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ABSTRACT 

Inferring Rules from Sound:  

The Role of Domain-Specific Knowledge in Speech and Music Perception 

By 

Aaronell S. Matta 

Dr. Erin E. Hannon, Examination Committee Chair 
Assistant Professor of Psychology 
University of Nevada, Las Vegas 

 
 Speech and music are two forms of complex auditory structure that play 

fundamental roles in everyday human experience and require certain basic perceptual and 

cognitive abilities. Nevertheless, when attempting to infer patterns from sequential 

auditory input, human listeners may use the same information differently depending on 

whether a sound is heard in a linguistic vs. musical context. The goal of these studies was 

to examine the role of domain-specific knowledge in auditory pattern perception. 

Specifically, the study examined the inference of “rules” in novel sound sequences that 

contained patterns of spectral structure (speech or instrument timbre) and fundamental 

frequency (pitch). Across all experiments, participants were first familiarized to a 

sequence containing pitch or syllable patterns that followed a particular rule (e.g., ABA), 

and they were subsequently asked to rate the similarity of novel sequences that were 

consistent or inconsistent with that rule. In two experiments participants were 

familiarized to either a pitch or syllable rule, and in a third experiment they were 

familiarized to simultaneous conflicting rules (e.g. pitch following ABA but syllables 

following ABB). Although participants readily detected inconsistent stimuli after 

familiarization to a single rule, in the conflicting two-rule condition they gave high 
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similarity ratings to any stimulus that obeyed the syllable rule, regardless of whether or 

not the music dimension was consistent or inconsistent with familiarization. Three 

additional experiments took the same approach but tested rule-learning on the basis of 

pitch or timbre (instrument) sequences. In these experiments, participants gave the 

highest similarity ratings when the pitch rule was preserved, regardless of variation in the 

timbre dimension. These results support the notion that adults “filter” information 

according to domain-specific knowledge and expectations, presumably due to perceptual 

learning processes that take place during early development.  
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CHAPTER 1 

INTRODUCTION 

Music is unique, ubiquitous, and profoundly important to human beings. There 

are no studied human cultures that do not produce music in some form, making music a 

human universal (Christensen-Dalsgaard, 2004). Music plays a fundamental role in social 

bonding between parents and infants (Trehub, 2001), providing a mode of 

communication before language is useful (Christensen-Dalsgaard, 2004). Music serves 

many other purposes as well. It provides a means of emotional self-regulation, with 

certain styles of music making an individual feel happier or more energized, or by 

allowing listeners to empathize with a certain mood or emotion (Schellenberg et al., 

2008). There has also been evidence that music can be effective in soothing or relieving 

certain types of pain in clinical settings (Roy et al., 2008).  

Music may also play a role in mate selection and attraction. Famous musicians, 

regardless of their attractiveness, seem to be able to attract a fervent, loyal fanbase of 

screaming females who profess their undying love and commitment, as well as beautiful 

women to date or marry. For example, singer Rod Stewart, whose physical appearance 

might be considered unremarkable, has been married three times, all to actresses or 

supermodels, and has fathered seven children between them. Music might therefore 

function in the same way as a peacock’s tail feathers by allowing individuals with 

musical skills to attract mates. This idea dates back to Charles Darwin (1871), who first 

proposed that music might be involved in sexual selection.  

Music may also function to enhance group bonds (i.e., performing in a marching 

band, orchestra, or choral group together), or it might allow individuals to socialize at 
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events such as concerts, where they might share a common bond over a particular 

musical artist or group that is performing. Even hearing-impaired individuals are able to 

enjoy some forms of music, or in the case such as the famous composer Ludwig von 

Beethoven, are able to compose it, presumably by attending to the vibrations that can be 

felt on the skin and through the body (Green, 1988). Given that music can play such 

diverse and fundamental social and emotional roles, an obvious question is why music 

evolved and whether or not music capacities benefit human survival. 

Many well-respected thinkers, including Darwin, have argued that music 

specifically evolved through natural selection, as a way to promote survival. By contrast, 

there are many scholars who argue that music is not an evolutionary adaptation in and of 

itself, but rather, a spandrel -- or by-product -- of language evolution. Steven Pinker 

(1997) referred to music as “auditory cheesecake”, having no real survival advantage, but 

rather acting as “an exquisite confection crafted to tickle the sensitive spots of at least six 

of our mental faculties” with no innate or evolutionary importance independent of 

language. By this, he proposed that music is essentially a “parasite” on language that 

feeds upon what we already know. According to Pinker’s view, music has no real 

adaptive function or circuitry independent from language or other innate abilities. 

 

 

 

 

 

 



 

 3 

CHAPTER 2 

REVIEW OF RELATED LITERATURE 

Modularity of Language and Music 

The concept of modularity has been applied to many psychological domains, 

including language, music, and face recognition (Conway & Christiansen, 2005). 

Modularity refers to the notion that the mind is divided into innate structures and 

processes that act independently of one another, each specifically developed or 

specialized to serve a certain functional purpose (Elsabbagh & Karmiloff-Smith, 2004). 

According to Fodor (1983), a module is domain specific, which means it is associated 

with distinct neurological structures and specialized to receive only certain types of input, 

and it is informationally encapsulated, meaning that it does not need to refer to other 

psychological systems to function properly (Fodor, 1983).  

Cosmides & Tooby (1994) suggested that domain-specific mechanisms are a 

product of evolution dating back to the Pleistocene (ending approximately 10,000 years 

ago), and were likely favored by natural selection. They argued that without the 

specialization associated with domain-specific processes, humans would essentially have 

to undergo a process of trial and error until the necessary solution or mechanism was 

determined, which, from the perspective of natural selection, could be the difference 

between life and death. In other words, because domain-general adaptations are not 

designed to maintain specific behaviors or processes, it is not likely that such 

mechanisms alone could work efficiently enough to promote success or survival. 

A great deal of controversy surrounds the question of whether or not modularity 

exists in the human mind and which systems, in particular, should be considered modular. 
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Bishop (1997) suggests that Fodor’s notion of modularity is better suited for the way 

adult minds function, but such standards might be unrealistic to apply to a developing 

child. It may be normal for systems to interact during development, but in time, each 

system may assume relative autonomy (Hulme & Snowling, 1992).  

To support the modularity of mind view, researchers examine the extent to which 

brain areas can be characterized as modular or specialized for specific functions. It is 

widely assumed that different parts of the brain are associated with different functions, 

but this does not necessarily support the idea of modularity. In the case of modularity, 

specific dedicated neural structures presumably developed for the sole purpose of serving 

a particular domain. Many scholars embrace the notion of a language module, arguing 

that humans are born with an innate capacity for language that develops in every human 

being, including individuals who may be otherwise impaired (Chomsky, 1965; Fodor, 

1983; Pinker, 1994). Chomsky (1965, 1988) was one of the earliest proponents of the 

idea that language is both modular and innate. He suggested that all humans are pre-

wired with what he called a “universal grammar,” or innate knowledge of a limited set of 

rules for organizing all languages. By extension, nonhumans are assumed to lack such a 

language module.    

Attempts at teaching language to nonhuman animals have generally been 

unsuccessful. For example, when researchers attempt to teach American Sign Language 

to apes, the apes do not actually learn real ASL signs, but rather a number of pantomimes 

and gestures instead of a full language (Terrance et al., 1979). This suggests that 

nonhuman animals are not pre-programmed to use language, making language learning 

distinctly unique to humans. The abilities of nonhuman animals stand in stark contrast to 
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the abilities of human children not only to acquire language but to create language, as in 

the case of pidgins and creoles (Bickerton, 1981). Pidgins are defined as simplified 

languages that develop in order for two or more groups to communicate when they do not 

have a language in common. Bickerton found that when human children were exposed to 

ungrammatical “pidgin English” spoken by their parents, they had a tendency to 

incorporate increasingly complex grammatical structures where there were previously 

none present, creating what is referred to as a “creole language.” This process suggests 

that human children have innate grammatical capacities that they impose while learning 

language.  

In defiance of Pinker’s characterizations that music is a parasitic by-product of 

language, many have argued for the existence of a music module (Peretz & Coltheart, 

2003). Evidence supporting this view comes from music-specific deficits observed in 

individuals with certain types of brain injuries. In these cases, patients are unable to 

recognize melodies that were once familiar to them, but they readily recognize spoken 

lyrics and words, familiar voices, and other common sounds such as animal sounds and 

traffic noises. This condition is referred to as ‘acquired amusia’. There are also 

individuals who suffer from ‘congenital amusia’ deficits in recognizing melodies 

exhibited from birth, even though they recognize spoken lyrics (Ayotte et al., 2002; 

Peretz & Hyde, 2003). Congenital amusics exhibit severe deficits in processing of pitch 

variations, but they readily process and recognize speech prosody, environmental sounds, 

and human voices (Ayotte et al., 2002). Because double dissociations have been used to 

support the notion that language is modular, double dissociations in the music domain 

may also support the notion that music is modular.  
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Others argue that neither music nor language are truly modular, but instead share 

many important and overlapping processes and structures in behavior and the brain 

(Trehub & Hannon, 2006). Williams Syndrome (WS) is a genetic condition that results in 

individuals who have deficits in multiple areas including psychomotor coordination, 

visual-spatial-organization, and adaptation to novelty (Brown et al., 2003; Karmiloff-

Smith et al., 2003; Mervis et al., 1999) as well as difficulty with complex areas of 

language, including comprehension and pragmatics (Anderson & Rourke, 1995). Often 

these deficits are paired with a lack of social judgment skills (Donnai & Karmiloff-Smith, 

2000) or difficulty with face processing (Karmiloff-Smith et al., 1995). However, 

individuals with WS are often highly verbal and able to perform well on simple verbal 

tasks. They also demonstrate good singing skills, can easily learn songs, and show an 

abnormally high rate of absolute (perfect) pitch as compared to normal individuals (Don 

et al., 1999). Although children with Williams Syndrome tend to perform better on verbal 

than on nonverbal tasks, they also excel at tasks within a musical domain, which 

undermines the claim for a distinct and separate language module. Instead, it would 

appear that there are shared aspects of auditory processing that allow individuals with 

Williams Syndrome to show relative strengths in both the language and the music 

domains.  

Jentschke et al. (2008) provided further evidence for a lack of distinct language 

and music modules in the brain through their work with Specific Language Impairment 

(SLI). These children do not acquire language as rapidly or effortlessly as other children 

and often have syntactic difficulties, though their lexical and pragmatic skills are 

relatively intact, which is the opposite of children with Williams Syndrome (Jentschke et 
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al., 2008; Karmiloff-Smith et al., 2003). These children also show comparable deficits in 

their processing of musical syntax, as evidenced through ERPs investigating Early Right 

Anterior Negativity (ERAN) and late negativity (N5). ERAN typically reflects early and 

fairly automatic processing of syntax, while N5 indicates processing of harmonic 

integration; neither was elicited in SLI children, but both were evoked in children who 

show typical language development (Jentschke et al., 2008). These findings provide even 

further evidence to suggest that many components of music and language are processed 

by shared neural systems, not separate modules.  

Just as with language, musical double dissociations can be challenged. Closer 

examination of the language processing abilities of amusics does, in fact, reveal 

abnormalities in their sensitivity to vocal intonation (Patel et al., 2008).  When presented 

with sentences uttered by a female native speaker of American English or continental 

French, 30% of amusic individuals had difficulty distinguishing sentence pairs on the 

basis of vocal intonation, such as statements and questions that have distinct rising and 

falling pitch patterns. Similarly, Foxton et al. (2004) found that British amusics had 

difficulty judging the direction of short pure-tone pitch glides that precisely mimicked 

speech intonation. These results suggest that amusia may cause impairments not only in 

music processing, but also in processing language prosody. In summary, such evidence 

challenges the notion that there are exclusively language-specific and music-specific 

disorders and thereby contradicts modular accounts of both language and music.  

Additional challenges to the modular view come from evidence that music 

training can influence performance in non-musical domains. For example, adults who are 

musically trained are better than untrained adults in identifying emotions (i.e., happy, sad, 



 

 8 

fearful, angry) conveyed through speech prosody; these findings extend to 6-year-olds as 

well (Thompson et al., 2004). Magne et al. (2006) used both behavioral tasks 

(recognizing incongruent music or language samples) and ERP recordings to demonstrate 

that musician children are able to detect pitch violations in both music and language 

better than are non-musician children. 

Evidence has also indicated that there is a positive effect for individuals with 

long-term music exposure in terms of encoding linguistic pitch at the brainstem as 

compared to non-musicians (Wong et al., 2007). These findings suggest that musicians 

may actually have enhanced sensitivity to language (in terms of pitch or prosody) due to 

their musical experience. 

Examination of brain responses to music and language among both musical and 

nonmusical individuals further muddy the modular account of music. For example, 

Steinbeis & Koelsch (2008) used electroencephalography (EEG) recordings to measure 

various brain waves during a dual-task procedure in which participants engaged in a task 

involving chord identification in Western tonal music and a simultaneous semantic task 

involving sentence recognition. They documented an event-related potential (ERP) that 

responded both to violations of harmonic structure in music and semantic structure in 

language. 

Other evidence suggests that Broca’s area, a part of the brain once thought to be 

uniquely dedicated to language, is activated during both music and language listening 

(Maess et al., 2001). Participants were presented with numerous chords that were 

occasionally harmonically inappropriate. According to magnetoencephalography (MEG) 

recordings, brain responses to chords that violated harmonic expectancies were localized 
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to Broca’s area. This supports the notion that music may not be modular, in that it may 

not be distinctly separate from speech and language. 

Domain-Specificity and Development 

One of the best ways to examine the question of innate language and music 

modules is by studying infants, because any domain-specific biases or processes in young 

listeners are unlikely to have been learned. If music and speech were indeed separate 

modules, then we would expect infants to show specialized, domain-specific mechanisms 

in terms of how they process music and language information. However, if the music and 

language modules were more domain-general, we would expect that infants would show 

similar or shared processing mechanisms for both types of stimuli. 

Domain-specific preferences have been observed in very young infants. 

Vouloumanos & Werker (2004) examined 2- to 7-month-old infants’ preferences for 

human speech to determine if speech is a “privileged signal”. In other words, they wanted 

to know if infants are already somewhat attuned to certain dimensions of human speech 

at birth (Jusczyk et al., 1990). Infants’ listening preferences were measured during 

presentation of a speech stimulus (consisting of nonsense words and syllables) and a non-

speech stimulus (consisting of sinusoidal waves that tracked the main regions of 

significant energy in natural speech). Infants as young as 2.5 months demonstrated a 

preference for the speech stimuli, suggesting that a bias for speech is present very early in 

development. 

 A bias for speech has even been observed as early as 1-4 hours after birth 

(Vouloumanos & Werker, 2007). Newborns were presented with isolated syllables of 

speech (nonsense words) and with non-speech stimuli consisting of sine-wave analogues. 



 

 10 

They monitored the amplitude of the infant sucking on a pacifier while presenting speech 

and non-speech stimuli in alternation. The infants significantly increased their sucking on 

a pacifier to listen to speech but not non-speech analogues, suggesting that infants did 

show a bias for speech. They concluded that this bias arises from language-specific 

processes that facilitate infants’ learning of the properties of the language in the 

surrounding environment.  

While provocative, Vouloumanos & Werker’s (2007a) study was met with some 

criticism. Prenatal experience has an influence on infants’ speech perception, suggesting 

that there may be other factors contributing to any potential speech biases (Curtin & 

Werker, 2007). For example, at birth, infants prefer their mothers’ voices to other female 

voices (DeCasper & Fifer, 1980) and they will also change their sucking patterns to hear 

stories that were recited by their mothers during the final six weeks of pregnancy versus 

novel passages (DeCasper & Spence, 1986). These findings suggest the womb is 

permeable to sounds that the fetus is able to perceive, encode, and remember 

(Vouloumanos et al., 2010). As a result, this prenatal exposure may influence neonates’ 

preference for speech over other non-speech sounds that may not be as familiar at birth. 

Though Vouloumanos & Werker (2007a) argued that the speech preference for infants is 

innate, it may be the case that prenatal exposure to speech sounds instead plays a role. 

Further objection from Rosen and Iverson (2007) pointed out important acoustic 

differences between the speech and non-speech stimuli, including differences in 

fundamental frequency (voice pitch), spectral shape, and amplitude (loudness). These 

acoustic features were probably salient to the developing infants, and could have driven 

preferences independent of a domain-specific bias. They also contended that the sine-
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wave analogues were insufficient as non-speech stimuli because while the speech had a 

strikingly salient voice pitch with exaggerated, child-directed melodic contours, the non-

speech sine-wave analogues sounded very similar to one another, and lacked a sense of 

any type of melodic contour. Thus, infants’ preference might have been driven by 

exaggerated voice melody in the speech condition (Rosen & Iverson, 2007).  

 Such differences in the acoustic properties of vocalizations are known to be 

important in driving infant preferences, as shown by research on “motherese” (now 

referred to as “infant-directed speech”), or speech typically directed toward young 

children and infants (Grieser & Kuhl, 1988). This speech has a unique acoustic quality, 

typically higher in pitch, slower in tempo, and with expanded intonation contours 

(Ferguson, 1964). These characteristics actually make the speech almost song-like in 

quality, leading some to refer to this kind of vocal input as “musical speech” (Fernald, 

1989; Trehub & Trainor, 1998). Infants show strong preferences for the music-like 

qualities of infant-directed speech to adult-directed speech.  

 The literature on infant-directed vocalizations makes an interesting prediction: if 

voice melody drives infants’ preferences for vocal stimuli, then musical vocalizations 

should be preferred over non-musical, infant-direct vocalizations. Indeed, 6-month-old 

infants showed a preference for maternal singing over maternal speech. Infants heard 

audio recordings of their own mother either speaking or singing and their behavior 

(specifically body movement and gaze) was video recorded. Cumulative looking times 

were greater and body movements were minimal for maternal singing vs. maternal 

speech. These findings suggest that infants prefer the exaggerated melody in music, 
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particularly when sung by mothers to their infants. Thus, there might be a bias not for any 

particular domain, but rather for exaggerated voice melody (Nakata & Trehub, 2004). 

 Behavioral evidence thus provides only ambiguous support for the notion that 

speech is special for infants, which leads to the question of whether or not infants’ brains 

respond to music and language in a domain-specific fashion. Because it is known that 

language functions are lateralized to the left cerebral hemisphere, one obvious question is 

whether infants’ brains are lateralized. Dehaene-Lambertz (2000) examined brain activity 

in 4-month-old infants in response to an unexpected alteration to a speech or non-speech 

auditory stimulus. To study this, high-density ERPs were recorded from infants’ scalps 

while they listened to speech stimuli with occasional oddball trials, which were expected 

to elicit an early brain response, or mismatch negativity. Mismatch responses to a voice 

change versus a phoneme change were compared. Four-month-old infants did not show 

the same activation patterns in the left hemisphere of the brain that adults did when 

presented with the speech stimuli, supporting the notion that the brain does become more 

specialized as it matures. 

 Similarly, Imada et al. (2006) examined brain responses to tones, harmonics, and 

syllables in the left hemispheres of neonates, 6- and 12-month-old infants using 

magnetoencephalography. Consistent with past research findings, even newborns showed 

activation in the superior temporal cortex, where the brain conducts auditory analysis. 

However, activation of the inferior frontal region, which involves speech motor analysis 

and is unique to speech stimuli, only emerged around 6 months of age, and increased 

with age. These results support the notion that speech perception becomes increasingly 

specific between the ages of 6 and 12 months and also acknowledge that there is an 
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emerging left-hemisphere link that is not present at birth, but that may develop after 6 

months of age. Thus, the left hemisphere advantage in auditory processing which adults 

typically exhibit may not be present, or may only be very weak in young infants, 

suggesting that specialized modules in the brain may need to develop.  

Later, Dehaene-Lambertz, Dehaene, & Hertz-Pannier (2002) conducted work on 

three-month-old infants, using fMRI to measure brain activity evoked by normal and 

backwards speech. Results indicated that left-lateralized regions of the brain similar to 

those of adults were already active, suggesting that precursors of adult cortical language 

become active in infants before they begin speech production. This implies that the left 

auditory cortex presents a higher responsiveness to auditory stimuli in general, and is not 

necessarily specific to linguistic input, due to the response also evoked by backwards 

speech.  

Further review of infants’ neural processing by Dehaene-Lambertz & Gliga 

(2004) found that, in terms of phoneme processing, behaviors and ERP readings are 

similar between initial (infancy) and mature (adulthood) stages, suggesting continuity in 

processing and neural structure. In this case, it may be that infants do have access to 

phonemic representations at the beginning of life, but it isn’t until around 5-6 months of 

age that the influences of their native languages become more pronounced and apparent.  

Research by Kotilahti et al. (2009) further confirms this idea, finding that newborns show 

typical speech lateralization and language-related brain activity to the left hemisphere, 

but it is not yet fully developed. They did not, however, find significant right hemisphere 

activation in response to music, suggesting that newborns may not have as strong or 

developed music-related brain activity as they do for speech and language.  
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However, contrary to the notion that the brain becomes more domain-specific 

over time, Schön et al. (2010) conducted an fMRI experiment in which adult participants 

listened to pairs of spoken words, 3-note melodies sung to the same syllable (Vocalise), 

or words sung to melody and were asked to distinguish whether the pairs were the same 

or different. Similar networks of brain regions (specifically, the middle and temporal 

gyri) were more activated while listening to spoken words, Vocalise, and sung words, as 

compared to a control condition containing noise that was neither speech- nor music-

related. Furthermore, both brain hemispheres appeared to be involved in both speech and 

music processing, though the degree of activation varied such that the left hemisphere 

was more involved in speech processing, and the right hemisphere was more involved in 

music processing. Overall, because these brain regions do not respond exclusively to 

language nor music stimuli, this evidence supports a more nuanced view in which both 

shared and non-shared processes are involved in language and music processing. 

 Though infants may not necessarily begin life with domain-specific knowledge, 

they might possess speech-specific learning mechanisms, such as the ability to infer 

certain types of patterns or “rules” from language input (Marcus et al., 1999; Marcus 

2000; Marcus et al., 2007). Numerous studies have highlighted infants’ ability to detect 

patterns in various types of input, whether linguistic, musical, or even visual (Altmann, 

1999; Christiansen & Curtin, 1999; Eimas, 1999; Elman, 1999; Kirkham et al., 2002; 

McClellend & Plaut, 1999; Saffran et al., 1999; Seidenberg & Elman, 1999). These 

studies report that both adults and infants segment sequences of elements (such as 

syllables, tones, or shapes) according to their sequential statistics (i.e. how likely one 

element is to be preceded or followed by other elements), and that they do this similarly 
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for all types of input (Saffran et al., 1999). For example, 8-month-old infants have 

demonstrated the ability to apply statistical learning to segment words from fluent speech 

(Saffran et al., 1996), as well as the learning of tone sequences. Such findings are 

important because they show that simple but powerful domain-general learning 

mechanisms might be used to acquire domain-specific knowledge that was once assumed 

to rely on innate modules.  

 By contrast, the work of Marcus et al. (1999, 2007) suggests that although infants 

do possess simple statistical learning abilities, they also possess a rule-learning ability 

(i.e., the capacity to abstract algebraic rules) that applies exclusively to linguistic input. 

These “algebraic” rules are described as “open-ended abstract relationships for which 

[the listener] can substitute arbitrary items” (Marcus et al., 1999, pp. 77).  

Several studies suggest that infants can abstract algebraic rules over linguistic 

input. These studies used the preferential-looking paradigm (Jusczyk & Aslin, 1995), in 

which auditory stimuli are paired with a flashing light and infants’ gaze duration (in s) is 

used as an indicator of listening preference. Infants are first familiarized with a series of 

synthesized speech samples containing sixteen 3-syllable sentences that followed either 

an ABA (i.e., “la ti la”) or ABB rule (i.e., “la ti ti”). According to Marcus, if infants use 

the simple statistical learning mechanisms described above, they should only be able to 

recognize familiarized patterns containing previously heard syllables. If, however, infants 

can infer the underlying algebraic rules that govern such sequences, they should be able 

to apply the learned rule to entirely novel syllables. Indeed, in a subsequent test phase 

consisting of entirely novel syllables, whose sequential arrangement was either consistent 

or inconsistent with the rule established during familiarization, 7-month-old infants 
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showed a novelty preference for the inconsistent sentences. Novelty preferences were 

obtained across all comparison conditions (e.g., ABA contrasted with ABB and ABB vs. 

AAB). Because novelty preferences were obtained based solely on the rule structure and 

not on the familiarity of specific syllables these findings bolstered the claim that infants 

can extract algebra-like rules from linguistic input.  

 This initial finding was met with a great deal of opposition from those who argued 

that abstract algebra-like rules were tantamount to general pattern-learning based on 

statistical properties. Seidenberg & Elman (1999) argued that Marcus et al.’s findings 

resulted from infants’ use of statistics, not rules. For example, in the ABB condition, 

infants could form a “same-different-different” representation of the syllable sequence, 

even if the specific syllables were distinct between the familiarization and test phases of 

the study.  

 While many researchers did not question the basic findings of Marcus at al. 

(1999), it was widely agreed that additional work was needed to validate the claims that 

were made. One proposed solution was for Marcus et al. to conduct a control study that 

familiarized infants with a sentence structure of AAB and then used BAB and AAB rule 

structures in the test phase (Eimas, 1999). This way, if infants showed a preference for 

the novel structure, despite the final two syllables remaining unchanged, Marcus et al.’s 

conclusion for the acquisition of an algebraic rule would be better supported.  

 Other critics created connectionist networks to demonstrate that built-in algebraic 

rules are not necessary to succeed at generalizing patterns to novel stimuli (Altmann, 

1999). In a simulation of Marcus et al.’s study, simple recurrent networks were trained on 

Marcus’ own stimuli using the ABA grammar or the ABB grammar. After training, each 



 

 17 

network was given ABA or ABB sentences in random order on input nodes that had not 

been used during training. Results showed that, like the infants in the Marcus et al. study, 

the networks successfully discriminated between the consistent and inconsistent test 

stimuli. Since simple recurrent networks can only use statistical learning (i.e., no 

sensitivity to rules is built in), Altmann argued that simple statistical learning 

mechanisms could explain the cognitive processes that infants used in the Marcus study.  

 In addition to disputing the idea that infants were using algebra-like rules rather 

than statistical learning, Elman (1999) pointed out that by 7 months of age infants have 

heard over 6 million words and have already formed representations of speech sounds in 

their native languages. It is therefore unreasonable to assume that the stimuli used in the 

Marcus study were completely novel.  

 If infants’ success in the task was simply due to a type of statistical learning, then, 

Marcus argued, infants should be able to infer rules in both speech and non-speech 

domains, just as statistical learning has been demonstrated in speech and non-speech 

domains (Saffran et al., 1999; Fiser & Aslin, 2002; Kirkham et al., 2002). Thus, Marcus 

et al. (2007) incorporated additional non-speech stimuli to ask whether infants could infer 

a rule instantiated in speech and then generalize that rule to sequences of non-speech 

stimuli. In the first experiment, infants were familiarized with tone patterns or sung 

syllables (i.e., where pitch level and syllable identity varied simultaneously) that followed 

either an AAB or ABB rule. In the tones condition, infants showed no noticeable 

preference for a novel sequence that violated the previously established rule. However, in 

the sung syllables condition, infants showed a strong preference for the novel rule. Thus, 
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infants were unable to abstract rules from tone patterns when they did not have speech 

information available, but readily did so when rules were instantiated by syllables.  

In a second experiment, ABB vs. ABA rules were instantiated using timbre, 

consisting of synthesized instrument sounds or animal sounds instead of the tones and 

sung syllables. Thus, in this experiment, there was no speech-related information 

contained within the stimuli. Infants did not show a noticeable preference for the novel 

stimuli in either condition, leading the researchers to conclude that infants are unable to 

abstract rules over non-speech sequences. In a third experiment, infants were familiarized 

with spoken speech sequences that followed the ABB or ABA rule (as in Marcus et al., 

1999) and then tested on their ability to discriminate the same rule, but in non-speech 

stimuli such as tones, musical instruments, or animal sounds. In this case, infants showed 

a preference for the stimuli that followed the novel rule, whether they were tones, 

timbres, or animal sounds. Marcus et al. (2007) argued that speech is a domain-specific 

catalyst for infants’ ability to generalize rules, whereas statistical pattern learning is 

separate and domain-general.  

 Contrasting evidence suggests that four-month-old infants are fully capable of 

learning rules in non-speech domains. For example, 7-month-old infants were shown to 

detect and generalize patterns when the stimuli consist of pictures of dogs and cats, 

(Saffran et al., 2007), thus suggesting that rule learning is not even specific to auditory 

patterns. Within the auditory modality, 4-month-olds infants learned rules from chord- 

and tone-sequences without any prior familiarization to syllables (Dawson & Gerken, 

2009). However, unlike 4-month-olds, 7-month-olds did not learn rules from tone and 

chord sequences, replicating Marcus et al (2007). The failure of rule-learning leads to 
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important questions about why more experienced listeners would perform worse than less 

experienced listeners. One possibility is that acquired knowledge of music might interfere 

with successful rule-learning in the Marcus (1999; 2007) tasks. For example, 

familiarization sequences never followed a consistent contour pattern (i.e., there were 

conflicting patterns of “up-down-up” and “down-up-down”). The shape of a melody (e.g. 

up down), and not the sequence of absolute pitches, is typically the most salient aspect of 

a musical pattern, at least for adults and infants over the age of 5 months (Trehub et al., 

1984).  By varying contour within a particular rule structure (i.e., by instantiating ABB 

by both down-up-up and up-down-down) Marcus et al. (2007) may have made it 

confusing for experienced listeners, leaving them unlikely to be able to infer music-

relevant pattern information, as it was unclear what rule he or she was supposed to 

follow. In this sense, the musical conditions in these studies were unfairly pitted against 

real music, since any listener bringing music-specific expectations or knowledge to the 

learning situation would already be biased against the to-be-learned rule. Thus, the 

findings of Dawson and Gerken (2009) might arise because older infants pay more 

attention to the rising and falling contours than to the actual pitches themselves, creating 

a potential bias in terms of where their attention was to be focused (i.e., pitch patterns vs. 

varying pitch contour).  

 Given the large range of potentially meaningful patterns in the world, individuals 

may attempt to constrain the available information by seeking the most relevant 

structures in a given context, which may vary according to domain. Thus, in a rule-

learning paradigm, the to-be-learned rules or patterns might need to be domain-

appropriate. Music-specific rules or biases may be acquired through music lessons, for 



 

 20 

example (Thompson et al., 2004), or through implicit perceptual learning processes that 

result from every-day exposure to music in the environment. Once acquired, domain-

specific biases would be expected to influence how listeners infer patterns or rules from a 

given stimulus, depending on whether they perceive it to be music or speech. 

Perceptual Learning & Development 

 Perceptual learning is the process through which perceptual and cognitive 

networks are modified in a relatively long-lasting manner in response to encounters with 

predominant structures, norms, beliefs, and values in the environment. Perceptual 

learning occurs as individuals adapt to their environments and learn how to respond to 

them appropriately (Goldstone, 1998).   

 Perceptual learning processes are fundamental to the acquisition of knowledge 

about both speech and music. One salient example of early perceptual learning comes 

from the literature on infant speech perception and learning, where perceptual abilities 

undergo a reorganization that is dependent upon their native language. Werker & Tees 

(1984) first compared English-speaking adults, Thompson-speaking adults, and 6-month-

old infants born to English-speaking parents to determine how well they were able to 

perceive Thompson speech contrasts. English-speaking adults performed significantly 

worse than Thompson-speaking adults and English infants, while the latter two groups 

did not show a significant difference in performance. In further experiments 

incorporating Hindi and Salish speech contrasts, English infants aged 6-8 months 

performed slightly better than 8-10 month-old infants and significantly better than infants 

aged 10-12 months. Hindi and Salish infants’ performances were similar to those of the 

6-8 month-old English infants. These findings support the theory that younger infants are 
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better able to discriminate phonetic distinctions that occur across many different 

languages, but this ability decreases with age, typically by the end of the first year of life, 

as perceptual reorganization takes place. 

 Similar trends have been reported for infants learning Hindi, Japanese, Spanish, 

and Mandarin (Kuhl, et al., 2006; Rivera-Gaxiola, et al., 2005; Tsao, et al., in press; 

Werker & Lalonde, 1988). Moreover, infants’ discrimination shows a significant increase 

for native language contrasts and a significant decline for nonnative perception, 

indicating that through perceptual learning, the brain’s neural circuitry becomes 

organized in a way such that is specialized to the properties of native-language speech. 

 Comparable developmental trends have been observed in the music domain. 

Whether adults are musically trained or not, music is processed via perceptual and 

cognitive networks that are sensitive to experience (Hannon & Trainor, 2007). In one 

such example, North American adults, Bulgarian and Macedonian adults, and North 

American infants were presented with musical stimuli containing either a simple meter 

(similar to that found predominately in Western music) or a complex meter (often found 

in Bulgarian and Macedonian folk music) (Hannon & Trehub, 2004). North American 

adults performed more accurately when rating simple meter patterns. Bulgarian and 

Macedonian adults performed equally as well in both meter patterns, and North American 

six-month-olds showed performance very similar to the Bulgarian and Macedonian 

adults, in that they were able to differentiate between both simple and complex meters 

quite well. These findings imply that the biases shown by North American adults, in 

particular, are likely a result of perceptual learning processes, due to their exposure to 

primarily (or exclusively, perhaps) native music meter.  
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 Perceptual learning can also have an effect on individuals’ perceptions of musical 

interval patterns (Lynch et al., 1991) and melodic changes based on key harmony and 

implied harmony (Trainor & Trehub, 1994). When American participants were presented 

with melodies based on interval patterns from both Western and Javanese musical scales, 

they had trouble detecting mistuning to Javanese but not Western scales, whereas infants’ 

detection was comparable for both Western and Javanese scales (Lynch et al., 1991).  

 Acquired sensitivity to implied harmony and key also interferes with adult 

listeners’ processing of wrong notes (Trainor & Trehub, 1994). To illustrate, if Western 

listeners have a strong grasp of key membership and implied harmony in Western music, 

they should find it easier to detect a wrong note that goes out of key than to detect a 

wrong note that conforms to key and implied harmony, primarily because such changes 

are common in Western music. Consistent with this hypothesis, adults and older children 

were better at detecting out-of-key and out-of-harmony changes than within-key, within-

harmony changes, whereas infants detected both types of changes equally well. Thus, 

unlike adults and older children, younger listeners have not yet received enough musical 

exposure to ignore violations of melodic structure that, nevertheless, maintain key and 

harmony. 

 Adults of both the United States and Turkey were tested on recognition memory 

using three musical traditions: Chinese orchestral music, Western music, and Turkish 

music (Demorest et al., 2008). Participants were first played three 30-s excerpts of each 

music tradition, one at a time, and always in the same order. They subsequently heard 

additional excerpts and indicated whether or not they’d previously heard each clip of 

music. All of the participants were significantly better at recognizing novel excerpts from 
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their own culture. Turkish participants were better at remembering Western music than 

Chinese music, though the Chinese music was equally unfamiliar for both cultural 

groups. These results suggest that an individual’s detailed recognition and interpretation 

of musical information is influenced by their specific listening experiences.  

 The knowledge that allows listeners to meaningfully interpret and infer patterns in 

auditory input is thus acquired at least in great part through perceptual learning processes 

in response to environmental input, in both the music and speech domain. Typically, this 

learning starts affecting responses to auditory sequences during infancy, as shown by 

infants’ preferences and processing and memory advantages for structures of their own 

culture. A perceptual tuning process may act both within and across domains, such that 

over time, individuals may acquire increasingly specific knowledge about the types of 

patterns that dominate in music as well as in speech. In principle, such domain-specific 

knowledge could determine the extent to which adult listeners attend to various types of 

information in a pattern- or rule-learning context, such as that used by Marcus et al. 

(1999; 2007). 

Current Study 

The present experiments examine the types of rules that adults infer when 

presented with novel auditory patterns (similar to Marcus et al., 2007) that contain 

information relevant to both speech and music. Based on evidence suggesting that 

individuals are able to follow rules instantiated through speech (e.g., Marcus et al., 2007) 

and music (e.g., Dawson & Gerken, 2009), and that such abilities may be influenced by 

domain-specific knowledge, the study attempted to determine whether or not adults rely 

on different acoustic features to infer rules in a context-dependent fashion.  
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Research by Kolinsky et al. (2009) has indicated that vowels are most similar in 

structure to musical tones in terms of shared processing. In a classification task using 

bisyllabic nonwords sung on two-tone intervals, musically naïve adults were asked to 

classify stimuli into two categories during two different tasks. The melodic task involved 

identifying ascending or descending intervals, and the phonological task required 

participants to attend only to syllables, identifying which syllable they heard. Irrelevant 

pitch interval variation disrupted the phonological task, and likewise, irrelevant vowel 

changes interfered with participants’ ability to classify pitch intervals. These findings 

reveal that vowel and pitch changes appear to be processed in an interactive way. In a 

second study, Kolinsky et al. (2009) demonstrated that consonants are less integrated 

with musical intervals. In this experiment, the middles of the nonwords contained varying 

stop consonants (produced by stopping the airflow in the vocal tract, such as with the 

letters K or T). Less interval interference was found for the stop consonants than for the 

vowels. A third experiment showed that nasal consonants (where air may escape freely 

through the nose, but not the mouth, such as with the letters M or N) interfered less with 

phonological tasks than did vowels. Overall, these findings support the notion that, with 

the exception of vowels, most speech sounds do not appear to be vulnerable to 

interference from pitch  (Mehler et al., 2006). 

 If individuals do, in fact, place more emphasis on syllabic information when they 

perceive the situation to be within a linguistic context, this raises the question of whether 

or not the same biases would be observed in a musical context. For example when pitch 

varies independent of instrument timbre, since timbre, like syllables, is also defined by 

spectral envelope and temporal characteristics of event onset. Every sound is made up of 
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several different perceptual components, including pitch, loudness, length, timbre, and 

location. However, in a musical context, pitch typically receives the most focus (Patel, 

2008). Moreover, relative and not absolute pitch information predominates in a music 

context, because listeners are still capable of recognizing melodies in different registers, 

so long as the pitch relations remain consistent. Pitch contrasts have orderly perceptual 

distances that can be measured through a system of intervals that allows higher-level 

relations to emerge (e.g., even though pitches are different, the distance between a set of 

two notes may be recognizable as the same distance between two different notes) (Patel, 

2008). For example, if two individuals were asked to hum the melody to a commonly 

known song without any further instruction, it is unlikely that they would sing at the same 

volume or choose the same starting pitch, and even less likely that they would have 

matching vocal timbres. However, as long as the pitches were sung in the correct order 

and the appropriate intervals were maintained, listeners would still be able to identify the 

song.  

Timbre contrasts in music, unlike pitch, are somewhat difficult to organize 

systematically (Patel, 2008). While many instruments are capable of producing a variety 

of timbral contrasts (e.g., a violin may be bowed, plucked, or struck to produce a sound), 

these contrasts rarely form the basis for structural organization the way that pitch forms 

the basis for scales, tonality, and key. Though there have been attempts to organize 

timbral intervals, the reoccurring issue is that timbre relations are often not perceived 

with enough uniformity to provide a solid basis for developing a system such as the 

system of intervals that exists for pitches (Krumhansl, 1989).  
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Auditory streaming refers to when two or more repeating sounds that differ by at 

least one acoustic element are perceived as two (or more) separate streams (Bregman & 

Pinker, 1978; Snyder & Alain, 2007). In the case of timbre, Gregory (1994) found that, in 

the absence of timbre variation, ascending and descending scales that crossed in the 

middle were perceived (streamed) as separate high and low half-scales. However, 

increases in timbre difference led to more complete perceptions of the scales, played by 

each instrument. Thus, these findings suggest that continuity is an important aspect of 

timbre perception in music.  

While timbre is what allows us to differentiate between musical instruments, it 

seems to be more relevant to speech than music (Patel, 2008). For example, to the extent 

that instrument timbres and syllables can be considered similar, speech contains 

successions of timbres that are meaningful to listeners, but in a musical context, listeners 

tend to place more emphasis on the melody than on the changing instruments.  

Experiment 1 examines how listeners infer rules in a speech context. Listeners are 

familiarized to sequences of sung syllables containing rule information through spoken 

syllables (spectral structure) and through pitch contour (fundamental frequency). During 

familiarization, listeners hear a sequence of triplets containing syllables, pitches, or both 

syllables and pitch played simultaneously that follow a specific rule or set of rules. 

During a subsequent test phase, listeners hear stimuli containing novel syllables and 

pitches that are consistent or inconsistent with the rule instantiated during familiarization, 

and they are asked to rate how similar each stimulus is to the initial rule. Accuracy is 

defined as the tendency to rate inconsistent items as less similar than consistent items.  To 

make sure that the single-dimension rules are not too difficult for listeners to infer, two 
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baseline conditions will be run. These conditions will focus on rules instantiated by 

spectral structure (syllables) while pitch is held constant, or fundamental frequency (pitch 

contour) rules when spectral structure is held constant. It is expected that listeners will 

extract rules from monotone sequences of syllables, in replication of Marcus et al. (1999, 

2007). It is also expected that listeners will extract pitch contour-based rules in 

monosyllabic sequences. A third condition will pit spectral and fundamental frequency 

against each other (i.e., opposite rules are established by syllables vs. pitch contour). 

Based on the findings of Marcus et al. (2007) and the notion that rule-learning is 

language-specific, one prediction is that listeners will focus entirely on rules that are 

instantiated through speech, but will ignore rules instantiated in pitch. However, such an 

outcome would also be consistent with the notion that adult listeners have acquired 

domain-specific biases, and that due to the presence of syllabic information, listeners will 

selectively attend to the feature that they have learned is most relevant in the speech 

domain. It is thus essential to determine whether or not biases for spectral information 

would also be observed in the context of music.  

 Experiment 2 thus examines rule learning in a musical context. Specifically, 

variation in spectral structure is achieved through instrumental timbre rather than through 

syllable variation. Fundamental frequency will again be represented through pitch 

contours, as in Experiment 1. Two baseline conditions will again determine whether or 

not single-dimension rules are learnable. In these conditions, it is expected that listeners 

will be able to extract the rules without difficulty in both domains. However, in the third 

condition, timbre and pitch will be played simultaneously while following conflicting 

rules. If Marcus et al. (2007) is correct in suggesting that rule learning is language-
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specific, it suggests that adults will not be capable of learning any of the rules in 

Experiment 2, due to the lack of language-specific information. On the contrary, if 

listeners have a general bias to infer patterns on the basis of spectral structure (in this 

case, timbre) rather than fundamental frequency (pitch contour), they should learn the 

rules instantiated through timbre, but ignore those established through pitch contour. A 

third possibility is that listeners may alter their dimension of focus depending on the 

context (e.g., speech vs. music). Since sequential musical patterns are largely defined by 

pitch changes over time, and timbre has the tendency to be less meaningful than pitch in 

music (Patel, 2008), in this case, it would be predicted that adult listeners, who 

presumably possess domain-specific musical knowledge and expectations, will be biased 

to infer rules from sequential pitch information rather than from sequential timbre 

information. 

 

 

 

 

 

 

 

 

 

 

 



 

 29 

CHAPTER 3 

METHODOLOGY 

EXPERIMENT 1: RULE LEARNING IN A SPEECH CONTEXT 

Participants 

Participants for this study were 40 students recruited from the subject pool at the 

University of Nevada, Las Vegas. Participation was voluntary and each individual 

received one research credit per hour in partial fulfillment of the requirement for 

Psychology courses. The sample consisted of 24 females and 16 males, aged 18 to 40 

years (M = 23.45). Participants ranged in formal music training from 0 to 14 years (M = 

2.9). All participants reported having normal hearing.  

Apparatus 

 Participants were tested at individual computer stations over headphones. The 

computer program PsyScope X, Build 51 (Cohen, MacWhinney, Flatt & Provost, 1993) 

presented stimuli and recorded button-press responses from the computer keyboard.  

Stimuli 

 In the Speech Only (spectral structure) condition, modeled after prior infant work 

by Marcus et al. (1999; 2007), participants were familiarized with 13 unique computer-

synthesized phoneme triplets following either an ABA (i.e., “ga, ti, ga”) or an ABB rule 

(i.e., “ga, ti, ti”) and spoken in a monotone set at 261.6 Hz (Middle C). The 

familiarization triplets were comprised of a combination of 9 different possible syllables. 

Individual syllables were synthesized using the software program MBROLA (Dutoit et 

al., 1996). The program Sound Studio 3 for Macintosh was used to combine and order 

syllables into long AIFF files. Each syllable within a triplet was approximately 300 ms in 
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duration, with a 250 ms gap between syllables and a 1 s gap between triplets. Each triplet 

was approximately 2.4 s in length. The familiarization stimulus consisted of two 

iterations of each unique triplet, ordered randomly, resulting in a sound file made up of 

26 triplets and lasting approximately 1 min in duration. During the test phase, participants 

heard eight stimuli (comprised of 4 novel syllables) containing triplets of syllables that 

either followed or violated the rules established during familiarization (Table 1). For 

example, if a participant heard a familiarization stimulus following the ABA rule, that 

participant then heard novel triplets of both ABA (“wo, fe, wo”) and ABB (“wo, fe, fe”) 

structure during the test phase. Each test trial contained 2 repetitions of each of 4 novel 

triplets. Test trial order was randomized by the computer. 

 In the Pitch Only (fundamental frequency) condition, rules were instantiated in 

monosyllabic tone patterns, having no phoneme variation. Sequences in the Pitch Only 

condition therefore contained the syllable “da” presented at varying fundamental 

frequencies that were no lower than Middle C (261.6 Hz), followed an ABA or ABB rule, 

and a musical contour of low-high-low or low-high-high, using the notes C, C#, D, F#, 

G#, A, and A# for the familiarization phase and E, F, D# and G for the test phase. All 

pitches were within a perfect fifth of Middle C (Table 1). Maintaining musical contour 

was essential, as contour provides vital information for identifying whether auditory 

information constitutes music or some other type of sound (Trehub et al., 1984). As 

previously described, Dawson & Gerken found that inconsistent musical contour might 

cause listeners to divert their attention from the actual pitches themselves and place more 

emphasis on the rising and falling patterns within the stimuli. Consistent musical contour 
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allowed the listeners to focus on the pitches, and made it more evident that the context 

was intended to be musical. 

Just as in the Syllable Only condition, the individual syllables were synthesized 

using the software program MBROLA (Dutoit et al., 1996), and the program Sound 

Studio 3 for Macintosh was again used to combine and order syllables into long AIFF 

files. Each syllable within a group was approximately 300 ms in duration, with a 250 ms 

gap between syllables and a 1 s pause between triplets. Each triplet was approximately 

1.4 s in length. Again, like the Speech Only condition, the familiarization phase 

contained 26 groups of stimuli and lasted approximately 1 min. Each test trial contained 2 

repetitions of each of 4 novel groups. Test trial order was random.   

 In the Simultaneous Speech/Pitch (SSP) condition, the phonemes and pitches in 

familiarization stimuli varied and followed conflicting rules. Thus, familiarization stimuli 

followed either a Speech ABA/Pitch ABB rule (i.e., syllables follow an ABA rule while 

pitches follow an ABB rule) or a Speech ABB/Pitch ABA rule (Table 1). In the test 

phase, participants heard four types of novel stimuli: 1) Pitch Inconsistent/Speech 

Consistent where the pitch sequence violated the rule established during familiarization 

but the syllable sequence followed the original rule, 2) Pitch Consistent/Speech 

Inconsistent, where syllables but not pitches violated the original rule, 3) Fully 

Consistent, where both the pitches and syllables followed the rules established during 

familiarization sequence, or 4) Fully Inconsistent, where both pitches and syllables 

violated the rules. The phonemes and pitches used in the familiarization and test phases 

of Speech Only and Pitch Only conditions were also used in the SSP condition. Just as in 

the control conditions, the familiarization phase contained 26 groups of stimuli and each 
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test trial contained 2 repetitions, but this time, with 8 novel groups. Test trials were 

random. 

Procedure 

All conditions of Experiment 1 contained a familiarization phase followed by a 

test phase. During familiarization, participants heard a sequence of sounds that all 

followed a general pattern or rule (i.e., units within a group followed an ABA or ABB 

order). During the test phase, participants then heard novel sound sequences that either 

obeyed or violated the rules established during familiarization. The participants’ task was 

to decide, for each test sequence, the extent to which that sequence followed the rule 

established during familiarization. Each participant took part in each of three stimulus 

conditions: Speech Only, Pitch Only, and Simultaneous Speech/Pitch (SSP). 

Initial instructions were given to each participant in verbal and written form (over 

a computer monitor). Each participant completed three experimental blocks, 

corresponding to the three conditions described above, with order of block (condition) 

and specific rule type (i.e., ABA or ABB) counterbalanced. Each block began with the 

familiarization phase, during which participants were instructed to listen to the sample of 

speech, pitch, or speech and pitch. After the familiarization phase, participants completed 

the test phase, during which were asked to rate how closely each test stimulus matched 

the rule established during the familiarization phase on a scale from 1 (“Did not follow 

rules at all”) to 9 (“Followed rules perfectly”). In all conditions and blocks, test stimulus 

types were ordered randomly. After the participant finished all three blocks, he or she 

was asked to complete a demographic/music information questionnaire, obtaining 
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information about any hearing problems, language background, and formal music 

training. 

 
 
 

 
Rule: ABB 

 
Familiarization Phase 

 
Test Phase 

Speech Condition 
(pitch level held 

constant at Middle C) 

 
ga ti ti,    ga na na,    ga la la,    li na na, 
li ti ti,      li la la,       ni ti ti,      ni la la, 
ta la la,    ni na na,    ta na na,   ta ti ti, 
ga gi gi 
 

de ko ko,  
de ko de 
wo fe fe 
wo fe wo 

Pitch Condition 
(syllable held constant 

at  “Da”) 

 
C#DD,     CC#C#,      AA#A#,      G#AA, 
CDD,       F#G#G#,    G#A#A#,    F#AA, 
DF#F#,    F#A#A#,    C#F#F#,      DAA, 
C#G#G# 
 

D#GG, 
D#GD#     

EFF 
EFE 

Simultaneous  
Speech/Pitch 

Condition 
(SSP) 

ga(C#)ti(D)ti,(C#)     ga(C)na(C#)na(C) 
ga(A)la(A#)la(A)      ni(G#)ti(A)ti(G#) 
li(C)ti(D)ti(C)            li(F#)la(G#)la(F#) 
ni(G#)ti(A#)ti(G#)    ni(F#)la(A)la(F#) 
ta(D)la(F#)la(D)        ni(F#)na(A#)na(F#)  
ta(C#)na(F#)na(C#)   ta(D)ti(A)ti(D) 
ga(C#)gi(G#)gi(C#) 
 

 
de(D#)ko(G)ko(G) 
de(D#)ko(G)ko(D#) 
wo(E)fe(F)fe(F) 
wo(E)fe(F)fe(E) 
de(D#)ko (G)de(D#) 
de(D#)ko(G)de(G) 
wo(E)fe(F)wo(E) 
wo(E)fe(F)wo(F) 
 

 
 

Table 1: Stimuli Distribution for ABB rule: Experiment 1. Note. Half of the subjects 
received the opposite rule (ABA) during the familiarization phase (Speech ABA/Pitch 

ABB in the SSP Condition). Here, the SSP Condition follows the rule sequence of 
Speech ABB/Pitch ABA. 
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CHAPTER 4 

RESULTS: EXPERIMENT 1 

Control Condition: Syllable-Only 

 Similarity ratings were submitted to a 2 x 2 (Test Item [inconsistent, consistent] x 

Familiarization Grammar [ABA, ABB]) mixed design Analysis of Variance (ANOVA), 

with Test Item as a within-subjects factor and Familiarization Grammar as a between-

subjects factor. This ANOVA yielded a main effect of Test Item, F(1,38) =100.177, p < 

.001. Figure 1 presents overall similarity ratings for consistent and inconsistent test items 

(averaged across the two grammars), and illustrates that participants gave lower similarity 

ratings to inconsistent test items (M = 2.11, SD = 1.66) than to consistent test items (M = 

7.03, SD = 2.26). There were no main effects of Familiarization Grammar, F(1,38) = 

.985, p < .327, and no interaction between Test Item and Familiarization Grammar, 

F(1,38) = 1.199, p < .280, which indicates that rules were readily learned regardless of 

whether they were ABA or ABB. This experiment thus replicates prior work (Marcus et 

al., 1999), demonstrating that adults readily infer rules on the basis of syllable patterns 

when pitch is held constant, as reflected by their accurate differential ratings of consistent 

and inconsistent test items.  

Control Condition: Pitch Contour-Only 

 Similarity ratings in the Pitch Contour-Only condition were submitted to a 2 x 2 

(Test Item [inconsistent, consistent] x Familiarization Grammar [ABA, ABB]) mixed 

design ANOVA, with Test Item as a within-subjects factor and Familiarization Grammar 

as a between-subjects factor. This ANOVA yielded a main effect of Test Item, F(1,38) = 

105.130, p < .001.  As shown in Figure 1, participants gave lower similarity ratings to 
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inconsistent test items (M = 2.86, SD = 2.19) than to consistent test items (M = 7.99, SD 

= 1.79). There were no main effects of Familiarization Grammar, F(1,38) = 2.120, p < 

.154, and no interaction between Test Item and Familiarization Grammar, F(1,38) = .398, 

p < .532. Thus, adults readily inferred rules on the basis of pitch contour, just as they did 

rules on the basis of syllable patterning.   

 Given claims made in prior work (Marcus et al., 2007) that speech is somehow 

privileged for rule-learning, it was important to ensure that no baseline differences 

existed in the difficulty of learning syllable and pitch contour rules. Ratings from both the 

Syllable-Only and Pitch Contour-Only conditions were submitted to a 2 x 2 (Test Item 

[inconsistent, consistent] x Domain [syllable, pitch contour]) repeated-measures 

ANOVA, yielding a main effect of Test Item, F(1,39) = 257.975, p < .0001, and a main 

effect of domain, F(1,39) = 11.144, p < .002, but no interaction between test item and 

domain, F(1,39) = .074, p < .788. Thus, participants’ similarity judgments were based on 

test item, and not whether the stimuli were presented as syllables or pitch. The main 

effect of domain suggests that participants may have attributed greater importance to 

individual syllables than to specific pitches. As such, they rated the inconsistent syllable 

triplets lower than pitch triplets when stimuli were both inconsistent (Ms=2.11 vs 

Mp=2.86) and consistent (Ms=7.11 vs. Mp=7.99). However, it does not appear that these 

potentially perceived differences made the Syllable-Only condition more difficult than 

the Pitch Contour-Only condition. Instead, it may simply imply that most participants had 

more experience with identifying speech components than exact pitches.  

Overall, these results clearly indicate that participants were able to accurately 

differentiate inconsistent from consistent test items, inferring rules regardless of the 
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specific rule presented during familiarization (ABA vs. ABB) and whether the rule was 

instantiated in syllable or pitch contour patterns.  

 

 

 

 
Figure 1: Similarity ratings for consistent and inconsistent test items in the Speech Only 

and Pitch Contour Only conditions of Experiment 1. 
 
 
 
 

Simultaneous Syllable/Pitch Contour Condition (SSP) 

In the SSP condition, subjects were presented with four test items instead of two, 

with each test item either conforming or not conforming to the syllable rule, the pitch 

contour rule, or both. For the statistical analysis, two factors were created to indicate 

whether or not the test item was consistent or inconsistent with the syllable rule (Test 
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Item Syllable), and to the pitch contour rule (Test Item Pitch Contour). Thus, similarity 

ratings in the SSP condition were submitted to a 2 x 2 x 2 (Test Item Syllable [consistent, 

inconsistent] x Test Item Pitch Contour [consistent, inconsistent] x Familiarization 

Grammar [Syllable ABA/Pitch Contour ABB, Syllable ABB/Pitch Contour ABA]) mixed 

design ANOVA, with Test Item Syllable and Test Item Pitch Contour as within-subjects 

factors and Familiarization Grammar as a between-subjects factor.  This analysis yielded 

a main effect of Test Item Syllable, F(1,38) = 86.28, p < .001, a main effect of Test Item 

Pitch Contour, F(1,38) = 29.54, p < .001, and an interaction between Test Item Syllable 

and Test Item Pitch Contour, F(1,38) = 61.28, p < .001.  The interaction occurred because 

participants’ discrimination of inconsistent and consistent test items differed by domain, 

such that violations in Syllable and Pitch Test Items were weighed differently.  

Figure 2 presents mean similarity ratings for each of the four test items. Using 

Bonferroni correction, planned post-hoc pairwise t-tests revealed that participants gave 

significantly higher similarity ratings to fully consistent items, M = 7.37, SD = 1.85, than 

to fully inconsistent items, M = 2.68, SD = 2.16, t(39) = 9.82, p < .01. Similarity ratings 

were also significantly higher for partially inconsistent items that violated the pitch 

contour rule, M = 6.07, SD = 2.70), than for partially inconsistent items that violated the 

syllable rule, M = 3.08, SD  = 2.67), t(39) = -3.87, p < .01, suggesting that a change of 

syllable structure had a greater impact on perceived similarity than did a change of pitch 

contour. Fully consistent items were rated significantly higher than partially inconsistent 

items, whether partially inconsistent items violated the syllable rule, t(39) = 7.48, p < 

.001 or pitch contour rule, t(39) = 3.22, p < .01. However, fully inconsistent items were 

only rated significantly less similar than partially inconsistent items when the difference 
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between the two test items involved a violation of the syllable rule, t(39) = 5.24, p < .01, 

and not when the difference involved the violation of a pitch contour rule, t(39) = 1.07, p 

= .293. This implies that test items were perceived as dissimilar whenever they violated 

the syllable rule, but that the additional violation of the pitch contour rule did not further 

distinguish fully inconsistent items.  

 
 
 

 
 

Figure 2: Mean Similarity Ratings for Fully Inconsistent, Syllable Violation, Pitch 
Contour Violation, and Fully Consistent Test Items in the Simultaneous Speech/Pitch 

condition of Experiment 1. 
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To summarize, results in the SSP condition imply that when familiarization 

stimuli contain conflicting syllable and pitch contour rules, syllables and pitch contour 

make asymmetrical contributions to post-familiarization similarity ratings. Specifically, 

participants were more likely to notice when the syllable rule was violated than when the 

pitch contour rule was violated.  
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CHAPTER 5 

DISCUSSION: EXPERIMENT 1 

 Results from the present experiment show that like infants (Marcus et al., 1999, 

2007) adults readily infer rules from monotone syllable sequences (Endress, Scholl, & 

Mehler, 2005). Our results indicated very low similarity ratings for inconsistent (novel) 

speech stimuli over the high-similarity-rated consistent (familiar) stimuli, suggesting that 

participants were successful in identifying the rule that was instantiated during the 

familiarization phase of the experiment.  

According to Marcus et al. (2007), rule-learning is better when rules are 

instantiated in speech (i.e., syllable patterns). However, results from the present study 

indicated that when pitch contour was maintained, adults readily learned rules on the 

basis of pitch patterns.  

One important contribution of the present experiments was to determine whether 

or not experienced listeners are able to infer rules in non-speech domains when those 

rules are domain-appropriate. Our results demonstrated that individuals were clearly able 

to learn rules when they were instantiated in a music-only context when the to-be-learned 

rule was consistent with predominant structures in music (e.g. melodic contour was 

maintained). These findings suggest that perhaps musical contour was a potentially 

confounding factor in Marcus et al.’s (2007) stimuli design because perhaps the infants 

were misled by the inconsistent contour, and were not able to discern which rule they 

were expected to learn. Individuals are certainly able to learn rules when they are 

presented in a speech context, and prior evidence suggests they are just as able to do so in 

a number of other non-speech domains (Fiser & Aslin, 2002; Kirkham et al., 2002; 
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Saffran et al., 1999), and our evidence suggesting they can learn contour rules over pitch 

sequences, lends further support to the notion that rule-learning is not exclusive to 

language and speech. 

The final condition of Experiment 1, however, indicates the presence of domain-

specific biases in adults, particularly in contexts when rules can be inferred from multiple 

and conflicting dimensions of sound. When listeners in the present study were 

familiarized to conflicting syllable and pitch contour rules, they subsequently gave lower 

similarity ratings to any test stimulus that presented inconsistent syllable patterns, 

regardless of pitch contour. This supports the contention that listeners weigh syllable and 

pitch contour differently when those dimensions conflict by giving more weight to the 

speech-relevant dimension (syllable patterning) than to the less speech-relevant 

dimension (pitch contour).  

Together, findings across three conditions in Experiment 1 suggest that adults are 

readily able to infer rules from sequences on the basis of either speech (syllable), or 

melody (pitch), but that when speech and pitch dimensions are in conflict, adults focus 

almost exclusively on syllable patterns, and virtually ignore pitch contour. If the findings 

of Dawson & Gerken (2009) are indicative of not just older infants, but how all 

experienced listeners respond, this may explain why previous studies have failed to find 

rule-learning in a pitch context. This possibility would help provide an explanation as to 

why the infants in the Marcus et al. (2007) study responded so differently to the language 

and music stimuli.  

In the present study, it was highly likely that the presence of syllables prompted 

listeners to interpret the context as linguistic, thus causing them to place more weight on 
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the language-relevant information when both speech and pitch dimensions varied 

simultaneously. However, another possibility was that listeners simply found spectral 

variation more salient than pitch variation. If this is true, then individuals should also 

attend to other forms of spectral structure when paired with varying pitches.  

 To test this theory, Experiment 2 examines rule-learning in a music context, 

replacing speech syllables with musical instrument timbres. If rule-learning is context-

dependent, participants in Experiment 2 should direct their attention to pitch, a music-

relevant dimension of sound, and ignore or attend less to timbre, a dimension irrelevant to 

music. However, if it is true that listeners simply find spectral structure a more salient 

dimension regardless of domain or context, participants will base their similarity ratings 

on whether the timbral pattern is consistent or inconsistent with the familiarization 

sequence, rather than placing emphasis on what rules the pitch patterns are following.  

 Timbre can be a salient dimension in some musical instances, particularly when 

factoring in musical experience. Pitt & Crowder (1992) had both trained and untrained 

listeners judge whether two consecutively presented notes had the same pitch. The notes 

were played by one of two different synthesized instruments (one similar to a car horn 

and one similar to an organ) at three different pitch levels. Musicians with six or more 

years of musical training were better able to identify timbre differences than individuals 

with little or no musical training, who tended to focus on the pitch differences.  Similarly, 

when attempting to recognize melodies, musicians have a harder time than nonmusicians 

ignoring variation in timbre (Poulin-Charronnat et al, 2004). After hearing nine musical 

excerpts all played by the same instrument/timbre (a piano or an orchestra), musicians 

had greater difficulty recognizing previously heard excerpts played by a novel instrument 
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than played by the same instrument. By contrast, nonmusicians had poor recognition that 

was not affected by instrumentation. This evidence suggests that timbre is a salient 

feature of musical patterns, at least for musicians. 

However, past research has suggested that timbre is perceived in absolute (exact) 

form, more often than in relative form. This is what makes it possible to identify different 

speakers simply by the sounds of their voices. In a musical context, it means that listeners 

are typically able to identify an instrument based solely on its timbre. Krumhansl & 

Iverson (1992) found that, in stimuli containing both pitch and timbre information, pitch 

perception was largely unaffected by instrument timbre, and participants did equally as 

well in pitch recognition tasks, regardless of whether the timbre remained constant or 

varied. Furthermore, as Patel (2008) pointed out, most normal music is not organized 

around timbral contrasts because many musical instruments are capable of producing a 

multitude of different timbres, and thus, this lack of uniformity often makes the intervals 

between the varying timbres difficult, if not impossible to identify. Another possibility 

may be that timbre is so multi-dimensional that determining an “interval” between two 

timbral sounds would be much less straight-forward than identifying an interval between 

two pitches, which have much clearer frequencies and pitch class dimensions. 

In the following experiment, participants will be familiarized with stimuli that are 

Timbre-Only, Pitch-Only, or both Timbre and Pitch played simultaneously, similar to 

Experiment 1. If Krumhansl & Iverson (1992) are correct by suggesting that timbre 

variation does not affect pitch perception unless pitch remains constant, participants will 

be successful in providing high similarity ratings for consistent stimuli, as well as low 

similarity ratings for inconsistent stimuli in both the Timbre-Only and Pitch-Only 
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conditions. These findings would be consistent with the results of Experiment 1 in 

demonstrating that, contrary to the claims of Marcus et al. (2007), rule-learning is 

possible when language-specific information is not present.  

Moreover, if Patel (2008) is accurate in suggesting that pitch changes are typically 

more salient than timbral changes, in the Simultaneous Timbre/Pitch (STP) condition, 

participants will be more likely to base their similarity ratings on pitch-based rules, 

ignoring timbral rules in the process. This finding would support the argument that 

listeners use pitch cues (including contour) more readily than timbre when they perceive 

a music-based context. However, if the assumptions of Krumhansl & Iverson (1992) and 

Patel (2008) are incorrect, and listeners do not focus on pitch-based rules, but rather place 

a greater emphasis on timbre in the Simultaneous Timbre/Pitch condition, it will suggest 

that they are attending more to spectral structure when inferring patterns from auditory 

sequences. 

As in Experiment 1, pitch contour will remain constant to determine whether it 

plays a different role in a music context vs. a speech context, because contour is a very 

important aspect of what allows an individual to perceive something as being musical. If 

context has no effect, then pitch contour should play the same role in both experiments. 

However, if context is relevant to the listener, then consistent pitch contour will be 

essential to the stimuli.  
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CHAPTER 6 

METHODOLOGY 

EXPERIMENT 2: RULE-LEARNING IN A MUSIC CONTEXT 

Participants, Apparatus, and Procedure 

 Forty new participants with normal hearing between the ages of 18-40 years were 

recruited from the subject pool at the University of Nevada, Las Vegas and received 

course credit. The sample consisted of 22 females and 18 males, aged 18 to 40 years (M = 

20.2). Participants ranged in formal music training from 0 to 18 years (M = 2). All other 

aspects of the apparatus and procedure were identical to Experiment 1. 

Stimuli 

Stimuli in Experiment 2 were identical to those used in Experiment 1, except that 

instead of syllables, sequential changes in spectral structure were created using 

instrumental timbre rather than speech syllables. Subjects therefore participated in each 

of three testing conditions: Timbre Only, Pitch Only and Simultaneous Timbre/Pitch 

(STP). For the Instrument Only condition, rules were presented as sequential changes in 

instrumental timbre, such as flute-violin-flute (ABA) or flute-violin-violin (ABB) (Table 

2). Rules were therefore defined by changes in instrumental timbre, while pitch was held 

constant. Thirteen instrumental timbres, each set at 261.6 Hz (or middle C) were created 

using Propellerhead Reason 4.0 synthesizer/sampling software. Test stimuli (Table 2) 

contained entirely novel instrument timbres arranged in triplet patterns that were 

consistent or inconsistent with the rule that was established during familiarization. 

Timbres were based off of those used by Marcus et al. (2007). To ensure that timbres 

were sufficiently distinctive, all possible instrument timbre pairings were rated using a 
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scale of 1 (“Did not sound alike at all) to 5 (“Sounded exactly alike”). Only timbre 

pairings with an average rating of 2.5 to 3.5 were selected as stimuli. Each instrument 

within a triplet was approximately 500 ms in duration, with a 250 ms gap between 

timbres and a 1 s gap between triplets. Each triplets lasted approximately 2 s. The 

familiarization phase contained 26 triplets of stimuli and lasted approximately 1 min 3 s. 

Each test trial contained 2 repetitions of each of 4 novel triplets. Test trial order was 

random. 

In the Pitch Only condition, rules were presented through changes in fundamental 

frequency while instrument was held constant. This condition was identical to the Pitch 

Only condition of Experiment 1, except that instead of using the syllable “da” to 

represent each pitch, a flute timbre was used. The STP Condition was identical to the SSP 

condition of Experiment 1, except that instrumental timbres and pitches presented the 

conflicting rules. 
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Rule: ABB 
 

Familiarization Phase 
 

Test Phase 

Instrument Condition 
(Pitch level held 

constant at Middle C) 

 
bell-flute-flute            harp-piano-piano 
bell-vib-vib                piano-bell-bell 
flute-harp-harp           piano-vib-vib 
flute-piano-piano        sax-org-org 
guitar-harp-harp         sax-vib-vib 
guitar-org-org             vib-org-org 
harp-org-org 
 

clar-frh-clar 
clar-frh-frh 

trum-viol-trum 
trum-viol-viol 

Pitch Condition 
(Timbre held constant 

at Flute) 
 

 
C#DD,     CC#C#,      AA#A#,      G#AA, 
CDD,       F#G#G#,    G#A#A#,    F#AA, 
DF#F#,    F#A#A#,    C#F#F#,      DAA, 
C#G#G# 

 

D#GG, 
D#GD#     

EFF 
EFE 

Simultaneous 
Timbre/Pitch 

Condition 
(STP) 

 

 
bell(C#)-flute(D)-flute(C#) 

bell(C)-vib(C#)-vib(C) 
flute(A)-harp(A#)-harp(A) 

flute(G#)-piano(A)-piano(G#) 
guitar(C)-harp(D)-harp(C) 

guitar(F#)-org(G#)-guitar(F#) 
harp(G#)-org(A#)-org(A#) 

harp(F#)-piano(A)-piano(F#) 
piano(D)-bell(F#)-bell(D) 
piano(F#)-vib(A#)-vib(F#) 
sax(C#)-org(F#)-org(C#) 

sax(D)-vib(A)-vib(D) 
vib(C#)-org(G#)-org(C#) 

 

clar(D#)-frh(G)-clar(D#) 
clar(D#)-frh(G)-frh(G) 
clar(D#)-frh(G)-frh(D#) 
clar(D#)-frh(G)-clar(G) 
trum(E)-viol(F)-trum(E) 
trum(E)-viol(F)-viol(F) 
trum(E)-viol(F)-viol(E) 
trum(E)-viol(F)-trum(F) 

 

 
 

Table 2: Stimuli Distribution for ABB rule in Experiment 2. Note: Half of the subjects 
received the opposite rule (ABA) during the familiarization phase (Instrument ABA/Pitch 

ABB in the STP Condition). Here, the STP Condition follows the rule sequence of 
Timbre ABB/Pitch ABA. Instrumental abbreviations are as follows: “viol”=violin, 

“clar”=clarinet,, “frh”=french horn, “org”=organ, “trum”=trumpet, “sax”=saxophone, 
“vib”=vibraphone. 
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CHAPTER 7 

RESULTS: EXPERIMENT 2 

Control Condition: Instrument Timbre-Only 

 Similarity ratings were submitted to a 2 x 2 (Test Item [inconsistent, consistent] x 

Familiarization Grammar [ABA, ABB]) mixed design ANOVA, with Test Item as a 

within-subjects factor and Familiarization Grammar as a between-subjects factor. This 

ANOVA yielded a main effect of test item, F(1,38) =56.24, p < .001. Figure 3 presents 

overall similarity ratings for consistent and inconsistent test items (averaged across the 

two grammars), and illustrates that participants gave lower similarity ratings to 

inconsistent test items (M = 2.88, SD = 2.54) than to consistent test items (M = 7.77, SD 

= 2.17). There were no main effects of Familiarization Grammar, F(1,38) = 0.77, p = 

.386, and no interaction between Test Item and Familiarization Grammar, F(1,38) = 0.57, 

p = .457.  

Control Condition: Pitch Contour-Only 

 Similarity ratings in the Pitch Contour-Only condition were submitted to a 2 x 2 

(Test Item [inconsistent, consistent] x Familiarization Grammar [ABA, ABB]) mixed 

design ANOVA with Test Item as a within-subjects factor and Familiarization Grammar 

as a between-subjects factor. This ANOVA yielded a main effect of Test Item, F(1,38) = 

40.21, p < .001. As shown in Figure 3, participants gave lower similarity ratings to 

inconsistent test items (M = 2.76, SD = 2.49) than to consistent test items (M = 7.51, SD 

= 2.47). There were no main effects of Familiarization Grammar, F(1,38) = 0.01, p = 

.927, and no interaction between Test Item and Familiarization Grammar, F(1,38) = 0.64, 
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p = .430, indicating that rule-learning was unaffected by the form of the grammar (ABA 

vs. ABB). 

 Again, to ensure that no baseline differences existed in the difficulty of learning 

instrument timbre and pitch contour rules, participants’ similarity judgments from both 

the Timbre-Only and Pitch Contour-Only conditions were combined and submitted to a 2 

x 2 (Test Item [consistent, inconsistent] x Domain [Timbre, Pitch Contour]) mixed-

design ANOVA, where Test Item was within-subjects and Domain was between-subjects. 

This ANOVA confirmed that performance varied by Test Item, F(1,39) = 77.20, p < 

.001, but, unlike Experiment 1, did not vary by Domain, F(1,39) = 0.75, p < .391, with no 

interaction between Test Item and Domain, F(1,39) = 0.03, p < .875. The lack of a main 

effect of domain may simply be due to participants perceiving both the instrument 

timbres and pitches as musical in nature, and thus, did not find one to have more distinct 

differences than the other. In other words, participants readily inferred rules in both 

baseline conditions and did so equally well whether learning instrument timbre rules or 

pitch contour rules. 

Overall, these results provide clear evidence that participants were able to 

accurately differentiate inconsistent from consistent test items, inferring rules regardless 

of the specific rule presented during familiarization (ABA vs. ABB) and whether the rule 

was instantiated in timbre or pitch contour patterns. 
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Figure 3: Similarity ratings for Consistent and Inconsistent test items in the Timbre Only 

and Pitch Contour Only conditions of Experiment 2. 
 
 
 

 
Simultaneous Timbre/Pitch Contour Condition (STP) 

 As in Experiment 1, subjects were presented with four test items instead of two, 

with each test item conforming or not conforming to the timbre rule, the pitch contour 

rule, or both. Again, two factors were created to indicate whether or not the test item was 

consistent with the timbre rule (Test Item Timbre) and to the pitch contour rule (Test 

Item Pitch Contour). Similarity ratings in the STP condition were submitted to a 2 x 2 x 2 

(Test Item Timbre [consistent, inconsistent] x Test Item Pitch Contour [consistent, 

inconsistent] x Familiarization Grammar [Timbre ABA/Pitch Contour ABB, Timbre 

ABB/Pitch Contour ABA]) mixed design ANOVA, with Test Item Timbre and Test Item 
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Pitch Contour as within-subjects factors and Familiarization Grammar as a between-

subjects factor.  This analysis yielded a main effect of Timbre Test Item, F(1,38) = 4.818, 

p < .05 a main effect of Pitch Test Item, F(1,38) = 31.549 , p < .001, and an interaction 

between Timbre Test Item and Pitch Test Item, F(1,38) = 6.959, p < .01. This interaction 

indicates that participants’ discrimination of inconsistent and consistent test items 

differed by domain, such that violations in Timbre and Pitch Test Items were weighed 

differently. 

 Figure 4 presents mean similarity ratings for each of the four test items. Using 

Bonferroni corrected ost-hoc pairwise t-tests revealed that participants gave significantly 

higher similarity ratings to fully consistent test items, M = 6.66, SD = 2.43, than to fully 

inconsistent test items, M = 3.22, SD = 2.31, t(39) = 5.54, p < .01. Similarity ratings were 

also significantly higher for partially consistent test items that maintained the pitch 

contour rule, M = 4.93, SD = 3.03, than for test items that maintained the timbre rule, M = 

3.37, SD = 2.51, t(39) = -2.33, p < .05, suggesting that a change of pitch structure had a 

greater impact on perceived similarity than did a change in timbre. Fully consistent items 

were rated significantly higher than partially inconsistent items, whether partially 

inconsistent items violated the timbre rule, t(39) = 2.93, p < .01, or pitch contour rule, 

t(39) = 5.76, p <.01. However, fully inconsistent items were only rated significantly less 

similar than partially inconsistent items when the pitch rule was maintained (and the 

timbre rule violated), t(39) = 3.06, p <.01. Ratings did not differ between fully 

inconsistent and partially inconsistent items that maintained the timbre rule (and violated 

the pitch contour rule), t(39) = .34, p =.739. This implies that test items were perceived as 
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dissimilar whenever they violated the pitch rule, but also that additional violation of the 

timbre rule did not further distinguish fully inconsistent items.  

 
 

 
  

Figure 4: Mean Similarity Ratings for Fully Inconsistent, Timbre Pitch Violation, Pitch 
Contour Violation, and Fully Consistent Test Items in the Simultaneous Timbre/Pitch 

condition of Experiment 2 
 

 

To summarize, results in the STP condition imply that when familiarization 

stimuli contain conflicting timbre and pitch contour rules, timbre and pitch contour make 

asymmetrical contributions to post-familiarization similarity ratings. Specifically, 

participants were more likely to notice when the pitch contour rule was violated than 

when the timbre rule was violated. 
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CHAPTER 8 

DISCUSSION: EXPERIMENT 2 

Individuals may develop speech and music biases that allow them to infer rules 

depending on what information is the most contextually relevant. In Experiment 1, by 

pairing syllable and pitch trios that followed conflicting rule patterns, individuals paid 

more attention to the syllabic information, ignoring the pitch information. Two possible 

explanations for this finding were that 1) individuals generally attend more to spectral 

structure than fundamental frequency when inferring rules from auditory sequences; or 2) 

individuals believed they were operating within a speech context, and thus found the 

syllabic information most salient as a domain-relevant cue. The purpose of Experiment 2, 

then, was to tease apart these two possibilities. 

 In this study, results showed that listeners based their similarity ratings on 

whether the pitch contour rules were similar with familiarization, and tended to ignore the 

timbral patterns, regardless of whether or not the information violated or conformed to 

the established timbre rules. This suggests that domain-specific biases lead listeners to 

focus more on the pitch contour, due to the perception of a more musically oriented 

context. These domain-specific biases appear to drive pattern learning in a way such that 

a more music-like context leads listeners to focus on the pitch contour, which is typically 

more music-relevant than instrument timbre. These findings confirm that listeners were 

not simply drawn to pay more attention to spectral structure overall, but rather, that 

perceived context plays a role in what auditory information is deemed most appropriate 

or relevant at a given time. 
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Results from Experiment 2 indicated that, while in the baseline conditions, 

listeners readily differentiate between consistent and inconsistent stimuli (just as in 

baseline conditions of Experiment 1). However, when spectral structure (now instrument 

timbre) and fundamental frequency (pitch) were pitted against one another, listeners 

gravitated toward following the rules instantiated in pitch contour and ignoring the timbre 

patterns. These findings are completely opposite to those of Experiment 1, where 

listeners placed greater emphasis on the rules presented through the spectral structure 

(speech syllables) than the fundamental frequency (pitch contour).  

In Marcus et al.’s (2007) timbre study, seven-month-old infants were not able to 

infer rules from any nonlinguistic familiarization stimuli. Marcus et al. took these 

findings to imply that infants are not able to extract rules in non-speech contexts, and 

suggested that perhaps, from as early as birth, infants simply prefer listening to speech 

over other forms of auditory sounds including animal sounds, instrument timbres, tones, 

and sine-wave analogues, possibly due to speech being highly familiar or salient. Dawson 

& Gerken’s (2009) findings confirmed that 7.5-month-old infants were not able to detect 

rules in stimuli containing chords and tones; however, they also found that 4-month-old 

infants succeeded with the same stimuli. This finding could imply that acquired domain-

specific musical knowledge (.e.g of the primacy of pitch contour) was interfering more 

with the performance of older infants than with that of younger infants. If this type of 

domain-specificity continues to develop over time, then it should be evident in adults’ 

inference of rules over pitch or timbre sequences in speech or music contexts. In the case 

of the present experiment, the adult listeners appeared to have such domain-specific 

music knowledge, and thus, were biased to infer rules from the pitch information more 
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often than the timbral information, which is less likely to be meaningful in a musical 

context.  

This bias is consistent with a “musical mode” of listening because over time and 

with exposure to music, individuals learn that sequences of timbre are not meaningful, 

whereas sequences of relative pitch are meaningful in a music context. When listening to 

an orchestra play, for example, a single instrument typically plays the key melody, and 

only rarely (such as in the 20th century genre of notoriously challenging “total serialism”) 

do separate instruments play each note of a melody. Similarly, Patel (2008) points out 

that very few instruments are actually organized around their various timbral contrasts 

(one notable exception being the Australian didgeridoo). As mentioned previously, most 

musical instruments are capable of producing multiple timbral contrasts, and there is not 

necessarily a defined way to measure the perceptual distance from one timbre to another. 

This is unlike pitch, which does have a system of intervals that are fairly recognizable.  

Conversely, when listening to someone speaking, individuals typically pay more 

attention to the words being spoken to obtain the most meaning. This is not to say that 

timbre and pitch, respectively, are completely irrelevant acoustic elements in speech. 

Instead, it merely suggests that depending on the perceived context, they may not be the 

most salient components of the auditory stimuli. 
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CHAPTER 9 

GENERAL DISCUSSION 

 Overall, the present studies aimed to examine whether or not the capacity to infer 

patterns from sound sequences is unique to language, as claimed by Marcus et al. (2007), 

or instead varies by context and according to listeners’ knowledge of the dimensions of 

sound that are relevant or irrelevant in that context. The results of the present experiments 

support the latter by documenting domain-specific biases that probably emerge over the 

course of development, and that lead listeners to weight information differently 

depending on context. Thus, through exposure to the auditory structure in music and 

language domains, listeners learn to direct their focus toward the information that is most 

likely to be important in each context and to ignore information that does not tend to be 

useful. 

 The results of the present study, as well as other findings, demonstrating rule-

learning from sequences of tones (Dawson & Gerken, 2009), animal faces (Saffran et al., 

2007), objects (Fiser & Aslin, 2002) and colored shapes (Kirkham et al., 2002) clearly 

challenge the notion that rule-like learning is specific to language, as suggested by 

Marcus et al. (2007). Rather, these studies and the present evidence lend support to the 

growing evidence that abstract rule-learning is possible in multiple domains. 

Through exposure to structured sound in the world throughout infancy, childhood, 

and adulthood, listeners acquire and maintain perceptual and cognitive networks that 

structure their systems of norms, beliefs, and values (Demorest et al., 2008). Through this 

acquired knowledge, individuals may also gain speech and music biases that begin to 

develop as early as 10-12 months of age, and become increasingly domain-specific as 
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they grow older. Thus, even though adults may be perfectly competent at learning rules in 

different domains, the domain-specific context may determine which rules they will 

choose to follow. 

 To better determine whether these domain-specific biases are learned or innate, a 

future direction for research would be to examine how infants differentially weigh 

spectral vs. pitch information using a preferential looking paradigm. If domain-specific 

biases are innate, then infants should show preferences for spectral or pitch information 

depending on the context in which it is presented, as with the present adult studies. 

However, if domain-specific biases are learned over time, then younger infants should 

not exhibit the adult-like tendency to weigh syllable patterning over pitch contour in the 

speech context, and pitch contour over timbre patterning in a music context. In other 

words, unlike adults, young infants would be expected to treat any inconsistent test item 

as novel, whether that item violates a rule based on spectral structure or pitch contour. By 

contrast, older infants or children might begin to show context-dependent biases, favoring 

spectral information in a speech context (Marcus et al., 2007), and pitch contour 

information in a music context.  
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