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Abstract

A good understanding of drop evolution and breakup is important in many applica-

tions. For instance, controlling the liquid droplet size is crucial in atomization pro-

cesses such as fuel combustion and fertilizer application, as well as drop-on-demand

technologies such as ink-jet printing and DNA arraying. In these applications, the

length scales are very small relative to viscosity so that the Reynolds number is much

less than unity. The aim of this work is to investigate the evolution and breakup of

drops in Stokes flow.

Drop evolution depends on different factors, such as the drop size, the viscosity,

any applied force, or surface tension. In this dissertation, the behavior of axisym-

metric viscous drops in a nonlinear strain field is investigated for various parameters.
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The three non-dimensional parameters that determine the flow in our case are: the

capillary number Ca which measures the strength of the strain field and drop vis-

cosity relative to surface tension, the ratio λ of inner to outer viscosities, and the

relative nonlinearity c2 of the background flow. It is known that the drop approaches

a steady state for sufficiently small values of Ca and that there exists a critical value

of the capillary number, Cacr, above which no steady states exist. We examine the

evolution of the drop as a function of these three parameters. Our main results

are explained in three parts. (1) A full classification of the steady-state solutions

in the parameter-space for Ca ≤ Cacr is presented. In particular, we describe the

deformation, maximum curvature and the critical capillary number as functions of

the key parameters. We find previously unobserved biconcave steady shapes. (2)

The non-steady evolution for Ca > Cacr is studied and classified. With c2 = 0, the

drop keeps elongating and becomes more pointed in time. With positive values of

c2, the surface approaches a cusp as it increases in length. With negative values of

c2, the surface collapses at two points on the axis in finite time. Thus the solution

has a finite time pinch-off singularity (3) Based on experimental observations, the

drop surface is expected to break at the time of pinch-off and reconnect to form

several smaller drops. We develop a numerical method to simulate the break-and-

reconnection process. This enables us to compute the after pinch-off drop evolution.

Our simulations indicate that this phenomenon has a linear self-similar behavior

before and after pinch-off. Further pinch-offs is observed. Throughout this work

the fifth-order boundary integral method presented by Nitsche et al. [1] is used.

This method enables us to resolve the flow using fewer computational points com-

pared to the commonly used second-order method. Furthermore, it is shown that

the uniformly fifth-order method proposed in earlier work [1] makes a significant

improvement in the results in certain cases.
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Chapter 1

Introduction

Drop evolution has been studied for over ten decades experimentally, analytically,

and numerically. One of the earliest experimental studies is the work of Taylor [2]

in 1934. He constructed a ‘four roller’ apparatus, indicated in the sketch in figure

1.1. The rollers are immersed in a fluid of viscosity µ1 and turn so as to produce

a strain velocity along one axis. Then, a drop of fluid with viscosity µ2 is placed

between the wheels and the results are photographed. The flow is characterized by

two non-dimensional quantities, Ca and λ. The capillary number Ca = RGµ1/γ

measures the strength of the strain field G, the initial drop radius R, and the outer

fluid viscosity µ1, relative to the surface tension γ. The value λ = µ2/µ1 is the ratio

of inner over outer fluid viscosities. Taylor’s experiment revealed the existence of

steady states as long as the capillary number is below a critical value Cacr. He also

found that for Ca > Cacr, the drop elongates and bursts. Since the drop sizes in

the experiment are about 10−5m and the kinematic viscosity of a commonly used

outer fluid such as oil is about 1− 10 pa · s, the Reynolds number Re = LU/ν << 1

is much smaller than unity. Such flows are well-approximated by Stokes equations,

which have been the basis of later numerical and analytical studies.

1



Chapter 1. Introduction

Figure 1.1: Taylor’s ‘four roller’ apparatus.

Taylor [3] and Buckmaster [4] used slender body theory to develop a theory for the

stationary shape of the drops. Barthes-Biesel and Acrivos [5] presented a theoretical

model which for sufficiently large strain fields qualitatively predicts the deformation

and break-up of the droplets. Siegel [6] applied analytical and numerical methods

to investigate the time evolution of an inviscid bubble (λ = 0) in two-dimensional

Stokes flow. He considered constant surface tension as well as variable surface tension

and found that the steady state solutions for inviscid bubbles exist for all values of

the capillary number.

Youngren and Acrivos [7], [8] first introduced the basic numerical method for

axisymmetric Stokes flow past solid particles using a boundary integral approach.

They applied this method to drops and showed a good agreement with theoretical

work of Barthes-Biesel, Acrivos and Buckmaster. They determined the steady shapes

for inviscid bubbles (λ = 0) and predicted cuspidal shapes. Rallison and Acrivos [9]

and Rallison [10] further improved the numerical method and computed the critical

2



Chapter 1. Introduction

capillary number for various λ > 0. They also showed that the drop elongates

indefinitely for larger capillary numbers. Pozrikidis [11] computed a sample of steady

states for λ = 0. Most recently, Eggers and du Pont [12] found a family of stable and

unstable steady states. They did not compute the flow evolution, but used Newton’s

method to find the stationary solutions iteratively.

In most analytical and numerical works, the strain field in assumed to be linear.

Sherwood [13] introduced a nonlinear correction with magnitude c2 into the back-

ground flow. Pozrikidis [11] computed different drop shapes for c2 6= 0 and λ = 0. He

computed some steady states for finite capillary numbers as shown in figure 1.2 and

unsteady elongations for infinite Ca as shown in figure 1.3(a,b). 1.3(c) displays some

unsteady dumbbell shapes for finite Ca. Although Pozrikidis [11] presents some

Figure 1.2: Some steady state axisymmetric bubbles subject to the Sherwood strain-
ing flow computed by Pozrikidis for λ = 0. (a) c2 = 0.5 (b) c2 = 0 (c) c2 = −0.2.

drop shapes for c2 6= 0, a full complete study of the effect of these key parameters

3



Chapter 1. Introduction

Figure 1.3: Time evolution of axisymmetric bubbles subject to the Sherwood strain-
ing flow presented by Pozrikidis. (a) c2 = 0.5 and Ca =∞ (b) c2 = 0 and Ca =∞
(c) c2 = −0.2 and Ca = 0.15.

on drop evolution is missing from the literature.

Recently, drop breakup has been the subject of several experimental and nu-

merical investigations. These studies date back to approximately 1990. Eggers [14]

considered an axisymmetric column of fluid with a free surface and demonstrated

that the shape of the neck and its velocity is described by scaling functions. Stone

and Leal [15] presented experimental results of breaking bubbles and numerical simu-

lations showing that pinching would occur just before the breakup. Cristini et al. [16]

developed a three-dimensional algorithm to simulate the process of drop breakup in

viscous flows. In experiments, after the drop breaks into droplets, the surface recoils

away from the breaking point. Brenner et al. [17] simulated the breaking of inviscid

bubbles and found that after breakup the flow does not follow a simple scaling law

due to some instability in the fluid. Lister and Stone [18] considered viscous drops

4



Chapter 1. Introduction

and derived a self-similar scaling law from the balance between surface tension and

viscous forces when inertia is negligible. They show that both axial and radial scales

decrease linearly as time approaches pinch-off. Zhang and Lister [19] and Sierou and

Lister [20] also performed some studies in similarity solutions for capillary pinch-Off.

Gekle et al. [21] studied the pinch-off of an axisymmetric air bubble in an inviscid

fluid and they showed that the drop eventually follow the universal behavior.

Several works address other aspects of drop evolution. For instance, the effects

of surfactants have been studied numerically and experimentally. Stone and Leal

[22] studied the deformation of drops when adding a surfactant. Manga and Stone

[23] present the two-dimensional simulations. Later, Loewenberg and Hinch [24]

presented a three-dimensional simulation approach. The same year, Antanovskii [25]

included the effects of an insoluble surfactant for steady flows. Pozrikidis [11] uses

a finite-volume method to further compute the evolution of the concentration of an

insoluble surfactant over an interface. Eggleton et al. [26] investigated the effects

of surfactants on a drop in an extensional flow. Jin et al. [27] studied the effects of

surfactants on altering the pinching process. Further, Lac and Homsy [28] presented

the drop formation in a steady electric field. They identified various break-up points

depending on resistivity, permittivities, and viscosity ratios. However, these works

are beyond the scope of the present study.

The main contributions of this dissertation are the following

(1) This work presents a full classification of the steady states in the parameter

space c2, λ and Ca ≤ Cacr. Where possible, the findings are compared with previous

analytical and numerical results. We find previously unobserved biconcave shapes,

and correct some results in the literature describing the critical capillary number as

a function of λ. (2) The non-steady evolution of drops for Ca > Cacr is described

and classified. In particular, we find that, when c2 < 0 and Cacr < Ca < Cas,

the drop develops a finite time singularity, and pinches at two points on the axis

5



Chapter 1. Introduction

of symmetry. Cas is a limiting value, above which no pinching was observed. (3)

Evolution of the drop toward pinch-off is studied and a method is developed which

enables us to compute past pinch-off. We find similarity behavior of the drop before

and after pinch-off. Formation of multiple pinch-offs is observed.

This dissertation is organized as follows. Chapter 2 derives the governing bound-

ary integral equations used in this study, following Pozrikidis [29]. Chapter 3 presents

the numerical approach used in this work. Chapter 4 exhibits the time evolution of

drop interfaces followed by a complete classification of the steady states as functions

of λ, Ca and c2. The non-steady evolution for Ca > Cacr is also presented in this

chapter. Chapter 5 describes the numerical method used to simulate breaking and

reconnection for c2 < 0. Self similar behavior before and after pinch-off is found.

Lastly, a summary of our work and remaining future work are presented in chapter

6.
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Chapter 2

Governing Equations

Figure 2.1: An axisymmetric viscous drop containing a fluid of viscosity µ2 placed in
a fluid of viscosity µ1 with outer flow velocity u∞ , C is the curve on the right half
of x-y plane representing the surface of the drop, α = 0 and α = π are the points
where C crosses the y-axis.

As shown in figure 2.1, an axisymmetric drop with viscosity µ2 is placed in a

fluid of viscosity µ1 with far field velocity u∞ where y is the axis of symmetry. We

7



Chapter 2. Governing Equations

are interested in the regime where Re≪ 1. These flows are approximated by Stokes

fluid flows. Stokes flow is a linear approximation of fluid in which the viscous forces

dominate the inertial forces; this is the case when length scales are small, velocity is

low or viscosity is very large. To compute the evolution of these drops, we need to

find the velocity on the surface of the drop. In this chapter, we derive the formulas

for the velocity.

2.1 Stokes Approximation

In this section, following the work of Pozrikidis [29], the steady Stokes approximation

is derived from the Navier-Stokes equations in a regime where the Reynolds number

are much smaller than unity.

The Navier-Stokes equations are

ρ

(

∂u

∂t
+ u ·▽u

)

= −▽p + µ▽2u+ ρb, ▽ · u = 0 (2.1.1)

where u is the field velocity, ρ is the density, µ is the fluid viscosity, b is a body force,

and p is the pressure. We assume ρ and b are constant. Let L be a characteristic

length, U a characteristic velocity and T a characteristic time. If T = L/U , then β =

Re, and the Stokes regime Re≪ 1 is reached if L or U are very small relative to µ.

Equation (2.1.1) can be non-dimensionalized, introducing the following dimensionless

quantities,

u′ =
u

U
, x′ =

x

L
, t′ =

t

T
, p′ =

pL

µU
.

By rewriting equation (2.1.1) in terms of primed variables, we obtain,

ρ(
∂u′U

∂t′
∂t′

∂t
+

1

L
u′U · ▽

x
′(u′U)) = −µU

L2
▽

x
′p′ +

µ

L2
▽

2
x
′(u′U) + ρb,

that is,
ρU

T

∂u′

∂t′
+

ρU2

L
u′ · ▽

x
′(u′) = −µU

L2
▽

x
′p′ +

µU

L2
▽

2
x
′u
′ + ρb.

8



Chapter 2. Governing Equations

Multiplying both sides by L2

Uµ
, we obtain,

ρL2

µT

∂u′

∂t′
+

ρUL

µ
u′ ·▽

x
′(u′) = −▽

x
′p′ + ▽

2
x
′u
′ +

ρbL2

Uµ
.

Let

β =
L2

νT
, Fr =

U2

|b|L, Re =
UL

ν
, ν =

µ

ρ
,

where β is the frequency parameter, Fr is the Froude number, Re is the Reynolds

number and ν is the kinematic viscosity. Therefore the dimensionless form of equa-

tion (2.1.1) is

β
∂u′

∂t′
+Reu′ · ▽

x
′u′ = −▽

x
′p′ + ▽

2
x
′u
′ +

Re

Fr

b

|b| . (2.1.2)

If Re, β ≪ 1, then all terms on the left-hand side of equation (2.1.2) are small relative

to the terms on the right-hand side. These regimes are reached when L≪ 1 or ν ≫ 1.

Therefore equation (2.1.2) simplifies to

−▽
x
′p′ + ▽

2
x
′u
′ +

Re

Fr

b

|b| = 0. (2.1.3)

The fraction Re/Fr = L2|b|/Uν may also be negligible depending on how small or

large the length, velocity, and the body force are. For instance if L, U and b are O(1),

and ν ≫ 1, then the body force is negligible while it will not vanish if body force is

large and velocity is small. Going back to dimensional variables, the approximating

Stokes equations are

−▽p+ µ▽2u+ ρb = 0, (2.1.4)

derived by George Gabriel Stokes (August 1819-February 1903). The Stokes equa-

tions imply that pressure, viscous and body forces are in balance at any time, and

that the structure of the flow only depends on the boundary conditions. In some par-

ticular cases where a flow is characterized by a sudden acceleration, the structure of

the flow depends on both the history of the motion and on the boundary conditions.

In such a case β ∼ 1 and the flow is approximated by

ρ
∂u

∂t
= −▽p+ µ▽2u+ ρb. (2.1.5)
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Chapter 2. Governing Equations

In this dissertation, the drop velocity is computed using the steady Stokes equations.

The drop is then evolved with this velocity, thereby changing the flow. This is known

as the quasi-steady Stokes approximation.

2.2 Harmonic and Biharmonic Functions

This section derives the harmonic and biharmonic functions to be used in the deriva-

tion of the boundary integral formulation. The steady Stokes equations (2.1.4) can

be written as

▽ · σ + ρb = 0. (2.2.1)

Here σ is the stress tensor given by

σij = −pδij + µ

(

∂ui

∂xj

+
∂uj

∂xi

)

, (2.2.2)

where δij is the Kronecker delta, and the vector ▽ · σ = ∂jσijei where ei are the

cartesian unit basis vectors and the summation convention over repeated indices is

used. Taking the divergence of the Stokes equation yields

∇ · (−▽p+ µ▽2u+ ρb) = 0,

−▽ · ▽p+ µ▽ · ▽2u+ ▽ · (ρb) = 0.

Since density and body force are assumed to be constant, ▽ · (ρb) = 0. The vector

identity ▽ · ▽2u = ▽
2(▽ · u) and the continuity equation ▽ · u = 0 imply that

▽ · ▽2u = 0. Therefore, pressure is a harmonic function,

▽
2p = 0. (2.2.3)

Taking the Laplacian of the Stokes equation,

∇2(−▽p+ µ▽2u+ ρb) = 0,

10
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using the same vector identity as above, and considering that pressure is harmonic,

it follows that u is biharmonic,

▽
4u = 0. (2.2.4)

Taking the curl of the Stokes equation,

∇× (−▽p+ µ▽2u+ ρb) = 0,

and using the vector identity ▽×▽F = 0, valid for any twice differentiable function

F , and ∇×∇2F = ∇2(∇× F ), it follows that the vorticity ω = ▽× u is harmonic

as well,

▽
2
ω = 0. (2.2.5)

2.3 Green’s Function of Stokes Flow

The aim of this section is to derive the free space Green’s function for Stokes equa-

tions, also known as the Stokeslet. The free space Green’s function is the solution to

the equation with body force given by a point force (g/ρ)δ(x− x0),

−▽p+ µ▽2u+ gδ(x− x0) = 0, (2.3.1)

where, x ∈ R
3, and u,∇p→ 0 as |x| → ∞. Here, g is an arbitrary constant vector,

x0 is an arbitrary point, and δ is the three dimensional delta function

δ(x− x0) = δ(x1 − x01)δ(x2 − x02)δ(x3 − x03)

Any body force can be written as a sum of such point forces. From the linearity of

the Stokes equations, it follows that the solution for any body force in free space can

be represented by a sum of Stokeslets. Also from the linearity of Stokes equations,

it follows that the solutions of equation (2.3.1) can be written as

ui(x) =
1

8πµ
Gij(x− x0)gj, (2.3.2)
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p(x) =
1

8π
pj(x− x0)gj . (2.3.3)

The reason for choosing the coefficient 1/8π is explained during the construction of

G later in this section. In equations (2.3.2) and (2.3.3), x0 is the source point, x is

the field point, and ui(x) represents the velocity field due to a concentrated point

force of strength g placed at x0.

Taking the curl of the equation (2.3.2) yields

ωi(x) =
1

8πµ
Ωij(x− x0)gj Ωij = εipl∂pGlj (2.3.4)

where εipl is the Levi-Civita epsilon and ω is the vorticity tensor. Substituting

equation (2.3.2) into equation (2.2.2) yields

σij = −
1

8π
plδijgl + µ(

1

8πµ

∂Gil

∂xj
+

1

8πµ

∂Gjl

∂xi
)gl,

which can be rewritten as

σij(x) =
1

8π
Tilj(x− x0)gl, (2.3.5)

where T is the stress tensor and

Tilj(x− x0) = −δijpl(x− x0) +
∂Gil

∂xj
(x− x0) +

∂Gjl

∂xi
(x− x0). (2.3.6)

To find the fundamental solution G, the delta function is replaced by the equiv-

alent expression as follows

δ(x̂) = − 1

4π
▽

2

(

1

r

)

, (2.3.7)

where r = |x̂|, and x̂ = x− x0. Using the equation (2.3.1), far away, where velocity

vanishes, pressure is given as

p =
1

4π
g ·▽

(

1

r

)

. (2.3.8)

Since the pressure is harmonic and equation (2.3.8) is a unique harmonic function

(x 6= 0) satisfying the boundary conditions, the equation (2.3.8) is given for pressure
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in the whole domain. Substituting equation (2.3.7) and equation (2.3.8) into equation

(2.3.1) yields

−▽
(

1

4π
g · ▽

(

1

r

))

+ µ▽2u+ g

(

− 1

4π
▽

2

(

1

r

))

= 0,

which can be further simplified as follows

µ▽2u = − 1

4π
g ·

(

▽▽− I▽2
)

(

1

r

)

, (2.3.9)

where ▽F = ∂iFjej ⊗ ei.

Since the operator (▽▽− I▽2) is invertible, we can express the velocity in terms

of a scalar function H

u =
1

µ
g ·

(

▽▽− I▽2
)

H. (2.3.10)

Substituting equation (2.3.10) into equation (2.3.9) yields

µ▽2(
1

µ
g ·

(

▽▽− I▽2
)

H) = − 1

4π
g ·

(

▽▽− I▽2
)

(

1

r

)

,

which simplifies to

(

▽▽− I▽2
)

(

▽
2H+

1

4πr

)

= 0. (2.3.11)

Thus H is the solution to Poisson’s equation ▽
2H = −1/(4πr). Using equation

(2.3.7) it can be seen that H is the fundamental solution of biharmonic function

▽
4H = δ(x̂). One can check that

H = − r

8π
. (2.3.12)

Substituting equation (2.3.12) into equation (2.3.10) yields

ui(x) =
1

8πµ
Gij(x̂)gj,

where G = (I▽2 − ▽▽)r, which can be written as

Gij(x̂) =
δij
r

+
x̂ix̂j

r3
. (2.3.13)
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This is the Green’s function for stokes equations, also known as the Stokeslet. See

Appendix (A) for the derivation of equation (2.3.13). The associated vorticity, pres-

sure and stress tensor are

Ωij(x̂) = εipl∂pGlj = 2εijl
x̂l

r3
(2.3.14)

pi(x̂) = 2
x̂i

r3
, (2.3.15)

Tijk(x̂) = −6
x̂ix̂jx̂k

r5
. (2.3.16)

See appendix A for details.

2.4 Lorenz Reciprocal Identity

In this section the Lorenz identity is derived. We define the modified stress tensor

σMod(x) = σ(x) + ρb · x and modified pressure pMod(x) = p(x) − ρb · x. In these

variables, the Stokes equations are

∇ · σMod = 0 −∇pMod + µ∇2u = 0. (2.4.1)

By assuming two separate Stokes flows with generated velocities u and u′ and asso-

ciated stress tensors σMod and σ
′
Mod, the following equation can be derived. Since

there already exist a superscript and a subscript, we drop the subcript ”Mod”.

0 = u′i
∂σij

∂xj

=
∂

∂xj

(u′iσij)− σij
∂u′i
∂xj

=
∂

∂xj

(u′iσij)−
[

−pδij + µ

(

∂ui

∂xj

+
∂uj

∂xi

)]

∂u′i
∂xj

=
∂

∂xj

(u′iσij)− µ

(

∂ui

∂xj

+
∂uj

∂xi

)

∂u′i
∂xj

. (2.4.2)

In equation (2.4.2) the pressure term can be eliminated since δij = 0 when i 6= j and

from the continuity equation p▽ · u = 0 when i = j. The same argument can be
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made by interchanging u and u′, and thus

0 = ui

∂σ′ij
∂xj

=
∂

∂xj

(

uiσ
′
ij

)

− µ

(

∂u′i
∂xj

+
∂u′j
∂xi

)

∂ui

∂xj
. (2.4.3)

Subtracting equation (2.4.3) from equation (2.4.2) yields

∂

∂xj

(

u′iσij − uiσ
′
ij

)

= u′i
∂σij

∂xj
− ui

∂σ′ij
∂xj

= 0. (2.4.4)

Therefore, the reciprocal identity can be written as

▽ · (u′ · σMod − u · σ′Mod) = 0. (2.4.5)

2.5 Boundary Integral Formulation

The goal of this section is to derive a formula for the velocity of the intrface bounding

a drop in Stokes flow. The result will be a boundary integral representation of this

velocity. The desired formula is obtained by first finding the velocities inside and

outside of the drop, and then taking a limit from either side as the interface is

approached.

We use the Lorenz identity where we let u′,σ′ be the velocity and stress tensor

associated with free space Greens’s function

u′i =
1

8πµ
Gij(x− x0)gj

and

σ′ik =
1

8π
Tijk(x− x0)gj

and u,σ are the velocity and stress tensor of a stokes flow in a domain Ω. Then, by

Lorenz,

∂

∂xk
[Gij (x− x0)σik (x)− µui (x) Tijk (x− x0)] gj = 0. (2.5.1)
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for any g, and therefore,

∂

∂xk
[Gij (x− x0)σik (x)− µui (x) Tijk (x− x0)] = 0. (2.5.2)

We now select a control volume V in Ω which is bounded by a closed surface D.

Figure 2.2: A control volume V whithin the domain of a flow bounded by the closed
surface D. n is the outward normal.

First we assume that x0 is outside of V . Integrating equation (2.5.2) over V , and

using the divergence theorem to convert the volume integral into surface integral, we

can obtain
∫

D

[Gij (x− x0) σik (x)− µui (x) Tijk (x− x0)]nk (x) dS (x) = 0, (2.5.3)

where the normal vector n is directed into the control volume V . Now assume that

x0 is in V . Let Vε be a small sphere of radius ε centered on x0 as shown in figure

2.2. Integrating equation (2.5.2) over V − Vε and using the divergence theorem, the

following equation is obtained,
∫

D,Sε

[Gij (x− x0) σik (x)− µui (x) Tijk (x− x0)]nk (x) dS (x) = 0, (2.5.4)
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where Sε is the spherical surface enclosing Vε. Let ε approaches zero over Sε. Since

G is free space Green’s function and n = x̂/ε where x̂ = x− x0, it follows that,
∫

D

[Gij (x− x0) σik (x)− µui (x) Tijk (x− x0)]nk (x) dS (x)

= −
∫

Sε

[(

δij
ε

+
x̂ix̂j

ε3

)

σik (x) + 6µui (x)
x̂ix̂j x̂k

ε5

]

nk dS (2.5.5)

= −
∫

Sε

[(

δij
ε

+
x̂ix̂j

ε3

)

σik (x)nk + 6µui (x)
x̂ix̂jεnk · nk

ε5

]

dS, (2.5.6)

where nk · nk =
∑

k n
2
k = |nk|2 = 1. As epsilon approaches zero, the values of u and

σ over Sε tend to u(x0) and σ(x0). Since δij is Kronecker delta,
∣

∣

∣

δij
ε

∣

∣

∣
< 1

ε
. Also

because x̂i = εni and x̂j = εnj, we have
∣

∣

∣

x̂ix̂j

ε3

∣

∣

∣
≤ 1

ε
. Because σ is continuous, there

exists an ε and M such that σ(x) < Mσ(x0) for small enough ε. Thus
∣

∣

∣

∣

(

δij
ε

+
x̂ix̂j

ε3

)

σik (x)nkε
2

∣

∣

∣

∣

≤ 2

ε
4πMε2σ(x0) = O(ε)→ 0

as ε→ 0. Therefore,
∫

D

[Gij (x− x0) σik (x)− µui (x) Tijk (x− x0)]nk (x) dS (x)

= −6µui (x0)
1

ε4

∫

Sε

x̂ix̂j dS(x). (2.5.7)

Using the divergence theorem

∫

V

(∇ · F) dV =

∫

S

(F · n) dS where F = x̂i, we obtain

∫

Sε

x̂ix̂j dS(x) = ε

∫

Sε

x̂inj dS(x) = ε

∫

Vε

∂x̂i

∂x̂j
dV (x) = δij

4

3
πε4. (2.5.8)

Substituting equation (2.5.8) into equation (2.5.7) yields
∫

D

[Gij (x− x0) σik (x)− µui (x) Tijk (x− x0)]nk (x) dS (x)

= −8πµuj (x0) . (2.5.9)

Therefore the equation above can be simplified as

uj(x0) = −
1

8πµ

∫

D

σik (x)nk (x)Gij (x− x0) dS(x)
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+
1

8π

∫

D

ui (x) Tijk (x− x0)nk (x) dS (x) . (2.5.10)

The first term is similar to the potential of a single point charge and since T in the

second term is given in terms of the derivtives of G, it is similar to the potential of a

double later charge. For this reasoning, the first term on the right-hand side is called

single-layer potential and the second distribution is called double-layer potential.

Now, the goal is to compute the limit of double-layer potential as the point x0

approaches the boundary D either from the internal or external side. Since the

boundary D is of class C2 and the velocity varies in a continuous manner, using

theorem 6.17 in [30],

lim
x0→D

∫

D

ui (x) Tijk (x− x0)nk (x) dS (x)

= ±4πuj(x0) + pv

∫

D

ui (x) Tijk (x− x0)nk (x) dS (x) . (2.5.11)

The plus sign represents that the point x0 approaches D from outside of the flow

and minus sign otherwise. The symbol pv indicates the principal value of the double

layer potential. Substituting equation (2.5.11) into equation (2.5.10) with the plus

sign, for a point x0 which is on the boundary D, yields

uj(x0) = −
1

8πµ

∫

D

σik (x)nk (x)Gij (x− x0) dS(x)

+
1

8π

[

4πuj(x0) + pv

∫

D

ui (x)Tijk (x− x0)nk (x) dS (x)

]

, (2.5.12)

which simplifies as

uj(x0) = −
1

4πµ

∫

D

σik (x)nk (x)Gij (x− x0) dS(x)

+
1

4π
pv

∫

D

ui (x) Tijk (x− x0)nk (x) dS (x) . (2.5.13)

By considering the body force f = σ ·n and identifying the boundary D with the

interface S, equation (2.5.9) can be written as

u
(1)
j (x0) = −

1

8πµ1

∫

S

f
(1)
i Gij (x− x0) dS(x)+

1

8π

∫

S

ui (x)Tijk (x− x0)nk (x) dS (x) .
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(2.5.14)

The superscript (1) indicates the surface force over the external side of S. By applying

the reciprocal identity equation (2.5.2) for the internal flow u(2) at a point x0, we

can write

∫

S

f
(2)
i (x)Gij (x− x0) dS(x)−µ2

∫

S

ui (x) Tijk (x− x0)nk (x) dS (x) = 0. (2.5.15)

Multiplying equation (2.5.15) by −1
8πµ1

and subtracting from equation (2.5.14),

yields

u
(1)
j (x0) =

−1
8πµ1

∫

S

△fi(x)Gij (x− x0) dS(x)

+
1

8π

(

1− µ2

µ1

)
∫

S

ui (x)Tijk (x− x0)nk (x) dS (x) . (2.5.16)

Considering that the velocity at infinity is u∞ then u
(1)
j (x0) is given by

u
(1)
j (x0) = u∞j (x0) +

−1
8πµ1

∫

S

△fi(x)Gij (x− x0) dS(x)

+
1− λ

8π

∫

S

ui (x)Tijk (x− x0)nk (x) dS (x) , (2.5.17)

where λ = µ2/µ1 and △f is the discontinuity in the interfacial surface force as follows

△f = f(1) − f(2) =
(

σ
(1) − σ

(2)
)

· n.

Next, we seek to derive a boundary integral representation for the internal flow

u
(2)
j (x0) =

1

8πµ2

∫

S

f
(2)
i Gij (x− x0) dS(x)

− 1

8π

∫

S

ui (x) Tijk (x− x0)nk (x) dS (x) , (2.5.18)

and the reciprocal relation for the external fluid results in

∫

S

f
(1)
i (x)Gij (x− x0) dS(x)−µ1

∫

S

ui (x) Tijk (x− x0)nk (x) dS (x) = 0. (2.5.19)

19



Chapter 2. Governing Equations

Multiplying equation (2.5.19) by −1
8πµ2

and subtracting from equation (2.5.18) yields

u
(2)
j (x0) =

−1
8πµ1λ

∫

S

△fi(x)Gij (x− x0) dS(x)

+
1

8π

(

µ1

µ2
− 1

)∫

S

ui (x)Tijk (x− x0)nk (x) dS (x) . (2.5.20)

Considering the contribution of u∞, equation (2.5.20) can be written in the following

form

u
(2)
j (x0) = u∞j (x0) +

−1
8πµ1λ

∫

S

△fi(x)Gij (x− x0) dS(x)

+
1− λ

8πλ

∫

S

ui (x)Tijk (x− x0)nk (x) dS (x) . (2.5.21)

Now letting the point x0 approach the interface, we obtain

u
(1)
j (x0) = u∞j (x0) +

−1
8πµ1

∫

S

△fi(x)Gij (x− x0) dS(x)

+
1− λ

8π

(

4πu
(1)
j (x0) + pv

∫

S

ui (x) Tijk (x− x0)nk (x) dS (x)

)

, (2.5.22)

which can be simplified as

u
(1)
j (x0) =

2

1 + λ
u∞j (x0) +

−1
4πµ1(1 + λ)

∫

S

△fi(x)Gij (x− x0) dS(x)

+
1

4π

1− λ

1 + λ
pv

∫

S

ui (x)Tijk (x− x0)nk (x) dS (x) . (2.5.23)

Since the contribution of outer flow is u∞/λ (See Appendix B for the derivation),

similarly for the internal flow we obtain,

u
(2)
j (x0) =

2

1 + λ
u∞j (x0) +

−1
4πµ1(1 + λ)

∫

S

△fi(x)Gij (x− x0) dS(x)

+
1

4π

1− λ

1 + λ
pv

∫

S

ui (x)Tijk (x− x0)nk (x) dS (x) . (2.5.24)

Finally, the velocity on the interface can be computed as the average between two

fluid velocities on each side [11]

uj(x0) =
2

1 + λ
u∞j (x0) +

−1
4πµ1(1 + λ)

∫

S

△fi(x)Gij (x− x0) dS(x)
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+
1

4π

1− λ

1 + λ
pv

∫

S

ui (x)Tijk (x− x0)nk (x) dS (x) . (2.5.25)

Therefore the velocity component uj at a point x0 can be written as

uj(x0) =
2

1 + λ
u∞j (x0)−

γ

µ1(1 + λ)
us
j(x0) +

1− λ

1 + λ
ud
j (x0), (2.5.26)

where

us
j(x0) =

1

4π

∫

S

Gij (x− x0)ni(x)κ(x)dS(x), (2.5.27)

ud
j (x0) =

1

4π
pv

∫

S

ui (x) Tijk (x− x0)nk (x) dS (x) , (2.5.28)

for j = 1, 2, 3. Here κ is the total curvature, γ is the surface tension and [σ · n]D =

2κmγn = ▽ · nγn. Also κ = 2κm = ▽ · n, where κm is the mean curvature and [, ]D

indicates the jump condition from the outside to the inside of the drop.

2.6 Non-dimensionalization

At this point, it is convenient to use dimensionless equations. Thereby equation

(2.5.26) can be non-dimensionalized using the radius of initial drop R as the char-

acteristic length, γ/µ1 as the characteristic velocity U , Rµ1/γ as the characteristic

time T . Also

[|u∞|] = [RG]

where G is the magnitude of the rate of strain of the external field u∞.

2.6.1 Non-zero Surface Tension, γ > 0

By changing variables u′ = u
U
, x′ = x

X
, t′ = t

T
we obtain,

uj(x0) =
γ

µ
u′j(x0), u

∞
j (x0) = RGu′∞j (x0).

21



Chapter 2. Governing Equations

Therefore the dimensionless equation can be written as

γ

µ1
u′j(x0) =

2RG

1 + λ
u′∞j (x0)−

γ

µ1(1 + λ)
us
j(x0) +

1− λ

1 + λ
u′dj (x0),

where

us
j(x0) =

1

4π

∫

S

Gij (x− x0)ni(x)κ(x)dS(x),

ud
j (x0) =

γ

µ1

1

4π
pv

∫

S

u′i (x) Tijk (x− x0)nk (x) dS (x) .

In single layer integral, G and κ both have units of 1/m that is canceled by the unit

of dS which is m2. Also in the second layer integral, the unit of T is 1/m2 that is

canceled with the unit of dS. The above equation can be simplified as

uj(x0) =
2Ca

1 + λ
u∞j (x0)−

1

(1 + λ)
us
j(x0) +

1− λ

1 + λ
ud
j(x0), (2.6.1)

where

us
j(x0) =

1

4π

∫

S

Gij (x− x0)ni(x)κ(x)dS(x), (2.6.2)

ud
j (x0) =

1

4π
pv

∫

S

ui (x) Tijk (x− x0)nk (x) dS (x) . (2.6.3)

Ca = RGµ1/γ is the capillary number which defines the measure of the viscous

forces relative to the surface tension.

In the case of having several drops in the flow, the total velocity is the sum of self-

induced velocity of the drop, the externally-induced velocities of the other drops, and

the outer velocity. Considering the case of having two drops, the velocity equation

can be written as

uj(x0) =
2

1 + λ
ũ∞j (x0)−

γ

µ1(1 + λ)
us
j(x0) +

1− λ

1 + λ
ud
j (x0), (2.6.4)

where ũ∞ = u∞ + u
(1)
o , and u

(1)
o is the velocity that the outer drop induces on the

main drop (the main drop refers to the drop which its total velocity is the point of

interest). Using equation (2.5.16), u
(1)
o can be written as

u
(1)
oj (x0) =

−1
8πµ1

∫

S

△fi(x)Gij (x− x0) dS(x)
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+
1− λ

8π

∫

S

uoi (x)Tijk (x− x0)nk (x) dS, (2.6.5)

which can be rearranged as

u
(1)
oj (x0) =

−γ
2µ1

us
o(x0) +

1− λ

2
ud
o(x0), (2.6.6)

where

us
oj(x0) =

1

4π

∫

S

Gij (x− x0)ni(x)κ(x)dS(x), (2.6.7)

ud
oj(x0) =

1

4π

∫

S

ui (x)Tijk (x− x0)nk (x) dS (x) . (2.6.8)

Thus the dimensionless equation can be written as follows

uj(x0) =
2Ca

1 + λ
u∞j (x0)−

1

1 + λ
us
oj(x0)+

1− λ

1 + λ
ud
oj(x0)−

1

1 + λ
us
j(x0)+

1− λ

1 + λ
ud
j (x0).

(2.6.9)

2.6.2 Zero Surface Tension, γ = 0

When γ = 0, the velocity equation (2.5.26) can be written as

uj(x0) =
2

1 + λ
u∞j (x0) +

1− λ

1 + λ
ud
j (x0), (2.6.10)

where

ud
j (x0) =

1

4π
pv

∫

S

ui (x) Tijk (x− x0)nk (x) dS (x) .

To derive the dimensionless equation, GR is used as the characteristic velocity, R

as the characteristic length and 1/G as the characteristic time. Doing so yields the

dimensionless equation as follows

GRu′j(x0) = GR
2

1 + λ
u′∞j (x0) +

1− λ

1 + λ
u′dj (x0),

u′dj (x0) = GR
1

4π
pv

∫

S

u′i (x) Tijk (x− x0)nk (x) dS (x) .
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Dividing each side by GR, the dimensionless equation can be written as

uj(x0) =
2

1 + λ
u∞j (x0) +

1− λ

1 + λ
ud
j (x0), (2.6.11)

where

ud
j (x0) =

1

4π
pv

∫

S

ui (x) Tijk (x− x0)nk (x) dS (x) . (2.6.12)
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Numerical Approach

3.1 Discretization and Initial Conditions

To move the drop, we need to solve the equation,

∂x

∂t
= u(x, t)

on the curve C shown in figure 3.1(a), with initial conditions x(α, 0) = x0(α). Curve

C is parameterized as follows

C : (x(α, t), y(α, t)), 0 ≤ α ≤ π.

To numerically solve this equation, the curve C is discretized using n + 1 points

(xj , yj), j = 0, 1, ..., n as shown in figure 3.1(b). Let the Lagrangian particles be

αj = jπ/n for j = 0, ..., n, and the coordinates of computational points to be given

as xj(t) and yj(t) which approximate x(αj , t) and y(αj, t). y and x are the axial and

radial coordinates, respectively. The velocity of the interface is calculated at each

point (xj , yj). The system that is solved numerically is

dxj

dt
= u(xj , yj, t)

dyj
dt

= v(xj , yj, t) (3.1.1)
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Figure 3.1: (a) Curve C representing the surface of the drop with poles α = 0 and
α = π (b) Discretized curve.

The initial condition is chosen to be a unit sphere, thus xj(0) = cos(α) and yj(0) =

sin(α).

3.2 Evaluating Particle Velocity

In this section, it is shown how the velocity u(xj, t) in equation (3.1.1) is evaluated.

In the case of axisymmetric flows the integration with respect to the angular variable

φ (shown in figure 3.2) reduces the boundary integrals to line integrals over a curve

C. Therefore the single and double layer velocities described in equations (2.5.27)

and (2.5.28) reduce to

us(αj, t) =
1

4π

∫ π

0

Hus(α, αj, t)κ(α, t) dα (3.2.1)
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Figure 3.2: Axisymmetric surface S, axis of symmetry y, azimuthal angle φ and
outward normal vector n.

vs(αj , t) =
1

4π

∫ π

0

Hvs(α, αj, t)κ(α, t) dα (3.2.2)

ud(αj, t) =
1

4π

∫ π

0

Hud
1 (α, αj, t)u(α, t) +Hud

2 (α, αj, t)v(α, t) dα (3.2.3)

vd(αj, t) =
1

4π

∫ π

0

Hvd
1 (α, αj, t)u(α, t) +Hvd

2 (α, αj, t)v(α, t) dα, (3.2.4)

where

Hs(α, α)j, t) = M1(x, xj , y − yj)ẏ(α, t)−M2(x, xj , y, yj)ẋ(α, t) (3.2.5)

Hd
l (α, α)j, t) = Ql1(x, xj , y − yj)ẏ(α, t)−Ql2(x, xj , y, yj)ẋ(α, t) (3.2.6)

and l = 1, 2. The velocity at a point α = αj is u(αj, t) = (u(αj, t), v(αj, t)) where

u, v are the radial and axial velocities. Here x = x(α, t), y = y(α, t), xj = x(αj , t),

yj = y(αj, t) and the dot stands for differentiation with respect to α. The functions
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M and Q are provided in [1] and the curvature κ is given by

κ =
ẏ

x
√

ẋ2 + ẏ2
+

ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2

3.2.1 Quadrature Rules For Integrals

In this study, it is assumed that the surface intersects the axis of symmetry with the

endpoints α = 0 and π, which also correspond to the poles where x = 0. The inte-

grands in equations (3.2.1), (3.2.3), (3.2.2) and (3.2.4) are a function G of variables

α, αj and t. Using expansions of the complete elliptic integrals about the poles and

using Mathematica, it is shown that [1]

G(α, αj, t) = G̃(α, αj, t) +
∞
∑

k=0

ck(α− αj)
k log |α− αj |, (3.2.7)

where G̃ is smooth. The double layer is more regular than the single layer since

c0 = 0. A common approach used in previous studies is to desingularize the single

layer using the identity
∫ π

0
Hs(α, αj, t)dα = 0. Using this identity equation, equations

(3.2.1) and (3.2.2) can be rewritten as

us(αj, t) =
1

4π

∫ π

0

Hus(α, α)j, t)(κ(α, t)− κ(αj , t)) dα

vs(αj , t) =
1

4π

∫ π

0

Hvs(α, α)j, t)(κ(α, t)− κ(αj , t)) dα (3.2.8)

This removes the leading order singular term which means c0 = 0 for the integrands

in equation (3.2.8). The integrals in equation (3.2.7) can be approximated to any

arbitrary order using the quadrature rule introduced by Sidi and Israeli [31] as follows,

∫ b

a

G(α, αj, t) dα = h
n

∑

k=0
k 6=j

”G(αk, αj, t) + hG̃(αj , αj, t) + c0(αj , t)h log
h

2π

+
m
∑

k=2
k even

νkck(αj , t)h
k+1+

m
∑

k=2
k odd

γk

[

∂kG

∂αk
(b, αj, t)−

∂kG

∂αk
(a, αj , t)

]

hk+1
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= O(hm+2) (3.2.9)

where m is any integer greater or equal to zero. αk = a + kh, k = 0, ..., n and

h = (b−a)/n. The symbol ” indicates that the first and last summands are weighted

by 1/2. The constants required for a fifth-order method used in this dissertation are

γ1 = −1/12, γ3 = −1/720, and ν = −0.06089691411678654156.... Since all ck and

derivatives depend on αj and t, the order of convergence is pointwise. Nitsche et al.

[1] found that this method suffers from a round-off error caused by digit cancelation.

They resolved this problem by extracting the singular part of the equation and

recombining the singular terms to reduce the digit cancelation. They also found that

the error increases near the poles due to the unbounded behavior of the derivatives

of G at the poles and the coefficients ck. They achieved a uniformly fifth-order

approximation by finding a pole correction. A good approximation B of G is found

such that it captures the singular behavior of G at the poles using Taylor expansions.

Next, they used B to write

∫

G =

∫

(G−B) +

∫

B (3.2.10)

whereG−B is less singular thanG. The integral of B can be essentially pre-computed

at minimal cost per timestep. The result is a uniform fifth-order quadrature.

3.2.2 Finding u and v, λ > 0, λ 6= 1

If λ 6= 1, the double layer contributions given in equations (3.2.3) and (3.2.4) form

a coupled system of Fredholm integral equations of the second type. The Fredholm

integral equation is solved for u using GMRES [32] with a prescribed residual toler-

ance of 10−13. This method converges in four iterations for λ = 100, five iterations

for λ = 10 and six iterations for λ = 0.01 and λ = 0. When λ = 1, there is no

contribution of the double layer integral to the velocity component.
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The Case of λ > 0

Equation (2.6.1) that we are solving for the velocity is in the form u = ud+U = Au+

U or (A−I)u = −U where U = u∞+us and A = 1/4πpv

∫

S

(T · n)ij (x− x0) dS (x).

The eigenvalues corresponding to the matrix A are all smaller than one and A− I is

an invertible matrix which enables us to solve the equations using iterative methods.

The Case of λ = 0

In the case of inviscid bubble λ = 0, the matrix A has an eigenvalue of β = 1.

Therefore A − I is a singular matrix and any iterative method used to solve ud

diverges. By Wielandt’s theorem [33], we use the modified matrix that has the same

eigenvalues as A with the exception of β = 1. This becomes possible by replacing

the kernel (T · n)ij in the equation of ud by (T (x − x0).n(x0))ij + Cni(x)nj(x0)

where C is an arbitrary constant. This replacement enforce the volume conservation
∫

S

u · n dS = 0

3.3 Evolving Cartesian Coordinates

Using the system of ordinary differential equations (3.1.1), the positions of the com-

putational points are computed using a fourth-order Runge-Kutta method. If this

system is solved in the Cartesian coordinates, the Lagrangian particles accumulate

near the isolated points. In certain cases, these accumulations cause numerical insta-

bilities. This method is used where Ca =∞ which occurs in the absence of surface

tension. In this particular case, the drop evolves very fast in time and therefore the

accumulation of Lagrangian points does not cause any instabilities.
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3.4 Evolving Arclength-Angle Coordinates

Due to the instabilities that the use of Cartesian coordinates causes, an arclength-

angle formulation is used for Ca < ∞. In this formulation the variables tangent

Figure 3.3: Tangent angle θ(α, t), and the arc-length s(α)

angle θ(α, t) and the relative spacing between the points sα are used as shown in

figure 3.3, where s(α, t) is the arc-length.

3.4.1 Equal Arclength

In this section the aim is to develop a method in which the computational particles

remain equally spaced. The Lagrangian particles α are used to track the interface

which can be determined by the normal velocity. Note that the tangential velocity

only determines the position of the marker points. Therefore the interface is obtained

by

∂x

∂t
= u+ T s, (3.4.1)
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where s(α, t) is the unit tangent vector, and T (α, t) is an arbitrarily function. Follow-

ing Hou et al. [34], T is chosen such that the position of Lagrangian marker particles

can be controlled. To solve the rounded shape drops or the shapes with low curva-

tures, T is chosen such that the particles remain equally spaced in the arc-length.

Alternative values of T (α, t) are chosen for the case of high curvature and pinch-off

which later is explained in section 3.4.1. The sheet is described by a curve in the

symmetry plane, X(α, t) = (x(α, t), y(α, t)), α ∈ [0, π], where the y-axis is the sym-

metry axis, x is the radial direction, and α is a Lagrangian parameter that remains

constant for computational particles in time. Equation (3.4.1) can be rewritten in

terms of the tangent angle θ(α, t) and the relative spacing between points sα, where

s(α, t) is the arc-length. The subscripts α and t represent the partial differentiation

with respect to that variable. θ and sα are related to x and y by

xα = sαcosθ, yα = sαsinθ, (3.4.2)

where x(0, t) = 0 and y(0, t) = y0(t). In the case where the arc-lengths are equal,

the spacing between the points are constant in α, and thus sα = L(t)/π, where L

is the length of the drop in the crossection. By Hou et. al. [34] equation (3.4.1) is

equivalent to

Lt = −
∫ π

0

θ′αUdα′, θt =
π

L
(Uα + θαT̃ ), (y0)t = v(0, t), (3.4.3)

where U = u · n, n =< −yα, xα > /sα is the outward unit normal, and T̃ (α, t) =

αLt/π +

∫ α

0

θ′αUdα′. T̃ is related to T as T̃ = u · s + T . A unit sphere is chosen as

the initial condition which is described by

θ(0) = α, L(0) = π (3.4.4)

Thereafter, the variables L, θ satisfy a system of ordinary differential equations

(3.4.3) which is solved using a fourth-order Runge-Kutta method. All of the deriva-

tives are spectrally calculated and all the integrals are approximated to sixth-order

using the modified trapezoidal rule. The velocity u is computed either to point-wise

fifth-order or to uniform fifth-order as explained in section 3.2.
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3.4.2 Mesh Refinement

Choosing the marker points in a controlled manner is also desirable. If the drop is

smooth and rounded with low curvature, the computational points were forced to

remain equally spaced in time, as explained in the previous section. In the case where

the curvature is high at the tips, we would like to concentrate the marker points at

those locations. Also, in the case when pinch-off occurs, points are needed to cluster

at the pinch-points. Following the work of Nitsche and Steen [35], similarly to the

equal arc-length formulation θ and sα are related to x and y by

xα = sαcosθ, yα = sαsinθ,

where x(0, t) = 0 and y(0, t) = y0(t). In this case, the governing equations are

sα,t = T̃α − θαU, θt =
1

sα
(Uα + θαT̃ ), (y0)t = v(0, t) (3.4.5)

It is suggested by Nitsche and Steen [35] that, to obtain local mesh refinement, T̃ has

to be specified so that the relative spacing between the particles is sα = R(α)L(t),

with L being the length of the curve and R attaining its minimum at a desired value

of α. This approach implies that: (1) the particles cluster at a fixed position αc at

all times and (2) the amount of refinement is fixed in time.

It is desired to cluster the points in the region of high curvature which are the

tips or pinch-off points in this work. It is also desired for the marker points to be

initially uniformly distributed and the amount of local refinement to increase as the

curvature increases. To accomplish this, the spacing sα is set as follows

sα = f(α, t), (3.4.6)

where f > 0 is specified dynamically to be smallest at the tips while solving the

steady states. To solve the pinch-off, f is chosen to be smallest at the points where

pinch-off develops. The function f needs to satisfy the following constraint
∫ π

0

f dα =

∫ π

0

sα dα = L(t) (3.4.7)
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Once f is specified, T̃ (α, t) is determined from sα,t = ft(α, t) = T̃α − θαU to be

T̃ (α, t) = T̃ (0) +

∫ α

0

ft + θαU dα′, (3.4.8)

where we choose T̃ (0) = 0. Due to the symmetry of the initial conditions given in

equation (3.4.4), sα, θα and therefore, U are periodic with period π. To ensure that

sα, θα, and U remain periodic, T̃ needs to be periodic as well. This can be achieved

by enforcing f to be periodic as well such that
∫ π

0

ft dα =

∫ α

0

θαU dα (3.4.9)

In this work, the function R(α) = (1 − ε cos(2α))/π is chosen to accumulate

the points at the tips (See figure 3.4(a)). R(α) is positive with

∫ π

0

R(α) = 1.

R(α) = 1/π for ε = 0 which is the case of uniform mesh. R(α) has two minimums,

occurring at α = 0 and α = π for 0 < ε < 1. Here, ε is chosen such that it

increases linearly from 0 to its maximum value εmax. Solving for the pinch-off, the

computational points are accumulated at the locations of pinch-off. The function

R(α) is chosen to have its minimum at αc and π−αc, which are associated with the

points for which the pinch-off occurs. In these simulations, R(α) = g(p)∫ π
0

g(p) dα
where

g(x) = 1.125 + ε(cos(4x) − cos(2x)) and p(x) = tan−1(−1.155 tanx) in which the

value −1.155 is chosen based on the pinching position using trial and error. After

the pinch-off, three separate drops form. For the middle drop which is symmetric,

points are bunched at α = 0 and α = π. Therefore R(α) = (1 − ε cos(2α))/π is

used where the ε is chosen such that it decreases linearly from εmax to 0 (see figure

3.4(b)). The bottom end piece of the main drop has its points concentrated at α = π

for R(α) = (1 + ε cos(α))/π (see figure 3.4(c)). The top end piece is symmetric

to the bottom end piece. Given R(α) and the length of the drop, the function

f(α, t) = R(α)L(t) can be computed.

To compute the rate of change of arc-length in time

ṡ = ḟ = RtL+ LtR
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Figure 3.4: (a) R(α) constructed to bunch the points at the tips, ε=0, 0.5, and 0.9
(b) g(α) constructed to bunch the points near the pinch-off ε=0, 0.5, and 0.9 (c)
R(α) constructed to bunch the points at only one tip ε=0, 0.5, and 0.9.

where Lt = −
∫ π

0

θαU dα and U = u · n. The derivative Rt is calculated using a

first-order finite difference method. Note that using the first-order finite difference

approach only affects the position of computational points, and it does not influence

the overall accuracy of the method.

Next, we discretize the interface by n + 1 points which are uniformly spaced in

the Lagrangian variable α, so that αj = jπ/n, j = 0, ..., n, and solve the system

of ordinary differential equations (3.4.5) using a fourth-order Runge-Kutta method

with initial conditions sα,j(0) = 1, θj(αj , 0) = αj . Before the pinch-off, all the spatial

derivatives are spectrally calculated. Since the parameters x(αj , t), y(αj, t), θ(αj , t),

s(αj, t) and the curvature are periodic, the derivatives can be spectrally calculated.

After the pinch-off, since the second derivatives are not continuous due to applying

the spline interpolation, the second-order central finite difference method is used to

compute the derivatives. The periodicity at α = 0 and α = π is used to obtain this

35



Chapter 3. Numerical Approach

approximation. Compared to the fourth-order finite difference approach, the second-

order method helps smooth out the jump caused by recoiling. All the integrals are

approximated to sixth-order using the modified trapezoidal rule. The velocity u is

computed either to point-wise fifth-order or to uniform fifth-order.
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Chapter 4

Steady States For Ca < Cacr and

Non-Steady Evolution for

Ca > Cacr

In this chapter, the numerical results obtained from the simulations of an axisym-

metric drop in Stokes flow immersed in an axisymmetric strain flow are presented.

4.1 Background Flow

We consider the extensional flow introduced by Sherwood [13] described by,

u∞ = −1

2
(Gx+

3Gc2y
2x

R2
), v∞ = Gy +

Gc2y
3

R2
, (4.1.1)

where R = 1 is the initial drop radius, G is the measure of strain field and c2

is the coefficient of the higher order nonlinear term. The imposed axisymmetric

flow is a combination of a linear flow and a cubic flow. There is no quadratic term

due to symmetry and the coefficients are chosen so that it satisfies the continuity

37



Chapter 4. Steady States For Ca < Cacr and Non-Steady Evolution for Ca > Cacr

(a) c2 > 0

(b) c2 = 0

(c) c2 < 0

Figure 4.1: Background flow. (a) c2 = 0.5 (b) c2 = 0 (c) c2 = −0.2.

equation. Previous studies mostly considered linear far field only, c2 = 0 which is

a good approximation for sufficiently small drops. Part of our goal is to study the

effect of the nonlinear term given by c2 6= 0 introduced by Sherwood [13]. Figure 4.1

represents three different background flows for the values of c2 = −0.2, 0, and 0.5.
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The flow with positive c2 is qualitatively similar to the flow with c2 = 0. All three

flows have saddle points at the origin. For c2 ≥ 0, there is a single stagnation point.

For c2 < 0, there are three at (0, 0), (0,−1/√−c2) and (0, 1/
√−c2). The nonlinear

term becomes more important for the drops reaching these stagnation points. The

effect of the nonlinear term is presented in this chapter. Section 4.2 presents the

drop evolution for various values of c2, as well as the method used to identify the

steady states. Section 4.3 presents a complete classification of the steady states in the

parameter space. In section 4.4, we investigate the behavior of drops for capillary

numbers past their critical value and discuss the improvement achieved by using

uniform fifth-order method.

4.2 Time Evolution of a Drop Towards Steady

States

This section investigates the time evolution of a drop towards the steady states

for fixed values of Ca < Cacr and c2. Note that the critical value is the value of

capillary number above which no steady states exit. The initial condition is a unit

sphere centered at the origin. An appropriate value for ∆t based on the maximum

curvature and the number of computational points is chosen to compute the drop

evolution. The dependence of the steady states on the parameters is studied.

Figure 4.2 displays the computed results for (a) c2 = 0.5, Ca = 0.15; (b) c2 = 0,

Ca = 0.25; (c) c2 = −0.2, Ca = 0.2 and (d) c2 = −0.5, Ca = 0.3 at times (a)

t ∈ [0, 9.5], (b) t ∈ [0, 70], (c) t ∈ [0, 31] and (d) t ∈ [0, 66]. These results were

obtained using (a) n = 1024, ∆t = 0.005 (b)n = 512, ∆t = 0.005 (c) n = 256,

∆t = 0.01 and (d) n = 64, ∆t = 0.02. The figure shows that as time increases, the

drop starts deforming from the initial spherical shape and keeps deforming until it
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Figure 4.2: Computed time evolution of axisymmetric drops. (a) c2 = 0.5, λ = 0.01
Ca = 0.15 (b) c2 = 0, λ = 0.01, Ca = 0.25 (c) c2 = −0.2, λ = 0.01, Ca = 0.2 (d)
c2 = −0.5, λ = 0.01, Ca = 0.3.

approaches a steady state. In figure (a), with c2 > 0, the drop tips tend to become

increasingly pointed. In figure (b), with c2 = 0, the drop elongates before reaching

a steady state. In figure (c), with c2 = −0.2, the drop maintains a rounded shape

throughout the evolution and reaches an approximately elliptical steady shape. It

figure (d), with a more negative value of c2 = −0.5, the drop evolves towards a

biconcave shape. In this dissertation, we choose values of c2 ∈ [−0.5, 0.5]. This

enables us to separately investigate all the possible drop shapes and also provides

a full characterization of the drop evolution in time. For small capillary numbers,

the drop does not change much from its initial state. For the cases shown in figure

4.2, the capillary numbers are chosen close to their critical values to investigate the

40



Chapter 4. Steady States For Ca < Cacr and Non-Steady Evolution for Ca > Cacr

evolution of the drop in more deformed shapes. Larger n and smaller ∆t is needed

for larger maximal curvature.

4.2.1 Identifying the Steady States

This section presents an approach to identify the steady state solutions. As an

example, we consider the drop for the case of c2 = 0, λ = 0.01 and Ca = 0.25 shown

in figure 4.2(b). The parameters that we track to determine the steady states are the

maximum curvature κmax, the maximum y-coordinate ymax (also refer to as L), and

the drop deformation, defined to be D = (L−B)/(L+B) where B is the half-width

of the drop at y = 0. Figure 4.3 shows the evolution of these parameters in time.

All three appear to approach a constant as time increases. These constants describe

the steady state values.

0 10 20 30 40 50 60 70
0

10

20

30

40

t

κ
max

y
max

D

Figure 4.3: Maximum curvature κmax, maximum y-coordinate ymax, and deformation
D, vs. time.

To better approximate the limiting steady state values κmax, ymax and D, we

investigate the rate at which the difference between consecutive values decreases.

Let Q(t) represent one of the values of interest, κmax, or ymax, or D(t). We set
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Qk = Q(tk) and investigate ∆Qk = Qk+1 − Qk. We find that these differences

decrease by a factor that approaches a constant. To illustrate, figure 4.4 plots the

ratios r(k) = ∆Qk+1/∆Qk for each of the three quantities. It shows that for all three

quantities the values approach a constant. Thus, the series,

Q∞ = Qj +
∞
∑

k=j

△Qk (4.2.1)

converges geometrically for sufficiently large j, as long as r < 1. Based on extensive
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Figure 4.4: Ratios r(k) = ∆Qk+1/∆Qk, where ∆Qk = Qk+1 − Qk, and Q is the
maximum curvature (rκ), the maximum y-coordinate (ry), and deformation (rD), vs.
time.

simulations, we found that convergence of these ratios to a value r < 1 is an earlier

reliable indicator of the existance of a steady state, than the actual values of ymax, D,

and kmax. Furthermore, obtained ratios can be used to verify the resolution needed

for these simulations and also can be considered as an indicator of the non-steady

region. If r > 1, either the resolution is low or Ca > Cacr [1]. To determine the

steady state values we approximate,

Q∞ ≈ Qj +∆Qj

∞
∑

k=0

rk = Qj +
∆Qj

1− r
. (4.2.2)
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Note that,

Qj +
∆Qj

∆t

∆t

1− r
≈ Qj +

dQ

dt
(tj)

∆t

1− r
. (4.2.3)

This shows that r depends on △t so that △t/(1− r) ≈ constant.

To compute the steady states using the equation (4.2.2), we choose j such that

∆D/∆t is less than 10−5.

4.3 Classification of Steady States Solutions

In this section, a complete classification of the steady state solutions is presented as

a function of the three key parameters: Ca, λ, and c2.

4.3.1 Steady States as Function of Ca < Cacr

This section shows dependence of steady states on ca, for fixed values of λ = 0.05

and c2 = 0. The behavior for other λ, and c2 is qualitatively similar.

The Case of λ > 0

We compute steady states for an increasing sequence of values of Ca = Cak, and

use these results to determine Cacr. To approximate Cacr slowly from below, we

increase Ca by an amount ∆Ca such that the change in D, ∆D, is a small specified

value initially set to 0.01. Linear extrapolation is used to estimate Cak+1. That is,

give Cak and Cak−1, we obtain Cak+1 as follows,

Cak+1 = Cak +
Cak − Cak−1
Dk −Dk−1

(∆D).
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Capillary number values Ca0 = 0.005 and Ca1 = 0.01 are chosen initially. As the

slope ∆Ca/∆D increases, the deformation-step △D should be maintained small to

prevent overshooting to the region of Ca > Cacr. When the slope is greater than

100, the process is terminated and the last capillary number is our approximation

for Cacr. Figure 4.5(a) plots the steady states solutions for an increasing set of

values Ca approaching Cacr. As the capillary number increases, these curves depart

from the sphere and become more elongated and deformed. Figure 4.5(b,c) plot
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Figure 4.5: (a) Initial solution and steady states for Ca = 0.005, 0.01, 0.0511, 0.0876,
0.1164, 0.1387, 0.1560, 0.1690, 0.1787, 0.1855, 0.1900, 0.1924, λ = 0.05, n = 512,
∆t = 0.01, and c2 = 0 (b) Deformation as a function of capillary number (c) Maxi-
mum curvature as a function of capillary number.

the deformation D and the maximum curvature, respectively, as a function of the

capillary number. As the capillary number increases and approaches its critical value,

maximum curvature and deformation of the drop increase. To evaluate the curvature

more accurately, in some cases the stopping criterion is chosen to be a slope of 1000.

The stopping criterion has a noticeable effect on the drop’s curvature, but at the

same time it does not impact the critical capillary number much. Later in section
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4.3.2, the effect of the stopping criterion will be evident. The simulations such as

shown in figure 4.5, used to determine Cacr for a fix set of λ, usually take weeks

to compute. For smaller values of λ, the maximal curvature near Cacr are large

requiring smaller ∆t, and larger n. For larger values of λ, the maximum curvature

is moderate but the flow is approaching the steady states very slowly which slows

down the simulations. To reduce the simulation time, the steady state solution for

each capillary number is used as the initial condition for the next step.

The Case of λ = 0
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Figure 4.6: (a) Steady States for Ca = 0.005 : 0.01 : 0.205, λ = 0, c2 = 0, n = 512
and ∆t = 0.01. (b) Deformation as a function of capillary number (c) Maximum
curvature as a function of capillary number.

For λ = 0, slender-body theory predicts a stationary drop for all values of Ca [5].
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In this section we present multiple steady state solutions and discuss our observations

for λ = 0, c2 = 0. Figure 4.6(a) displays the steady state solutions for Ca = 0.005 :

0.01 : 0.205. Part (b) plots the deformation of these steady states as a function of the

capillary number. This figure is in strong agreement with Eggers and du Pont [12],

where an excellent agreement with perturbation theory is reported. The deformation

graph is increasing and almost approaching a line which can be interpreted as non-

existence of Cacr. Figure 4.6(c) plots the maximum curvature as a function of the

capillary number. Figure 4.7 demonstrates the steady state shape for Ca = 0.3,

to compute this solution, n = 256 points are used clustered at the tips, using the

method described in section 3.4.2 with function R(α) = (1−ε cos(2α))/π. The shape

is elongated with a maximum curvature of 100.
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Figure 4.7: Steady States for Ca = 0.3, λ = 0, c2 = 0.

4.3.2 Steady States as Function of λ, Ca = Cacr

In this section, we compute the steady states at the critical capillary number, Ca =

Cacr, for a range of values of λ. These solutions are computed using the approach
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described in section 4.3.1. Throughout this section, c2 = 0. Other values of c2

exhibit qualitatively similar behaviors. Figure 4.8(a) plots the solution with λ =

0.02, 0.05, 1 and 10. For smaller values of λ the steady state drop is more elongated,

with the largest elongation shown corresponding to λ = 0.01. The behavior is also

captured in figure (b), which shows that as λ decreases, the deformation D increases.

Figure (c) shows that the corresponding maximal curvature κmax also increases as

λ decreases. As λ increases, the maximum curvatures seem to approach a constant

value significantly larger than the curvature κmax = 2 of the initial sphere. The
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Figure 4.8: (a) Steady states for Ca = Cacr and λ = 10, 1, 0.05, 0.02, 0.01 (b) Defor-
mation as a function of log10(λ) (c) Maximum curvature as a function of log10(λ).

numerical noise observed in figure 4.8 is due to the approximation made for the

stopping criteria given in section 4.3.1. Small changes to the capillary number result

in a change in the maximum curvature. Here, we compute the results for small

λ using the method described in section 3.4.2 to cluster particles at the tip. This

enables us to resolve the regions of high curvature. In these computations, the final

clustering factor is 13. That is, the finest spacing between points at the final time
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Figure 4.9: (a) Cacr as a function of log10(λ), c2 = 0 (b) Ca∗cr as a function of
log10(λ), c2 = 0.

using 256 points which is the same as if we had used 13× 256 equally spaced points.

To compare these results with Taylor’s universal theory, the length and capillary

number are re-scaled to l∗ = lλ1/3 and Ca∗ = Caλ1/6. Fig 4.9(a) plots the capillary

Figure 4.10: Ca∗cr as a function of log10(λ) presented by Eggers, c2 = 0.
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number Ca as a function of λ, and figure (b) plots the re-scaled capillary number Ca∗

versus λ. A figure of the re-scaled capillary number was previously shown by Eggers

and du Pont [12], and is reproduced here in figure 4.10. Comparing figures 4.9(b)
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Figure 4.11: (a) Rescaled length l∗ = lλ1/3 as a function of log10(λ), c2 = 0, Ca =
Cacr (b) Rescaled length l∗ = lλ1/3 as a function of Ca∗ = Caλ1/6, c2 = 0, Ca = Cacr.

and 4.10 we see a discrepancy between our and Eggers results. For example, for

log(λ) = −2 our value is approximately 0.118, whereas Eggers is 0.11. Furthermore,

the qualitative behaviors for log(λ) > −2 differ markedly: Eggers’ decreases, ours

increase, yielding very different results for larger λ. For example, for log(λ) = 0

(λ = 1), our value is approximately 0.12 and Eggers’ value is much smaller, 0.075.

We have confidence in our results since (1) we have carefully checked our work, (2)

our results are consistent with Eggers figure 7 which is inconsistent with his figure 8

shown in 4.10. Thus there are some inconsistencies in his paper.

Figure 4.11 plots the re-scaled length l∗ as a function of λ (figure a) and Ca

(figure b). The result of Taylor’s universal theory, obtained in the limit of infinite
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slenderness (B/L→∞)

Ca∗ =
1√
20

√
l∗

1 + 4l∗3/5
(4.3.1)

is the red (parabolic) curve in (b). While it appears that the computed maximum

Ca∗ does not converge to Taylor’s value as λ decreases, figure 4.11(b) shows that

there is an increasing trend in Ca∗max as λ decreases below 0.01 that we have not yet

resolved.

4.3.3 Steady States as Function of c2, Ca = Cacr
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Figure 4.12: (a) Steady States for c2 = −0.1,−0.2,−0.3,−0.4 and −0.5, λ = 1
and Ca = Cacr (b) Steady States for c2 = 0, 0.1, 0.2, 0.3, 0.4 and 0.5, λ = 1 and
Ca = Cacr.

Figure 4.12 plots the steady state solutions at Ca = Cacr for various values of c2 ∈
[−0.5, 0.5]. Through this section, we use λ = 1 for simplicity. In figure(a), for small

values of c2, the steady shapes are elliptical. For more negative values, the shapes are
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Figure 4.13: (a) Maximum curvature as a function of c2, λ = 1 (b) Critical capillary
number as a function of c2, λ = 1 (c) Deformation as a function of c2, , λ = 1.

biconcave. This can be explained by remembering that for c2 < 0, the background

flow has two non-zero stagnation points at (0,−1/√−c2) and (0, 1/
√−c2). For

sufficiently negative values of c2, these stagnation points are close to the drop and

the effect of the corresponding strain fields becomes visible as biconcavity. The

steady shapes for c2 > 0 shown in figure 4.12(b) remain concave, but develop large

curvatures near the tips. The dependence of κmax, Cacr and D as a function of c2 is

shown in figure 4.13. The critical capillary number increases as c2 decreases, while the

maximum curvature of the drop and its deformation does not vary monotonically.

As c2 decreases from any positive value to zero and negative values with smaller

magnitude, the maximum curvature decreases while the deformation of the drop

increases. In the region where the shape of the drop is biconcave, maximum curvature

increases and the drop deformation decreases. This seems different than all other

cases. In the other cases κmax increases as D increases, so the drop develops high

curvature as it gets long and longer but in this case, the drop develops high curvature

regions while it stays confined in a region. κmax has a local minimum around c2 =
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−0.2, and D has a local maximum around c2 = −0.3 . We note that the values

c2 < −0.2 are precisely those for which the shape starts to become biconcave.

4.4 Non-steady Evolution

The previous section presented the steady states for Ca < Cacr. The focus of this

section is to study the evolution of viscous drops in time for capillary numbers past

the critical value. In figure 4.14, the top row represents the evolution of the drop

for a finite value of capillary number past the critical value and the bottom row

represents the evolution of the drop in the absence of surface tension, which we will

denote by Ca =∞. For all results in 4.14, λ = 0.01.

Fig 4.14 (a) shows the evolution for c2 = 0.5, Ca = 0.2, at times t ≤ 2.07,

computed with n = 512, ∆t = 0.0025. The drop tips become increasingly pointed.

At the final time κmax = 59. In section 4.4.1, we investigate whether the drop

develops a corner or a cusp. Figure (b), plots the evolution of the drop for same

value of c2, but Ca =∞. The drop elongates and it forms a spindle-like shape.

In figures (c,d), c2 = 0, while Ca = 0.3, t ≤ 11 for (c) and ca = ∞ for (d). The

drops keep elongating with a moderate curvature at the tips. For Ca =∞ the drop

keeps elongating into a rod shape and interfaces are nearly elliptical throughout the

evolution. These plots are in a strong agreement with Pozrikidis’ figure 7 [11].

In figures (e,f) the value of c2 = −0.2, while Ca = 0.3 for (e) and Ca = ∞
for (f). In (e), the drop maintains a rounded shape which later transforms into a

dumbbell shape. As we will show later, as long as Ca is not too large, the drop

surface pinches at two points.The capillary number before which the pinch-off occurs

is called ”singular capillary number” and is denoted by Cas. In (f), the drop also

develops dumbbell shape, but the outer portions grow. We will see that the radius
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Figure 4.14: Evolution of drops passed the critical capillary numbers, λ = 0.01. (a)
c2 = 0.5, Ca = 0.2 (b) c2 = 0.5, Ca = ∞ (c) c2 = 0, Ca = 0.3 (d) c2 = 0, Ca = ∞
(e) c2 = −0.2, Ca = 0.3 (f) c2 = −0.2, Ca =∞.

of the top and bottom grows exponentially fast.

53



Chapter 4. Steady States For Ca < Cacr and Non-Steady Evolution for Ca > Cacr

4.4.1 Cusp or Corner?

Figure 4.14(b) illustrates a spindle-like shape for c2 > 0 and Ca =∞. In this section

we investigate whether for Ca <∞, the drop approaches a cusp or a corner. To this

effect we consider the angle θ formed between tangent line and x-axis illustrated in

figure 4.15(a). Figure 4.15 shows the solution at t = 0.4, 0.5 and 0.6396 for Ca = 0.5

using n=256 points which are bunched to the tips with εmax = 0.999. By clustering

θ=0

θ=π/2

θ=π

Figure 4.15: (a) Tangent angle θ (b) Drop profiles for Ca = 0.5, c2 = 0.5, n = 256,
∆t = 0.0001, εmax = 0.999, λ = 0.01, t = 0.4, 0.5 and 0.6396.

the points to the tips, a factor of 60 is obtained which is equivalent to using 15760

equally-spaced computational points. t = 0.6396 is the last time computed. Note

that the numerical calculations are stopped at t = 0.6396 since the curvature was

large and it acquires small time-steps. Figure 4.16(b) plots the angle as a function

of arc length for t = 0 : 500 : 6396. All the units are expressed in degrees. As the

time increases, the angle θ increases very rapidly from zero which indicates the cusp

formation. Generally, the cusp formation refers to the case at which the angle reaches

quickly from zero to 90o. Figure 4.17 plots the length of the drop as a function of
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Figure 4.16: Angle θ as s function of arc length for Ca = 0.5, c2 = 0.5 and t = 0 :
500 : 6396. Arrow displays the direction of increasing time.

time. This figure shows that the drop length continues to increase with time which

again is evidence of the cusp formation.
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Figure 4.17: Length as a function of time for Ca = 0.5, c2 = 0.5 and t = 0 : 6396.
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4.4.2 Effect of Accuracy

As explained in section 3.2.1, Nitsche at al. [1] developed a uniformly fifth-order

method by applying pole corrections. These corrections improve the accuracy of the

simulations only when the endpoint curvatures and velocities are moderate. In this

section two cases is studied in which the pole corrections are not negligible.

Case 1

Considering a spherical drop as the initial condition, for c2 = 0, λ = 10 and Ca = 0.4,

the drop keeps elongating. Even though the interface is smooth and curvature is

growing slowly, the results are difficult to compute. Figure 4.18(a) illustrates the

Figure 4.18: (a) Evolution of a drop with c2 = 0, λ = 10, Ca = 0.4, n = 2048 and
∆t = 0.005 (b) Maximum curvature as a function of time using point wise method
(c) Curvature as a function of time using uniform method.
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evolution of the drop using n = 2048 computational points with ∆t = 0.005 for

t = 0 : 1 : 13. The drop keeps elongating to a long rod shape. Figure 4.18(b,c),

shows the curvature as a function of time for different values of computational points.

These results demonstrate that the dependence of curvature to n is not monotonic.

In part (b), the break-down time decreases as n increases from 128 to 1024. This

results may be misinterpreted as a finite time singularity but as n increases from

1024 to 2048, the break-down time increases, which is an indication of convergence.

Using a uniformly fifth-order method, as shown in part (c), the break-down time

increases past n = 512 and solves the solutions for longer times. Therefore it is

predicted that a solution exists for all times and it is possible to compute it with

acceptable resolution.

Case 2

Similar results have been observed for the case where c2 > 0. The shape of the drop

differs from the one observed for c2 = 0, forming into a spindle-like shape compared

to the elongating rod shape. Figure 4.19 plots the evolution of the drop for up

to t = 0.403. The drop becomes more pointed as time increases. The maximum

curvature obtained with 2048 marker points is equal to 490 and it breaks up at

t = 0.403. Figure 4.19 plots 1/κmax as a function of time for Ca = 0.5 , for various

resolutions ranging from n = 256 to n = 2048, using the point-wise fifth-order

method part (b), and the uniform fifth-order method part (c). This figure shows

that the maximum curvature becomes unbounded in finite time. The solution breaks

down after the final time is reached since the method used does not converge. By

varying ∆t between 0.2−0.001, it is confirmed that this behavior is independent of the

time-step. For the point-wise fifth-order method, the breakdown time decreases as n

increases from 128 to 2048. This may be misinterpreted as a finite time singularity

in the curvature. The results obtained with the uniformly fifth-order methods are
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Figure 4.19: (a) Curvature as a function of time for c2 = 0.5, Ca = 0.5, n = 2048,
and ∆t = 0.001 (b) 1/curvature as a function of time using point wise method (c)
1/curvature as a function of time using uniformly fifth-order method.

similar for n up to 1024. However, with n = 2048, the solution is solved for longer

time. Thereby at this case the solution converges and a higher resolution is needed

to compute the results for longer times.

4.4.3 Pinch-off or Exponential Growth?

When c2 < 0 and Ca > Cacr, the drop forms into a dumbbell shape and it exhibits

different dynamics depending on the capillary number. We found that for capillary

numbers up to some critical value Ca < Cas, the drop pinches at two symmetric

points in finite time. For capillary numbers past the value Cas, the drop keeps

elongating from the corners with no visible singularities. This section explains the

details.
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For the case of Ca < Cas, the behavior of drop shown in figure 4.14(e), is

in an excellent agreement with figure 6 and 7 reported by both Pozrikidis [11] and

Sherwood [13]. Sherwood discovered that when the capillary number is raised beyond

the value where (R/L)2 = −c2, the steady solutions computed from the slender-body

theory break down. L is the drop half-length and R is the initial drop radius. For c2 =

−0.2, the predicted drop length at which the break-up occurs is at L = 2.24 which

is in excellent agreement with the length obtained from the numerical simulations

presented here. The length of the drop when its surfaces pinches is L = 2.24.

0 5 10 15 20 25 30
10

0

10
10

time

x

Figure 4.20: The maximum value of x component of the drop in time in semi-log
scale for Ca =∞, λ = 0.5, c2 = −0.2 up to time t = 33.

To investigate the behavior of a drop for Ca > Cas, an infinite capillary number

is considered. When the capillary number is infinite and the viscosity ratio λ = 1,

equation (2.6.11) indicates that the only governing velocity is the outer velocity which

basically means that we are solving the equation ẋ = x. Therefore the x component

is expected to grow exponentially. Figure 4.20 illustrates the maximum value of x

component in semi-log scale and verifies the initial assumption. Next, an infinite

capillary number is considered with λ = 0.5. In this case, the double layer velocity

is contributing to the outer velocity which slows down the evolution. Figure 4.21

plots the value of 1/x for different n. Using n = 256 computational points with
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△t = 0.005, the solution breaks down at t = 2.55. By increasing the computational

points to n = 512 points with △t = 0.0001, the solution breaks down at time equal

to t = 2.68. The break down time further increases to t = 2.9, using n=1024 points

and△t = 0.0001. Therefore it is concluded that no finite time singularity occurs and

when the required resolution is available, the solution can be computed for longer

times.

The shape of the drop at pinch-off only depends on the viscosity ratio λ and is

independent of the capillary number Ca and of c2. As the capillary number increases,

the pinch-off occurs at two points further away from the center but the geometrical

shape of the drop at the pinch-off remains the same. Figure 4.22 plots the evolution

of a drop for c2 = −0.2, λ = 0.01 and various capillary numbers. As shown in this

figure, it is evident that the points where the pinching occurs move away from the

center and finally for capillary number past Cas, the drop keeps elongating from the

corners. The smaller the value of c2 is in magnitude, the more the drop becomes

elongated but the geometrical shape of the drop at the pinch-off remains unaltered.

Figure 4.23 displays the difference in the shape of the drop observed for two different

0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

time

1/x

Figure 4.21: The values of 1/xmax component of the drop for n = 256, △t = 0.0005
(solid curve), n = 512, △t = 0.0001 (blue dashed-dot curve) and n = 1024, △t =
0.0001 (dot curve).
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Figure 4.22: Evolution of a drop towards pinch-off for c2 = −0.2 and λ = 0.01. (a)
Ca = 0.5 (b) Ca = 0.6 (c) Ca = 0.7 (d) Ca = 1.

values of viscosity ratio. It is visible from figure 4.23 that for λ = 1, the drop forms

a corner shape while it creates a cuspidal shape at the pinch-off when viscosity ratio

is low.
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Figure 4.23: Evolution of the drops towards pinch-off for different values of viscosity
ratio. (a) λ = 0.01, c2 = −0.2, Ca = 0.5 (b) λ = 1, c2 = −0.2, Ca = 0.2.
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Chapter 5

Finite Time Pinch-off and

Recoiling

In the previous section it was shown that when c2 is negative and Cacr < Ca < Cas,

the viscous drop deforms into a dumbbell shape and finally pinches at two points,

displaying a finite time singularity. In this section, we study the detailed dynamics

of the drop as pinch-off is approached. Then we present a method to simulate the

breaking of the drop and using this method, the evolution of the drop shortly after

pinch-off is also presented. Everywhere in this section, the values for c2 = −0.2,
Ca = 0.2 and λ = 1 are fixed.

5.1 Pre Pinch-off Numerical Results

Figure 5.1(a), plots the solution at a sequence of time 0 ≤ t ≤ 38.0068, computed

using the uniform fifth-order rule with n = 4096 and ∆t = 0.000025. The interface

appears to pinch at two symmetric points. Figure 5.1(b), shows a close-up view

near the bottom pinch-off point. In this computation, the method used is the one
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Figure 5.1: Evolution of a drop with c2 = −0.2, Ca = 0.2 and λ = 1 computed
using uniformly fifth-order method with n = 4096 points. (a) Solution is shown
for t = 0 : 5 : 35, t = 35 : 0.25 : 36, t = 36 : 0.1 : 37.9, t = 37.9 : 0.02 : 38
and t = 38 : 0.000025 : 38.00685 (b) The close-up of bottom pinch-off for t = 38 :
0.00025 : 38.0066.

described in section 3.4.2. Initially, points are equally spaced, which means ∆sk is

constant in space. As time increases, the drop develops a neck which has a minimum

radius xmin. We choose sα so that ∆s has a minimum, by using R(α) as shown

in figure 3.4 where εmax = 0.9989 is used. The finest spacing in figure 5.1 is equal

to ∆s = 0.000267408936, which is equivalent to having 30000 equally-spaced com-

putational points. In figure 5.1, it appears that the neck radius of the drop goes

to zero while the y-coordinate of this point is approaching a constant value y0 in

time. To investigate this observation, figure 5.2 plots the minimum radius xmin near

pinch-off for n = 4098 (O), n = 2048 (X), and n = 1024 (+). The radius approaches

zero linearly as time approaches the time of pinch-off, which indicates a finite time

singularity. The smallest radius computed with n = 4096 is xmin = 0.0003 and the

corresponding maximal curvature is κmax = 2473.

The pinch-off time is estimated by approximating the n = 4096 data using least
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Figure 5.2: (a) Minimum radius of neck vs. time computed using n = 4098 (o), n =
2048 (X) and n = 1024 (+) (b) The close-up. The dashed line is the least squares
fit for the interval (38.0065,38.0069).

squares linear polynomial fit over the interval [38.0065, 38.0069]. As can be seen

from figures 5.2(a,b), the line thus obtained approximates the data over a much

larger interval [37, 38]. The estimated pinch-off time is tp = 38.0177. This value is

the time at which the line crosses the t-axis. The line approximation agrees with the

data over the interval of approximation within 10−9. The fact that all these three

data sets are practically indistinguishable gives strong evidence that the results have

converged.

Figure 5.3 plots the axial component ymin of the neck versus time. To investigate

the scaling behavior of ymin, its values are approximated by a line over the interval

[38.0065, 38.0069], which is used to extrapolate value to tp = 38.0177. The line

(see figure 5.3) agrees with data less well than for x. The extrapolated value is

y0 = −1.459. Figure 5.4, plots xmin and ymin − y0 as a function of tp − t, showing

their linear scaling. Therefore, x and y − y0 have compatible length scales near

pinch-off and

x, y − y0 ∼ (tp − t). (5.1.1)
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Figure 5.3: (a) Position of pinch-off vs. time computed using n = 4098 (b) The
close-up. The dashed line is a least squares fit for a small interval near the pinch-off.
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Figure 5.4: (a) Minimum radius of the neck, xmin as a function of the time to pinch,
tp − t (b) ymin − y0 as a function of the time to pinch, tp − t.

Lister and Stone [18] studied a viscous thread surrounded by another viscous

fluid. They used dimensional analysis to show that the viscous pinch-off process is

self-similar and follows a linear scaling law (see Appendix C). The analysis is based

on negligible inertia, and the asymptotic balance between viscous stresses and surface

tension. Our findings here agrees with Lister and Stone’s work. Note that the drop

pinches at two symmetric points. Figure 5.3 only shows the calculations for the lower

pinch-off point. Due to symmetry, similar behavior is observed for the top pinch-off.
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Figure 5.5: Self-similar solution shown for upper pinch-off.

The self-similar components are given as follows

x∗ =
x

tp − t
y∗ =

y − y0
tp − t

(5.1.2)

Figure 5.5 plots the self-similar solution (x∗, y∗) at times tp− t for t = 36 : 38.00685.

This figure shows that all the curves collapse into one as tp−t→ 0. This is indicating

that the drop follows the scaling laws near pinch-off.

5.2 Numerical Method to Simulate the Breaking

of a Drop

In experiments, it is observed that viscous drops break into droplets. In this section

we develop a numerical method to simulate the breaking of the drop surface and

reconnection into smaller drops. This approach is explained in three parts.
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Close to Pinch-off

The solution is calculated up to time t = 38.00685 smooth, using both n = 2048, and

n = 4096. As explained in the previous section, computational points are bunched

at the pinch-off locations which enable us to use less computational points. The

smallest spacing between points in neck region is the same as if 30000 uniformly

spaced points were used.

Cutting

The drop is divided into three separate pieces. Consider the solution at t = 38.00685

with n = 4096 shown in figure 5.6. Figure shows the solution at a fixed time. We

choose to break the interface and reconnect it into two separate pieces by replacing

the curve in a region around the point of minimum radius. This region is delimited

by two points with indices j1 and j2. Figure 5.6 show two choices for these points:

j1, j2 = 905, 916, and j1, j2 = 908, 913. We now remove the portion of the interface

between j1 and j2. We refer to this process as cutting.

Reconnection

We now place two new pieces of interface between the remaining points j1, j2. See

figure 5.7(b) 5.7b. These new pieces are determined as follows. Lets call the start

point αn which refers to j1 and the end point α∗ as shown in picture 5.7. Note

that the satellite drop has different start and end points, βn and β∗, while similar

method is applied for those points. Since the drop is symmetric around the y-

axis, α∗ needs to be located on the y-axis. Based on the given values of θ(s(αn)),

θ̇(s(αn)), θ̈(s(αn)) and θ(s(α∗)) = π, a fifth-order polynomial is constructed. To

evaluate the polynomial, the arc length ∆s = s(α∗)− s(αn) needs to be determined.
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Figure 5.6: Close up of the solution near pinch-off at t = 38.00685 and n = 4096,
points used for cutting at j1 = 905 and j2 = 915 (Red star), j1 = 908 and j2 = 913
(Blue pentagon) and the red curve displays that x coordinate departs away from its
minimum value.

It is found that only one value of ∆s exists at which the last computational point

attains its x-coordinate value at zero. Choosing longer arclength causes the curve to

cross the y-axis while shorter x- axis does not reach the axis. Figure 5.8 shows the

angle θ as a function of arclength s. The original data are shown by a solid curve

and the polynomial interpolation is displayed by a dotted curve. A close-up of the

interpolated part is also given. Next, we re-sample the reconnected portions on the

new drops by sub-sampling an interpolant of the data. For these new set of points

n = 512 for each end drop and n = 1024 for the satellite is chosen. α = jπ/512 and

β = jπ/1024 are computed for the end and the middle drop, respectively. For the

bottom drop, fixing εmax = 0.9989, R(α) is computed as given in section 3.4.2. Using

R(α), S(α) = L · R(α) is evaluated. The values of s(α) are obtained by integrating
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Figure 5.7: (a) Shape of the three separated drops after pinch-off (b) Solution at
t = 38.00685 (dashed line), cut and reconnected curves (solid line) , α∗ and αn, start
and end points of the gap for the bottom drop, β∗ and βn start and end points of
the gap for the middle drop.
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Figure 5.8: (a) θ as a function of arc length s for the bottom drop (-) and fifth-order
polynomial interpolation (.) (b) Close up with start point αn and end point α∗ of
the interpolation.

sα and the corresponding θ values are found using a cubic interpolation. Using the

new values of θ and sα the coordinates x and y are calculated by integration.
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5.3 Numerical Results of Recoiling

We now investigate the recoiling of the drops after pinch-off, by computing the

evolution of the reconnected pieces. It is important to verify whether or not the

numerical results computed in this section are independent of the details in the

implementation used to simulate breaking. To that effect, two different values of

n and three different cuts are considered and compared throughout this section.

Figure 5.9 plots two different cuts for n = 4096. The dashed line represents the
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Figure 5.9: Solution before pinch-off at t = 38.00685, n=4096 (dashed curve), Cut
solution with cut points at j1 = 905 and j2 = 916 (dotted curve), Cut solution with
cut points at j1 = 908 and j2 = 913 (solid curve).

last solution computed for t = 38.00685 with n=4096 points. The dotted curve is

obtained by cutting the dashed curve at j1 = 905, and j2 = 916 and reconnecting it.

The solid curve is obtained by cutting the dashed curve at j1 = 908, and j2 = 913

and reconnecting it.

Figure 5.10 displays the time evolution of a drop after breaking for times tc :

0.01 : tc + 0.1, where tc = 38.00685 is the time when the drop is cut. The solutions

are recorded every 200 steps with time-step ∆t = 0.00005. After breakup, the drops

start to retract back which is called the recoiling process.
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Figure 5.10: Time evolution after pinch-off for t = 0 : 0.01 : 0.1.

Brenner et al. [17] studied the droplet fission at a high Reynolds number. He

showed that numerical simulations, as well as experimental work, verify that the

dynamics after rupture is determined by the shape at the breaking point, and thereby

the time dependence of recoiling does not follow a simple scaling law. In this section,

the scaling law for a viscous drop after rupture is numerically investigated.

Note that to compute the velocity after recoiling, four components need to be

considered. The velocity that one drop induces on itself, the outer velocity, the

velocities that the other two drops induce on the corresponding drop. By computing

the velocity, using fourth-order Runga-Kutta method, the drop is moved. The last

solution computed in this simulation is t = tc+1.53 at which the method diverge due

to formation of another pinch-off. Figure 5.11(a) plots the evolution of the drop up

to time t = tc + 1.53. The drops start to retract back until the middle drop surface

approaches a second pinch-off. Figure 5.11(b) shows a close-up near the breaking

point. The second row displays the step by step evolution of the drop given in part

(b) which clearly shows the recoiling process and pinch-off formation. Figure 5.11(c)

plots the solution at time t = tc + 1.46 indicating the formation of a new droplet.

Part (c) is plotted for two different values of n and three different cuts. The fact that
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these three curves are indistinguishable indicates that occurrence of second pinch-off

is independent of the method used.

Now we want to find the scaling behavior past pinch-off. Recall that before

breakup, to find the time of pinch-off, the minimum neck radius was used. After

the drop breaks, there is no neck. Instead, the position of the drop tips are tracked.

Figure 5.12 plots the y values of the tip ymin in time for the satellite drop and the

bottom drop . The linear behavior of these values is evident. Using least squares

approximation, the time that two lines cross is computed which determines the break-

up time t̃p. This approximation also determines the position of pinch-off ỹ0. The

values obtained here are t̃p = 38.0095 and ỹ0 = −1.457. Using the values t̃p and ỹ0,

figure 5.13 plots the value ymin − ỹ0 as a function of t − t̃p in log scale. This plots

show that, as t− t̃p increases, ymin − ỹ0 departs from the line. Assuming that radial

scale is linear, the solution is computed and plotted in figure 5.14 for t = tc : tc+0.5
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Figure 5.11: First row: (a) Evolution of drops after pinch-off for t = 0 : 0.3 : 1.53
(b) Close up of part (a) (c) Close up of new pinch-off for j=4096, cut at j=905,916
(dashed curve), n=4096 cut at j=908,913 (dot-dashed curve) and n=2048 cut at 510,
521 (doted curve). Second row: Step by step evolution shown in part (b).
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Figure 5.12: Position of the tips ymin with respect to time for satellite drop (Solid
line), bottom drop (dashed line) and the least square fit (dashed-dot line) t = tc :
0.01 : tc + 0.21.
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Figure 5.13: (a) Position of pinch-off as a function of time t− tp for the satellite drop
(b) Position of pinch-off as a function of time t− tp for the bottom drop, dashed line
is plotting t− tp.

where,

x∗ =
x

t− t̃p
y∗ =

y − ỹ0

t− t̃p
(5.3.1)

The curves are all collapsing into one curve validating our assumption and verifying

the self similarity behavior of the drop after pinch-off. To ease the comparison

between figure 5.14 and figure 5.5, the self similar solutions are shown for upper

pinch-off in figure 5.14.
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Figure 5.14: Self-similar solution after pinch-off shown for upper pinch-off.
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Chapter 6

Conclusions

6.1 Summary and Conclusions

This dissertation studies the evolution of a viscous drop placed in another viscous

fluid subject to an axisymmetric strain flow. A fifth-order boundary integral method

is used.

The first part of this study focuses on presenting a clear classification of steady

state solutions in parameter space. This parameter space consists of the critical

capillary number Ca, the viscosity ratio λ, and the nonlinear term in the outer flow

c2. The variation of the deformation, the maximum curvature, and the critical cap-

illary number as functions of the three key parameters Ca, λ, and c2 is investigated.

Presenting the variation of c2 in parameter space is a new contribution. We demon-

strate previously unobserved biconcave steady shapes and correct some results in the

literature describing the critical capillary number as a function of λ.

The second part describes the non-steady evolution of the drops in parameter

space. With c2 = 0, the drop reaches an elongated pointed shape. With c2 > 0, the
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surface approaches a cusp as it increases in length. With c2 < 0, the drop surface

pinches at two points. The existence of a value of capillary number Cas is found,

above which the drop does not pinch. The importance of using a fifth-order method

is indicated. Using this method, we show that the finite time singularity only occurs

for c2 < 0, Cacr < Ca < Cas.

Finally, the third part focuses on the evolution of the drop, before and after pinch-

off. We develop a numerical method which enables us to compute the time evolution

after pinch-off. The drop pinches at two points and breaks into three drops. The

drop follows a linear self similar scaling before and after pinch-off. After breaking, a

second pinch-off forms and a third pinch-off is predicted.

6.2 Proposed Future Research

The interesting results found in the course of this investigation have led to several

new research ideas for future work. The method developed here can be further used

to study the pinch-off of a viscous drop for different values of viscosity ratios as well

as an inviscid case. There have been several studies that investigate the effect of a

surfactant on the deformation and tip curvature [11], [36], [15] and [37]. This work

can be further extended by adding a surfactant to the interface of the drop. A full

investigation of the second drop forming after pinch-off can also be done by using

the same method developed here. It is very interesting to find out how long this

pinching process continues and how the droplets’ dynamics change.
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Appendix A

Derivation of G,Ω, p and T

This appendix summarizes the derivations of Green’s function and its curl. Consider

Gij = (I▽2 − ▽▽)r where r = ‖x̂‖ = ‖x − x0‖. Let x = (x1, y1, z1) and x0 =

(x0, y0, z0), thus r can be written as r =
√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2, which

implies to

▽r =

(

x1 − x0

r
,
y1 − y0

r
,
z1 − z0

r

)

. (A.0.1)

By taking the divergence of equation (A.0.1), the Laplacian of r is computed as

follows,

▽
2r = ▽ ·▽r =

(

r − x1−x0

r
.(x1 − x0)

r2
+

r − y1−y0
r

.(y1 − y0)

r2
+

r − z1−z0
r

.(z1 − z0)

r2

)

=
1

r
− (x1 − x0)

2

r3
+

1

r
− (y1 − y0)

2

r3
+

1

r
− (z1 − z0)

2

r3
=

2

r
. (A.0.2)

Taking the gradiant of equation (A.0.1) yields

▽(▽r) =











1
r
− (x1−x0)2

r3
−(x1−x0)(y1−y0)

r3
−(z1−z0)(x1−x0)

r3

−(x1−x0)(y1−y0)
r3

1
r
− (y1−y0)2

r3
−(z1−z0)(y1−y0)

r3

−(z1−z0)(x1−x0)
r3

−(z1−z0)(y1−y0)
r3

1
r
− (z1−z0)2

r3











. (A.0.3)
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Using equations (A.0.2) and (A.0.3), the Green’s function can be written as

G = I▽2r − ▽▽r =










2
r

0 0

0 2
r

0

0 0 2
r











−











1
r
− (x1−x0)2

r3
−(x1−x0)(y1−y0)

r3
−(z1−z0)(x1−x0)

r3

−(x1−x0)(y1−y0)
r3

1
r
− (y1−y0)2

r3
−(z1−z0)(y1−y0)

r3

−(z1−z0)(x1−x0)
r3

−(z1−z0)(y1−y0)
r3

1
r
− (z1−z0)2

r3











=
δij
r
− x̂ix̂j

r3
.

Next we compute Ωij using the relationship Ωij = ∇×Gij as follows,

Ωij(x̂) =











0 2 x̂3

r3
−2 x̂2

r3

−2 x̂3

r3
0 2 x̂1

r3

2 x̂2

r3
−2 x̂1

r3
0











where x̂1 = x1 − x0, x̂2 = y1 − y0, and x̂3 = z1 − z0. As an example the component

Ω21 can be computed as follows,

Ω21 = −∂1G31 + ∂3G11 = −
∂

∂x̂1

(

x̂3x̂1

r3

)

+
∂

∂x̂3

(

1

r
+

x̂2
1

r3

)

= − x̂3r
3 − 3r2 x̂1

r
x̂1x̂3

r6
+

[

(

−x̂3

r

)

r2
+
−3r2

(

x̂3

r

)

x̂2
1

r6

]

=
−2x̂3

r3

that is equal to the following equation when i = 2, j = 1, l = 3, and ε213 = −1

Ωij(x̂) = 2εijl
x̂l

r3

where

εijk =



















0 unless i, j, k are distinct

+1 if (i, j, k) is an even permutation of (1, 2, 3)

−1 if (i, j, k) is an odd permutation of (1, 2, 3)

and pressure is calculated as follows

p = − 1

4π
gi · ▽

(

1

r

)

= − 1

4π
gi ·

(

− x̂i

r

r2

)

= − 1

4π
gi

(

− x̂i

r3

)

.
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Comparing equation above to equation (2.3.3), yields

pi(x̂) = 2
x̂i

r3

and finally substituting equations (2.3.13) and (2.3.15) into equation (2.3.6) gives

Tijk (x̂) = −δik
(

2x̂j

r3

)

+
∂

∂xk

(

δij
r

+
x̂ix̂j

r3

)

+
∂

∂xi

(

δkj
r

+
x̂kx̂j

r3

)

that simplifies to

Tijk(x̂) = −6
x̂ix̂jx̂k

r5
.
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Appendix B

Contribution of u∞ on Inner and

Outer Velocity

The aim of this appendix is to demonstrate the impact of outer velocity on the

velocities of the fluids inside and outside of the drop. Consider the disturbance field

velocity uD which is defined by composing the field velocity u into the outer field

velocity u∞. Note that, despite of the continuity of outer field velocity across the

interface, the corresponding stress fields are discontinuous due to different viscosities.

This discontinuity is given by

∆f∞ = f∞(1) − f∞(2) = (1− λ)f∞(1) = (
1

λ
− 1)f∞(2). (B.0.1)

Applying equation (2.5.3) to u∞ yields

∫

S

f
∞(2)
i (x)Gij(x− x0)dS(x)− µ2

∫

S

u∞i Tijk(x− x0)nk(x)dS(x) = 0. (B.0.2)

Using equations (B.0.1) and (B.0.3), we can write

− 1

8πµ1

∫

S

∆f
∞(2)
i (x)Gij(x−x0)dS(x)+

1− λ

8π

∫

S

u∞i Tijk(x−x0)nk(x)dS(x) = 0.

(B.0.3)
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Furthermore, the external disturbance field velocity can be expressed as follows,

u
(D1)
j (x0) =

−1
8πµ1

∫

S

△fi(x)Gij (x− x0) dS(x)+

1− λ

8π

∫

S

ui (x)Tijk (x− x0)nk (x) dS (x) +
−1
8πµ1

∫

S

△f∞i (x)Gij (x− x0) dS(x)

+
1− λ

8π

∫

S

u∞i (x) Tijk (x− x0)nk (x) dS (x) . (B.0.4)

Using u1D +u∞ = u1, and the equation (B.0.3), the external velocity can be written

as,

u
(1)
j (x0) = u∞j (x0)−

1

8πµ1

∫

S

△fi(x)Gij (x− x0) dS(x)+

1− λ

8π

∫

S

ui (x)Tijk (x− x0)nk (x) dS (x) .

To derive a boundary integral representation for the internal flow, the outer velocity

can be expressed as,

u
(∞)
j (x0) =

1

8πµ2

∫

S

f
(2)
i Gij (x− x0) dS(x)

− 1

8π

∫

S

u∞i (x) Tijk (x− x0)nk (x) dS (x) . (B.0.5)

Using equation (B.0.3), the equation (B.0.5) can be further simplified to

u
(∞)
j (x0) =

1

λ
u
(∞)
j (x0)−

1

8πµ1λ

∫

S

∆f∞i Gij (x− x0) dS(x)

+
1

8π

(

1− λ

λ

)
∫

S

u∞i (x) Tijk (x− x0)nk (x) dS (x) . (B.0.6)

The internal disturbance field velocity can be expressed as follows,

u
(D2)
j (x0) =

−1
8πµ1λ

∫

S

△fi(x)Gij (x− x0) dS(x)+

1− λ

8πλ

∫

S

ui (x)Tijk (x− x0)nk (x) dS (x) +
−1

8πµ1λ

∫

S

△f∞i (x)Gij (x− x0) dS(x)

+
1− λ

8πλ

∫

S

u∞i (x) Tijk (x− x0)nk (x) dS (x) . (B.0.7)
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Using u2D +u∞ = u1, and the equation (B.0.8), the internal velocity can be written

as,

u2
j(x0) =

1

λ
u
(∞)
j (x0)−

1

8πµ1λ

∫

S

∆fiGij (x− x0) dS(x)

+
1

8π

(

1− λ

λ

)∫

S

ui (x)Tijk (x− x0)nk (x) dS (x) . (B.0.8)
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Scaling Arguments

Consider a viscous drop with radius x(y, t), viscosity µ2, and surface tension γ in

an ambient fluid of viscosity µ1, It has been shown that the dynamics are given by

a balance between the axial gradient of the capillary pressure, viscous forces and

sheer stress forces [18], [14]. The external flow exerts a sheer stress of order µ1∂v/∂r

which the contribution on the balance will be µ1∂
2v/∂r2 to satisfy the dimensions of

pressure gradient, kg/m2s2. The balance in dynamics is represented as follows,

γ
∂x−1

∂y
∼ µ2

∂v2

∂y2
∼ µ1

∂2v

∂r2
. (C.0.1)

The dimensions are matched as,

[

kg

s2

]

·
[

1

m2

]

∼
[

kg

ms

]

·
[

1

ms

]

.

By taking the integral of γ ∂x−1

∂y
∼ µ2

∂v2

∂y2
with respect to y, we obtain,

γ

x
∼ µ2

∂v

∂y
= µ2

1

τ
,

and therefore

x ∼ γτ

µ2

. (C.0.2)
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Now consider x ∼ r and µ2
∂v2

∂y2
∼ µ1

∂2v
∂r2

. It follows from equation (C.0.2) that,

x ∼ γτ

µ2
=

γ y
v

µ2
=

γy

µ2v
⇒ y ∼ vµ2

γ
x.

Therefore,

∂2v

∂x2
∼

(

vµ2

γ

)2
∂2v

∂y2
.

Since µ2
∂v2

∂y2
∼ µ1

∂2v
∂r2

, we obtain,

µ2

µ1
∼

(

vµ2

γ

)2

⇒
(

µ2

µ1

)1/2

∼ γ

vµ2
=

γτ

yµ2
.

Lastly y ∼ γτ
λ1/2µ2

which together with equation (C.0.2) demonstrates the linear rela-

tionship between x, y values and time to pinch-off.
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