics serve as a deterrent for 

the proliferation of pathogenic organisms. However, when the normal flora is altered, the 

possibility for microbial adhesion and growth increases (Chiller et al., 2001). 

Cosmetics 

 The Food and Drug Administration (FDA) defines cosmetics as “articles intended for 

beautifying, cleansing, promoting attractiveness or altering appearance” (Naz et al., 2012, p. 
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523). Cosmetic powders are utilized to enhance appearance, reduce the signs of aging, and cover 

up skin imperfections, such as dark circles or blemishes (Dashen et al., 2011). Eyeshadows, and 

other cosmetics, are made up of inorganic and organic materials which are ideal nutrients that aid 

in the proliferation of microorganisms; hence the need for preservatives and antimicrobial agents 

in these products (Dawson et al., 1981). A recent study found that the average person uses nine 

cosmetics on a daily basis, and over 25% of women use 15 or more products daily (Rastogi et al., 

2015). These products have the potential to become contaminated with P. aeruginosa, S. aureus, 

Clostridium tetani, molds and yeasts (Dashen et al., 2011).  

Various cosmetics are available for immediate use in makeup and department stores; 

these are called testers. In a study conducted on in-store testers, researchers found that 90% of 

organisms isolated were representative of normal skin flora, such as S. epidermidis (Dawson et 

al., 1981). In addition, P. aeruginosa and S. aureus were also commonly found. Customer 

observation suggests that the main culprit of cosmetic tester contamination was the use of 

multiple use applicators and fingers. Employee observation showed a lack of disinfection of 

multiple use applicators and cosmetic testers. Among the different types of multiple use 

applicators, sponges exhibited the greatest ability to harbor microorganisms due to their ability to 

accumulate oils, moisture, dead skin, cosmetics, and other materials. Many stores have the option 

of using disposable applicators, but often these are not easily accessible by the customer. Thus, it 

is suggested that testers are covered when not in use, the use of fingers is prohibited, and 

awareness of expiration dates are utilized to help prevent contamination of makeup testers 

(Dawson et al., 1981). 

In addition to shared-use cosmetics, the sharing of cosmetic accessories such as makeup 

applicators, tweezers, and eyelash curlers have the potential for transmitting infections. Studies 
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have shown that cosmetic brushes used repetitively contain an increased amount of microbes that 

can cause skin infections (Naz et al., 2012). One study found that shared-use makeup brushes 

from a salon were contaminated with 2.28 × 105 colony forming units per milliliter (CFU/ ml) of 

S. aureus (Naz et al., 2012). Thus, it is suggested that proper decontamination of cosmetic tools 

take place to prevent transmission of infections. Few studies have looked at the microbial 

contamination of cosmetic brushes. One such study found that 30.3%, 81.8%, and 100% of 

cosmetic brushes from a beauty salon were contaminated with fungal species, P. aeruginosa, and 

S. aureus, respectively (Naz et al., 2012).  

Cosmetics with high water content, such as cream-based products, are at a greater risk of 

microbial contamination (Lundov et al., 2009). Cosmetic packaging plays a major role in 

maintaining the integrity of the product; reducing the product’s exposure to the environment will 

help reduce the possibility of microbial contamination (Lundov et al., 2009). There are many 

ways contamination can occur, and they include: manufacturer practices, ineffective 

preservatives, age of product, and consumer habits (Abdelaziz et al., 1989). Consumer habits, 

such as failure to properly disinfect cosmetics and the addition of water (to thin out the product), 

can lead to the likelihood of microbial contamination (Abdelaziz et al., 1989).  Sharing of 

cosmetics can lead to the spread of infections because every individual’s skin flora is different. 

Storage of cosmetics is also important in reducing microbial contamination. Many consumers 

improperly store cosmetics in the bathroom or other damp areas where microorganisms thrive 

(Giacomel et al., 2013). To prevent contamination in products with inadequate packaging, it is 

suggested that tools, such as a spatula, are used to remove products for use. The purpose of 

adequate packaging is to reduce the product’s contact with the environment. Microorganisms in 
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cosmetics not only affect consumer health, they can also lead to spoilage or deterioration of the 

product (Birteksoz et al., 2013). 

Cosmetic products have the potential to cause infections or allergic reactions. The most 

common reactions to cosmetics are contact allergies; this is typically due to ingredients within 

the product, such as fragrances and preservatives. Approximately 6% of the population has a 

contact allergy associated with cosmetics (Lundov et al., 2009). In addition to contact dermatitis, 

photosensitivity and irritation can also occur (Giacomel et al., 2013). Although it is just a minor 

component of cosmetics, preservatives have been shown to cause allergic responses in 

consumers (Herman et al., 2013). Cosmetics applied to the eye area, such as eyeshadow and 

mascara, have been associated with serious eye infections. S. aureus is the most common 

organism isolated from cosmetics and is responsible for the following skin infections: 

conjunctivitis, impetigo, boils, and folliculitis (Birteksoz et al., 2013). Opportunistic pathogens 

that have been isolated from cosmetic products include Pseudomonas aeruginosa, other 

Pseudomonas species, Klebsiella pneumoniae, Enterobacter species, and Serratia species 

(Birteksoz et al., 2013). Mascara, which is applied to the eyelashes, has the highest potential for 

contamination because it is a water-based product and is applied very close to the eye. P. 

aeruginosa is the major contaminant found on mascaras and is responsible for eye infections, 

such as keratitis and conjunctivitis, which can lead to vision loss (Birteksoz et al., 2013). S. 

aureus and S. epidermidis are also commonly found in mascaras (Giacomel et al., 2013). 

 Corneal infections due to cosmetics are typically exacerbated by abrasions caused by 

tools, such as a mascara wand. Staphylococcus species are the normal causes of these infections 

among non-contact lens wearers; P. aeruginosa is the common culprit among contact lens 

wearers. The combined use of mascara and contact lenses increases the chance of infection (Pack 
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et al., 2008). Studies have found that repeated use of the product by multiple individuals greatly 

increases the chances of pathogenic contamination; this also occurs with single use mascaras, but 

over a longer period of time. Clinicians recommend that cosmetics are replaced every 6 months, 

or 3 months for contact lens wearers, to prevent infection. In addition, it is recommended that 

consumers (1) avoid using old, unclean tools on new cosmetics, (2) replace cosmetics following 

an infection, (3) put on contact lenses prior to applying mascara and other cosmetics, and (4) 

avoid sharing cosmetics (Pack et al., 2008). However, most cosmetic users do not discard their 

makeup until the entire product is gone. A study conducted at the University of Alabama found 

that cosmetic users reported that a majority of their products were between 6 months to 5 years 

old (Pack et al., 2008).   

Cosmetic Preservatives 

Cosmetics are typically made up of the following ingredients: “water, emulsifiers, 

preservatives, thickeners, colors, fragrances, and stabilizers” (Lalitha et al., 2013, p. 61). The 

purpose of preservatives in cosmetics is to regulate microbial contamination during the 

production, storage, and use of the product (Herman et al., 2013). However, preservatives lose 

effectiveness over time, and prolonged misuse and inadequate storage can exacerbate microbial 

growth (Ashour et al., 1986). Cosmetics that lack effective preservatives are at an increased risk 

of microbial contamination and proliferation which can lead to health hazards for the consumer 

and affect the composition of the product (Ghalleb et al., 2015). Cosmetic preservatives, and 

other ingredients, are evaluated for safety by the Cosmetic Ingredient Review (CIR); this is an 

independent, non-profit agency funded by the FDA. The CIR is comprised of individuals 

representing consumer, industry, toxicology, and dermatology groups (Lundov et al., 2009). The 

CIR is concerned with labelling products with the appropriate warnings and active ingredients 
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(Pack et al., 2008). The FDA uses the information obtained by the CIR to help establish 

guidelines for cosmetics. While in the U.S. cosmetics are required to have a complete list of 

ingredients, many products are improperly labeled or the consumer is unable to comprehend the 

list (Lundov et al., 2009).  

Cosmetic preservatives can remain on the skin and alter the normal flora; this is 

especially a concern with prolonged use of the product. The main preservatives seen in cosmetics 

are parabens and triclosan. Some studies have “proven that P. aeruginosa is highly resistant to 

triclosan” (Lalitha et al., 2013, p. 61).  Other common preservatives found in cosmetics are 

organic acids, organic alcohols, isothiazolinones, and formaldehyde releasers (Birteksoz et al., 

2013). The ideal preservative would be non-allergenic, non-toxic, colorless, odorless, and have 

the ability to inhibit the growth of a wide range of microorganisms (Lundov et al., 2009). 

However, there are currently no preservatives that meet all of these criteria.  

Various types of parabens can be found in cosmetics, such as “methylparaben, 

propylparaben, butylparaben, and ethylparaben” (Lundov et al., 2009, p. 71). However, 

methylparaben is the most common preservative seen in cosmetics today. While methylparaben 

has been shown to be the most effective against fungi, studies have shown it also works well 

against gram-positive organisms, but it is weakest against Pseudomonas species (Herman et al., 

2013). Although parabens are ubiquitous in cosmetic products, there is much controversy 

surrounding this preservative. Studies have suggested that parabens are linked to reproductive 

and endocrine dysfunction (Birteksoz et al., 2013). The growing controversy with parabens and 

other preservatives have led to the interest in natural alternative antimicrobials, such as essential 

oils and herbal remedies (Herman et al., 2013). Some studies have seen a greater inhibition of 

microbes with essential oils compared to methylparaben; however, the antimicrobial activity of 
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essential oils is still being studied extensively (Herman et al., 2013). In addition to preservatives, 

cosmetics often contain other antimicrobial agents, such as chelating agents, phenolic 

antioxidants, alcohol, fragrance, essential oils and extracts (Birteksoz et al., 2013).   

Cosmetic Regulation in the United States 

 Cosmetics in the United States are regulated according to the Federal Food, Drug, and 

Cosmetic Act, which is under the jurisdiction of the FDA (Lundov et al., 2009). According to a 

1989 FDA report, “Cosmetics are not expected to be totally free of microorganisms when first 

used or to remain free during consumer use” (Onurdah et al., 2010, p. 9). Because cosmetics are 

not required to be sterile, the United States Pharmacopoeia (USP) is responsible for articulating 

the requirements for non-sterile products, such as cosmetics, and has developed protocols to 

determine the presence of microbial contamination in these products. Specifically, the USP 

considers the following bacteria as indicators of microbial contamination: S. aureus, P. 

aeruginosa, Escherichia coli, and Salmonella species (Campana et al., 2006).  Out of these 

bacterial indicators, E. coli, P. aeruginosa, and S. aureus are commonly found on cosmetic 

products (Di Maiuta et al., 2011). In order to prevent the contamination of cosmetics, the use of 

preservatives is necessary. However, as mentioned before, preservatives lose effectiveness over 

time. 

The International Organization for Standardization (ISO) categorizes cosmetics according 

to their risk of contamination and details how products should be tested. ISP considers products 

containing more than 20% alcohol, single use products, or those with no contact with the 

environment as low risk products and thus do not require microbiological testing. The ISO 

guidelines were created to help manufacturers and regulators determine what products are 

potentially at risk and how to detect the risk; these policies are not strictly enforced by the FDA 
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(Ghalleb et al., 2015). To reduce contamination during production, Good Manufacturing 

Practices (GMPs) have been utilized to improve the quality of products (Campana et al., 2006). 

Even with these measures in place, microbial contamination can still occur; thus, the use of 

effective preservatives is required to prevent contamination during manufacturing, storage, and 

consumer use (Campana et al., 2006). Due to the use of GMPs and other quality control 

measures, contamination during manufacturing is no longer a major concern (Tran et al., 1994). 

However, consumer contamination is still a prevalent concern. With the advent of commercially-

available cosmetic cleaning products, consumers may have a plausible means of reducing 

contamination on their cosmetics and cosmetic brushes. However, data are lacking on the 

effectiveness of commercially-available cleaners or the use of over-the-counter products, such as 

rubbing alcohol. 

 Consumer Concerns 

As mentioned above, there is an overall lack of consistency in terms of labeling 

expiration dates on cosmetics. Different brands of cosmetics utilize various methods of labeling 

when it comes to expiration dates. These inconsistencies in labeling lead to confusion among 

consumers. While some brands may explicitly list the date of expiration, others use batch 

numbers and period after opening (PAO) labels; however, this information is not always listed 

on cosmetics. Batch numbers typically consist of the date in which the cosmetic was made; batch 

numbers vary according to manufacturer and product. PAOs are the suggested amount of time, 

from the moment the cosmetic is opened, before a consumer should discard the product. PAOs 

are represented by an open jar with a specified amount of time, such as 6M for 6 months. In 

order for all this information to be useful to a consumer, they must all be present on the labels of 

cosmetics; of the three labels, expiration date and PAO are the most informative. The expiration 
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date serves as the definitive date in which the cosmetic must be discarded. The PAO is important 

because it tells the consumer how long to keep a cosmetic once it has been opened. However, the 

PAO may sometimes surpass the date of expiration; if the PAO and expiration date are not 

provided on the label the consumer will have no knowledge of this vital information. 

The cost of cosmetics and cosmetic brushes also plays a role in the prolonged use of these 

products. While the simple solution to the problem of microbial contamination would be to 

discard products, the high costs of these cosmetics and brushes does not make this prudent for 

the consumer. Cosmetics and brushes range from drugstore (lower priced) to luxury (higher 

priced) brands. Advances in the area of cosmetics have led to an increase in the quality and 

sophistication of cosmetic brushes. Early cosmetic applicators were disposable low quality, 

sponge brushes. Today, brushes are made out of a variety of materials such as natural or 

synthetic hair fibers. Thus, cosmetics and cosmetic brushes can cost anywhere from $1 to $200, 

or more, depending on the brand and material it is made of.  

 

Objectives 

The objectives of this study were to determine the effectiveness of commercially-

available cosmetic cleaners in removing microbial contamination on cosmetics and cosmetic 

brushes.  

 

Research Questions 

1) Are commercial cleaning products effective on cosmetics such as pressed powders and 

cream-based products? 
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a) Are commercial cleaning products effective on cosmetics such as pressed powders and 

cream-based products at contact times of T0, T1 minute, and T5 minutes?  

b) Will each commercial cleaning product brand be effective on cosmetics such as pressed 

powders and cream-based products? 

2) Are commercial cleaning products effective on cosmetic brushes? 

a) Will each commercial cleaning product type be effective on cosmetics brushes? 

b) Will each commercial cleaning product brand be effective on cosmetics brushes? 

 

Hypotheses 

H1
0: There is no difference in microbial concentration on powder-based cosmetics (e.g., 

eyeshadows) after the use of commercial cleaners at contact times of T0, T1 minute, and T5 minutes. 

H1
a: There is a difference in microbial concentration on powder-based cosmetics (e.g., 

eyeshadows) after the use of commercial cleaners at contact times of T0, T1 minute, and T5 minutes. 

 

H2
0: There is no difference in microbial concentration on cream-based cosmetics (e.g., lipsticks) 

after the use of commercial cleaners at contact times of T0, T1 minute, and T5 minutes. 

H2
a: There is a difference in microbial concentration on cream-based cosmetics (e.g., lipsticks) 

after the use of commercial cleaners at contact times of T0, T1 minute, and T5 minutes. 

 

H3
0: There is no difference in microbial concentration reduction between commercial cleaning 

product brands after use on powder-based cosmetics (e.g., eyeshadows). 

H3
a: There is a difference in microbial concentration reduction between commercial cleaning 

product brands after use on powder-based cosmetics (e.g., eyeshadows). 
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H4
0: There is no difference in microbial concentration reduction between commercial cleaning 

product brands after use on cream-based cosmetics (e.g., lipsticks). 

H4
a: There is a difference in microbial concentration reduction between commercial cleaning 

product brands after use on cream-based cosmetics (e.g., lipsticks). 

 

H5
0: There is no difference in microbial concentration reduction between commercial cleaning 

product types after use on large (face) brushes.  

H5
a: There is a difference in microbial concentration reduction between commercial cleaning 

product types after use on large (face) brushes. 

 

H6
0: There is no difference in microbial concentration reduction between commercial cleaning 

product brands after use on large (face) brushes.  

H6
a: There is a difference in microbial concentration reduction between commercial cleaning 

product brands after use on large (face) brushes. 

 

H7
0: There is no difference in microbial concentration reduction between commercial cleaning 

product types after use on small (eyeshadow) brushes. 

H7
a: There is a difference in microbial concentration reduction between commercial cleaning 

product types after use on small (eyeshadow) brushes. 

 

H8
0: There is no difference in microbial concentration reduction between commercial cleaning 

product brands after use on small (eyeshadow) brushes. 
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H8
a: There is a difference in microbial concentration reduction between commercial cleaning 

product brands after use on small (eyeshadow) brushes. 
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CHAPTER 3  

MATERIALS AND METHODS 

Study Design 

 Various brands of commercially-available cosmetic cleaning products, cosmetics 

(eyeshadows and lipsticks), and cosmetic brushes (small and large) were used and tested in this 

study; the identity of the cosmetic cleaning products will remain confidential. The study was 

divided into two phases:  Phase 1 consisted of control experiments to determine which organism 

would be used as the inoculum for the tests, and Phase 2 consisted of using the organism 

determined from Phase 1 to inoculate unused cosmetics and brushes, which were subjected to 

commercial cleaning products, to determine the reduction of microbial concentrations. In Phase 1 

(Figure 1), cosmetics and cosmetic brushes were inoculated with the following organisms 

identified from review of the scientific literature: P. aeruginosa ATCC #27853, E. coli ATCC 

#25922, S. aureus ATCC #6538, and S. epidermidis ATCC #12228 (American Type Culture 

Collection, Manassas, VA). In Phase 2 (Figures 2 and 3), unused cosmetic products and cosmetic 

brushes were inoculated with a known microorganism determined from the control experiments; 

for cosmetics, the inoculum was left in contact for 0-. 1-, and 5-minutes. The inoculated 

cosmetics and brushes were then subjected to the appropriate commercial cosmetic cleaners. 

Using traditional microbiological approaches, the inoculated products were evaluated for 

microbial growth after the use of cosmetic cleaners. Negative controls consisted of inoculating 

and processing the cosmetics and brushes without the treatment of cleaning products.  
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Figure 1 – Flow chart illustrating the experimental design used in Phase 1 of this study. 
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Figure 2 – Flow chart illustrating the experimental design used on cosmetics in Phase 2 of this 

study. 
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Figure 3 – Flow chart illustrating the experimental design used on cosmetic brushes in Phase 2 of 

this study. 

  

COSMETIC BRUSHES 

Large (Face) Brush 
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Test Organisms 

 Unused cosmetics and brushes were inoculated with known concentrations of 

Pseudomonas aeruginosa ATCC #27853, Escherichia coli ATCC #25922, Staphylococcus 

aureus ATCC #6538, and Staphylococcus epidermidis ATCC #12228. Control tests were 

conducted with each organism to determine which one had better survival (i.e., the best percent 

recovery) across all products. E. coli ATCC #25922, S. aureus ATCC #6538, and S. epidermidis 

ATCC #12228 were used for quality control of the culture media.  

Culture Media 

 The preparation of the inoculum required the use of an overnight cell suspension, of the 

test organism, cultured in tryptic soy broth (TSB, Difco Laboratories, Sparks, MD) and 

incubated at 35°C, 60 rpm overnight in a rotary shaking incubator. The overnight cell suspension 

was harvested and washed in 0.01 M phosphate buffer with 0.05% Tween (PBT; pH 7.0). The 

final washed cell suspension was diluted in PBT and spread plated as indicated below to 

determine the concentration.  

Samples with and without treatment with cleaners (i.e., controls and tests, respectively) 

were processed in a neutralizing buffer (Difco Laboratories), serially diluted in PBT, spread 

plated, and incubated overnight at 35°C. Many cosmetics contain preservatives that aid in the 

reduction of microbial contamination, thus an appropriate neutralizing agent was necessary. The 

cell suspension, inoculum, and test samples were inoculated on tryptic soy agar (TSA, Difco 

Laboratories) and incubated overnight at 35°C.    

Cosmetic Cleaning Products 

Three types of commercial cosmetic cleaning products were obtained. Sprays, wipes, and 

shampoos were tested in this study. For the cosmetics, one brand of spray was used for the 

eyeshadows and one brand of wipe was used for the lipsticks (Table 1). Two different brands of 
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each type of cleaning product were used for the brushes. Spray-based cosmetic cleaners were 

used on cosmetics, specifically eyeshadows, and cosmetic brushes. For the cosmetics, the 

product was sprayed on and allowed to dry instantly. As for the brushes, the product was sprayed 

directly onto the brush and was immediately wiped off on a clean cotton pad. The wipes were 

used on both cosmetics, specifically lipsticks, and cosmetic brushes. Shampoo cosmetic cleaners 

were used on cosmetic brushes and required the use of water. In addition to the commercial 

products, control tests using a clean cotton pad for cosmetics and 70% isopropanol spray for 

brushes were conducted (Table 1). Sterile water was used to dilute 99% isopropanol to 70% 

(Sigma-Aldrich, St. Louis, MO). The 70% isopropanol was then placed in a Nalgene aerosol 

spray bottle affixed with the appropriate nozzle; in order to produce a spray similar to the 

commercial brand, a similar nozzle was used (Fisher Scientific, Rochester, NY). 

 

Table 1.  Commercial Cleaning Products Used on Cosmetics and Cosmetic Brushes. 

 

Cosmetics and Brushes 

The cosmetics used in this study were pressed powder eyeshadow/blush and cream-based 

lipsticks. The pressed powder eyeshadow/blush used were duos and quads from Eyes Lips Face 

Cosmetic or 

Brush 

Product Type 

Spray Wipe Shampoo 

Brand 

A Alcohol C D A Alcohol C D 
Cotton 

Pad C D 

Eyeshadow X X       X   

Lipstick     X X   X   

Small Brush  X X X   X X  X X 

Large Brush  X X X   X X  X X 
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Cosmetics (E.L.F Cosmetics, New York City, NY). The cream-based lipsticks used were from 

Wet N’ Wild Cosmetics (Wet N’ Wild, Los Angeles, CA).  The brushes used in this study were 

small (eyeshadow) and large (face) brushes. Both brushes were from the brand E.L.F Cosmetics 

(New York, NY).  

Cosmetic and Brush Inoculation  

Cosmetics, eyeshadows and lipsticks, were inoculated with 10 µl of a 106 CFU/ml cell 

suspension applied dropwise with a pipette across the surface of the product (Figures 4 and 5). 

Brushes were inoculated by placing the inoculum in a petri dish and swirling the brush until the 

entire inoculum was absorbed (Figure 6).  

    

Figure 4: Eyeshadow/blush inoculation. 

 

Figure 5: Lipstick inoculation.  
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Figure 6: Large brush inoculation.  

 

Inoculum Preparation Methods 

 Freshly streaked overnight cultures of the test organisms were incubated as indicated 

above. Overnight suspensions were prepared as indicated above, and the liquid cultures were 

washed by centrifugation. Cell suspensions were centrifuged in an IEC CL31R Multispeed 

Centrifuge at 4516 ₓ g, 4°C, for 5 minutes, resuspended, and washed in PBT three times 

(Thermo, Waltham, MA).  Washed cell suspensions were serially diluted, plated in duplicate, 

incubated overnight on TSA at 35°C, and enumerated. The cell suspension used as the inoculum 

was made fresh on each day of testing.  

Phase 1:  Organism Selection 

The following ATCC organisms were tested: P. aeruginosa ATCC #27853, E. coli 

ATCC #25922, S. aureus ATCC #6538, and S. epidermidis ATCC #12228; no cleaning products 
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were used for these tests. The organism with the best percent recovery from cosmetics and 

cosmetic brushes was chosen as the inoculum for the test experiments in Phase 2.  

Phase 1: Cosmetic Sampling 

Eyeshadows (n=1) and lipsticks (n= 1) were inoculated with 10 µl of the 106 CFU/ml 

suspension, for a total inoculum of 104 CFU. The inoculum was left in contact with the cleaning 

products for 0, 1, and 5 minutes (i.e., T0 minute, T1 minute, and T5 minutes, respectively). After each 

contact time, the surface of the product was swabbed with a sterile cotton swab, and the swab 

was placed in 3 ml of neutralizing buffer (in a 15 ml centrifuge tube). Then, the sample was 

vortexed on high for 1 minute and the swab was removed and discarded. The samples were then 

serially diluted in PBT and plated as indicated above.  

Phase 1: Cosmetic Brush Sampling 

Small (n=1) and large (n=1) brushes were inoculated with 104 CFU of the test organism. 

Large brushes were placed in a stomacher bag (Fisher Scientific) containing 10 ml of 

neutralizing buffer and hand stomached for 1 minute. Small brushes were placed in a 15 ml 

centrifuge tube with 3 ml of neutralizing buffer and agitated by hand for 1 minute. Samples were 

serially diluted in PBT and plated as indicated above.  

Phase 2:  Cosmetic Test Methods and Processing 

 These tests were conducted using the ATCC organism S. aureus #6538. The two types of 

cosmetics used for these tests were pressed powders (eyeshadows/blushes) and cream-based 

products (lipsticks). For the eyeshadows/blushes, one commercial spray and an isopropanol 

spray were tested. For the lipsticks, one commercial wipe and an isopropanol wipe were tested. 

In addition, a clean cotton pad was tested on both eyeshadows and lipsticks. Testing consisted of 

three trials, and samples were plated in duplicate; for a total of nine replicates for each test. 
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Phase 2: Eyeshadow/Blush [Sprays] 

Eyeshadow and blushes were inoculated with 104 CFU of the test organism; the inoculum 

was placed dropwise across the surface of the cosmetic (Figure 6). The inoculum was left in 

contact with the cosmetics for contact times of T0, T1 minute, and T5 minutes. The cleaning product 

was sprayed about 6 inches away from the surface of the eyeshadow. After the sample was 

treated with the cosmetic cleaner, the surface of the eyeshadow was sampled with a cotton swab 

(Fisher Scientific) which was then placed in 3 ml of neutralizing buffer (in a 15 ml centrifuge 

tube). The sample was vortexed on high for 1 minute, and the swab was removed and discarded. 

The samples were then serially diluted in PBT, plated in duplicate on TSA, incubated overnight 

at 35°C, and enumerated.  

Phase 2: Lipstick [Wipes] 

The tip of the lipstick bullet was cut and inoculated with 104 CFU of the test organism; 

the inoculum was placed dropwise across the surface (Figures 5 and 7). The inoculum was left in 

contact with the products for contact times of T0, T1 minute, and T5 minutes. After the appropriate 

contact time, the surface of the lipstick was treated with the desired product wipe.  After the 

sample had been treated with the cosmetic wipe, the surface of the lipstick was sampled with a 

cotton swab which was then placed in 3 ml of neutralizing buffer (in a 15 ml centrifuge tube). 

The sample was vortexed on high for 1 minute and the swab was removed and discarded. The 

samples were then serially diluted in PBT, plated in duplicate on TSA, incubated overnight at 

35°C, and enumerated.  

Phase 2: Eyeshadow/Blush and Lipstick [Cotton Pad] 

 As a control, a cotton pad was used as a cleaning product. Inoculation of the cosmetics 

occurred as indicated above. After the appropriate contact times, the cotton pad was used to wipe 
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the surface of the eyeshadow/blush and lipstick. The cosmetics were sampled and analyzed as 

indicated above.   

 

Figure 7: Aseptic cutting of lipstick bullet.  

 

Phase 2:  Cosmetic Brush Methods and Processing 

 These tests were conducted using S. aureus ATCC #6538. The two types of brushes used 

for these tests were small (eyeshadow) brushes and large (face) brushes. For both brushes, two 

brands of each product type, sprays, wipes, and shampoos, were tested. In addition, a 70% 

isopropanol spray was tested. All testing consisted of three trials, and the samples from each trial 

were plated in duplicate. 

Phase 2: Small/Large Brush [Sprays]  

Small and large brushes were inoculated with 104 CFU of the test organism; the inoculum 

was placed in an empty petri dish where the brush bristles were swirled. Small brushes were 

sprayed with the product once on each side of the bristles (front and back), for a total of two 

sprays. Large brushes were sprayed with the product once on each side of the bristles (front, 
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back, and end of bristles), for a total of three sprays. The process of spraying the brushes was 

conducted in a biological safety cabinet (BSC) over an empty beaker. Once treated with the 

cleaning spray, the brushes were wiped with back and forth motions on a clean cotton pad 

(VWR, Radnor, PA) for 30 seconds. Small brushes were placed in a 15 ml centrifuge tube 

containing 3 ml of neutralizing buffer and agitated by hand for 1 minute. Large brushes were 

placed in a stomacher bag containing 10 ml of neutralizing buffer and hand stomached for 1 

minute. The samples were then serially diluted in PBT and analyzed as indicated in the culture 

analysis section below. 

Phase 2: Small/Large Brush [Wipes] 

 Small and large brushes were inoculated with 104 CFU of the test organism; the inoculum 

was placed in an empty petri dish where the brush bristles were swirled. The inoculated brushes 

were wiped on the cleaning wipes using back and forth motions for 30 seconds. Then, the 

brushes were wiped on a clean cotton pad for an additional 30 seconds. The process of wiping 

the brushes was conducted in a BSC and gloves were changed between samples. Small brushes 

were placed in a 15 ml centrifuge tube containing 3 ml of neutralizing buffer and agitated by 

hand for 1 minute. Large brushes were placed in a stomacher bag containing 10 ml neutralizing 

buffer and hand stomached for 1 minute. The samples were then serially diluted in PBT and 

analyzed as indicated in the culture analysis section below. 

Phase 2: Small/Large Brush [Shampoo #1] 

 Small and large brushes were inoculated with 104 CFU of the test organism; the inoculum 

was placed in an empty petri dish where the brush was swirled. Small brushes were submerged 

in 300 µl of product in a 15 ml centrifuge tube and agitated for 1 minute. Large brushes were 

submerged in 10 ml of product in a stomacher bag and agitated for 1 minute. Processing the 

samples was conducted in a BSC. Then, the brushes were wiped with back and forth motions on 
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a clean cotton pad for 30 seconds. Small brushes were placed in a 15 ml centrifuge tube 

containing 3 ml of neutralizing buffer and agitated by hand for 1 minute. Large brushes were 

placed in stomacher bags containing 10 ml of neutralizing buffer and hand stomached for 1 

minute. The samples were then serially diluted in PBT and analyzed as indicated in the culture 

analysis section below. 

Phase 2: Small/Large Brush [Shampoo #2] 

 Small and large brushes were inoculated with 104 CFU of the test organism; the inoculum 

was placed in an empty petri dish where the brush was swirled. Small brushes were dampened 

with 300 µl of warm sterile ultrapure (UP) water warmed to 50°C in a 15 ml centrifuge tube. 

Once damp, one drop of product was placed on the brush, returned to the centrifuge tube, and 

worked into a lather. Then, the small brush was washed three times in 300 µl of warm sterile UP 

water, in a 15 ml centrifuge tube. Large brushes were dampened with 10 ml of warm sterile UP 

water in a stomacher bag. Once damp, one pump of product was placed onto the brush and 

worked into a lather; this process occurred in a stomacher bag. Then, the large brushes were 

washed in 10 ml of sterile UP water two times, in a stomacher bag.  

Once processed with the cleaning product, the brushes were wiped on a cotton pad, using 

back and forth motions, for 30 seconds. Processing of brush samples was conducted in a BSC. 

Small brushes were placed in a 15 ml centrifuge tube containing 3 ml of neutralizing buffer and 

agitated by hand for 1 minute. Large brushes were placed in a stomacher bag containing 10 ml of 

neutralizing buffer and hand stomached for 1 minute. The samples were then serially diluted in 

PBT and analyzed as indicated in the culture analysis section below. 

Culture Analysis 

 After processing, the lipsticks, eyeshadows, and small brushes resulted in 3 ml of sample 

while the large brushes yielded 10 ml of sample. Before the samples were plated for 
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enumeration, they were serially diluted and 100 µl were plated, in duplicate, on TSA and 

incubated at 35°C overnight. Colony forming units (CFU) were enumerated and converted into 

CFU/sample.   

Data Analysis       

 In total, 154 samples, including controls, were analyzed in this study. The mean CFU 

were calculated for controls (before cleaning) and samples (after cleaning). Using the mean CFU 

counts, the CFU per sample and percent reductions were calculated based on three replicates of 

each condition. Lower detection limits were determined based on the detection of 1 S. aureus 

#6538 CFU per milliliter which was then converted to CFU per sample. There were two 

detection limits determined for each sample size, 3 and 10 milliliters; both lower detection limits 

were <1.00 × 101 CFU/ml.  

Because this project had relatively small sample sizes across the test conditions, 

parametric procedures were not considered owing to the inability to verify distributional 

assumptions. Hence, nonparametric tests with exact or permutation-based p-values were 

conducted. A marginal means table was prepared for each product type and their variables based 

on percent reduction to gain a basic understanding of the relative differences in the results among 

the various test conditions. To test for potential interactions between variables (e.g., contact time 

and product), a rank-based ANOVA or GLM procedure-was conducted. To test for individual 

effects, a Kruskal-Wallis test with exact p-value was conducted. Post-hoc testing using multiple 

contrast and permutation-based p-values using 10,000 Monte Carlo simulations were conducted 

on those tests that were statistically significant.  
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CHAPTER 4 

RESULTS 

Phase 1:  Organism Selection 

 CFU per sample and percent recovery for each organism was calculated.  

Of the four organisms tested (Tables 2-5), S. aureus ATCC #6538 and S. epidermidis ATCC 

#12228 yielded the highest recovery from all products (Tables 4 and 5, respectively). P. 

aeruginosa ATCC #27853 had the overall lowest percent recovery for eyeshadows at all contact 

times and for the large brush. E. coli ATCC #25922 resulted in the overall lowest percent 

recovery for lipsticks at all contact times (Table 3). S. epidermidis ATCC #12228 (Table 4) had a 

lower percent recovery for large brushes in comparison to S. aureus at 13.31% (Table 5).  S. 

aureus ATCC #6538 was the organism chosen to inoculate all test products due to high percent 

recovery across all products and from supporting information from the scientific literature (Table 

5) (Chen et al., 2013).  

Table 2. Control experiment results with P. aeruginosa ATCC #27853. Inoculum used = 1.18 × 

105 CFU.  

 

Product 
Contact 

Time (min) 

CFU/Sample 

(n=1) 

% 

recovery 

Eyeshadow  

T0  1.98 × 104 
16.85% 

T1 1.59 × 104 
13.53% 

T5 2.33 × 104 
19.79% 

Lipstick  

T0  1.70 × 104 
14.43% 

T1 1.82 × 104 
15.45% 

T5 1.11 × 104 
9.45% 

Large brush  T0  8.35 × 103 
7.11% 

Small brush  T0  1.26 × 105 
107.23% 
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Table 3. Control experiment results with E. coli ATCC #25922. Inoculum used = 1.67 × 104 

CFU. Lower detection limit = 3.00 × 101 CFU/sample. 

 

Product 
Contact 

Time (min) 

CFU/Sample 

(n=1) 

% 

recovery 

Eyeshadow  

T0  8.06 × 103 
48.23% 

T1 1.35 × 104 
80.84% 

T5 1.50 × 102 
0.90% 

Lipstick  

T0  9.00 × 102 
5.39% 

T1 3.00 × 101 
0.18% 

T5 <3.00 × 101 0.18% 

Large brush  T0  1.80 × 103 
10.78% 

Small brush  T0  5.70 × 103 
34.13% 

 

Table 4. Control experiment results with S. epidermidis ATCC #12228. Inoculum used = 2.78 × 

104 CFU. 

 

Product 
Contact 

Time (min) 

CFU/Sample 

(n=1) 

% 

recovery 

Eyeshadow  

T0  2.16 × 104 
77.70% 

T1 1.94 × 104 
69.60% 

T5 1.38 × 104 
49.64% 

Lipstick  

T0  1.13 × 104 
40.47% 

T1 1.62 × 104 
58.27% 

T5 1.23 × 103 
4.42% 

Large brush  T0  3.70 × 103 
13.31% 

Small brush  T0  1.91 × 104 
68.53% 

 

Table 5. Control experiment results with S. aureus ATCC #6538. Inoculum used = 2.58 × 104 

CFU. 

 

Product 
Contact 

Time (min) 

CFU/Sample 

(n=1) 

% 

recovery 

Eyeshadow  

T0  1.86 × 104 
72.09% 

T1 2.15 × 104 
83.14% 

T5 1.20 × 102 
0.47% 

Lipstick  

T0  3.87 × 103 
15.00% 

T1 1.50 × 103 
5.81% 

T5 6.00 x 101 
0.23% 

Large brush  T0  1.21 × 104 
46.90% 

Small brush  T0  1.43 × 104 
55.23% 

 

Phase 2:  Cleaning Product Testing 
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Eyeshadow/Blush 

 The average CFU per sample and percent reduction were determined for the 

commercially-available cosmetic spray, the 70% isopropanol spray, and the cotton pad (Tables 

6-8). The percent recovery (data not shown) indicates how much microbial contamination is still 

present on the product; in other words, the greater the percent recovery, the more inoculum left 

on the product. The percent reduction compares the percent recovery from the control to that of 

the test. The average percent recoveries for 70% isopropanol spray were 75.8%, 82.05%, and 

55.19% at contact times T0, T1 minute, and T5 minutes, respectively (Table 6). Cosmetic spray #2 

exhibited the lowest percent recovery of 13.86% at contact time T1 minute (Table 7). The clean 

cotton pad resulted in the highest percent recovery (99.88%) at contact time T0 (Table 8). 

Overall, comparison of all three methods showed that the clean cotton pad exhibited greater 

percent reductions, over 98%, across all contact times (Figure 8). Ranked ANOVA testing for 

interaction between contact time and product type showed no interaction among these variables 

(F= 0.47, p=0.7547).  Individual analysis of contact time showed no statistical significance 

(p=0.9397). However, individual analysis of product type was statistically significant (p < 

0.0001). Post-hoc tests showed the cotton pad had significantly greater reduction than spray #2 

(p = 0.0034). There was no statistically significant difference in microbial concentration on 

eyeshadows after the use of commercial cleaners at contact times of T0, T1 minute, and T5 minutes (p= 

0.9397). Therefore, hypothesis 1 was not rejected. However, the results show that there was a 

statistically significant difference in microbial concentration on eyeshadows between brands of 

commercial cleaners (p<0.0001). Therefore, hypothesis 3 was rejected. 

 

Table 6. Eyeshadow experiment results with 70% isopropanol spray. Inoculum used = 5.25 × 104 

CFU. *Inoculum used = 3.90 × 104 CFU.  The asterisk (*) represents repeated trials. 
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Cleaning 

Product 

Contact Time 

(min) 
CFU/Sample 

Average 

CFU/Sampl

e (n=3) 

Average 

% 

reduction 

None 

(Control) 

T0  3.48 × 104 

N/A N/A T1 3.15 × 104 

T5 1.25 × 103 

None 

(Control)* 
T5 2.43 × 104 N/A N/A 

 70% 

Isopropanol 

Spray 

T0 

2.06 × 104 

8.41 × 103 75.83% 3.21 × 103 

1.47 × 103 

T1 

1.41 × 104 

5.66 × 103 82.05% 2.64 × 103 

2.25 × 102 

T5 

1.62 × 103 

8.90 × 102 55.19% 9.75 × 102* 

7.50 × 101* 

 

Table 7. Eyeshadow experiment results with cosmetic spray #2. Inoculum used = 2.20 × 104 

CFU.  

Cleaning 

Product 

Contact 

Time 

(min) 

CFU/Sample 

Average 

CFU/Sample 

(n=3) 

Average 

% 

reduction 

None 

(Control) 

T0  1.32 × 104 

N/A N/A T1 1.52 × 103 

T5 2.25 × 102 

Cosmetic 

Spray #2 

 

T0 

4.64 × 103 

4.73 × 103 64.17% 4.89 × 103 

4.67 × 103 

T1 

2.45 × 103 

1.31 × 103 13.86% 6.75 × 102 

7.95 × 102 

T5 

3.15 × 102 

1.45 × 102 35.56% 1.50 × 101 

1.05 × 102 

 

 

Table 8. Eyeshadow experiment results with clean cotton pad. Inoculum used = 3.90 × 104 CFU. 

Lower detection limit (LDL) = 3.00 × 101 CFU/sample. The asterisk (*) indicates that the LDL 

was used to calculate the mean.  
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Cleaning 

Product 

Contact 

Time 

(min) 

CFU/Sample 

Average 

CFU/Sample 

(n=3) 

Average 

% 

reduction 

None 

(Control) 

T0  3.23 × 104 

N/A N/A T1 2.55 × 104 

T5 2.43 × 104 

Cotton Pad 

T0 

<3.00 × 101 

3.50 × 101* 99.88% <3.00 × 101 

4.50 × 101 

T1 

7.95 × 102 

2.80 × 102 98.90% 1.50 × 101 

3.00 × 101 

T5 

3.00 × 101 

1.15 × 102 99.53% 3.00 × 102 

1.50 × 101 

 

 

 

Figure 8: Percent reduction (%) of S. aureus ATCC #6538 on eyeshadow with three cleaning 

methods at contact times of T0, T1 minute, and T5 minutes. Bar heights represent the mean percent 

reduction per method with error bars representing ± 1 standard error (SE).   
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Lipstick  

 The average CFU per sample and percent reduction were determined for the commercial 

cosmetic wipe, the isopropanol wipe, and the cotton pad (Tables 9, 10, and 11, respectively). The 

average percent reductions for 70% isopropanol spray at all contact times were above 98% 

(Table 9). Cosmetic wipe #2 exhibited the highest average percent reductions with 99.68%, 

99.86%, and 99.78% at contact times T0, T1 minute, and T5 minutes, respectively (Table 10). The 

clean cotton pad resulted in the lowest percent reduction at 94.29% at contact time T0 (Table 11). 

Overall, comparison of all three products showed that the clean cotton pad exhibited the lowest 

percent reduction across all contact times (Figure 9). Ranked ANOVA testing for interaction 

between contact time and product type showed no interaction among these variables (F= 0.69, 

p=0.6108).  Individual analysis of product type was statistically significant (p=0.0070). Post-hoc 

tests showed significantly greater reduction with wipe #2 (p = 0.0034) and the 70% isopropanol 

wipe (p=0.0013) compared with the cotton pad. There was no statistically significant difference 

in microbial concentration on lipsticks after the use of commercial cleaners at contact times of 

T0, T1 minute, and T5 minutes (p= 0.1009). Therefore, hypothesis 2 was not rejected. However, the 

results show that there was a statistically significant difference in microbial concentration on 

lipsticks between brands of commercial cleaners (p=0.0070). Therefore, hypothesis 4 was 

rejected. 
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Table 9. Lipstick experiment results with 70% isopropanol wipe. Inoculum used = 4.60 × 104 

CFU. *Inoculum used = 3.90 × 104 CFU; the asterisk (*) represents repeated trials. The double 

asterisk (**) indicates that the LDL (3.00 × 101 CFU/sample) was used to calculate the mean.  

Cleaning 

Product 

Contact 

Time 

(min) 

CFU/Sample 

Average 

CFU/Sample 

(n=3) 

Average 

% 

reduction 

None 

(Control) 

T0  3.95 × 104 

N/A N/A T1 3.83 × 104 

T5 1.97 × 104 

None 

(Control)* 

T0  5.25 × 102 

N/A N/A T1 1.38 × 104 

T5 4.50 × 102 

70% 

Isopropanol 

Wipe 

 

 

 

T0 

1.50 × 101* 

3.00 × 101** 98.98% <3.00 × 101 

4.50 × 101 

 

T1 

 

4.50 × 101*  

3.00 × 101** 

 

 

99.85% 

 

1.50 × 101 

<3.00 × 101 

T5 

<3.00 × 101 

3.00 × 101** 99.85% <3.00 × 101* 

<3.00 × 101 

 

Table 10. Lipstick experiment results with cosmetic wipe #2. Inoculum used = 2.20 × 104 CFU. 

*Inoculum used = 3.90 × 104 CFU; the asterisk (*) represents repeated trials. The double asterisk 

(**) indicates that the LDL (3.00 × 101 CFU/sample) was used to calculate the mean.  

Cleaning 

Product 

Contact 

Time (min) 
CFU/Sample 

Average 

CFU/Sample 

(n=3) 

Average  

% 

reduction 

None 

(Control) 

T0 1.61 × 104 

N/A N/A T1 2.09 × 104 

T5 1.13 × 104 

None 

(Control)* 
T0 5.25 × 102 N/A N/A 

Cosmetic 

Wipe #2 

 

T0 

<3.00 × 101* 

5.50 × 101** 99.68% <3.00 × 101 

1.05 × 102 

T1 

<3.00 × 101 

3.00 × 101** 99.86% <3.00 × 101 

<3.00 × 101 

T5 

<3.00 × 101 

2.50 × 101** 99.78% 1.50 × 101 

<3.00 × 101 
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Table 11. Lipstick experiment results with cotton pad. Inoculum used = 3.90 × 104 CFU. LDL = 

3.00 × 101 CFU/ml. The asterisk (*) indicates that the LDL (3.00 × 101 CFU/sample) was used to 

calculate the mean.  

Cleaning 

Product 

Contact 

Time (min) 
CFU/Sample 

Average 

CFU/Sample 

(n=3) 

Average 

% 

reduction 

None 

(Control) 

T0 5.25 × 102 

N/A N/A T1 1.38 × 104 

T5 4.50 × 102 

Cotton Pad 

 

 

 

 

 

T0 

<3.00 × 101 

3.00 × 101* 94.29% <3.00 × 101 

<3.00 × 101 

T1 

<3.00 × 101 

2.50 × 101* 99.82% 1.50 × 101 

<3.00 × 101 

T5 

<3.00 × 101 

2.50 × 101* 94.44% <3.00 × 101 

1.50 × 101 

 

 

Figure 9: Percent reduction (%) of S. aureus ATCC #6538 on lipstick at contact times of T0, T1 

minute, and T5 minutes. Bar heights represent the mean percent reduction per product with error bars 

representing ± 1 standard error (SE). 
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Small Brush  

 The average CFU per sample and percent reduction were determined for cosmetic sprays, 

wipes, and shampoos (Tables 12-15). The average percent reductions for both brands of brush 

sprays were 99.32% and 99.40%, respectively (Table 12). The cosmetic wipe and shampoo from 

brand #1 exhibited the highest average percent reduction with 99.84% and 99.87%, respectively 

(Table 13 and 14). The 70% isopropanol resulted in an average percent reduction of 99.85% 

(Table 15). Overall, brand #1 exhibited higher percent reductions than brand #2 across all 

product types (Figure 10). GLM analysis testing for interaction between product type and brand 

showed slight interaction among these variables (F= 3.66, p=0.0525); this was seen graphically 

between brands of spray products. There was no statistically significant difference in microbial 

concentration on small brushes between types and brands of commercial cleaners (p= 0.9833 and 

p= 0.0605, respectively). Therefore, hypotheses 7 and 8 were not rejected.  

 

Table 12. Small brush experiment results with brush sprays. Inoculum used = 2.63 × 104 CFU. 

Cleaning 

Product 
CFU/Sample 

Average 

CFU/Sample 

Average 

%  

reduction 

None (Control) 2.58 × 104 N/A N/A 

Brush Spray #1 

 

6.00 × 101 

1.75 × 102 99.32% 2.25 × 102 

2.40 × 102 

Brush Spray #2 

 

2.25 × 102 

1.55 × 102 99.40% 1.50 × 101 

2.25 × 102 
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Table 13. Small brush experiment results with brush wipes. Inoculum used = 2.63 × 104 CFU. 

*Inoculum used = 3.50 × 104 CFU; asterisk (*) represents repeated trials. The double asterisk 

(**) indicates that the LDL (3.00 × 101 CFU/sample) was used to calculate the mean.  

Cleaning 

Product 
CFU/Sample 

Average 

CFU/Sampl

e (n=3) 

Average 

% reduction 

None (Control) 2.58 × 104 

N/A N/A None 

(Control)* 
2.25 × 104 

Brush Wipe #1 

<3.00 × 101 

4.50 × 101** 99.84% 3.00 × 101 

6.00 × 101 

Brush Wipe #2 

9.00 × 101 

5.00 × 102 97.82% 1.35 × 102 

1.28 × 103* 

 

Table 14. Small brush experiment results with brush shampoos. Inoculum used = 3.50 × 104 

CFU. The asterisk (*) indicates that the LDL (3.00 × 101 CFU/sample) was used to calculate the 

mean. 

Cleaning 

Product 
CFU/Sample 

Average 

CFU/Sample 

(n=3) 

Average 

% 

reduction 

None 

(Control) 
2.25 × 104 N/A N/A 

Brush 

Shampoo #1 

<3.00 × 101 

3.00 × 101* 99.87% <3.00 × 101 

<3.00 × 101 

Brush 

Shampoo #2 

1.35 × 102 

5.00 × 102 97.8% 1.35 × 102 

1.23 × 103 

 

Table 15. Small brush experiment results with 70% isopropanol spray.  

Inoculum used = 5.10 × 104 CFU. The asterisk (*) indicates that the LDL (3.00 × 101 

CFU/sample) was used to calculate the mean. 

 

Cleaning 

Product 
CFU/Sample 

Average  

CFU/Sample 

(n=3) 

% 

reduction 

None 

(Control) 
1.64 × 104 N/A N/A 

70% 

Isopropanol 

Alcohol 

1.50 × 101 

2.50 × 101* 99.85% <3.00 × 101 

<3.00 × 101 
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Figure 10: Percent reduction (%) of S. aureus ATCC #6538 on small brushes for product types 

sprays, wipes, and shampoos. Grey bar (70% Isopropanol Spray) serves as a control product. Bar 

heights represent the mean percent reduction per brand with error bars representing ± 1 standard 

error (SE). 

 

Large Brush  

 The average CFU per sample and percent reduction were determined for cosmetic sprays, 

wipes, and shampoos (Tables 16-19). Brush spray brand #2 resulted in the lowest percent 
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resulted in the highest percent reduction with 99.20% (Table 17). Comparison of shampoos 

showed that brand #2 exhibited the highest percent reduction, at 90.74%, for this product type 

(Table 18). The 70% isopropanol resulted in an average percent reduction of 96.90% (Table 19). 

Overall, brand #1 exhibited higher percent reductions than brand #2 among two product types, 
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brand showed some interaction among these variables (F= 4.48, p=0.0313). Individual analysis 

of product type showed statistical significance (p=0.0004). Post-hoc tests showed wipes were 
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statistically significant difference in microbial reduction on large brushes between types of 

99.32%
99.84% 99.87%

99.40%

97.82% 97.78%

99.85%

96.00%

96.50%

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

100.50%

Sprays Wipes Shampoos

P
er

ce
n

t 
R

ed
u

ct
io

n
 (

%
)

Product Type

Brand 1 Brand 2 70% Isopropanol



45 
 

commercial cleaners (p=0.0004). Therefore, hypothesis 5 was rejected. However, there was no 

statistically significant difference in microbial reduction on large brushes between brands of 

commercial cleaners (p= 0.2157). Therefore, hypothesis 6 was not rejected. 

Table 16. Large brush experiment results with brush sprays. Inoculum used = 2.27 × 104 CFU. 

 

Cleaning 

Product 
CFU/Sample 

Average  

CFU/Sample 

(n=3) 

Average 

% 

reduction 

None 

(Control) 
8.35 × 103 N/A N/A 

Brush Spray 

#1 

1.00 × 102 

3.50 × 102 95.81% 4.50 × 102 

5.00 × 102 

Brush Spray 

#2 

9.00 × 102 

1.03 × 103 87.62% 6.00 × 102 

1.60 × 103 

 

Table 17. Large brush experiment results with brush wipes. Inoculum used = 2.27 × 104 CFU. 

LDL = 1.00 × 102 CFU/sample. The asterisk (*) indicates that the LDL (1.00 × 102 CFU/sample) 

was used to calculate the mean. 

 

Cleaning 

Product 
CFU/Sample 

Average 

CFU/Sample  

(n=3)  

Average 

% 

reduction 

None 

(Control) 
8.35 × 103 N/A N/A 

Brush Wipe 

#1 

5.00 × 101 

6.67 × 101* 99.20% 5.00 × 101 

<1.00 × 102 

Brush Wipe 

#2 

2.50 × 102 

2.67 × 102 96.81% 3.00 × 102 

2.50 × 102 
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Table 18. Large brush experiment results with brush shampoos. Inoculum used = 3.50 × 104 

CFU. The asterisk (*) indicates that the LDL (1.00 × 102 CFU/sample) was used to calculate the 

mean. 

 

Cleaning 

Product 
CFU/Sample 

Average 

CFU/Sample 

(n=3) 

Average 

% 

reduction 

None 

(Control) 
9.00 × 102 N/A N/A 

Brush 

Shampoo #1 

<1.00 × 102 

1.00 × 102* 88.89% <1.00 × 102 

<1.00 × 102 

Brush 

Shampoo #2 

<1.00 × 102 

8.33 × 101* 90.74% <1.00 × 102 

5.00 × 101 

 

Table 19. Large brush experiment results with 70% isopropanol spray. Inoculum used = 5.10 × 

104 CFU.  

 

Cleaning 

Product 
CFU/Sample 

Average 

CFU/Sample 

(n=3) 

Average 

% 

reduction 

None 

(Control) 
2.15 × 103 N/A N/A 

70% 

Isopropanol 

Spray 

1.00 × 102 

6.67 × 101 96.90% 5.00 × 101 

5.00 × 101 
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Figure 13: Percent reduction (%) of S. aureus ATCC #6538 on large brushes for cleaning 

product types sprays, wipes, and shampoos. Grey bar (70% Isopropanol Spray) serves as a 

control product. Bar heights represent the mean percent reduction per brand with error bars 

representing ± 1 standard error (SE). 
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CHAPTER 5 

DISCUSSION 

 The objective of this study was to determine if commercially-available cosmetic cleaners 

were effective at removing microbial contamination from cosmetics and cosmetic brushes. 

Overall, culture analysis from all cleaning products resulted in the reduction of microbial 

contamination, to some degree, on cosmetics and cosmetic brushes (Eyeshadow = at least 13% 

reduction, Lipstick = at least 94%, Small Brush = at least 97%, Large Brush = at least 87%).  

 To our knowledge, this is the first study to focus on the removal of microbial 

contamination on cosmetics and cosmetic brushes. The main focus of cosmetic microbiology has 

mostly been confined to manufacturer practices and preservative efficacy. Those studies have led 

to the implementation of Good Manufacturing Practices (GMPs), which have decreased the 

amount of contamination that occurs at the manufacturer level (Campana et al., 2006). To 

maintain the shelf life of these products, preservatives are used to help combat microbial 

contamination. Many studies have been conducted to test the efficacy of preservatives in 

cosmetics (Lundov et al., 2009). These studies focus on determining how effective these 

preservatives are over time and the microbial load they can handle before they start to lose their 

effectiveness.  

 Even with the use of GMPs and preservatives, studies have shown that cosmetics still 

have the potential to become contaminated with microorganisms (Tran et al., 1994). These 

contaminated cosmetics may facilitate the progression of various infections of the skin and eyes. 

Birteksoz et al. (2013) analyzed microbial contamination in used cosmetics and found between 

102 and 105 CFU/ml. The most commonly isolated organism from these products tested was S. 
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aureus. However, that study analyzed a wide range of unused cosmetic products, such as 

toothpaste and lotion, with very little focus on facial cosmetic products.  

Few studies have been conducted on used cosmetics and brushes. Dawson et al. (1981) 

analyzed used cosmetic testers for microbial contamination. The results of the study showed a 

large presence of normal skin flora; other organisms found were believed to be airborne 

contaminants. Contamination of these products was due to: the use by multiple individuals (with 

either their finger or a multiple use applicator), lack of proper disinfection of multiple use 

applicators, lack of proper storage, and products that were past expiration dates. Naz et al. (2012) 

tested for microbial contamination of cosmetic brushes and sponges used in beauty salons. All of 

the brushes and sponges tested in the study were contaminated with S. aureus; the average 

contamination of these products was 105 CFU/ml. In addition, 81.8% and 69.6% of cosmetic 

brushes and sponges, respectively, were also contaminated with P. aeruginosa. Tran et al. (1994) 

tested in-store cosmetic testers available for consumer use. In that study, 5% of cosmetic testers 

had microbial loads over the acceptable limit (500 CFU/ml) established by the FDA; 50% of all 

cosmetics tested in the study had microbial contamination.  

With the advent of commercial cosmetic cleaners, it is now possible for professionals and 

the general public to clean their products. There are a variety of products on the market targeted 

at cleaning and sanitizing cosmetics and cosmetic brushes. The aim of this project was to 

determine if these products are effective in reducing the amount of microbial contamination on 

cosmetic and cosmetic brushes.  

Cosmetics are not required to be sterile, but are expected to be free of pathogenic 

microorganisms that could cause harm to the consumer. The USP requires that these products are 

free from contamination with S. aureus, P. aeruginosa, Salmonella spp., and E. coli (Di Maiuta 
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et al., 2011). To determine the test organism to focus on for this study, a pilot study was 

conducted using P. aeruginosa, E.coli, S. aureus, and S. epidermidis. These organisms were used 

to inoculate cosmetics and cosmetic brushes and recovered using traditional microbiological 

techniques; this was done without the use of cosmetic cleaners. The organism with the best 

percent recovery, S. aureus ATCC #6538, was used for the actual test experiments. S. aureus 

was also selected because it is the organism most commonly isolated from cosmetics and 

cosmetic brushes (Birteksoz et al., 2013).      

Our first research question was whether the commercial cleaners were effective on 

cosmetics. There are many types of cosmetics available, but for testing purposes two categories 

of cosmetics were used, powder (eyeshadow or blush) and cream-based (lipstick). Cosmetic 

cleaners on the market for these cosmetics are sprays and wipes. The sprays were used on 

powder-based makeup, and the wipes were used on the cream-based cosmetics; for this study 

two brands of each product type were tested. Because cosmetics contain preservatives that work 

against microbial growth, contact times of 0, 1, and 5 minutes were tested. Allowing the 

inoculum to stay on the cosmetic at different contact times allowed for the determination of 

whether preservatives play a role in decreasing the microbial contamination present. Of all the 

replicates, eyeshadows exhibited the greatest variability among cosmetics and cosmetic brushes. 

The cosmetic spray from brand #2 resulted in the lowest percent reductions at all contact times; 

the lowest percent reduction was seen at contact time T1 minute with a 13.86% reduction. 

Interestingly, of all products, the clean cotton pad resulted in at least a 98% reduction of 

contamination across all contact times. These results suggest that the mechanical action of 

wiping the surface of a cosmetic is sufficient to reduce the microbial concentration present. 

There was a statistically significant difference among product types for eyeshadows (p < 
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0.0001). Post-hoc tests demonstrated a significant difference between spray #2 and the cotton 

pad (p = 0.0034). Overall, comparisons of the percent reduction means showed that the cotton 

pad had a larger mean percent reduction (99.44%) compared to spray #2 (37.86%). Thus, the 

cotton pad exhibited a greater percent reduction of microbial contamination on eyeshadows 

compared to spray #2.   

As for the lipsticks, all of the wipes tested resulted in at least a 94% reduction in S. 

aureus inoculum; lower percent reductions were seen with the cotton pad which contained no 

cleaning agent. For lipsticks, there was a statistically significant difference among cleaning 

product types (p=0.0070). Post-hoc tests demonstrated a significant difference between wipe #2 

and the cotton pad (p = 0.0007). Comparisons of the percent reduction means showed that wipe 

#2 had a larger mean percent reduction (99.77%) compared to the cotton pad (96.18%). In 

addition, there was a statistically significant difference between the 70% isopropyl alcohol spray 

and the cotton pad (p=0.0013). Comparisons of the percent reduction means showed that the 

70% isopropanol alcohol had a larger mean percent reduction (99.56%) compared to the cotton 

pad (96.18%). Thus, 70% isopropanol wipe and wipe #2 exhibited a greater percent reduction of 

microbial contamination on lipsticks compared to the cotton pad.  

 The second research question was whether cosmetic cleaners were effective on cosmetic 

brushes. As with cosmetics, there are many types of brushes, both in size and material. For this 

study, two types of brushes were tested, small and large brushes. Unlike cosmetics, there are no 

preservatives present to combat microbial contamination; therefore, the only contact time tested 

was Time zero (T0), immediately after inoculation. The cosmetic brush cleaners tested were 

sprays, wipes, and shampoos; the brands tested were narrowed down to two for each product 

type due to the vast amount of products currently available. However, most cleaning product 
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manufacturers provide very little, if any, data on the efficacy of their product; some of them even 

make claims indicating their effectiveness against bacteria without adequate data to support these 

statements. For small brushes, the lowest percent reduction was seen with brand #2 spray at 

87.62%; the highest percent reduction came from brand #1 wipe at 99.20%. There was not a 

statistically significant difference among product types (p=0.9833) or brands (p=0.0605) for 

small brushes. With the large brushes, the lowest percent reduction was with the brand #2 

shampoo at 97.78%; the highest percent reduction was with the brand #1 shampoo at 99.87%. 

For large brushes, there was a statistically significant difference among product types 

(p=0.0004). Post-hoc tests demonstrated a significant difference between shampoos and wipes (p 

= 0.0051). Overall, comparisons of the percent reduction means showed that the wipes had a 

larger mean percent reduction (98.01%) compared to shampoos (89.82%). Thus, the wipes 

exhibited a greater percent reduction of microbial contamination on large brushes compared to 

shampoos.   

 Because all products produced favorable results, an additional control experiment was 

conducted to determine whether the mechanical action of cleaning cosmetics and brushes played 

a role in the removal of microbial contamination. For the cosmetics, eyeshadows and lipsticks, a 

clean cotton pad was used as the cleaning agent. The results from these tests showed that there 

was at least a 96% reduction of microbial contamination. This suggests that even the use of a 

clean cotton pad is sufficient to adequately clean eyeshadows and lipsticks. For the brushes, a 

70% isopropanol spray was used. The tests also resulted in at least a 96% reduction of microbial 

contamination. However, the prolonged use of alcohol is not suggested for cosmetic brushes 

because they can cause damage to the bristles over time.    
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 There are some limitations to this study. First, the small sample size and limited amount 

of commercially-available cosmetic cleaners tested, can affect the interpretation of these results. 

The second limitation is the sampling method. Swabbing the surfaces of the cosmetics, and 

agitating the brushes, could result in the loss of the inoculum. The third limitation is the presence 

of preservatives. Neutralizing buffer was used to address this issue as well as testing at different 

contact times. The fourth limitation is the use of only one test organism. Cosmetics and brushes 

can be contaminated with a number of different organisms at a given time; this may affect the 

efficacy of the cleaning products and should be evaluated in future studies.  However, the use of 

S. aureus in this study represents a hardy (Gram positive) organism; therefore, it is assumed that 

if the cosmetic cleaners are effective against this microorganism, they will be as effective against 

more fragile (e.g., Gram negative) microorganisms. Lastly, the fifth limitation was the fact that 

the brushes were free of makeup. This could produce different results; however, the goal of this 

project was to assess and compare products given the same conditions. Brushes containing 

cosmetic residue  should be a focus in future studies. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

Cosmetics have the potential to become contaminated with pathogenic organisms from 

the moment they are first opened. The chances of contamination greatly increase with consumer 

misuse such as sharing products, the addition of water to thin out the cosmetic, and improper 

storage. Even if cosmetics are not shared, the prolonged use of a product beyond its expiration 

date or improper usage allows for the potential of product contamination which can cause 

infections (Pack, et al., 2008).  With the advent of commercially-available cosmetic and cosmetic 

brush cleaners, both professional and home cosmetic users have more options for cleaning and 

caring for their products. The results of this study show that cleaning both cosmetics and 

brushes, regardless of the cleaning product used, was effective in removing a substantial amount 

of microbial contamination. In addition to assuring cosmetics and brushes are cleaned regularly, 

consumers should also avoid sharing cosmetics, be sure to properly store products, be aware of 

expiration dates, and discard products used while sick or during a skin infection.  

 Future research should be conducted on cosmetic cleaners and used cosmetics, such as in 

store testers, to determine if these cleaning products are effective on higher microbial 

concentrations and contamination with multiple organisms. In addition, testing other organisms 

of significance is necessary to determine the range of effectiveness for these products. Future 

studies should also compare the effectiveness of cleaning products on brushes containing 

cosmetic residue, such as powders or cream-based products. It would also be beneficial to test 

different cosmetic brush materials, such as synthetic and natural fibers, to determine if there is a 

difference in the amount of microbial contamination that can be removed by a commercial 

cosmetic cleaner. The results of this study demonstrate that cleaning products, regardless of 
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contact time, product type, or brand, were effective in reducing microbial contamination on 

cosmetics and cosmetic brushes.   These data can be used to inform consumers of the importance 

of regular maintenance of their cosmetics and cosmetic brushes. 
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APPENDIX A 

 LIST OF ACRONYMS  

 

AD  Atopic Dermatitis 

ANOVA Analysis of Variance 

ATCC  American Type Culture Collection 

BSC  Biological Safety Cabinet  

CFU  Colony Forming Unit 

CFU/ml Colony Forming Unit per milliliter 

CIR  Cosmetic Ingredient Review 

FDA  Food and Drug Administration 

GLM  General Liner Model 

GMP  Good Manufacturing Practices   

ISO  International Organization for Standardization 

LDL  Lower Detection Limit 

PAO  Period after Opening 

PBT  Phosphate Buffer with 0.05% Tween 

TSA  Tryptic Soy Agar 

TSB  Tryptic Soy Broth 

USP  United States Pharmacopeia  
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