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ABSTRACT 

 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder whose 

etiology is unknown. Recent studies have implicated alterations in calcium homeostasis 

as a pathogenic contributor to AD. Calcium dysregulation has been observed in aged and 

AD brains, an event which could potentially facilitate the development of multiple 

pathologies observed in AD. Specifically, disrupting intracellular calcium levels in vitro 

has been demonstrated to increase amyloid-beta (Aβ) production, tau phosphorylation, 

and neuronal loss. However, there is a paucity of data on the behavioral and biochemical 

consequences of chronic in vivo perturbation of calcium homeostasis. In a series of 

experiments designed to evaluate the effects of chronic calcium dysregulation, we 

chronically administered different dosages of ryanodine or thapsigargin directly into the 

lateral ventricles at a minimal flow rate via Alzet osmotic minipumps. To investigate 

interactions with neuroinflammation, a common occurrence in AD, experiment 3 

examined the effects of an acute inflammatory response on chronic calcium 

dysregulation. Learning and memory was examined in multiple paradigms including the 

Morris water maze and novel object recognition. Results indicate chronic alterations in 

calcium regulation produced deficits in the water maze and novel object recognition task 

following six weeks of central infusion. Analyses of protein levels revealed that there 

may be neurochemical changes consistent with AD following chronic calcium 

dysregulation. The induction of neuroinflammation combined with calcium dysregulation 

produced similar deficits. The data suggest that altered neural calcium handling may play 

a significant role in AD. Additionally, these data may shed light on the role of calcium 

regulation in learning and memory. 
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CHAPTER 1 

INTRODUCTION 

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a 

progressive loss of memory and a decline in cognitive function (Heese & Akatsu, 2006). 

It is the most common cause of age-related dementia accounting for 50-60% of age-

related cases. The average age of onset for AD is 65 years, while most cases occurring 

before this age are referred to as early-onset familial AD, with identifiable genetic links. 

Dementia includes the aforementioned memory loss, confusion, disorientation, anxiety, 

delusions and apathy or depression (Terry & Katzman, 1983). As the disease advances, 

symptoms may include anger, aggression, language problems, impaired motor function, 

and psychoses (Souren et al., 1995; Waldemar et al., 2007).  

In addition to the behavioral disruptions associated with AD, several pathological 

changes have been observed in the brain including amyloid-beta (Aβ) plaque deposition, 

neurofibrillary tangle formation, and the progressive loss of synapses and neurons, most 

notably cholinergic neurons (Arriagada et al., 1992; Bartus et al., 1982; Glenner & Wong, 

1984; Grundke-Iqbal et al., 1986; Masters et al., 1985; Terry et al., 1991). These 

pathological changes are the hallmarks of the disease, and may be responsible for the 

cognitive and behavioral deficits exhibited in AD. However, no current widely accepted 

theory exists that is able to account for all the pathological changes observed. Mounting 

evidence suggests calcium dysregulation may play a pivotal role in AD and may 

represent a unifying, causative factor in the disorder.  

One of the most extensively investigated hallmarks of the disorder is the senile 

plaques observed in post-mortem examinations. Aβ proteins form the core of senile 
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plaques, one of the pathological changes which may be inducing the neuronal loss seen in 

AD (Glenner & Wong, 1984; Masters et al., 1985). Senile plaques are extracellular 

structures composed mainly of aggregated Aβ, an endogenous protein of unknown 

function, and they are found almost exclusively in AD and AD-related pathologies like 

Down syndrome (Wisniewski et al., 1985). Several studies suggest that the accumulation 

of Aβ in the brain may initiate or lead to the pathogenesis of AD (reviewed in Selkoe, 

2001). These findings and others have led to the amyloid cascade hypothesis (Hardy & 

Higgins, 1992), which suggests that the amyloid deposits that form plaques are the 

causative event in AD and the resulting neurodegeneration is a by-product of this 

buildup. Evidence supporting this hypothesis comes from genetic studies showing 

mutations in the genes associated with familial and late-onset AD lead to increased Aβ 

aggregation and cognitive deficits (Corder et al., 1993; Goate et al., 1991; Levy-Lahad et 

al., 1995; Murrell et al., 1991; Sherrington et al., 1995).  

Investigators have been searching for genetic ties to AD for years in an attempt to 

determine the etiology of the disease but with only mild success. Although a few genes 

have been implicated as risk factors, none have yet provided a clear link between the 

pathogenesis of sporadic AD and specific genetic targets, with most promising targets 

tied to familial AD. Mutations in the amyloid precursor protein (APP), which is 

responsible for the formation of Aβ peptides and whose encoding gene is located on 

chromosome 21, have been linked to early-onset familial AD (Goate et al., 1991; Murrell 

et al., 1991). Interestingly, patients with Down syndrome, a trisomy (additional copy) of 

chromosome 21, show AD pathology by 40 years of age (Holtzman et al., 1996). 

Alternative genetic approaches have implicated mutations in genes called presenilins (PS) 
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which have also been tied to early-onset AD, specifically presenilin-1 (PS-1) and 

presenilin-2 (PS-2) located on chromosomes 14 and 1, respectively (Levy-Lahad et al., 

1995; Sherrington et al., 1995). In sporadic AD, genetic investigations have implicated a 

specific allele of Apolipoprotein E (ApoE), whose gene is localized on chromosome 19, 

which has been linked to an increased likelihood of developing the disease (Corder et al., 

1993). This risk factor is not linked to a mutation, but the inheritance of specific alleles. 

Although genetic linkage studies have provided useful insight into potential AD etiology, 

genetic mutations (i.e. APP or PS) related to Aβ can only account for a very small 

percentage of AD cases. A further limitation of the Aβ hypothesis is that many studies 

have indicated that there is a weak correlation between the number or size of amyloid 

deposits and the severity of the dementia, and that other pathologies seem to correlate 

better with the memory loss seen in AD (Arriagada et al., 1992; Snowdon et al., 1997; 

Terry et al., 1991). Therefore, additional pathologies such as the hyperphosphorylation of 

tau have been the focus of much research. 

Neurofibrillary tangles (NFTs) are another neuropathological hallmark of AD and 

are composed mainly of hyperphosphorylated tau, a protein that is associated with 

microtubule stability and assembly. Tau hyperphosphorylation leads to the formation of 

paired helical filaments (PHF) which are thought to lead to microtubule disintegration 

and neuron death (Goedert, 1996). Because the amount of neurofibrillary tangles 

correlates positively with the severity of dementia in AD (Arriagada et al., 1992), it is of 

great interest to investigators of the disorder and those developing pharmacological 

treatments. In addition, the regions of the brain that appear to undergo the greatest 

degeneration of neurons and synapses in AD are those that project to or from areas that 



 

 4 

have high densities of plaques and tangles, specifically the hippocampus, neocortex, and 

basal forebrain (for review, see Kar et al., 2004). The latter region contains large numbers 

of cholinergic neurons which project to the hippocampus and cortex. Acetylcholine 

(ACh), principally an excitatory neurotransmitter, is important for attentional processes, 

as well as learning and memory (Deutsch, 1971; Wenk et al., 1994; Woolf, 1996). A 

reduction in neurons containing ACh has been consistently observed in AD, particularly 

in the early stages of the disorder.  

Cholinergic cell loss is a hallmark of the neurodegeneration in AD, marked by a 

progressive loss of ACh-containing neurons with a corresponding decline in cognitive 

function (Perry et al., 1981; Terry et al., 1991). The cholinergic hypothesis of AD 

postulates that the cognitive deficits in AD are caused by the early loss of cholinergic 

basal forebrain (CBF) neurons (Bartus et al., 1982). This hypothesis is supported by 

many post-mortem studies which demonstrate that the loss of CBF neurons occurs early 

in the disease progression, likely before a clinical diagnosis is reached (Bartus et al., 

1982; Beach et al., 1997, 2000; Bowen et al., 1982). Also, the severity of the dementia in 

AD is highly correlated with the amount of cholinergic loss (Perry et al., 1981). Although 

CBF neurons are associated with early degeneration in AD, the pervasive nature of the 

cell loss throughout the course of the disorder suggests alternative mechanisms may be 

responsible because these cholinergic neurons are specifically localized. One such 

mechanism is the dysregulation of intracellular calcium, a progressive event which may 

account for the widespread neurodegeneration and neuropathologies in AD.   

The activity of calcium ions is essential for a number of neuronal processes 

including transmitter release, transcriptional regulation, synaptic plasticity, and many 
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others (Bading et al., 1993; Borst & Sakmann, 1996; Greer & Greenberg, 2008; 

Hardingham et al., 1997). Many cellular resources are devoted to tightly regulating 

intracellular calcium levels such as calcium pumps, transporters, exchangers, and 

channels. The proper functioning of this machinery is necessary for maintaining calcium 

homeostasis and normal cellular function. Any perturbation of the mechanisms 

responsible for regulating calcium levels may have deleterious consequences and 

potentially play a role in disorders. 

 The calcium hypothesis of aging and neurodegenerative disease was first 

proposed in the 1980s (Gibson & Peterson, 1987; Khachaturian, 1987; Landfield, 1987; 

Landfield et al., 1989), suggesting that sustained intracellular calcium disruptions may be 

the cause of age-related disorders, including AD. More recently, increasing lines of 

evidence point to disrupted calcium homeostasis as a causative factor in AD 

(Bezprozvanny & Mattson, 2008; Bojarski et al., 2008; Camandola & Mattson, 2011; 

Thibault et al., 2007; Thibault & Landfield, 1996). Calcium dysregulation has been 

implicated in several pathologies of AD including Aβ and tau aggregation, and neuronal 

loss. Each of these pathologies has also been implicated in the cognitive impairments in 

AD (Arriagada et al., 1992; Cleary et al., 2005; Hsiao et al., 1996; Terry et al., 1991). In 

the experiments outlined below, we will examine the effects of altering intracellular 

calcium levels on learning and memory and AD-like neuropathological changes. 

 

Experimental Rationale 

Many studies have investigated the effects of calcium dysregulation on specific 

AD pathologies, such as Aβ and tau, in cell culture preparations. Sparse data exist on the 
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effects of in vivo calcium dysregulation, while to date no experiments have investigated 

the effects of chronic calcium perturbation. Furthermore, the behavioral consequences of 

altering intracellular calcium levels are unknown. The below studies sought to determine 

what effect chronic calcium dysregulation would have on learning and memory and 

histological markers consistent with AD. We examined multiple hippocampally-

dependent tasks, including the Morris water maze (MWM) and novel object recognition 

(NOR), to assess whether chronic disruption of calcium homeostasis was sufficient to 

produce learning and memory impairments. We also examined protein levels of Aβ and 

phosphorylated tau (ptau) to determine whether chronic calcium dysregulation led to AD-

like changes in these proteins. Below we have outlined a more comprehensive review of 

each of the aforementioned approaches and findings in AD. 
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CHAPTER 2 

REVIEW OF RELATED LITERATURE 

Amyloid β Hypothesis 

   The Aβ protein accumulates extracellularly in AD resulting in the formation of 

senile plaques, which may lead to cell damage and even cell loss. Aβ was first purified in 

1984 from cerebrovascular amyloid protein by Glenner & Wong and from senile plaques 

the next year by Masters et al. (1985), which was when its amino acid sequence was 

determined. Various mechanisms have been proposed to account for the neurotoxicity of 

Aβ peptides and senile plaques. Several studies have discovered a disruption in calcium 

homeostasis following Aβ administration which could potentially lead to cell death 

(Mattson et al., 1992). It has also been suggested that plaques may disturb surrounding 

cytoskeletal elements by “squishing” nearby cells. Although the mechanism by which Aβ 

contributes to neurodegeneration remains to be conclusively demonstrated, how the 

peptide is formed has been better characterized. 

 Aβ is formed by the proteolytic processing of its precursor protein, APP. APP is 

a membrane-spanning protein encoded for on chromosome 21. Although the 

physiological function of APP remains unknown, it appears to be involved with synaptic 

transmission, axonal transport, cell adhesion and support, and cholesterol metabolism (for 

review, see Selkoe, 1994). Knockout (elimination of the gene product) and knockdown 

(reduction in the relative amount of a gene product) studies of APP have provided some 

information about its function. APP seems to play a role in muscle development or 

function, and has also been implicated in the formation of long-term potentiation (LTP), a 

cellular process argued to be essential for learning (Dawson et al., 1999; Douglas & 
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Goddard, 1975; Kauer et al., 1988; Seabrook et al., 1999; Senechal et al., 2008). Under 

physiological conditions, APP is degraded via a series of enzymatic events.  

The proteolytic processing of APP results in Aβ fragments of varying length, 

depending on where APP is cleaved by specific enzymes called secretases (Shoji et al., 

1992; Sisodia & Price, 1995). If APP is cleaved by alpha (α)-secretase, a soluble form of 

APP (sAPP) is secreted which is readily absorbed and processed by lysosomal proteolytic 

events. Cleavage by α-secretase occurs in the extracellular domain of APP within the Aβ 

sequence, thus preventing the formation of the Aβ peptide (Lannfelt et al., 1995). Several 

reports have demonstrated sAPP may even play a neuroprotective role (Furukawa et al., 

1996; Han et al., 2005).  

The senile plaques found in AD are primarily composed of the 40 and 42 amino 

acid Aβ peptides, with studies showing that Aβ42 is more neurotoxic, i.e. more damaging 

to neurons, than the shorter variants (Roher et al., 1996). If APP is sequentially cleaved 

by beta (β)- and gamma (γ)-secretases, this leads to the formation of 39-43 amino acid 

long Aβ peptides, which are similar to the lengths of Aβ predominantly found in senile 

plaques in AD (Citron et al., 1996; Golde et al., 1992).  

Initially, β-secretase, also referred to as β-site APP cleaving enzyme 1 (BACE-1), 

cleaves APP at its amino-terminus in the extracellular domain which is followed by γ-

secretase cleavage within the transmembrane domain (Vassar et al., 1999). BACE-1 

inhibitors have been demonstrated to inhibit β-cleavage of APP and effectively lower Aβ 

levels in vitro and in vivo (Hussain et al., 2007). Inhibitors of γ-secretase have also been 

shown to reduce Aβ levels in the brain when administered to mice that overexpress a 

human mutant version of APP (Dovey et al., 2001). Inhibition of either of these two 
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secretases theoretically leads to a reduction in the amount of Aβ because both β- and γ-

secretase are necessary in order to cleave APP in a fashion that yields the 40 or 42 amino 

acid peptides known to aggregate and form plaques.  

Considerable pharmacological research is being directed at developing β- and γ-

secretase inhibitors as therapeutic targets in an effort to reduce plaque load and perhaps 

even halt the progression of the disease. However, recent failures of γ-secretase inhibitors 

in particular have raised questions about the validity of this approach (Cummings, 2010). 

A great deal of research has also been conducted examining the genetic underpinnings of 

AD with a particular focus on genes tied to the proteolytic processing of Aβ.  

Genetic linkage studies have tied familial forms of AD to the gene for APP on 

chromosome 21 (Citron et al., 1992; Goate et al., 1991). Over twenty mutations in the 

gene have been identified to date that are thought to be responsible for the familial early-

onset form of the disease (Chai, 2007). Individuals with any of these mutations have an 

increased chance, compared to the population as a whole, of developing early-onset AD 

because they have a greater amount of APP and thus produce more Aβ than normal 

individuals (Citron et al., 1992; Suzuki et al., 1994). Interestingly, almost all APP 

mutations are located within or adjacent to the Aβ peptide region of the precursor protein, 

and thus may affect the proteolytic processing of APP (Schellenberg, 1995). Related to 

the processing of APP are the presenilin (PS) genes which have also been implicated in 

autosomal dominant familial AD. 

The genes coding for PS proteins have been linked to early-onset AD, specifically 

PS-1 on chromosome 14 and PS-2 on chromosome 1 (Levy-Lahad et al., 1995; 

Sherrington et al., 1995). Similar to the aforementioned mutations in APP, PS mutations 
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lead to increased Aβ production, especially production of Aβ42, a species of the peptide 

known to be most toxic to neurons and overabundant in AD (Citron et al., 1997; Duff et 

al., 1996; Iwatsubo et al., 1994). Investigations into PS mutations and Aβ deposition have 

shown that mutations in the PS gene increase the ratio of Aβ42 to Aβ40 as compared to 

non-PS mutant cases of AD (Borchelt et al., 1996). This shift in the production of Aβ42 

can have significant consequences, as studies have suggested that Aβ42 aggregates more 

readily than Aβ40 and is deposited early in the formation of plaques (Iwatsubo et al., 

1994; Jarrett et al., 1993). Furthermore, PS mutations seem to alter APP processing by 

increasing the amount of cleavage by γ-secretase, thus increasing the production of Aβ 

(DeStrooper et al., 1998; Wolfe et al., 1999). Knockout studies with animals that do not 

express the PS-1 and PS-2 genes show an abolishment of γ-secretase mediated cleavage 

of APP (Steiner et al., 1999; Yu et al., 2001).  

Based on these findings and others, Wolfe et al. (1999) proposed the hypothesis 

that PS itself is a γ-secretase, an intramembranous protease that is responsible for γ-

cleavage of APP. Despite further evidence supporting this hypothesis, it appears that PS 

and γ-secretase are not the same protein even though they are highly related (Takasugi et 

al., 2003). Although PS-knockout mice seem to exhibit a complete abolishment of γ-

secretase activity, these animals still produce Aβ42 peptide fragments, suggesting there are 

additional enzymes with activity similar to γ-secretase (Wilson et al., 2002).  

While the discovery that these three genes (APP, PS-1, and PS-2) are linked to 

familial AD advanced the investigation of the disorder, it is important to recognize that 

they only account for a small percentage of all familial early-onset cases occurring before 

65 years of age (Cruts et al., 1998). Given that more than 95% of AD cases occur after 
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the age of 65, it is clear that these genetic mutations contribute only minimally to the risk 

of developing the more common variant of the disease (Holmes, 2002). With that said, 

much more is known about the genetics of familial early-onset AD than about sporadic, 

late-onset AD. 

One gene implicated in non-familial forms of AD is the gene coding for 

Apolipoprotein E (ApoE). ApoE is a protein critical in regulating brain Aβ peptide levels 

and trafficking lipids throughout the brain (for review, see Holtzman, 2001). ApoE is 

responsible for clearing Aβ peptides from the brain across the blood-brain barrier into the 

peripheral circulation (LaDu et al., 1994, 1995; Morikawa et al., 2005). Aβ peptides are 

normally generated at very high levels in the brain and are cleared at an equivalent rate 

(Bateman et al., 2006). Thus, even small reductions in the clearance of Aβ could result in 

elevated levels of Aβ peptides and eventual plaque formation. The lipidation status of 

ApoE appears to be important with regard to how well it can bind to Aβ and clear the 

peptide from the brain (Tokuda et al., 2000). If ApoE is in a lipidated form, it is more 

effective at clearing Aβ than if it is non-lipidated.  

Another way that Aβ is cleared from the brain is through a proteolytic mechanism 

involving either neprilysin (NEP) (Iwata et al., 2000) or insulin-degrading enzyme (IDE) 

(Kurochkin & Goto, 1994). Inhibition of either of these proteases leads to a substantial 

elevation of Aβ levels in the brain and increased plaque deposition (Dolev & Michaelson, 

2004). Recent research suggests that ApoE facilitates these enzymes, allowing them to 

degrade Aβ (Jiang et al., 2008). The ability of ApoE to clear Aβ is also dependent upon 

the isoform or allele of ApoE.  
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ApoE has three alleles: ApoE-ε2, ApoE-ε3, and ApoE-ε4, with one or two copies 

of the ε4 allele leading to an increased risk of developing AD (Corder et al., 1993). 

Studies with transgenic mice overexpressing APP have demonstrated ApoE isoform-

specific effects on the ability of each allele to clear Aβ from the brain. The most effective 

allele at eliminating Aβ is the ε2 allele, followed by the ε3 allele, with the least effective 

being the ε4 allele (Holtzman, 2004). Thus, individuals with one or two ε4 alleles (two 

alleles being the least effective possible form) of ApoE have a less efficient mechanism 

for clearing Aβ from the brain, resulting in increased levels of the peptide (Saunders et 

al., 1993).  

A genetic study done by Corder et al. (1993) showed that over 90% of subjects 

examined who had two copies of the ε4 allele (4/4) had AD. Almost 50% of subjects with 

one copy of the ε3 and one copy of the ε4 (3/4) were affected with AD. Only about 20% 

of subjects with no copies of the ε4 allele (2/2, 3/3, or 2/3) had the disease. These authors 

also examined the average age of onset in individuals with one or two copies of the ε4 

allele. They found that expression of it leads to a significantly earlier age of onset, with 

two copies of the ε4 allele leading to an earlier onset than just one copy. While the 

discovery of the ApoE gene and its relation to Aβ is critical to understanding AD 

pathogenesis, the presence of the ε4 allele predisposes an individual to AD, but does not 

cause the disease.  

Much of the above research eventually led to the amyloid cascade hypothesis, 

which suggests that abnormal Aβ production and accumulation triggers the 

neurodegeneration seen in AD. Hardy & Higgins (1992) proposed that deposition of Aβ 

protein is the causative factor in AD pathology and that the NFT, neuronal loss, and 
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dementia that follow are a result of this deposition. They hypothesized that neurotoxic Aβ 

peptides disrupt calcium homeostasis both extra- and intracellularly. This intra-neuronal 

increase in calcium concentration could potentially be what leads to tau proteins within 

the cell becoming hyperphosphorylated and forming PHFs, which are the primary 

component of NFT. Thus, for this interpretation of the amyloid cascade hypothesis to be 

correct, elevations in Aβ levels should cause hyperphosphorylation of tau and 

neurofibrillary pathology to develop.  

This link between Aβ and tau has been verified to some extent in animal models 

and in cell culture, wherein Aβ causes an increase in tau phosphorylation (Gotz et al., 

2001; Lewis et al., 2001; Zheng et al., 2002). Transgenic mice harboring mutations in 

both human APP and human Tau, as well as a mutant PS-1 allele, dubbed 3xTg-AD 

mice, develop both Aβ deposits and NFT-like pathology (Oddo et al., 2003a). Studies 

using these mice have demonstrated that Aβ accumulation precedes the development of 

tau pathology by several months, further suggesting Aβ may promote tau 

phosphorylation and aggregation (Oddo et al., 2003b). These findings with transgenic 

mice must be regarded carefully however due to the rarity of these mutations in humans. 

Earlier studies revealed a direct relationship between Aβ and tau phosphorylation; 

the treatment of neurons with Aβ fibrils increased the immunoreactivity of ptau 

(Busciglio et al., 1995). This Aβ-induced increase in tau phosphorylation may be 

mediated by glycogen synthase kinase 3β (GSK-3β), one of the enzymes thought to be 

responsible for phosphorylating tau, as in vitro injection of Aβ activates this enzyme 

(Lovestone et al., 1996). More recently, Guo et al. (2006) observed that soluble Aβ and 

tau may directly interact to promote each other’s aggregation. Thus, it is clear there is 
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some relation between Aβ and tau pathology, but more studies are necessary to clarify the 

connection.  

Despite the amount of research supporting the amyloid cascade hypothesis, there 

are several gaps between the hypothesis and data collected. First, the hypothesis is 

inconsistent with the presence of senile plaques in normal aged brains similar to those 

seen in AD (Crystal et al., 1988; Katzman et al., 1988; Price et al., 1991). If Aβ deposits 

are the catalyst for AD neurodegeneration, then it is unlikely we would see individuals 

with no cognitive impairment and widespread plaque load. Furthermore, the presence of 

post-mortem senile plaques does not correlate well with the severity of dementia in AD 

(Snowdon et al., 1997; Terry et al., 1991).  

Secondly, in transgenic animals that overexpress either APP or one of the PS 

mutations, there is no significant NFT formation or neurodegeneration despite 

considerable Aβ plaque load (Hsiao et al., 1996; Takeuchi et al., 2000). Because no AD-

like pathology develops in these mice except for plaques, it is difficult to argue that Aβ is 

directly causing the significant neuronal loss seen in the disease. Another limitation of the 

amyloid cascade hypothesis is that neurodegeneration and dementia occur in the absence 

of Aβ plaques in several diseases related to the tau protein (Hutton et al., 1998; 

Spillantini et al., 1998). Based on these limitations and others, the amyloid cascade 

hypothesis has been adapted with a larger focus on soluble Aβ peptides as opposed to the 

insoluble aggregates which form the core of plaques (Hardy, 2006).  

Although the causative nature of Aβ plaques has been debated, several lines of 

evidence suggest soluble Aβ peptides are neurotoxic and may be better correlates of 

disease severity than insoluble Aβ (McLean et al., 1999). Specifically, the aggregation of 



 

 15 

Aβ monomers into small, soluble oligomers may be more closely tied to AD 

pathogenesis and cognitive deficits (Cleary et al., 2005; Walsh et al., 2002). Aβ 

oligomers (oAβ) inhibit LTP, impair learning and memory in animal models of AD, and 

have been directly linked to synapse loss and cell death (Chafekar et al., 2008; Lesné et 

al., 2006; Shankar et al., 2007; Townsend et al., 2006; Walsh et al., 2002). Unlike Aβ 

monomers, oligomers cannot be degraded and cleared by IDE (Walsh et al., 2002). These 

findings and others suggest the formation of oAβ in AD brains may eventually result in 

the aggregation of these peptides into senile plaques. However, much more research is 

necessary before a complete understanding of Aβ dynamics in AD can be reached. 

Regardless of whether or not Aβ peptides are the causative agent in AD, it is 

likely that they contribute to the cognitive symptoms and pathogenesis of AD. Another 

pathogenic contributor to the neurodegeneration observed in AD is the tau protein which 

is hyperphosphorylated resulting in NFTs and neuronal loss.  

 

Tau Hypothesis 

Tau is an intracellular protein found abundantly in the central and peripheral 

nervous systems and is critical for microtubule stability, assembly, and flexibility 

(Goedert et al., 1989, 1992). Microtubules are located throughout the neuron; especially 

in the axon where they are essential for neurotransmission, axonal transport and axonal 

support (Kraemer et al., 2003; Paulson & McClure, 1974; Weingarten et al., 1975). Tau is 

a phosphoprotein which implies that it requires phosphorylation, or the addition of a 

phosphate group, in order for it to become activated (Butler & Shelanski, 1986). Tau is 

partially phosphorylated in the normal brain and this phosphorylation may regulate 
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microtubule stability and assembly (Lindwall & Cole, 1984). This microtubule regulation 

appears to occur by reducing tau’s binding to tubulin, a protein that makes up 

microtubules, and reducing the promotion of microtubule assembly (Hasegawa, 2004). 

Thus, the phosphorylation of tau plays a pivotal role in regulating microtubule production 

by reducing the amount of microtubule assembly and decreasing the ability of tau to bind 

to tubulin.  

In AD, the tau protein is hyperphosphorylated, which leads to the destruction of 

microtubule assemblies via the aforementioned mechanisms (Grundke-Iqbal et al., 1986). 

The degradation of microtubules may cause impaired axonal transport and possibly cell 

death (Kosik et al., 1986). Tau hyperphosphorylation renders tau unable to bind to 

microtubules, an event proposed to be responsible for tau aggregation and self-assembly 

into PHFs (Bramblett et al., 1993; Goedert et al., 1988; Yoshida & Ihara, 1993). These 

PHFs, which are primarily made up of hyperphosphorylated tau, correlate strongly with 

neuronal death in AD (Gomez-Isla et al., 1997). Also, whereas Aβ pathology is relatively 

specific to AD, NFT formation occurs in other diseases/disorders related to tau, 

collectively referred to as tauopathies. 

In 1998, several mutations in the tau gene were discovered in families with 

frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), a 

related but distinct neurodegenerative disease, producing genetic evidence that tau 

abnormalities may be sufficient to lead to neurodegeneration (Hong et al., 1998; Hutton 

et al., 1998; Poorkaj et al., 1998; Spillantini et al., 1998). This discovery led to the 

production of many different transgenic lines of mice with tau mutations. One specific 

line, the P301L mice, shows significant age-dependent NFT formation, memory 
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impairment, and neuron loss (Lewis et al., 2000; Ramsden et al., 2005). Although there is 

significant neurodegeneration in these animals, they do not develop any Aβ pathology, 

implying that tau mutation or tangle formation are not sufficient on their own to cause 

senile plaques in an animal model of AD. These findings provide strong evidence that tau 

may induce neuronal loss in the absence of Aβ, but also suggest that Aβ plaque formation 

may lie upstream of tau, at least for AD.  

Consistent with the findings that Aβ plaque burden does not correlate well with 

the severity of dementia but NFT formation does, is the finding that NFTs can be 

differentiated into neuropathological stages in AD. Braak & Braak (1991) reported 

detailed pathological studies about the distribution of plaques and tangles in post-mortem 

brains of demented and non-demented individuals. They showed that Aβ deposition was 

of little significance in relation to neuropathological staging, whereas NFTs exhibited a 

neuroanatomical distribution pattern permitting the differentiation of six stages of disease 

progression in AD.  

Tangles are first observed in the entorhinal cortex where neuronal loss occurs 

earliest, and are closely related to the initial memory impairment in AD. Conversely, Aβ 

deposits are not found in the hippocampal formation until the late stages of the disease 

(Hasegawa, 2004). Another post-mortem study showed that both NFTs and neuronal loss 

increased in parallel with the duration of AD, although the amount of neuronal loss was 

quite larger than the amount of tangle accumulation (Gomez-Isla et al., 1997). In contrast, 

the authors found that the amount of plaques and Aβ accumulation was not related to 

neuronal loss, the number of NFTs, or the duration of the disease.  
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Despite the recent attention the tau hypothesis has received, it has limitations 

similar to the Aβ hypothesis. Foremost is the finding that NFTs are extremely common 

and perhaps universal in the nucleus basalis of Meynert, a basal forebrain region rich in 

cholinergic fibers, in non-demented aged individuals (Beach et al., 1998). Secondly, 

because humans with, or animal models of, tauopathies fail to develop Aβ pathology or 

the global neuronal loss seen in AD, it is difficult to claim that tau aggregation and NFTs 

are causing the disease.  

Recently, soluble tau proteins have been suggested to account for neurotoxicity 

and cognitive deficits as opposed to insoluble tau aggregates and NFTs. In an inducible 

transgenic mouse model carrying mutant tau, the suppression of the transgene with 

doxycycline in the rodents’ diet led to the amelioration of learning and memory 

impairments. Interestingly, this improvement occurred despite the lack of reduction in 

NFTs observed in these mice, indicating soluble tau may have been responsible for the 

deficits (Santacruz et al., 2005). These results were corroborated in a drosophila (fruit fly) 

model of tauopathy where it was found that soluble ptau contributed to 

neurodegeneration (Feuillette et al., 2010).  

These findings suggest that, similar to Aβ, soluble species of ptau may be 

especially damaging, and their sequestration into NFTs may represent an attempt at a 

compensatory or protective response (Alonso Adel et al., 2006; Castellani et al., 2008). 

More data are certainly necessary before any conclusions can be drawn about what form 

of tau (soluble or insoluble) contributes to the neurodegeneration and cognitive 

impairments observed in AD. Another possible explanation for the significant neuronal 
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loss and degeneration seen in AD is related to the cholinergic hypothesis and the loss of 

cholinergic neurons in areas important for learning and memory. 

 

Cholinergic Hypothesis 

The cholinergic deficit in AD is the earliest and most frequently reproduced 

finding, specifically the profound reduction in choline acetyltransferase (ChAT) activity 

(Bowen et al., 1982; Davies & Maloney, 1976). ChAT is the enzyme responsible for 

synthesizing acetylcholine (ACh), and its decreased activity leads to reduced amounts of 

available ACh in the brain, specifically in the hippocampus and neocortex (Davies, 1979; 

Perry et al., 1977). The finding that cholinergic cell loss is associated with the presence of 

plaques in non-demented aged individuals suggests that the loss of cholinergic neurons 

precedes the clinical diagnosis of AD (Beach et al., 1997). Furthermore, studies indicate 

that the severity of the dementia in AD correlates well with the extent of cholinergic loss 

and the reduction in ChAT activity in the cortex (Perry et al., 1981).  

Cholinergic loss occurs first and foremost in the basal forebrain where CBF 

neurons deteriorate very early in the disease progression (Beach et al., 2000; Bowen et 

al., 1982; Whitehouse et al., 1982). ACh has been implicated in multiple cognitive 

functions such as learning and memory (Cox & Tye, 1973; Spencer et al., 1985; Spencer 

& Lal, 1983; Valentino & Dingledine, 1981; Whitehouse, 1967; Woolf, 1996). Once 

ACh is released, it can bind to either of two receptor subtypes: nicotinic acetylcholine 

receptors or muscarinic acetylcholine receptors (Role & Berg, 1996; reviewed in Ishii & 

Kurachi, 2003 and Wevers & Schroder, 1999).  



 

 20 

Nicotinic receptors are ionotropic receptors (receptors that can open ion channels 

when ACh binds to them) while muscarinic receptors are metabotropic receptors 

(receptors that activate a G-protein and trigger intracellular events when ACh binds, 

including the opening of multiple ion channels). There appears to be a selective loss of 

ACh receptors in the cortex and hippocampus in AD, which seems to be more 

pronounced for nicotinic receptors (Flynn & Mash, 1986; Perry et al., 1995; Wevers et 

al., 2000).  

Nicotinic receptor activation using nicotine produces a significant increase in the 

amount of ptau both in vitro and in 3xTg-AD mice (Hellstrom-Lindahl et al., 2000; Oddo 

et al., 2005). The exact mechanism of how this increase in phosphorylation occurs 

remains unclear, but it may be a result of increased calcium levels due to overactivation 

of the nicotinic receptors. Nicotonic receptors are one of only a few ionotropic receptors 

in the brain that allow an influx of calcium ions when ACh binds (McGehee et al., 1995; 

Role & Berg, 1996). This increase in intracellular calcium may activate different 

calcium-dependent kinases, such as GSK-3β, which may be responsible for 

phosphorylating tau (Oddo et al., 2005).  

Nicotinic receptor activation also appears to have an effect on Aβ deposits in the 

brain. In vitro studies have shown that nicotine seems to inhibit Aβ fibril formation and 

also disrupts already formed fibrils (Ono et al., 2002; Salomon et al., 1996; Zeng et al., 

2001). These findings would suggest that in the absence of ACh, the formation of fibrils 

is allowed to progress at a more rapid rate. Studies using Tg2576 mice, which 

overexpress human mutant APP, showed a dramatic decrease both in Aβ plaque burden 

and the levels of insoluble Aβ40 and Aβ42 after chronic administration of nicotine for a 
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period of five and a half months (Nordberg et al., 2002). It is difficult to determine what 

effect the loss of nicotinic receptors has on tau phosphorylation and Aβ deposits in AD, 

and more studies are necessary to elucidate the relationships. Furthermore, 

epidemiological studies linking cigarette smoking to incidence of AD have demonstrated 

conflicting results (Brenner et al., 1993; Cataldo et al., 2010).   

Muscarinic receptors, specifically the M1 receptor subtype, are highly expressed 

in the cerebral cortex and hippocampus, and seem to be particularly relevant to memory 

function in AD (Anagnostaras et al., 2003). Activation of the M1 receptor has been 

shown to decrease tau phosphorylation, suggesting that decreased cholinergic activity 

may lead to destabilization of the microtubule network and eventual tangle formation. In 

vitro studies using cholinergic M1 agonists showed that the muscarinic-activated 

decrease of tau phosphorylation was both time and dose dependent (Sadot et al., 1996). In 

vivo studies using 3xTg-AD mice also showed a reduction in tau phosphorylation 

following administration of a muscarinic agonist and conversely showed increased tau 

phosphorylation after treatment with an M1 antagonist (Caccamo et al., 2006). Previous 

in vitro findings found that M1 receptor agonists decrease tau phosphorylation via 

reduction of GSK-3β activity (Forlenza et al., 2000), which appears to be the mechanism 

by which tau phosphorylation was decreased in the 3xTg-AD mice.  

Muscarinic receptor activation also appears to reduce Aβ production and increase 

the secretion of soluble APP (Buxbaum et al., 1992). In the 3xTg-AD mice, an M1 

agonist reduced Aβ deposition in the hippocampus and cortex, and ameliorated cognitive 

deficits in a spatial memory task (Caccamo et al., 2006). This finding that muscarinic 

activation regulates APP processing (Nitsch et al., 1992) formed the basis for the 
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hypothesis that AChE inhibitors may slow disease progression by reducing Aβ 

production (Inestrosa et al., 1996).  

AChE inhibitors were developed as a result of the cholinergic hypothesis in order 

to increase cholinergic tone in individuals with AD (Bartus, 1979; Bartus et al., 1982; 

Davis et al., 1978). AChE is primarily responsible for the breakdown of ACh into choline 

and acetic acid. AChE has also been implicated in Aβ plaque formation and appears to 

have the ability to accelerate Aβ formation and deposition in AD (Inestrosa et al., 1996). 

Therefore, by inhibiting the enzymatic activity of AChE, it may be possible to reduce Aβ 

plaque formation and ameliorate AD symptomology. AChE inhibitors increase the 

amount of ACh available in the synapse as well as enhance and prolong its action on ACh 

receptors (Harvey & Rowan, 1990). AChE inhibitors have been approved for use in mild 

to moderate AD and have been shown to improve cognitive deficits (Rogers et al., 1998; 

Rosler et al., 1999; Tariot et al., 2000). These drugs tend to show symptomatic efficacy, 

but little evidence exists that they prevent or even slow the course of the disease.  

 

Neuroinflammatory Hypothesis 

Glial cells in the brain, specifically microglia and astrocytes, can serve as 

mediators of the inflammatory response when necessary, defending the central nervous 

system (CNS) from pathogens and aiding in the recovery from damage and stress 

(reviewed in Skaper, 2007). AD brains exhibit extensive localized activation of both 

microglia and astrocytes in response to neuronal and synaptic damage and Aβ 

accumulation (Akiyama et al., 2000). It is likely that this inflammation related to AD 

pathology may be both beneficial as a mechanism to promote neuronal survival and 
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detrimental to AD brain function and the degeneration process (Wyss-Coray & Mucke, 

2002).  

Studies have shown that aggregated Aβ is itself capable of activating the 

inflammatory response by activating microglia and enhancing the synthesis and release of 

proinflammatory cytokines (Combs et al., 2001; Tan et al., 1999). These proinflammatory 

cytokines may also accelerate tau pathology and NFT formation, perhaps linking Aβ-

induced inflammation and neurofibrillary pathology (Guo et al., 2006; Quintanilla et al., 

2004; Sheng et al., 2000). These findings would suggest that inflammation is actually 

advancing AD pathology and accelerating the neuronal loss.  

Although microglial activation in AD may be caused by Aβ pathology, microglial 

activity correlates more closely with NFT pathology (Hayes et al., 2002). This 

relationship suggests that although Aβ may trigger the initial activation of microglia, the 

resulting inflammatory response may be more directly related to tau pathology (Blurton-

Jones & LaFerla, 2006).  

 

Calcium Hypothesis 

Calcium is critical for a host of intracellular processes. For example, the release of 

neurotransmitter from presynaptic terminals relies on calcium influx in order to mobilize 

synaptic vesicles (Borst & Sakmann, 1996; Kochubey et al., 2011). In the absence of 

calcium, transmitter will not be released following an action potential. In the postsynaptic 

neuron, calcium acts as a second messenger, initiating signal transduction pathways and 

even regulating transcriptional events (Bading et al., 1993; Greenberg et al., 1986). 

Specifically, many enzymes such as calcium/calmodulin-dependent protein kinase II 
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(CaMKII), one of the most abundant kinases (enzyme that phosphorylates other proteins) 

in the brain, and cAMP-dependent protein kinase (PKA) both rely on calcium for 

activation (Braun & Schulman, 1995; Impey et al., 1998). These kinases then initiate 

signaling cascades which lead to downstream nuclear transcription. Calcium also plays a 

direct role in synaptic plasticity; activation of N-methyl D-aspartate (NMDA) glutamate 

receptors and the subsequent influx of calcium ions are necessary for the induction of 

LTP and many forms of learning.  

Calcium influx from the extracellular fluid can occur through ligand-gated ion 

channels such as the NMDA receptor and several voltage-gated calcium channels 

(VGCC) such as L-, N-, P-, and T-type channels (reviewed by Catterall, 2011). Calcium 

also enters the cytoplasm from intracellular stores such as the endoplasmic reticulum 

(ER) through multiple channels. Although calcium is constantly entering neurons, levels 

of intracellular calcium are kept extremely low (~10-7 M) and tightly regulated by a host 

of mechanisms.  

A variety of adenosine triphosphate (ATP)-dependent pumps removes calcium 

from the cytoplasm, either sequestering it into intracellular organelles or expelling it into 

the extracellular fluid. The plasma-membrane calcium-ATPase (PMCA) efficiently 

pumps calcium ions out of neurons, while the sarco/endoplasmic reticulum calcium-

ATPase (SERCA) pump sequesters intracellular calcium into the ER (Gunteski-Hamblin 

et al., 1988; Strehler et al., 2007). These pumps require a great deal of energy expenditure 

from the cell in order to maintain the low levels of intracellular calcium and high 

sensitivity for the ion. Other membrane-bound mechanisms do not utilize ATP to extrude 

calcium but instead rely on its electrochemical gradient. 
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The sodium/calcium exchanger, an ion transporter localized primarily to the 

plasma membrane, removes one calcium ion from the cytoplasm for every three sodium 

ions that flow into the cell. However, this process is reversible and completely dependent 

upon the electrochemical gradient of potassium, sodium, and calcium, as well as the 

membrane potential of the cell (Blaustein & Lederer, 1999). This exchanger is likely the 

predominant mechanism for calcium efflux across the plasma membrane, especially 

when intracellular calcium levels are elevated due to a high rate of neuronal activity 

(Lytton, 2007).  

 High rates of activity may also lead to calcium uptake into mitochondria via 

mitochondrial calcium uniporters (DeLuca & Engstrom, 1961). These calcium 

transporters bring calcium across the mitochondrial membrane using the electrochemical 

gradient of calcium and the mitochondrial membrane potential (Kirichok et al., 2004). 

Although these uniporters are important for sequestering excess calcium, sustained 

elevation of calcium levels in the mitochondria can be dangerous and lead to cell death.  

 Additional mechanisms responsible for regulating intracellular calcium levels 

include calcium-binding proteins such as parvalbumin (PV) and calbindin (CB). This 

class of proteins plays a significant role in the buffering of intracellular calcium, thereby 

reducing the likelihood of excessive mitochondrial calcium uptake and subsequent 

apoptosis (Rintoul et al., 2001). All of the mechanisms mentioned above play a role in 

maintaining calcium homeostasis and preventing excessive intracellular calcium levels. 

When this homeostasis cannot be maintained, the consequences for both an individual 

neuron and the brain can be severe. 
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 Excessive calcium influx, often mediated by NMDA receptor calcium channels, 

can be toxic for cells, a phenomenon known as excitotoxicity (Choi, 1985; Lucas & 

Newhouse, 1957). Interestingly, this phenomenon is a common occurrence in several 

neurodegenerative diseases including Huntington’s disease, Parkinson's disease, and 

amyotrophic lateral sclerosis (ALS) (Beal, 1998; Cluskey & Ramsden, 2001; Taylor-

Robinson et al., 1994). These consistent findings across disorders suggest excitotoxicity 

may play an integral role in age-related neurodegeneration. Excitotoxicity also occurs in 

later stages of AD (Mattson, 1994). However, a sustained, low-level calcium 

dysregulation may have an impact in early or preclinical AD as well.      

Disruptions of calcium regulation have been consistently observed in aged and 

AD brains (Ito et al., 1994; Peterson et al., 1985; Peterson & Goldman, 1986; Raza et al., 

2007), potentially contributing to neurodegeneration in AD. Calcium levels are increased 

in neurons that contain NFTs as compared with tangle-free neurons (Murray et al., 1992). 

The increased levels of calcium may even precede tangle formation as levels of CaMKII 

are increased in hippocampal neurons vulnerable to degeneration (McKee et al., 1990). 

Tau mutations, similar to those found in FTDP-17, lead to altered calcium channel 

function and increased calcium influx (Furukawa et al., 2003). Similarly, an increase in 

Aβ production has been observed as a result of calcium influx in vitro (Querfurth & 

Selkoe, 1994; Pierrot et al., 2004). In 3xTg-AD mice, an increased resting calcium 

concentration is observed (Lopez et al., 2008; Vale et al., 2010). These studies and others 

mentioned above implicate perturbed calcium homeostasis as a major pathogenic 

contributor in AD, with an emphasis on the role of calcium derived from intracellular 

stores such as the ER and mitochondria. 
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Mitochondrial dysfunction has been consistently observed in both aged and AD 

brains, possibly contributing to the neurological changes seen in the disorder (Leslie et 

al., 1985; Mancuso et al., 2006; Sheehan et al., 1997). Mitochondria are involved in 

maintaining calcium homeostasis and allow calcium entry through a variety of 

mechanisms (Beutner et al., 2005; Nicholls, 2005; Sparagna et al., 1995). Excessive 

calcium intake by mitochondria has been shown to increase reactive oxygen species 

(ROS), inhibit ATP synthesis, open the mitochondrial permeability transition pore 

(mPTP), and induce the release of pro-apoptotic factors (Brustovetsky et al., 2003; Jiang 

et al., 2001). Therefore, it is possible that increased intracellular calcium levels may lead 

to mitochondria-induced apoptosis which may account for some of the neuronal loss 

witnessed in AD. The ER, another important intracellular mediator of calcium levels, has 

also been implicated in AD pathological dysfunction. 

The ER is a crucial organelle for the synthesis, correct folding, and transport of 

proteins which are integral for normal cellular function (reviewed in Paschen & 

Mengesdorf, 2005). The ER is also central in cellular calcium storage and signaling, as 

high levels of calcium are necessary for proper protein synthesis and folding (Kuznetsov 

et al., 1992; Pozzo-Miller et al., 1997). Disruptions of normal ER functioning, termed ER 

stress, have been observed in AD and may contribute to the pathological disturbances 

(Katayama et al., 2004; LaFerla, 2002; Verkhratsky, 2005).  

Under conditions of ER stress, signaling pathways may be activated in an attempt 

to counteract the stress, the most notable one being the unfolded protein response (UPR). 

The main purpose of the UPR is to restore normal ER functioning by reducing the 

amount of proteins that need to be folded and processed, while also increasing the protein 
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folding and processing capacity in the ER (Kaufman, 1999). However, if the stress is 

prolonged or severe, as may be the case in AD, the ER may initiate cell death pathways 

(Unterberger et al., 2006). The finding that PS proteins are localized on the ER 

membrane (Kovacs et al., 1996), in addition to their role in the γ-secretase complex, 

provided a critical link between known AD genetic phenomena and intracellular calcium 

regulation. 

As mentioned above, PS mutations lead to increased production of neurotoxic Aβ 

and disruption of intracellular calcium homeostasis (Duff et al., 1996). This calcium 

disruption associated with PS mutations has been consistently demonstrated in several 

different neuronal preparations, both from familial AD tissue and animal models with PS 

mutations (Ito et al., 1994; Herms et al., 2003; Stutzmann et al., 2004). It is clear that PS 

proteins play a role in calcium regulation, however only recently has this role been 

elucidated. Studies have demonstrated that PS mutations lead to greatly exaggerated 

calcium liberation from ER stores after cellular stimulation (Ito et al., 1994; Leissring et 

al., 1999; Mattson et al., 2000; Stutzmann et al., 2004).  

Several mechanisms have been proposed to explain how PS mutations alter 

functioning in the ER. One proposed mechanism suggests that PS mutations alter PS leak 

channel activity, leading to increased calcium levels within the ER (Nelson et al., 2007; 

Tu et al., 2006). Another study posits that PS mutations may increase inositol 1,4,5-

triphosphate receptor (IP3-R) activity, leading to increased calcium release from the ER 

(Cheung et al., 2008).  

A third mechanism suggests that PS-mediated calcium dysregulation occurs 

through upregulation of the ryanodine receptor (RyR), an ER calcium channel 
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responsible for calcium-induced calcium release (CICR) from the ER (Smith et al., 2005; 

Stutzmann et al., 2006). Recently, Stutzmann and colleagues found dramatically 

increased RyR expression in 3xTg-AD mice at an age before any cognitive deficits or 

neuropathological hallmarks are exhibited (Chakroborty et al., 2009). Their findings 

imply that perturbed, yet functional, calcium signaling occurs before AD-like events such 

as plaques and tangles. Thus, it is possible altered calcium signaling may facilitate 

development of the pathologies seen in AD.  

The RyR is widely expressed throughout the mammalian brain (McPherson & 

Campbell, 1993). It is an important regulator of intracellular calcium homeostasis and a 

critical mediator of calcium release from the ER (Mignery et al., 1989; Shmigol et al., 

1995). The RyR is especially crucial for calcium-mediated presynaptic neurotransmitter 

release (Padua et al., 1996). AD brains display a significant impairment in RyR 

functioning which likely occurs early in AD pathogenesis and correlates well with the 

development of plaques and tangles (Kelliher et al., 1999).  

Early studies by Querfurth et al. (1997) demonstrated that administration of 

caffeine, a potent activator of RyRs, increased Aβ production in human embryonic 

kidney (HEK) 293 cells. Further, caffeine-induced calcium release is enhanced in 3xTg-

AD mice, likely due to the increased expression of RyRs observed in these mice (Smith 

et al., 2005). These findings imply a bidirectional or feed-forward relationship between 

RyR activation and prominent AD pathologies. It is unclear what role the RyR plays in 

AD pathogenesis or if abnormal function of this channel is sufficient to induce AD-like 

neurodegeneration and cognitive deficits. Studies using in vivo models to investigate 

RyR-mediated calcium dysregulation may be necessary to answer these questions. 
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Several additional mechanisms for maintaining calcium homeostasis in the cell exist, 

especially in the ER. 

ER calcium levels in the brain are largely regulated by SERCA (Miller et al., 

1991), which pumps calcium back into the ER to maintain equilibrium. Disruption of 

normal SERCA activity with thapsigargin, an irreversible SERCA inhibitor, leads to a 

sharp spike in cytosolic calcium levels using in vitro methods (Lytton et al., 1991). This 

SERCA inhibition prevents refilling of ER calcium pools which creates a sustained level 

of increased intracellular calcium.  

Various cell culture systems have taken advantage of thapsigargin to investigate 

AD-like calcium dysregulation. Seminal investigations by Buxbaum et al. (1994) 

demonstrated that thapsigargin can dose-dependently alter APP processing and levels of 

Aβ in Chinese hamster ovary (CHO) cells. Additional studies have shown that 

thapsigargin leads to increased Aβ levels in neuronal and non-neuronal preparations 

(Crestini et al., 2011; Querfurth et al., 1997).  

Intracellular calcium dysregulation via thapsigargin can also increase tau 

phosphorylation both in primary neuronal cultures (Ho et al., 2012) and following acute 

in vivo administration of the compound (Fu et al., 2010). Collectively, these studies 

suggest that thapsigargin-induced calcium dysregulation may produce cellular changes 

consistent with AD. Although calcium dysregulation is centrally implicated in AD, the 

calcium hypothesis has suffered from a lack of genetic evidence until recently.  

A novel calcium channel, named calcium homeostasis modulator 1 (CALHM1), 

was discovered with polymorphisms associated with an increased risk for AD (Dreses-

Werringloer et al., 2008). CALHM1 is a transmembrane protein found predominantly in 
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the ER and neuronal membranes and is unaffected by blockers of voltage-gated calcium 

channels. Interestingly, calcium influx through this channel decreases Aβ production and 

increases the soluble form of APP produced after cleavage by α-secretase. CALHM1 may 

also interfere with ER calcium handling and trigger ER stress (Gallego-Sandin et al., 

2011). The polymorphism found in CALHM1 has been shown to increase Aβ production, 

providing direct genetic evidence of a link between calcium dysregulation and AD 

pathology. These findings have been somewhat controversial however, and other 

populations have failed to exhibit an association between the CALHM1 polymorphism 

and AD (Beecham et al., 2009; Bertram et al., 2008; Minster et al., 2009; Sleegers et al., 

2009; Tan et al., 2011).  

 

Experiments and Hypotheses 

 Current animal models of AD almost exclusively rely on genetic mutations that 

only occur in familial, early-onset cases of the disease. They are valuable tools for 

investigating specific pathologies such as Aβ and tau dysfunction, but these models do 

not have great utility in studying the mechanisms underlying AD pathogenesis. Most 

investigations of AD examine prominent pathologies (i.e. plaques and tangles) in order to 

observe their effect on normal functioning. An alternative approach is to examine 

neurochemical changes upstream, pathologically and temporally, of these gross lesions.  

The amount of data generated investigating mechanistic approaches upstream of 

Aβ and tau is scarce. As mentioned above, calcium can directly influence the processing 

of APP and the phosphorylation state of tau. Alterations in the regulation of calcium may 

represent an upstream mechanism capable of explaining the aberrant Aβ and tau activity 
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observed in AD. This calcium dysregulation may then be exacerbated by the pathologies 

it produced in a neurodegenerative feed-forward loop. Because the effects of in vivo 

calcium dysregulation are unknown, it is unclear whether this hypothesis has validity.  

In the below experiments, we examined a novel approach to AD by inducing a chronic 

dysregulation of intracellular calcium. Current AD models typically produce robust 

impairments in hippocampal-dependent learning and memory using tasks such as the 

MWM and NOR testing, as well as pathological disturbances consistent with AD (Cleary 

et al., 2005; Hsiao et al., 1996). We hypothesized that our manipulations would produce 

behavioral and neurochemical changes similar to what is observed in other animal models 

of AD.  

This model was the first to investigate the effects of chronic perturbation of 

calcium homeostasis in an in vivo system. In order to disrupt calcium levels, we utilized 

ryanodine, a dose-dependent agonist of the RyR, and thapsigargin, the aforementioned 

SERCA inhibitor. The chronic, steady infusion of each of these compounds should 

produce a sustained elevation of cytosolic calcium. The effect of this prolonged calcium 

dysregulation in vivo is unknown; to the best of our knowledge, this series of studies was 

the first to examine it. Three experiments were performed, each of which is outlined 

below and summarized in Table 1.  

 

Experiment 1 

 The effects of chronic intracellular calcium dysregulation were initially examined 

in a pilot study using ryanodine or thapsigargin centrally administered to adult male rats. 

Ryanodine was administered at a dose of 250 nM while thapsigargin was administered at 
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10 µM. Alzet osmotic mini-pumps were implanted subcutaneously and connected to a 

cannula, which infused the compound directly into the lateral ventricles. The osmotic 

mini-pump releases solution at a rate of 0.15 µL/hour over the course of six weeks. 

Following four weeks of infusion, learning and memory was examined in NOR and the 

MWM in subsequent weeks before tissue was collected at the six week point. We 

examined the brains for any changes in protein levels that are consistent with those 

observed in AD. Tau phosphorylation, an early and consistent event in AD, was 

investigated at the Serine 396 epitope (pTau396 antibody). Total tau protein levels were 

also examined (Tau-5 antibody) to determine if chronic calcium dysregulation altered any 

aspect of tau expression.  

We also examined protein levels of oAβ following treatment with thapsigargin or 

ryanodine, as evidence suggests oAβ may best correlate with disease severity (McLean et 

al., 1999). Because amyloid deposits are rarely if ever found in rodent brains, likely due 

to the slight but significant differences in the sequence of Aβ versus humans (Otvos et al., 

1993), plaque load would not be a feasible measure to evaluate. These oligomers may 

represent an intermediate step between the easily cleared Aβ monomers and the insoluble 

fibrillar plaques observed in AD, making them ideally suited to investigate in a potential 

model of preclinical AD.   

Finally we investigated protein levels of calbindin-D28k (CB-D28k), a calcium 

buffering protein that also likely acts as a calcium sensor, directly affecting intracellular 

signaling pathways (Schwaller, 2010). If thapsigargin or ryanodine perturbed calcium 

regulation, this change should be reflected in CB-D28k levels. Prolonged increases in 

intracellular calcium concentration may lead to excessive calcium binding to calcium 
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buffers such as CB-D28k. In turn, this may alter the neuronal expression of CB-D28k, a 

change which should be reflected in its protein levels.  

 

Experiment 2 

In order to determine the optimal effective dose of each ligand to produce 

behavioral deficits and AD-like neurochemical changes, ryanodine and thapsigargin were 

each administered to adult male rats at two different doses: ryanodine at 1 or 5 µM and 

thapsigargin at 20 or 40 µM. All other methods and timelines were identical to 

experiment 1 with the exception that more subjects per group were utilized in experiment 

2.  

 

Experiment 3 

 Neuroinflammation has been increasingly implicated as an important aspect of 

AD progression and onset (Hensley, 2010). Recent genetic evidence even suggests that 

variants in the triggering receptor expressed on myeloid cells 2 (TREM2) gene may be a 

risk factor for AD (Guerreiro et al., 2013; Jonsson et al., 2013). TREM2 is a phagocytic 

immune receptor expressed on the cell surface of microglia and is essential for the 

clearance of neuronal debris (Singaraja, 2013). Coupled with many other recent studies 

investigating the role of inflammation in neurodegeneration, the investigation of 

neuroimmune interactions with AD pathology has become a hot topic. 

In a follow-up study to experiment 2, we investigated the interaction between 

chronic calcium dysregulation and inflammation. Because thapsigargin displayed more 

promise as a potential inducer of AD-like calcium dysregulation in our previous studies, 
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it was favored in experiment 3 over ryanodine. To induce the inflammatory response, 

lipopolysaccharide (LPS) was systemically administered to rats two weeks following 

surgical implantation of the Alzet osmotic pumps. LPS is derived from gram-negative 

bacteria and induces a strong immune response in the brain, including robust, long-lasting 

activation of microglia (Herber et al., 2006) and cytokines (Murray et al., 2011). Aged 

rats (10-12 months of age) were utilized to better reflect how closely our model 

mimicked prodromal AD, while the dosage of thapsigargin chronically administered was 

designed to be 25 µM in this experiment. Unfortunately, due to an error in filling the 

osmotic pumps, a combination of 25 µM and 40 µM thapsigargin was introduced into the 

pumps, a mistake not realized until after the experiment was finished or any corrections 

could be made. This error prevented a precise knowledge of what drug concentration was 

in the pumps and therefore all interpretations of the data from this experiment were made 

with extreme caution. Pumps administered the compounds for five weeks before 

behavioral testing commenced and tissue was collected seven weeks following surgery. 

All other methods and biochemical targets were consistent with experiments 1 and 2. 
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CHAPTER 3 

MATERIALS AND METHODS 

Subjects 

 For experiment 1, twenty-four male Sprague-Dawley (SD) rats (n=8) 

approximately three months of age at arrival were purchased from Charles River 

Laboratories; for experiment 2, sixty male SD rats (n=12) approximately three months of 

age at arrival were purchased from Charles River; for experiment 3, forty (n=10) male 

retired breeder rats approximately nine to eleven months of age at arrival were purchased 

from Taconic Farms. Rats were maintained in a temperature and humidity (22 ± 1°C) 

controlled facility, with food and water available ad libitum, on a 12:12 light/dark cycle, 

lights on at 7:00 a.m. In experiments 1 and 2, animals were housed in pairs until the time 

of the surgery, after which they were individually housed. In experiment 3, rats were 

individually housed upon arrival. All procedures were approved by the University of 

Nevada, Las Vegas Institutional Animal Care and Use Committee and were carried out in 

accordance with NIH guidelines for the appropriate care and use of animals.  

 

Surgery 

Surgeries were performed under aseptic conditions and a cocktail of ketamine (80 

mg/kg) and dexmedetomidine (0.2 mg/kg) anesthesia as previously described (Kinney et 

al., 2003; Sabbagh et al., 2012). A guide cannula was implanted into the right lateral 

ventricle at coordinates 0.7 mm posterior and 2 mm lateral to bregma and 3.5 mm ventral 

to the surface of the skull (Paxinos & Watson, 1986. Three indentations were made in the 
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skull to allow threading of jeweler’s screws, which were placed on the skull to anchor the 

cannula in place.  

A catheter attached to an Alzet osmotic pump was then attached to the cannula 

and the pump was subcutaneously implanted between the scapulae. Dental acrylic was 

applied to bind together the screws, the base of the cannula, and the skull. Sutures were 

then applied to close up the wound followed by the removal of the animal from the 

device. Once the rats were ambulatory they were administered an analgesic, 

buprenorphine (0.05 mg/kg), intraperitoneally and soon after returned to the colony room.  

Buprenorphine (0.05 mg/kg) was administered daily for two days following the surgery 

to reduce post-operative pain. Following surgery animals were individually housed and 

left undisturbed for a minimum of one week.  

 

Drug Treatments 

Ryanodine (Tocris Biosciences, Ellisville, MO) was dissolved in artificial 

cerebrospinal fluid (ACSF) to a final concentration of either 250 nM, 1 µM, or 5 µM. 

Thapsigargin (Sigma-Aldrich, St. Louis, MO) was diluted in ACSF to a final 

concentration of either 10, 20, 25 or 40 µM. LPS was dissolved in saline and injected 

intraperitoneally at a concentration of 1 mg/kg. Mini-pumps were filled with ryanodine, 

thapsigargin, or vehicle, depending on the experiment. Pumps infused the compounds 

into the ventricular fluid at a steady rate over the course of 6-7 weeks (0.15 µL/hour). 

Table 1 outlines the drug administrations for each experiment.  
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Table 1. 

Outline of the groups for each experiment with drug dosages.  

Experiment 1 (n=8) Experiment 2 (n=12) Experiment 3 (n=11) 

Vehicle 
Vehicle Vehicle 

Ryanodine (1 µM) LPS (1 mg/kg) 

Ryanodine (250 nM) 
Ryanodine (5 µM) 

Thapsigargin (25-40 µM) 
Thapsigargin (20 µM) 

Thapsigargin (10 µM) Thapsigargin (40 µM) Thapsigargin + LPS 

 

 

Behavioral Testing 
 One week following surgery once rats had sufficient time to recover, animals 

were briefly handled three times a week to ensure consistent data. Behavioral testing 

commenced an average of four weeks following the surgeries in experiments 1 and 2 and 

five weeks following surgery in experiment 3. Open field and NOR testing occurred 

during the first week of testing and the MWM began the following week. See figure 1 for 

a timeline of experiments. 
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Figure 1. Timeline of experimental manipulations and testing. 

 

Temperature and Weight Tracking 

 In experiment 3, animals were probed for rectal temperature before and after 

administration of LPS in order to verify illness. Temperatures were recorded in degrees 

Centigrade (°C). Weights were also tracked during this time frame to detect differences 

among groups. 

 

Open Field and Novel Object Recognition Testing 

The open field and NOR tasks were conducted as previously described (Bertaina-

Anglade et al., 2011; Ennaceur & Delacour, 1988). For open field testing, rats were 

placed in a large open chamber for five minutes in order to examine anxiety-like behavior 

and ambulatory activity. The tracking system (Smart, San Diego Instruments, San Diego, 

CA) recorded a track of the animal and data were analyzed for time spent in center, time 

spent in the perimeter, and locomotor activity.  

Surgery'

Week'1' Week'2' Week'3' Week'4' Week'5' Week'6'

Open'Field'and'
NOR'tes<ng'

MWM'

Experiments'1'&'2'

Surgery'

Week'1' Week'2' Week'3' Week'4' Week'5' Week'6'

Open'Field'and'
NOR'tes<ng'

MWM'

Experiment'3'

Week'7'

LPS'injec<on'



 

 40 

NOR testing began the following day. A pair of identical objects (object A) were 

placed in two counterbalanced corners of the chamber, and animals were allowed to 

freely explore the chamber for 5 minutes while time of object exploration was recorded. 

In experiment 1, a short-term memory (STM) test was performed 15 minutes later with a 

novel object (object B) paired with the original object. Conducting this STM test in 

experiments 2 and 3 was not feasible due to the number of subjects that needed to be run 

each day within the 12:12 hour light cycle. A long-term memory (LTM) test was 

performed 24 hours later in all experiments. In experiment 1, a novel object (object C) 

was paired with object B. In experiments 2 and 3, a novel object (object B) was paired 

with the original object (object A). Two distinct pairs of objects, previously examined to 

ensure no preference exists, were counterbalanced across sessions. Each session was 

recorded by video, and an analysis of total time spent investigating and preference for 

novel objects was performed by trained observers for both trials when applicable. Manual 

scoring was performed by multiple observers to ensure consistent data. An investigation 

was defined as contact with the object or sniffing of the object within 2 cm of the 

animal’s head. 

 

Morris Water Maze 

The Morris water task was conducted in a circular tank, 1.8 m in diameter and 76 

cm in height, made of white polyethylene 4.7 mm in thickness (San Diego Instruments). 

Tap water, 48 cm deep, was maintained at a temperature of 25°C and made opaque by the 

addition of white non-toxic paint (Fresco Tempera Paint, Rich Art Color Company, 

Northvale, NJ), and changed every other day. The escape platform, a square platform 10 
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cm in diameter made of clear plastic, was placed in the center of one of the four 

quadrants (target quadrant), 30 cm from the inside wall of the maze and 1.5 cm below the 

surface of the water. For visible platform training, a large black and white cover was 

attached to the top of the platform and protruded 2 cm above the water.  

 Trials were recorded and captured using the video tracking system (Smart) 

recorded from a Sony Handycam camera connected to a Cobalt Instruments computer. 

Data collected for each trial consisted of a track of the animal, which included the latency 

to locate the platform, speed of swimming, and thigmotaxis. On the probe trial the 

tracking system also recorded the amount of time subjects spent in each of the four 

quadrants of the maze, as well as the number of times the animal’s path crossed over the 

previous platform location and its analogous location in each quadrant. 

For the MWM procedure, subjects were taken individually from the colony room 

to a dedicated testing room containing the water maze, a computer desk, a table with the 

heating cage, and large geometric shapes positioned on each of the four walls, all serving 

as distal spatial cues. The rat was placed into the maze at one of three randomized 

locations, in the center of a quadrant that did not contain the escape platform (non-target 

quadrant). The rat was allowed to swim in the maze until it reached the hidden platform 

and placed its forepaws on the platform. If after 60 seconds the animal did not locate the 

hidden platform, it was guided to the platform by the experimenter. The rat was given 20 

seconds on the platform to orient to distal spatial cues and was then placed under a heat 

lamp for a total of 30 seconds between trials.  

Three additional trials were conducted in an identical fashion, for a total of four 

training trials per day. Following the fourth trial, the animal was dried and returned to its 
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home cage. The training trials for the hidden platform were conducted until control 

subjects reached a latency criterion of less than 15 seconds (4-trial group mean). A probe 

trial was conducted five hours later in experiment 1 or twenty-four hours later in 

experiments 2 and 3. For probe trials, the rat was placed in the maze in the same fashion 

as during training, but the escape platform was absent. The single probe trial was 60 

seconds in duration, after which the rat was dried and returned to its home cage.  

 The day after completion of the probe trial, a two-day visible platform training 

protocol was employed. A visible platform that extends above the surface of the water 

(intra-maze cue) was placed into the maze instead of the hidden platform. Four trials per 

day were conducted for each animal in the same fashion as during the hidden platform 

training, with the exception that the platform location was changed on each trial. Visible 

platform training was conducted in order to detect any deficits in visual ability and motor 

function. Animals were humanely euthanized the day following completion of the 

MWM.   

 

Tissue Collection 

 Animals were humanely euthanized via carbon dioxide asphyxiation and a 

secondary method of euthanasia (either decapitation or cutting of the diaphragm). 

Depending on the experiment, four to six rats from each group had their brains quickly 

removed and frontal cortex, hippocampus, and cerebellum were dissected out and flash 

frozen in dry ice. The dissected tissue was stored at -80° C until SDS/PAGE experiments.   

The remaining rats from each group were utilized to verify that cannulae 

terminated in the lateral ventricle. These rats were transcardially perfused with ice-cold 
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phosphate-buffered saline (PBS) through the vascular system via the left ventricle of the 

heart followed by perfusion of 4% paraformaldehyde (PFA) to fix the tissue. Brains were 

then removed and placed in 4% PFA at 4° C for 48 hours followed by transfer to a 30% 

sucrose solution in PBS. Brains remained in this solution until they were sectioned on a 

cryostat to examine cannulae placement. 

 

SDS/PAGE (Western Blots) 

 Tissue were homogenized in a non-denaturing lysis buffer consisting of 1X RIPA 

buffer (Cell Signaling; 20 mM Tris-HCL pH 7.5, 150 mM NaCL, 1 mM Na2 EDTA, 1 

mM EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM 

β-glycerophosphate, 1 mM Na3VO4, and 1 µg/ml leupeptin), 1 mM DTT, 1 mM 

phenylmethylsulfonyl fluoride (PMSF), 20 µg/ml aprotinin and 0.1% sodium dodecyl 

sulfate (SDS). Lysates were centrifuged at 15,000 x g for 15 minutes at 4°C, the 

supernatant was collected, and a protein assay to determine concentration was performed 

using the biciconinic acid method (BCA; Pierce, Rockford, IL). Samples (20 µg) were 

separated on 10 or 12% polyacryl gels, according to the method of Laemmli (1970). 

Proteins were then electro-transferred to nitropure 45 micron nitrocellulose membranes 

which were blocked in 5% milk in PBS and 0.1% sodium azide for two hours.  

 Individual membranes were then probed overnight at 4° C with one of the 

following primary antibodies diluted in 5% milk in PBS plus 0.2% Tween: rabbit 

polyclonal anti-pTau396 (1:2000 dilution; Santa Cruz Biotechnology, Santa Cruz, CA), 

mouse monoclonal anti-Tau-5 (1:5000; Millipore, Billerica,MA), rabbit polyclonal anti-

amyloid oligomer (1:1000; Millipore), mouse monoclonal anti-calbindin D-28k (1:1000; 
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Sigma-Aldrich), or rabbit anti-β-actin antibody as control (1:10000; Sigma-Aldrich). 

Detection of specific binding was performed by incubation with IRDye near-infrared 

secondary antibodies (1:20000 for IRDye 680 or 1:10000 for IRDye 800; LiCor 

Biosciences, Lincoln, NE) for one hour at room temperature. Following washes in PBS 

plus 0.1% Tween, membranes were imaged on an Odyssey CLx Infrared Imaging 

Sysytem (Li-Cor) and integrated intensity (I.I.) was obtained for each sample. Each 

sample was run in duplicate with β-actin or tau to normalize protein levels.   

 

Statistical Analyses 

 Group differences in rectal temperature or weight were analyzed by one-way 

between subjects analysis of variance (ANOVA) with either treatment or group as the 

factor. One-way between subjects ANOVA was also used to analyze locomotor activity 

and time spent in the perimeter following open field testing with group as the factor. The 

performance index (PI) of each group for NOR testing was analyzed with paired sample 

t-tests. MWM hidden and visible platform training data were analyzed by repeated 

measures ANOVA with days as the within subjects factor and group as the between 

subjects factor, while probe trial data were analyzed by one-way within subjects ANOVA 

with percent time in quadrant or annulus crossings as the factor. Western blot integrated 

intensity (I.I.) data were also analyzed by one-way between subjects ANOVA with group 

as the factor. Tukey post-hoc comparisons of treatment groups were performed following 

any significant ANOVA to determine points of significance (p<.05).  

Correlational analyses were performed to examine the relationship between water 

maze performance and protein level changes in the brain. Probe trial time in target 
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quadrant data for each subject were compared to the vehicle mean to yield a difference 

score. Protein levels were also equated in this fashion, with individual subject data being 

compared to vehicle to provide a difference score. Scatterplots were then generated to 

determine if any potential correlations existed between probe trial performance and 

protein levels for each experiment, as well as for each group within experiments. If 

possible correlations existed, linear regression analyses were performed to determine 

significance (p<.05).  
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CHAPTER 4 

RESULTS 

Experiment 1 

Open Field Testing 

 Experiment 1 was a pilot study to establish if altering calcium regulation would 

be a tractable approach to investigate AD. In the open filed test, animals were allowed 

five minutes to freely explore an open box, while percent time spent in the perimeter and 

locomotor activity were recorded. No significant differences were observed in the amount 

of time spent in the perimeter among groups (F2,21 = 2.050, p=.154; see figure 2A). 

Similarly, neither ryanodine nor thapsigargin produced a change in the total distance 

travelled versus vehicle (F2,21 = 1.732, p=.201; see figure 2B).  

 

 

Figure 2. Open field testing in experiment 1 (n=8). (A) No significant differences were 
found among groups in the percent time spent in the perimeter or (B) the total distance 
travelled. Data are expressed as the mean ± SEM 
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Novel Object Recognition Testing 

 The day following open field testing, two identical objects (object A) were placed 

into the open field chamber and animals were permitted five minutes to explore. There 

were no significant differences among groups in the amount of time spent investigating 

the identical objects (F2,21 = 1.733, p=.201; see figure 3A). In the STM test fifteen 

minutes later (figure 3B), thapsigargin-treated animals did not spend significantly more 

time with the novel object (object B) than chance levels (t7 = 1.639, p=.145). The groups 

administered vehicle or ryanodine did not display any deficits (t7 = 2.674, p<.05 and t7 = 

3.096, p<.05, respectively). Twenty-four hours later in the LTM test (figure 3C), neither 

the vehicle nor thapsigargin groups spent significantly more time with a novel object 

(object C) than chance levels (t7 = 0.125, p=.904 and t7 = 1.162, p=.283, respectively). 

Ryanodine-treated subjects did spend significantly more time with object C than chance 

(t7 = 5.333, p<.01), indicating the lack of a LTM impairment.  

 

Morris Water Maze Testing 

 Subjects underwent six days of MWM hidden platform training before criterion 

latency was reached in the vehicle group. For latency to reach the platform, there was a 

significant main effect of days (F5,425 = 16.955, p<.01), indicating subjects significantly 

improved across days. There was also a significant main effect of treatment for latency 

(F2,85 = 4.281, p<.05; Tukey post-hocs revealed that thapsigargin-treated rats had 

significantly longer latency versus vehicle, p<.05; figure 4A), indicating that thapsigargin 

impaired ability to locate the hidden platform. There were no differences in speed of 

swimming among groups during training (F2,85 = 0.795, p=.455; figure 4B), suggesting 
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neither ryanodine nor thapsigargin impaired swimming ability. There was a significant 

main effect on thigmotaxis, the amount of time spent in the perimeter of the maze, but no 

differences were observed among groups (F2,85 = 4.408, p<.05; Tukey post-hocs revealed 

no significant differences among groups; figure 4C), suggesting the drugs did not 

increase anxiety-like behavior.  

 

 

Figure 3. NOR testing in experiment 1 (n=8). (A) No significant differences among 
groups were found in the total time spent investigating the original objects (object A). (B) 
Thapsigargin produced a short-term memory deficit when presented with a novel object 
(object B) fifteen minutes following object A. (C) Only ryanodine-treated rats spent 
significantly more time with a novel object (object C) than chance levels twenty-four 
hours later. Data are expressed as the mean ± SEM. * indicates p<.05 in (B) and p<.01 in 
(C).  
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each quadrant were performed to evaluate if subjects spent significantly more time in the 

target quadrant than each of the other three quadrants (figure 5A). The vehicle group 

demonstrated a selective probe trial (F3,24 = 14.470, p<.01; Tukey post-hocs revealed 

subjects spent significantly more time in the target quadrant versus each of the other 

quadrants, p<.01) but ryanodine-administered rats did not show a preference for the target 

(F3,24 = 9.632, p<.01; Tukey post-hocs revealed that animals spent significantly more 

time in target versus the opposite and adjacent right quadrants (p<.01) but not the 

adjacent left quadrant, p=.144). Surprisingly, thapsigargin did not produce a probe trial 

impairment despite the deficits observed in hidden training (F3,28 = 5.056, p<.01; Tukey 

post-hocs revealed subjects spent significantly more time in the target quadrant versus 

each of the other quadrants, p<.05). 

 

 

Figure 4. MWM testing in experiment 1. (A) Thapsigargin produced a significant deficit 
in latency to locate the hidden platform. (B) No differences were observed in speed of 
swimming or (C) thigmotaxis among groups. Data are expressed as the mean ± SEM. * 
indicates p<.05. Vehicle: n=7; ryanodine: n=7; thapsigargin: n=8. 
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 Another approach to measure probe trial performance is to record annulus 

crossings, the number of times subjects crossed the target platform location and the 

analogous platform locations in the other three quadrants (see figure 5B). Vehicle-treated 

animals displayed a significant probe trial when annulus crossings were analyzed (F3,24 = 

6.571, p<.01; Tukey post-hocs revealed subjects crossed the target platform location 

significantly more times than the other three quadrants, p<.05). Both ryanodine and 

thapsigargin impaired probe trial annulus crossings (ryanodine: F3,24 = 3.119, p<.05; 

Tukey post-hocs showed that animals did not cross the target significantly more often 

than any other quadrant, p>.05; thapsigargin: F3,28 = 1.721, p=.185).  

 The day following the probe trial, visible platform training was conducted to 

assess general sensory and motor function. No significant differences were observed 

among groups in latency to locate the visible platform (F2,85 = 1.670, p=.194; figure 4A) 

or thigmotaxis (F2,85 = 2.295, p=.107; figure 4C). There were differences in speed of 

swimming (F2,85 = 4.157, p<.05; Tukey post-hocs revealed that thapsigargin produced a 

significant increase in swim speed during visible training versus vehicle, p<.05; figure 

4B), but it is unlikely this difference altered performance due to the lack of difference in 

latency. 
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Figure 5. MWM probe trial performance in experiment 1. (A) Ryanodine-treated animals 
did not spend significantly more time in the target quadrant than other quadrants. (B) 
Only the vehicle group displayed a significant probe trial as measured by annulus 
crossings. Data are expressed as the mean ± SEM. * indicates p<.05. Vehicle: n=7; 
ryanodine: n=7; thapsigargin: n=8. 
 
 
 

Protein Level Analyses 

 The most pathologically relevant proteins to AD are Aβ and tau, especially oAβ 

and ptau. To determine if inducing calcium dysregulation in the brain produced any 

change in AD-related proteins, we performed SDS/PAGE to examine levels of oAβ and 

ptau. When hippocampal tissue was examined for oAβ, it was discovered that 

thapsigargin produced a significant increase in the protein levels of the 18mer (18 Aβ 

monomers) versus vehicle (F2,22 = 4.303, p<.05; Tukey post-hocs revealed that 
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thapsigargin significantly increased 18mer levels compared to vehicle, p<.05; see figure 

6). 

 

 

Figure 6. Oligomeric Aβ protein levels in hippocampus from experiment 1 (n=4). (A) 
Representative image of a membrane probed for oAβ (green) and β-actin (red). Arrows 
indicate specific oligomers or β-actin. (B) Thapsigargin significantly increased 18mer 
levels in the hippocampus compared to vehicle. Data are expressed as the mean ± SEM. * 
indicates p<.05.  
 
 
 
 Although thapsigargin produced an overall increase in several species of oAβ, the 

small group size (n=4) and large variability prohibited any other significant findings. 

Table 2 summarizes the non-significant findings with the other oligomers from the 

hippocampus. 
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Table 2.  

Western blot data from hippocampus in experiment 1 of Aβ oligomers with β-actin as a 
loading control (n=4). Specific oligomers are listed with mean ± SEM levels for 
ryanodine and thapsigargin, valued as proportion of control, which was set at 1. F and p 
values are also listed for the one-way between groups ANOVAs performed to analyzed 
the protein level differences among groups. Degrees of freedom were 2,22 for each 
ANOVA. * indicates significant ANOVA (no between group differences). 
 

Oligomer Ryanodine Thapsigargin F value p value 

24mer 0.68 ± 0.17 0.58 ± 0.12 1.179 .326 

20mer 0.84 ± 0.17 2.08 ± 0.77 2.178 .137 

16mer 0.83 ± 0.43 1.51 ± 0.82 0.456 .639 

12mer 0.84 ± 0.06 1.33 ± 0.21 3.129 .064 

11mer 0.90 ± 0.14 1.13 ± 0.16 0.656 .529 

10mer 0.65 ± 0.09 1.35 ± 0.30 3.462 .049* 

9mer 0.64 ± 0.12 2.15 ± 0.80 2.887 .077 

8mer 1.20 ± 0.31 1.61 ± 0.37 1.157 .333 

 

 

 Exploratory analyses were performed to assess if correlations existed between 

individual subject MWM probe trial performance and levels of specific proteins. 

Although there were no significant correlations for any specific oligomer when all groups 

were examined, there was a strong negative correlation in the thapsigargin group between 

probe trial performance and 24mer levels, indicating increased oAβ levels correlated with 

poorer performance (F1,2 = 20.696, p<.05; see figure 7).  
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Figure 7. Correlations between probe trial performance and hippocampal oAβ levels 
from experiment 1 (n=4). The thapsigargin group’s probe trial time in target quadrant 
difference score significantly correlated with 24mer oAβ levels, p<.05. 
 
 
 

Tau phosphorylation was also investigated in the hippocampus following chronic 

calcium dysregulation, specifically at the Serine 396 phosphorylation site. Both 

ryanodine and thapsigargin produced a non-significant increase in tau phosphorylation 

compared to vehicle (F2,22 = 0.764, p=.478; see figure 8). Similar to many of the oAβ 

analyses, small group size (n=4) contributed to the lack of significant differences in this 

pilot study. No correlations were found between ptau levels and probe performance. 

 CB-D28k levels in the hippocampus were not significantly different among 

groups despite a large decrease following ryanodine or thapsigargin (F2,22 = 2.381, 

p=.119; see figure 9). No correlations were discovered between probe trial performance 

and CB-D28k levels in the hippocampus.  
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Figure 8. Ptau protein levels in hippocampus from experiment 1 (n=4). (A) 
Representative image of a membrane probed for tau phosphorylated at serine 396 (green) 
and tau (red). Arrow indicates molecular weight of one of the tau bands. (B) No 
significant differences were observed in ptau/tau levels despite modest increases 
following chronic ryanodine or thapsigargin treatment. Data are expressed as the mean ± 
SEM.  
 
 
 

In the cortex, no significant differences were found in any of the oAβ species 

among groups (see figure 10 for representative image and table 3 for a summary of the 

data). Despite the lack of between-group differences in oAβ levels, strong negative 

correlations were observed when individual groups were examined. In the ryanodine 

group, a significant correlation was observed for the 24mer, similar to the hippocampus 

for thapsigargin (F1,2 = 61.387, p<.05; see figure 11). Although non-significant, strong 

negative correlations were observed in the thapsigargin group as well (10mer: R = .837, 

p=.163; 9mer: R = .717, p=.283; 7mer: R = .813, p=.187).  
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Figure 9. CB-D28k protein levels in hippocampus from experiment 1 (n=4). (A) 
Representative image of a membrane probed for CB-D28k (red) and β-actin (green). (B) 
No significant differences were observed in CB-D28k levels despite robust decreases 
following chronic ryanodine or thapsigargin treatment. Data are expressed as the mean ± 
SEM.  
 
 
 

 

Figure 10. Oligomeric Aβ protein levels in cortex from experiment 1 (n=4). 
Representative image of a membrane probed for oAβ (green) and β-actin (red). Arrows 
indicate specific oligomers or β-actin.  
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Table 3.  

Western blot data from cortex in experiment 1 of Aβ oligomers with β-actin as a loading 
control (n=4). Specific oligomers are listed with mean ± SEM levels for ryanodine and 
thapsigargin, valued as proportion of control, which was set at 1. F and p values are also 
listed for the one-way between groups ANOVAs performed to analyzed the protein level 
differences among groups. Degrees of freedom were 2,22 for each ANOVA.  
 

Oligomer Ryanodine Thapsigargin F value p value 

24mer 0.97 ± 0.09 0.93 ± 0.10 0.098 .907 

20mer 1.06 ± 0.16 0.82 ± 0.16 0.432 .655 

16mer 2.08 ± 0.79 2.92 ± 1.23 1.430 .261 

12mer 1.08 ± 0.24 1.04 ± 0.14 0.044 .957 

11mer 0.89 ± 0.11 0.85 ± 0.17 0.393 .680 

10mer 0.81 ± 0.20 0.70 ± 0.15 0.970 .415 

9mer 1.04 ± 0.17 1.06 ± 0.15 0.031 .970 

8mer 1.17 ± 0.16 1.24 ± 0.22 0.549 .638 

7mer 0.95 ± 0.13 0.92 ± 0.11 0.166 .848 

 
 
 
 Cortical ptau levels were also examined and similar to the hippocampus, a non-

significant increase was observed following chronic ryanodine or thapsigargin 

administration (F2,22 = 0.754, p=.482; see figure 12). No robust correlations were found 

between probe trial performance and ptau levels in the cortex.  

 When membranes were probed for CB-D28k from the cortex, a similar but less 

pronounced trend to the hippocampal levels emerged with no significant differences 

among groups (F2,22 = 1.473, p=.251; see figure 13). No strong correlations were found 

between probe performance and CB-D28k levels.  
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Figure 11. Correlations between probe trial performance and cortical oAβ levels from 
experiment 1 (n=4). The ryanodine group’s probe trial time in target quadrant score 
significantly correlated with 24mer oAβ levels, p<.05. 
 
 
 

 

Figure 12. Ptau protein levels in cortex from experiment 1 (n=4). (A) Representative 
image of a membrane probed for tau phosphorylated at serine 396 (green) and tau (red). 
Arrow indicates molecular weight of one of the tau bands. (B) No significant differences 
were observed in ptau/tau levels following chronic ryanodine or thapsigargin treatment. 
Data are expressed as the mean ± SEM.  
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Figure 13. CB-D28k protein levels in cortex from experiment 1 (n=4). (A) 
Representative image of a membrane probed for CB-D28k (red) and β-actin (green). (B) 
No significant differences were observed in CB-D28k levels among groups. Data are 
expressed as the mean ± SEM.  

 

 

Experiment 2 

Open Field Testing 

 When multiple dosages of ryanodine and thapsigargin were compared, there were 

still no significant differences in the percent time subjects spent in the perimeter among 

groups (F4,52 = 0.416, p=.797; see figure 14A). There were no treatment-induced effects 

on locomotor activity as measured by total distance travelled (F4,52 = 1.138, p=.349; see 

figure 14B).  
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Figure 14. Open field testing in experiment 2. (A) No significant differences were found 
among groups in the percent time spent in the perimeter or (B) the total distance 
travelled. Data are expressed as the mean ± SEM. Vehicle: n=12; ryanodine at 1 µM: 
n=11; ryanodine at 5 µM: n=10; thapsigargin at 20 µM: n=12; thapsigargin at 40 µM: 
n=12. 
 
 
 

Novel Object Recognition Testing 

 On the first day of NOR testing, there were no significant differences in the 

amount of time spent with identical objects (object A) among groups (F4,52 = 1.278, 

p=.291; see figure 15A). Because of the large N, no STM test could be performed in 

experiment 2 within the 12 hour light cycle on day 1. On day 2, LTM was assessed with a 

novel object (object B) being paired with object A (see figure 15B). Only the vehicle 

group spent significantly more time with the novel object than chance (t11 = 2.256, 

p<.05). Ryanodine at 1 or 5 µM and thapsigargin at 20 or 40 µM produced a learning and 
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memory impairment (t10 = 0.357, p=728, t9 = 0.760, p=.467, t11 = 1.563, p=.146, and t11 = 

-0.233, p=0.820, respectively).  

 

 

Figure 15. NOR testing in experiment 2. (A) No significant differences among groups 
were found in the total time spent investigating the original objects (object A). (B) Only 
vehicle animals displayed a significant preference for the novel object. Both doses of 
ryanodine and thapsigargin produced a deficit, p>.05. Data are expressed as the mean ± 
SEM. * indicates p<.05. Vehicle: n=12; ryanodine at 1 µM: n=11; ryanodine at 5 µM: 
n=10; thapsigargin at 20 µM: n=12; thapsigargin at 40 µM: n=12. 
 
 
 

Morris Water Maze Testing 

 Vehicle-treated subjects only required four days to reach the criterion latency in 

experiment 2, for which there was a significant main effect of days (F3,633 = 139.686, 

p<.01). There was no significant main effect of treatment for latency (F4,211 = 0.368, 

p=.831; see figure 16A), speed of swimming (F4,210 = 1.033, p=.391; see figure 16B), or 

thigmotaxis (F4,210 = 1.370, p=.246; see figure 16C). 
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Figure 16. MWM testing in experiment 2. No differences were observed in latency to 
reach the hidden platform (A), speed of swimming (B), or thigmotaxis (C) among groups. 
Data are expressed as the mean ± SEM. Vehicle: n=11; ryanodine at 1 µM: n=10; 
ryanodine at 5 µM: n=10; thapsigargin at 20 µM: n=12; thapsigargin at 40 µM: n=11. 
 

 

 A probe trial was conducted twenty-four hours later to assess spatial learning and 

memory and no deficits were observed within any group in the percent time spent in the 

target quadrant versus non-target quadrants (vehicle: F3,40 = 19.697, p<.01; Tukey post-

hocs target vs. non-target, p<.01 for all; ryanodine at 1 µM: F3,36 = 9.698, p<.01; Tukey 

post-hocs target vs. adjacent left and adjacent right, p<.01, and target vs. opposite, p<.05; 

ryanodine at 5 µM: F3,36 = 14.783, p<.01; Tukey post-hocs target vs. non-target, p<.01 for 

all; thapsigargin at 20 µM: F3,44 = 5.654, p<.01; Tukey post-hocs target vs. adjacent left 
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and opposite, p<.01, and target vs. adjacent right, p<.05; thapsigargin at 40 µM: F3,40 = 

15.972, p<.01; Tukey post-hocs target vs. non-target, p<.01 for all; see figure 17A).  

 When annulus crossings were examined, deficits were observed in the 5 µM 

ryanodine group and the 20 µM thapsigargin group (ryanodine at 5 µM: F3,36 = 4.898, 

p<.01; Tukey post-hocs target vs. adjacent right and opposite, p<.05, but target vs. 

adjacent left, p=.198; thapsigargin at 20 µM: F3,44 = 4.272, p<.05; Tukey post-hocs target 

vs. adjacent left, p<.01, but target vs. opposite and adjacent right, p=.108; see figure 

17B). The other three groups each displayed significant annulus crossings during the 

probe trial (vehicle: F3,40 = 4.821, p<.01; Tukey post-hocs target vs. non-target, p<.05 for 

all; ryanodine at 1 µM: F3,36 = 11.242, p<.01; Tukey post-hocs target vs. non-target, 

p<.01 for all; thapsigargin at 40 µM: F3,40 = 12.293, p<.01; Tukey post-hocs target vs. 

non-target, p<.01 for all; see figure 17B).  

 Following the probe trial, animals underwent one day of visible training to 

investigate any sensory or motor dysfunction. Similar to hidden training, no significant 

differences were observed among groups in latency to find the visible platform (F4,207 = 

0.528, p=.716; figure 16A), speed of swimming (F4,207 = 1.031, p=.392; figure 16B), or 

thigmotaxis (F4,207 = 1.292, p=.274; figure 16C).  
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Figure 17. MWM probe trial performance in experiment 2. (A) All groups spent 
significantly more time in the target quadrant than the other three quadrants. (B) 
Ryanodine at 5 µM and thapsigargin at 20 µM each impaired probe trial performance as 
measured by annulus crossings. Data are expressed as the mean ± SEM. * indicates 
p<.05. Vehicle: n=11; ryanodine at 1 µM: n=10; ryanodine at 5 µM: n=10; thapsigargin at 
20 µM: n=12; thapsigargin at 40 µM: n=11. 
 
 

Protein Level Analyses 

 Hippocampal tissue from rats in experiment 2 was probed for oAβ or ptau, 

consistent with experiment 1. No significant differences were found in any of the oAβ 

species among groups following chronic ryanodine or thapsigargin, contrary to 

experiment 1 (see figure 18 and table 4 for representative images and comprehensive 

results, respectively). Correlational analyses were performed for all subjects as well as for 
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individual groups to investigate the relationship between probe trial performance and 

oAβ levels. The only strong correlations were discovered in the 40 µM thapsigargin 

group, suggesting poor probe trial performance in this group was related to increased oAβ 

levels, although none reached significance (10mer: R = .752, p=.143; 9mer: R = .724, 

p=.167; 8mer: R = .765, p=.132; 7mer: R = .652, p=.233). 

 

 

Figure 18. Oligomeric Aβ protein levels in hippocampus from experiment 2 (n=5). 
Representative image of a membrane probed for oAβ (green) and β-actin (red). Arrows 
indicate specific oligomers or β-actin. No significant differences were observed in any 
oAβ species among groups.  
 
 

Tau phosphorylation was also examined in the hippocampus in experiment 2. 

Although the lower dosage of ryanodine produced an increase in ptau, no significant 

differences were observed among groups (F4,48 = 1.809, p=.142; see figure 19). 

Interestingly, a strong negative correlation was observed in the 40 µM thapsigargin group 

between probe performance and ptau levels, but it did not reach significance (R = .704, 

p=.185).  

Similar to the other proteins, no significant differences were observed among 
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not reveal any significant differences among groups, p>.05; see figure 20). Based on the 

lack of MWM deficits and the minimal differences observed in protein levels, no further 

assays were conducted in experiment 2 to conserve resources. 

 

Table 4.  

Western blot data from experiment 2 of Aβ oligomers with β-actin as a loading control 
(n=5). Specific oligomers are listed with mean ± SEM levels for each group, valued as 
proportion of control, which was set at 1. F and p values are also listed for the one-way 
between groups ANOVAs performed to analyzed the protein level differences among 
groups. Degrees of freedom were 4,47 for each ANOVA. 
 
Oligomer Ryan 1µM Ryan 5µM Thap 20µM Thap 40µM F value p value 

24mer 1.08 ± 0.09 0.99 ± 0.08 1.04 ± 0.10 1.00 ± 0.05 0.265 .899 

20mer 1.42 ± 0.17 1.13 ± 0.09 1.43 ± 0.23 1.24 ± 0.17 1.583 .194 

16mer 1.17 ± 0.21 0.89 ± 0.11 1.01 ± 0.15 1.08 ± 0.12 0.348 .844 

12mer 1.33 ± 0.30 1.04 ± 0.21 1.27 ± 0.31 1.23 ± 0.34 0.328 .858 

10mer 1.08 ± 0.13 1.01 ± 0.16 1.07 ± 0.12 1.06 ± 0.10 0.108 .979 

9mer 1.09 ± 0.21 0.78 ± 0.10 1.22 ± 0.29 1.22 ± 0.23 0.877 .485 

8mer 1.07 ± 0.16 1.07 ± 0.10 1.21 ± 0.14 1.02 ± 0.12 0.511 .728 

7mer 1.28 ± 0.19 1.05 ± 0.20 1.06 ± 0.19 1.57 ± 0.15 1.880 .130 

 

 

Experiment 3 

Effects of LPS on Temperature and Weight 

 Temperatures and weights were recorded immediately prior to and for three days 

after the one-time administration of LPS. These measures were analyzed by group and by 

LPS versus saline treatments. At baseline, no significant differences were observed in 
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temperature by treatment (LPS vs. saline; F1,35 = 0.758, p=.390) or by group (vehicle, 

LPS, thapsigargin, and Thap+LPS; F3,33 = 0.245, p=.865). Temperature was then 

recorded at 24, 48, and 72 hours post-injection to assess whether LPS produced fever. As 

figure 21A indicates, repeated measures ANOVA revealed that LPS produced a robust 

increase in temperature across days (F2,70 = 7.348, p<.01) and versus saline (F1,35 = 

24.675, p<.01). When examined by group, the data were similar across days (F2,70 = 

7.172, p<.01) and by group (F3,33 = 8.542, p<.05; Tukey post-hocs revealed that both the 

LPS and Thap+LPS groups displayed significantly increased temperatures compared to 

vehicle, p<.01 for LPS and p<.05 for Thap+LPS; see figure 21B).   

 

 

Figure 19. Ptau protein levels in hippocampus from experiment 2 (n=5). (A) 
Representative image of a membrane probed for tau phosphorylated at serine 396 (green) 
and tau (red). Yellow indicates overlapping molecular weights. Arrow indicates 
molecular weight of one of the tau bands. (B) No significant differences were observed in 
ptau/tau levels. Data are expressed as the mean ± SEM. 
 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1 

pT
au

/T
au

 (P
ro

po
rt

io
n 

to
 C

on
tr

ol
) 

A"

B"

62#kDa#

Vehicle# Ry#1μM# Ry#5μM# Thap#20μM# Thap#40μM#

Vehicle# Ry#1μM# Ry#5μM# Thap#20μM# Thap#40μM#



 

 68 

At baseline, no differences in weight were found by treatment (F1,35 = 1.145, 

p=.292) or by group (F3,33 = 1.319, p=.285). However, when weights were examined at 

the same time points as temperature, LPS produced a significant decrease in weight 

across days (F2,70 = 9.440, p<.01) and versus saline (F1,35 = 6.567, p<.05; see figure 22A). 

When analyzed by group, data were similar across days (F2,70 = 9.001, p<.01) but no 

differences were observed among groups (F3,33 = 2.976, p<.05; Tukey post-hocs did not 

show any differences among groups; figure 22B). 

These data demonstrated that LPS did induce an acute immune response as 

indicated by the significant increase in body temperature and significant reduction in 

weight. These effects were temporary as both temperature and weight levels were no 

longer significant versus controls 72 hours following injection.  

 

 

Figure 20. CB-D28k protein levels in hippocampus from experiment 2 (n=5). (A) 
Representative image of a membrane probed for CB-D28k (red) and β-actin (green). (B) 
No significant differences were observed in CB-D28k levels among groups. Data are 
expressed as the mean ± SEM.  
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Figure 21. Temperature data at baseline and at multiple time points following LPS or 
saline injections. (A) LPS injection significantly increased body temperature regardless 
of group when compared to animals injected with saline, p<.01. (B) When compared to 
vehicle, the LPS alone and Thap+LPS groups displayed significantly elevated 
temperatures following LPS injection, p<.01 for LPS and p<.05 for Thap+LPS. Data are 
expressed as the mean ± standard error of the mean (SEM). Vehicle: n=10; LPS: n=9; 
thapsigargin: n=9; thap+LPS: n=9. 
 

 

  Open Field Testing 

Neither LPS nor the combination of thapsigargin and LPS altered open field 

performance from experiments 1 and 2. No differences were observed in the percent time 

spent in the perimeter among groups (F3,32 = 0.278, p=.841; see figure 23A) nor in the 

total distance travelled (F3,32 = 1.216, p=.320; see figure 23B). Collectively, these studies 

suggest that none of the individual ligands administered, nor the combination of 
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thapsigargin and LPS, produced anxiogenic effects or impaired gross locomotor abilities. 

Therefore, any deficits observed in NOR or MWM tasks can be attributed to 

hippocampally-mediated learning and memory impairments. 

 

 

Figure 22. Analysis of weights at baseline and at multiple time points following LPS or 
saline injections. (A) LPS injection significantly decreased body weight regardless of 
group when compared to animals injected with saline, p<.05. (B) No significant 
differences were observed in weight across days when all groups were compared. Data 
are expressed as the mean ± SEM. Vehicle: n=10; LPS: n=9; thapsigargin: n=9; 
thap+LPS: n=9. 
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Figure 23. Open field testing in experiment 3. (A) No significant differences were found 
among groups in the percent time spent in the perimeter or (B) the total distance 
travelled. Data are expressed as the mean ± SEM. Vehicle: n=10; LPS: n=9; thapsigargin: 
n=8; thap+LPS: n=9. 
 

 

Novel Object Recognition Testing 

 Similar to experiments 1 and 2, no differences in object exploration were 

observed on day 1 among groups (F3,32 = 0.559, p=.646; see figure 24A). In the LTM test 

on day 2 when a novel object was presented (see figure 24B), none of the groups 

exhibited a significant preference for the novel object (vehicle: t9 = -0.815, p=.436; LPS: 

t8 = 1.084, p=.310; thapsigargin: t7 = 2.036, p=.081; thap+LPS: t8 = 0.232, p=.822). The 

lack of any group displaying preference for the novel object may be due to the advanced 

age of the rats.  
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Figure 24. NOR testing in experiment 3. (A) No significant differences among groups 
were found in the total time spent investigating the original objects. (B) None of the 
groups displayed a significant preference for the novel object compared to chance levels, 
p>.05. Data are expressed as the mean ± SEM. Vehicle: n=10; LPS: n=9; thapsigargin: 
n=8; thap+LPS: n=9. 
 

 

Morris Water Maze Testing 

 In experiment 3, vehicle-treated animals needed six days to achieve the criterion 

latency. There was a significant main effect of days (F5,700 = 83.882, p<.01) but no 

significant main effect of treatment (F3,140 = 0.760, p=.518; see figure 25A). Similarly, no 

differences among groups were observed in speed of swimming (F3,139 = 0.290, p=.832; 

see figure 25B) or thigmotaxis (F3,139 = 0.305, p=.822; see figure 25C).  
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Figure 25. MWM testing in experiment 3. No differences were observed in latency to 
reach the hidden platform (A), speed of swimming (B), or thigmotaxis (C) among groups. 
Data are expressed as the mean ± SEM. Vehicle: n=10; LPS: n=9; thapsigargin: n=8; 
thap+LPS: n=9. 
 
 

 A probe trial was conducted twenty-four hours following achievement of latency 
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p<.05, target vs. opposite, p<.01; thapsigargin: F3,28 = 11.113, p<.01; Tukey post-hocs 

target p<.01 vs. all other quadrants; see figure 26A).  

 Annulus crossings data revealed that the LPS and thapsigargin groups each 

displayed deficits (LPS: F3,32 = 2.629, p=.067; thapsigargin: F3,28 = 5.194, p<.01; Tukey 

post-hocs target vs. adjacent left, p=.059, target vs. opposite, p<.05, and target vs. 

adjacent right, p<.01; see figure 26B). Vehicle-treated rats crossed the previous platform 

location significantly more often than non-target quadrants (F3,36 = 11.760, p<.01; Tukey 

post-hocs target p<.01 vs. all other quadrants; figure 26B). Despite not displaying a 

selective search based on percent time in quadrant, the group administered thapsigargin 

and LPS did show significance based on annulus crossings (F3,32 = 7.435, p<.01; Tukey 

post-hocs target vs. adjacent left and right, p<.05, target vs. opposite, p<.01; figure 26B).  

 Following the probe trial, two days of visible platform training were performed to 

assess visuomotor abilities. Similar to hidden platform training, no significant differences 

were found among groups in latency (F3,140 = 0.456, p=713; see figure 25A), speed of 

swimming (F3,140 = 2.835, p<.05; Tukey post-hocs showed that p>.05 for each group vs. 

vehicle; see figure 25B), or thigmotaxis (F3,140 = 0.423, p=.737; see figure 25C).  
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Figure 26. MWM probe trial performance in experiment 3. (A) The combination of 
thapsigargin and LPS produced a deficit in probe trial percent time in target versus non-
target quadrants. (B) LPS and thapsigargin each impaired probe trial performance as 
measured by annulus crossings. Data are expressed as the mean ± SEM. * indicates 
p<.05. Vehicle: n=10; LPS: n=9; thapsigargin: n=8; thap+LPS: n=9. 
 
 

Protein Level Analyses 

Hippocampal tissue from rats in experiment 3 was probed for oAβ, similar to the 

previous studies. Following the administration of LPS and/or thapsigargin, there was a 

significant reduction in the 18mer in the thap+LPS group (F3,47 = 3.879, p<.05; Tukey 

post-hocs revealed that the combination of thapsigargin and LPS significantly reduced 

18mer Aβ levels compared to vehicle, p<.05; see figure 27). No significant differences 

were observed in any other oligomeric species; these data are summarized in table 5. 
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Figure 27. Oligomeric Aβ protein levels in hippocampus from experiment 3 (n=6). (A) 
Representative image of a membrane probed for oAβ (green) and β-actin (red). Arrows 
indicate specific oligomers or β-actin. (B) Thapsigargin plus LPS significantly decreased 
18mer levels in the hippocampus compared to vehicle. Data are expressed as the mean ± 
SEM. * indicates p<.05. 
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correlations were observed in the thap+LPS group in 11mer levels (F1,4 = 16.182, p<.05; 

see figure 29A) and 7mer levels (F1,4 = 8,526, p<.05; see figure 29B). Strong, but non-

significant negative correlations were also found in this group (10mer: R = .737, p=.094; 

9mer: R = .770, p=.073; 8mer: R = .749, p=.086) and the thapsigargin group (16mer: R = 

.648, p=.164; 8mer: R = .644; p=.168).  

 

Table 5.  

Western blot data from hippocampus in experiment 3 of Aβ oligomers with β-actin as a 
loading control (n=6). Specific oligomers are listed with mean ± SEM levels for each 
group, valued as proportion of control, which was set at 1. F and p values are also listed 
for the one-way between groups ANOVAs performed to analyzed the protein level 
differences among groups. Degrees of freedom were 3,47 for each ANOVA. 
 

Oligomer LPS Thapsigargin Thap+LPS F value p value 

24mer 0.90 ± 0.08 0.78 ± 0.09 0.87 ± 0.10 1.111 .354 

20mer 0.99 ± 0.12 0.87 ± 0.14 0.93 ± 0.10 0.340 .796 

19mer 1.82 ± 0.67 1.14 ± 0.24 1.39 ± 0.58 0.547 .652 

16mer 1.11 ± 0.20 1.01 ± 0.18 1.14 ± 0.18 0.162 .921 

12mer 1.19 ± 0.16 1.12 ± 0.23 0.71 ± 0.08 2.227 .098 

11mer 0.89 ± 0.05 0.80 ± 0.08 0.70 ± 0.10 2.668 .058 

10mer 0.93 ± 0.11 0.88 ± 0.10 0.94 ± 0.18 0.161 .922 

9mer 0.93 ± 0.10 0.81 ± 0.18 0.67 ± 0.11 1.207 .318 

8mer 0.90 ± 0.10 0.91 ± 0.09 0.92 ± 0.09 0.280 .839 

7mer 0.96 ± 0.09 0.89 ± 0.09 0.91 ± 0.08 0.366 .778 
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Figure 28. Correlations between probe trial performance and hippocampal oAβ levels 
from experiment 3 (n=6). When all subjects were examined, significant correlations were 
found between probe trial time in target quadrant and 10mer oAβ levels (A) and 8mer 
levels (B), p<.05. 
 
 

When ptau levels were examined in the hippocampus, no significant differences 

were found among groups despite a modest increase in the thap+LPS group (F3,44 = 

1.144, p=.342; see figure 30). No correlations were found between probe trial 

performance and levels of ptau in the hippocampus.  

To confirm any differences in ptau were not due altered levels of endogenous tau 

proteins, levels of tau were also examined in the hippocampus. As expected, no 

differences were observed among the groups in tau levels (F3,44 = 0.297, p=.827; see 

figure 31). 
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Figure 29. Correlations between thap+LPS group probe trial performance and 
hippocampal oAβ levels from experiment 3 (n=6). In the thap+LPS group, significant 
correlations were found between probe trial time in target quadrant and 11mer oAβ levels 
(A) and 7mer levels (B), p<.05. 
 
 

 

Figure 30. Ptau protein levels in hippocampus from experiment 3 (n=6). (A) 
Representative image of a membrane probed for tau phosphorylated at serine 396 (green) 
and β-actin (red). (B) No significant differences were observed in ptau levels among 
groups. Data are expressed as the mean ± SEM. 
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Figure 31. Tau protein levels in hippocampus from experiment 3 (n=6). (A) 
Representative image of a membrane probed for tau (red) and β-actin (green). Arrow 
indicates molecular weight of one of the tau bands. (B) No significant differences were 
observed in tau levels among groups. Data are expressed as the mean ± SEM. 
 

 

Although no significant differences were observed among groups in CB-D28k 

levels in the hippocampus (F3,44 = 2.452, p=.076; see figure 32), there was likely a 

meaningful reduction in the LPS and thapsigargin groups. No correlations were found in 

the hippocampus between probe performance and CB-D28k levels. 

When protein levels of oAβ were examined in the cortex, a significant increase 

was observed in 8mer levels following chronic thapsigargin treatment (F3,44 = 4.506, 

p<.01; Tukey post-hocs revealed that thapsigargin produced a significant increase versus 

vehicle, p<.01; see figure 33). No differences were found in the other oligomeric species; 

these data are summarized in table 6. No strong correlations were discovered between 

probe trial performance and oAβ protein levels in the cortex.  
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Figure 32. CB-D28k protein levels in hippocampus from experiment 3 (n=6). (A) 
Representative image of a membrane probed for CB-D28k (red) and β-actin (green). (B) 
No significant differences were observed in CB-D28k levels among groups. Data are 
expressed as the mean ± SEM.  
 
 
 

 

Figure 33. Oligomeric Aβ protein levels in cortex from experiment 3 (n=6). (A) 
Representative image of a membrane probed for oAβ (green) and β-actin (red). Arrows 
indicate specific oligomers or β-actin. (B) Thapsigargin significantly increased 8mer 
levels in the cortex compared to vehicle. Data are expressed as the mean ± SEM. * 
indicates p<.01. 
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Table 6.  

Western blot data from cortex in experiment 3 of Aβ oligomers with β-actin as a loading 
control (n=6). Specific oligomers are listed with mean ± SEM levels for each group, 
valued as proportion of control, which was set at 1. F and p values are also listed for the 
one-way between groups ANOVAs performed to analyzed the protein level differences 
among groups. Degrees of freedom were 3,44 for each ANOVA. 
 

Oligomer LPS Thapsigargin Thap+LPS F value p value 

24mer 1.18 ± 0.13 0.95 ± 0.09 1.06 ± 0.09 1.139 .344 

20mer 1.08 ± 0.08 0.82 ± 0.09 1.00 ± 0.14 0.762 .521 

18mer 1.49 ± 0.25 1.26 ± 0.25 1.31 ± 0.32 0.701 .557 

12mer 1.37 ± 0.33 1.20 ± 0.22 0.99 ± 0.17 0.711 .551 

11mer 1.15 ± 0.09 0.96 ± 0.05 0.94 ± 0.06 2.156 .107 

7mer 1.03 ± 0.11 0.86 ± 0.03 0.92 ± 0.06 1.393 .258 

 

 

Tau phosphorylation was investigated in the cortex as well and a robust increase 

was observed in the thap+LPS group, although it failed to reach significance, p=.057 

(F3,44 = 5.527, p<.01; Tukey post-hocs did not reveal any significant differences among 

groups; see figure 34). A moderate negative correlation was found in the thap+LPS group 

between probe trial performance and ptau levels (R = .596) but it was not significant 

(p=.212). 

CB-D28k levels in the cortex did not significantly differ among groups but there 

was a slight reduction in the thapsigargin group (F3,44 = 0.547, p=.653; see figure 35). 

There was however a significant positive correlation in the thap+LPS group between CB-

D28k levels and probe trial performance (F1,4 = 27.021, p<.01; see figure 36).  
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Figure 34. Ptau protein levels in cortex from experiment 3 (n=6). (A) Representative 
image of a membrane probed for tau phosphorylated at serine 396 (green) and β-actin 
(red). (B) No significant differences were observed in ptau levels among groups despite a 
large increase in the thap+LPS group (p=.057). Data are expressed as the mean ± SEM. 
 
 
 

 
 

Figure 35. CB-D28k protein levels in cortex from experiment 3 (n=6). (A) 
Representative image of a membrane probed for CB-D28k (red) and β-actin (green). (B) 
No significant differences were observed in CB-D28k levels among groups. Data are 
expressed as the mean ± SEM.  
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Figure 36. Correlations between thap+LPS group probe trial performance and cortical 
CB-D28k levels from experiment 3 (n=6). In the thap+LPS group, a significant 
correlation was found between probe trial time in target quadrant and CB-D28k levels in 
the cortex, p<.01. 
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CHAPTER 5 

DISCUSSION 

 The above series of experiments was designed to evaluate the hypothesis that 

disrupting intracellular calcium homeostasis would be sufficient to elicit behavioral and 

neurological manifestations of AD. In order to investigate this hypothesis, compounds 

that perturb ER calcium regulation were chronically administered to rats, which were 

tested in multiple learning and memory paradigms. Brain neurochemistry was then 

examined in the hippocampus and cortex for protein markers consistently altered in AD. 

The data from these studies suggest calcium dysregulation disrupts aspects of 

hippocampal-dependent learning and memory, while producing variable changes in AD-

related proteins in the brain. 

 

Experiment 1 

 A pilot study was initially conducted with a relatively small group size (n=8) to 

assess if chronically altering intracellular calcium regulation produced AD-like changes 

in behavior or neurochemistry. The open field, NOR, and MWM tasks were conducted 

four weeks following implantation of osmotic min-pumps, which steadily released either 

vehicle, ryanodine (250 nM) or thapsigargin (10 µM) into the right lateral ventricle. Open 

field data indicated that neither ryanodine nor thapsigargin produced anxiogenic effects 

or affected locomotor activity. Learning and memory was first examined in NOR testing, 

which included a STM and LTM component. Deficits were observed in the thapsigargin 

group in both STM and LTM for novel object preference, indicating a learning 

impairment in this group. No deficits were found in the ryanodine group. Surprisingly, 
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vehicle animals also displayed an impairment in the LTM test, data which could reflect 

the inconsistency sometimes observed in rodent novelty-seeking behavior.  

 Thapsigargin impaired MWM acquisition, as measured by latency to the hidden 

platform, and probe trial annulus crossings. These data reveal a robust cognitive deficit in 

this group, which is consistent with the deficits observed in NOR. Ryanodine also 

produced a probe trial impairment, both in percent time spent in the target quadrant and 

annulus crossings, indicating a spatial learning and memory deficit. Overall, these data 

suggest that altering ER calcium regulation with ryanodine or thapsigargin is sufficient to 

disrupt hippocampal-dependent learning and memory, similar to the deficits observed in 

AD patients.  

 Following the completion of behavioral testing, brains were dissected out and 

specific brain regions were homogenized to examine protein levels. Levels of oAβ, a 

pathogenic contributor in AD (Lesné et al., 2006; Walsh et al., 2002), were significantly 

increased in the hippocampus following thapsigargin treatment at the 72 kDa band, which 

likely corresponds to an 18mer. Ryanodine produced a similar elevation in 18mer levels 

but it did not reach significance. Although thapsigargin increased levels of several other 

oligomers in the hippocampus, the small group size and large variability may have 

influenced the lack of significant results. Interestingly, a significant negative correlation 

was observed in the thapsigargin group between probe trial performance and 24mer oAβ 

levels. This correlation indicates that larger levels of 24mers were related to poorer probe 

performance, findings that reflect the correlations observed in AD mouse models (Lesné 

et al., 2006) and AD patients (Santos et al., 2012) between cognitive deficits and oAβ. In 

the cortex, no significant differences were observed in any of the oAβs suggesting the 
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thapsigargin-induced increase is region-specific. There was however a significant 

negative correlation in the ryanodine group between probe performance and 24mer 

levels, similar to that observed in the hippocampus in the thapsigargin group. 

Collectively, these data suggest that perturbing calcium regulation does alter levels of 

oAβ, but not in a manner entirely consistent with AD or mutant mouse models of the 

disease. 

  When the degree of tau phosphorylated at Serine 396 was examined in the 

hippocampus and cortex, no significant changes were observed following chronic 

ryanodine or thapsigargin treatment. Although small increases were found in each brain 

region, these did not mirror the large tau phosphorylation seen in AD or other studies that 

altered calcium regulation (Fu et al., 2010).  

 CB-D28k levels were not significantly changed following chronic ryanodine or 

thapsigargin infusion, despite the large reduction observed in the ryanodine group in the 

hippocampus (~60% reduction). Although the lack of significance limits the 

interpretations that can be made, it is interesting to note that CB-D28k levels are 

consistently reduced in AD brains (Iacopino & Christakos, 1990; Riascos et al., 2011) 

and mouse models of AD (Palop et al., 2003). It is difficult to extrapolate the findings 

from the current study to AD, but the alterations observed in CB-D28k levels are likely 

physiologically relevant despite their lack of significance. Furthermore, these findings 

suggest that the compounds administered did have a direct effect on calcium signaling as 

evidenced by the changes in CB-D28k, an important calcium-binding protein.  
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Experiment 2 

Because the results of the pilot study (experiment 1) indicated this approach may 

have promise to investigate mechanisms of AD, experiment 2 was designed to examine 

the effects of calcium dysregulation on a larger scale. The group size was increased to an 

n of 12 and dosages of ryanodine or thapsigargin were increased in order to produce more 

robust and uniform effects. An identical timeline as experiment 1 was performed for 

surgery, behavioral studies, and tissue collection and all methods conducted were 

identical to experiment 1. Open field data were similar to experiment 1, with no 

differences among groups, indicating that increasing the dose of these ligands did not 

alter locomotion or produce an anxiety phenotype. When NOR testing was performed, no 

differences were observed among groups in total time spent exploring the identical 

objects on Day 1, suggesting none of the drugs induced any neophobic effects. On Day 2, 

only vehicle subjects displayed a significant preference for the novel object compared to 

chance levels, indicating each of the treatments administered impaired NOR learning.  

MWM testing commenced the following week and no differences were observed 

among groups in the acquisition phase of the task. Surprisingly, none of the groups 

displayed impairment on the probe trial as measured by percent time in quadrant. Subtle 

deficits were observed following chronic ryanodine at 5 µM or thapsigargin at 20 µM in 

the number of annulus crossings; however, these differences were neither as robust as 

anticipated nor reflective of AD-like impairments.  

To assess if the drugs altered protein levels of AD-related markers, SDS/PAGE 

was initially performed on hippocampal samples. Interestingly, no significant differences 

were found in any of the targets examined (oAβ, ptau, or CB-D28k) among groups, 
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suggesting that the increased dosages did not enlarge nor even replicate the changes in 

experiment 1. Despite the lack of any significant differences among groups, CB-D28k 

levels displayed significant positive correlations with several oAβ species, including 

7mers (R = .546, p<.05), 9mers (R = .516, p<.05), 10mers (R = .514, p<.05), and 16mers 

(R = .784, p<.01) (data not shown). It is unclear why there would be a positive 

relationship between CB-D28k and oAβ, as most studies imply a neuroprotective role for 

CB-D28k (Iacopino et al., 1992). It is also plausible that the correlation does not 

represent a direct causal relationship between the expression of these proteins. 

The possibility exists that increasing the dose of each ligand forced neurons to 

compensate for the alterations in either RyR or SERCA function within the ER. For 

example, changes in the physiological functioning of the ER can produce ER stress as 

mentioned above (Unterberger et al., 2006). In an attempt to counteract the stress, cells 

may initiate the UPR to increase protein folding capacity and restore functioning to a 

homeostatic level (Kaufman, 1999).  

Alternatively, if the increased dosages of these drugs resulted in cytotoxic levels 

of intracellular calcium, direct changes in calcium-related physiology may have occurred, 

such as an upregulation of SERCA pumps, downregulation of RYRs, or a change in any 

of the other numerous proteins that regulate calcium levels (Wernyj et al., 1999). Future 

studies may be able to illuminate the mechanisms responsible for the lack of cognitive 

deficits and protein-level differences in experiment 2. However, because no robust 

behavioral or neurological changes were found in this experiment, no further assays were 

conducted in order to conserve resources.  
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Experiment 3 

Because increasing the drug dose and group size in experiment 2 did not produce 

the AD phenotype desired, an alternative approach was employed in an attempt to more 

accurately model what may be occurring in AD. Specifically, we administered LPS 

coupled with chronic calcium dysregulation via thapsigargin to evaluate if inducing an 

acute neuroimmune response would be sufficient to produce AD-like behavior and 

pathology. Additionally, we employed aged rats (10-12 months old) because they likely 

have less capacity to compensate for any neurotoxic insults and more closely match an at-

risk AD population. As mentioned above (see page 35), because it could not be 

determined exactly what concentration of thapsigargin was in the osmotic pumps, the 

results from this experiment are difficult to generalize and must be interpreted with care. 

Immediately following the acute LPS injection, which was administered two 

weeks after surgery, temperatures and weights were recorded to determine if LPS 

produced an immune response. As expected, LPS significantly increased body 

temperature and significantly decreased weight for up to 48 hours following the injection. 

Levels returned to baseline by 72 hours post-injection. Based on these data, it was evident 

an immune response was mounted which previous work has shown leads to prolonged 

neuroinflammation, cytokine release, and microglial activation (Qin et al., 2007). 

Behavioral testing commenced three weeks later with open field and NOR. 

No anxiety phenotype or changes in locomotion were observed during open field 

testing in experiment 3, consistent with the previous studies. During NOR testing, no 

differences were observed among groups in the time spent exploring objects on Day 1. 

Surprisingly, no groups displayed a significant preference for the novel object the 
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following day when it was presented with the familiar object. The vehicle group 

performed especially poorly, suggesting aged rats may encounter more difficulty with the 

task (de Lima et al., 2005) or perhaps exhibit less motivation for novelty-seeking 

behavior than younger animals. Unfortunately, the meaningfulness of the deficits 

observed in the other groups is diminished by the lack of significance in the control 

group. Therefore, the impairment in the vehicle group limits the interpretations that can 

be made about the drug-induced deficits.  

During the MWM acquisition phase, no significant differences were observed 

among groups, suggesting all groups were able to similarly locate the platform. The 

thap+LPS group did display a deficit in the probe trial as measured by percent time in 

target quadrant, but not annulus crossings. Interestingly, although neither LPS nor 

thapsigargin impaired percent time in quadrant, each group showed a deficit in annulus 

crossings. Therefore, each treatment did manifest a learning and memory impairment in 

one aspect of the probe trial. However, the cognitive deficits exhibited by these groups 

did not come close to mirroring those observed in AD, suggesting the combination of 

thapsigargin and LPS was not sufficient to produce AD-like behavioral changes. If the 

dosage of thapsigargin had been 25 µM, as intended, it is possible more pronounced 

impairments would have been observed in these aged rats, similar to experiment 1 which 

employed a lower dose of 10 µM.  

When protein levels were examined in the hippocampus, the thap+LPS group was 

found to have significantly decreased 18mer oAβ levels compared to vehicle. This result 

is in contrast to the data from experiment 1 showing that thapsigargin significantly 

increased 18mer levels in the hippocampus. In experiment 3, thapsigargin did not 
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produce any significant difference, whereas the combination of thap+LPS did 

significantly decrease 18mer levels. These data collectively may suggest that inducing an 

acute inflammatory response could reduce oAβ levels and potentially be beneficial. 

However, because thapsigargin in experiment 3 did not replicate the effects observed in 

experiment 1, further experiments would be necessary to make any definitive 

conclusions. If the thapsigargin dose had been 25 µM, a change in oAβ levels more 

similar to experiment 1 may have been observed and the thap+LPS group reduction may 

not have been seen. 

Although no other significant differences were observed in oAβ levels, interesting 

correlations emerged between probe trial performance and smaller size oligomers. When 

all groups were examined, significant negative correlations were found between probe 

trial time in quadrant scores and either 10mer or 8mer levels. These data indicate that 

more impaired probe performance was related to larger levels of oAβ. Whether there is a 

direct causal relationship between cognitive performance and oAβ is unclear from the 

current data, although previous studies have shown oAβ can directly induce learning and 

memory deficits (Cleary et al., 2005; Lesné et al., 2006). Significant negative correlations 

were further observed in the thap+LPS group between probe performance and either 

11mer or 7mer levels. These findings reinforce the notion that oAβ may contribute to 

cognitive deficits. 

In the cortex, thapsigargin produced a significant increase in 8mer oAβ levels 

compared to vehicle, a change that was not observed when LPS was administered during 

chronic thapsigargin treatment (thap+LPS group). LPS binds to CD14 proteins and 

activates the toll-like receptor 4 (TLR4), which initiates an important signaling cascade 
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for the immune response (Kurt-Jones et al., 2000; Xia et al., 2006). In a transgenic mouse 

model of AD with the TLR4 gene knocked out, amyloid pathology was aggravated 

(Tahada et al., 2006), suggesting the immune response may be beneficial in AD. In the 

current study, it is possible that the administration of LPS mitigated the increase in oAβ 

levels observed in the thapsigargin group. This interpretation is supported by previous 

work demonstrating that LPS enhances the phagocytosis of exogenous Aβ (Liu et al., 

2005).  

Tau phosphorylation was quantified in two different ways in experiment 3. In the 

hippocampus, ptau levels were compared to β-actin while tau levels were separately 

compared to β-actin; no significant differences were observed among groups in either 

comparison. This alternative approach to quantify ptau and tau was performed to be 

consistent with the majority of the literature, which reports levels of ptau and tau 

independent of each other. However, it is likely the lack of direct ptau/tau comparisons is 

a byproduct of technique limitations rather than a methodological consideration. The 

Odyssey fluorescent imaging system used in the current experiments permitted the 

detection of proteins of similar molecular weights; other imaging approaches typically 

have more difficulty with this type of detection. Regardless of the approach, none of the 

ligands administered altered tau phosphorylation in the hippocampus. Furthermore, it is 

unlikely the thapsigargin dosage affected ptau levels; none of the experiments indicated 

any change in the levels of this protein following any dose of thapsigargin.   

In the cortex, there were once again no significant differences among groups in 

ptau/tau levels, despite a likely meaningful 40% increase in the thap+LPS group 

(p=.057). Thapsigargin has been previously demonstrated to significantly enhance tau 
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phosphorylation following acute intracerebral infusion into the lateral ventricle (Fu et al., 

2010). LPS has been shown to exacerbate tau pathology in a transgenic model of AD 

(Lee et al., 2010), suggesting the LPS injection may have potentiated any thapsigargin-

induced effects on tau phosphorylation in the current study.  

Consistent with experiment 1, thapsigargin produced a non-significant decrease in 

CB-D28k levels in the hippocampus (~40%), suggesting that the drug likely altered 

calcium regulation. Interestingly, LPS produced a similar decrease in the hippocampus, a 

finding consistent with previous research showing decreased CB-D28k expression 

following administration of tumor necrosis factor-α (TNF-α) (Parkash et al., 2005), a 

proinflammatory cytokine whose production is increased by LPS (Nadeau & Rivest, 

1999). Surprisingly, the combination of thapsigargin and LPS did not alter CB-D28k 

levels in a similar fashion to either LPS or thapsigargin alone. Without performing further 

assays to parse out the potential mechanism(s) responsible for these differences, it is 

unclear why the CB-D28k levels may differ among these groups. Although these 

differences are consistent with experiment 1, the possibility exists that a lower dosage of 

thapsigargin in aged animals would have produced a more robust reduction in CB-D28k 

levels. 

Interestingly, there was a strong positive correlation between hippocampal CB-

D28k levels and 18mer oAβ levels in the thap+LPS group (R = .807, p=.052; data not 

shown). This correlation raises the possibility that the significant decrease observed in 

18mer levels in the thap+LPS group could be related to its levels of CB-D28k. Why the 

increased presence of CB-D28k would be related to increased oAβ levels is unclear; 

however it is interesting to note that this relationship between increased CB-D28k and 
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oAβ was observed in the hippocampus in experiment 2 as well. Of course this possibility 

can merely be speculated at this point without further data to support it.  

Although no changes were observed in the cortex in CB-D28k levels among 

groups, a significant positive correlation was found between probe performance and CB-

D28k levels in the thap+LPS group, indicating a greater degree of CB-D28k was related 

to better performance. A significant negative correlation was found between CB-D28k 

levels and ptau levels in the cortex when all groups were examined (R = .580, p<.05; data 

not shown), suggesting the increased presence of CB-D28k reduced the amount of tau 

phosphorylation. Once again these conclusions cannot be confirmed without the inclusion 

of further testing and data collection. Furthermore, similar to the data from the 

hippocampus and from experiment 2, significant positive correlations were found 

between CB-D28k levels and oAβ levels among all groups for 7mers (R = .725, p<.01), 

11mers (R = .556, p<.05), and 24mers (R = .590, p<.05). As mentioned above however, 

the importance of these relationships is unclear, especially with minimal significant 

differences observed in the between group protein level analyses.  

 

Conclusions 

 The goal of the current series of experiments was to directly examine the 

hypothesis that prolonged intracellular calcium dysregulation could lead to Alzheimer’s-

like changes in the brain and behavior. It is evident from the data reported above that at 

least in a wild-type rodent model, this approach does not produce the robust cognitive 

deficits or biochemical changes normally associated with AD. However, interesting and 

novel information has still been obtained from these experiments. The data demonstrate 
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that chronic ryanodine or thapsigargin infusion into the lateral ventricle impairs learning 

and memory in multiple behavioral paradigms at multiple dosages and ages. These 

studies also show that thapsigargin treatment is sufficient to elevate oAβ levels in 

multiple brain regions at multiple dosages (see experiments 1 and 3). The considerable 

amount of tau phosphorylation typically observed in AD patients and models of AD was 

not observed in the current experiments, despite modest increases in various groups. 

Furthermore, the decreased expression of CB-D28k observed, although consistent with 

AD, never reached a level of statistical significance.  

 It is interesting to consider potential explanations for the alterations in CB-D28k 

levels in these experiments. Intuitively, elevated cytosolic calcium concentration, as is 

hypothesized to occur following chronic ryanodine or thapsigargin treatment, should lead 

to increased levels of a calcium buffering protein in an effort to reduce any calcium-

induced excitotoxicity or synaptic dysfunction. However, the opposite effect was 

observed in the above studies. Interestingly, it has been shown that CB-D28k expression 

is decreased following a calcium overload induced by either glutamate (Mao et al., 2010) 

or status epilepticus in rats (Carter et al., 2008). CB-D28k levels may be reduced to 

enhance calcium-dependent inactivation (CDI) of voltage-gated calcium entry, an 

important mechanism to reduce net calcium influx following depolarization (Köhr & 

Mody, 1991). In support of this hypothesis, low or absent CB-D28k expression from 

Ammon’s horn sclerosis (AHS; Nagerl & Mody, 1998) or CB-D28k gene knockout 

(Klapstein et al., 1998) leads to increased CDI and a corresponding decrease in calcium 

load. It is possible the decreased CB-D28k levels observed following chronic ryanodine, 

or to a lesser extent thapsigargin, serve a compensatory mechanism to enhance CDI and 
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reduce intracellular calcium overload. Future experiments employing calcium imaging or 

electrophysiological techniques may be able to test these hypotheses.  

 Overall, these experiments demonstrated that chronic calcium dysregulation is 

likely related to AD pathophysiology; however, it is likely not the sole etiologic factor 

that initiates AD pathology and symptoms. These data also indicated that although our 

manipulations did affect behavior and neurochemistry to a certain extent, the deficits 

observed in our studies were not consistent with other animal models of AD (Cleary et 

al., 2005; Hsiao et al., 1996). It may be interesting to perform these experiments in 

existing transgenic mouse models of AD, as they already exhibit robust AD pathology. 

This approach would elucidate how calcium dysregulation interacts with amyloid and/or 

tau pathology and perhaps advance our understanding of AD.  
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