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ABSTRACT

The continuing avian influenza (AI) out break that began in late 2003 and early
2004 has been disastrous for the poultry industry worldwide. It has resulted in severe
socio-economic damage, and it has raised serious concerns for general public health.
; In this research, we use mathematics to analyze transmission dynamics of Al among
poultry. We use a status-based approach to construct systems of differential equations to
describe virus transmission dynamics. We develop theoretical means to eradicate the
spread of the disease, and we calculate the size of healthy and infected populations
during an Al outbreak, and the final population size when the disease is eliminated. We
study the dynamics when vaccination is absent, and when vaccination is used. For the
latter case, we investigate different scenarios, including when the circulating virus
consists of only one strain, and when multiple strains are present. Finally, we assume
there exists a mutation which can create a non-existing strain from an existing strain and
we analyze such dynamics using numerical simulation. The measures and information

provided by this research can be used as references to develop disease control strategies.
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0.1 Introduction of Avian Influenza

There are three known types of influenza viruses. Type A virus can infect
birds and mammals, including humans, and type B and C viruses can
only be passed among humans. Type A flu virus has many subtypes, due
to the two main surface proteins, hemagglutinin [HA] and neuraminidase
[NA]. There are 16 subtypes of flu A virus with HA proteins and 9 with
NA. Each possible combination of the HA and NA proteins makes up a
different subtype [3]. Avian influenza (Al) is a type A influenza virus, and
it was first discovered in Italy in the early 1900's [7]. Avian influenza is
highly contagious, it can survive at low or moderate temperatures, but it
can be destroyed by heat [4].

Wild birds, especially wild waterfowl, are believed to be the original
source and natural reservoir of all subtypes of influenza A virus [1]. Wild
birds carry the virus in their intestines, and circulate the virus worldwide.
Although they are usually resistant to infections of Al, a particular Al sub-
type, namely H5N1 virus, can cause mortality in bird populations. Birds
that survive the infection can shed virus through their saliva, nasal secre-
tions, and feces. Susceptible birds can become infected during contact with
the contaminated excretions or environments [6].

One of the most vulnerable populations to Al virus is poultry. Suscep-
tible poultry may become infected with Al virus by inhaling virus polluted
air, or making contact with infected wild birds (especially wild waterfowl).
Live bird markets and movements of bird waste products are also respon-
sible for causing an AI outbreak. As high as 90 to 100 percent of poultry,

particularly chickens, infected with a high pathogenic form of Al virus die







within 48 hours [6].

0.1.1 Possible Virus Mutations

Influenza A viruses can mutate unpredictably. They can change in two
ways, antigenic drift and antigenic shift. Antigenic drift refers to small,
gradual and random point mutations in the two genes that contain the
genetic materials to produce the two main surface proteins, hemagglutinin
and neuraminidase. Antigenic drift happens all the time, and it causes
minor changes to the main surface proteins. Therefore, antibodies that
work against the older strain of virus may not be able to recognize the
newer strains of virus, and new infections can occur. On the other hand,
antigenic shift refers to sudden, major changes that happen only occasion-
ally. These changes can create new influenza A virus subtypes. Antigenic
shift can occur through a process called genetic reassortment, which occurs
when genetic materials of human and avian viruses are exchanged. Genetic
reassortment may generate a new virus that might be able to infect and

spread among humans easily [3].

0.1.2 Thesis Objectives and Model Descriptions

The continuing avian influenza outbreaks that began in late 2003 and early
2004 have been disastrous for the poultry industry worldwide. By mid-
2005, more than 140 million birds have been killed by the disease, or been
put to death for disease control. The losses to the poultry industry are
estimated in the excess of 10 billion US dollars. Avian flu has resulted in

severe socio-economic damage, and it has raised serious concerns for general







public health.

My thesis uses mathematics to analyze transmission dynamics of avian
influenza among domestic poultry. We use a status-based approach to
construct systems of differential equations to describe virus transmission
dynamics. We develop theoretical measures to control and eradicate the
spread of disease, and we calculate size of healthy and infected populations
during an Al outbreak, and the final population size when the disease is
eliminated. We study the dynamics when vaccination is absent, and when
vaccination is used. For the latter case, we investigate different scenar-
10s, including when the circulating virus consists of only one strain, and
when multiple strains are present. Finally, we assume there exists a mu-
tation which can create a non-existing strain from an existing strain, and
we analyze such dynamics using numerical simulation. The measures and

information provided by this research can be used as references to develop

disease control strategies.
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0.2 Background study

0.2.1 The Basic Kermack-McKendrick Model

In Murray’s book Mathematical Biology [15], the author analyzes a basic
SIR model, the Kermack-McKendrick model, which has had a major influ-
ence on the development of mathematical models in population dynamics.
The model considers a homogenous population with a constant size, N. It
assumes the incubation period of the infectious agent is instantaneous, and
the duration of infectivity is same as the length of the disease. The model
uses a system of differential equations to describe the number of individuals

infected with a contagious disease over time,

% = —0IS
{ & = 8IS—nI = (68-n)I (0.2.1.1)
| & = nl
Notation Description
S Susceptible population
I Infected population
R Recovered population
) Probability acquiring infection in a susceptible individual from
a random chosen contact with an infected individual per unit time

7 Total death count per unit time

Tab. 0.1: Notation Definitions







All of the model parameters are nonnegative for biological reasons.
A question we want to ask is for constant § and 7, and given an initial
number of susceptible, Sy, and infective, I,, will the infection spread? If it
does, how does the infected population vary in time? When will it start
to decline? As a matter of fact, there exists a threshold, p, such that for
So > p, the infected population increases, and an epidemic will occur. If
So < p, the infected population decreases. This threshold phenomenon can

be calculated explicitly. From the equation

dl
[ELO = 1y(0So — ) = 0,

the threshold is

Since 4 < 0 for all ¢, we know S < Sp. Thus, if S, < p,

%:1(55—17)50 forall t>0.

In this case, as soon as the infection is introduced, it will decrease and die
out. On the other hand, if Sy > p, for any giving constant I,, the infection
will initially increase before starting to decrease and eventually die out.
This threshold phenomenon can be observed from the phase trajectories
in the susceptible (S)- infective (I) phase plane, or from population - time
graphs of the SIR model 0.2.1.1.
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Fig.0.2.1.2. Phases trajectories in the susceptible (S)-infective(/) phase plane for

the STR model epidemic system 0.2.1.1. The curves are determined by initial
conditions, Sy and Iy, with Ry = 0.
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Fig.0.2.1.3. When the initial number of susceptible individuals is less than the
threshold, the infective population is observed to go toward extinction in time,
while the susceptible population decreases to a positive constant.
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fig.0.2.1.4. When the initial number of susceptible individuals is greater than the
threshold, the number of infective increases before it peaks and goes extinct in
time.

It is traditional to define

_5 _ 5

P n

To

as the basic reproductive rate of the infection, which represents the average
number of secondary cases produced by an infectious individual in a wholly
susceptible population. When ry > 1, an epidemic will ensue.
|,_ We can also obtain the maximum number of infected individuals,
I'naz, and the total number of infected individuals, [;.e;, from model 0.2.1.1.

I Integrate
| L AR S

ds 0SI i

we obtain

I+S—pInS =1+ 8, — pln Sy = constant.







The maximum occurs when 4 = 0, or S is at the threshold value p.

Imaz = plnp—p+Iy+ 8y —pln S, (0.2.1.5)
IU+SD -—p—l—pln(-‘—gp—)

0
p

- N-ptpi(L).
N—-p+pln S,

We can also obtain the total infected population, I;..,;. Note that the
total population is a constant N = I, + Sy, since R(0) = 0. Therefore
4¥ —0,and forallt > 0,0< S+ I < N. From the STR model 0.2.1.1, we

have
e
dR  p
Integrate both sides, we have
= S = Spexp (-—%) > Spexp (_%) >0 (0.2.1.6)
= S(oc0) = Spexp [HE%O—)} = Sp exp [*N_—j_(oo)J .

Since 0 < S(00) < p, and I(o0) = 0. Therefore, S(cc) is the positive root

0 < z < p of the transcendental equation

N_ZJ*

z = Syexp | —
0 P[ P

and we obtain Itota! = IQ -+ Sg = S(m)
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0.2.2 Non-Vaccinated SI model

Poultry infected by AI usually die a short time after the infection. They
either die from the fatal disease, or they are put to death for disease control.
We focus the dynamics of the spread of the disease within the susceptible
and infected population, since the infected population does not become

susceptible again, and we give the following ST model:

4 = h-06SI —uS
{ o . (0.2.2.1)

%{— = 0SI —nl,

where h is the rate of population recruitment, which is assumed to be
susceptible, and p is the rate of susceptible population loss. The SI model
0.2.2.1 has a disease-free equilibrium (DFE) at

EO = (ﬁlo) )
M

with corresponding Jacobian

and eigenvalues

Al = —, Ag = %6 —n. (0.2.2.2)

Clearly, the DFE Ej is locally asymptotically stable, if and only if A, < 0,
which means 28 < 1. Define r, = 2% as the basic reproductive number,
which is the number of new infections in a disease-free population produced

by one infected individual. Note A, < 0, if and only if 7y < 1. Thus, we

give the following lemma.




T T—
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Lemma 0.2.2.1. The DFE (E;) of the SI model 0.2.2.1 is locally as-
ymptotically stable if ro < 1 and unstable if ry > 1.

From another point of view, a successful disease invasion requires a suf-
ficiently large transmissibility. In particularly, we will see that the infection
will die out, if § < £. For a strain with a sufficiently large transmission
rate, > £1, the poultry population will sustain an epidemic. A transcrit-
ical bifurcation occurs as the value of r, grows and becomes larger than
1. The DFE (E,) is destabilized, and it coexists with an unique endemic
equilibrium (EE) at

which exists provided r, = % > 1. The Jacobian of the SI model 0.2.2.1
evaluated at the EE is:

and the corresponding eigenvalues are:

—hd + \/h262 — 4n?(hd — un)
2n '

Xi g (0.2.2.3)

If
h*6% —an*(hé — un) <0,  Re(MAy,) > 0.

If
h?6% — 4n*(hé — um) > 0,  Re(A,) < 0.

Since the existence condition for the EE (E;) implies hd — un > 0, it follows
that Re(A;2) < 0. Thus we give the following lemma.
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Lemma 0.2.2.2. The EE(E,) of the SI model 0.2.2.1 is always locally
asymptotically stable.

Note that the size of the infected population at the EE depends on the
transmissibility of the circulating virus strain. A high transmission rate
can result in a large infected population limited by % Furthermore, if
the virus strain has an intermediate transmission rate, 2"("_W) <0<

2”(”+Vh”("_“)) , the population tends to the EE (E,) with damped oscillation.

For a transmission rate outside of this range, the population tends to the
EE directly.

Knowing the local stability of the equilibrium states, we will now in-
vestigate the global behavior of model 0.2.2.1, using Dulac’s Criterion
[18].

Remark 0.2.2.3. Dulac’s Criterion: Let x = f(x) be a continuously dif-
ferentiable vector field defined on a simply connected subset R of the plane.
If there exists a continuously differentiable, real-valued function g(x) such
that V - (gx) has one sign throughout R, then there are no closed orbits
lying entirely in R.

Therefore, we obtain the following lemma.

Lemma 0.2.2.4. The SI model 0.2.2.1 has no closed orbits in the pos-
ilwve quadrant, S,I > 0.

Proof. Let us pick g = ¢;, where S, I > 0, then

o (98) + 2 ()
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We also establish the following theorem.

Theorem 0.2.2.5. (a) If ro < 1, the unique DFE (E,) of the SI model
15 globally asymptotically stable.
(b) If ro > 1, then the unique EE (E,) is globally asymptotically stable
outside of the basin of attraction of the DFE (E,), which is the entire
positive quadrant, S(t), I(t) > 0.

Note an eigenvector of \; from equations 0.2.2.2 is found to be Py =
(1,0)". Consequently, when ry > 1, the DFE (E,) only attracts the tra-
Jectory along the axis I(t) = 0. Figure 0.2.2.4 shows a phase plane plot
for the SI model 0.2.2.1 when the DFE (E,) coexists with the EE (F,),
and the trajectories in the positive quadrant tends to E; with a damped
oscillation.

Theoretically, the infection can be eliminated when the value of 7y = ﬁ-%
1s lowered below 1. The actual process to control the spread of disease
may require a massive killing program, and disease eradication is realized
through a significant loss of population. Thus, vaccination programs are

carried out for disease control, in order to reduce the cost and damage

caused by infection.







14

S'=h-deltaSi-musS
I'=gdoita S| -etal

h=1 ota=0.5
delta =03 mu=0.2

T T T

Cursor position:  (-0.548. .0.021)

The backeard okt from (5, 0.092) left the computation sindow,
Ready.

The toruard ocbit from (8, 0.022) -2 3 possible eq. 4. near (1.7, 192
The backeard orbit fram (5, 0.022) ket the computation sindos:.
Ready

(0.2.2.4)

fig.0.2.2.4. parameter values h =1, =0.3,n=05and p =0.2,and 7y =3 > 1
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0.3 Population Dynamics Under the Effect of Vaccination

Multiple strains of the Al virus are observed to circulate among poultry,
and each of the strains is characterized by a particular antigen on the
surface of the virus. Since the majority of infected poultry die within a
short time period, our model uses a status-based approach to focus on the
current transmission dynamics of the Al virus, and the model assumes in-
dividuals infected by one virus strain can not be infected again by another
strain. We also assume a poultry population with homogenous suscepti-
bility. Newly recruited populations are solely susceptible. The incubation
period of the infectious agent is instantaneous. The model can be extended
to incorporate as many strains as one wishes, and the complexity of the
model only scales up linearly. We assume one vaccine is used for multiple
strains, but the vaccination efficiency varies from strain to strain. This
assumption is reasonable since it is impossible to develop a vaccine which
can de-activate all virus antigens, and typical vaccination programs use one
vaccine against multiple strains of the virus. For example, in Asia, vaccines
of H5N2 virus are also used for vaccination against an H5N1 epidemic (14].
Diagram 0.3.0.5 describes the change of population at any time among all

population groups.
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8,51,

[

5“‘.31

i+l

et n; LU

(0.3.0.5)

Fig.0.3.0.5. Diagram of transmission dynamics among the susceptible (), vacci-
nated (M) and infected (I;) population groups.

Let us assume there exist n strains of the virus. We give the following

SMI; model:
S = htwM-326SLE— (u+7)S
| W = 4T - a)EMI — (4 +w)M (0:3:0.6)
% = JiSIi e (1 = O'{)(S,‘MI{ ] 'UIi,

fors =1,2,...,n, and all parameters are assumed positive. Table 0.2 defines
the notation in the system of equations 0.3.0.6.

The susceptible population, S, is increased by a constant recruitment
of susceptible individuals (by birth or immigration), and by the loss of
immunity acquired through previous vaccination. This population is re-

duced via vaccination, infection, and non-disease induced mortality or em-
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Notation

Description

S

susceptible population

vaccinated population

=5

population infected with strain 2

total recruitment rate of individuals

S| >

transmission rate for the ith strain

rate of susceptible and vaccinated population loss

e I i~

rate of infected population loss

vaccine efficacy against the ith strain, 0 < ¢; < 1

rate at which vaccine-based immunity wanes

vaccination rate

effective transmission rate for the 7tk strain

Tab. 0.2: Notation Definitions

igration. The vaccinated population M, is increased through vaccination

of susceptible individuals, and it is decreased by vaccine-based Immunity

wane, non-disease induced mortality, as well as infection (though vacci-

nated individuals may be infected at a lower rate compared to susceptible

individuals). The infected population, I;, is increased by infecting suscep-

tible individuals and those who are vaccinated but still remain susceptible.

This population decreases as a result of disease induced mortality or via an

eradication program.
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The Equilibrium States of the SMI; Model 0.3.0.6
Disease-free equilibrium
The SMI; model 0.3.0.6 has a DFE,
h(p + w) hy )
Eyn = (S;, M;3,0) = , ,0 1.
oy = (55: M5, 0) (u(u+w+'r) ulp+7 + w)
The Jacobian of the SMI; model evaluated at the DFE is
’- — - w -5153 -5255 —6,,56
Y  —a-w —(1 — 01)81 M} ~(1 — 02)82 M —(1 = n)bn Mg
0 0 8185 + (1 —o1 )61 Mg — 5 0 0
Jo = 0 0 0 8255 + (1 —02)8aM; —n 0 ... 0
I 0 0 0 0 6nS3 +(1 - ;.,)a,,ug -n

and the corresponding eigenvalues are:
/\1 = —W, Ag = -(u+’7+w), A3__.n+2 = 5{SE+(1_O'i)5;MJ—T], i=1.%.

It is obvious that A, and ), are negative since all parameters are assumed

positive. Local stability of the DFE (Ey/,) is guaranteed if and only if

max[6;S5 + (1 — 0;)0: M7 — 7

= max

1

<0,

[ hp+w) . h(l—-o)y .

putw+7)"  pptw+r)
which is equivalent to

h — o
Ry = — max{; [“Hﬂr(l a‘”]
pn i K+ w+y

- Sl )

(0.3.0.7)
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We call Ry, the reproductive number of the infection in the presence of
vaccination, which can be interpreted as the number of secondary cases of
infection produced by one infected poultry in a susceptible and vaccinated

population. Note

p.+w—|—(1-—cr,-)'7] 2
b+ w+

It is sufficient for Ry, < 1, if ;—"n max; §; < 1. Otherwise, the value of the
reproductive number can be brought below 1 via a combination of vacci-
nation and additional measures such as slaughtering infected individuals.
If Ry/n < 1, the DFE (Ey/,) is locally asymptotically stable, which implies
the disease can be eradicated if the initial subpopulations are in the basin
of attraction of Ey)n. However, local stability of By, does not guarantee
global disease eradication for arbitrary initial subpopulations.

The reproductive number R, /» has a lower bound,

- h
Ropn = — 1= 0y)0;]- 0.3.0.8
oin = - max((1 = 0,)d] (0303)

This means that if there are some strains which have sufficiently large
effective transmission rate, (1 — o)d, such that ﬁo;n > 1, no amount of
vaccination can eradicate the disease. However, even for the most vaccine-
resistant case with o = 0, we define the basic reproductive number of the
infection, rg/n,

h
To/n = — maxd;. 0.3.0.9
o = o m (0.3.0.9)

If ro/n < 1, disease invasion fails even without the presence of vaccination.
To have o/, < 1 may require slaughtering infected poultry on a large scale,

and the spread of the disease is eventually controlled when the population

size becomes too small to sustain an epidemic.
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Therefore, a vaccination program should be accompanied with strategies
such as elimination of infected poultry (or poultry under the suspicion of
infection) in order to control the spread of the disease. We will now further
the discussion of the model 0.3.0.6 by first considering the case that only

one virus strain is present.
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The Single Strain Case

I. Disease-Free Equilibrium
If the virus circulating among poultry only consists of one strain, then we

can slim down the SMI; model 0.3.0.6 to the following SMI model,

S = h+wM-568I—(p+7)S

{ ¥ = 48— (1-0)0MI - (u+w)M (0.3.0.10)

dt

& = 6SI+(1-0)0MI-nl.

\

The corresponding eigenvalues of the DFE E, = (S, M, 0) are

Ar=—, A=—(u+7+w), A= —
LSy | Meslprrba) A wp+w+v)  plp+w+7)

n.

Thus, the local stability of F, depends on the sign of A3, and E, is locally
asymptotically stable if A3 < 0. As before, we obtain the corresponding
reproductive number, Ry/;, the lower bound of the reproductive number,

R, /1, and the basic reproductive number, r, /1

hé |p+w+(1-0)y
= , 0.3.0.11
LS b ( )

Ry = ;h—q[(l — 0)d], (0.3.0.12)

(0.3.0.13)
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If ro/1 < 1, the disease invasion fails even without the presence of vacci-
nation; but if fio/l > 1, no amount of vaccination can eradicate the disease.
If Ryy; < 1, the DFE is locally asymptotically stable, and the condition
Ry < 1 gives three important threshold values, 9., o., and .. Provided
Ry); < 1, the DFE is locally asymptotically stable if and only if

hé — un

’TC:_:""_ +w - — +w,
¥ 1—R0,1(“ ) i _a)ha_m(u )
or
1 1 hé — un
c>0.=—-(1—-—)-(p+w+9)= +w+ ),
~ ( ?‘on) (u 7) oy (1 )
or

pun  ptw+y
0 = : .
= % h pt+w+(1l-0)y

The disease becomes endemic when the vaccination rate is below the thresh-

old, 7., or if the vaccination efficacy is below the threshold, o.. In particu-

lar, if
Y < miny. = (o1 — 1)(p + w),
or if
. 1
c<mmno.=1-—,
To/1

no perfect vaccine, or any amount of vaccination can bring Ry, < 1, and
therefore the spread of disease cannot be stopped. Figure 0.3.0.14 shows
the combined effect of the vaccination rate v and the vaccination efficacy o
in bringing the value of reproductive number below 1. The figure illustrates
that beyond the minimum vaccination rate, the higher the vaccination effi-
cacy, the lower the vaccination rate that is needed to bring the reproductive

number less than one. Since most vaccination is done through injection,
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which is a slow process, using an effective vaccination can be crucial for
disease control.
From another point of view, if the transmission rate of the strain is

sufficiently high, such that § > 4., then an epidemic is inevitable.

0 < vaccination efficacy < 1

vaccination rate (030 14)

Fig.0.3.0.14. The combined effect of v and o to bring Ry less than 1.

According to our model, it is easy to see that

Rﬂ/n 2 RO/n—l 2 e :2 R0/2 Z RO;"I!

Ry > Ro/n_1>,:++,> Ryjp > Ry,
To/n 2 Tojn—1 2 "+, 2> Toj2 > To/1.

Consequently, the more strains that circulate among poultry, the easier it is
for the disease to grow out of control, and thus disease eradication becomes

harder to realize.




T e b e e e e
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I1. Endemic Equilibrium

In order to analyze the endemic equilibria (EE) of the SM I model 0.3.0.10,
we express the variables S and M in terms of  when I # 0, and we study
a polynomial in I to determine the existence conditions for the EE.

From the first two equations of system 0.3.0.10, we obtain S and M in

terms of I at the EE:
(1-0)0I"+p+w
(1-o)I*+(1-0o)y+p+w'

=

0

« 1 7

FhE 0 1—-o)I*+(l-o)y+pu+uw’ \9:5:0.56)

S* (0.3.0.15)

The third equation at the EE gives
05"+ (1—-o)dM*
- —
and the first equation at the EE gives

0S*I* + (u+9)S* —wM*
h

1, (0.3.0.17)

= 1. (0.3.0.18)

Substitute equation 0.3.0.17 in to equation 0.3.0.18, to obtain a homoge-

neous equation in S* and M*,
(n6I* +n(u+v) — hé] S* — [A(1 — o) + nw] M* = 0,
which is a quadratic equation in I*:

P(I*) = aI'® + ayI* + a5 =0, (0.3.0.19)

where

a; = 7]62(1 gas 0') Z 0,
ay = [n(p+7)—hé] (1 —0)é + (u+ w)nd, (0.3.0.20)
ao = [n(u +7) — ko] (1 + w) — [A(1 — o)d 4 nw] 7.
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The roots of P(I*) are given by the quadratic formula:

Note ay > 0 implies

[h(1 —0)d + nw]y
U+ w

(e +7v) — hé > > 0,

s0 a; > 0. Since a; > 0, the roots I, are complex if a? — 4aya, < 0, and
negative if af — 4azao > 0. Thus the polynomial P(I*) does not have a
positive real root if ay > 0.

On the other hand, when aq < 0, \/m > |lay|, since a; > 0. In
particular, if a; = 0, m = |ay|, and P(I*) has no real positive
root. When a; > 0, \/m > |a;|. Consequently, P(I*) has one

unique positive root at
—a; +y/a? — 4aza
P e 1 (0.3.0.21)

202

Since all parameters are assumed positive, a; = 0 implies o = 1, and a, > 0

implies 0 < o < 1. Therefore, we give the following lemma.

Lemma 0.3.0.6. 1) If the vaccine is perfectly effective against the virus
strain, 0 = 1, there exists no endemic equilibrium. 1) If the vaccine
is only partially effective, or completely ineffective, 0 < o < 1, then
there exists one unique endemic equilibrium when a; < 0. The infected

population at the endemic equilibrium is given by 0.8.0.21

Proof. If o = 1, then a; = 0 and there isno EE. If 0 < ¢ < 1, then a, > 0

and there exists a unique EE when a; < 0.

O
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In fact, the sign of a, is connected with the reproductive number, Ro/1.
From 0.3.0.20, we see

ap <0, if and only if [n(k + ) = hé] (u+w)—[h(1 - 0)6 + nw]y < 0,

which means

ag <0, if and only if Ry > 1.

Thus, under the effect of a partially effective vaccine or no vaccine, we have

the following theorem given by Professor Hiromi Seno.

Theorem 0.3.0.7. The endemic equilibrium of the SMI model 0.3.0.10

ezists under the following necessary and sufficient condition:

(1= Rop)y < (rojs — 1) (1 + w). (0.3.0.22)

Furthermore, it is sufficient for
ap <0, if n(u+7) —hé <0,

which means

v < w(ro — 1). (0.3.0.23)

From another point of view, we can rewrite condition 0.3.0.22 and 0.3.0.23,
so that it is evident that an epidemic occurs when the virus strain has
a sufficiently large transmission rate. That is, an epidemic occurs when

either one of the following two conditions is met:

1) 6> HMp+7q), or

o (0.3.0.24)
2) 6 < il(ﬂ‘l"r), and ¢ > %?'#—_l_hl—_";y‘?
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We have shown that when the endemic equilibrium exists, the reproduc-
tive number is greater than 1. Therefore, the DFE (Ey) becomes unstable,

and we establish the following theorem.

Theorem 0.3.0.8. For the SMI model 0.3.0.10, when the EE (E,) ez-

ists, a (transcritical) bifurcation always occurs to destabilize the DFE

(E,).

In fact, when Ry/; > 1, the DFE (E,) only attracts trajectories on the
S M-plane. This means if the reproductive number is greater than 1, the
disease free state can not be realized for any positive initial size of the
infected population.

Knowing the existence conditions for the endemic equilibrium, we will
now investigate its local stability. First, we find the Jacobian of the SMI
system 0.3.0.10 evaluated at the EE (E),),

- -

—(y+ p+461*) w —-4S*
Ji = Y —[(k+w+(1-0)I*] —(1—0)6M*
oI (1-oc)ér C

We obtain its corresponding characteristic equation P()), where A is an
eigenvalue.

P(}) = a3X® + a2’ + a3\ + ay,

where

ﬂ.3:1,
a;=Y+(1-0)C+X+C,

ay -—-(1—0)2BC+(1—U)XC—I—(1~0)02+XY+YC+AC—7w,
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Qg = (1—0)wBC+(1—a)'yAC+YAC+(1—a)ACz+(1—a)2XBC'+(1—0)2802,

and

A=08", B=6M*, C=0I"), X=v+pu, Y=w+pu.

It is clear that a3, a; and a, are positive, and it can be verified that a, is
also positive since XY > qw. We use the Routh-Hurwitz Criterion [2]
to analyze the characteristic polynomial P()), and to determine the local

stability of the endemic equilibrium.

Remark 0.3.0.9. For a characteristic equation written in its general form:
A" +an A" L+ aA+ag=0, a;>0fori=0,1,2..n

the Routh Array can be constructed as follow

An aﬂ an_z an.._.4 2 0
Ant @n-1 Gn-3 Qpns -+ O
An—‘;’ bn-—2 bn-—‘l

i (0.3.0.25)
= Cn—3 Cn— 5

AO

The array has n + 1 rows, and the first two rows of A* and A™?! are filled
with the coefficients from the characteristic equation. The final columns
for each row should contain zeros. We now construct appropriate terms to
fill the rows A"~2 and A" 3:

Gn-10n—i — Qnln_;— .
bﬂhg = a 3 = 2,4,6,...
n—1
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bn+2a'n—j = an—lbn——j—l

Cn—j = ) J :3,5,7,...

bn—2
Fillers for the rest of the rows can be constructed in an analogous manner,
until we reach the bottom of the array.

The Routh-Hurwitz Criterion states that for a characteristic poly-
nomial in its general form, the number of unstable roots is the number of

changes in sign in the first column of the Routh Array:

bt (0.3.0.26)

Using this technique, we find the first column of Routh Array for the

characteristic polynomial P()),

as
Qg
(0.3.0.27)
b
Co
where by = f20i-%ad0 — @di—& apd gy = le%ﬂ = ag. The coefficients a;,

a; and cp are obviously positive, and we show that b; > 0 in appendix 1.
Since there is no sign change in the first column of the Routh Array, no

zero of P(A) has positive real part, thus we establish the following lemma.

Lemma 0.3.0.10. The endemic equilibrium of the SMI model 0.8.0.10

15 always locally asymptotically stable.
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Next, we will determine the condition for which the population tends
to the EE(E,) with damped oscillation. We have learned from the Routh-
Hurwitz Criterion that all eigenvalues have negative real parts, and we
will now determine when the eigenvalues have imaginary parts. If the
eigenvalues have imaginary parts, the discriminant of the characteristic
polynomial P(A) must be negative.

Let

D = 27a{ + (4a3 — 18asa,)ao + 4ad — a2a?

be the discriminant of the cubic polynomial P()). Note D is quadratic in
terms of ao, and we know a, > 0. If the population tends to the equilibrium
E, with damped oscillation, there must exist a positive range of ag, such

that D < 0. We denote this range,

maz{0,a¢_} < ag < ag.,

where
| —(4a — 18a2a;) — \/(4a3 — 18a,a,)? — 108(4a3 — agag),
54
and
g —(403 — 18a5a,) + \/(40.3 — 18a5a,)? — 108(4a} — aZa?)
04+ = .

54

If there exists such positive range for ay, one of the two following two
conditions must be satisfied:

r 1) 4al —a3a? < 0;

or

¢ (0.3.0.28)
2) 4ai —afa? >0, 4ad - 18asa; < 0, and

(4a3 — 18aza,)® > 108(4a} — a2a?).
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Particularly, if condition 1) is true, ag_ < 0, so D < 0 when 0 < gy < Q...

If condition 2) is true, ap_ > 0, thus D < 0 when ay_ < ay < ag.. Note

3 2 2 -<< 2 2\ < 2> >
401'—'6231;0 — 01(401"—02)30 = 622401,

9
4a3 — 18856, <0 <= 2a,(2a2—9a;) <0 aZ < et
(403 — 18aa,)” > 108(4a3 — ada?) <= af —9ajaf + 27a%a2 — 2743 > 0
5 af > 3u;.
Therefore, the conditions in 0.3.0.28 become
(
1) a% > 4{11,
{ or (0.3.0.29)
2) 3a; < a2 < 4ay,

\

and they imply the trajectories tend to E; with damped oscillation when
a; — 3a; > 0. (0.3.0.30)

In conclusion, when there is no perfectly effective vaccine to target the
virus strain, and if the strain has a sufficiently large transmission rate so
that the conditions in 0.3.0.24 are satisfied, an epidemic will occur, and the
virus can persist if the initial size of the subpopulations is in the basin of
attraction of the endemic equilibrium. Moreover, the population can tend

to the EE with damped oscillation under proper conditions.
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Endemic Equilibria of the SMI; Model 0.3.0.6

Consider the case where the initial virus consists of multiple strains, and
assume all model parameters are positive. We will show that the full SMI;
model 0.3.0.6 has an EE where there exists a maximum of two distinct
strains with distinguished transmission rate and vaccination efficacy. We

will first discuss the EE where only one virus strain exists.

I. EE with One Surviving Strain

In this section, we investigate an endemic equilibrium state where only one
strain exists, and we determine the stability of this equilibrium. Mathemat-
ically speaking, we investigate the existence and stability of an equilibrium,
E; = (S;,M}, 11,13, ..., I}}), where Sy, M}, and I, for i = 1,2,...,n are re-
spectively the population of susceptible, vaccinated and infected poultry
at the EE Ej;, and I # 0, while I} = 0 for ¢+ # j. As in the simple SMI
model, we write S; and M; in terms of J 7, and then consider a polynomial

in I7 to derive existence conditions for the EE Ej;.

S?:-?—?-- (l—aj)6j1;+u+w
T8 (1-0)0+(1—0)y+p+w’
Mr=1. i
B TR GRS B N G g gy
and the polynomial in I is

P(I}) = @I + 6,1} + g = 0,

where

d; = ndi(1 - 0;) >0,
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G, = [n(u +7) — h;) (1 — 0;)d; + (4 + w)né;,
Go = [n(p +7) — hé;] (4 + w) — [A(1 - 0;)8; + nw] 7.
At the EE E;, the size of the susceptible, vaccinated and infected popu-
lations given by strain j is the same as if the initial virus only consisted
of strain j. Similarly, if 0 < g; < 1, strain j becomes the only persisting

strain if and only if G < 0. As we verified in the previous section, d, < 0

if and only if Ry/; > 1, and we obtain the following Theorem.

Theorem 0.3.0.11. When the vaccination against strain j is only par-
trally effective or ineffective, strain j uniquely survives at the EE (E;)

under the following necessary and sufficient condition:

(1 = Rojs)y < (ro — D)+ w). (0.3.031)

Furthermore, it is sufficient for @, < 0, if

i < }.L(T'Q/J' - 1)

Note Ry/; < Ry/n, thus Ry/; > 1 implies Ry > 1. Therefore, we have the

following theorem.

Theorem 0.3.0.12. When the EE (E;) exists, a (transcritical) bifurca-
tion always occurs to destabilize the DFE of the SMI; model 0.8.0.6.

We have learned from the previous section that the endemic equilibrium
E, of the SMI model is always locally asymptotically stable. Using this
fact, we can show that under the right conditions, E; of the SMI; model,
can also be locally asymptotically stable.
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By exchanging the third and the j** row of the n by n identity matrix,

we obtain the permutation matrix below,

7th column

1 0 0 o 0 0
0 1 4] 0 0 0
o 0 o 0 1 0
0 0 0 1 0 0
0 0 1 o0 0 0 fp=——jth row
0
0
_o 0 0 ] .ea 0 alaih aiily i u

Denote by J; the Jacobian of the SMI; model evaluated at E;, with A an
eigenvalue. The matrices P~'(J; — AI)P and (J; — AI) are similar matrices,

thus

det {(P")(J; - M)(P)} = det(P'P) det(J; — \I) = det(J; — AI) =

-6,-!; — g —7—=2A
e f
ij;
0

0

w
~(1 = o3)8515 —p = w = A
(1 —a,)ﬁjf;
0

0

~8;S;
—(1 = a;)8; M;
-A
)

0

—623;-
-(1 -arz}JzM;
0
L DI

0

—-6.-.5;
-(1 — ﬂ“}J"M;
0
o )

Fn — A

where ®; = 6,57 + (1 — 0;)0:M; — n, and 1 = 1,2,3,...,n, and 1 # j.

Consequently, E; is locally asymptotically stable if and only if

max $; = max[6;S] + (1 — 0;)6; M — 1] < 0,

(0.3.0.32)

where ¢ = 1,2,3,...,n and ¢ # j. The above stability condition 0.3.0.32

implies

5,‘?7[(1

- cr,-)éj[; + 4+ w] = (1 — U{)d;?}'}’

max

2

0;[(1 = 05)0;IF + (1 — ;)7 + p + w]

- n} <0, (0.3.0.33)
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Below, we summarize the conditions for the locally stability of ;.
Theorem 0.3.0.13. When strain j uniquely ezists at the EE(E;), E; is

locally asymptotically stable if and only if

max; {5,—[(1 —0;)0; I+ (1 —oi)y +u+ w]}
65[(1 = 0;)0;13 + (1 — 0;)7 + p + w]

<1,
where 1=1,2,3,..n and 1 # j.

A sufficient condition for local asymptotic stability of EE (E;) is

d; < 53', and o; > 0;.

That is, strain j has a higher transmission rate and the vaccine has lower

efficacy than for any other strain.
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II. EE with Two Distinct Strains

In this section, we answer the question of how many strains can exist si-
multaneously at an endemic equilibrium. Professor Hiromi Seno proved
that if each strain is characterized by its own distinguished transmission
rate and efficacy, a maximum of only two strains can coexist at the equi-
librium, and he determined the characteristics of the two strains, as well

as the co-existence conditions for the two strains at the EE.

Theorem 0.3.0.14. No more than two distinct strains of virus can

coerist at an endemic state of the SMI; model 0.3.0.6.

Proof. If the values of §; and o; are distinct, the last set of equations of the
SMI; model 0.3.0.6 at an endemic equilibrium is an inconsistent set for S*

and M* if there are more than 2 virus strains. ]

Note, in appendix 2 and 3, we will briefly discuss some special endemic
equilibria where n strains exist simultaneously,under the assumption that
model parameters can be zero.

To derive the existence conditions of an equilibrium consisting of two

distinct virus strains, we first let
A{L}) = L&l +p+, (0.3.0.34)
BUEY) = Th(1- )6l +p+w.
The SMI; system 0.3.0.6 at its endemic equilibrium state (S*, M*, {I}})
can be written as
[ hrwM* - AQLY)S =0
{ 48* — B{I:})M* =0 (0.3.0.35)
k 0:8*+ (1 —0;)6;M* —n=0, for i€ E.
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The first and second equations of 0.3.0.35 gives

o - hBULY)
ATDBLY) — 1w

> 0,

. _ Th
Y A -

Substitute S* and M* into the last set of equations 0.3.0.35, and we have
0:hB({L{}) + (1 — a:)bivh — n[A({I;})B({I{}) —yw] = 0.  (0.3.0.36)

If the endemic equilibrium consists of two strains, I; and I, equation

0.3.0.36 gives

* Eh 0 JJh w
R
— h 658
= BT |5 (05— o) + ], (0.3.0.37)
B({I;}) = "oy,

Since, from equation 0.3.0.34, A({I;} and B({I}}) both must be positive,

we obtain the following lemma.

Lemma 0.3.0.15. For the existence of the endemic equilibrium state

with two distinct strains, the condition below is necessary.
(1 —0;)0; — (1 — ow)dk] (6; — &) < O. (0.3.0.38)
Therefore, the following conditions must be satisfied simultaneously.

Lemma 0.3.0.16. If two distinct virus strains coezist at the endemic
equilibrium state, they necessarily have §; > 8, and g; > Ok, OT vice

Versa.
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This means that for two distinct strains to coexist at the endemic equi-
librium state, the strain with greater transmission rate, must also be the
one for which the vaccine is more effective.

Furthermore, from equation 0.3.0.34 and 0.3.0.37, we obtain a system

of equations in terms of I ; and I,

o " . 1 h 80 T
{ 0L + 0uli + 1+ 7 = iy 355505 — on) + ] (0.3.0.39)

(1- orj)éjI; + (1 = ox)0i I + p+ w = B({I?}).
The endemic equilibrium state with two coexisting strains exists if and
only if equation 0.3.0.39 has a positive real root (J +,I¢) under the condition
0.3.0.38.
Suppose there exist two strains I; and I, with characteristics 0 < 6, <

dj, and 0 < 0y < 0 < 1. Let
Cy = 631; i 5;,.[,:,

Cg = (l = O'j)ajf; i (1 S O'k)ékfz.

From equations 0.3.0.38 and 0.3.0.39, we give the following conditions for

the existence of the positive real root (I}, I}),

i 8:5
Ci = s |2ag (05 — 0k) +w] = (w+7) >0,
 C¢2=B{L})-(p+w)>0, (0.3.0.40)
(Cy — f%,;)(a o 1‘%) <0,

Since oy < 0; < 1, the third inequality from the above system of equations

0.3.0.40, is equivalent to

1—-0;)Ci —Cy<0,
{( 73)C1 = Ca (0.3.0.41)

(1 - crk)C'l —Cy; > 0.







39

We will solve the inequality above for -y, in order to determine if there exists

a positive range of vaccination rate, such that two virus strains coexist at

the e

Ny

ndemic equilibrium state. We have

%% B({I‘})/'r [n 525, (95 — Ok) +“’] Hey

S .
} 7> BEhA

T=> (c_f-—ai’iék {B(i;'?i/'r [% 5?6;,: (05 —o%) + w] + o1+ w} ; e
L (af{;iliaj {B{tr?i/-r 256 J;k (0; —o%) + w] + orp + w} ;
Y
| 7 < (lﬂ(?:j);ka—k()ff:j)%% (1 —Ut)gi ?; —o5 % ~
T2 = ak)gi ?i —5,)8; (4 +w), ] (0.3.0.43)

0 —bz (1—0;)(oj—0k)d;8k h
v (ajia,,)a,, { 3 e

(1=01)e—(1-0;)8; n ' (-ow)ba—(1-0;)5 % T Tiky s

.

3 —8x (1—ox)(o;—0k)d;0k h (05-0%)5;

LB (aji"")ai {(1‘“)5:—(1-0:‘]55 S P e e 59 T O’k“}
Y
(9;—0%)8;0 __h S50

T < Tonb—(1-0085 n T (T=onbe—(1-0,35;% — Mo

0;—0x
7> Tah—ta # W), (0.3.0.44)
8;—0k N5 h a'[(l—ak)ﬁk—[b-cr')a'l Nl
T > G t=ay)5; {(1 —05)0;5 + e L+ w},
8; =0 3 h ak((1—ow)éx—(1—0;)é;]
7 < (1— ag)Jk (1— —;)0; {(1 ak)ékn + (o5—ox)d; 2 “+w}:
|
r o (0j—0k)or - 02'52'—-05515
7 < Ye + (1—0;;6,‘“(1—03‘)55 [TO/Q (a,--a,,)&;.}
> Yes
g ¥ Sl s "% 2 (0.3.0.45)
0 )(0;—0k 195 —%K0k
v > Frc =+ (1 U;.)Jék J(l UJ)JJ [TO/Z o (GJ ak)Jg]
(1 Ok )(8; 85 ) by /6 08—kl
C 1 <7+ (1—%)51"(1—%)5:' [To 2~ i"’:"’k)ak] !
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where
B 0; — Ok
c = +Ww);
ST =~ e )
hé;
Toj2 = ——
KT

Eventually, the consistency between these inequalities gives the follow-

ing necessary condition,

0’_-,'5_7' = 0‘;;(5;:
(0j — ax)d

To/2 > > 1. (0.3.0.46)

Only if 0.3.0.46 is satisfied, does there exist a positive range of vaccination
rate 7, that satisfies the inequalities of 0.3.0.45, which gives a positive root
for (I7, I). We summarize the existence conditions for two virus strains to

coexist at the endemic equilibrium in the following theorem.

Theorem 0.3.0.17. Let E;; be the equilibrium state with two distinct
surviving strains. Ej exists if and only if the following four conditions
are simultaneously satisfied:

1) §; > O, and g; > oy;

11) The condition 0.8.0.38;

111) The condition 0.3.0.46;

)

e (1—0i )(8; =8k ) _ 058 —0kdy
{ Y > Vet Hanbu-(1-2,)5; [?‘0/2 m] ’ (0.3.0.47)
—~  (1=0k)(8;—8x)ubn/5; 0585 —0kdk O
Y <Yt (1—0;,)51—(1-—0,;)6; [T0/2 = iaj—ﬂk)tsk] ;

The last condition in the above theorem indicates that such an endemic

state with two surviving strains can exist for an intermediate range of the

vaccination rate . We will next investigate if E;; is locally asymptotically
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stable.

Local Stability of E;
Once again, we use eigenvalue analysis to study the local stability of E; ;.
Let v; = 1—0; be the effective transmission rate for strain j, and v, = 1—0;

be the effective transmission rate for strain k. Since o} < O, Vx > V. Then,

let
o= 6,5",
X = 6pS”,
Yy = v;0;M",
Y = v 6, M*,
z = 6;1I7,
Z =G 1;.

We first suppose that the existing viruses are strains j and k, and we
explore the corresponding stability criteria. Thus the Jacobian of the SMI,

sysiem 0.3.0.6 evaluated at the equilibrium with two coexisting strains, E; ,

18:

| —A{l + I W —z | X |
1 v ~B{I} +I}} -y -Y
Jik = ;
z V;Z 0 0
VA Vi Z 0 0

and the characteristic polynomial of J; is

P()) = ag)* + az)A® 4+ a2A% + a1\ + ag,







42

where

as =1,
a3 = A+ B,
@ =XZ+WnYZ+zz+v;yz + AB — yw,
a1 =w(yz +YZ2) +y(v;zz + nXZ) + A(v;yz + Y Z) + B(zz + X 2),
ao = [V;(Xy — z2Y) + n(2Y — Xy)]Zz2.

All coefficients of P()A) are positive since S*, M*, I} and I} are all
positive at the equilibrium E; .

To determine if P(A) has unstable roots, we first construct the Routh

Array:
AMlag az ag
Xlas a; 0
A% | by by (0.3.0.48)
Alle O
A% | do,
where

.
o
Il
o
E.
|
o
S
|
S
|
o]
o

The signs of b, and c¢; determine if the characteristic polynomial P())

has any unstable root. If both b, and ¢, are positive, there is no sign
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change in the first column of the Routh Array, and therefore, E; is locally
asymptotically stable. In contrast, if either b, or c¢; is negative, which
results in a sign change in the first column of the Routh Array, B is
unstable.

If B is stable, we can derive the criterion for stability of E; ) using
the same technique done in the previous section when we determined the
stability of E;.

Apply the permutation matrix,

3. 0 00 Al o 0 0 o

o 1 0 0 O 0 0 0

0o 0 0 0 o0 1 0 0

0 0 0 0 o 0 1 0

¢ 0 0o o0 1 0 0 0

A= '

© 0 1 0 0 .+ O e O :- 0 pe——jthrow

6 o0 0o 1+ 0 -+ O ¢ 0O v D fE—————kth row
0 0o 0o 0 o0 0 0 1

3th column

kth column

to Jj, the Jacobian evaluated at E;;. The matrix J;, — AI is similar

to the matrix J;, — Al = A(J;x — AI)A™?, where

Jig =M =







&1

-
61,1&

de
w ~§;8* ~f, S* —-§38* —-§18° —&§28* —8nS*
—B-A —(1 —a;)6; M* (1 —0x)6pM* —(1-03)63M* —(1 —ep )8 M* —(1 —eoa)da M* (1 =agn)énM"*

(1 — ;)8;17 -2 0 0 0 0 0
(1 = ox)b Iy 0 = 0 0 o 0

0 0 0 $3 — A o 0 ]

0 0 0 0 ®1 -2 0 o

0 ] 0 0 o L S 0

4] o U] 4] 0 0 Pn - A

and ®; = 6;5* + (1 — 0;)6;M* — 9, for i € {1,2,3,...,n}\ {j,k}. Thus

we conclude the stability conditions for E;; as below.

Theorem 0.3.0.18. If there only exist two initial virus strains, j and
k, and they coezist at the EE(E;;). E; 1s locally asymptotically stable
of and only if

and

b2>0 c; > 0.

If there exist more than two initial virus strains, and strains j and k
coezist at Ejy, Ejx 1s locally asymptotically stable if and only if the

above two conditions are satisfied, and

h max; {6,-[3{1; + LY+ (1 - 0&')’7]}

<1,

n[A{I] + I} B{I; + I}} — yw]
where © € {1,2,3,..n}\ {4, k}.
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Summary

Assume all model parameters are positive, the table below summarizes the

equilibria of the SMI; model 0.3.0.6.

Type of Equilibrium

Equilibrium State

Number of Equilibria

disease-free equilibrium

Bo/n = (S5, M;,0)

1

endemic equilibrium

consists of a single strain, j

E; = (S;,M;,I{,I;,...,I;),
fori=1,2,...,n, and J'J'-' # 0,
while I? = 0 for i # j

endemic equilibrium consists of

two distinct strains, 7 and k

Eik = (5},»M;,»’Ir-’ﬁ-----f?n)'
for1=1,2,...,n, and I; #0,I; #0,

while IT =0 for i € {1,2,3,..n} \ {7, k}

Tab. 0.3: Equilibria of the SMI; model 0.3.0.6
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0.4 Disease Invasion Analysis

Suppose two virus strains, j and k, are introduced into a poultry popula-
tion. Let d; > d; and o; > oy, such that the EE, E; and Ej, both exist,
and F; is the only locally asymptotically stable equilibrium state. We use
numerical calculation to observe if the increase of §, can effect the stability
of all equilibrium states, and we want to see if strain k can successfully
invade the poultry population by becoming the only persisting strain at an
stable EE.
Note the EE E; exists for the initial value of d;. Thus the reproductive
number
h pb+w+(1—=0;)y

Ry = — maxJ;
27 un bt w+

for + = j,k. By increasing d;, the value of Ry, is always greater than 1.

>L18

Therefore, the DFE is always unstable as §; increases.

We define the critical eigenvalue as the eigenvalue that determines the
stability of an equilibrium state. Figure 0.4.0.49 graphs the changes of the
critical eigenvalue of all three endemic equilibria, E;, Ej, and Ejx, as a
function of §,. The figure shows by increasing the transmissibility of strain
k, the critical eigenvalue of E; is increased linearly and eventually becomes
positive, thus E; becomes unstable. Outside the range in between the
two asterisk signs indicated in figure 0.4.0.49, there exist two intermediate
ranges of J, such that all equilibrium states of the dynamic system are
unstable. When §, is between the two asterisk signs indicated in figure
0.4.0.49, both strains can coexist at the EE FE;, which is shown to be
stable.
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As §; increases, the critical eigenvalue of the EE E, decreases linearly,

and it becomes negative when ¢ is sufficiently large. thus, E, becomes the

only stable equilibrium state in the dynamic system, and strain k success-

fully invades the poultry population.

Critical Eigenvalue of Ej
Critical Eigenvalue of Ek

Critical Eigenvalue of Ejk

x 10~
10 T
unstable
w
w
§ s
w
bS]
Q
=2
g
8
=
i
8 0
z
o
stable
B 0.725

>

existence range of Ejk

0.73
Transmission Rate of Strain k

0.735

(0.4.0.49)

Fig.0.2.1.2. Parameter values: h = 4, pu =1, n = 23, 7 = 0.073, w =

0.01,

§; = 0.75, 0; = 0.6, 0% = 0.15. The EE B, exists when 0.7291 < §; < 0.7310.
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0.5 Virus Mutation

New AI virus strains can be created through virus mutation. To consider
this possibility, we construct a linear strain space such that one virus strain
can give rise to an immediately adjacent strain by mutation. Specifically,
let strain 1 be the wild type, and it can mutate to become strain 2, and
strain 2 can mutate to become strain 3, and so forth until reaching the
nth strain, which can not mutate to become a new strain. Figure 0.5.0.50

describes the mutation in the linear strain space.

I *% I ! Is E >0 0 0—A

(0.5.0.50)

Fig.0.5.0.50. Step-wise mutation.

Considering this step-wise mutation, we augment the SM I; model 0.3.0.6

and obtain the following dynamics:

[

€ = h+wM-06&SE— (k+9)S,
W= 18-l - 0)&MI; — (u + w)M,
< %1- == (SISIl—i-(l—Ul)(S]_MIl'—T]I:[-'mf]_, (05051)

% = 8SLi+(1-0)&ML - nk + m(Liy — L),
o = §,SI,+ (1 -0,)0.MI, — nl, +mI,_;,

where 1 = 2,3,...,n — 1, and m is the mutation rate. Let

ol 2
1+ ek

3

. 2
%= T elde=a
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where d; and d, are constant. We assume the vaccination efficacy is perfect
against strain 1, and it exponentially decays as the mutated strain becomes
distant from strain 1.

From the system of equations 0.5.0.51, it is easy to find the disease-
free equilibrium at (S;,, M},0) = ( F{;fi:‘_‘;),r), p(pg +w),O). Using numerical
calculation, we want to see if there exists an endemic equilibrium such

that only mutated strains persist. If such an equilibrium exists, how is the
increase of vaccination rate related to the number of infected individuals?
How is the vaccination rate related to the genetic distance between the
persisting mutant strains and the wild type strain?

Solving the system 0.5.0.51 numerically using 30 virus strains, it is found
that at most one cluster of virus strains is observed to persist in an endemic
state, and the cluster can consist of mutant strains that are genetically
distant from the wild-type. Figure 0.5.0.52 illustrates when the transmissi-
bility of mutant strains decays exponentially as the mutant strains become
more genetically distant to strain 1, strain 1 can be eliminated with a per-
fect vaccine. However, a cluster of mutated strains eventually rises and

persists.
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30
20

Time 0 o Number of Strains
(0.5.0.52)
Fig.0.5.0.52. Parameter values: h = 1, v = 0.5, w = 0.001, B = 0.05, n =105,
m = 0.001, ds = 0.025, d, = 0.05.

When the mutant strains are equally or even more transmissible than
strain 1, the surviving strains at the endemic state are the most genetically
distant to the wild type, which are the most resistent to the vaccine. In
figure 0.5.0.53 we see strain 1 is quickly eliminated, but a cluster of persist-
ing strains at the end of the simulated strain space become endemic and

persist.
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Infected Population
%]

-1 5l
10000

(0.5.0.53)

Fig.0.5.0.52. Parameter values: h = 1, 7 = 0.5, w = 0.001, x = 0.05, 5 = 0.5,
m = 0.001, ds = —0.2, d, = 0.05.

In addition, by increasing the vaccination rate, v, the total number of
infected individuals and the percentage of the infected population are both

observed to decrease exponentially. See figures 0.5.0.54 and 0.5.0.55.
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Change of Gamma V.S. Change of Total Infected Population
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Change of Gamma (0 5.0 54)

Fig.0.5.0.54. Parameter values: A = 1, w = 0.001, u = 0.05, = 0.5, m = 0.001,
d; = 0.05, d5 = 0.05.

Change of Gamma V.S. Change in Percentage of Infected Population
86 = y - ; . :

2

(-]
»N
T

P8 e

o
Ll
-

Percentage of Infected Population
8

e
&

2 3 4 5 L]

Change of Gamma (0.5.0.55)

o
-

Fig.0.5.0.56. Parameter values: h = 1, w = 0.001, x = 0.05, n = 0.5, m = 0.001,
ds = 0.05, d, = 0.05.
We also observe when v increases, the genetic distance increases loga-

rithmically between the wild type and the persisting mutated strains, as
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shown in 0.5.0.56.
‘ Change of Gamma V.S. The Strain Induces Most Infected Population
2 T r T ; r
=0 ISR T ) ST
l 9 20f
!
a. 18
O
a
16} 1
E
£ s
=
E 12
g 10}
3
2
£ 8
£
B e
o
o
= 4
-
% = 2 3 . 5 ¢
Change of Gamma
(0.5.0.56)

Fig.0.5.0.56. Parameter values: h = 1, w = 0.001, x = 0.05, » = 0.5, m = 0.001,
ds = 0.05, d, = 0.05.
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0.6 Future Work

Future research can include a global stability analysis of the SMI: model
0.3.0.6. Several susceptible classes can be incorporated into model 0.5.0.51

to observe if multiple clusters of mutated virus strains can persist.
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0.8 Appendices

0.8.1 Appendix 1: Partial Proof of the Local Stability of the EE E,

Using the Routh-Hurwitz Criterion, we have determined the local stability
of the EE (F,) depends on the sign of b;. In this section, we will show b,

is positive.
by = (a0, — aszag)(asz)™

= T{CA-a)+pu+w+(1-o)y)2p+w+C(l-0)+7+C}7,
where C' = §I*. Since I* > 0, C is positive. Note b, is positive if and only

if T >0, and T is a cubic function in v,

T(7) = d3v® + doy? + dyy + do,

ds = p(l-0)+C(1-0)?

d = 2wu(l—-0)+2C(1—0o)w+4pC(1l—0)%+C?*1 - 0)®
+wC(1 —0)? +3C*(1 — 0)% + pw + 3u?(1 — o) + u?
+4C1 — o),

dy = Cw’—-Cn(l-o)u+puCn(l—o)?+wCn(l—o)?
+11pC(1 - o)w + 2wC(1 — 0)?p — 2Cn(1 — o)w + 3p’w(l - o)
+9uC?(1 - 0)? + 4wC?(1 — o) + 4wC?*(1 — 0)? + uw?(1 — o)
+C*(1-0)’u+ C3(1 - 0)*n+5uC?(1 — o) + 3u® + C?n(1 - 0)
+Cnp + Cnw + 2C(1 — o)w? — C?*n(1 — 0)* + 10C(1 — o) p?
+3C(1 — 0)?u? 4+ 2C3(1 — 0)3 + 5pw + 3C3(1 — 0)? + 202
+2pw? 4+ 2u%(1 — o) + 3uCuw,
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do = 2uC%w+ Tp*C?*(1 - 0)+ 2wC3*(1 — o) + 5uC?*(1 — 0)?
+C%*n(1 - 0) + C3(1 — o)3u + Cnu? + 4C%*(1 — 0)*p?
+2uC3(1 — o) + 3wC3(1 — 0)? + 3w?C?(1 — 0) + TuCw
+C%nw + C?*np + 3w?C(1 — o)u + 10pwC?(1 — o)
+5p°w + 3wC?(1 — 0)2u + 3Cu® + uCnw + 8wC(1 — o)u?
+C* (1 -0)*+ C*(1 — 0)® + C%2 + pw? + Cw® + 4p’w?
+2u® + uC?n(1 — o) + 5C(1 — o) u® + 5uCw? + C2ul.

It is easy to see that ds, d; and d, are positive. We will now investigate the

sign of d,, which is a linear function in #:

d1(n) = 911 + 9o,

where

91 = Cu+Cw+pC(l—0)2+C*(1-0)-C(l—0)u
—2C(1-0)w—C?(1 - 0)?+ C?%1 - 0)®* + wC(1 — 0)?,

g = Cw?®+11uC(1 - o)w +2C3%(1 — 0)® + 4wC?(1 — 0)?
+4wC?(1 — o) + 3uCw + 5uC?(1 — o) + 2wC(1 — 0)u
+3C%(1 — 0)* + 3u® + 3C(1 — 0)?p® + 5pw + 2uw?
+2C(1 — o)w?® + 9uC?(1 — 0)? + 2Cu? + 3p’w(l — o)
+10C(1 — o)u?® + 2p%(1 — 0) + C?*(1 — 0 )3p + pw?(1 — o).

Clearly go is positive. We can represent g; as a linear function in p,

g1(p) = Lip + Iy,

h = Cll-0o(l-0)] >0,
C{wo®*+C[(1-0)*+(1-0)o?]} >0.

I
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Since all model paramters are assumed positive, g; positive, so d; is positive,

and T is positive. This means b, is positive.
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0.8.2 Appendix 2: A Special Endemic Equilibrium when §; = ¢

In this section, we study the EE states when §; = 4, for i = 1,2,...,n,
but o; # o;, for © # j. We will show that the endemic equilibrium, E,
can consist of up to n virus strains. The vaccinated population at E is de-
pleted, M* = 0, and the last set of equations in 0.3.0.6 gives the susceptible
population at &,

T |
S_é.

From the second equation of 0.3.0.6, we get

98" = 'yg— =0,
Assume 7 = 0 and 7 > 0. Solving from the first equation of 0.3.0.6, n
strains of virus can exist at £, and the total number of infected individuals
at B is found to be,

n hoow

Sy =2-%

i=1 n 0 ‘
provided that A0 > un. In this case, there exists an upper bound for the

susceptible population,
S*=n/6 < h/p.
Moreover,
S F=lhow§ o,
i=1 n
thus

h > u.

Let B = (5*,0,1;",I,",...I,"), such that "7 , I," = % — &. The Jacobian of
0.3.0.6 when §; = §, and v = 0, evaluated at E is
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— _JZ:‘zl fi. =l o =N =7 -n
0 »p-u-az:;l(x -o);i* o o o
- §nR* (1 —oy)60h" 0
J = §fR" (1 —o2)802"
i .5 (1 —an)8fL* 0 0 (] )

The eigenvalues of J are

A = —p-w-05%,(1-0)F,
Yoo =0T AW+ WOTL E fup - s,
_h5+\/h962—4172h6+4,un3
= =
(0.8.2.1)

A =30 B ) - WS L +pp - o, I

_ —hé—+/h2§2—4n2hs+4un3

— 27} )
’\4,.‘.,n+2 = 0.

Note A; < 0, and since 46n Y%, ;" > 0, (X0, L' + p)? —4on -, I* <
6 3%, I +p. Thus, Re();) < 0 and Re();) < 0. If the system 0.3.0.6 only
has one non-zero virus population, then the three eigenvalues have negative
real parts, and the endemic equilibrium is therefore locally asymptotically
stable. If n > 1 strains of virus are present, there are n— 1 zero eigenvalues.

We use the Center Manifold Theorem [16] to study the stability of E.

Theorem 0.8.2.1. (The Center Manifold Theorem). Consider an n-

dimensional nonlinear system

x = £(x). (0.8.2.2)
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Let
% = AX (0.8.2.3)

be the corresponding linearized system, where A = Df(xg), and xq
is a fized point. Let f € C"(E) where E ts an open subset of R™
contaiming xo and r > 1. Suppose that f(xo) = 0 and that Df(xg) has
k eigenvalues with negative real part, j eigenvalues with positive real
part, and m = n — k — j eigenvalues with zero real part. Then there
ezists an m-dimensional center manifold W¢(xo) of class C” tangent
to the center subspace E° of equation 0.8.2.8 at x,, there ezists a k-
dimensional stable manifold W*(xo) of class C" tangent to the stable
subspace E* of 0.8.2.8 at x¢ and there ezists a j-dimensional unstable
manifold W*(xg) of class C" tangent to the unstable subspace E* of
0.8.2.3 at xo,; furthermore, W¢(xo), W*(xo) and W*(xo) are invariant

under the flow of 0.8.2.2.

In our n + 2 dimensional system, we have n — 1 zero eigenvalues and
3 eigenvalues with negative real part. There exists an invariant center
manifold and an invariant stable manifold, and the center manifold is locally

exponentially attractive. In summary we give the following theorem.

Theorem 0.8.2.2. The EE E can consist of n virus strains, if the

following conditions are met simultaneously:

1) 6;=96, oi#0; fori#j;
2) v=0;

3) h>y;

4) hd > un.

(0.8.2.4)
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The EE E is always locally asymptotically stable.

In addition, for an intermediate range of 4,

2n(n — /n(n — w)) e 2n(n + y/n(n — w))
h ]

h

provided that 7 > u, trajectories go toward E with damped oscillation.
Otherwise, trajectories tend to F directly. However, as soon as a vaccina-
tion program is turned back on, the EE E can no longer exist. Thus it is
unlikely that more than two virus strains can exist at an endemic state.

The disease-free equilibrium E,,, can coexist with the endemic equilib-
rium E, and

h
By, =(—,0,0).
0/ (u )

When EE F exists, Ro/n = % > 1, thus By, becomes unstable.
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0.8.3 Appendix 3: A Special Endemic Equilibrium when o; = o

Though Al is very deadly to infected domestic poultry, many wild birds,
such as waterfowl, are usually resistent to the virus. Domestic poultry
may also eventually develop immunity against the virus, and no longer
suffer from disease induced mortality. Under this hypothesis, if a vaccine is
invariant against all virus strains, there exists an endemic equilibrium state
that consists of multiple virus strains. We first consider the case when the
vaccine is only partially effective.

When 0 < ¢ < 1, denote by §;, and 1\:!1* the susceptible and vaccinated
population at the EE E,. If n = 0, From the last set of equations in 0.3.0.6,
we find

St =—(1-0)M; =0.

Since 0 < o < 1,
Thus we also get

from the first equation of 0.3.0.6. Let .f‘-'/l be the infected population
at the EE B, for strain 3. The BE By = (8§, M}, 1}, I3, .., I;))) =
(o,o,f;,l,f;,,l, ...,f;,l), forz=1,2,...,n, and -f:n can be any nonnegative
constants. To determine the local stability of E;, we first find the Jacobian

evaluated at &,

B _22;16!!/‘_“_1 w 0 0 o

¥ —(1—-a) El=1 Jif:“ —w—w 0 0 O

1 &y I;“ (1 — o)y !;“ o 0 o

J1 = 6;.’;” (1- a)a;!;ﬂ 0 0 0
énl} ) (1 -o)nl; | o 0 0 ]
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The eigenvalues of J; are:
M =HP+Q)+ L/(P+Q) - 4(PQ - wy),
de  =3(P+Q)-3/(P+Q)P-4PQ-wy), (0831)
A3,...,1":.+2 == 0,

where

P = _Zéif:ﬁ —H4=7,
=1

Q=-(1- U)Z‘Sif;/l — MW
=1

Since P and @) are both negative, and PQ—wy > 0, Re(A;) = Re();) <
0. The rest of the eigenvalues are identically 0. We use the Center Manifold
Theorem 0.8.2.1 defined in appendix 2, and conclude the EE E is always

locally asymptotically stable. In summary,

Theorem 0.8.3.1. The EE E, can consist of n wirus strains, if the

following conditions are met simultaneously:

1) o,=0cand0< o <1
2) 0; #£9;, fors#7;

3) h=20.

4) n=0.

(0.8.3.2)

The EE E, is always locally asymptotically stable.

In addition, the radicand in 0.8.3.1is (P+Q)*—4(PQ—-wy) = (P-Q)*+
4wy > 0, thus populations always tend to B, directly without oscillation.
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On the other hand, if o = 1, and if h = 4 = w = 0, multiple virus strains
can exist at an EE B, = (83, M3, I, I35, .., I3 0) = (0, M3, I 1, 13 5, .o, T2 ),
where M; and ":/2 are any nonnegative constants. In this case, the Jacobian

of the system is

S

=1 552 o 8 0 ‘@ 0o
¥y 0o 0 0 0
- aly, 0 0o 0 0
JZ - Jgf;n 0 0 0 O )
(l sl 2 o 0 0 o
and the eigenvalues are
A1 == r. 60—
=11 2 }
o (0.8.3.3)
A2,...,1r1-}—2 = 0.

Analogously, B, is always locally asymptotically stable, and the population

always tends to E, directly. We summarize the following:

Theorem 0.8.3.2. The EE E, can consist of n wirus strains, if the

following conditions are met simultaneously:

1) op=0ando =1,

2) & # 65, fori#g;

3) R=0;
(0.8.3.4)
4) p=0;
5) w=0.
6) n=0.

The EE E, is always locally asymptotically stable.
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