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ABSTRACT 

The development of type 2 diabetes over time involves defects in insulin action 

and insulin secretion. Defects in insulin action alone can be compensated with 

appropriate hyperinsulinemia. However, the progressive loss of pancreatic beta-cell 

function leads eventually to the development of persistent hyperglycemia that 

characterizes type 2 diabetes. Insulin secretion patterns reflect two phases when beta-cells 

are exposed to acute and sustained glucose stimulation. Through the study and 

understanding of the roles of these two phases in the regulation of glucose homeostasis, it 

is clear that insulin must not only be secreted in sufficient amounts, but also at the right 

time.  In type 2 diabetes, the timing and magnitude of insulin secretion are altered, and an 

abnormal first-phase release initiates before the onset of the disease. Only a few 

pharmacokinetic/pharmacodynamic (PK/PD) models have considered the biphasic nature 

of insulin secretion. This study is aimed at describing the biphasic dynamics of insulin 

secretion through developing a PK/PD model based on current knowledge of the cellular 

mechanism of biphasic insulin secretion.  

The objectives of this work are to 1) evaluate the insulin-glucose kinetics using 

nonparametric analysis, 2) develop a physiologically based mechanistic PK/PD model to 

dynamically describe the biphasic insulin secretion, 3) evaluate the impact of ethnicity on 

insulin secretion kinetics following an intravenous glucose administration using 

population analysis and 4) extend the proposed model to oral glucose administration and 

utilize the co-secretion kinetics of insulin and C-peptide in a population PK/PD analysis 

of the prehepatic insulin secretion. 

Population analysis was done using a nonlinear mixed-effects model combined 

with the proposed PK/PD model to estimate population parameters and their variations 

between- and within-subjects and the covariates’ effects on model parameters. The 

proposed model describes biphasic insulin behavior, accounts for first-phase insulin 
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secretion, and also applies to oral glucose administration for estimating prehepatic insulin 

secretion in vivo and in liver extraction. This is done by an analysis that simultaneously 

uses plasma insulin and C-peptide concentrations. A significantly higher first-phase 

insulin secretion was identified in healthy youths of African-American compared to 

Caucasians. The analysis showed no significant differences in the clearance of insulin 

from the plasma and the liver extraction of insulin between subjects with various levels of 

glucose tolerance. Obesity leads to a higher insulin production rate and lower elimination 

rate from the plasma than normal weight subjects. Also, type 2 diabetes and impaired 

glucose tolerance were found to reduce insulin production rate and resulted in a delayed 

insulin secretion from the beta-cells. 
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ABSTRACT 

 The development of type 2 diabetes over time involves defects in insulin action 

and insulin secretion. Defects in insulin action alone can be compensated with 

appropriate hyperinsulinemia. However, the progressive loss of pancreatic beta-cell 

function leads eventually to the development of persistent hyperglycemia that 

characterizes type 2 diabetes. Insulin secretion patterns reflect two phases when beta-cells 

are exposed to acute and sustained glucose stimulation. Through the study and 

understanding of the roles of these two phases in the regulation of glucose homeostasis, it 

is clear that insulin must not only be secreted in sufficient amounts, but also at the right 

time.  In type 2 diabetes, the timing and magnitude of insulin secretion are altered, and an 

abnormal first-phase release initiates before the onset of the disease. Only a few 

pharmacokinetic/pharmacodynamic (PK/PD) models have considered the biphasic nature 

of insulin secretion. This study is aimed at describing the biphasic dynamics of insulin 

secretion through developing a PK/PD model based on current knowledge of the cellular 

mechanism of biphasic insulin secretion.  

The objectives of this work are to 1) evaluate the insulin-glucose kinetics using 

nonparametric analysis, 2) develop a physiologically based mechanistic PK/PD model to 

dynamically describe the biphasic insulin secretion, 3) evaluate the impact of ethnicity on 

insulin secretion kinetics following an intravenous glucose administration using 

population analysis and 4) extend the proposed model to oral glucose administration and 

utilize the co-secretion kinetics of insulin and C-peptide in a population PK/PD analysis 

of the prehepatic insulin secretion. 

Population analysis was done using a nonlinear mixed-effects model combined 

with the proposed PK/PD model to estimate population parameters and their variations 

between- and within-subjects and the covariates’ effects on model parameters. The 

proposed model describes biphasic insulin behavior, accounts for first-phase insulin 
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secretion, and also applies to oral glucose administration for estimating prehepatic insulin 

secretion in vivo and in liver extraction. This is done by an analysis that simultaneously 

uses plasma insulin and C-peptide concentrations. A significantly higher first-phase 

insulin secretion was identified in healthy youths of African-American compared to 

Caucasians. The analysis showed no significant differences in the clearance of insulin 

from the plasma and the liver extraction of insulin between subjects with various levels of 

glucose tolerance. Obesity leads to a higher insulin production rate and lower elimination 

rate from the plasma than normal weight subjects. Also, type 2 diabetes and impaired 

glucose tolerance were found to reduce insulin production rate and resulted in a delayed 

insulin secretion from the beta-cells. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Diabetes is a group of metabolic disorders characterized by chronic 

hyperglycemia which can lead to a dysfunction and damage of various organs, such as 

eyes, kidney, heart and nerves. It is one of the major public health threats in the United 

States. According to the Center for Disease Control (CDC) 2007 report (1), the 

prevalence of diabetes is 7.8% which equates to 23.6 million people who have diabetes.  

Furthermore, 25.9% of adults aged 20 years and older have prediabetes. The national cost 

of diabetes in 2007 is $174 billion. Type 1 diabetes (T1D) is characterized by the 

inability of the pancreas to produce insulin, thus insulin injections are required to survive. 

Type 2 diabetes (T2D) usually begins with insulin resistance, and subsequent inadequate 

insulin secretion. In adults, T2D accounts for about 90% to 95% of all diagnosed cases of 

diabetes. 

For these reasons, early diagnosis and adequate treatment are important to 

decrease the long-term adverse effects of diabetes. Insulin resistance has been considered 

the major factor that contributes to the development of T2D. However, insulin resistance 

alone does not appear to be enough to cause diabetes. The development of overt diabetes 

is associated with a decline in beta-cell secretion. In patients with T2D or at the early 

stage of type 2 diabetes, the first-phase secretion is lost. In addition, recent evidence (2) 

found that defects in beta-cells’ insulin secretion occurred earlier than previously 

understood. Therefore, reliable estimation of insulin secretion is required in 

understanding the pathogenesis of T2D. 

The study of beta-cell secretory function can significantly benefit from PK/PD 

modeling because measuring insulin secretion from the pancreas is invasive and 

clinically impossible in human. The mechanism underlying the biphasic nature of insulin 

secretion is still not fully understood, but there have been new findings in recent years. 
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Population analysis is useful in detecting the impact of various covariates such as 

ethnicity, obesity, and glucose tolerance on insulin secretion. Thus, population analysis is 

valuable for a better understanding of the pathogenesis of diabetes.  

1.2 Insulin  

The discovery of insulin by Banting, Best, Macleod, and Collip in 1921 (3) 

changed the treatment of diabetes forever. Insulin is a small protein hormone with a 

molecular weight of 5800 Daltons and structured with 51 amino acids in two chains, the 

A and B chain, closely linked by two disulfide bonds (4). Insulin is produced by the beta-

cells of the islets of Langerhans which are groups of tightly aggregated endocrine cells 

(such as the α-cell, β-cell, δ-cell and PP-cell) scattered throughout the pancreatic tissue 

(5). The biosynthetic cascade of insulin is outlined in Figure 1.1. Insulin is initially 

produced as a single-chain preproinsulin (6) and secreted to the endoplasmic reticulum. 

Within the endoplasmic reticulum, the signal sequence of preproinsulin is removed and 

the polypeptide is folded into proinsulin (7). Proinsulin is  then converted to insulin by 

clipping a C-peptide (CP) segment that links the A and B chains during transportation 

from the endoplasmic reticulum to the Golgi apparatus (8-10). There are two normal 

cleavage sites indicated by the arrows in the Figure 1.1. Finally, the resulting insulin 

molecules along with the CP segments are packaged together into secretory granules for 

secretion or degradation.  

1.3 Regulation of blood glucose between meals 

Plasma glucose levels are maintained in a narrow range between 70 to 120 mg/dl 

in healthy individuals between meals. Tight control depends on the interplay between 

many hormones that regulate glucose production and disposal. Insulin is the primary 

hormone that lowers glucose concentrations, while glucagon produced by the alpha-cells 

of pancreas is the major hormone that counters insulin’s effects. During the fasting state 

(Figure 1.2B), insulin concentrations are at the basal level and the low blood glucose 
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triggers the secretion of glucagon. Glucagon stimulates breakdown of glycogen into 

glucose via gluconeogenesis in the liver (11, 12). During the fed state (Figure 1.2A), 

consumption of carbohydrates increases glucose concentration in the blood. The rise in 

glucose stimulates the release of insulin from beta-cells and minimizes glucagon 

secretion.  This promotes glucose uptake into liver- storing glucose as energy for later use 

and suppressing hepatic production of glucose. Insulin also stimulates glucose uptake into 

muscle and adipose tissues. In mammals, up to 75% of insulin-dependent glucose 

disposal occurs in skeletal muscle (13-15). Adipose tissue accounts for only a small 

fraction (5%-15%).  

1.4 Insulin clearance 

Insulin clearance includes hepatic extraction, peripheral utilization and 

degradation. Insulin is stored in beta-cells as secretory granules. Only a small amount of 

insulin granules undergo exocytosis, the majority is retained in the so-called intracellular 

storage pool (16, 17). The storage pool is not static and is replenished constantly. Young 

granules are preferentially released, while the granules that do not undergo exocytosis are 

ultimately degraded in the cell. The intracellular degradation is a slow process with an a 

estimated half-life of 3-5 days (18).  

The elimination half-life of insulin from plasma is a brief 4-6 minutes, as would 

be expected in order to react rapidly to changes in glucose levels (19, 20). The liver and 

kidneys are the primary sites of insulin clearance. The liver removes approximately 50% 

of insulin released from the pancreas (21, 22), but the number varies widely under 

different physiological conditions (23, 24). The kidneys are the major sites that remove 

insulin from the systemic circulation, removing 50% of peripheral insulin (25-27) via 

glomerular filtration and degradation (26-28). It is reported that 99% of filtered insulin is 

reabsorbed by the proximal tubule cells (29) and then degraded. Relatively small amounts 

of insulin are excreted into the urine. The insulin not removed by the liver and kidneys is 
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cleared by other tissues. All insulin-sensitive cells are involved in clearance and 

degradation, but muscle accounts for the majority of insulin removal. 

1.5 Biphasic insulin secretion 

Insulin secretion shows a biphasic pattern (Figure 1.3) in healthy people when the 

pancreas is exposed to an abrupt and sustained rise in glucose, as observed in a glucose 

clamp test or intravenous gluocose tolerance test (IVGTT). The first-phase is defined by 

an early burst in insulin secretion within a few minutes, while the following second-phase 

develops gradually. The magnitude of both the first and second-phase is dose dependent. 

In addition, repeating the stimulus leads to a subsequent increase in insulin response (30) 

as shown in Figure 1.4. In the study of perfused rat pancreas in response to repeated 

stimulation by glucose in short intervals, the first-phase insulin response is not found. If 

longer time intervals are used, an augmentation of the first-phase insulin secretion is 

observed at the second stimulation. Thus, the magnitude of first-phase secretion is 

dependent on the pancreas’ past history of glucose stimulation.  

The first-phase is necessary for the maintenance of glucose homeostasis. The 

primary role of first-phase insulin secretion is to suppress hepatic glucose production 

quickly (31). The abolition of first-phase insulin secretion in normal subjects causes 

excessive postprandial glycemia (31, 32). The loss of first-phase secretion is quite 

common in both T1D (33-35) and T2D (36). A number of studies have shown that a 

reduction or a complete loss of the first-phase secretion is characteristic during the 

transformation from normal glucose to impaired glucose tolerance and eventually overt 

T2D. There are no distinct first-phase insulin secretions under normal physiological 

conditions, even after meals.  

It has been found that 99% of insulin granules are secreted from beta-cells via 

regulated secretion (18), but the mechanism underlying biphasic exocytosis is not well 

understood. One main explanation suggests that biphasic secretion is related to the 
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existence of distinct insulin pools in the beta-cells in terms of the distance to the beta-cell 

membrane (16, 37, 38). The ‘readily releasable’ pool refers to insulin granules docked on 

the cell membrane that can be released directly in response to the stimulus, thus leading 

to first-phase secretion. Second-phase insulin secretion is derived from newly synthesized 

insulin granules within the cell. These granules need to translocate to the membrane 

before exocytosis. Recent investigations revealed that the first- and second-phase 

exocytosis are mechanistically different (39, 40). The evidence demonstrates docked 

insulin fuses with the membrane only at the site of a syntaxin 1A (Synt 1A) cluster during 

the first-phase, while the insulin released during the second-phase is independent of these 

Synt 1A clusters.  

1.6 Assessment of insulin sensitivity, insulin resistance 

and beta-cell function  

The liver plays a key role in glucose metabolism. Under the control of various 

hormones primarily insulin, the liver stores or releases glucose as needed by the whole 

body. The liver, skeletal muscles and adipose tissues are the three major insulin-sensitive 

organs involved in glucose homeostasis. Impairment of insulin sensitivity and beta-cell 

function are the two important components in the progression from glucose tolerance to 

T2D. Some common methods and indices used to evaluate insulin sensitivity through 

glucose metabolism include: glucose clamp tests, frequently sampled intravenous glucose 

tolerance test (FSIVGTT) with minimal model, fasting glucose, and insulin concentration. 

Insulin sensitivity is the capacity of cells to process glucose in response to 

insulin, including peripheral glucose uptake and hepatic glucose output. Thus, insulin 

sensitivity has two aspects, but it is most frequently used to refer to glucose uptake by 

peripheral tissues.  

Insulin resistance is the reciprocal concept of insulin sensitivity, which is defined 

by the condition that insulin works less effectively at lowering blood glucose.  
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Beta-cell function refers to the insulin secretory capacity of beta-cells. Beta-cell 

dysfunction is the major feature of impaired glucose tolerance and T2D.  

1.6.1 Glucose clamp technique 

The glucose clamp technique is a method for assessing insulin sensitivity and 

insulin resistance. Two types of glucose clamps commonly used are the euglycemic 

hyperinsulinemic clamp (41) for insulin sensitivity and hyperglycemic clamp for the 

assessment of beta-cell function.  

In the euglycemic hyperinsulinemic test, a hyperinsulinemic plateau is created by 

a constant exogenous insulin infusion, while blood glucose is ‘clamped’ to a desired level 

(e.g. 5 mmol/l) by infusing glucose at an adjustable rate. Under the condition of insulin 

infusion, hepatic glucose output is suppressed. Once steady state is reached, glucose 

metabolic rate is equal to glucose infusion rate. In particular, insulin sensitivity is directly 

related to the mean glucose infusion rate (M) and insulin resistance is inversely related to 

M. The index (M/I) of insulin sensitivity is calculated by dividing M with insulin 

concentration (I) at the steady state. The euglycemic clamp has shown good 

reproducibility (42, 43) and is commonly accepted as the gold standard for measuring 

insulin sensitivity in vivo.  However, the test remains time-consuming, costly and labor-

intensive. 

The insulin secretory capacity of beta-cells can be evaluated by the 

hyperglycemic clamp test. Biphasic insulin secretion is induced by initiating a glucose 

bolus to quickly raise glucose concentration and then a continuous glucose infusion is 

started to maintain a desired elevated glucose concentration. The index (AIRg) for first-

phase secretion  is usually calculated as the area under the curve of insulin concentration 

over the basal level in the first 10 minutes, while the mean insulin concentration of last 

the 20-30 minutes (44, 45) of the clamp test is often used as the index of second-phase 

secretion.  
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The hyperglycemic clamp test can also be used to estimate insulin sensitivity, but 

the resulting index is not as reliable as the euglycemic clamp test since glucose disposal 

becomes glucose dependent at higher glucose levels (46).  

1.6.2 HOMA model assessment 

Homeostatic model assessment (HOMA) (47) is a method that can estimate 

insulin resistance and beta-cell function from fasting glucose and insulin concentrations. 

It is derived from a mathematical model (48) that describes the interaction between beta-

cell function and insulin resistance to give predictions of basal insulin and glucose 

concentration. An approximation of the solution of the mathematical model is given as: 

5.22/bb IGIRHOMA     Eq. 1.1 

)5.3(/20%  bb GIBHOMA   Eq. 1.2 

where Gb and Ib are fasting glucose and insulin concentrations in mmol/l and U/ml, 

respectively; HOMA-IR is an index of insulin resistance and has a value of 1 or 100% for 

normal basal glucose and insulin concentration. 

The HOMA approach only requires fasting insulin and glucose concentration, 

thus can be useful in epidemiological studies. It should be recognized that the results 

from HOMA may disagree with other methods, for example the index estimated from 

glucose clamp test (49-51).  

1.6.3 Intravenous glucose tolerance test 

A widely acceptable alternative for estimation of insulin sensitivity is the minimal 

model analysis of frequently sampled intravenous glucose tolerance test (FSIVGTT) (52-

56). An IV bolus of glucose infusion is administered over a short time period, for 

example 1 minute.  Then, blood samples are collected at frequent intervals to measure 

plasma insulin and glucose levels. By modeling glucose disposal, the model allows for 

estimation of the insulin sensitivity index (SI) through curve-fitting (see Chapter 2.1.1 for 
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details). The minimal model of insulin sensitivity has been validated in many studies 

compared to the clamp technique (57-59). However, a problem arises when a subject, 

such as a diabetes patient, has insufficient endogenous insulin secretion for glucose 

disposal. For example, the SI value could be negative for a subject with diabetes. For this 

reason, insulin-modified IVGTT (IM-IVGTT, an insulin infusion between 20-25 minutes 

for instance) has been developed to provide a more meaningful and general estimation of 

insulin sensitivity (60, 61). Compared to the glucose clamp test for the estimation of 

insulin sensitivity, the minimal model method is experimentally simple, but requires a 

more complex analysis. 

The intravenous glucose tolerance test (IVGTT) triggers biphasic insulin secretion 

in which one or two peaks are observed in the insulin concentration profile. The common 

index for first-phase insulin secretion during IVGTT is called ‘acute insulin response to 

glucose’ (AIRg).  AIRg is calculated as the area under the curve (AUC) above the basal 

level of insulin or C-peptide concentration time course during the first peak (54), such as 

from 0 to 10 minutes. Mathematical models of insulin secretion in IVGTT (often 

FSIVGTT protocol is used) have been developed and provide indices to describe beta-

cell sensitivity to glucose in the first-phase and second-phase (see Chapter 2.2.1 for 

details).  

1.6.4 Oral glucose tolerance test 

OGTT is a simple procedure in clinical practice to evaluate glucose tolerance. 

After overnight fast, a standard glucose load (75g) is taken orally by the subject, the 

status of glucose tolerance is then determined according to the glucose concentration at a 

specific time, for example 120 minute. OGTT reflects the efficiency of the body to 

dispose of glucose after an oral load. It mimics physiological conditions of glucose and 

insulin responses more closely than conditions of the glucose clamp and IVGTT. In 

addition, OGTT also represents a metabolic test which reflects insulin sensitivity and 
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beta-cell function. Several empirical indices from OGTT have been proposed, taking into 

account both fasting and dynamic post-glucose load plasma glucose and insulin levels, 

such as Matsuda index, Stumvoll index, and Gutt index.  

Matsuda index is an insulin sensitivity index derived by DeFronzo and Matsuda 

in 1999 (62). It is an overall reflection of hepatic and muscle sensitivity to insulin and 

expressed as: 

mmbb

Matsuda
IGIG

ISI
000,10

   Eq. 1.3 

where Gb (mg/dl) and Ib (mU/l) are fasting basal plasma glucose and insulin 

concentrations, respectively; Gm and Im are mean concentrations of glucose and insulin 

during the entair OGTT and 10,000 is a scaling factor. The fasting baseline reflects 

hepatic insulin sensitivity, whereas the mean of the dynamic data primarily represents 

skeletal muscle’s insulin sensitivity. ISIMatsuda correlates reasonably well with estimates of 

the whole body insulin sensitivity determined by the glucose clamp (62, 63).  

Abdul-Ghani and colleagues (64) demonstrated that the insulin secretion/insulin 

resistance index (disposition) was a reliable predictor of T2D onset under the following 

conditions: when the insulin sensitivity is calculated as ISIMatsuda, and when the insulin 

secretion index is calculated by dividing the increment in plasma insulin at 30 min 

( 300I ) by the increment in plasma glucose at 30 min ( 300G ) of OGTT 

( 300300 /   GI ).  

Gutt index of insulin sensitivity (ISI0,120) is derived based on the plasma glucose 

and serum insulin concentrations at time 0 and 120 min during OGTT (65). The ISI0,120 is 

defined as: 

)(log
120,0

MSI

MCR
ISI    Eq. 1.4 

MPG

m
MCR    Eq. 1.5 
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where MCR is the metabolic clearance rate calculated by Eq. 1.5; MSI is the mean serum 

insulin concentration (mU/l) obtained at time 0 and 120 min of OGTT; MPG is the mean 

plasma glucose calculated from the mean of plasma glucose concentrations at time 0 (G0) 

and 120 min (G120); and m is the glucose uptake rate in peripheral tissues in the unit of 

mg/min calculated by Eq. 1.6:  

120

19.0)(75000 1200 BWGG
m


   Eq. 1.6 

where 0.19 is a glucose distribution space (1) normalized according to body weight and 

BW is the body weight in kg.  

The ISI0,120 correlates well with the estimates obtained from the euglycemic clamp 

and is thought to be superior to the HOMA method (65-67).  

Stumvoll index of insulin sensitivity (ISIest) (68) is derived from BMI, and 

plasma insulin and glucose concentrations obtained during an OGTT.  It is calculated as: 

90120 0037.00000645.00032.0226.0 GIBMIISIest   Eq. 1.7 

where BMI (kg/m
2
) is body mass index and I120 is plasma insulin concentration (pmol/l) 

at 120 min and G90 is plasma glucose concentration (mmol/l) at 90 min. The units of ISIest 

are µmol∙kg
-1

∙min
-1

∙pM
-1

. According to the Stumvoll et al., this empirical index highly 

correlates with measured insulin sensitivity form euglycemic hyperinsulinemic clamp 

values in 104 health subjects  

Insulinogenic index of insulin secretion. Insulin secretion following oral glucose 

administration is a more complicated process to analyze than the response to IV glucose 

stimulation because responding gut hormones exaggerate insulin secretion from the beta-

cells. Also, it is difficult to determine the exact amount of glucose taken by the body after 

oral glucose administration due to unknown bioavailability. The most common empirical 

index is insulinogenic index (IGI) (69) which is calculated as the change in insulin 
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response relative to the change in glucose stimulus over the first 30 min period according 

to the following equation:  

030

030

GG

II
IGI




   Eq. 1.8 

Serum insulin (pmol/l) and plasma glucose concentrations (mmol/l) at 30 minutes 

after glucose intake in Eq. 1.6 can be replaced with concentrations at 15 minutes or other 

period of time in literatures (69, 70). The index IGI reflects the integrated beta-cell 

response to glucose and glucose-dependent gut hormones. However, it does not reflect 

specific mechanisms of insulin secretion, such as first-phase insulin secretion. 

Stumvoll index of insulin secretion. Beta-cell function as reflected by first-phase 

and second-phase during OGTT can be empirically assessed by the 0 and 30 min plasma 

insulin levels and 30 min plasma glucose level. The parameters, PH1 and PH2, represent 

insulin index (68) for first- and second-phase, respectively, and are described as:  

030301 772.37.138829.11283 IGIPH   Eq. 1.9 

030302 9226.007.264164.0287 IGIPH   Eq. 1.10 

PH1 and PH2 show reasonable accuracy relative to the hyperglycaemic clamp 

method and appear better than other commonly used simple approaches (68). 

These empirical indices of insulin sensitivity and beta-cell function from the 

OGTT can be easily implemented in epidemiological studies, large clinical trials, and 

clinical research investigations.  

1.6.5 C-peptide based analysis 

Simple measurement of insulin plasma concentration is still used as an indication 

for the assessment of beta-cell secretory function in many studies. However, a drawback 

is that plasma insulin concentration inaccurately reflects pancreatic insulin secretion 

because insulin experiences first-pass metabolism before insulin’s entrance into the 

systemic blood circulation. Pancreatic insulin secretion rates may be directly measured by 
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inserting catheters into the artery and vein, but this technique is invasive and not practical 

in a clinical research setting.  

To avoid the problem of hepatic extraction, an alternative approach is to make use 

of C-peptide (CP) concentrations. CP is secreted with insulin in equimolar amounts (71-

73) and, unlike insulin, is not extracted by the liver (74-76). Furthermore, the clearance of 

CP (exclusively through the kidneys) is nearly constant over a wide range of CP 

concentrations (77, 78). These characteristics make CP a suitable marker for insulin 

secretion. Plasma or serum CP levels are normally utilized for evaluation of insulin 

secretion under steady state conditions. However, the dynamic secretion profiles of 

insulin and CP are not equivalent because CP has a longer half-life, approximately 30 

minutes (77), relative to the half-life of insulin (4 minutes). Since plasma CP 

concentrations do not change proportionally to the changes in the pancreatic insulin 

secretion rate, this approach has limitations under dynamic conditions. Rather, the 

deconvolution technique and mathematical modeling with CP disposition kinetics (see 

Chapter 2) can provide a more precise estimation and assessment of insulin secretion 

under dynamic conditions.   

1.6.6 Deconvolution analysis 

Deconvolution as a mathematical operation was introduced to reconstruct insulin 

secretion profile from CP concentration by Eaton et al. (79). This approach is currently 

one of the most common methods for quantifying insulin secretion.  

C-peptide disposition is thought to be linear within a wide range of 

concentrations, thus the plasma CP concentration, CP(t), can be calculated in terms of the 

dynamics of insulin secretion rate, )(tISR , by the convolution integral: 

   dISRthtCP )()()(   Eq. 1.7 
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where ISR(t) is the unknown endogenous insulin secretion rate, and h(t) is the plasma 

response to a unit impulse. The ISR(t) therefore can be estimated by deconvolution 

approach. To perform deconvolution, h(t) must be known. A two-compartment model is 

commonly used to represent h(t) in the deconvolution of insulin secretion rate. In the 

original approach proposed by Eaton et al, the CP kinetics is determined by a bolus 

injection of biosynthetic CP in each individual and fitting a two-compartment model to 

determine h(t). In a later study (80), the deconvolution technique has been simplified by 

developing a method to approximated the individual h(t) using a population-based 

regression model instead of individual estimation. The deconvolution technique is 

valuable in reconstructing beta-cell insulin secretion and not limited to specific glucose 

administration routes.  

In summary, several methods and protocols are available for the evaluation of 

insulin sensitivity and beta-cell function, each with its own advantages and limitations. 

The euglycemic clamp method is the gold standard for insulin sensitivity estimation 

although it is laborious, expensive, and not suitable for large scale studies. The HOMA 

method is simple and can be used for population studies, but only reflects steady-state 

glucose-insulin interactions. The evaluation of beta-cell function is complicated because 

beta-cells are able to adapt to insulin resistance and maintain normal glucose tolerance 

(81-83).  

1.7 Type 2 diabetes and insulin resistance 

The criteria for abnormal glucose tolerance are shown in Figure 1.5. Diagnostic 

criteria of diabetes include: fasting plasma glucose (FPG) be greater or equal to 126 

mg/dl (7.0 mmol/l) or plasma glucose 2 hours after a 75g OGTT be greater or equal to 

200 mg/dl (11.1 mmol/l).  Fasting glucose is preferred as the diagnostic test for diabetes 

because of its simplicity and convenience. If fasting glucose concentration is in the 

diabetic range, an OGTT is not required for confirmation. On the other hand, if a subject 



  14 

  

1
4
 

has an elevated fasting glucose level, but below the diagnostic range, an OGTT is needed 

on a subsequent day to confirm or exclude diabetes or impaired glucose tolerance (IGT).  

The majority of diabetes cases fall into two distinct categories, type 1 diabetes 

(T1D) and type 2 diabetes (T2D). T1D is normally defined by the pancreas not producing 

enough insulin due to autoimmune-destruction of beta-cells (84), thus patients with T1D 

need exogenous insulin treatment for survival. T2D is the most common form of 

diabetes, however, specific etiology of this form has not been clearly defined.  It is 

known that destruction of beta-cells does not occur and both insulin resistance and 

relative insulin deficiency arise in T2D. T2D patients do not need insulin treatment to 

survive, although ultimately many patients rely on it for optimal glycemic control. 

Insulin resistance is seen in the early prediabetic stage in a majority of T2D 

patients and is a good clinical predictor of subsequent development of T2D (85). When 

insulin resistance exists, the muscle, fat, and liver cells do not respond properly to insulin. 

However, the development of diabetes appears to involve an additional defect in insulin 

secretion. In the absence of a defect in beta-cell function, individuals can compensate for 

insulin resistance with appropriate hyperinsulinemia (Figure 1.6). Hence, many 

individuals with marked insulin resistance may never progress to T2D. Insulin resistance 

is associated with abnormal conditions in a variety of tissue functions and metabolic 

processes of the body (86, 87), such as cardiovascular disease, high blood pressure, and 

abnormal levels of cholesterol and triglycerides. Having conditions such as these 

increases the risk of developing T2D.  

Obesity has been strongly associated with insulin resistance in individuals with 

normal glucose tolerance as well as patients with T2D (85). This association is not only 

related to the degree of obesity, but is also dependent particularly on body fat 

distribution. Individuals with greater degrees of central adiposity (belly fat) are more 

resistant to the actions of insulin than those with peripheral body fat (88). There is 

evidence that increased production of proinflammatory cytokines, non-esterified fatty 
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acids (NEFAs), glycerol, and other factors from adipose tissues may cause insulin 

resistance and contribute to development of T2D (89, 90). Insulin resistance can also be 

caused by genetics (91) and environmental factors. Some people may inherit from their 

parents a disposition toward insulin resistance. A variety of environmental factors such as 

viruses, stress, traumas, illnesses, and pregnancy have shown some influence on insulin 

resistance.  

1.8 Motivations of the thesis 

T2D has 7.2% prevalence and 25.9% adults have prediabetes in USA. Long-term 

effects of T2D include heart disease, nerve damage, blindness and kidney disease. Early 

diagnosis is thus important in the prevention of long-term adverse effect of T2D. Defect 

in first-phase insulin secretion can be a clinical predictor of T2D, which starts long before 

the development of T2D. Therefore, reliable estimation of insulin release is crucial in 

understanding the development of T2D. PK/PD modeling provides a potential alternative 

for the assesment of beta-cell secretory function because direct measurement of insulin 

secretion is difficult; it needs to insert catherters into hepatic vein and artery. In this thesis, 

a novel mechanism-based PK/PD model will be proposed for quantifying insulin 

secretion, particularly the biphasic behavior of insulin secretion. We hope this model can 

help us to better understand biphasic insulin secretion and the prevention of T2D.  

1.9 Objectives and specific aims 

The main objective of this work is to develop a mechanistic PK/PD model that 

can characterize insulin secretion in response to glucose stimulation for better 

understanding  the development of type 2 diabetes. 

Specific aim 1: To determine the differences in insulin secretion response after an 

IV glucose stimulation between African-American and Caucasian youths using a 

noncompartmental approach. 
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Specific aim 2: To formulate a novel physiologically based mechanistic PK/PD 

model aimed at dynamically evaluating the biphasic insulin secretion. 

Specific aim 3: To evaluate the impact of ethnicity on insulin secretion kinetics 

using a population modeling approach. 

Specific aim 4: To extend the proposed model for oral glucose administration by 

making use of the co-secretion kinetics of insulin and glucose and to identify covariates’ 

effects on prehepatic insulin secretion using a population approach. 

1.10 Hypotheses 

The central hypothesis of this work is that insulin secretion in response to 

elevated blood concentrations of glucose can be described and characterized by  a  

PK/PD model. 

Hypothesis 1: Quantifiable differences in insulin secretion response to glucose 

challenge exist between African-American and Caucasians youths. 

Hypothesis 2:  The plasma insulin concentrations after glucose challenge can be 

accurately described using a PK/PD model based on the cellular mechanism of  biphasic 

insulin secretion. 

Hypothesis 3: The proposed model is able to identify kinetic parameters that 

cause the differences in insulin secretion response to IV glucose stimulation between 

African-American and Caucasian youth using population analysis. 

Hypothesis 4: The proposed model can simultaneously characterize the insulin 

and C-peptide secretion responses to an oral glucose load and thus evaluate prehepatic 

insulin secretion.  



  17 

  

1
7
 

 

Figure 1.1. Conversion of preproinsulin to insulin.  

Insulin production involves several intermediate steps. Initially, preproinsulin 
is secreted into the endoplasmaic reticulum. Then its N-terminal signal 
sequence is removed during a post-translational process to form proinsulin. 
Subsequently, the proinsulin is clipped at two positions (I and II) to release 
the C-peptide. C-peptide and active insulin are finally packaged into secretory 
granules for storage. 
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Figure 1.2. Glucose homeostasis between meals.  

A: Feeding state. A rise in blood glucose stimulates the release of insulin 
from beta-cells, causing glucose uptake by body cells, such as fat and muscle, 
and suppression in glucose production by liver.  
B: Fasting state. A fall in blood glucose stimulates alpha-cell of pancreas to 
secrete glucagons, promoting liver to release glucose.  
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Figure 1.3. Biphasic insulin response to intravenous glucose administration in a healthy 
subject.  

Circles indicate observed insulin plasma concentrations and the solid line is 
the predictions estimated by the proposed model in the Chapter 4. The first-
phase is the period from 0 to 20 minutes and the second-phase is from 20 
minute to the end of the test.  
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Figure 1.4. Insulin secretion in perfused rat pancreas in response to square wave of 
glucose stimulations.  

Plotted from O’Connor et al. (30) 
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Figure 1.5. Diagnostic criteria for diabetes and related stages of glycemia 

The criteria for abnormal glucoe tolerance can be classified based on fasting 
plasma glucose and 2-hour postload plasma glucose of a 75g oral glucose 
tolerance test (OGTT). Diabetes is diagnosed when fasting plasma glucose is 
greater or equal to 126 mg/dl or plasma glucose 2 hours after an OGTT is 
greater or equal to 200 mg/dl. Impaired glucose tolerance is defined as having 
fasting plasma glucose level of at least 100 mg/dl or 2-hour postload plasma 
glucose level of at least 140 mg/dl. 
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Figure 1.6. Pathophysiology for type 2 diabetes: insulin resistance and decreased insulin 
secretion. 

 
Insulin resistance is seen in the early prediabetic stage in a majority of type 2 diabetes 

(T2D). It is defined by the condition that insulin works less effectively at lowein blood 

glucose. In the absence of a defect in beta-cell function, individuals can compensate for 

insulin resistance with appropriate hyperinsulinemia and normal glucose level. When 

beta-cells fail to compensate insulin resistance, blood glucose concentration rises and 

T2D is developed. 
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CHAPTER 2. PK/PD MODELING GLUCOSE METABOLISM AND 

INSULIN SECRETION 

Diabetes has been an increasing public health problem in many countries since the 

20th century. Numerous mechanistic (pharmacokinetic/pharmacokinetic) PK/PD models 

have been developed for the study of the glucose-insulin system. This chapter reviews 

and discusses the recent advances in the PK/PD modeling of glucose-insulin system, and 

mainly focuses on modeling methods rather than model applications to specific problems. 

Particular emphasis is given to 1) assessment of insulin sensitivity, 2) insulin secretion 

and 3) insulin-glucose feedback and disease progression.  

One of the key characteristics of the glucose-insulin system is the feedback loop 

between glucose and insulin. An increase in glucose concentration stimulates production 

of insulin, and insulin in turn stimulates disappearance of glucose and suppresses the 

hepatic glucose production. The hyperglycemia in type 2 diabetes (T2D) can be caused 

by decreased uptake of glucose into skeletal muscles (peripheral insulin resistance), 

increased hepatic glucose production (hepatic insulin resistance) and decreased insulin 

secretion (loss of beta-cell function).  

Most of the earlier models were developed as alternatives to evaluate insulin 

sensitivity in vivo without the need of performing the complex glucose clamp test. 

Among them, the minimal model (56), applied to the intravenous glucose tolerance test 

(IVGTT), originally published in 1979 is the most commonly used research model. The 

minimal model is relatively simple and describes glucose disposal with a single 

compartment and an insulin compartment for insulin’s regulation of the glucose 

clearancel. The minimal model yields indices for the evaluation of the effects of both 

glucose and insulin on glucose disposal. The major limitations of the model are that it can 

not distinguish between peripheral insulin sensitivity and hepatic insulin sensitivity. 

Numerous extensions and variants of the minimal model have been proposed to 
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overcome its limitation, including the use of a two-compartment model (92) for glucose 

kinetics, the application of hot glucose IVGTT (93, 94) to determine hepatic insulin 

sensitivity, and inclusion of more elaborate control mechanisms of glucose clearance.  

As T2D is also characterized by a decrease in insulin secretion, it is essential to 

evaluate the beta-cell’s secretory ability. Models have thus been developed to describe 

the relationship between glucose-stimulated beta-cell function and hepatic insulin 

secretion. A single compartment model (55) has been proposed to describe insulin 

kinetics and assess beta-cell function in response to the IVGTT, but it seems the single 

compartment does not represent insulin’s biphasic time course accurately. The prehepatic 

insulin secretion rate can be estimated by analyzing plasma C-peptide (CP) 

concentrations because CP and insulin are secreted in equimolar amounts and CP is not 

extracted by the liver (76, 79, 95). In the combined model (96), the co-secretion kinetics 

of insulin and CP are used to simultaneously describe insulin and CP time courses and 

calculate hepatic extraction. The model developed by Gupta et al (97) has the advantage 

of being based on the physiological process of biphasic insulin release.   It is aimed at 

early detection of the prediabetic condition. In order to more accurately represent insulin 

secretion, a model with incorporating a delay-compartment mechanism (98) has been 

proposed.   

Other types of models (99-102) described in this chapter explore the glucose-

insulin feedback relationship and disease progression. More mechanistic models have 

been developed with the goal of being able to improve early diagnosis of diabetes or 

prediabetes and provide further insights into the glucose-insulin system. Disease 

progression analysis of T2D is a new area of PK/PD analysis. The disease progression 

model is important in the evaluation of an antidiabetic drug’s effect on disease 

progression.  
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2.1 Modeling of insulin sensitivity 

Diabetes is a major health concern in many countries. For this reason, 

understanding the etiology of diabetes as well as early diagnosis has been of major 

research interest in the past decades. Most of the earlier studies have focused on the 

assessment of insulin sensitivity. Although, the glucose clamp tests can be used to 

experimentally determine insulin sensitivity, these methods require extensive 

experimental manipulation and carry risks to patients due to administration of glucose via 

intravenous infusion. Therefore, model-based methods for insulin sensitivity have been 

developed to provide suitable alternatives.  

The most widely used model for the assessment of insulin sensitivity is the 

minimal model (55, 56) originally developed by Bergman et al. By analyzing the data 

from IVGTT, the minimal model provides estimates of insulin sensitivity (SI) and glucose 

effectiveness (SG) without the need to perform a complex glucose clamp procedure. The 

main problem of the original minimal model is it does not represent glucose systems very 

well, thus indices extracted from the model are inaccurate in certain situations, such as 

biased estimates of SI and SG in patients with T2D. It has been suggested that the 

inaccuracy is caused by oversimplification of glucose kinetics with a single compartment 

model and/or a poor description of the control of insulin and glucose on glucose disposal. 

Some models with two-compartments (92, 94) for glucose kinetics have been developed 

to improve the estimation of model-derived SI and SG. Labeled glucose in the IVGTT (93, 

103) can be used to differentiate insulin sensitivity between peripheral tissues and the 

liver. This approach is able to determine only the peripheral tissues’ responses to 

increased glucose (SG) and insulin (SI) because the tracer’s kinetics are not influenced by 

hepatic glucose production. Studies with a tracer-based IVGTT have demonstrated this 

method allows for precise estimation of SI and SG (103).  
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2.1.1 Minimal model of glucose disappearance 

The minimal model coupled with the intravenous glucose tolerance test (IVGTT) 

provides characteristic parameters for insulin sensitivity. Insulin’s functions include two 

aspects: targeting peripheral tissues to increase uptake of glucose and acting on the liver 

to suppress glucose production. The original minimal model (Figure 2.1) proposed by 

Bergman et al. (56) describes insulin kinetics with a single compartment and consider 

physiological control processes by introducing a remote insulin compartment, Ir. By way 

of the Ir, insulin promotes glucose disappearance into peripheral tissues and the liver, and 

inhibits glucose production by liver. The utilization rate of glucose by peripheral tissues, 

RP(t), is split into insulin-independent and insulin-dependent components described as:  

1 4( ) ( ) ( ) ( )p G r GR t k C t k I t C t    Eq. 2.1 

where k1 is a rate constant related to the insulin-independent disposal process and k4 is a 

rate constant related to the insulin-dependent glucose disposal process through peripheral 

tissues.  

The liver is the major site of releasing glucose to the blood. The minimal model 

also describes the production of glucose as insulin-dependent and independent. When 

insulin level is increased during the IVGTT, the release of glucose is suppressed and the 

net output of glucose from the liver, RL(t), is modeled as:  

)]()()([)( 650 tCtIktCkBtR GrGL    Eq. 2.2 

where B0 is the net hepatic output when plasma glucose concentration is zero, k5 is 

insulin-independent rate constant and k6 is a rate constant associated with insulin-

dependent hepatic glucose production.  

A single compartment is used for the glucose kinetics. Therefore, the rate change 

in plasma glucose is described as: 

 Eq. 2.3 
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In this equation, CG(t) is the plasma glucose concentration and 
bGC is the basal plasma 

glucose level. During the IVGTT, insulin enters the remote compartment and the rate 

change of insulin in the remote compartment is: 

0)0()(])([
)(

32  rrII
r ItIkCtCk
dt

tdI
b

 Eq. 2.4 

where CI(t) is plasma insulin concentration, 
bIC is the basal plasma insulin concentration 

and k2 and k3 are rate constant. It is impossible to identify the parameters k1, k5 , k4 and k6 

simultaneously, thus the above equations for the kinetics of glucose and insulin need to 

be reparameterized as below: 

41 )())((
)(

ptCtXp
dt

tdC
G

G    Eq. 2.5 

0)0()()( 32  XtCptXp
dt

dX
I   Eq. 2.6 

In which, 

)()()( 64 tIkktX r   Eq. 2.7 

)( 511 kkp    Eq. 2.8 

32 kp    Eq. 2.9 

)( 6423 kkkp    Eq. 2.10 

04 Bp    Eq. 2.11 

At the basal steady state Eq. 2.5 and Eq. 2.6 are equal to zero, and p4 is equal to: 

bGCpp 14    Eq. 2.12 

The model uses insulin concentrations as a forcing function. Interpolations are 

required to obtain glucose concentrations for estimation of the parameters. The model 

defines glucose effectiveness (E) as the enhancement of glucose disappearance due to an 

increase in the plasma glucose concentration: 
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[ ( ) / ]

( )

G

G

dC t dt
E

C t





  Eq. 2.13 

Two indices for assessment of insulin sensitivity (SI) and glucose effectives (SG,) 

are then derived at the steady state: 

1
)(

p
tC

E
S

SSI

I 



   Eq. 2.14 

2

3

p

p
ES SSG    Eq. 2.15 

The minimal model estimate of insulin sensitivity (SI) has been validated in many 

studies versus the glucose clamp tests and is the currently used method in research on 

glucose tolerance. The minimal model method requires less experimental expertise 

compared to glucose clamp techniques. The SI reflects the entire body’s (peripheral 

tissues and the liver) sensitivity to insulin. An injection of labeled glucose during the 

IVGTT is a way to estimate peripheral sensitivity to glucose. The effect of glucose (SG) 

itself, aside from the circulating insulin level and the sensitivity of tissues to insulin, is 

also an important factor that can affect glucose levels (104). However, controversy exists 

in regards to the accuracy of SG. The study from Finegood and colleagues (105) indicates 

an interaction exists between insulin and SG resulting in an inaccurate SG. On the other 

hand, Vicini et al. (106) did not find such an interaction. 

2.1.2 Tracer-based minimal model of glucose disappearance  

A hot IVGTT (i.e. an injection of isotopically-labeled glucose together with 

unlabeled glucose) can greatly enhance the power of the minimal model method. The 

minimal model with a regular IVGTT is intrinsically unable to distinguish the processes 

of hepatic glucose production and tissues-specific glucose disposal.  While, the tracer-

based minimal model is able to yield a set of metabolic indices that characterize glucose 

disposal by tissues only. Furthermore, it may be possible to estimate the profile of hepatic 

glucose production during the test from the unlabeled and labeled glucose concentrations.  
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The tracer-based minimal model of glucose tracer disappearance (93) is shown in 

Figure 2.2. When tracer is injected with cold glucose, the tracer reflects only the glucose 

disappearance process. All variables of the tracer-based model are the same as defined in 

the regular minimal mode (see Chapter 2.1.1) except as declared here.  A new equation 

for the kinetics of hot glucose is expressed as:  

)()(
)( ***

*

dLdPd

G RRtR
dt

tdC
   Eq. 2.16 

The asterisk denotes ‘tracer’. The total disappearance rate of the tracer, )(* tRd , is the rate 

of utilization of labeled glucose by liver ( )(* tRdL ) and peripheral tissues ( )(* tRdP ). The 

variable )(* tRdP is modeled using the same function as Eq. 2.1 of the regular minimal 

model: 

)()()()(
)(

)( *

4

*

1

** tItCktCktC
tC

R
tR rG

P

G

P

G

G

dP

dP   Eq. 2.17 

where the superscript p denotes peripheral tissues. 

For the hepatic utilization of glucose, it is not appropriate to use Eq. 2.2 of the 

regular minimal model since it defines only the net output of hepatic glucose. Cobelli et 

al. (93) assumed a similar dependence of RdL on )(* tCG and )(tI r as in Eq. 2.17. Thus, RdL 

is described by: 

)()()()( *

4

*

1

* tItCktCktR rG

L

G

L

dL    Eq.2.18 

where Lk1 and Lk4 are rate constant responsible for liver uptake. The )(* tRd  is expressed as 

following: 

)()()()()()( *

44

*

11

* tItCkktCkktR rG

LP

G

LP

d   Eq. 2.19 

Substitute Eq. 2.19 into Eq. 2.16, the rate change in glucose tracer is described as: 

)()]([

)0()()()()()(
)(

*

41

*

0

**

44

*

11

*

tItCkk

CCtItCkktCkk
dt

tdC

rG

GGrG

LP

G

LPG




 Eq. 2.20 
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where *

0GC is the initial tracer glucose concentration, Lk1 and Pk1 are lumped as k1, and 

Lk4 and Pk4 as k4 in order to achieve identifiability of the model. The new tracer-based 

minimal model is then expressed as: 

*

0

****

1

*

)0()()]([
)(

GGG

G GCtCtXp
dt

tdC
  Eq. 2.21 

0)0(])([)(
)( **

3

**

2

*

 XItIptXp
dt

tdX
b  Eq. 2.22 

)()()( 44

* tIkktX r

PL    Eq. 2.23 

PL kkp 11

*

1    Eq. 2.24 

3

*

2 kp    Eq. 2.25 

)( 442

*

3

PL kkkp    Eq. 2.26 

The tracer-based minimal model describes tracer glucose uptake by the liver and 

peripheral tissues and is able to provide the metabolic parameters that reflect utilization 

processes only. Similar to the way the insulin sensitivity (SI) and glucose effectiveness (SI) 

are derived in the regular minimal model, the tracer-determined indices are defined as: 

3

442

*

2

*

3* )(

k

kkk

p

p
S

PL

I


   Eq. 2.27 

PL

G kkpS 11

*

1

*    Eq. 2.28 

The major advantage of the tracer-based minimal model is its ability to evaluate 

insulin’s actions on tissues only. Its application to insulin resistance would be valuable to 

better understand the tissue-specific mechanisms in glucose metabolism. This method, 

according to the report by Avogaro (103), also allows a more precise estimation of 

insulin sensitivity in T2D patients with marked insulin resistance compared to the cold 

minimal model method. However, the estimation of glucose effectiveness and insulin 
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sensitivity from both, unlabeled and labeled minimal model, have been found to be 

inconsistent (103).  

2.1.3 Two-compartment minimal model 

Insulin sensitivity (SI) and glucose effectiveness (SG) are two important indices 

that characterize the efficiency of the glucose-insulin system in regulating glucose 

homeostasis. The single compartment minimal model description of glucose kinetics is 

the most popular method used in clinical and epidemiological studies to estimate indices 

under the IVGTT or labeled IVGTT. However, studies have shown that the indices 

estimated using the single compartment minimal model are biased (105, 107, 108). SI is 

underestimated, although correlated well with the index measured from the glucose 

clamp technique, while SG is overestimated. In addition, the time course of hepatic 

glucose production based on the deconvolution method is unreliable using single 

compartment kinetics for glucose. It has been shown that inappropriate modeling, i.e. 

single compartment description of glucose disposition, is the major source of bias in the 

estimation of SI and SG. To overcome this limitation of the original minimal model, a 

two-compartment model (Figure 2.3) of glucose kinetics has been developed by Cobelli 

et al. (92). 

The two-compartment model evolved from the original single compartment 

model, in which a second, nonaccessible compartment is appended to it, and the only 

difference is the exchange between the accessible and non assessable pools. The model is 

described as:  

DGGGptGktGtXkp
dt

tG
bb  1112121211

1 )0()()()]([
)(

 Eq. 2.29 

bGGtGktGk
dt

tG
22212121

2 )0()()(
)(

   Eq. 2.30 

0)0(])([)()( 32  XCtCptXptX
bII  Eq. 2.31 
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11 /)()( VtGtCG    Eq. 2.32 

where G1 and G2 are the glucose masses in the accessible (plasma) and nonaccessible 

compartments, respectively; G1b and G2b are the basal steady state glucose mass in the 

accessible and nonaccessible compartment, respectively; V1 is the volume of the 

accessible compartment; k12 and k21 are rate parameters that describe the exchange 

processes between the two-compartments; D, CG, CI, X, p1, p2 and p3 are variables and 

parameters defined as for the single compartment minimal model. Like the original 

minimal model, the two-compartment model of glucose effectiveness ( 2

GS ) and insulin 

sensitivity ( 2

IS ) are derived as:  

111
12

)(

]/)([
VSVp

tdC

dttdG
S G

G

G 


   Eq. 2.33 

11

2

31

2
2

)()(

]/)([
VSV

p

p

tItC

dttdG
S I

G

I 



   Eq. 2.34 

According to the authors, the indices from the two-compartment model for 

glucose effectiveness and insulin sensitivity are in agreement with measurements from 

the literature using the glucose clamp technique. The two-compartment model improves 

the accuracy of the estimation of insulin sensitivity and glucose effectiveness over the 

single compartment model. The estimates of indices from the two-compartment method 

are more similar to the glucose clamp results than the results from a single compartment 

model.  

The two-compartment model differs from the classic minimal model (one-

compartment model) only in allowing an exchange of glucose between the accessible and 

the nonaccessible compartment and introducing extra two parameters. However, extra 

complexity leads to an identifiability issue (92) which means some parameters may not 

be indentifiable. This problem can be avoided by making use of prior knowledge of 

parameters (Bayesian approach) or performing glucose tracer kinetic studies to add 

additional information to glucose exchange (92, 109, 110). 



  33 

  

3
3
 

Overall, two-compartment glucose kinetics using the labeled IVGTT or unlabeled 

IVGTT coupled with the Bayesian approach improves the accuracy of glucose 

effectiveness and insulin sensitivity estimates compared to the classic one-compartment 

minimal model (92, 110). Specifically, the improvement in glucose effectiveness is more 

significant relative to the improvement in insulin sensitivity.  

2.1.4 Two-compartment minimal model with endogenous 

glucose production  

In response to glucose stimulation, insulin secretion is increased and resulting 

hyperinsulinemia stimulates glucose uptake in peripheral tissues and suppresses hepatic 

glucose production. During the process of T2D progression, the liver becomes resistant to 

the suppressive effect of insulin on glucose production. It is thus necessary to quantify 

and assess the endogenous glucose production (EGP). The single compartment minimal 

model has been used to estimate EGP by deconvolution approach with labeled and 

unlabeled glucose data. However, the resulting time course of EGP is physiologically 

unreasonable. There are two possible sources for the error. One is the 

monocompartmental description of glucose kinetics (111, 112), the other one is the 

misrepresentation of insulin and glucose control on glucose kinetics.  

Krudys (113) and his colleagues developed a two-compartment minimal model 

incorporating indirect pharmacodynamic (PD) effects of insulin and glucose on EGP. The 

structure of the model is shown in Figure 2.4A. Considering glucose metabolism, the 

model splits the utilization of glucose into two categories: insulin-independent glucose 

disposal occurring in the accessible pool and insulin-dependent glucose disposal 

occurring in the nonaccessible pool. Insulin-independent tissues, such as central nervous 

system and red blood cells, have a constant glucose uptake. Based on this physiological 

model, the insulin-independent uptake, k01, has two components, a constant and a 

dynamic component inversely proportional to glucose amount:   
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)(
)(

1

0,

01
tCV

R
ktk

G

d

P    Eq. 2.35 

where kp is the constant term of glucose disposal from accessible compartment, Rd,0 is a 

constant that accounts for the glucose effect on its clearance, V1 is the volume of the 

accessible pool, and CG(t) is the glucose concentration in the assessable pool.  

Insulin-dependent glucose disposal from the nonasscessible pool is regulated by 

insulin in a remote compartment, X(t), through parameter k02, and is described by: 

)(02 tXk    Eq. 2.36 

An additional relationship among model parameters was taken into account to improve 

the identifiability of the model parameter, in which the insulin-independent glucose 

disposal is three times as large as the insulin-dependent glucose disposal at the basal 

steady state. This relationship is given by:  

1202

0221

1

0, 3

kk

kk

CV

R
k

bG

d

P


   Eq. 2.37 

The model assumes a hypothetical PD compartment representing the glucose in 

the liver as commonly used in PD study. The amount of releasable glucose in the 

hypothetical compartment was described by: 

)()](1[)](1[
)(

21 tGtHktHk
dt

tdG
Loutin

L   Eq. 2.38 

where GL(t) is the amount of glucose in the liver, kin is zero-order rate constant of hepatic 

glucose production, and kout is the first-order rate constant of hepatic glucose output, and 

H1(t) and H2(t) are inhibitory functions describing the control of glucose and remote 

insulin to inhibit the EGP, respectively. The inhibition of EGP by the plasma glucose 

concentration is modeled as:  

)()(

)(
)(1

tCtC

tC
tH

GG

G

b


   Eq. 2.39 



  35 

  

3
5
 

where )(tCG  is plasma glucose concentration and 
bGC is basal plasma glucose 

concentration. It was assumed that the glucose inhibition of its own production is half the 

maximal effect under basal state. Thus, the insulin’s inhibition effect on EGP is described 

by the following equation:  

)(

)(
)(

50

2
tXIC

tX
tH


   Eq. 2.40 

where IC50 characterizes the insulin’s action to produce 50% of maximum inhibition of 

glucose release. At steady state, 
bGG CtC )( and 0)( tX , giving the initial condition: 

out

in

L
k

k
G




2
)0(   Eq. 2.41 

PD modeling of EGP is then incorporated into the two-compartment model. The 

equations described the new model are: 

out

in

LLoutin
L

k

k
GtGtHktHk

dt

tdG




2
)0()()](1[)](1[

)(
21  Eq. 2.42 

112

212121

1

011

)0()()](1[

)()(]
)(

[
)(

VCGEtGtHk

tEGktEGk
tCV

F
k

dt

tdEG

bGLout

G

P




 Eq. 2.43 

)/()0(

)(])([)(

02121212

21202121

2

kkVCkEG

tEGktXktEGk
dt

dEG

bG 


 Eq. 2.44 

  0)0(])([)(
)(

 XItIstXk
dt

tdX
bkb  Eq. 2.45 

1

1 )(
)(

V

tEG
tGe    Eq. 2.46 

where EG1(t) and EG2(t) represent endogenous glucose masses in the accessible (plasma) 

and nonaccessible compartments, respectively, and Ge(t) denotes the endogenous glucose 

concentration. 
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The time course of EGP is able to be estimated according to the following 

equation:  

)()](1[)( 2 tGtHktEGP Lout    Eq. 2.47 

where the right term of the equation represents the hepatic output from the hypothetical 

liver compartment. 

According the authors, the EGP estimates of healthy subjects obtained from this 

model are in agreement (113) with estimations from the deconvolution and the model-

independent tracer-to-tracee clamp technique (performed on the same subjects). In 

addition, the model provides a new index, IC50, for the assessment of insulin sensitivity in 

the inhibition of EGP. IC50 is defined as the required amount of insulin in the remote 

compartment to attain 50% inhibition in EGP. 

It is possible to provide model-derived parameters to characterize the glucose 

disposal process only from the tracer-based proposed model (Figure 2.4B). Briefly, the 

proposed two compartment tracer minimal model is described by: 

**

1

*

212

*

121*

1

01

*

1 )0()()(
)(

)(
DGtGktGk

tCV

F
k

dt

tdG

G

P 








  Eq. 2.48 

*
* * * *2

02 12 2 21 1 2[ ( ) ] (0) 0
dG

k X t k G k G G
dt

       Eq. 2.49 

0)0(])([)(
)( **

*

 XItIktXk
dt

tdX
bab  Eq. 2.50 

1

*

1* )(

V

tG
CG    Eq. 2.51 

where )(*

1 tG and )(*

2 tG are the tracer mass in the accessible and nonaccessible 

compartment, respectively; X
*
 denotes insulin in remote pool; kp, k21, k12, and k02 are 

constant parameters; and ka and kb are parameters associated with insulin action.  
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The two compartment tracer minimal model provides glucose effectiveness ( *2

GS ), 

insulin sensitivity ( *2

IS ) and plasma clearance rate (PCR). The parameter *2

GS is defined 

as the ability of glucose to promote its own disposal and is given by:  

)(
]/)([

1202

0221

1*

*

1*2

kk

kk
kV

C

dttdG
S P

G

G






   Eq. 2.52 

*2

IS is defined as the ability of insulin per se to stimulate the glucose promoted glucose 

disposal and is given by: 

2

1202

1221
1*

*

1

2
*2

)()(

]/)([

kk

kk
sV

tIC

dttdG
S k

G

I






   Eq. 2.53 

where sk=kakc/kb. The steady state PCR is defined as 

)(
1202

0221

1

0,

1
kk

kk

CV

R
kVPCR

bG

d

p


   Eq. 2.54 

2.2 Modeling of insulin secretion 

Precise and timely delivery of insulin from the pancreas is required for the 

maintenance of the glucose level in the normal range. Thus, understanding the glucose-

insulin system requires a quantitative evaluation of the insulin secretion rate (ISR) under 

basal and stimulated states, which is crucial for understanding the progression from 

normal glucose tolerance to diabetes. 

Mathematical modeling of the beta-cell function is aimed at capturing the 

physiological properties of its secretory process in response to glucose. In 1980, Toffolo 

et al. (55) proposed a one-compartment model called the ‘minimal model’ because of its 

simplicity in describing insulin dynamics in response to IVGTT. However, the limitation 

of this model is that it does not describe first-phase insulin secretion and only reflects 

post-hepatic insulin delivery information.  

A number of models described from this minimal model have been developed to 

overcome these problems by modeling pancreatic insulin secretion with CP data since CP 
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is co-secreted with insulin without liver extraction. Two-compartment modeling of CP 

kinetics (79, 114) with the deconvolution technique has been used to reconstruct the 

prehepatic insulin secretion time course under various protocols, but it requires an extra 

experiment to determine individual CP parameters. Alternatively, a combined model (115) 

describing CP and insulin co-secreted kinetics can estimate insulin secretion by fitting CP 

and insulin data from the same procedure simultaneously. Recently, a minimal model 

with an additional delay (98) between insulin’s prevision and its release has been 

proposed to provide indices for the assessment of insulin secretion and extraction. 

Considerable effort (116, 117) has been devoted to assess beta-cell function from an 

OGTT which is an experimentally simple method for large studies and physiologically 

close to an ‘after-meal’ state. Gupta et al. (97, 118) proposed a mechanism-based model 

to detect the existence of the prediabetic condition in biphasic insulin secretion.   

Overall, models for assessing beta-cell function are fairly new and are mainly 

descriptive, not mechanistic. Further work is necessary in order to evaluate the accuracy 

and reliability of model-derived indices for beta-cell function. More mechanistically- and 

physiologically-based models are needed to provide a better understanding of the 

glucose-insulin interaction and to improve early diagnosis of diabetes. 

2.2.1 Minimal model of insulin kinetics 

The model is called ‘minimal’ because its design uses the least complex 

mathematical model to account for the observed dynamic relationship between insulin 

and glucose disappearance. The strategy was used to define a mathematical 

representation of the quantitative measure of pancreatic sensitivity in insulin secretion in 

response to a well-defined glucose perturbation, such as the IVGTT.  

 The structure of the minimal model of insulin kinetics (55) is illustrated in Figure 

2.5. A single compartment is used to describe plasma insulin dynamics observed in 

IVGTT:  
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)()(
)(

tnCtIDR
dt

tdC
I

I    Eq. 2.55 

where CI(t) is the plasma insulin concentration above the final 60-120 min basal level, 

IDR(t) denotes insulin delivery rate after the first-pass extraction by liver and n is a first-

order disappearance rate constant. The model assumes that insulin secretion is stimulated 

and proportional to both the time elapsed after glucose administration and the extent to 

which the glucose concentration exceeds the specific threshold h. The IDR(t) is given by:  



 


otherwise

htCifthtC
tIDR

GG

0

)(])([
)(


  Eq. 2.56 

where CG(t) is the plasma glucose concentration that is used as a ‘forcing function’, t is 

time and  is a constant parameter.  

In addition to IDR(t), the model allows to estimate two indices for the assessment 

of pancreatic response to glucose from the model-derived parameters, namely the first-

phase sensitivity 1 and second-phase sensitivity to glucose 2 . The parameter 1 is 

estimated by assuming that the glucose injection causes insulin to enter the plasma 

immediately during the first-phase in an amount of P1. The  P1 is given by: 




 
0

1

0

0 n

C
dteCP

Int

I   Eq. 2.57 

where 
0IC  is the initial insulin concentration relative to steady state baseline. The first-

phase sensitivity to glucose is defined as insulin amount secreted during the first-phase 

divided by the incremental change in plasma glucose ( GC ), which is: 

G

I

G Cn

C

C

P





 01

1   Eq. 2.58 

Assuming that the IDR(t) is associated with second-phase insulin secretion, the 

second-phase sensitivity to glucose is defined as the dependence on glucose of the rate of 

rise of the second-phase: 
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 





tC

tIDR

G

)(2

2   Eq. 2.59 

The major limitation of this model is that it does not reflect insulin secretion 

accurately, ignoring the early first-phase (Figure 2.6) which is an important aspect of 

beta-cell function and important in the study of the development of T2D.  

2.2.2 Two-compartment C-peptide model 

C-peptide (CP) kinetics have been validated to be linear and time-invariant over a 

wide range of concentrations (77, 78). Thus, it is possible to estimate prehepatic insulin 

secretion from CP dynamics based on the feature that C-peptides are secreted in 

equimolar amounts from the beta-cell with insulin and does not experience first-pass 

extraction by liver.  

Eaton et al. (79) introduced a mathematical operation called deconvolution to 

reconstruct insulin secretion from CP dynamics. In order to perform deconvolution, CP 

disposition kinetics must be known. The majority of models describing CP kinetics are 

two-compartmental model (79, 114) as represented in Figure 2.7. The two-compartment 

model of CP kinetics is described by:  

)()()()(
21

1

211201 tCPSRtCKtCKK
dt

dC
PP

P
  Eq. 2.60 

)()(
21

2

2112 tCKtCK
dt

dC
PP

P
   Eq. 2.61 

where CPSR(t) is the CP secretion rate which is equal to the prehepatic insulin secretion 

(ISR) rate, 
1PC and 

2PC  are CP concentration in compartment 1 (plasma) and 

compartment 2 (extravascular tissues), K12 and K21 are transfer rate parameters between 

compartments and K01 describes the metabolized rate of CP from plasma. Mathematically, 

the CP secretion rate which is equal to the ISR can be derived from deconvolution 

procedure as follows: 
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        

  Eq. 2.62 

where t0 is the initial moment at which CP reaches to equilibrium between the two-

compartments. The variable )( 02
tCP  in equation Eq. 2.62 can be substituted by )( 01

tCP  

according to the relationship )( 021 2
tCK P = )( 012 1

tCK P , then Eq. 2.62 is given by:   
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

 

  Eq. 2.63 

Eq. 2.63 is used to reconstruct pancreatic CP secretion or insulin secretion under IVGTT, 

OGTT, or other protocols. However, CP kinetics, K12, K21, K01 must be known. In 

Ethon’s approach (79), CP kinetics was determined by bolus injection of biosynthetic CP 

in each individual whereas endogenous insulin secretion is suppressed by somatostatin.  

In a later study, Cauter et al. (80) analyzed 200 curves of biosynthetic CP after IV 

bolus injection and showed that it is possible to estimated insulin secretion using 

population-based standard CP kinetic parameters calculated from a regression model 

without significant loss of accuracy (80, 119). The regression model takes into account 

body surface area (BSA), degree of obesity, status of diabetes, sex, and age, thus 

circumvents the need to perform an extra experiment. This approach has made wide 

application of the CP deconvolution method possible and has been included into a 

computer-based program ISEC (120), but it introduces errors into the results because of 

the approximations used.   

2.2.3 Extended combined model of insulin and C-peptide 

dynamics 

The combined model developed by Volund et al. (115, 121) can estimate 

prehepatic ISR using the insulin and CP measurements acquired from the same procedure. 
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Unlike the deconvolution method that requires an extra experiment to acquire CP kinetics, 

the advantage of the extended combined model is that it is independent of prior 

knowledge of CP kinetics. An extra experiment to acquire CP kinetics is thus 

unnecessary. In the original combined model, one single compartment is used to describe 

both insulin and CP kinetics. However, the single compartment assumption of CP 

kinetics is not appropriate in term of accuracy under intravenous glucose administration 

(80, 122). An extended combined model (Figure 2.8) is proposed (96, 123) to overcome 

this problem which has a similar model structure, but employs two-compartmental CP 

kinetics.  

In the model, insulin and CP are released at equimolar secretion rates which is 

denoted as R(t), and liver extraction of insulin is assumed to be constant and with no 

extraction of the CP. The extended model is described by the following differential 

equations: 

II
I

I VtKtFR
dt

tdC
V )()(

)(
   Eq. 2.64 

2211

1

1
)()()()(

)(
210112 PPPP

P

P VtCKVtCKKtR
dt

tdC
V   Eq. 2.65 

2112

2

2
)()(

)(
2112 PPPP

P

P VtCKVtCK
dt

tdC
V    Eq. 2.66 

where CI(t) is plasma insulin concentration, )(
1

tCP  represents plasma CP 

concentration , )(
2

tCP  is the extravascular CP concentration; KI represents the 

disappearance rates of insulin from plasma; F is the ratio of insulin not extracted by liver; 

K12, K21 and K01 are the kinetic parameters for CP kinetics; VI is the distribution volume 

for insulin in plasma, and 
1PV  and 

2PV CP are distribution volumes for CP in plasma and 

extravascular tissues, respectively.  

By making the following substitutions:  
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1

)(
)(

PV

tR
tr    Eq. 2.67 

I

C

V

V
Ff 1   Eq. 2.68 

the extended model become: 

)()(
)(

tIKtrf
dt

tdC
I

I    Eq. 2.69 

)()()()(
)(

21

1

211012 tCKtCKKtr
dt

tdC
PP

P
  Eq. 2.70 

)()(
)(

21

2

2112 tCKtCK
dt

tdC
PP

P
   Eq. 2.71 

where insulin secretion, r(t), is now estimated in term of per unit distribution volume of 

CP in plasma.  

Compared to the deconvolution technique, the extended model accurately 

estimates prehepatic insulin secretion (124, 125). By analyzing insulin and CP profiles 

under infusions of insulin and CP via simulating an OGTT, the average insulin extraction 

ratio was determined to be 45% in healthy subjects and 20% in T2D patients (124, 125). 

However, the combined model was not superior to the deconvolution method using 

standard CP kinetic parameters in terms of accuracy in estimation of prehepatic insulin 

secretion (80, 126).  

2.2.4 C-peptide minimal model of hepatic extraction  

The liver removes a significant fraction (around 50%) of beta-cell secreted insulin 

and this fraction is altered at various physiological and pathological conditions. Therefore, 

a reliable estimation of the hepatic insulin extraction is a crucial part in analyzing the 

glucose-insulin system. The molar ratio of insulin to CP has been used to estimate hepatic 

insulin extraction. However, this method is not adequate in dealing with a highly 

dynamic process, such as IVGTT, since CP has a slower elimination from plasma than 
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insulin. Pacini and Cobelli (127) proposed a solution to this problem by applying a new 

model to account for CP dynamics during an IVGTT. The model (Figure 2.9) describes 

the insulin delivery rate (IDR(t)) and CP secretion rate from beta-cell (CPSR(t)) 

separately using similar equations, but with different parameters. The extraction ratio was 

then estimated by the difference between IDR(t) and CPSR(t) (127).  

CP kinetics in the model have a similar structure to that already used in the 

minimal model for insulin delivery to blood and disappearance from blood under the 

IVGTT. The first-phase CPSR
I
(t) is described as a process in which a bolus release of CP 

occurs immediately following glucose injection:  

)()( 0 tCPtCPSR I    Eq. 2.72 

where CP0 is the CP concentration above the basal level and )(t is a Dirac function. The 

second-phase secretion rate CPSR
II
(t) is time-variant and proportional to the degree of 

exceeding a threshold of glucose: 

thtCtCPSR GCP

II ])([)(     Eq. 2.73 

where CP  is a proportional constant and h is the glucose threshold which is the same as 

that used to describe insulin kinetics. Therefore, the sum of first- and second-phase CP 

secretion over basal secretion level is the incremental secretion rate, )(tCPSR , and given 

by:  

III tCPSRtCPSRtCPSR )()()(    Eq. 2.74 

CP kinetics is described by a two-compartment structure: 

0)0()()()()(
)(

1211201 21

1  CPtCPSRtCKtCKK
dt

tdC
PP

P
 Eq. 2.75 

0)0()()(
)(

21221 12

2  CPtCKtCK
dt

tdC
PP

P
 Eq. 2.76 
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where )(
1

tCP  and )(
2

tCP are CP concentrations above the basal level in compartment 1 

(plasma) and compartment 2 (extravascular tissues) respectively, K12, and K21 are transfer 

rate parameters between compartments, and K01 is the disappearance rate of CP from 

plasma.  

Eq. 2.74 gives the incremental CP secretion rate, while the basal CP secretion rate 

(CPSRb) can be derived from Eq. 2.75 and 2.76 at the fasting steady state and computed 

as: 

bb CPKCPSR 01   Eq. 2.77 

where CPb is fasting level of CP. The total insulin secretion (CPSR
T
) which equal to ISR 

is the combination of basal secretion rate and incremental secretion rate: 

b

T CPSRtCPSRtCPSR  )()(   Eq. 2.78 

The prehepatic insulin secretion profile can be obtained by integrating of Eq. 2.78 

over time. With the model, it is possible to quantify the pancreas’ ability to release 

insulin in terms of the sensitivity to glucose stimulation. During the IVGTT, the model 

treats the first-phase insulin release as a bolus input of CP in response to glucose. 

Without a second-phase, the secreted amount of CP above the basal level is CP0/K01. The 

first-phase sensitivity to glucose, C1 , is thus defined as the amount of secreted CP 

divided by the incremental change in plasma glucose (CG):  

G

C
CK

CP




01

0

1    Eq. 2.79 

The second-phase sensitivity to glucose is defined as the dependence on glucose 

of the rate of rise of the second-phase CP secretion and given by: 

CP

G

II

C
tC

tCPSR
 






)(2

2   Eq. 2.80 

The proposed model describes insulin secretion delivery rate, IDR(t), with a 

similar expression used for CPSR(t) (Eq. 2.72-2.74), but with different parameters. The 
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posthepatic delivery rate of insulin has first and second-phase components and is 

described by: 

)()()( tIDRtIDRtIDR III    Eq. 2.81 

)(0 tIIDRI    Eq. 2.82 

thtCtIDR GI

II ])([)(     Eq. 2.83 

The kinetics of insulin is described by the single compartment minimal model 

(Chapter 2.2.1): 

0)0()()(  III
I CtIDRtCn

dt

dC
 Eq. 2.84 

The basal insulin delivery rate is:  

bIIb CnIDR    Eq. 2.85 

Since the CP secretion rate is equal to the prehepatic insulin secretion rate, and 

CP undergoes negligible hepatic extraction, the profile of the hepatic insulin extraction 

ratio, H(t), can be calculated by the difference between the delivery rate of CP and insulin 

divided by CP secretion rate:  

)(

)()(
)(

tCPSR

tIDRtCPSR
tH

T

TT 
   Eq. 2.86 

where IDR(t)
T
 represents insulin posthepatic insulin delivery rate including basal, first- 

and second-phase insulin secretion.  

The method described here provides a way for simultaneously describing the time 

course of beta-cell secretion, evaluating beta-cell sensitivity to glucose both in the first- 

and the second-phase and measuring the hepatic insulin extraction using glucose, insulin 

and CP data. However, like the insulin minimal model, the CP minimal model is not 

accurate in quantifying the first-phase insulin secretion as discussed by the authors.  
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2.2.5 C-peptide minimal model with a delay compartment  

Although insulin or CP minimal models have been provided to assess the insulin 

secretion during IVGTT, these models do not describe biphasic secretion pattern well. To 

represent insulin’s biphasic secretion more accurately than the insulin minimal model, a 

mathematical model with CP data has been formulated by Toffolo et al. (98) as shown in 

Figure 2.10. The model assumes that the first-phase is derived from promptly releasable 

insulin granules in the beta-cells, which is rapidly secreted when glucose is increased 

above its basal value. The second-phase is due to the provision process allowing a delay 

between provision and insulin release.  

A two-compartment CP kinetics was also used in the proposed model, and the 

endogenous CP secretion over basal secretion level entering the system in response to IV 

glucose stimulation is described by: 

)()()( tISRtISRtisr III    Eq. 2.87 

where isr(t) is the pancreatic CP/insulin secretion over basal secretion level, which 

consists of first-phase ISR
I
(t) and second-phase ISR

II
(t) release to accommodate the 

biphasic pattern of CP secretion during IVGTT.  

The model allows a delay between the provision Y and secretion ISR(t) via a new 

variable Z representing the readily releasable insulin in the beta-cells. CP is released at a 

first-order rate:  

)()( tmZtisr    Eq. 2.88 

and Z can be ‘refilled’ through Y: 

0)0()()(
)(

ZZtYtmZ
dt

tdZ
   Eq. 2.89 

where m is a rate constant, Z0 is the amount of CP stored in the beta-cells before the 

glucose stimulus, which is responsible for the first-phase secretion over basal secretion 

level. The first-phase is described as a one exponential decay: 
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mtI emZtISR  0)(   Eq. 2.90 

The second-phase is equal to Y representing the newly formed insulin in the beta-

cell: 

)])([)()( htCtYtISR G

II     Eq. 2.91 

When glucose concentration exceeds the threshold level h, Y is stimulated via 

parameter   and decays with a rate constant  . The rate change in Y is: 

0)0(]})([)({
)(

 YhtCtY
dt

tdY
G  Eq. 2.92 

Finally, the insulin secretion profile was obtained and described by: 

C

Cb

VCPKtmZ

VSRtisrtISR

b
])([

])([)(

101


  Eq. 2.93 

where SRb is the basal insulin secretion rate and VC is the distribution volume of the 

accessible compartment. 

CP kinetics was described by the two-compartment model with the endogenous 

secretion over basal secretion level during IVGTT. Briefly, the CP kinetics and basal 

secretion rate are represented by the following equations: 

0)0()()()()(
)(

121

1

211012  PPP

P
CtisrtCKtCKK

dt

tdC
 Eq. 2.94 

0)0()()(
)(

221

2

2112  PPP

P
CtCKtCK

dt

tdC
 Eq. 2.95 

bPb CKSR
101   Eq. 2.96 

The model defines three indices ( C1 , C2  and b  ) to characterize the beta-cell 

sensitivity to glucose in first-phase, second-phase and basal release, respectively: 

G

C
C

Z


 0

1   Eq. 2.97 

 C2   Eq. 2.98 
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bGbb CCPK /101   Eq. 2.99 

where 
bGC is the end-test steady-state glucose concentration. 

In a later study (128), this model was introduced to assess hepatic insulin 

extraction during an IVGTT by estimating insulin secretion from CP data and insulin 

delivery rate from insulin data and to provide information for hepatic insulin extraction. 

The insulin secretion rate, ISR(t), can be calculated according to Eq. 2.93. For insulin 

delivery rate idr(t) over basal secretion level, it is described by the similar function 

expressed for isr(t), but with different parameters: 

)()( tZmtidr IDRIDR   Eq. 2.100 

0)0()()(
)(

 IDRIDRIDRIDR
IDR

ZtYtZm
dt

tdZ
 Eq. 2.101 

0)0(}])([)({
)(

 IDR

G

IDRIDRIDR
IDR

YhtCtY
dt

tdY
  Eq. 2.102 

where parameters and variables are labeled ‘IDR’ to refer to insulin delivery rate.  

The insulin delivery rate, IDR(t), is then calculated as the sum of idr(t) and basal 

insulin delivery rate as: 

II

IDRIDR

II

VnCtZm

VnCtidrtIDR

b

b

])([

])([)(




  Eq. 2.103 

where VI and n is insulin kinetics parameters defined as the distribution volume of insulin 

and first-order rate constant of insulin cleared from plasma.  

To reliably estimate insulin kinetic parameters, an insulin-modified IVGTT (IM-

IVGTT) was performed. An intravenous injection of glucose was followed by an insulin 

infusion 20 to 25 min after. Insulin kinetic parameters are identified from the decay curve 

of IM-IVGTT. The insulin kinetics during the IM-IVGTT is described by the following 

minimal model: 
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0)0(/)()()(
)(

 III
I CVtUtidrtnC

dt

tdC
 Eq. 2.104 

where U(t) is the exogenous insulin infusion rate.  

Indices of the first-phase, second-phase and basal insulin delivery rate ( IDR

C1 , IDR

C2  

and IDR

b , respectively ) are derived to characterize the beta-cell sensitivity to glucose: 

G

IDR
IDR

C

Z


 0

1   Eq. 2.105 

IDRIDR  2   Eq. 2.106 

b

b

G

I

G

bIDR

b
C

nC

C

IDR



   Eq. 2.107 

Hepatic insulin extraction ratio H(t) can be reconstructed from ISR(t) and IDR(t) 

profiles by: 

)(

)(
1

)(

)()(
)(

tISR

tIDR

tISR

tIDRtISR
tH 


   Eq. 2.108 

Two hepatic extraction indices during IVGTT and in the basal state are derived as: 

Cb

IDRIDRIDR

b

T
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dttIDRdttISR
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2211

12211
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









 Eq. 2.109 
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b

Cb

bCb

b
V

V

VISR

VIDRVISR
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

 11 1


   Eq. 2.110 

1
G

b

C
A

TG


   Eq. 2.111 

bG

T

G
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dthtC

A
 

 0
2

])([

  Eq. 2.112 

where T is the time at which insulin, CP and glucose reach their steady-state after the IV 

glucose perturbation. Toffolo et al. (128) evaluated hepatic extraction in 20 normal 
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subjects by using the proposed model with insulin and CP data from IVGTT. In the study, 

CP kinetics were fixed to standard population values, while insulin kinetics was 

identified using IM-IVGTT by which a reliable estimation of insulin disappearance rate 

constant (n) and distribution volume (VI) in each individual was acquired. The results 

indicated that about 54% insulin is removed during IM-IVGTT, and 70% at the basal 

state.  

The delay component between provision of the CP and secretion improves the 

description. It is possible to reproduce secretion processes in situations different from the 

IVGTT, such as the IM-IVGTT and graded glucose infusion (129). However, the model 

failed to describe the OGTT (117) since functional description of insulin delivery would 

not provide a reasonable description of the insulin response. The insulin model with an 

IDR(t) structured similar to that for the ISR in the oral CP model is thus not appropriate 

for interpreting the secretion of insulin.  

2.2.6 C-peptide minimal model under graded up and 

down glucose infusion  

It is obvious that the evaluation of beta-cell function is essential in the study of 

the etiology of T2D. The C-peptide (CP) minimal model has been successful applied to 

estimate insulin secretion and assess the beta-cell response to glucose under an IVGTT. 

Toffolo and his colleagues (116) developed a new version of the CP minimal model that 

characterizes beta-cell function during a graded-up and -down regulation of the glucose 

infusion rate. One advantage of the grade glucose infusion is its ability to characterize 

glucose and insulin responses under a physiological-like perturbation.  

The model was formulated according to the physiological assumptions that 

glucose stimulates pancreatic insulin secretion by static control (i.e., proportional to its 

concentration) and dynamic control (i.e., proportional to its rate of change). The model 
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also assumes that the insulin secretion rate is equal to the rate of new insulin production 

from provision. 

The model describes beta-cell secretory response on the basis of CP data. Insulin 

secretion is integrated into a two-compartment CP kinetics model as normally used in the 

evaluation of pancreatic insulin secretion. The proposed model describes the CP kinetics 

by the following equations:   

0)0()()()()(
)(

121

1

211012  PPP

P
CtSRtCKtCKK

dt

tdC
 Eq. 2.113 

0)0()()(
)(

221

2

2112  PPP

P
CtCKtCK

dt

tdC
 Eq. 2.114 

SR(t) is the pancreatic secretion above basal level and normalized to the CP  

volume of distribution in compartment 1. Pancreatic insulin secretion rate has two 

components that reflect functional relationship between insulin secretion and plasma 

glucose concentration, including a static secretion SRs(t) controlled by glucose 

concentration and a dynamic secretion SRd(t) controlled by the rate of change of glucose 

concentration: 

)()()( tSRtSRtSR ds    Eq. 2.115 

When plasma glucose concentration increases, insulin is produced and secreted from 

beta-cells. The model assumes SRs(t) is equal to production rate of insulin from provision 

Y: 

)()( tYtSRs    Eq. 2.116 

, which is controlled by glucose according to the following equation: 

  0)0(])([)(
)(

 YCtCtY
dt

tdY
bGG  Eq. 2.117 

where parameter   is a constant related to the static control of glucose on beta-cells.  
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SRd(t) is derived from the insulin stored in the beta-cells in a labile insulin pool. It 

was assumed that the labile insulin is not homogeneous in terms of glucose stimulation. 

The size of glucose-stimulated labile insulin depends on the intensity of stimulus. The 

amount of released insulin (dQ) in response to an increase in glucose level is express by 

the following increase: 

Gd dCkdQ    Eq. 2.118 

The dynamic secretion rate, SRd, is then proportional to the derivative of glucose: 

otherwise
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 Eq 2.119 

According to the Eq. 2.119, the parameter k is allowed to vary with changes in 

glucose concentration. It characterizes the dynamic control of glucose on insulin 

secretion and the dynamic control reached a maximum when glucose levels increase just 

above its basal value. The insulin secretion, ISR(t), during the up- and down-graded 

infusions is then described by: 
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 Eq. 2.120 

where SRb is insulin secretion rate at the basal state, and V1 is the CP volume of 

distribution in compartment 1.  

The static sensitivity to glucose ( s ) measures the stimulatory effect of a glucose 

stimulus on beta-cell secretion at steady state: 

 s   Eq. 2.121 
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The dynamic sensitivity to glucose measures the stimulatory effect of the rate of change 

in glucose on secretion of stored insulin Z0 which is expressed as:  

)(
)(2

1)(
max

max

max

0 b

G

bG bt

b

GG

C

C GG

GG

dGG CC
CC

CC
kdCCkZ 
















   Eq. 2.122 

where 
maxGC  is the maximum glucose concentration during the experiment. If 

maxt GG CC  , 

Z0 becomes: 

2/)()(
max0 b

tG

bG

GG

C

C

dGG CCkdCCkZ     Eq. 2.123 

The dynamic sensitivity to glucose ( d ) is derived by normalizing Z0 to the glucose 

increase as follows: 

bGG

d
CC

Z




max

0   Eq. 2.124 

The index of basal sensitivity ( b ) has the same expression as that under IVGTT:  

b

b

b G

P

G

b

b
C

Ck

C

SR
101

   Eq. 2.125 

This study shows that the proposed model can describe dynamic insulin secretory 

responses to a physiological-like up- and down-graded regulation of glucose 

concentration and gives indices to characterize basal, statistic ( s ), and dynamic ( d ) 

insulin secretory responses. The indices, s and d , can be compared with their IVGTT 

counterparts, the second-phase sensitivity ( 2 ), and first-phase sensitivity ( 1 ). Its 

application to various pathological states may provide insight into the role of insulin 

secretion in the development of glucose intolerance. However, further work is needed to 

verify the accuracy of these indices before they can be routinely used in clinical and 

epidemiological investigations.   
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2.2.7 The Gupta et al. PK/PD model  

Gupta et al. (97, 118) proposed a model that accounts for insulin secretion based 

on physiological processes of insulin inside beta-cells. The model was developed in order 

to differentiate the responsiveness of beta-cells to IV glucose stimulation between lean 

and obese children. Additionally, it was used to detect a defect in the first-phase of 

insulin secretion. The model is formulated at the beta-cell level. It includes five kinetic 

variables to describe glucose-insulin regulation and the movement of insulin from the 

interior of the cell to the membrane, involving cellular glucose (GC), proinsulin (IP), 

reserve insulin (IR), docked insulin (ID) and readily releasable insulin (IRR). 

Figure 2.11 schematically describes the model. Once glucose concentration in 

plasma (CG) is higher than in beta-cells (
CGC ), glucose enters the cell at a rate 

proportional to the difference between CG and 
CGC : 

1221 /)0()0()]()([
)(

kkCCktCtCk
dt

tdC
GGGG

G

CC

C   Eq. 2.126 

where k1 is the rate constant for the transportation of glucose into the beta-cell and k2 is 

the utilization rate of glucose by the beta-cell. 

The cellular glucose levels affect the production of proinsulin which is the insulin 

precursor. Proinsulin converts to insulin and then is stored in the IR and ID pool at the 

first-order manner. The rate of change in the IP pool is given by:  
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where k3 is the rate constant for proinsulin production and k4 and k5 denote transport of 

insulin to IR and ID. 

It is assumed that the transfer of insulin granules from IR to ID  is regulated by a 

first-order process. The ID pool are insulin granules that are docked on the membrane. 

Subsequently, the docked granules are primed (prepared) and translocated to IRR for 
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release. This process is also affected by the cellular glucose concentration, 
CGC , as in Eq. 

2.129. The rates of change in IR and  ID are: 
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where k4, k5, k6 and k7 are the first-order rate constants.  

In this model, the initial burst of release is attributed to IRR and is controlled by 

the parameter k8. The rate change in IRR is given by the following differential equation 
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The fraction of insulin removed by liver the (E) can be estimated by this model. 

The parameter ke represents the elimination rate of insulin from the plasma. Thus, the rate 

change in plasma insulin concentration is described as:  
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The model has the potential to detect a prediabetic condition. However, it is not 

clear how to associate the prediabetic condition to the first-phase and the second-phase 

secretion.  

2.3 Models of insulin-glucose system 

A central characteristic of the dynamic relationship between glucose and its 

controlling hormone is the feedback loop. Glucose stimulates the secretion of insulin, and 

insulin stimulates the utilization of glucose while at the same time suppresses the 

production of glucose. The models discussed above only describe insulin and glucose 

kinetics separately; they do not include their mutual interaction. An integrated model has 

been developed and has provided additional knowledge based on upon physiological and 
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pharmacological phenomenon, such as the oscillation of insulin concentration, effects of 

drugs on the insulin-glucose system, and the progression to T2D (99, 102). 

Mathematical models for diabetes research have focused on the dynamics of 

blood glucose or insulin levels for measuring insulin sensitivity and beta-cell function. 

Neither of these efforts considered the beta-cell mass dynamics as developed by Topp et 

al. (101) 

In PK/PD modeling, the family of indirect physiological response models 

constitutes a useful basis for the development of mechanism-based PK/PD models, which 

can be extended to describe complex time dependent physiological mechanisms and 

disease process. In this manner, a T2D progressing analysis (100) has been proposed 

where the influence of antidiabetic drugs’ effect on the change of T2D status over time is 

characterized. The disease model is helpful for developing new drugs specifically 

designed to modify the processes and progression of T2D.  

2.3.1 Dynamic model 

The minimal model includes two parts: one part describes glucose kinetics 

treating insulin plasma concentration as a known forcing function and the other 

component uses a single differential equation to describe the time course of plasma 

insulin by treating glucose plasma concentration as a known forcing function. De 

Gaetano and Arino (99) tried to couple the two parts, but they discovered it was difficult 

to simultaneously fit glucose and insulin data from the IVGTT. In order to overcome the 

difficulties of the coupled minimal model, they proposed a ‘dynamic model’ employing 

the delay differential equation.  

The proposed model for glucose kinetics is based on the same assumptions as 

proposed in the minimal model (99). It is assumed that the disappearance of glucose is 

partly dependent on insulin concentration and partly dependent on glucose itself. The rate 

of insulin clearance from plasma is a first-order process and a delay term is used for 
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pancreatic insulin secretion (i.e., the effective pancreatic secretion at time t is considered 

to be proportional to the average value of glucose level in the b5 minutes preceding time 

t). The model describes the glucose and insulin kinetics as the following:  
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where b1 is the glucose first-order disappearance rate constant, b2 is the insulin first-order 

disappearance, b3 is the first-phase insulin concentration increase per increase in the 

concentration of glucose at time 0 due to the bolus injection, b4 is the constant 

representing insulin-dependent glucose disappearance, b5 is the length of the past period 

whose plasma glucose concentration influence the current pancreatic insulin secretion; b6 

is the constant amount of second-phase insulin release rate per of average plasma glucose 

concentration throughout the previous b5 minutes and b7 is the rate constant of basal 

insulin secretion rate.  

The advantage of this model is that glucose and insulin time courses were 

described simultaneously and account for the glucose-insulin feedback relationship. The 

model has been used to deal with data from IVGTT and showed good agreement with 

experimental data. However, the description of first-phase fitting is not good. The model 

can also be used for protocols other that IVGTT according to the authors.  

2.3.2 Disease progression model for type 2 diabetes 

Type 2 diabetes (T2D) is a chronic disease progressing over a long time period. 

Several efforts have been made in developing new antidiabetic drugs that can alter 

disease progression. Therefore, it is particularly important to consider disease progression 

in the PK/PD model for long-term studies of drug effects and disease progression.  
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De Winter et al. (100) developed a disease progression model and utilized it to 

compare the long-terms effect of three antidiabetic agents, pioglitazone, metformin and 

gliclazide, against the progression of T2D. The study originated from the fact that some 

conventional anti-hyperglycemic agents, such as insulin, various sulfonylureas, and 

metformin do not affect the progression of T2D, despite being efficacious for glycemic 

control over the short term. These findings point to the need for agents with long-term 

disease-modifying properties. The authors modeled the homeostatic feedback 

relationships between glucose and insulin, and described the disease as a disturbance of 

homeostasis based on an indirect response model in which kin and kout were changed by 

the disease.  

Pioglitazone, metformin and gliclazide are anti-hyperglycemic agents working 

with different physiological mechanism. Pioglitazone is a novel member of the 

thiazolidinedione class of insulin sentilizer, increasing insulin sensitivity in liver, muscle 

and adipose tissue. Hence, it promotes peripheral glucose uptake as well as reduces 

hepatic glucose production. Metformin is also an insulin sensitizer and acts mainly by 

suppressing hepatic glucose production. Gliclazide is classified as secretagogue, which 

stimulates pancreatic insulin secretion.  

Glycosylated hemoglobin A1c (HbA1c) is used as the primary biomarker in this 

study. As the average amount of plasma glucose increases, the fraction of glycated 

hemoglobin increases accordingly. Once a hemoglobin molecule is glycated, it remains 

this way. Plasma glucose and insulin concentrations fluctuate throughout the day because 

of food ingestion, while the HbA1c concentration remains stable. The HbA1c measurement 

reflects the average glucose concentration which the cell has been exposed to during its 

life cycle of approximately four weeks to three months. Therefore, HbA1c provides 

reliable information of glycemic control over the long-term period and serves as a marker 

for average blood glucose levels. Fasting plasma glucose concentration (FPG) and fasting 
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serum insulin concentration (FSI) are secondary biomarkers, which are more responsive 

to changes in glycemic control in the short-term period.  

The structure of the disease model and the actions of different classes of drugs on 

the maintaining glycemic control are shown in Figure 2.12. The model includes 

mechanism-based expressions (Eq. 134-136) for the relationship between FPS and FSI. It 

was assumed that the production of FSI is proportional to the FPG as FPG exceeds the 

empirical value of 3.5 mmol/l, and the production of FPG is inversely proportional to the 

FSI, while the production rate of HbA1c is proportional to the FPG.  

( ) ( )

( )
( ( ) 3.5) ( )B in FSI out FSI

dFSI t
EF B FPG t k FSI t k

dt
        Eq. 2.134 
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( )( )
( )
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in FPG
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k FPG tdFPG t
FPG t k

dt EF S FSI t
  

 
 Eq. 2.135 

1
( 1 ) 1 ( 1 )
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( ) ( )C

in HbA c c out HbA c

dHbA t
FPG t k HbA t k

dt
    Eq. 2.136 

where kin and kout are influx and efflux rate constants for FSI(t), FPG(t) and HbA1c(t), and 

EFB and EFS are parameters related to treatment effects of drugs on beta-cell function and 

insulin sensitivity, respectively. Values of EFB greater than 1 indicates the stimulatory 

effect of drugs, such as gliclazide on beta-cells, while loss of beta-cell function reflected 

in values of EFB is smaller than 1. EFS reflects insulin sensitivity with value from 0 to 1, 

representing the suppressing effects of pioglitazone and metformin on hepatic glucose 

production.  

The coefficient B and S correspond to HOMA-B and HOMA-S of homeostasis 

model assessment (HOMA). B is the fraction of remaining beta-cell function and S is the 

fraction of remaining hepatic insulin sensitivity in diabetic patients relative to the value in 

healthy persons. During the progression from normal glucose tolerance to T2D, both 

beta-cell function and insulin sensitivity are gradually lost, thus B and S should decrease 

over the range from 1 to 0 as a function of time. B and S were modeled as following:   



  61 

  

6
1
 

)exp(1

1

0 trb
B

B 
   Eq. 2.137 

0

1

1 exp( )S

S
s r t


  

  Eq. 2.138 

where parameters rB and rS determine the rate of change over time in beta-cell function 

(B) and insulin sensitivity (S); and b0 and s0 are initial condition of the disease 

progression curves, calculated according to the HOMA-%B and HOMA-%S.  

This disease progression PK/PD model combined with population analysis has 

shown it has the ability to distinguish the disease-modifying properties of a treatment 

from its direct short-term impact on hyperglycemia. EFB and EFS account for short-term 

influence of drugs on the disease state, while rB and rS are associated with the disease-

modifying effects. By this model, it was also found that both metformin and pioglitazone 

therapy shows a steady improvement in beta-cell function as well as reducing FPG levels 

immediately as expected from insulin sensitizers. However, the model predicted disease-

modifying effects of metformin that stand in contrast with those found from a clinical 

trial (100). The authors argued that the disease-modifying effect of metformin on beta-

cell function is due to the misspecification of metformin’s action.  

In summary, the model has several advantages. It integrates the interactions of 

fasting glucose, insulin, HbA1c, insulin sensitivity, and beta-cell function and also the 

effects of drugs with different mechanisms of action. Disease progression was described 

as the changes in beta-cell function and insulin sensitivity. Therefore, the model has the 

promise to be a valuable tool for the evaluation of a drug’s disease-modifying effects. 

However, the authors reported that there is a model misspecification for metformin that 

leads to a disagreement with the findings from another clinical trial (100). 
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2.3.3 Model of beta-cell mass, insulin, and glucose kinetics pathways to 

diabetes ( GI model) 

Type 2 diabetes (T2D) is associated with the insulin resistance, reduced insulin 

secretion and loss of beta-cell mass (130). The relative contribution and interaction of 

these defects in the onset of T2D remains to be clarified.  

Topp and his colleagues (101) formulated a model that describes beta-cell mass, 

and glucose and insulin dynamics aimed at studying the normal behavior of the glucose 

regulatory system and the path towards diabetes. The model was formulated based on the 

assumptions that a moderate increase in glucose concentration results in a growth of a 

beta-cell mass, while severe and persistent hyperglycemia leads to loss of the beta-cell 

mass. The equations that describe glucose, insulin, and beta-cell mass dynamics are based 

on physiological observations from a number of in vitro experiments. 

A single compartment model was used to describe glucose kinetics. It was found 

that when glucose concentrations change rapidly, a single compartment model is not 

adequate. Accordingly, the first-phase is not considered in the minimal model under the 

IVGTT. However, the focus of this study is an evolution of the fasting glucose 

concentration. Thus, the glucose dynamics was appropriately modeled with a single 

compartment model.  

Experimentally, the relationship between glucose and insulin can be measured by 

breaking the feedback loop, such as via the glucose clamp technique at various steady-

state blood glucose and insulin levels. Both glucose production and uptake are found to 

be linearly related to glucose concentration (CG) and the slope is defined as glucose 

effectiveness (E). Hyperinsulinemic clamp studies indicate that glucose effectiveness is 

proportionally related to insulin concentrations (CI). Based on these findings, the 

following model was used to describe the rate of change in plasma glucose:    

GIIPGOP CCSEP )(Production 0    Eq. 2.139 
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  Eq. 2.141 

where P0 and U0 are the rate of glucose production and uptake at zero glucose level, EGOP 

and EGOU denote glucose effectiveness at zero insulin for production and uptake, SIP and 

SIU are insulin sensitivity for production and uptake, R0 (equal to P0-U0) is the net rate of 

production, EG0 (equal to EGOP +EGOU) is defined as the total glucose effectiveness and SI 

(equal to SIP+SIU) is the total insulin sensitivity. 

The authors model insulin kinetics with a single compartment. The rate of insulin 

clearance is a first-order process as used in most studies of insulin kinetics. A Hill 

function is used to describe pancreatic insulin secretion which depends on glucose 

concentrations and the beta-cell mass: 
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  Eq. 2.142 

where  is the mass of pancreatic beta-cell;  is the insulin secretion rate from beta-cell, 

which is supposed to be homeostasis throughout the pancreas and release insulin at the 

same rate; and   is the Hill function parameter. Therefore, the insulin kinetics is 

described as: 
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  Eq. 2.143 

The IG model supposes that beta-cell replication and death rate are nonlinear 

with respect to blood glucose levels. The formation of beta-cell mass increases with the 

increasing glucose concentrations and reduces at extreme high levels of glucose. The 

authors use polynomial functions to describe the rate of beta-cells formation and loss as 

in Eq. 2.144 and 2.145, respectively: 

2

1 2Formation ( ( ) ( ) ) ( )r G r Gr C t r C t t    Eq. 2.144 
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2

0 1 2( ( ) ( ) ) ( )a G a GLoss d r C t r C t t     Eq. 2.145 

where 1rr  and 2rr  are constant parameters of the polynomial function for beta-cell mass 

formation, d0 indicates the death rate of the beta-cells at zero glucose, and 1ar  and 2ar  are 

constants of the polynomial function for beta-cell mass loss. The rate of change in beta-

cell mass is then written as: 
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 
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  Eq. 2.146 

where 1 1 1r ar r r  and 2 2 2r ar r r  . 

Glucose toxicity has been thought to be associated with pancreatic exhaustion for 

many years. By use of this model, the pathways from normal glucose to the beta-cell 

mass loss and overt diabetes were simulated. The model provides a tool that explains the 

adaptation of plasma insulin levels to insulin resistance. The failure of this adaptation is 

followed by a reduced plasma insulin secretion and hyperglycemia. 

The IG  model predicts a critical glucose concentrations (>250 mg/dl) at which 

the beta-cell death rate exceeds formation rate, driving the system towards diabetes. The 

relationship between the beta-cell mass and insulin sensitivity can also be predicted from 

the model. If insulin sensitivity is reduced slowly, then the beta-cell mass adapts and 

maintains mild hyperglycemia. On the other hand, if insulin sensitivity is reduced too 

quickly, the beta-cell mass adapts for some period of time, but eventually the glucose 

level become larger than the pathological limit (250 mg/dl), and the beta-cell mass begins 

to decrease. The IG  model may provide theoretical estimation of beta-cell mass which 

is impossible to experimentally estimate in vivo. However, the study did not show model 

performance with real data.  

2.3.4 Integrated model for glucose and insulin regulation 

Silber et al.(102) developed a model for describing glucose and insulin feedback 

control of glucose homeostasis. The effect compartments were introduced to account for 
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feedback regulation without affecting the mass balance. The integrated model shown in 

Figure 2.13 is based on several types of IVGTT, including an IVGTT with labeled 

glucose with or without insulin infusion to better identify the relevant kinetic parameters. 

Glucose kinetics was described by a two-compartment model. The glucose is 

eliminated from the central compartment (GC) through insulin-independent and insulin-

dependent (influenced by IE) pathway. Endogenous glucose (GPROD) enters the central 

compartment. The glucose model had two effect compartments (GE1 and GE2) 

representing the control of endogenous glucose and second-phase insulin secretion, 

respcetively. The following differential equations were used to describe the kinetics for 

the central compartment, GC, the peripheral compartment, GP, and the two effect 

compartments:  
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where VG and VP are the volumes of distribution of glucose in central and peripheral 

compartment, respectively; GSS is steady state glucose concentration; Q is the 

intercompartmental clearance of glucose; CLG and CLGI are the insulin-independent and 

insulin-dependent clearance of glucose from the central compartment, respectively; and 

KGE1 and KGE2 are rate constants for the effect compartments, respectively.  
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Endogenous glucose production at steady state (GPROD,0) is described by Eq.151. 

Glucose effect on its production (GCM1) is modeled by a power function of the ratio of 

GE1 to GSS as shown in Eq. 2.152 in which the power GPRG is an estimated parameter. 

The endogenous glucose production rate is finally expressed as in Eq. 2.153: 

)(0, SSGIGSSPROD ICLCLGG    Eq. 2.151 
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1    Eq. 2.152 

)()( 10, tGGtG CMPRODPROD     Eq. 2.153 

First-phase insulin secretion was modeled as a bolus dose which enters the 

disposition compartment (I) through a delay compartment (IFPS). Given the rate constant 

as KIS, the rate in change in first-phase insulin secretion is expressed as: 

FPSItIK
dt

tdI
FPSFPSIS

FPS   )0()(
)(

  Eq. 2.154 

,  where KIS is the rate constant.  

Second-phase secretion was modeled with the same type of expression that was 

used for endogenous glucose production. The basal insulin secretion rate (ISEC,0) is equal 

to the product of the steady state insulin concentration (ISS) and the clearance of insulin 

from the central compartment. A power function was used to describe the regulation of 

glucose on insulin production (GCM2). The insulin model has one effect compartment for 

the regulation of insulin-dependent glucose elimination. Insulin is eliminated from the 

plasma by a first-order process. Given the insulin disposition compartment I, and effect 

compartment IE, the first-phase and second-phase insulin release rates are described by 

following equations:  
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where VI is the insulin volume of distribution, CLI is the insulin clearance, KIE is the rate 

constant associated with insulin compartment, KIS is the rate constant describing first-

phase insulin secretion and IPRG is the parameter of the power function. 

The model has shown good performance in simultaneously predicting the 

dynamics of insulin and glucose under various types of IVGTTs. The model may be used 

for impact analysis of antidiabetic drugs on diabetes development. However, the model 

has fifteen parameters, thus it needs intensive data to properly identify the kinetic system.  

2.4 Conclusions 

Our understanding of the glucose and insulin system can be enhanced by kinetic 

modeling. Numerous PK/PD models have been developed for the assessment of insulin 

sensitivity and beta-cell function. Minimal model and its variants provide indices that 

quantify insulin sensitivity, glucose effectiveness and beta-cell function from clinical test 

(IVGTT, hot IVGTT and OGTT), but these models are mainly descriptive, not 

mechanistic. In recents days, modeling in this area has progressed to the more 

mechanism-based models with the goal of improving early diagnosis of diabetes and 

explanation of the progression to T2D. Thus, it is natural to include current knowledge 

for the mechanism of insulin biphasic secretion in PK/PD modeling, which will be 

addressed in this study.  
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Figure 2.1. Compartmental structure of minimal model of glucose disappearance in 
response to intravenous glucose tolerance test.  

Plasma insulin enters a hypothesized remote insulin compartment (Ir) to lower 
glucose (G) level by accelerating its disappearance into peripheral tissues 
through parameter k4 and suppressing hepatic glucose through parameter k6 
(56). 
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Figure 2.2. Diagram of minimal model of glucose disappearance with labeled IVGTT.  

Tracer (G*) disappears from plasma into liver and peripheral tissues. Insulin 
acts from a remote compartment (Ir) (93). 
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Figure 2.3. Two-compartment minimal model.  

G1 and G2 are glucose masses in the accessible (blood) and nonaccessible 
compartments, respectively; k12 and k21 are rate parameters describing glucose 
exchange kinetics (92). 
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Figure 2.4 Diagram of two-compartment minimal model with endogenous glucose 
production. 

EG1 and EG2 are endogenous glucose masses in the accessible and 
nonaccessible compartment, respectively; GL represents the amount of 
glucose in the liver; kin is the rate constant of hepatic glucose formation; kout is 
the rate constant of hepatic glucose secretion; H1(t) is glucose effect on 
glucose production; H2(t) is inhibit effect of remote insulin (Ir) on glucose 
secretion (113). 
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Figure 2.5. Minimal model of insulin kinetics.  

A single compartment is used to describe the insulin kinetics. G represents 
glucose that influence the insulin production rate and I is insulin, and γ and n 
are the rate constants associated with insulin production and elimination; 
respectively (55).  

 

 

Figure 2.6. Ability of minimal model to describe insulin kinetics during IVGTT. 

Observations are represented by open circles and predictions are solid curves. 
The early first-phase observations indicated by arrows are not used in the 
analysis using the insulin minimal model (54). 
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Figure 2.7. Two-compartment model of C-peptide kinetics.  

P1 and P2 represent C-peptide in plasma and extravasacular tissues, 
respectively; CPSR(t) is C-peptide secretion rate from pancreas; K12, K21 and 
K01 are kinetic transfer parameters (79). 
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Figure 2.8. Extended combined model of insulin and C-peptide kinetics. 

Insulin and C-peptide (CP) are co-secretion from beta-cell at the same rate, 
R(t). F∙R(t) denotes the insulin that reach the systemic circulation, and (1-F) 
is the hepatic insulin extraction ratio. The C-peptide kinetics is described by a 
two-compartment model (124). 
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Figure 2.9. Schematic representation of the assessment of hepatic insulin extraction. 

Insulin and C-peptide are released from pancreas in response to glucose in 
equimolar amounts. A fraction of insulin, H(t), is removed by liver with no 
extraction of C-peptide. A two-compartment model is used to describe the C-
peptide kinetics, and a single compartment minimal model to describe the 
insulin kinetics (127). 
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Figure 2.10. Minimal model of C-peptide kinetics with a delayed component.  

G denotes glucose; Y is provision of new insulin; P1 and P2 are C-peptide 
amount above basal level in plasma and extravascular tissues, respectively; 
Z0 is the initial amount of releasable insulin in the beta-cell in response to 
glucose-stimulation and CPSR(t) is the insulin secretion rate from beta-cells 
(98).  
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Figure 2.11. Gupta et al. model describing insulin physiology in the beta-cell.  

G is glucose in plasma; GC is cellular glucose; IP is proinsulin pool; IR is 
reserved insulin pool; ID is docked insulin pool; IRR is readily releasable 
insulin pool; I is insulin in plasma; E is the hepatic extraction ratio and k1 to 
k9 are rate constants (97, 118).  
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Figure 2.12. Diabetes progression model for long-term effects of antidiabetic drugs. 

FSI, FPG and CHbA1  represent fasting serum insulin, fasting plasma glucose 
and glycosylated haemoglobin, respectively; kin and kout are first-order rate 
constants (100).  
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Figrue 2.13. Integrated model including glucose, insulin and regulations of glucose 
production, glucose elimination and insulin secretion. 

Full arrows indicate flows, and broken arrows represent control 
mechanisms. A two-compartment model is used to describe glucose 
kinetics, in which GC and GP are central and peripheral compartments of 
glucose, GE1 and GE2 are effect compartments that control glucose 
production and insulin secretion, respectively. Insulin kinetics includes a 
disposition compartment, I, a delay compartment, IFPS, for first-phase 
insulin release, and a effect compartment, IE, for control of glucose 
elimination (102)                               . 
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CHAPTER 3. POPULATION ANALYSIS APPROACH 

Lewis B Sheiner and Stuart L Beal inspired and led the earliest work in the 

development of population pharmacokinetics. They published a series of papers (131-

135) in the 1970’s and 1980’s that described a new approach capable of estimating 

population-based PK parameters with sparse samples (only 2 or 3 samples) collected 

from subjects. This approach was recently termed as ‘population pharmacokinetics (PK) 

analysis’ and implemented in a software package called NONMEM. 

Population PK/PD modeling seeks to integrate various sources of variability, such 

as intra- and inter-individual variability in drug abortion, disposition, and action into the 

modeling process. Thus, it provides a valuable tool to quantitatively define typical 

parameters and their variations in target populations treated with a drug. Population 

modeling finds its most important uses in direct patient care and drug development. It 

provides quantitative guidelines for individualized and optimized dose regimens by 

analyzing the data obtained from clinical monitoring and based on patent-specific 

covariates (e.g., age, sex, and disease history). In recent years, population methods have 

played an important role in drug development. Although a non-compartmental approach 

is still used for many phase I studies, population-based methods are commonly used for 

phase II and III studies, as well as to analyze combined data from different clinical trials. 

This approach is helpful in understanding the quantitative relationship between patient 

characteristics and drug behavior, or explaining variability in a target population.  

Population analysis has several important advantages. Firstly, unlike the 

traditional PK/PD studies which require intensive samplings, population analysis can be 

done with sparse or intensive data. The population method can give better estimates of 

variability, such as inter-individual, intra-individual, and interoccation variability, versus 

biased estimates derived from traditional approaches. The method can also utilize 

heterogenous types of data from various sources, such as data from several different 
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trials, study centers or sparse samples. Secondly, population analysis provides not only an 

opportunity to estimate variability, but also to recognize the sources that may either by 

explained through identifying factors or remain unexplained. Thirdly, population 

modeling can incorporate covariates to assess variability caused by factors, such as 

demographics, or pathophysiologic- and drug-related changes in the behavior of a drug.   

The main disadvantages of the population PK/PD method are rooted in its 

mathematical and statistical complexity. Population analysis requires appropriate 

modeling of inter- and intra-individual variations and covariates.  Additionally, it requires 

appropriate assumptions for the random- and fixed-effects distribution models.  

Over the past few decades, various techniques have been used to perform  

population analysis, for instance naïve pool data approach, two-stage approach, nonlinear 

mixed-effects model, Bayesian hierarchical model, and nonparametric maximum 

likelihood. In this chapter, naïve pool data, two-stage, and nonlinear mixed-effects 

approaches were discussed. 

The following notations are commonly used in population modeling:  

y: the observation, typically a drug level in plasma; 

x : the collection of independent variables other than time, such as age, sex, etc; 

i: individuals;  

k: the number of individuals studied, i=1,2,3, …k; 

j: an observation; 

ni: the number of observations within an individual j=1, 2, 3, ….., ni.   

3.1 Individual data model 

A data set and a model are needed in the analysis. The corresponding data model 

for an individual has an explained portion and an unexplained portion. The explained 

component is usually a function of certain parameters and covariates. The unexplained 

part is the residual random error. The individual data model takes the form: 
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ijjj xfy   ),(   Eq. 3.1 

where yj is the jth observation of the individual; ),( jxf  is a parameterized function 

describing a response and give a predicted value based on xj within the individual;  is a 

parameter vector of the PK/PD model reflects the relationship between x and y; and j is 

the residual error.  

All the residual errors of observations of an individual, 1 2, , ... ni   , arise from a 

normal distribution with a mean of zero and variance 
2

j . The value of 
2

j  across each 

observation can be assumed to be constant or modeled into the modeling process if the 

residual changes with observed values. For example, a log-normal structure is often used 

in biological system and describe by: 

jetxfy jjj


  ),,(   Eq. 3.2 

where j has a normal distribution with median 1 and constant value of variation. This 

log-normal form error is appropriate when the measurements always are positive and less 

precision when the value of measurement increases. Other error structures are also used 

in practice, such as additive, proportional or combination of additive and proportional 

type. Maximum likelihood estimation (MLE) can be performed if the statistics of j are 

known. When all of j are assumed to be normal with zero mean and uniform variance, 

maximum likelihood estimation becomes ordinary least-squares estimation. 

3.2 Population data model 

Compared to individual data model, a more elaborate statistical model is required 

to deal with population data. In the population analysis, the overall variability in the 

measured PK/PD response in a sample of an individual is attributed to the measurement 

error and inter-individual variability. The population model can take the following form: 

ijijiij xfy   ),(   Eq. 3.3 

)( iji xg   Eq. 3.4 
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Thus, yij is the jth observation of the ith individual, f is the PK/PD model that describes 

the relationship between x and y, g is a function that describes the relationship between 

the parameters i  and covariates xi, i is a random variable of parameters of ith subject 

having a normal distribution with mean zero and variance 2

i , and ij is the residual 

error.   

Within the ith individual, the value of j is normally distributed and has a mean of 

zero. The variable ij can be coded in the population model as was previously discussed 

in the individual data model. The whole population has just one value for each model 

parameter . Individual values of the parameter i is determined by the random variable 

i and covariates xi. The i  is often assumed to be independent and has constant variance 

across individuals. An  is normally distributed with mean of zero and variance 2 .   

3.3 Approaches applied to population PK/PD modeling 

3.3.1 Naïve pooled data approach  

The simplest method to estimate population parameters is the naïve pooled data 

(NPD) approach. It pools all the data from all individuals as if the data were arising from 

the same individual. With a least-squares fitting, the parameter vector is calculated by 

assuming *

ijy  is a prediction from the least-square method and minimizing the objective 

function: 

* 2

1 1

( ) ( )
ink

NPD i ij ij

i j

O y y
 

    Eq. 3.5 

This method does not provide a reasonable estimate of the intersubject variability of the 

parameters. NPD can easily deal with rich data, sparse data, and a mixture of both. It may 

perform well when variations between subjects are small. This is occasionally the case in 

a group with homogeneous PK/PD characteristics, but it is rarely true in humans, 

especially in the clinical setting. The disadvantage of NPD is that it ignores the 

differences in parameters between subjects, thus no information is available for 
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individual parameters. The NPD estimate for the parameter should be considered as a 

rough approximation of the population parameters of  . This method is currently rarely 

used in population analysis.  

3.3.2 Two-stage method 

The standard two-stage (STS) approach is a well-known and widely-used 

procedure. With this approach, each individual’s parameters are estimated in the first 

stage through ordinary least square method by individually fitting data from the 

individual. The first stage is described by: 

* 2

1

( ) ( )
in

STS i ij ij

j

O y y


    Eq. 3.6 

where i  is the vector of ith individual’s parameters of the PK/PD model, yij is the jth 

observed response in the ith individual, and *

ijy is the predict value of yi. 

At the second stage, the population parameters are estimated as the empirical 

mean 


  (arithmetic or geometric) and variance matrix (


 ) of the individual parameter 

from all the subjects according to the following equations: 

n

k

i

i




 1



   Eq. 3.7 

n

k

i

i

2

1

)(











  Eq. 3.8 

The advantage of the STS method is its simplicity, but problems arise when the 

number of observations in individual subjects is small relative to the number of 

parameters. In that situation, it may be impossible to estimate the individual parameters 

correctly and these subjects might have to be discarded, even though they contain 

valuable information about the population parameters. The serious problem is also 

encountered with the estimate of variance. The variance are likely to be overestimated in 
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most situations (133, 136) because TST tends to add intra-individual random error of 

observations to the estimated parameters.  

The deficiencies in the STS method have motivated the development of iterative 

two-stage (IT2S) approach. This method relies on repeated fittings of individual data. An 

initial guess or a reasonable estimation of population mean and variance of parameters is 

required to initiate the procedure. The initial estimation may be obtained from the 

literature, from the NPD approach performed with current study data and a reasonable 

choice of the parameter variability, or the STS approach. In the first stage, these initially 

selected population parameters are used as priors for the estimation of the individual 

parameters from individual data. In the second stage, the population parameters are 

recalculated with these new individual parameters in order to form the new set of prior 

values. The iterative process is repeated until the difference between the new and old 

prior values become negligible. IT2S can be applied to rich data, sparse data, or a mixture 

of both. This algorithm has been implemented in the software USC*PACK (137) . 

3.2.3 Nonlinear mixed-effects model 

The nonlinear mixed-effects (NLME) modeling approach is a procedure 

introduced by Sheiner and Beal (138) and has become the most common procedure for 

population analysis. As NTD approach, the NLME approach analyzes the data of all 

individuals simultaneously, but takes the inter-individual random effects structure into 

account. The variation in each parameter between individuals and the measurement errors 

are considered in the analysis.  

The NLME method provides estimates of population characteristics that define 

the population distribution of the PK/PD parameters. In the NLME modeling, the 

population characteristics are composed of population mean values derived from fixed-

effects parameters (explanatory variables, such as clearance), their variability within the 
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population, and variance derived from random-effects parameters (unexplanatory 

variables, such as measurement error). 

The parameters of the NLME model are usually estimated by the MLE approach. 

The joint probability of the observations under the population model is written as a 

function of the model parameters, and parameter estimates are chosen to maximize this 

probability. It is difficult to calculate the likelihood of the data for most PK/PD models 

because of the nonlinear dependence of the observations on the random parameters 

i and probably i . Two widely used algorithms, the First-order (FO) approximation and 

stochastic approximation version of expectation-maximization (SAEM) method, are 

described below.  

First-order method. The first-order estimation of population parameters was first 

implemented in NONMEM, the first nonlinear mixed-effects modeling computer 

program for population analysis, to minimize the objective function. In the NONMEM 

program, an extended least square is used as the objective function, where 2 is the 

variance of random error  . 

















n

i

ii

iFO

xfy
yO

1

2

2

2 ln
)),((

),,( 



  Eq.3.9 

 

First-order Taylor series expansion is used to approximate model outcome (yij) 

with respect to the random effect variables i and ij  around zero and is given by: 

ijiijijjiij xGxfy   ),(),(   Eq. 3.10 

where 

0|/),,,(),( 
iiijijjiijij xfxG    Eq. 3.11 

where ),( ijij xG   is a matrix of the first derivatives of ),,,( ijijjixf  of i . The random 

effect i and ij are assumed to be independent and normally distributed with zero means 

and variance-covariance  and variance 2 , respectively.  

Expectation (E) and variance-covariance of all observations for the ith individual 

are given by: 
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),(
jii xfE    Eq. 3.12 

nj

T

iiii IxiGxGC 2),(),(     Eq. 3.13 

where I represents the identity matrix and T denotes the transpose, a matrix operator. 

The nonlinear model is approximated with a linear model using the FO Taylor 

series expansion, and then MLE of the population parameters can be obtained by 

minimizing the objective function which is equal to the minus twice the logarithm of the 

likelihood of the population model.  

Stochastic approximation of expectation-maximization (SAEM). One 

alternative to the linearization approximation methods is the expectation-maximization 

(EM) algorithm developed for models with missing or non-observed data such as random 

effects.  

EM algorithm stands for 2 steps in each iteration: 1) an E-step, computing a 

conditional expectation of parameters; 2) a M-step, the maximization of a conditional 

likelihood, resulting in a set of parameter values which are more likely than those in the 

previous iteration.  

The EM algorithm has found many applications, however practical application of 

this method may encounters computational difficulties, for instance the E-step is hard or 

impossible to calculate. To overcome this problem, an extension of the stochastic 

approximation version of expectation-maximization (SAEM) algorithm (139) was 

developed. The basic idea is to replace the usual E-step by a stochastic procedure which 

splits the E-step to a simulation step and an integration step. The simulation step consists 

of generating realizations of the missing data vector under the posterior distribution. The 

integration step includes stochastic averaging procedure to update the estimates. Lately, a 

more powerful algorithm, SAEM coupled with Markov Chain Monte Carlo (SAEM-

MCMC) was introduced to improve the simulation step of SAEM, when the conditional 
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distribution is not in a close form. The SAEM-MCMC procedure has been implemented 

in the software Monolix (140). 

3.3 Conclusions 

Population approach is aimed at better estimates of variability derived from 

various sourece. Nonlinear mixed-effects model is the most common procedure for 

population analysis. Population analysis can be done with sparse or intense data from 

different trials or studies. In addition, populiaton analysis is a tool to assess the effects of 

covariates on the parameters of PK/PD model and will be used in Chapter 5 and 6 of the 

thesis.   
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CHAPTER 4. NONCOMPARTMENTAL PHARMACOKINETIC 

ANALYSIS OF GLUCOSE-STIMULATED INSULIN RESPONSE IN 

AFRICAN-AMERICAN AND CAUCASIAN YOUTHS 

4.1 Introduction 

Insulin is produced by the beta-cells in the islets of Langerhans of the pancreas. 

The major functions of insulin are to increase muscular glucose uptake and suppress 

hepatic glucose production and thus maintain normal plasma glucose levels. Loss of beta-

cell function leads to diabetes. Most patients in type 2 diabetes (T2D) are characterized 

by insulin resistance with subsequent inability of the beta-cells to maintain increased 

insulin secretion which leads to relative insulin deficiency and hyperglycemia. 

In comparison with Americans of other racial groups, African-Americans are at 

greater risk of obesity (141) and T2D (142), which suggests an inherent difference in 

glucose and insulin metabolism between these racial groups. Indeed, Chiu et al. (95) and 

Arslanian et al. (143) found that African-American children have higher insulin 

concentration and higher acute insulin response to glucose (AIRg) which reflect racial 

differences in beta-cell function and sensitivity of peripheral tissue to insulin. Therefore, 

this study was undertaken to investigate racial differences in insulin secretion after a 

glucose stimulus between African-Americans and Caucasians at adolescence, a 

developmental stage with hormonal and body composition changes that may influence 

insulin secretion (144, 145). 

The insulin response to an intravenous glucose challenge is often biphasic, which 

is defined as an early transient burst of insulin (first-phase) followed by a gradually 

increasing phase of insulin release (second-phase). The concept of biphasic release is 

important in understanding of the maintenance of glucose homeostasis (146, 147).  It 

appears that the first-phase release allows prompt inhibition of endogenous glucose 

production and thereby restraining the rise in plasma glucose (148). In the early stages of 
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T2D, the first-phase is almost invariably lost despite the enhancement of second-phase 

secretion (149). 

Several methods are currently used to assess beta-cell function and tissue 

sensitivity to insulin. The minimal model developed by Bergman (56, 58) is a well-

accepted method of analyzing the frequently sampled intravenous glucose tolerance test 

(FSIVGTT). The fitted parameters from this nonlinear model enable estimation of indices 

of both insulin sensitivity and secretion. However, the major problem of the minimal 

model is it does not represent the insulin secretion accurately; the first-phase was 

discarded in the model. Another relatively simple modeling alternative, that has been 

used in population-based studies (47), is the homeostasis model assessment of insulin 

resistance (HOMA-IR) for the estimation of insulin resistance. HOMA-IR is calculated 

from fasting glucose and insulin levels. However, it primarily measures hepatic rather 

than peripheral insulin sensitivity (150)  and thus compared to the minimal model may 

not be as relevant. Therefore, it appears valuable to analyze the insulin glucose kinetics 

under dynamic conditions using a nonparametric, noncompartmental approach, which is 

done in this study. 

A more objective analysis should be possible by a nonparametric approach that 

does not rely on the many underlying kinetic assumption of model-based approaches. 

Furthermore, the proposed novel, longitudinal analysis provides a more comprehensive 

analysis than possible by “single point” methods e.g. fasting glucose level. The 

longitudinal analysis also provides an objective evaluation of where possible differences 

in the kinetic responses exist in the two groups. This should be particularly valuable 

because of the different phases of insulin release known to occur in response to a glucose 

challenge. These phases, that are poorly considered by most known methods, are closely 

related to the molecular biology of the beta-cells (147, 151). Thus, the proposed analysis 

is not only providing an initial, comprehensive, exploratory analysis of the two 

populations, but is also a valuable starting point for a more data-driven model building of 
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the glucose-insulin system, that considers covariates such as sex, body mass index (BMI) 

and pubertal status explored in the initial nonparametric analysis. Thus, such an approach 

can lead to models more suitable for differentiating the kinetics in different patient 

groups and can lead to better targeted treatment and prevention procedures. 

4.2 Specific aim and hypothesis 

The specific aim is to determine the differences in insulin secretion response after 

an intravenous glucose stimulation between African-American and Caucasian youths 

using noncompartmental method. 

The specific hypothesis is that quantifiable differences in insulin secretion 

response to glucose challenge between African-American and Caucasians youths. 

4.3 Materials and methods 

4.3.1 Subjects and data collection 

Sixteen African-American (12 males and 4 females) and 22 Caucasian (14 males 

and 8 females) adolescents were enrolled in the study. All subjects were in good health 

based on examining medical history and physical examinations. No subjects were taking 

medications. Pubertal status was determined based on Tanner staging of breasts or 

genitalia depending on sex by an experienced pediatric endocrinologist. Tanner 1 subjects 

were considered prepubertal; Tanner 2 to 4 subjects were considered pubertal and Tanner 

5 subjects were considered postpubertal. Table 4.1 provides the age, BMI, and pubertal 

status for each group. The protocol was approved by the Ohio State University Office of 

Responsible Research. Informed consent was obtained from the legal guardian and 

informed assent from the subjects. 

Subjects received their routine diet for at least 3 days before the glucose tolerance 

test and then were admitted at 8AM after 10 hours fasting to the General Clinical 

Research Center (GCRC, Ohio State University). On the morning of the test, a bolus 
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glucose of 250 mg/kg was administered through an intravenous catheter at time 0.  Blood 

samples were collected at -10, 0, 2, 4, 6, 8, 10, 12, 14, 16, 19, 22, 27, 32, 42, 52, 62, 72, 

82, 92, 102, 122, 142,162 and 182 minutes relative to glucose administration at time 0. 

Plasma glucose was measured by the YSI model 2300 glucose analyzer (Yellow 

Springs Instruments, Yellow Springs, OH). The coefficient of variation (CV) of this 

method is < 2%.  Plasma insulin was measured in the CORE laboratory of the GCRC 

using a double antibody radioimmunoassay (Coat-A-Count kit manufactured by Siemens 

Medical Solutions Diagnostics). The sensitivity of the insulin assay was 2.5 μU/ml. The 

intra- and interassay CV were 6% and 10%, respectively. 

4.3.2 Data analysis 

All statistical analysis was performed with S-Plus enterprise developer version 7.0 

for windows (Insightful Corp.). Glucose concentration, insulin concentrations and AIRg 

were log-transformed according to assumption of log-normality. Two-sample student t-

tests based on equal or unequal variance determined by F-test were used for between-

group comparisons of mean value. All data were reported as mean and standard error of 

mean unless otherwise indicated. P-values less than 0.05 were considered statistically 

significant. 

4.3.3 Kinetic parameters 

AIRg represents the acute insulin response and is defined as the area under the 

plasma insulin curve between 0 and 10 min (53, 152):  

dtItIAIR bg  

10

0

])([   Eq. 4.1 

where I(t) is insulin concentration at time t and Ib is the baseline of insulin expressed in 

μU/ml. AIRg was calculated from a cubic spline fitted to the insulin data according to the 

general cross validation principle (153). 
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4.3.4 Homeostatic model assessment of insulin resistance (HOMA-IR) 

The HOMA-IR proposed by Matthews et al. (47) is calculated as follows: 

405

bb IG
IRHOMA


   Eq. 4.2 

where Gb is the basal glucose plasma concentration expressed in mg/dl, and Ib is the basal 

insulin level measured in μU/ml. 

4.3.5 Regression Analysis 

Multiple linear regression analysis was used to assess the effects of sex, BMI and 

pubertal status on insulin and glucose responses. For the jth observation point, the 

regression model has the form: 





3

1

0

k

ijkki xy ,   Eq. 4.3 

where yi is the value of response variable (glucose or insulin plasma level) for subject i, k 

= 1, 2, 3, and xk,ij are explanatory variables k for the ith subject at jth observation. In each 

linear regression, there are three explanatory variables chosen from sex, BMI, pubertal 

status and race based on how subjects are grouped. Sex is a factor, race is a factor, BMI is 

continuous value, and puberty is an integer with prepuberty as -1, puberty as 1 and post-

puberty as 2. The regression coefficients, 210 ,,   and 3 were estimated by least-

squares. 

4.4 Results 

Demographic data of subjects are shown in Table 4.1. The mean ages of both 

groups were similar. African-American adolescents had significantly higher BMIs than 

Caucasian adolescents (p < 0.05). Table 4.2 presents the basal insulin and glucose 

concentration in plasma, β-cell function estimated by AIRg, and HOMA-IR. Two-sample 

t-tests revealed that mean concentrations of insulin and glucose did not differ at baselines 

between African-Americans and Caucasians. As expected, African-American adolescents 
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had significantly higher AIRg compared to Caucasians (p < 0.05). No racial difference in 

AUCglucose /AUCinsulin and HOMA-IR were found. 

The glucose and insulin profiles obtained using FSIVGTT are shown in Figure 

4.1. At each observation point t-tests were used for comparison of between-group 

difference in glucose and insulin levels and the resulting t-test probabilities were plotted. 

The plasma insulin concentrations were mainly different in the peak area between 

African-American and Caucasian children (Figure 4.1A). The African-Americans had 

significantly higher insulin concentration in the 4-19 minutes interval (all p < 0.05). The 

mean values of plasma glucose concentration (Figure 4.1B) were not significantly 

different between the two racial groups.  

The between-group differences in plasma insulin and glucose concentrations were 

also examined by the t-test probabilities when grouped in terms of BMI, sex and pubertal 

status. The resulting probability plots are shown in Figure 4.2, 4.3 and 4.4, respectively. 

For BMI, the median 23.05 was chosen as the cut-point to get equal number of subjects in 

the low and high BMI groups. Second-phase (defined as after 20 min) insulin 

concentrations were significantly different in insulin levels (Figure 4.2A, all p < 0.05). In 

contrast, the differences in glucose were significant only after 100 min, at which time 

glucose levels approached steady state basal levels (Figure 4.2B, all p < 0.05). The 

between-group differences in insulin were not significant as the subjects were grouped 

based on sex (Figure 4.3A) and pubertal status (Figure 4.4A). No significant differences 

in glucose response were found between male and female (Figure 4.3B), but there were 

significant differences in glucose as the comparisons were performed through pre-puberty 

vs. post-puberty (Figure 4.4B, all p < 0.05 after 100 min).  

By the exploratory probability plots resulting from the t-tests we found racial 

differences in insulin level (Figure 1A) during the first 20 minutes and BMI’s differences 

in glucose level (Figure 1B) after 100 min. To determine the dependence of those 

differences on other covariates, such as age, sex, pubertal status and BMI, a series of 
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multiple linear regression analysis were performed using S-Plus. The resulting 

probabilities for every covariate at each observation were plotted as shown in Figure 4.5 

(corresponding to Figure 4.1A) and in Figure 4.6 (corresponding to Figure 4.2B). Figure 

4.5A shows that, for Caucasians, insulin concentrations in the first-phase (defined as less 

than 20 min) were strongly related to BMI (all p < 0.05 in the 8-20 min interval), and not 

related to sex and pubertal status. Figure 4.5B shows that, for African-Americans, insulin 

concentrations in the first-phase did not appear to depend on sex, pubertal status or BMI 

(all p>0.05 in 4-20 min). For the group with BMI less than 23.05 (Figure 4.6A), we found 

that glucose concentrations were associated with sex (all p < 0.05 after 120 min), but 

independent of race and pubertal status. For the group with larger BMI (BMI larger than 

23.05, Figure 4.6B), pubertal status, sex and race did not show significant effect on the 

glucose concentrations, although race seems to have a stronger association with glucose 

concentrations compared to pubertal status and sex. 

4.5 Discussion 

The insulin and glucose responses in the FSIVGTT were analyzed by 

noncompartmental PK to determine the between-group differences and covariate effects 

on glucose and insulin. Rather than using a minimal model to derive indices (such as 

glucose effectiveness and insulin sensitivity), we performed Student’s t-tests longitudinal 

across each observation for comparing between-group differences. 

4.5.1 Racial effect on insulin, glucose levels, AIRg and HOMA-IR 

The glucose stimulated insulin response is predominantly biphasic. The first-

phase insulin response (“acute response”) is defined as the initial burst followed by a fall 

in insulin level, which lasts about 20 minutes in our study. The second-phase starts from 

the end of first-phase. The rise of the second-phase is more gradual and its magnitude is 

directly related to the degree and duration of the stimulus. In our FSIVGTT study, about 

65% of subjects exhibit an identifiable first- and second-phase insulin release. 
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Our analyses revealed that African-American youths have higher insulin 

concentrations in the first-phase compared to Caucasians. This finding is consistent with 

the study conducted by Arslanian et al. (143).  AIRg represents a measurement of insulin 

release and clearance during first-phase.  It is a simple measurement for assessing first-

phase and beta-cell function (154, 155). The results of our study demonstrate that 

compared with Caucasians, African-Americans have significantly greater AIRg. These 

findings are in agreement with other published reports (50, 51, 156, 157).  Our study 

suggested that the calculation of AIRg should be extended to 20 minutes after glucose 

administration to provide a better differentiation. The racial difference in AIRg is more 

significant based on the calculation over 20 minutes (p < 0.0006) compared to the 

calculation of AIRg over 10 minutes (p < 0.001).  The racial difference in AIRg may be 

caused by either higher insulin secretion, lower clearance or lesser hepatic insulin 

extraction in African-Americans compared to Caucasians. Although the underlying 

physiology is not well understood, a study of C-peptide would provide information for 

better resolving the kinetics. 

We did not identify a difference in insulin resistance between African-Americans 

and Caucasians. This result is consistent with a population-based HOMA-IR 

investigation by Lee et al (49).  However, the difference in insulin resistance between 

African-American and Caucasian children has been found using both euglycemic clamp 

(50, 51, 158) and FSIVGTT analysis (159).  This discrepancy could be due to the 

HOMA-IR being calculated from fasting glucose and insulin levels.  Furthermore,  

HOMA-IR primarily measures  hepatic rather than peripheral insulin sensitivity (150) 

and thus is difficult to compare to the clamp studies and the minimal model analysis. 

4.5.2 BMI’s effect on insulin and glucose levels 

African-Americans have been reported to have higher BMI compared to 

Caucasians (141).  Obesity has been demonstrated as a critical factor that affects the 
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biphasic insulin secretion in adolescents (156). Therefore, comparison of our results with 

other investigations has to be undertaken with caution, as most subjects in our study are 

not obese. In our study, the BMI significantly affected the insulin level in the second-

phase (all p < 0.05, after 20 min, Figure 4.2A), but does not appear to have an effect on 

the first-phase response. This result is supported by the study presented by Walton et al. 

(160) in individuals with normal BMI. Although only racial difference was found in first-

phase, BMI is the major covariate that determined the insulin concentration. Multivariate 

linear regression analysis indicated that, for Caucasians, insulin concentrations in the 

first-phase are significantly associated with BMI, and higher BMI leads to higher insulin 

levels.  In contrast, the relationship in African-Americans was not significant. The 

possible reason may be that the Caucasians have lower BMI compared to African-

Americans, higer BMI values mask the association of BMI with insulin concentration. 

4.5.3 Pubertal effect on insulin  

Previous studies have revealed that puberty is associated with insulin resistance 

and insulin resistance is compensated by increased insulin secretion, which results in 

increased serum insulin concentrations (144, 161, 162). The results of our study did not 

indicate pubertal effect on insulin concentration. The relatively small number of subjects 

and the racial effect on insulin level may mask the relationship. Although we found 

differences in glucose concentrations at steady state (>100 min) between groups with 

different pubertal status (pre-puberty vs. post-puberty), these findings most likely are a 

reflection of the smaller BMIs in pre-pubertal subjects in this study, in which the means 

(±SD) of BMI for pre-pubertal and post-pubertal subjects were 18.9±3.58 and 25.6±4.53, 

respectively. 

4.6 Conclusions 

In summary, our study suggests that African-American youths have higher 

glucose stimulated insulin response in the first-phase (<20 min) compared to Caucasian 
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youths and higher AIRg.  For the subjects with normal BMI, BMI has significant effect 

on second-phase insulin secretion. The calculation of AIRg extended to 20 minutes 

indicates a more significant racial difference compared to the AIRg in 10 minutes. After 

reaching steady-state (>100 min), subjects with different levels of BMI cause the 

between-group difference in glucose concentration. During steady state, the glucose 

levels in subjects with lower BMI are significantly correlated with sex (p < 0.05), but 

large BMI may obscure the gender’s effect on glucose concentration. 

 

 

 

 

 



  99 

  

9
9
 

Table 4.1. Subject demographics 

 African-American Caucasian 

BMI*
‡
 (kg/m

2
)  25.5±1.10 21.8±0.90 

Sex     

      Male 12 14 

      Female 4 8 

Age
‡
 (years) 13.8±0.62 13.8±0.57 

Pubertal Status    

      Pre-puberty 2 6 

      Puberty 6 9 

      Post-puberty 8 7 

 

*P < 0.05.  
‡
 Data are mean ±SE 
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Table 4.2. Measures and estimates of insulin and glucose responses in plasma during FSIVGTT according to race 

 African-American (mean ±SE) Caucasian (mean ±SE) 

Basal Insulin (μU/ml) 12.4 ±2.10  15.0 ± 4.73 

Basal Glucose (mg/dl) 82.9 ± 1.82 83.2 ±1.68 

AIRg * (μU·min/ml) 898±157 457 ± 56.2 

AUCglucose /AUCinsulin 6.24±0.89 8.95±1.31 

HOMA-IR  2.62 ± 0.46 3.17 ± 1.00 

 
*P < 0.05 denotes significant difference between racial groups. 
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Figure 4.1. Mean (±SE) plasma insulin (A) and glucose (B) concentrations after IV 
glucose administration in African-American and Caucasian adolescents.  

The racial difference in mean concentration at each observation was evaluated 
using t-test.  
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Figure 4.2. P-values of two-sample t-test for between-group differences in mean values of 
insulin (A) and glucose (B) when subjects were grouped in terms of BMI with 
cut point equal to median 23.05. 
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Figure 4.3. P-values of two-sample t-test for between-group differences in mean values of 
insulin (A) and glucose (B) when subjects were grouped in terms of sex. 
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Figure 4.4. P-values of two-sample t-test for between-group differences in mean values of 
insulin (A) and glucose (B) when subjects were grouped in terms of pubertal 
status. 
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Figure 4.5. Covariate effects on insulin concentration in first 20 minutes following an IV 
glucose administration in healthy Caucasian (A) and African-American (B) 
youths.  
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Figure 4.6. Covariate effects on glucose concentration after 100 minutes of glucose IV 
administration in subjects with lower BMI (A) and higher BMI (B). 
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CHAPTER 5. POPULATION ANALYSIS OF ETHNICITY AND 

FIRST-PHASE INSULIN RELEASE 

5.1 Introduction 

The prevalence of obesity and type 2 diabetes (T2D) among children is increasing 

in U.S., and this problem is greater in African-American children compared to Caucasian 

children (141). A number of recent reports have demonstrated that non-diabetic African-

Americans have increased insulin resistance (51, 143, 163, 164) which is a risk factor for 

developing T2D (165, 166). Increased insulin secretion in African-Americans may 

compensate for or precede the insulin resistance (22, 163, 167, 168). In any event, it 

appears that there is an inherent difference in glucose and insulin metabolism between 

these two populations.  

In our previous study (25) a nonparametric approach was used to analyze insulin 

dynamics by means of data from frequently sampled intravenous glucose tolerance tests 

(FSIVGTT).  That study indicated that race, as a major covariate, only affects the insulin 

concentration in the first-phase for non-obese subjects. As first demonstrated by Cerasi 

and his colleagues (169) in vivo, insulin secretion in response to glucose exhibits a 

biphasic pattern.  Much effort has been devoted to understanding the underlying 

mechanisms of the biphasic release because of the apparent association between the onset 

of T2D and the loss of the first-phase (149, 169). 

A wide variety of models have been used to study the glucose and insulin 

dynamics. The often applied minimal model (54) has been used for several decades due 

to its capability of estimating indices of insulin sensitivity.  However, the minimal model 

does not accurately represent the early insulin secretion. The early first-phase data points 

are commonly not included in the minimal model analysis. Thus, the minimal model is 

not suitable for analyzing the early phase release. Only few models have been proposed 

to describe insulin secretion based on the mechanism of a biphasic insulin secretion. 
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Grodsky et al. modeled multiple insulin pools in beta-cells (170). They studied the phasic 

insulin secretion both in vitro and in vivo and suggested a two-compartment model to 

describe the biphasic secretion. However, the model only successfully simulated the first-

phase secretion under certain levels of glucose stimulation. A more elaborate model with 

a biphasic mechanism of insulin secretion has been proposed by Gupta et al. (97).  

However due to the greater complexity of that model the parameters that relates to first- 

or second-phase release are difficult to evaluate in a population kinetic framework.  

In this work, the physiological mechanism of biphasic secretion is specifically 

considered in the PK/PD analysis, with a strong structural connection to current 

knowledge of the beta-cell insulin physiology. Compared to other models that consider a 

biphasic insulin models, the proposed model is simpler in structure and number of 

parameters and includes physiologically-based parameters closely related to the 

important biphasic insulin secretion.  Insulin concentrations obtained from FSIVGTT in 

the two racial groups were simultaneously analyzed in a population modeling framework 

using the Monolix software (140) according to the proposed mechanistic kinetic model.  

A specific covariate structure was used in the population analysis enabling the 

identification of distinct differences in physiologically relevant kinetic parameters 

between African-American and Caucasian youths. 

5.2 Specific aims and hypotheses  

One specific aim of this chapter is to formulate a novel physiologically based 

mechanistic PK/PD model aimed at dynamically evaluate the biphasic insulin secretion. 

The proposed model should be simple and have the ability to relate the kinetic parameters 

to the important biphasic pattern of insulin secretion. The other aim is to evaluate the 

impact of ethnicity on insulin secretion kinetics using population modeling approach. 

The hypotheses are 1) the plasma insulin concentrations after an IV glucose 

challenge can be accurately described using a PK/PD model based on the cellular 
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mechanism of biphasic insulin secretion and 2) the proposed model is able to identify   

kinetic parameters that cause the difference in the insulin secretion response to IV 

glucose stimulation between African-American and Caucasian youth using population 

analysis. 

5.3 Materials and methods 

5.3.1 Subjects 

The database used here were the same as the one used in our previous 

noncompartmenal analysis (25) except 5 subjects were excluded due to missing entire 

first- or second-phase samples. The FIVGTT analysis involved 15 healthy African-

American (3 females and 12 males), age 13.7±2.55 (mean±SD), and 18 healthy 

Caucasian children (8 females and 10 males), age 14.1±2.90. The BMI of African-

Americans is 25.6±4.63, which is significantly (p < 0.05) higher comparing to that of 

21.5±4.13 of Caucasians. The study was conducted in accordance with the guidelines in 

The Declaration of Helsinki and the protocol approved by the Ohio State University 

Office of Responsible Research. 

5.3.2 Sampling procedure 

Subjects received their routine diet for at least 3 days before the glucose tolerance 

test and then were admitted at 8 AM after 10 hours fasting to the General Clinical 

Research Center, Ohio State University. On the morning of the test, a bolus glucose of 

250 mg/kg was administered within one minute through an intravenous catheter at time 0. 

Blood samples were collected at  -10, 0, 2, 4, 6, 8, 10, 12, 14, 16, 19, 22, 27, 32, 42, 52, 

62, 72, 82, 92, 102, 122, 142,162 and 182 minutes relative to the glucose administration 

at time 0. 
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5.3.3 Laboratory analysis 

Plasma glucose was measured by the YSI model 2300 glucose analyzer (Yellow 

Springs Instruments, Yellow Springs, OH). The coefficient of variation (CV) of this 

method is <2%.  Plasma insulin was measured in the CORE laboratory of the GCRC 

using a double antibody radioimmunoassay (Coat-A-Count kit manufactured by Siemens 

Medical Solutions Diagnostics, Los Angeles, CA). The sensitivity of the insulin assay 

was 2.5 μU/ml. The intra- and interassay CV were 6% and 10%, respectively. 

5.3.4 PK/PD modeling 

A physiologically-based mathematical model was developed to describe plasma 

insulin concentration in response to an acute glucose challenge during FIVGTT. The 

model considers the physiologic mechanism of biphasic secretion of insulin at the beta-

cell level. The model (Figure. 5.1) includes two insulin pools in the beta-cells, which 

store the biosynthesized insulin granules and account for the biphasic nature of insulin 

secretion. One pool, here denoted the reserved insulin pool (IR), governs the second-phase 

insulin secretion and the other denoted the readily releasable insulin pool (IRR) governs 

the first-phase insulin secretion. 

Eq. 5.1 describes the second-phase insulin secretion from the IR pool. It considers 

a rate of formation of IR proportional to the plasma glucose concentration (CG) and a 

release of insulin empirically described by a sigmoidal Hill equaiton: 
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  Eq. 5.1 

with KG denoting  the first-order formation rate constant, and the Emax, C50 and α the Hill 

equation parameters, while IR_0  is the estimated initial condition of the IR pool. 

The insulin in the readily releasable pool (IRR) has been “primed” (prepared for 

release) for ready release according to the biphasic secretion mechanism. The readily 
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releasable insulin can in response to the glucose stimulation be released at a relatively 

fast rate compared to that in the IR pool, to form the first-phase. The change in IRR is given 

by: 

0_)0( RRRR

RRRR
RR

II

IK
dt

dI




  Eq. 5.2 

where KRR is a first-order rate constant and IRR _0 is the estimated initial condition of the 

IRR pool. 

The insulin from the beta-cells (IR and IRR pools) needs to go through the liver 

prior to its entry into the circulation. A fraction of insulin described by the extraction 

ration E is removed by the liver. The plasma is considered as a single compartment for 

insulin with first-order elimination kinetics. Accordingly, the rate of change in the plasma 

insulin concentration is described by: 
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 Eq. 5.3 

where CI  is the plasma insulin concentration, CI_0 is the initial plasma insulin 

concentration, KI is a first-order elimination rate constant, VI is the distribution volume of 

insulin in plasma and Pe has been introduced to represent the expression of (1-E)/VI and 

avoid identifiability problems. 

5.3.5 Population PK/PD modeling 

A nonlinear mixed-effects model was used for the population analysis in which 

the insulin concentration profile is described by the above set of differential equations, 

and random effects account for variability between- and within-subjects. Let ijy denotes 
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the j-th observed plasma insulin concentration of subject i at time tij ( i = 1, …, n, j = 

1, …, k), then the nonlinear mixed-effects model is written as: 

ijijiijiij tgtfy   ),(),(   Eq. 5.4 

where f is the PK/PD model consisting of the solution to the differential equations 1-3, g 

is the residual error model, ij is the  coefficient of the error model following a normal 

distribution with mean 0 and variance 1. 

Various residual error models were investigated for the population analysis and 

the choice made based on the likelihood ratio test with significant level equal to 0.05 and 

plots of goodness-of-fit. As possibilities we consider the function g (Eq.5.4) to have the 

following constant, proportional and combined forms: 

Constant atg iji ),(  Eq. 5.5 

Proportional ),(),( ijiiji tbftg    Eq. 5.6 

Combined ),(),( ijiiji tbfatg    Eq. 5.7 

with i being a p-dimensional vector of individual parameters for subject i assumed to be 

log-normally distributed, ensuring non-negativity in the estimation. Race was evaluated 

as a categorical covariate to explain between-subject variability in the kinetic parameters. 

To describe racial effects, i  was modeled with the following covariate structure: 

iii c  )ln(  with   ),0(~ .. Ndiii  Eq. 5.8 

where ci is a categorical vector corresponding to the ethnicity of subject i (African-

American was used as reference class);   is a vector of coefficients of size p ;   is a 

vector of population means for parameters with length p; i represents the random effect 

assumed to follow a normal distribution with mean of zero and   is a diagonal variance 

matrix of the random effects. Significance of the racial effect on parameters was 

evaluated by the Wald test at a significance level of 0.05. 
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5.3.6 Data analysis 

The data from all the subjects were simultaneously analyzed using the open-

source free computer software Monolix, standalone version 3.1 developed by INRIA, 

France (140). The population parameters were estimated based on the maximum 

likelihood estimation (MLE). A Stochastic Approximation Expectation Maximization 

(SAEM) algorithm coupled with Markov Chain Monte Carlo (MCMC) (139, 171-173) 

procedure  was used for MLE estimation of the parameters of the population model 

without the use of approximations in the estimation of the likelihood. We made use of 

Monolix because its algorithm showed much better convergence properties compared to 

the software NONMEM VI which failed to converge in our case. The Hastings-

Metropolis algorithm was applied to compute conditional means and conditional standard 

deviations of the individual parameters. The glucose concentrations were represented by 

a linear spline interpolation. 

5.4 Results 

The residual error in the nonlinear mixed-effects population kinetic analysis was 

best described with a proportional model . Population estimates of parameters and 

between-subject variability (standard deviation) are presented in Table 5.1. A visual 

predictive check (VPC) with 1000 simulated data set was performed. The simulated 

median and the 95% confidence interval are given in Figure 5.2 together with the 

observed insulin concentrations. The VPC plot provides good evidence of the adequacy 

of the model. 

In the present investigation race as a covariate was incorporated in the structure of 

population model (Eq. 5.8). Inclusion or deletion of covariate was determined by a Wald 

test at a significance level of 0.05. We first applied the covariate of race to all parameters. 

It was then found that the initial value of the IRR pool (IRR_0) is significantly associated (p 

< 0.05) with race, and racial effect on the rate constant of KRR is close to significant 
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(p=0.064). If only the parameter KRR or IRR_0 is considered in the covariate structure, then 

race shows a significant relationship. Accordingly, the derived parameter KRIR = 

KRR·IRR_0, which provides a metric for the initial first-phase insulin secretion from beta-

cell, was used in the population analysis. In this way race was found to have a significant 

effects on KRIR, resulting in a 63% decrease in KRIR for Caucasians compared with 

African-Americans. The performance of the population model was shown in Figure 5.3. 

Apart from the high observed plasma insulin, the population predicted insulin 

concentrations and observations are clustered around the line of identity (Figure 5.3A). 

Plotting the individual predictions against the observations for insulin (Figure 5.3B) 

reduces the scattering around the line of identity as indicating that the population kinetic 

analysis is able to explain the variability in the insulin response. The scatter plot of 

population weighted residual against predicted concentrations of insulin (Figure 5.3C) 

indicates that the residuals are randomly distributed. Thus, the population model appears 

to adequately describe the biphasic insulin dynamics.  

5.5 Discussion 

The current study combines a nonlinear mixed-effects population modeling 

approach and a physiologically based PK/PD model for analyzing insulin behavior in 

response to glucose stimulation. The structure of the PK/PD model contains expressions 

to describe the physiologic mechanism of insulin’s biphasic secretion. The population 

PK/PD modeling with the covariate analysis approach enables identification of 

parameters specific to the difference found in the first-phase insulin secretion between 

African-American and Caucasian youths (25). 

5.5.1 PK/PD modeling rationale 

The insulin release from the beta-cells involves the arrangement of insulin into 

secretory granules, trafficking of the insulin-containing granules to the plasma 

membranes and exocytosis from the beta-cell (18). The release of insulin from the β-cells 
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has been found to follow a biphasic time course consisting of a rapid and transient first-

phase followed by a slowly developing and sustained second-phase. The underlying 

mechanisms of the biphasic pattern is still poorly understood in spite of the fact that 

biphasic release of insulin has been known for more than 40 years (169). One explanation 

proposed by a number of studies (30, 37, 170, 174, 175) suggests that the biphasic release 

is due to the existence of at least two distinct pools of insulin granules in beta-cells. 

Based on their release competence or proximity to the plasma membrane it is proposed 

that the granules belonging to the readily releasable pool (IRR) can be rapidly discharged 

without any further modification and thus is responsible for the first-phase insulin 

secretion; the second-phase release is due to the insulin granules in the reserved pool (IR) 

which have to be translocated to the membrane and primed before they can be released. 

The PK/PD model presented in this work subscribes to this current cellular 

biology understanding of the kinetic mechanism governing insulin biphasic secretion. 

Specifically, the IRR and IR pools of insulin are included in the proposed model (Figure 

5.1) to consider this mechanism. Upon glucose stimulation, the granules in the IRR pool 

are secreted from beta-cells at a faster rate compared to the IR pool, and thus form the 

first-phase release. 

Glucose is the main physiological regulator of insulin production and secretion in 

the beta-cells (176-178). Several studies (170, 175, 179) have reported that the magnitude 

of the peak of the first-phase is varying with the level of glucose, while the shape and the 

transient nature of the peak remains unchanged. Thus, the size of IRR should be associated 

with the glucose level. However, we could not estimate the dependence of IRR on the 

glucose dose since only one level of glucose stimulation was tested in our study subjects. 

For the effect of glucose on the second-phase, we assume the production rate of insulin in 

IR to be proportional to the glucose concentration. The relationship between glucose and 

insulin release from the IR pool was analyzed by using several PK/PD relationships, 

including the Hill function with or without sigmoidicity and a simple linear function. In 
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order to determine a reasonable empirical structure for the population analysis as a first 

step, glucose and insulin data were fitted individually using WINFUNFIT which is a 

Windows version evolved from the FUNFIT program (180). Our analysis suggests that 

the model using the Hill function with sigmoidicity best describes the insulin dynamics 

during FSIVGTT based on the Akaike information criteria (AIC) (181) and graphical 

comparisons of fits. 

5.5.2 Model parameters 

The extraction ratio parameter E influences the amount of insulin that reaches the 

systemic circulation. Approximately 50% (E=0.5) of insulin secreted from beta-cell is 

extracted by the liver , but the value of E may change with the glucose level (23). Instead 

of estimating E, which is not possible based on the current data, our PK/PD analysis 

estimates the Pe parameter, which “encapsulates” the E and VI parameters (Pe = (1-E) /VI). 

The average value of VI has been reported to be 10 liter (182). Thus, the value of Pe 

calculated according to these references is about 0.05, which is in agreement with the 

population estimate of Pe based on our model which is 0.0581 with a 95% confidence 

interval of 0.0436-0.0773 L
-1

. Thus, our results do not indicate a significant change in Pe 

in response to a glucose challenge. 

The KI has been reported from 0.1 to 0.3 min
-1

 (121, 183). Our population KI 

estimate of 0.194 min
-1

 falls into this range, which corresponds to an insulin half-life time 

of 3.57 min with a 95% confidence interval of 1.33-6.93 min. 

In the proposed model, the initial amount of IR is treated as an estimated 

parameter and not calculated assuming an initial steady state condition. The rational for 

this is the fact that the basal insulin level is not a stable parameter because the insulin 

concentration in blood changes in a pulsatile manner. At the fasting state, the contribution 

of the pulsatile insulin secretion has been found to be at least at least 75% of the total 

insulin secretion (184). 
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Higher insulin concentrations in the first-phase in the African-American subjects 

were detected compared to Caucasians (25) which may indicate beginning signs of 

progression towards insulin resistance and a pre-diabetic state in the African-American 

group. Increased insulin secretion in the African Americans may also compensate for or 

precede the insulin resistance (22, 163, 167, 168). The increase in insulin level may be 

caused by an increase in insulin secretion from IRR and/or IR, or a decreased insulin 

removal via the extraction from the liver or elimination from plasma. Our covariate 

analysis suggests that the difference is due to the insulin secretion from the IRR pool. The 

significant racial difference (p < 0.05) in the initial insulin secretion (KRIR) from the beta-

cells resulted in the difference in the secretion profiles found in the first-phase. Secretion 

profiles from beta-cell (Figure 5.4) during FSIVGTT can be reconstructed using 

population parameters and averaged glucose concentrations. No significant association 

was found between race and the insulin elimination, and race and insulin extraction by 

liver. 

The present analysis has been based on FSIVGTT experiments which are 

clinically less involved than OGTT experiments.  Accordingly, to possibly broaden the 

applicability of the analysis work is currently in progress to test the applicability of the 

model for analyzing OGTT data. 

5.5.3 Other possible factors 

Because most subjects in the study (BMIs of 5 subjects are larger than 30) are 

non-obese, obesity can not be ruled out as possible alternative explanation for the 

difference found between the two groups. A better balanced study is needed to investigate 

that possibility. Possible differences in other  factors that have not been determined in 

this study such as physical activity that was found to be a possible contributor (185), or 

genetic factors may also need to be considered. 
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5.6 Conclusions 

In summary, the proposed mechanistic PK/PD model is able to describe the 

biphasic release of insulin in response to a glucose challenge. The population analysis 

allowed an estimation of the variability of the parameters relating to the important 

biphasic release and enabled the effect of race on the parameters to be evaluated. A 

significant difference between races was identified in the derived parameter KR IR that 

relates to the first-phase insulin release. Our result is supported by our previous 

exploratory nonparametric analysis of the insulin-glucose kinetics where we found 

African-Americans to have a higher insulin concentration in the first-phase compared to 

Caucasians (25).  The proposed kinetic model in this work offers an opportunity to 

quantify the biphasic characteristic of insulin release and provides a mechanistic and 

quantitative understanding of the first-phase release, which has been found to play an 

important role in the development of type 2 diabetes. 
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Table 5.1. Population estimates of the proposed PK/PD model 
using Monolix 

Parameters Estimate RSE(%)* 

KG (min
-1

) 0.24 21 

Emax (min
-1

) 0.0185 16 

C50 (mg/dl) 73.8 6 

Pe (L
-1

) 0.0581 25 

KI (min
-1

) 0.194 12 

KRR (min
-1

) 0.499 0.2 

α 4.05 13 

IR_0 (μU) 4530 34 

CI_0 (μU/ml) 8.7 12 

KR·IR (μU/min) ‡ 1580** 31 

β_ KRIR
 

-0.922 27 

b 0.185 3 

Standard deviation of parameters 

KG  0.296  

Emax 0.189  

C50  0.224  

Pe 0.146  

KI  0.505  

KRR  0.216  

α 0.278  

IR_0  0.403  

CI_0 0.659  

KR·IR (African-American) 0.608  

KR·IR (Caucasian) 0.699  

 

‡ p = 0.00016. 

** The value is for African-American which is used as reference. 

KR·IR of Caucasian is calculated as: 1580*exp(-0.922) = 628. 

* RSE, relative standard error. 
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Figure 5.1. Diagram of the proposed PK/PD model.  

The proposed model is formulated on the beta-cell level and includes two 
insulin pools. IR denotes the reserved insulin that is responsible for the 
second-phase insulin secretion; IRR denotes the readily releasable insulin that 
responsible for the first-phase insulin secretion; G represents the glucose;  I 
represents plasma insulin; E denotes the extraction ratio of insulin by liver. 
KG, KI and KRR are rate constants; C50, Emax and α are the parameters in the 
Hill equation. 
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Figure 5.2. Visual predictive check of the population PK/PD model.  

Comparison of the observed concentrations with the median and 95% interval 
predicted for 1000 simulated data sets computed from the estimated 
population PK/PD model. 
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Figure 5.3. Goodness of fit plots of population model. (A) observed insulin concentrations vs. population predictions,  (B) observed 
insulin concentrations vs. individual predictions, and (C) weighted residuals vs. population.    
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Figure 5.4. Beta-cell secretion profile during FSIVGTT for African-American and 
Caucasian youth according to population parameters and averaged glucose 
concentration.  
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CHAPTER 6. A POPULATION KINETIC ANALYSIS OF PREHEPATIC 

INSULIN SECRETION 

6.1 Introduction 

Quantitative estimation of pancreatic insulin release is necessary for the 

understanding of the pathogenesis of type 2 diabetes (T2D), which is characterized by a 

progressive loss of beta-cell function (186). However direct measurement of insulin 

secretion rate (ISR) from beta-cells in human is not feasible because of the need for 

prehepatic blood sampling. The plasma insulin concentration is accessible in vivo, but 

that only provides information about the posthepatic insulin delivery because insulin 

released from the beta-cells is partly extracted by the liver before entering the circulation 

(187). However, the ISR can be quantified indirectly using plasma C-peptide (CP) data 

based on the fact that CP and insulin are secreted at an equal molar ratio (188). 

Deconvolution technique (79, 120, 189) can reconstruct ISR from the time course of CP 

and its disposition kinetics. The required CP kinetics can be acquired in a separate 

experiment in the same subjects (79), or, alternatively, by using parameter values from 

population analysis (80). Another choice is the “combined model” (96, 115, 121) that 

combines insulin and CP data in a single experiment analysis. The advantage of the 

combined model approach is the combined use of insulin and CP kinetics and not 

requiring a prior knowledge of CP kinetic parameter. However the combined model does 

not accurately estimate the second-phase of insulin secretion (126) and does not describe 

the effect of glucose on insulin secretion. The minimal model of insulin secretion (128, 

190, 191) can quantify both the ISR and the glucose effect on ISR. However the minimal 

model describes insulin and CP kinetics separately, and does not capture the insulin 

concentration profiles well under oral glucose load (190). 

In a previous study (192), we proposed a model for analyzing the insulin kinetics 

based on an frequently sampled intravenous glucose tolerance test (FSIVGTT). In this 
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study, the previous model was applied to the oral glucose tolerance test (OGTT) by 

specifically making use of CP and insulin data based on equimolar co-secretion of insulin 

and CP, and the impact of covariates on insulin secretion was investigated. 

6.2 Specific aim and hypothesis 

The specific aim of this chapter is to extend the proposed model for the oral 

glucose administration by making use of the co-secretion kinetics of insulin and glucose 

and to identify covariates’ effects on the prehepatic insulin secretion using a population 

approach. 

The specific hypothesis is the proposed model can simultaneously characterize the 

insulin and C-peptide secretion responses to an oral glucose load and thus evaluate 

prehepatic insulin secretion. 

6.3 Materials and methods 

6.3.1 Data 

The data used in this study is originated from the published paper by Mari et al. 

(193). The standard 75-g OGTT was performed on 221 subjects who classified as normal 

glucose tolerance (NGT), impaired glucose tolerance (IGT), or T2D based on the 1997 

American Diabetes Association criteria. There are 149 females in NGT group with age 

33.1±5.28 (mean±SD) years, BMI 26.1±5.3; 27 females and 2 males in IGT group with 

age 37.5±5.28 years, BMI 30±4.14 kg/m
2
; 17 females and 26 males in T2D group with 

age 53.7±12.7 years, BMI 30.8±4.82 kg/m
2
. Plasma glucose and insulin concentrations 

were measured at fasting state (time 0) and 10, 20, 30, 60, 90, 120, 150 and 180 minute 

after glucose load. Detailed information for subjects and study procedure are described in 

the original paper (193). 
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6.3.2 PK/PD model 

The proposed model (Figure. 6.1) is adapted for OGTT analysis from the model 

used in our previous study (192), which was aimed at describing the biphasic character of 

insulin secretion in response to an IV bolus glucose stimulation. Since the first-phase is 

not visible from the OGTT data, the insulin pool in the beta-cell that governs the first-

phase secretion was not included in the model. 

The production rate of insulin in the beta-cell is assumed to be proportional to the 

plasma glucose concentration (CG), and the release rate of insulin is described by a 

sigmoidal Hill equation. Let IR denotes the reserved insulin pool storing the 

biosynthesized insulin and CP in the beta-cell, then the rate of change of insulin in IR is 

given by Eq. 6.1: 
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  Eq. 6.1 

where KG is a first order rate constant, IR_0 is the estimated initial value of IR pool, while 

Emax, C50 and α are the Hill equation parameters.  

A constant extraction fraction, denoted E, of insulin secreted from the beta-cells is 

assumed to be removed by the liver prior to its entry into the circulation. The plasma is 

treated as a single compartment. Accordingly, the rate change of insulin in the plasma is 

given by: 
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 Eq. 6.2 

where KI is a first-order elimination rate constant for insulin, CI is the insulin 

concentration in plasma, CI_0 is the basal insulin concentration at fasting state and VI is 

the distribution volume of insulin in plasma. 
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The CP secretion rate is equal to the ISR from the beta-cells, which is denotes as 

R(t): 




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The CP kinetic is assumed to follow a two-compartmental model (79) described 

by: 
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where P1 and P2 are amounts of CP in central and peripheral compartments, respectively; 

K12 is the rate constants of CP transferred from the central to the peripheral compartment 

and K21 denotes the reverse transfer rate constant; KP is the first-order rate constant for 

CP’s elimination from the central compartment; VP is the volume of distribution for CP in 

central compartment, and 0_
1PC  is the basal plasma CP concentration at fasting state. 

6.3.3 Population model 

A nonlinear mixed-effects model was applied for the population analysis based on 

the PK/PD model from which “fixed effect” (parameters) and “random effect” (between-

subject variability and within-subject variability) were estimated. The nonlinear mixed-

effects model is written as follows: 

 ( , ) ( , )ij i ij i ij ijy f t b f t        Eq. 6.6 

where ijy is the j-th observation of insulin or CP of subject i at time tij ( i = 1, …, n, j = 

1, …, k), and f is the PK/PD model defined by Eq. 6.1-6.5. Various types of error models 

including constant, proportional, combined and exponential form were tested and the 
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error model choice was based on the likelihood ratio test with significant level equal to 

0.05 and plots of goodness-of-fit. This resulted in the proportional error model for insulin 

and CP, consistent with Eq. 6.6, in which b is the coefficient and ij  is a random variable 

following a normal distribution with mean 0 and variance 1. 

It is assumed that the p-dimensional vector i  which denotes individual 

parameters for subjects i is log-normally distributed, as commonly done in population 

PK/PD analysis. Accordingly, the individual parameters were modeled with covariates 

and variability as:  

iii c  )ln(  with   ),0(~ .. Ndiii  Eq. 6.7 

where   is a vector of population means for parameters of length p;   is a vector of 

coefficients of size p; ic is a vector of covariates with size p; i is a random variable 

assumed to be a normal distribution with mean 0 and a diagonal variance matrix Ω. The 

significance of   was evaluated by Wald test at an alpha error level of 0.05. 

6.3.4 Data analysis 

The population modeling was executed using Monolix, standalone version 3.1, an 

open-source free computer software developed by INRIA, France (140). The population 

parameters were estimated using Stochastic Approximation Expectation Maximization 

(SAEM) algorithm coupled with Markov Chain Monte Carlo procedure (171, 194-196). 

The conditional means and conditional standard deviations of individual parameters were 

calculated using Hastings-Metropolis algorithm. We did not model the glucose time 

course in this study; instead the glucose concentrations were represented as an “influence 

function” by a linear spline function interpolating the glucose data. Individual CP kinetic 

parameters were calculated according to the formula described by Van Cauter et.al. (80) 

and fixed in the population analysis. 
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6.4 Results 

The proposed model is able to simultaneously capture the insulin and CP 

dynamics well both in the individual and population estimations in response to the oral 

glucose stimulation. Figure 6.2 shows representative individual fittings of insulin and CP 

data for the NGT, IGT and T2D groups. The fittings were done using WINFUNFIT (180). 

Figure 6.3 shows the performance of the population model. The predictions of insulin and 

CP (left panels of Figure 6.3) calculated based on individual parameter estimates were in 

good agreement with the observations. The scatter plots of weighted residuals against 

predicted insulin and CP concentrations (right panels of Figure 6.3) showed that both 

were randomly distributed around the null ordinate, although three weighted residuals fall 

out of ± 3 units.   

The glucose tolerance (NGT, IGT and T2D), obesity and gender were evaluated 

as categorical covariates in the population analysis. Age, which could have an effect on 

insulin and CP secretion, was not considered because all T2D patients are older compared 

to healthy and IGT subjects (193). Inclusion or exclusion of covariates in the structure of 

the population model (Eq. 6.7) was determined by Wald test at an alpha significance level 

of 0.05. Population estimates of parameters, between-subject variability (standard 

deviation) and covariates’effect (β) on parameters are summarized in Table 6.1. 

Compared with female nonobese NGT subjects, obese subjects were found to have higher 

(p=0.00013) insulin production rate (KG), while IGT, T2D and male subjects have lower 

(all p < 0.005) insulin production rate in response to glucose stimulation. The Hill 

function parameters (Emax, C50, α) and initial size of IR pool (IR_0) are the parameters 

controlling the insulin release from the beta-cells. There are no differences in those 

parameters between female and male subjects. The IGT and T2D were detected to have 

significant effects on Emax (both p <0.00001), C50 (both p < 0.05) and IR_0 (p < 0.00001), 

while obesity only significantly affects Emax (p=0.011). Figure 6.4 shows the prehepatic 

ISR profiles, normalized to body surface area, calculated based on the parameters for the 
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NGT, IGT and T2D subjects respectively. There are no differences in liver extraction (E) 

between groups. The estimated insulin elimination from plasma (KI) is 0.106 min
-1

 which 

corresponds to a 6.5 min half-life for female nonobese subject with normal NGT. Male 

subjects have shorter insulin half-life (5.3 min, p=0.00074) than females, while obese 

subject has longer insulin half-life of 7.3 min (p=0.016) than subjects with normal weight 

subjects. IGT and T2D have no significant impact on insulin elimination from plasma. 

Obesity, IGT, T2D were found to have a positive effect on basal insulin (all p < 0.05) and 

CP (all p < 0.05) concentrations, while males have higher basal plasma insulin 

(p=0.00075) concentrations than females. 

6.5 Discussion 

Model-base approaches are restricted to the experimental protocol and the type of 

data available. It is recognized that an analysis of the effect of glucose on the production 

and release of insulin from beta-cell is best served by a model specifically developed to 

simultaneously describe the plasma insulin and CP time courses and utilizing the fact that 

insulin and CP are secreted form the beta-cells in a one-to-one molar ratio. Our proposed 

model adheres to this analysis paradigm. Our study represents an important extension of 

our prior PK/PD model. It shows that the model is applicable both to IVGTT and OGTT 

tests. The applicability to the OGTT is particularly important since this test more closely 

relates to the physiological conditions after a meal compared to the IV glucose challenge.  

Both a one- or two-compartment model have been suggested for CP kinetics (79, 

197, 198). The one-compartmental kinetics is simple and leads to simpler parameter 

estimation, but may not provide as good an agreement with the data as the two-

compartment model (96). Since in this study the covariate analysis focus on the 

parameters controlling the insulin kinetics and not the CP kinetics, it was appropriate to 

fix the CP kinetic parameters according to values calculated based on subject’s sex, age, 

weight and glucose tolerance (80).  
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Gender was found to affect the production and clearance of insulin in the study. 

However, the results may be somewhat inaccurate because the distribution of gender 

between groups is biased. The regulation of insulin secretion is more complex in the case 

of OGTT compared to IVGTT. In addition to glucose’s effects on insulin production and 

release (176, 178), gastrointestinal hormones also influence the insulin response. For 

example, the important function of incretin GLP-1 is to increase insulin secretion (199-

202). The kinetic modeling based on the present data can not distinguish the action of 

such hormones. The parameters describing the effect of glucose on insulin production 

(KG) and secretion (Emax, C50 and α) reflect the overall effects of glucose and the 

gastrointestinal hormones.  

The differences in insulin production and insulin secretion during the OGTT 

between various glucose and obesity groups are identified by our proposed population 

kinetic analysis. In response to the same glucose level, the production rate of insulin in 

the obese group was found to be 25% higher than that in NGT with normal weight, while 

the production rate of insulin is reduced by 22% in IGT and 62% in T2D. Glucose 

tolerance has effects on parameters that control the insulin release (Emax, C50 , and IR_0). 

Figure 6.7 shows effects which are consistent with the estimations of prehepatic ISR 

using a deconvolution approach (193). Compared to the NGT subjects the following 3 

effects were observed: 1) a delayed response in the early stage (~80min); 2) an increased 

secretion after early stage in IGT, and, 3) a delayed and reduced response in T2D in spite 

of the abnormal hyperglycaemia.  

The hepatic extraction fraction (E) was estimated as an average value during the 

OGTT, and was not found to be different between subjects with various glucose tolerance 

and obesity status. However E is dynamically changing during OGTT. Campioni and his 

colleages (190) provide an approach to estimate a time variant E by modeling it as a 

piecewise linear function between break points. We also estimated the dynamic changes 

in E using a piecewise linear spline function. The following method was used to estimate 
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the time variant liver extraction: first, the insulin release kinetic parameters were 

calculated using CP data only and Eq.6.3-6.5; subsequently, the Es were estimated using 

insulin data only and Eq. 6.1-6.2 with known insulin kinetic parameters; the dynamic of 

E in the NGT group is shown in Figure 6.5. Furthermore, covariates analysis on E at 

fasting state indicates that the extraction of insulin is lower in obese, IGT and T2D 

subjects (all p < 0.05) than nonobese NGT group. 

6.6 Conclusions 

In summary, a new combined model has been developed to estimate prehepatic 

insulin secretion and to investigate the effects of various covariates on insulin secretion 

using a population kinetic approach. We extended the PK/PD model for IVGTT to 

estimate insulin secretion in vivo and investigated the effects of the BMI and glucose 

tolerance on insulin secretion using the population kinetic approach. The model makes 

use of the co-secretion kinetics and is able to adequately capture the insulin and CP 

plasma concentration profiles simultaneously. The prehepatic insulin secretions obtained 

using this method agree with previous results calculated using a deconvolution approach 

(193). There is no significant impact glucose tolerance on the clearance of insulin from 

the plasma and extraction by liver during OGTT. Therefore, the differences in insulin 

concentration between groups with various status of obesity and glucose tolerance are 

mainly cause by insulin secretion during OGTT. Obesity leads to a higher insulin 

production rate and lower elimination rate from the plasma than normal weight subjects. 

Whereas T2D and IGT reduce insulin production rate and have delayed insulin secretion 

by affecting the parameters (Emax, C50 and IR_0) which control the insulin release from the 

beta-cells.  

Although the precise mechanism by which obesity contributes to insulin 

resistance and T2D has not yet been defined, it is likely related to the production of 
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various factors derived from the adipocyte that act on fat, liver, or muscle to impair 

insulin action.  
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Table 6.1. Population estimates of the proposed model parameters 

Model parameters 

 Mean RSE%
 a
 SD 

b 
 

 

KG (min
-1

) 98.5 4 0.373  

Emax (min
-1

) 0.0316 10 0.317  

C50 (pmol/l) 6.07 2 0.134  

Α 4.43 5 0.388  

E 0.0784 64 0.612  

KI (min
-1

) 0.106 4 0.229  

IR_0 (pmol) 27900 11 0.424  

CI_0 (pmol/l) 47.2 4 0.35  

VI (l) 18.7 7 0.146  

0_C
1P (pmol/l) 513 3 0.344  

Coefficient of random structure 

 Mean RSE%
 a
   

b (insulin) 0.262 2   

b (C-peptide) 0.115 2   
 

a
 RSE% denotes relative standard error. 

b
 Standard deviation of log(parameter). 
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Table 6.1. Continued 

Covariate’s effect on model parameters
 

 Mean RSE%
a 

Significance
c 

β_KG (Male) -0.728 15 S 

β_KG (IGT) -0.241 33 S 

β_KG (T2D) -0.966 10 S 

β_KG (OBE) 0.222 26 S 

β_Emax (IGT) 0.999 24 S 

β_Emax (T2D) 1 20 S 

β_Emax (OBE) 0.21 40 S 

β_C50 (IGT) -0.105 45 S 

β_C50 (T2D) 0.158 39 S 

β_KI_0 (Male) 0.257 25 S 

β_KI_0 (OBE) -0.106 42 S 

β_IR_0 (IGT) -1.79 17 S 

β_IR_0 (T2D) -1.98 11 S 

β_CI_0 (Male) -0.419 30 S 

β_CI_0 (IGT) 0.163 56 NS 

β_CI_0 (T2D) 0.224 47 S 

β_CI_0 (OBE) 0.539 13 S 

β_ 0_C
1P  (IGT) 0.156 48 S 

β_ 0_C
1P  (T2D) 0.144 45 S 

β_ 0_C
1P  (OBE) 0.352 16 S 
 

a
 RSE% denotes relative standard error. 

c
 S denotes significance and NS denotes Non-significance based on the 

significance level of p=0.05; subject with NGT and non-obesity as 

reference group. 
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Figure 6.1. Proposed model of insulin and C-peptide dynamics. 

I denotes insulin in plasma; P1 and P2 are C-peptide in the central and 
peripheral compartments; IR is reserved insulin in the beta-cell; G is glucose; 
R(t) is the prehepatic insulin or C-peptide secretion rate.  
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Figure 6.2. Representative plots of the proposed model by simultaneously fitting insulin 
and C-peptide data in OGTT from subjects with various levels of glucose 
tolerance. 

NGT, IGT and T2D denote normal glucose tolerance, impaired glucose 
tolerance and type 2 diabetes, respectively. Circles denote observations and 
lines show the fitting.  
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Figure 6.3. Scatter plots of observations versus individual predictions (left panels) and 
weighted residuals versus individual predictions (right panels) during OGTT. 
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Figure 6.4. Simulated prehepatic insulin secretion rate during OGTT for subjects with 
various levels of glucose tolerance using population estimates of parameters 
and mean concentrations of insulin and glucose. 

T2D, NGT and IGT denote type 2 diabetes, normal glucose and impaired 
glucose tolerance, respectively. 
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Figure 6.5. The ratio of insulin extracted by liver during OGTT in female subjects with 
normal glucose tolerance. 
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CHAPTER 7. FUTURE WORKS 

The study of beta-cell function can benefit from the research which has been 

undertaken for this thesis. The proposed model is able to describe beta-cell secretory 

responses to IV or oral glucose stimulation and identify the factors that affect parameters 

of insulin kinetics, such as first-phase and second-phase insulin secretion, insulin 

production and elimination of insulin from plasma. However, there are also several 

additional areas for further development and applications for.  

The first potential area that might be highlighted by the study of the thesis is the 

early diagnosis of type 2 diabetes (T2D). The parameters that quantify first- and second-

phase insulin secretion provided by the proposed model, together with other factors such 

as family history, fating insulin and glucose concentration, could be used for improving 

early diagnosis of T2D or prevention of development of T2D.  

The second possible application is for drug development. It has been gradually 

realized that insulin secretion should be not only at right amount but also at right time. 

The importance of biphasic insulin secretion has particularly been addressed in Chapter 

1.5. Numerous efforts have been devoted by pharmaceutical companies to develop 

insulin formulations that closely mimic the kinetics of this complex insulin secretion 

pattern. The proposed model provides a valuable tool to simulate insulin concentrations 

under designed formulations. Also for those drugs designed for restoring or increasing 

first-phase insulin secretion, the effects of those drugs on first-phase can be quantified by 

the proposed model.  

The research presented in this thesis seems to have left questions that need to be 

answered. For example, the effect of glomerular filtration on insulin clearance. The liver 

and kidneys are the main sites of insulin degradation. The liver removes approximately 

50% of insulin released from the pancreas (21, 22). The kidneys are the major sites that 

remove insulin from the systemic circulation, removing 50% of peripheral insulin via 
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glomerular. One of long-term effect of T2D is dysfunction of kidneys. Therefore, 

creatinine clearance rate (CrCl) reflecting the ability of glomerular filtration should be 

measured and considered as an important factor that may affects insulin clearance.  

The dependency of insulin secretion on glucose concentration is other line that not 

addressed in the thesis. Several studies (170, 175, 179) have reported that the magnitude 

of the peak of the first-phase is varying with the level of glucose, while the shape and the 

transient nature of the peak remains unchanged. Thus, the size of insulin pool (IRR) that 

governs the first-phase insulin secretion according to the proposed model should be 

associated with the glucose level. However, we could not estimate the dependence of IRR 

on the glucose dose since only one level of glucose stimulation was tested in our study 

subjects. The dependency is able to determine by performing multiple glucose dose in the 

future study.  

The model considers the insulin dynamics only. Future work may incorporate 

glucose dynamic to reflect the feedback system of glucose and insulin, thus develop a 

model for the progression of T2D.  
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APPENDIX A. FORTRAN PROGRAM FOR CHAPTER 4 

****Begin prologue 

This FORTRAN calculates the first-phase insulin secretion index, AIRg, which is defined 

as the area under the plasma insulin curve over the basal insulin level between 1 and 10 

minutes during an intravenous glucose tolerance test (IVGTT): 

dtItIAIR bg  

10

0

])([   Eq. 4.1 

 

The program runs under a computer-based program WINFUNFIT. The analysis involves 

6 files in CD: 

(1). program files: \fortran\AIRg.F90 

                              \fortran\GCV.FOR 

(2). WINFUNFIT files: \fortran\ALLWINFUNFIT  

                                       \fortran\FUNFIT_RESOURCES.res 

(3). data file: \fortran\AIRg\*.DAT (for example 3MAA_PP@INS.DAT ) 

(4). output file:\fortran\AIRg\AIR_10.DAT 

****End prologue 
 
 
PROGRAM AIRg 
IMPLICIT NONE 
INTEGER, PARAMETER :: NPT=6000    
INTEGER NOBS,J,II,LUN,NN,V, LFile  
REAL*8 TOBS(NPT), COBS(NPT),CLN(NPT) 
REAL*8 LNG 
REAL*8 TSP(NPT),GSP(NPT), TIME_STEP1,TIME_STEP2, G_STEP1, G_STEP2 
REAL*8 GGS(NPT),GGL(NPT),TTS(NPT) 
LOGICAL SHOWIT 
CHARACTER*256 ID,DATAFILENAME,File, FLAG,F 
REAL*8 TIME,S 
  
  FLAG='Y' 
 
  DO WHILE((FLAG .EQ. 'Y') .OR. (FLAG .EQ. 'y')) 
    NOBS=NPT 
    CALL XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE(TOBS,COBS, NOBS,F) 
    CLN(1:NOBS)=DLOG(COBS(1:NOBS)) 
 
    V=40 
    TIME_STEP1=(TOBS(2)-TOBS(1))/V 
    TIME_STEP2=(TOBS(3)-TOBS(2))/V 
    G_STEP1=(CLN(2)-CLN(1))/V 
    G_STEP2=(CLN(3)-CLN(2))/V 
 
    DO J=1,V+1 
      TSP(J)=TOBS(1)+(J-1)*TIME_STEP1 
      GSP(J)=CLN(1)+(J-1)*G_STEP1 
    END DO 
 
    DO J=V+2,2*V+1 
    TSP(J)=TOBS(2)+(J-11)*TIME_STEP2 
    GSP(J)=CLN(2)+(J-11)*G_STEP2 
    END DO    

mailto:3MAA_PP@INS.DAT
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    DO J=4,NOBS 
      II=2*V-2+J 
      TSP(II)=TOBS(J) 
      GSP(II)=CLN(J) 
    END DO 
 
    NN=NOBS+2*V-2 
!   WRITE (*,*) (TOBS(II),COBS(II),CLN(II), II=1,NOBS) 
!   WRITE (*,*) 'DONE' 
!   READ * 
    CALL CUBIC_GCV_FIT(TSP,GSP,NN)   
 
    DO J=1,NOBS 
      TTS(J)=TOBS(J) 
      CALL CUBIC_GCV(TTS(J),GGL(J)) 
      GGS(J)=DEXP(GGL(J)) 
    END DO 
 
    OPEN (10, FILE = 'AIR_10.DAT ') 
    V=4000 
    TIME=10.0D0/V 
    DO J=1, V+1 
      TTS(J)=(J-1)*TIME 
      CALL CUBIC_GCV(TTS(J), GGL(J)) 
      GGS(J)=DEXP(GGL(J)) 
    END DO 
 
    S=0D0 
    DO J=1, V 
      S=S+ (GGS(J)+GGS(J+1))*TIME/2.0D0 
    END DO 
 
    S=S-COBS(1)*10.0D0 
 
    WRITE (10,'(A15,F12.4)') F, S 
    WRITE(*,*) '' 
    WRITE(*,*) 'AIRg =', S 
    WRITE(*,*) 'CONTINUE (Y OR N)' 
    READ(*,*) FLAG 
  END DO 
 
 
!** 
CONTAINS 
SUBROUTINE XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE (X,Y,N,F) 
IMPLICIT NONE 
INTEGER, INTENT (INOUT) :: N 
REAL*8,  INTENT (INOUT) :: X(*), Y(*) 
CHARACTER (LEN=256), INTENT(OUT)  :: F 
INTEGER, PARAMETER :: MAXLINES = 10000, LENSTRING = 80 
INTEGER :: J, JS, K, NN, IERR 
CHARACTER (LEN=256) :: DATAFILENAME 
CHARACTER (LEN=LENSTRING) :: STRING 

 
  PRINT*," NEXT SELECT THE FILE CONTAINING THE BLOOD INSULIN C-T DATA " 
  CALL FILESELECT("DAT", DATAFILENAME, J) 
  PRINT*, 'This is the *.DAT file selcted:', DATAFILENAME    
 
  OPEN(UNIT=101, FILE=DATAFILENAME, STATUS='OLD', IOSTAT = IERR) 
  IF(IERR /= 0) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE: & 
                       ERROR IN OPENING DATA FILE' 
  NN = 0 
  F=DATAFILENAME 
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  DO J= 1, MAXLINES 
    JS = J 
    STRING(1:LENSTRING) = '' 

READ (101,"(A)", END = 10, IOSTAT = IERR) STRING 
IF(IERR /= 0) STOP 'GET_XY_DATA_FROM_FUNFIT_FILE:  & 
                    ERROR IN READING DATA FILE' 
K = LEN_TRIM(ADJUSTL(STRING)) 
IF(STRING(1:1) == 'C' .OR. STRING(1:1) == 'c' .OR. & 
   STRING(1:1) == '' .OR. K <= 2) CYCLE 

    NN = NN + 1 
 
    IF(NN > N) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE:  & 
                     ASSIGNED DIMENSION OF X, Y TOO SMALL'  
    READ(STRING,*, IOSTAT = IERR) X(NN), Y(NN) 
 

IF(IERR /= 0) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE:  & 
                    ERROR IN DATA FILE LIKELY, PLEASE CHECK' 

  ENDDO 
 
  10 IF (JS == MAXLINES) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE: & 
                       DATA FILE CONTAINS TOO MANY LINES (RECORDS)' 
  N = NN 
  CLOSE (101,STATUS='SAVE') 
END SUBROUTINE XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE 
 
END PROGRAM 
!------------------------END------------------------------
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****Begin prologue 

This FORTRAN program calculates the AUC which is defined as the area under the 

curve over the basal insulin or glucose concentration during an IVGTT: 

dtItIAUC binsulin  

182

0

])([    

dtGtGAUC beglu  

182

0

cos ])([  

 

The program runs under a computer-based program WINFUNFIT. The analysis involves 

7 files in CD: 

(1). program files: \fortran\AUC.F90 

                              \fortran\GCV.FOR 

 (2). WINFUNFIT files: \fortran\ALLWINFUNFIT  

                                       \fortran\FUNFIT_RESOURCES.res 

(3). data file: \fortran\AUC\*.DAT (for example 3MAA_PP@GLU.DAT ) 

(4). output file: \fortran\AUC\AUC_GLU.DAT 

                        : \fortran\AUC\AUC_INS.DAT 

****End prologue 
 

   
PROGRAM AUC 
IMPLICIT NONE 
INTEGER, PARAMETER :: NPT=6000    
INTEGER NOBS,J,II,LUN,NN,V, LFile  
REAL*8 TOBS(NPT), COBS(NPT),CLN(NPT) 
REAL*8 LNG 
REAL*8 TSP(NPT),GSP(NPT), TIME_STEP1,TIME_STEP2, G_STEP1, G_STEP2 
REAL*8 GGS(NPT),GGL(NPT),TTS(NPT) 
LOGICAL SHOWIT 
CHARACTER*256 ID,DATAFILENAME,File, FLAG,F 
REAL*8 TIME,S 
  
  FLAG='Y' 
 
  DO WHILE((FLAG .EQ. 'Y') .OR. (FLAG .EQ. 'y')) 
    NOBS=NPT 
 
    CALL XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE(TOBS,COBS, NOBS,F) 
    CLN(1:NOBS)=DLOG(COBS(1:NOBS)) 
 
    V=40 
    TIME_STEP1=(TOBS(2)-TOBS(1))/V 
    TIME_STEP2=(TOBS(3)-TOBS(2))/V 
    G_STEP1=(CLN(2)-CLN(1))/V 
    G_STEP2=(CLN(3)-CLN(2))/V 
 
    DO J=1,V+1 
      TSP(J)=TOBS(1)+(J-1)*TIME_STEP1 
      GSP(J)=CLN(1)+(J-1)*G_STEP1 
    END DO 
 
    DO J=V+2,2*V+1 
      TSP(J)=TOBS(2)+(J-11)*TIME_STEP2 

mailto:3MAA_PP@INS.DAT
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      GSP(J)=CLN(2)+(J-11)*G_STEP2 
    END DO    
 
    DO J=4,NOBS 
      II=2*V-2+J 
      TSP(II)=TOBS(J) 
      GSP(II)=CLN(J) 
    END DO 
 
    NN=NOBS+2*V-2 
!   WRITE (*,*) (TOBS(II),COBS(II),CLN(II), II=1,NOBS) 
!   WRITE (*,*) 'DONE' 
!   READ * 
    CALL CUBIC_GCV_FIT(TSP,GSP,NN)   
 
    DO J=1,NOBS 
      TTS(J)=TOBS(J) 
      CALL CUBIC_GCV(TTS(J),GGL(J)) 
      GGS(J)=DEXP(GGL(J)) 
    END DO 
 
    OPEN (10, FILE = 'AIR_10.DAT ') 
    V=4000 
    TIME=182.0D0/V 
    DO J=1, V+1 
      TTS(J)=(J-1)*TIME 
        CALL CUBIC_GCV(TTS(J), GGL(J)) 
        GGS(J)=DEXP(GGL(J)) 
    END DO 
 
    S=0D0 
    DO J=1, V 
      S=S+ (GGS(J)+GGS(J+1))*TIME/2.0D0 
    END DO 
 
    S=S-COBS(1)*182.0D0 
 
    WRITE (10,'(A15,F12.4)') F, S 
!   WRITE(*,*) 'AUC_GLU', S 
    WRITE(*,*) 'AUC_INS', S 
 
    WRITE(*,*) '' 
    WRITE(*,*) 'CONTINUE (Y OR N)' 
    READ(*,*) FLAG 
 
  END DO 
 
 
!** 
CONTAINS 
SUBROUTINE XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE (X,Y,N) 
IMPLICIT NONE 
INTEGER, INTENT (INOUT) :: N 
REAL*8,  INTENT (INOUT) :: X(*), Y(*) 
CHARACTER (LEN=256), INTENT(OUT)  :: F 
INTEGER, PARAMETER :: MAXLINES = 10000, LENSTRING = 80 
INTEGER :: J, JS, K, NN, IERR 
CHARACTER (LEN=256) :: DATAFILENAME 
CHARACTER (LEN=LENSTRING) :: STRING 

 
  PRINT*," NEXT SELECT THE FILE CONTAINING THE BLOOD INSULIN C-T DATA " 
  CALL FILESELECT("DAT", DATAFILENAME, J) 
  PRINT*, 'This is the *.DAT file selcted:', DATAFILENAME    
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  OPEN(UNIT=101, FILE=DATAFILENAME, STATUS='OLD', IOSTAT = IERR) 
  IF(IERR /= 0) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE: & 
                       ERROR IN OPENING DATA FILE' 
  NN = 0 
  F=DATAFILENAME 
  DO J= 1, MAXLINES 
    JS = J 
    STRING(1:LENSTRING) = '' 

READ (101,"(A)", END = 10, IOSTAT = IERR) STRING 
IF(IERR /= 0) STOP 'GET_XY_DATA_FROM_FUNFIT_FILE:  & 
                    ERROR IN READING DATA FILE' 
K = LEN_TRIM(ADJUSTL(STRING)) 
IF(STRING(1:1) == 'C' .OR. STRING(1:1) == 'c' .OR. & 
   STRING(1:1) == '' .OR. K <= 2) CYCLE 

    NN = NN + 1 
 
    IF(NN > N) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE:  & 
                     ASSIGNED DIMENSION OF X, Y TOO SMALL'  
    READ(STRING,*, IOSTAT = IERR) X(NN), Y(NN) 
 

IF(IERR /= 0) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE:  & 
                    ERROR IN DATA FILE LIKELY, PLEASE CHECK' 

  ENDDO 
 
  10 IF (JS == MAXLINES) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE: & 
                       DATA FILE CONTAINS TOO MANY LINES (RECORDS)' 
  N = NN 
  CLOSE (101,STATUS='SAVE') 
END SUBROUTINE XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE 
 
END PROGRAM 
!------------------------END------------------------------



  149 

 

1
4
9
 

APPENDIX B. MONOLIX SCRIPT AND FORTRAN PROGRAM 

FOR CHAPTER 5 

****Begin prologue 

This Monolix script yields population statistics of the proposed PK/PD model in Chapter 

5 (Eq. 5.1 -5.3). A nonlinear mixed-effects model was used for the population analysis 

and ethnicity as a covariate was included in the population model. The population model 

is described by: 

ijijiijiij tgtfy   ),(),(   Eq. 5.4 

Proportional residual error ),(),( ijiiji tbftg    Eq. 5.6 

Covariate structure      iii c  )ln(       with   ),0(~ .. Ndiii  Eq. 5.8 

where f is the proposed PK/PD model described by the ordinary differential equations Eq. 

5.1 -5.3.  

 

The program runs under a computer-based program Monolix, standalone version 3.1. The 

analysis involves 3 files in CD: 

 (1). Monolix script: \monolix\AA_C_MODEL.TXT 

 (2). data file: \monolix\AA_C_2Y.TXT 

 (3). output file: \IV 

****End prologue 
 
 
$PROBLEM IVGTT RACIAL IMPACT ON INSULIN BI-PHASIC RELEASE 
 
$MODEL 
    COMP=(CI) 
    COMP=(IR) 
    COMP=(IRR) 
 
$PSI KG EMAX C50 PE KI KRR ALPHA IRB IB KRIR 
 
$REG t_start g_start t_end  g_end 
 
$PK  
 
    PEKR=PE*KRR 
 
    if (T < 182) 
 C = g_start + (T - t_start)*(g_end - g_start)/(t_end-t_start) 
    else  
 C = g_end 
    end 
 
$ODE 
 
    CI_0=IB 
    IR_0=IRB 
    IRR_0=KRIR/KRR 
 
    DDT_CI = PE*IR*EMAX*(C^ALPHA)/(C^ALPHA+C50^ALPHA)-KI*CI + PEKR*IRR 
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    DDT_IR = KG*C - IR*EMAX*(C^ALPHA)/(C^ALPHA+C50^ALPHA) 
    DDT_IRR = -KRR*IRR 
 
 
$OUTPUT 
    OUTPUT1=CI 
;   OUTPUT2=C 
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****Begin prologue 

This FORTRAN program simulates the first-phase and second-phase insulin secretion 

during IVGTT using the proposed PK/PD model in Chapter 5 and population estimates of 

parameters from Monolix. The PK/PD model is described by: 
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The program runs under a computer-based program WINFUNFIT. The analysis involves 

9 files in CD: 

(1). program files: \fortran\ISR_RACE.F90 

                              \fortran\LinearSpline2Step.for 

                              \fortran\dlsode.for 

(2). WINFUNFIT files: \fortran\ALLWINFUNFIT  

                                       \fortran\FUNFIT_RESOURCES.res 

(3). data file: \fortran\AIRg\ISR_RACE\insulin.DAT (e.g. IV_INS_AA.DAT) 

                      \fortran\AIRg\ISR_RACE\glucose.DAT (e.g. IV_GLU_AA.DAT) 

                      \fortran\AIRg\ISR_RACE\par.PAR (e.g. par_AA.PAR) 

(4). output file:\fortran\AIRg\ISR_RACE\RATE_AA.TXT 

****End prologue 
 
 
SUBROUTINE USERMODEL_ODE(T,Y,YPRIME,P,NP,IFUN)           
IMPLICIT NONE 
INTEGER NP,IFUN 
REAL*8 T, YPRIME(*),Y(*),P(*) 
REAL*8 KG,EMAX,C50,PE,KE,KRR, ALPHA  
REAL*8 G,LNG,I2,I,IRR,RT1,RT2,NET_RT1,NET_RT2 
REAL*8 I2_ZERO,I_ZERO,IRR_ZERO 
REAL*8 I1_PRIME,I2_PRIME,I_PRIME, IRR_PRIME,RT1_PRIME 
REAL*8 RT2_PRIME, NET_RT1_PRIME, NET_RT2_PRIME 
  
  IF(IFUN == 1 ) THEN 
    CALL LIN_SPLIN_EVALUATE(T,G)  
    I = Y(1)          ! PLASMA INSULIN CONC. 
    I2 = Y(2)    ! RESERVED INSULIN  
  IRR = Y(3)   ! READILY RELEASABLE INSULIN 
  RT1=Y(4)    ! PREHEPATIC FIRST-PHASE SECRETION RATE 
  RT2=Y(5)          ! PREHEPATIC SECOND-PHASE SECRETION RATE  
  NET_RT1=Y(6) 
  NET_RT2=Y(7) 
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    KG=P(1) 
    EMAX =P(2) 
    C50=P(3) 
    PE = P(4) 
    KE = P(5) 
    KRR=P(6) 
    ALPHA=P(7) 
    I2_ZERO =P(8)  
    I_ZERO = P(9) 
    IRR_ZERO=P(10) 
   
    I_PRIME = PE*I2*EMAX*(G**ALPHA)/(C50**ALPHA + G**ALPHA) & 
            - KE*I + PE*KRR*IRR 
    I2_PRIME = KG*G - I2*EMAX*(G**ALPHA)/(C50**ALPHA + G**ALPHA)  
    IRR_PRIME = -KRR*IRR 
    RT1_PRIME=PE*I2*EMAX*(G**ALPHA)/(C50**ALPHA + G**ALPHA) 
    RT2_PRIME=KRR*IRR*PE 
    NET_RT1_PRIME=PE*I2*EMAX*(G**ALPHA)/(C50**ALPHA  & 
                + G**ALPHA)- KE*NET_RT1 
    NET_RT2_PRIME=PE*KRR*IRR-KE*NET_RT2 
      
    YPRIME(1) = I_PRIME    
    YPRIME(2) = I2_PRIME    
    YPRIME(3) = IRR_PRIME 
    YPRIME(4)=RT1_PRIME 
    YPRIME(5)=RT2_PRIME   
    YPRIME(6)=NET_RT1_PRIME   
    YPRIME(7)=NET_RT2_PRIME   
 
  END IF 
 
END SUBROUTINE USERMODEL_ODE 
 
 
SUBROUTINE USERMODEL_ODE_JACOBIAN(T,Y,DFDT,DFDY,N,P,NP,IFUN) 
IMPLICIT NONE 
INTEGER, INTENT(IN) :: N, NP, IFUN 
DOUBLE PRECISION, INTENT(IN) ::T 
DOUBLE PRECISION, DIMENSION(N), INTENT(IN) ::Y 
DOUBLE PRECISION, DIMENSION(N),INTENT(OUT) ::DFDT 
DOUBLE PRECISION, DIMENSION(N,N), INTENT(OUT) :: DFDY 
DOUBLE PRECISION, DIMENSION(NP), INTENT(IN) ::P 
END SUBROUTINE USERMODEL_ODE_JACOBIAN 
 
 
SUBROUTINE USERMODEL(T,C,P,NP,IFUN) 
IMPLICIT NONE 
INTEGER NP,IFUN 
REAL*8 T,C,P(*) 
INTEGER, PARAMETER :: NEQN =7,NPT=150 
INTEGER NOBS,J,JY,NUM,LUN,NN, II   
REAL*8 TOBS(NPT), COBS(NPT),CLN(NPT) 
REAL*8 KG,K1,K2,KRR,PE,KE,ALPHA, EMAX, C50 
REAL*8 I1,I2,I3,I 
REAL*8 DT, LNG, GG 
REAL*8 G_ZERO,I2_ZERO,IRR_ZERO, I_ZERO 
REAL*8 Y(NEQN),YZERO(NEQN) , LG(100)                       
REAL*8 D,XEND 
REAL*8 GGS(NPT),TTS(NPT),TTSP(NPT),GGSP(NPT) 
LOGICAL SHOWIT 
CHARACTER*256 ID,DATAFILENAME 
CHARACTER*512 File 
REAL*8 ::TZERO 
DATA  TZERO/0.0D0/ 
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EXTERNAL FEX, JEX 
INTEGER IOPT, IOUT, ISTATE, ITASK, ITOL,IWORK(28),LIW, LRW,MF,NEQ 
DOUBLE PRECISION ATOL(8), RTOL,RWORK(134),  TOUT, YY(7),TT 
DOUBLE PRECISION CI(2000),CI1(2000),CI2(2000),CIRR(2000) 
DOUBLE PRECISION CR1(2000),CR2(2000),TC(2000) 
DOUBLE PRECISION CNR1(2000),CNR2(2000),POP_I2(2000) 
DOUBLE PRECISION POP_IRR(2000), POP_ISR(2000) 
INTEGER N 
DOUBLE PRECISION PP(10) 
COMMON PP 
 
  KG=P(1) 
  EMAX =P(2) 
  C50=P(3) 
  PE = P(4) 
  KE = P(5) 
  KRR=P(6) 
  ALPHA=P(7) 
  I2_ZERO =P(8)  
  I_ZERO = P(9) 
  IRR_ZERO=P(10) 
 
  NEQ=7 
  YY(1) = I_ZERO   
  YY(2) = I2_ZERO       
  YY(3) = IRR_ZERO    
  YY(4) = 0.D0 
  YY(5) = 0.D0 
  YY(6)=I_ZERO  
  YY(7)=0.D0 
  TT=0.D0 
  ITOL=2 
  RTOL=1.D-4 
  ISTATE=1 
  IOPT=0 
  LRW=134 
  ATOL(1)=1.D-6 
  ATOL(2)=1.D-6 
  ATOL(3)=1.D-6 
  ATOL(4)=1.D-6 
  ATOL(5)=1.D-2 
  ATOL(6)=1.D-6 
  ATOL(7)=1.D-6 
  ITASK=1 
  LIW=27 
  MF=22 
 
         
  IF(IFUN.EQ.-1000) THEN 
    NOBS=NPT 
    CALL XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE(TOBS,COBS,NOBS) 
     
    DO J=1,NOBS 
 TTSP(J)=TOBS(J) 
 GGSP(J)=COBS(J) 
    ENDDO 
     
    CALL LIN_SPLIN_SETUP(TOBS,COBS,NOBS) 
    XEND=1.2*TOBS(NOBS) 
    D=XEND/FLOAT(NPT-1) 
     
    DO J=1,NPT 
 TTS(J) = D*FLOAT(J-1) 
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      CALL LIN_SPLIN_EVALUATE(TTS(J),GGS(J)) 
    END DO 
 
    CALL TITLE('PLOT OF GLUCOSE CONCENTRATION') 
    CALL XLABEL('TIME(MIN)') 
    CALL ADDPOINTSLEFT_D(TOBS,COBS,NOBS) 
    CALL ADDCURVELEFT_D(TTS,GGS,NPT) 
    CALL DISPLAYPLOT 
 
    J=6                                              
    CALL SCALE_ABS_ERROR(J,1) 
 
    CALL SetFunfitParameterName(1,"KG")  
    CALL SetFunfitParameterName(2,"EMAX")  
    CALL SetFunfitParameterName(3,"C50")  
    CALL SetFunfitParameterName(4,"PE") 
    CALL SetFunfitParameterName(5,"KE") 
    CALL SetFunfitParameterName(6,"KRR") 
    CALL SetFunfitParameterName(7,"ALPHA") 
    CALL SetFunfitParameterName(8,"I2_ZERO") 
    CALL SetFunfitParameterName(9,"I_ZERO") 
    CALL SetFunfitParameterName(10,"IRR_ZERO") 
  END IF 
 
  IF(IFUN == 1 .OR. IFUN==5 .OR. IFUN == 6) THEN 
    YZERO(1) = I_ZERO    
    YZERO(2) = I2_ZERO   
    YZERO(3) = IRR_ZERO     
    YZERO(4) = 0.D0 
    YZERO(5) = 0.D0 
 
    JY =IFUN    
    CALL INTEGRATE_USERMODEL_ODE(T,C,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
  END IF 
 
  IF (IFUN.EQ.0) THEN 
    PP(1)=P(1) 
    PP(2)=P(2) 
    PP(3)=P(3) 
    PP(4)=P(4) 
    PP(5)=P(5) 
    PP(6)=P(6) 
    PP(7)=P(7) 
    PP(8)=P(8) 
    PP(9)=P(9) 
    PP(10)=P(10) 
 
    TOUT=0.0D0 
    DO N=1, 181 

  CALL DLSODE(FEX,NEQ,YY,TT,TOUT,ITOL, RTOL, ATOL, & 
              ITASK,ISTATE,IOPT,RWORK,LRW,IWORK,LIW,JEX,MF) 

 
CI(N)=YY(1) 
CI2(N)=YY(2) 
CIRR(N)=YY(3) 
CR1(N)=YY(4) 
CR2(N)=YY(5) 
CNR1(N)=YY(6) 
CNR2(N)=YY(7) 
TC(N)=TOUT 
 
CALL LIN_SPLIN_EVALUATE(TOUT,GG) 
POP_I2(N)=PP(2)*CI2(N)*(GG**PP(7))/(PP(3)**PP(7) + GG**PP(7)) 
POP_IRR(N)=PP(6)*CIRR(N) 
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POP_ISR(N)=POP_I2(N)+POP_IRR(N) 
   END DO 
 
   CALL PROMT(SHOWIT) 
   IF(SHOWIT)THEN 
     CALL GETDATAFILENAME(DATAFILENAME) 
     CALL ADDMARGINTEXT(DATAFILENAME)  
     CALL XLABEL('TIME(MIN)') 
     CALL LEFTLABEL('INSULIN(MICRO U/ML)') 
     CALL ADDOBSERVATIONSLEFT(1) 
     CALL ADDFITTEDCURVELEFT(1) 
     CALL PLOT_IN_AREA(1,4) 
 
     CALL ADDOBSERVATIONSLEFT(1) 
     CALL ADDCURVELEFT_D(TC,CI,181) 
     CALL PLOT_IN_AREA(2,4) 
 
     CALL ADDCURVELEFT_D(TC,POP_I2,181) 
     CALL BEGINLEFTAT_D(0.0D0) 
     CALL LEFT_LABEL("RATET OF ROUTE 1") 
     CALL PLOT_IN_AREA(3,4) 
 
     CALL ADDCURVELEFT_D(TC,POP_IRR,181) 
     CALL BEGINLEFTAT_D(0.0D0) 
     CALL LEFT_LABEL("RATE OF ROUTE 2") 
     CALL PLOT_IN_AREA(4,4) 
 
     CALL DISPLAY_PLOT 
     CALL GETLUNOUTPUT(LUN) 
     CALL RECORDPLOTIFSAVED(LUN) 
     CALL RECORDPLOTIFSAVED(3) 
   ENDIF 
 ENDIF 
RETURN 
 
 
!** 
CONTAINS 
SUBROUTINE XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE (X,Y,N) 
IMPLICIT NONE 
INTEGER, INTENT (INOUT) :: N 
REAL*8,  INTENT (INOUT) :: X(*), Y(*) 
CHARACTER (LEN=256), INTENT(OUT)  :: F 
INTEGER, PARAMETER :: MAXLINES = 10000, LENSTRING = 80 
INTEGER :: J, JS, K, NN, IERR 
CHARACTER (LEN=256) :: DATAFILENAME 
CHARACTER (LEN=LENSTRING) :: STRING 

 
  PRINT*," NEXT SELECT THE FILE CONTAINING THE BLOOD INSULIN C-T DATA " 
  CALL FILESELECT("DAT", DATAFILENAME, J) 
  PRINT*, 'This is the *.DAT file selcted:', DATAFILENAME    
 
  OPEN(UNIT=101, FILE=DATAFILENAME, STATUS='OLD', IOSTAT = IERR) 
  IF(IERR /= 0) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE: & 
                       ERROR IN OPENING DATA FILE' 
  NN = 0 
  F=DATAFILENAME 
  DO J= 1, MAXLINES 
    JS = J 
    STRING(1:LENSTRING) = '' 

READ (101,"(A)", END = 10, IOSTAT = IERR) STRING 
IF(IERR /= 0) STOP 'GET_XY_DATA_FROM_FUNFIT_FILE:  & 
                    ERROR IN READING DATA FILE' 
K = LEN_TRIM(ADJUSTL(STRING)) 
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IF(STRING(1:1) == 'C' .OR. STRING(1:1) == 'c' .OR. & 
   STRING(1:1) == '' .OR. K <= 2) CYCLE 

    NN = NN + 1 
 
    IF(NN > N) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE:  & 
                     ASSIGNED DIMENSION OF X, Y TOO SMALL'  
    READ(STRING,*, IOSTAT = IERR) X(NN), Y(NN) 
 

IF(IERR /= 0) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE:  & 
                    ERROR IN DATA FILE LIKELY, PLEASE CHECK' 

  ENDDO 
 
  10 IF (JS == MAXLINES) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE: & 
                       DATA FILE CONTAINS TOO MANY LINES (RECORDS)' 
  N = NN 
  CLOSE (101,STATUS='SAVE') 
END SUBROUTINE XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE 
END SUBROUTINE USERMODEL 
 
 
SUBROUTINE FEX(NEQ, TT, YY, YDOT) 
IMPLICIT NONE 
COMMON PP 
DOUBLE PRECISION  PP(10) 
INTEGER NEQ 
DOUBLE PRECISION TT, YY(7), YDOT(7) 
DOUBLE PRECISION KG,K1,K2,PE,KE,KRR,IRR_ZERO,G_ZERO, EMAX, C50, ALPHA 
DOUBLE PRECISION I_ZERO,I1_ZERO,I2_ZERO,G 
 
  KG = PP(1) 
  EMAX = PP(2) 
  C50 = PP(3) 
  PE = PP(4) 
  KE = PP(5) 
  KRR=PP(6) 
  ALPHA=PP(7) 
  I2_ZERO=PP(8) 
  I_ZERO=PP(9) 
  IRR_ZERO = PP(10) 
 
  CALL LIN_SPLIN_EVALUATE(TT,G) 
 
  YDOT(1) = PE*EMAX*(G**ALPHA)/(C50**ALPHA + G**ALPHA)*YY(2) & 
            - KE*YY(1) + PE*KRR*YY(3) 
  YDOT(2) = KG*G - EMAX*(G**ALPHA)/(C50**ALPHA + G**ALPHA)*YY(2) 
  YDOT(3) = -KRR*YY(3) 
  YDOT(4)=EMAX*(G**ALPHA)/(C50**ALPHA + G**ALPHA)*YY(2)*PE 
  YDOT(5)=KRR*YY(3)*PE 
  YDOT(6)=EMAX*(G**ALPHA)/(C50**ALPHA + G**ALPHA)*YY(2)*PE - KE*YY(6) 
  YDOT(7)=KRR*YY(3)*PE-KE*YY(7) 
 
RETURN  
!END SUBROUTINE FEX 
END 
!---------------------------------------------------------------------- 
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APPENDIX C. MONOLIX SCRIPT AND FORTRAN PROGRAM 

FOR CHAPTER 6 

****Begin prologue 

This FORTRAN program performs simultaneously individual fits of insulin and glucose 

data collected from oral glucose tolerance test (OGTT) based on the PK/PD model 

proposed on Chapter 6. The PK/PD model is given by the following equations: 
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The program runs under a computer-based program WINFUNFIT. The analysis involves 

8 files in CD: 

(1). program files: \fortran\ORAL_ISR.F90 

                              \fortran\GCV.FOR 

(2). WINFUNFIT files: \ALLWINFUNFIT  

                                       \fortran\FUNFIT_RESOURCES.res 

(3). data file: \fortran\ ORAL_2CP\oral.DAT (including all insulin data) 

                       \fortran\ ORAL_2CP\glucose.DAT (e.g. GLU_7_28) 

                       \fortran\ ORAL_2CP\para.PAR 

(4). output file: \fortran\ ORAL_2CP\WINFUNFIT_OUTPUT 

****End prologue 
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SUBROUTINE USERMODEL_ODE(T,Y,YPRIME,P,NP,IFUN)     !      
IMPLICIT NONE 
 
INTEGER NP,IFUN 
REAL*8 T, YPRIME(*),Y(*),P(*) 
REAL*8 KG,EMAX,C50,ALPHA, KRR,E,VI,VP,KE,KC,K12,K21 
REAL*8 G,LNG,IR,IRR,I,CP,CI,CP2 
REAL*8 IR_ZERO,IRR_ZERO,CP_ZERO,I_ZERO,CP2_ZERO 
REAL*8 IR_PRIME,IRR_PRIME,CP_PRIME,I_PRIME, CP2_PRIME 
REAL*8 WEIGHT,RATE 
LOGICAL EVENT_IS_ACTIVE 
 
  IF(IFUN == 1 .OR. IFUN==2 .OR. IFUN==3) THEN 
    CALL CUBIC_GCV(T,G) 
    G=DEXP(G)       
    I = Y(1)          ! PLASMA INSULIN CONC. 
    CP  = Y(2)        ! c-PEPTIDE IN COMPARTMENT 1   
    IR = Y(3)     ! READILY RELEASIBLE INSULIN 
    CP2 = Y(4)     ! C-PEPTIDE IN COMPARTMENT 2 
    KG = P(1)  
    EMAX = P(2) 
    C50 = P(3) 
    ALPHA = P(4) 
    E = P(5) 
    VI= P(6) 
    KE =P(7) 
    KC =P(8) 
    VP= P(9) 
    K12 = P(13) 
    K21 = P(14) 
 
  
    I_PRIME = (1-E)*(EMAX*(G**ALPHA)*IR/(C50**ALPHA    & 
               + G**ALPHA))/VI - KE*I  
    CP_PRIME = (EMAX*(G**ALPHA)*IR/(C50**ALPHA     & 
                + G**ALPHA))/VP  - KC*CP +K21*CP2/VP -K12*CP 
    IR_PRIME = KG*G - EMAX*(G**ALPHA)*IR/(C50**ALPHA + G**ALPHA) 
    CP2_PRIME = K12*CP -K21*CP2 
 
    YPRIME(1) = I_PRIME    
    YPRIME(2) = CP_PRIME    
    YPRIME(3) = IR_PRIME  
    YPRIME(4) = CP2_PRIME 
  END IF 
RETURN 
 
 
SUBROUTINE USERMODEL(T,C,P,NP,IFUN) 
IMPLICIT NONE 
INTEGER NP,IFUN 
REAL*8 T,C,P(*) 
INTEGER, PARAMETER :: NEQN =4,NPT=150 
INTEGER NOBS,J,JY,NUM,LUN,NN, II  !NN MODIFED 
REAL*8 TOBS(NPT), COBS(NPT),CLN(NPT) 
REAL*8 KG,EMAX,C50,ALPHA, KRR,E,VI,KE,KC,VP,K12,K21, WEIGHT 
REAL*8 IR,IRR,I,CP, ISR 
REAL*8 IR_ZERO,IRR_ZERO,CP_ZERO,I_ZERO,CP2_ZERO 
REAL*8 DT, LNG,G 
REAL*8 Y(NEQN),YZERO(NEQN) ,LG(100)                    
REAL*8 TSP(NPT),GSP(NPT), TIME_STEP1,TIME_STEP2,G_STEP1,G_STEP2 
REAL*8 GGS(NPT),GGL(NPT),TTS(NPT) 
REAL*8 D,XEND 
REAL*8 TT, TTT 
LOGICAL SHOWIT 
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CHARACTER*256 ID,DATAFILENAME 
REAL*8 ::TZERO 
DATA  TZERO/0.0D0/ 
INTEGER NEVENTS,n 
REAL*8 RATE,T_START, T_STOP 
      
  IF(IFUN.EQ.-1000) THEN 
    NOBS=NPT 
    CALL XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE(TOBS,COBS,NOBS) 
    CALL LIN_SPLIN_SETUP(TOBS,COBS,NOBS) 
    XEND=1.2*TOBS(NOBS) 
    D=XEND/FLOAT(NPT-1) 
 
    DO J=1,NPT 
      TTS(J) = D*FLOAT(J-1) 
      CALL LIN_SPLIN_EVALUATE(TTS(J),GGS(J)) 
    END DO 
 
    CALL SetFunfitParameterName(1,"KG") 
    CALL SetFunfitParameterName(2,"EMAX")  
    CALL SetFunfitParameterName(3,"C50")  
    CALL SetFunfitParameterName(4,"ALPHA") 
    CALL SetFunfitParameterName(5,"E") 
    CALL SetFunfitParameterName(6,"VI") 
    CALL SetFunfitParameterName(7,"KE") 
    CALL SetFunfitParameterName(8,"KC") 
    CALL SetFunfitParameterName(9,"VP") 
    CALL SetFunfitParameterName(10,"IR_ZERO") 
    CALL SetFunfitParameterName(11,"I_ZERO") 
    CALL SetFunfitParameterName(12,"CP_ZERO") 
    CALL SetFunfitParameterName(13,"K12") 
    CALL SetFunfitParameterName(14,"K21") 
    CALL SetFunfitParameterName(15,"WEIGHT") 
    CALL SetFunfitParameterName(16,"T_START") 
    CALL SetFunfitParameterName(17,"T_STOP") 
    CALL SetFunfitParameterName(18,"RATE") 
    
    KG = P(1)  
    EMAX = P(2) 
    C50 = P(3) 
    ALPHA = P(4) 
    E = P(5) 
    VI= P(6) 
    KE =P(7) 
    KC =P(8) 

 VP= P(9) 
 IR_ZERO =P(10) 
 I_ZERO = P(11) 
 CP_ZERO = P(12) 

    K12 = P(13) 
    K21 = P(14) 
 
    CALL TITLE('LINEAR SPLINE FITTED GLUCOSE') 
    CALL XLABEL('TIME(MIN)') 
    CALL LEFTLABEL ('GLUCOSE(MMOL/L)') 
    CALL ADDPOINTSLEFT_D(TOBS,COBS,NOBS) 
    CALL ADDCURVELEFT_D(TTS,GGS,NOBS) 
    CALL DISPLAYPLOT 
  END IF 
 
  IF(IFUN==1 .OR. IFUN==2) THEN 
  JY=IFUN 
  YZERO(1) = P(11)   !"I_ZERO" 
  YZERO(2) = P(12)    !"CP_ZERO" 
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  YZERO(3) = P(10)    !"IR_ZERO"  
  YZERO(4) = P(12)*K12/K21 

 
    CALL INTEGRATE_USERMODEL_ODE(T,C,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
  END IF 
 
  IF (IFUN.EQ.0) THEN 
    CALL PROMT(SHOWIT) 
     
    IF(SHOWIT)THEN 
      CALL GETDATAFILENAME(DATAFILENAME) 
      CALL ADDMARGINTEXT(DATAFILENAME)  
  CALL TITLE('FITTED INSULIN AND CPEPTIDE')          
 
 CALL XLABEL('TIME(MINUTES)') 
 CALL LEFTLABEL('INSULIN (PMOL/L)') 
 CALL ADDOBSERVATIONSLEFT(1) 
      CALL ADDFITTEDCURVELEFT(1) 
      CALL PLOT_IN_AREA(1,2) 
 
      CALL LEFTLABEL('CPEPTIDE (PMOL/L)') 
      CALL ADDOBSERVATIONSLEFT(2) 
 CALL ADDFITTEDCURVELEFT(2) 
 CALL PLOT_IN_AREA(2,2) 
 
 CALL DISPLAYPLOT 
      CALL GETLUNOUTPUT(LUN) 
      CALL RECORDPLOTIFSAVED(LUN) 
      CALL RECORDPLOTIFSAVED(3) 
    END IF 
 END IF 
 RETURN  
!---------------------------------------------------------------------- 
 
 
!** 
CONTAINS 
SUBROUTINE XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE (X,Y,N,F) 
IMPLICIT NONE 
INTEGER, INTENT (INOUT) :: N 
REAL*8,  INTENT (INOUT) :: X(*), Y(*) 
CHARACTER (LEN=256), INTENT(OUT)  :: F 
INTEGER, PARAMETER :: MAXLINES = 10000, LENSTRING = 80 
INTEGER :: J, JS, K, NN, IERR 
CHARACTER (LEN=256) :: DATAFILENAME 
CHARACTER (LEN=LENSTRING) :: STRING 

 
  PRINT*," NEXT SELECT THE FILE CONTAINING THE BLOOD INSULIN C-T DATA " 
  CALL FILESELECT("DAT", DATAFILENAME, J) 
  PRINT*, 'This is the *.DAT file selcted:', DATAFILENAME    
 
  OPEN(UNIT=101, FILE=DATAFILENAME, STATUS='OLD', IOSTAT = IERR) 
  IF(IERR /= 0) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE: & 
                       ERROR IN OPENING DATA FILE' 
  NN = 0 
  F=DATAFILENAME 
  DO J= 1, MAXLINES 
    JS = J 
    STRING(1:LENSTRING) = '' 

READ (101,"(A)", END = 10, IOSTAT = IERR) STRING 
IF(IERR /= 0) STOP 'GET_XY_DATA_FROM_FUNFIT_FILE:  & 
                    ERROR IN READING DATA FILE' 
K = LEN_TRIM(ADJUSTL(STRING)) 
IF(STRING(1:1) == 'C' .OR. STRING(1:1) == 'c' .OR. & 
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   STRING(1:1) == '' .OR. K <= 2) CYCLE 
    NN = NN + 1 
 
    IF(NN > N) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE:  & 
                     ASSIGNED DIMENSION OF X, Y TOO SMALL'  
    READ(STRING,*, IOSTAT = IERR) X(NN), Y(NN) 
 

IF(IERR /= 0) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE:  & 
                    ERROR IN DATA FILE LIKELY, PLEASE CHECK' 

  ENDDO 
 
  10 IF (JS == MAXLINES) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE: & 
                       DATA FILE CONTAINS TOO MANY LINES (RECORDS)' 
  N = NN 
  CLOSE (101,STATUS='SAVE') 
END SUBROUTINE XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE 
END SUBROUTINE USERMODEL 
!---------------------------END---------------------------------- 
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****Begin prologue 

This Monolix script yields population statistics of the proposed PK/PD model for OGTT 

in Chapter 6 (Eq. 6.1 -6.5). A nonlinear mixed-effects model was used for the population 

analysis and the status of glucose tolerance, type 2 diabetes and obesity as covariates 

were included in the population model. The population model is described by: 

 ( , ) ( , )ij i ij i ij ijy f t b f t        Eq. 6.6 

iii c  )ln(  with   ),0(~ .. Ndiii  Eq. 6.7 

where f is the proposed PK/PD model described by Eq. 6.1 -6.5; A proportional error 

structure was used, in which b is the coefficient and ij  is a random variable following a 

normal distribution with mean 0 and variance 1.  

 

The program runs under a computer-based program Monolix, standalone version 3.1. The 

analysis involves 3 files in CD: 

(1). Monolix script: \monolix\MARI_ORAL_WO_1ST_2CP_FIX_PAR.TXT 

(2). Data file: \monolix\ORAL.TXT 

(3). Output file: \ORAL 

****End prologue 
 
 
$PROBLEM SIMUTANEOUSLY ANALYZE OGTT DATA OF INSULIN AND C-PEPTIDE 
 
$MODEL 
COMP = (I) 
COMP = (IR) 
COMP = (CP1) 
COMP = (CP2) 
 
$PSI  KG EMAX C50 ALPHA E KE IR0 CIB VI CP1B RK12 VP1 
 
$REG  t_start t_end g_start g_end t1 t2 f 
 
$PK 
 
A1=f/VP1 
A2= (1-f)/VP1 
lamda1=0.693/t1 
lamda2=0.693/t2 
K21=(A1*lamda2+A2*lamda1)/(A1+A2) 
KC=lamda1*lamda2/K21 
K12=lamda1+lamda2-K21-KC 
 
IB=CIB*VI 
CPB=CP1B*VP1 
 
$ODE 
 
;STIFF           ;solver for stiff ODE's systems 
 
I_0=IB 
IR_0=IR0 
CP1_0=CPB 
CP2_0=RK12*CPB 
 
if (T < 500) 
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  C = g_start + (T - t_start)*(g_end - g_start)/(t_end-t_start) 
else 
  C = g_end 
end 
 
DDT_I = (IR*EMAX*(C^ALPHA)/(C^ALPHA+C50^ALPHA))*(1-E) -KE*I 
DDT_IR = KG*C - IR*EMAX*(C^ALPHA)/(C^ALPHA+C50^ALPHA) 
DDT_CP1= IR*EMAX*(C^ALPHA)/(C^ALPHA+C50^ALPHA) -KC*CP1-K12*CP1+K21*CP2 
DDT_CP2=K12*CP1-K21*CP2 
 
$OUTPUT 
OUTPUT1=I/VI 
OUTPUT2=CP1/VP1
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****Begin prologue 

This FORTRAN program simulates the prehepatic insulin secretion rate of subjects with 

various levels of glucose tolerance OGTT based on the PK/PD model proposed In 

Chapter 6 and population estimates of parameters from Monolix. The prehepatic insulin 

secretion rate, R(t), is given by: 
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The program runs under a computer-based program WINFUNFIT. The analysis involves 

9 files in CD: 

(1). program files: \fortran\ORAL_ISR.F90 

                              \fortran\LinearSpline2Step.for 

                              \fortran\dlsode 

 (2). WINFUNFIT files: \fortran\ALLWINFUNFIT  

                                       \fortran\FUNFIT_RESOURCES.res 

 (3). data file: \fortran\ ORAL_ISR\mean_insulin*.DAT (e.g. oral_obs_pop_nd.DAT ) 

                       \fortran\ ORAL_ISR\mean_glucose*.DAT (e.g. oral_pop_glu_nd.DAT  

                       \fortran\ ORAL_ISR\para.PAR (e.g. para_nd_nob) 

(4).output file: \fortran\ ORAL_ISR\RATE.DAT (e.g. RATE_ND.DAT 

****End prologue 
 
 
SUBROUTINE USERMODEL_ODE(T,Y,YPRIME,P,NP,IFUN)     !      
IMPLICIT NONE 
  
INTEGER NP,IFUN 
REAL*8 T, YPRIME(*),Y(*),P(*) 
REAL*8 KG,EMAX,C50,ALPHA,E,VI,VP,KE,KC, K12,K21 
REAL*8 G,LNG,IR,IRR,I,CP,CI,CCP,CP2 
REAL*8 IR_ZERO,IRR_ZERO,CP_ZERO,I_ZERO,CP2_ZERO 
REAL*8 IR_PRIME,CP_PRIME,I_PRIME,CP2_PRIME 
REAL*8 WEIGHT,RATE 
LOGICAL EVENT_IS_ACTIVE 
 
  IF(IFUN == 1 .OR. IFUN==2) THEN 
    CALL LIN_SPLIN_EVALUATE(T,G) 
     
    I = Y(1)            ! INSULIN IN PLASMA 
    CP  = Y(2)          ! C-PEPTIDE IN COMPARTMENT 1   
    IR = Y(3)  ! RESERVED INSULIN 
    CP2 = Y(4)  ! C-PEPTIDE IN COMPARTMENT 2 
   
    KG = P(1)  
    EMAX = P(2) 
    C50 = P(3) 
    ALPHA = P(4) 
    E = P(5) 
    VI= P(6) 
    KE =P(7) 
    KC =P(8) 
    VP= P(9) 
    K12 = P(13) 
    K21 = P(14) 
 

I_PRIME = (1-E)*EMAX*(G**ALPHA)*IR/(C50**ALPHA    & 

mailto:3MAA_PP@INS.DAT
mailto:3MAA_PP@INS.DAT
mailto:3MAA_PP@INS.DAT
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           + G**ALPHA)/VI - KE*I  
CP_PRIME = (EMAX*(G**ALPHA)*IR/(C50**ALPHA + G**ALPHA))/VP   & 
            - KC*CP + K21*CP2/VP -K12*CP 

    IR_PRIME = KG*G - EMAX*(G**ALPHA)*IR/(C50**ALPHA + G**ALPHA) 
    CP2_PRIME = K12*CP*VP -K21*CP2 
 
    YPRIME(1) = I_PRIME    
    YPRIME(2) = CP_PRIME    
    YPRIME(3) = IR_PRIME  
    YPRIME(4) = CP2_PRIME 
 
  END IF 
 
END SUBROUTINE USERMODEL_ODE 
 
 
! DEFINE JACOBIAN OF ODE 
SUBROUTINE USERMODEL_ODE_JACOBIAN(T,Y,DFDT,DFDY,N,P,NP,IFUN) 
IMPLICIT NONE 
INTEGER, INTENT(IN):: N, NP, IFUN 
DOUBLE PRECISION, INTENT(IN)::T 
DOUBLE PRECISION, DIMENSION(N), INTENT(IN)::Y 
DOUBLE PRECISION, DIMENSION(N),INTENT(OUT)::DFDT 
DOUBLE PRECISION, DIMENSION(N,N), INTENT(OUT):: DFDY 
DOUBLE PRECISION, DIMENSION(NP), INTENT(IN)::P 
END SUBROUTINE USERMODEL_ODE_JACOBIAN 
 
SUBROUTINE USERMODEL(T,C,P,NP,IFUN) 
IMPLICIT NONE 
 
INTEGER NP,IFUN 
REAL*8 T,C,P(*) 
INTEGER, PARAMETER :: NEQN =4,NPT=150 
INTEGER NOBS,J,JY,NUM,LUN,NN, II   
REAL*8 TOBS(NPT), COBS(NPT) 
REAL*8 KG,EMAX,C50,ALPHA,E,VI,KE,KC,VP,K12,K21 
REAL*8 IR,IRR,I 
REAL*8 IR_ZERO,IRR_ZERO,CP_ZERO,I_ZERO,CP2_ZERO 
REAL*8 DT, LNG 
REAL*8 D,XEND 
REAL*8 Y(NEQN),YZERO(NEQN) , LG(100)                       
REAL*8 TSP(NPT),GSP(NPT), TIME_STEP1,TIME_STEP2,G_STEP1,G_STEP2 
REAL*8 GGS(NPT),GGL(NPT),TTS(NPT),G 
LOGICAL SHOWIT 
CHARACTER*256 ID,DATAFILENAME 
REAL*8 ::TZERO 
DATA  TZERO/0.0D0/ 
INTEGER NEVENTS 
REAL*8 RATE,T_START, T_STOP 
EXTERNAL FEX, JEX 
INTEGER IOPT, IOUT, ISTATE, ITASK, ITOL,IWORK(24),LIW, LRW,MF,NEQ 
DOUBLE PRECISION ATOL(4), RTOL,RWORK(74),  TOUT, YY(4),TT 
DOUBLE PRECISION CI(2000),CIR(2000),CI2(2000),CP(2000) 
DOUBLE PRECISION CR1(2000),CR2(2000),TC(2000) 
DOUBLE PRECISION CNR1(2000),CNR2(2000),POP_IR(2000),POP_IRR(2000) 
INTEGER N 
DOUBLE PRECISION PP(14) 
COMMON PP 
 
  KG = P(1)  
  EMAX = P(2) 
  C50 = P(3) 
  ALPHA = P(4) 
  E = P(5) 
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  VI= P(6) 
  KE =P(7) 
  KC =P(8) 
  VP= P(9) 
  IR_ZERO =P(10) 
  I_ZERO = P(11) 
  CP_ZERO =P(12) 
  K12 = P(13) 
  K21 = P(14) 
 
NEQ=4   
YY(1) = I_ZERO   
YY(2) = CP_ZERO     
YY(3) = IR_ZERO    
YY(4) = IR_ZERO*K12/K21 
TT=0.D0 
ITOL=1 
RTOL=1.D-4 
ISTATE=1 
IOPT=0 
LRW=74 
ATOL(1)=1.D-6 
ATOL(2)=1.D-6 
ATOL(3)=1.D-6 
ATOL(4)=1.D-6 
ITASK=1 
LIW=24    
MF=22 

       
  IF(IFUN.EQ.-1000) THEN 
    NOBS=NPT 
    CALL XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE(TOBS,COBS,NOBS) 
 
    CALL LIN_SPLIN_SETUP(TOBS,COBS,NOBS) 
    XEND=1.2*TOBS(NOBS) 
    D=XEND/FLOAT(NPT-1) 
     
    DO J=1,NPT 
      TTS(J) = D*FLOAT(J-1) 
      CALL LIN_SPLIN_EVALUATE(TTS(J),GGS(J)) 
    END DO 
 
    CALL TITLE('PLOT OF GLUCOSE CONCENTRATION') 
    CALL XLABEL('TIME(MIN)') 
    CALL ADDPOINTSLEFT_D(TOBS,COBS,NOBS) 
    CALL ADDCURVELEFT_D(TTS,GGS,NPT) 
    CALL DISPLAYPLOT 
 
    CALL SetFunfitParameterName(1,"KG") 
    CALL SetFunfitParameterName(2,"EMAX")  
    CALL SetFunfitParameterName(3,"C50")  
    CALL SetFunfitParameterName(4,"ALPHA") 
    CALL SetFunfitParameterName(5,"E") 
    CALL SetFunfitParameterName(6,"VI") 
    CALL SetFunfitParameterName(7,"KE") 
    CALL SetFunfitParameterName(8,"KC") 
    CALL SetFunfitParameterName(9,"VP") 
    CALL SetFunfitParameterName(10,"IR_ZERO") 
    CALL SetFunfitParameterName(11,"I_ZERO") 
    CALL SetFunfitParameterName(12,"CP_ZERO") 
    CALL SetFunfitParameterName(13,"K12") 
    CALL SetFunfitParameterName(14,"K21") 
 
  END IF 
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  IF(IFUN == 1 .OR. IFUN ==2) THEN 
    JY=IFUN 
    YZERO(1) = P(11)   !"I_ZERO" 
    YZERO(2) = P(12)    !"CP_ZERO" 
    YZERO(3) = P(10)    !"IR_ZERO"  
    YZERO(4) = P(10)*P(13)/P(14) 
 
    CALL INTEGRATE_USERMODEL_ODE(T,C,P,NP,IFUN,TZERO,YZERO,NEQN,JY) 
  END IF 
 
  IF (IFUN.EQ.0) THEN 

PP(1)=P(1) 
PP(2)=P(2) 
PP(3)=P(3) 
PP(4)=P(4) 
PP(5)=P(5) 
PP(6)=P(6) 
PP(7)=P(7) 
PP(8)=P(8) 
PP(9)=P(9) 
PP(10)=P(10) 
PP(11)=P(11) 
PP(12)=P(12) 
PP(13)=P(13) 
PP(14)=P(14) 

 
    TOUT=0.D0 
    DO N=1,181 

CALL DLSODE(FEX,NEQ,YY,TT,TOUT,ITOL, RTOL, ATOL, & 
             ITASK,ISTATE,IOPT,RWORK,LRW,IWORK,LIW,JEX,MF) 
 
CI(N)=YY(1)      
CI2(N)=YY(2)     
CIR(N)=YY(3)     
CR1(N)=YY(4)     
TC(N)=TOUT 
 
CALL LIN_SPLIN_EVALUATE(TOUT,G) 
POP_IR(N) = PP(2)*(G**PP(4))*CIR(N)/(PP(3)**PP(4) + G**PP(4)) 
TOUT=TOUT+1.D0 

    END DO 
 
  OPEN(26,FILE='RATE_ND.TXT')  
  WRITE(26,'(2F12.6)') (TC(N), POP_IR(N), N=1,181) 
 
  CALL PROMT(SHOWIT) 
  IF(SHOWIT)THEN 
    CALL GETDATAFILENAME(DATAFILENAME) 
    CALL ADDMARGINTEXT(DATAFILENAME)  
    CALL TITLE('FITTED INSULIN AND CPEPTIDE')          
 
    CALL XLABEL('TIME(MINUTES)') 
    CALL LEFTLABEL('INSULIN (PPMOL/L)') 
    CALL ADDOBSERVATIONSLEFT(1) 
    CALL ADDFITTEDCURVELEFT(1) 
    CALL PLOT_IN_AREA(1,5) 
    CALL X_LABEL("TIME(MIN)") 
    CALL ADDCURVELEFT_D(TC,CI,181) 
    CALL ADDOBSERVATIONSLEFT(1) 
    CALL LEFT_LABEL("LSODE PREDICTION") 
    CALL PLOT_IN_AREA(2,5) 

 
CALL XLABEL('TIME(MINUTES)') 
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CALL LEFTLABEL('CP') 
CALL ADDOBSERVATIONSLEFT(2) 
CALL ADDFITTEDCURVELEFT(2) 
CALL PLOT_IN_AREA(3,5) 
     
CALL ADDCURVELEFT_D(TC,CI2,181) 
CALL X_LABEL("TIME(MIN)") 
CALL ADDOBSERVATIONSLEFT(2) 
CALL LEFT_LABEL("LSODE PREDICTION")    
CALL PLOT_IN_AREA(4,5) 
 
CALL RIGHTLABEL(' RATE (PMOL/MIN)' ) 
CALL ADDCURVELEFT_D(TC,POP_IR,181) 
CALL PLOT_IN_AREA(5,5) 
 
CALL DISPLAYPLOT 
CALL GETLUNOUTPUT(LUN) 
CALL RECORDPLOTIFSAVED(LUN) 
CALL RECORDPLOTIFSAVED(3) 

ENDIF 
  ENDIF 
RETURN  
 
 
!** 
CONTAINS 
SUBROUTINE XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE (X,Y,N,F) 
IMPLICIT NONE 
INTEGER, INTENT (INOUT) :: N 
REAL*8,  INTENT (INOUT) :: X(*), Y(*) 
CHARACTER (LEN=256), INTENT(OUT)  :: F 
INTEGER, PARAMETER :: MAXLINES = 10000, LENSTRING = 80 
INTEGER :: J, JS, K, NN, IERR 
CHARACTER (LEN=256) :: DATAFILENAME 
CHARACTER (LEN=LENSTRING) :: STRING 

 
  PRINT*," NEXT SELECT THE FILE CONTAINING THE BLOOD INSULIN C-T DATA " 
  CALL FILESELECT("DAT", DATAFILENAME, J) 
  PRINT*, 'This is the *.DAT file selcted:', DATAFILENAME    
 
  OPEN(UNIT=101, FILE=DATAFILENAME, STATUS='OLD', IOSTAT = IERR) 
  IF(IERR /= 0) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE: & 
                       ERROR IN OPENING DATA FILE' 
  NN = 0 
  F=DATAFILENAME 
  DO J= 1, MAXLINES 
    JS = J 
    STRING(1:LENSTRING) = '' 

READ (101,"(A)", END = 10, IOSTAT = IERR) STRING 
IF(IERR /= 0) STOP 'GET_XY_DATA_FROM_FUNFIT_FILE:  & 
                    ERROR IN READING DATA FILE' 
K = LEN_TRIM(ADJUSTL(STRING)) 
IF(STRING(1:1) == 'C' .OR. STRING(1:1) == 'c' .OR. & 
   STRING(1:1) == '' .OR. K <= 2) CYCLE 

    NN = NN + 1 
 
    IF(NN > N) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE:  & 
                     ASSIGNED DIMENSION OF X, Y TOO SMALL'  
    READ(STRING,*, IOSTAT = IERR) X(NN), Y(NN) 
 

 
IF(IERR /= 0) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE:  & 
                    ERROR IN DATA FILE LIKELY, PLEASE CHECK' 

  ENDDO 



  169 

 

1
6
9
 

 
  10 IF (JS == MAXLINES) STOP ' XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE: & 
                       DATA FILE CONTAINS TOO MANY LINES (RECORDS)' 
  N = NN 
  CLOSE (101,STATUS='SAVE') 
END SUBROUTINE XY_DATA_FOR_SPLIN_FROM_FUNFIT_FILE 
END SUBROUTINE USERMODEL 
 
 
SUBROUTINE FEX(NEQ, TT, YY, YDOT) 
IMPLICIT NONE 
COMMON PP 
DOUBLE PRECISION  PP(10) 
INTEGER NEQ 
DOUBLE PRECISION TT, YY(7), YDOT(7) 
DOUBLE PRECISION KG,K1,K2,PE,KE,KRR,IRR_ZERO,G_ZERO, EMAX, C50, ALPHA 
DOUBLE PRECISION I_ZERO,I1_ZERO,I2_ZERO,G 
 
  KG = PP(1) 
  EMAX = PP(2) 
  C50 = PP(3) 
  PE = PP(4) 
  KE = PP(5) 
  KRR=PP(6) 
  ALPHA=PP(7) 
  I2_ZERO=PP(8) 
  I_ZERO=PP(9) 
  IRR_ZERO = PP(10) 
 
  CALL LIN_SPLIN_EVALUATE(TT,G) 
 
  YDOT(1) = PE*EMAX*(G**ALPHA)/(C50**ALPHA + G**ALPHA)*YY(2) & 
            - KE*YY(1) + PE*KRR*YY(3) 
  YDOT(2) = KG*G - EMAX*(G**ALPHA)/(C50**ALPHA + G**ALPHA)*YY(2) 
  YDOT(3) = -KRR*YY(3) 
  YDOT(4)=EMAX*(G**ALPHA)/(C50**ALPHA + G**ALPHA)*YY(2)*PE 
  YDOT(5)=KRR*YY(3)*PE 
  YDOT(6)=EMAX*(G**ALPHA)/(C50**ALPHA + G**ALPHA)*YY(2)*PE - KE*YY(6) 
  YDOT(7)=KRR*YY(3)*PE-KE*YY(7) 
 
RETURN  
END  

!-----------------------------END-------------------------------- 
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APPENDIX D. THE LIST OF PEER REVIEWED PUBLICATIONS 

BY LANYI XIE 

Xie L, Hoffman RP, and Veng-Pedersen P. Noncompatmental pharmacokinetics analysis 

of glucose-stimulated insulin response in African-American and Caucasian youths. 

Biopharm Drug Dispos 30(3): 117-125 (2009) 

 

Xie L, Hoffman RP, and Veng-Pedersen P. Population analysis of ethnicity and first-

phase insulin release. Diabetes Res Clin Pract 89(3): 243-249 (2010) 

 

Xie L, Kautzky-Willer A, Ferrannini E, and Veng-Pedersen P. A population kinetic 

analysis of prehepatic insulin secretion. JCMD 1(2), online (2011) 
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