Lehigh University
Lehigh Preserve

Theses and Dissertations

2011

Existence and Stability of Standing and Travelin
Wave Solutions Arising from Synaptically Coupled

Neuronal Networks

Melissa Anne Stoner
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Recommended Citation

Stoner, Melissa Anne, "Existence and Stability of Standing and Traveling Wave Solutions Arising from Synaptically Coupled Neuronal
Networks" (2011). Theses and Dissertations. Paper 1189.

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.


http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1189?utm_source=preserve.lehigh.edu%2Fetd%2F1189&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Existence and Stability of Standing and Traveling
Wave Solutions Arising from Synaptically
Coupled Neuronal Networks

by

Melissa A. Stoner

A Dissertation

Presented to the Graduate and Research Committee
of Lehigh University
in Candidacy for the Degree of
Doctor of Philosophy
in
Mathematics

Lehigh University

April 29, 2011



Copyright
Melissa Stoner



Approved and recommended for acceptance as a dissertafantial fulfillment of
the requirements for the degree of Doctor of Philosophy.

Melissa A Stoner

Existence and Stability of Standing and Traveling Wave tahs Arising from
Synaptically Coupled Neuronal Networks

Date

Dr. Linghai Zhang, Dissertation Director, Chair

Accepted Date

Committee Members

Dr. Eric Salathe

Dr. Ping-Shi Wu

Dr. Jing Li



Acknowledgments

The author wishes to thank her advisor Dr. Linghai Zhang fercbntinuing guidance.
Without him the work in this thesis would not be possible. didigion | thank Dr. Ping-
Shi Wu as he contributed to the first two chapters in this wamlkaddition his wisdom
and patience were priceless as | learned Matlab programmiiragso wish to thank
professors Dr. Eric Salathe and Dr. Vladimir Dobric for thieispirational teaching
and encouragement in applied mathematics fields. | alsomgivgreatest thanks to
my family who has been my ever stable rock to lean on throughgueducational
career. Without the loving support of my parents Mark ancp&amie Stoner as well
as my brother and his family, Craig, Erica, and Addison Stohwould not be here
today with the list of accomplishments below my name. Thamik tp all of my family
who have been my safety net throughout my academic experienalso extend my
gratitude to my adopted family of graduate students both @ad present who have
been beyond supportive especially in the last few semestarparticular | wish to
thank Jen, Trisha, Jonelle, Steph, Kathleen, Brittany, Birgtanne especially for all
their words of wisdom. Lastly | say an enormous thank you texAHalperin who has
been there everyday through the struggles and triumphsp#st year and a half. It
has been truly a pleasure to be able to share those experiefibesuch a wonderful
person.



Contents

List of Figures Vil
Abstract 1
Introduction 1
1 Standing Waves 7
1.1 Introduction . . . . . . . . . . .. 7
1.1.1 TheModelEquations. . . .. ... ... ... .. ....... 7
1.1.2 The Mathematical Assumptions . . . .. ... ... ...... 10
1.2 Existence of the Standing Wave Solutions . . . . ... ... ... 11
1.2.1 LinearFunctions . . .. . . ... ... ... . ... 11
1.2.2 Nonlinear Functions . . . . . . ... ... ... ........ 18
1.3 Stability of the Standing Wave Solutions . . . . .. ... ...... 20
1.3.1 Derivation of the Eigenvalue Problem . . . . .. ... .. .. 20
1.3.2 Derivation of the Evans Function . . . ... ... ... .... 23
1.3.3 Stability on theintervakg,00) . . . . .. ... L. 36
1.3.4 Instability ontheintervdD,so) . . . . . . ... ... L. 37
135 Examples . . . .. .. . . .. 38
1.4 ConcludingRemarks . . ... ... ... .. ... ... ... 40



141 Summary . . . . . . . e e 40

142 OpenProblems . ... .. ... ... . ... ... ..... 42
2 Influence of Sodium Currents 43
2.1 Introduction . . . . . . . .. 43
2.1.1 Model equations and biological backgrounds . . . .. ..... 44
2.1.2 The mathematical assumptions . . . . . .. ... ... ... .. 47
2.1.3 Thespeedindexfunctions . ... ................ 47
2.1.4 Knownresultsand openproblems . . . .. .. ... ..., .. 49
2.2 The Mathematical Analysis . . . . . . ... .. .. .. ... ...... 4 5
2.2.1 Influence of spatial temporal delay on wave speeds .. .. 56
2.2.2 Influence of related threshold onwave speeds . . . . . . . .59
2.2.3 Influence of on-center and off-center kernel funation . . . . 62
2.2.4 Approximationsofwavespeeds . . . .. ... ... ... ... 66
2.25 Comparisonofwavespeeds . .. ... .. ... ... ..... 70
2.2.6 Estimatesofthewavespeeds. .. .. .. ... ......... 73
2.2.7 Moredelicateestimates. . . . . . ... ... ... ... ... 78
2.2.8 Asymptotic behaviors of the wave speeds . . . . .. .. .. 80
2.2.9 Influence of synaptic couplings on wave speeds (somenu
calcalculations) . .. .. .. .. ... .. ... ... ... 88
2.2.10 Applicationstoreal biology . ... ... ... .. ....... 19
3 Two Delay Model 98
3.1 Introduction . . . . . . . . ... 98
3.1.1 Themodelequations . . . ... ... ... ........... 99
3.1.2 AsSsSUmMptions . . . . ... 102

Vi



3.2 Linear Speed Analysis

3.3 Nonlinear Analysis

3.3.1 Representation of the traveling wave front of (3.1) ..... . .

3.3.2 Estimates on the wave speeds

3.3.3 Several change of variables

3.4 Numerical Analysis

3.4.1 Numerical simulations

3.5 Discussions

4 Traveling Waves with Lateral Inhibition Kernel Functions

4.1 Introduction

4.1.1 Model equation and biological background

4.1.2 Mathematical Assumptions

4.2 Existence

4.2.1 System (4.1)-(4.2)

4.2.2 Speed Index Functions
4.3 Stability

Bibliography

Appendices

Vita

Vil



List of Figures

11

1.2

1.3

1.4

Graph of the standing wave solutiah$z) (solid line) andp, (x) (dash-

dotted line) to the nonlinear singularly perturbed systémitegral dif-
ferential equations (1.1)-(1.2). In this graph= 2, b = 2, a = 5,
B=50=20=2f(u)=u—1g(u) =u—2,K(z) = 5 exp(—|z|)
andW(z) = Lexp(—|z]). .. ... .. ... ... . 12
Graph of the standing wave solutiah$z) (solid line) andp4(x) (dash-

dotted line) to the scalar integral differential equatidn3j. In this
graph,a = 2,6 =2, =5,=5,0=2,0 =2, f(u) =u—1,

K(z) = s exp(—|z]) andW(z) = Jexp(—|z]). . . .. ... ... ... 17
Graph of the Evans functiofi(\, €) for the nonlinear singularly per-
turbed system of integral differential equations (1.12{Iwith largec.
Inthisgraphg =2, =2, =5,4=5,6 =10,0 =2,0 =2, f(u) =
u—1,g(u) =u—2 K(z) = g exp(—|z|), W(z) = j|z[exp(—|z|) and

NT) = exp(=T). o o 27
Graph of the Evans functiafi(\, ¢) for the nonlinear singularly per-
turbed system of integral differential equations (1.12{lvith smalle.
Inthisgraphg =2, =2, =5,4=5,6 =10,0 =2,0 =2, f(u) =
u—1,g(u) =u—2 K(z) = g exp(—|z|), W(z) = j|z[ exp(—|z|) and

NT) = eXP(—T). v o e e e e e 36

viii



15

1.6

2.1

2.2

Graph of the Evans functiafi ) for the nonlinear integral differential
equation (1.3). Inthis graply, = 2,0 = 2, = 5,8 = 5,0 = 2,
0=2 flu)=u—1,K(z) = sexp(—|z

), W(z) = glz|exp(—|z])
andn(7) =exp(—=7). . . . . .
Graph of the derivative of the Evans functi%%(o, ¢) for the nonlinear
singularly perturbed system of integral differential egras (1.1)-(1.2).
Inthisgraphg =b=2,a =5 =5,c € (0,00),0 =0 =2, f(u) =

u—1,9(u) =u—2,K(z) = 5 exp(—|z|), W(z) = i|z| exp(—|z|) and

NT) = €XP(—T). v v v e e e e e
Graph of three speed index functions (A) Speed indexiomtor a pure

excitation (solid curve). (B) Speed index function for atat inhibition

(dotted curve). (C) Speed index function for a lateral extmn (dash-

dotted curve). . . . . . . . ..

In this graph¢e = 10, « = 5,0 = 2, p = 1, f(u) = m(u —n) and
K(x) = %exp(—|x|). Influence of sodium conductaneeand sodium
reversal potentiah on speedsy = p(m,n), wherem € [1,2] and
n € [1,1.75]. The wave speed is a decreasing function of. and it
is an increasing function of. For the dotted curvepn = 1.0. For the
solid curve,m = 1.333. For the dash-dotted curve;, = 1.666. For the

dashed curven =2.0. . . . . . . . .

55

58



2.3

2.4

2.5

2.6

2.7

In this graph;m = 1, n =0, ¢ = 10,p =1, f(u) = vandK(z) =
%exp(—|x\). Influence of synaptic rate constamtand threshold on
speedyu = u(a, 0), wherea € [4, 6] andd € (0.5, 2]. The wave speed
is an increasing function ef and it is a decreasing function éf For the
dotted curveq = 4.0. For the solid curvey = 4.5. For the dash-dotted
curve,a = 5.0. For the dashed curve,=5.5. . . ... ... ... ..
In this graph = 1, n = 0, a = 5,0 = 2 and f(u) = u. Let the
synaptic coupling<(x) = gexp(—p|x|). Influence of speed of action
potentialc and distribution constang on wave speedu = u(c, p),
wherec € [1,4] andp € [0.5,1.5]. The wave speed is an increasing
function ofc and it is a decreasing function pf For the dotted curve,
¢ = 1.0. For the solid curve; = 1.4. For the dash-dotted curve= 2.2.
Forthe dashed curve,=4.0. . .. ... ... .. ... ... .....
In this graph¢ = 10, p = 10, f(u) = vandK(x) = %[5(93 +p) +
§(z — p)]. Graph ofy = po(6/a), where/a € [0,0.5]. The wave
speedu is a decreasing function éf/cv. . . . . . ...
In this graphe = 10, « = 5,0 = 2, p = 10 and f(u) = u. Let
K(d,z) = %[5(x+p+d) +d(z —p—d)]. The graph of the wave speed
i = po(d). The wave speed is an increasing functionef. . . . . . .
Graph of four sodium current functionf: (u) = sinh « (dotted curve),

fo(u) = w (solid curve), f_(u) = tanhu (dash-dotted curve) and

fe(u) =u(u—1)(3u—1) (dashedcurve). . . . . ... .. .. ... ..

62



2.8 Influence ofD andp on wave speedu = u(D, p), whereD € [0,0.5]

andp € [0.25,4]. The wave speed is a decreasing function d and

itis also a decreasing function pf In this graph, we use= oo, a =5

andd — 2. Let f, (u) — %Sinh(Du) and K (x) = £ exp(~plr]). For

the dotted curvepD = 0.125. For the solid curvepD = 0.25. For the

dash-dotted curvd) = 0.375. For the dashed curvé) = 0.5. . . . . . 88
2.9 Influence ofD andp on wave speedu = u(D, p), whereD € [0,0.5]

andp € [0.35,4]. The wave speed is an increasing function @b and

it is a decreasing function of. In this graph, we use = oo, a = 5

andd — 2. Let f_(u) %tanh(Du) and K (1) = & exp(~plr]). For

the dotted curvepD = 0.125. For the solid curvepD = 0.25. For the

dash-dotted curvd) = 0.375. For the dashed curvé) = 0.5. . . . . . 89
2.10 Influence ofD andp on speed:u = (D, p), whereD € [2,4] and

p € [0,3.5]. The wave speed is an increasing function ab and it is

a decreasing function of. In this graphe = 10, = 5,0 = 0.5 and

p = 1. Let the sodium current functiofy(u) = u(u — 1)(Du — 1) and

K(z) = gexp(—p|x|). For the dotted curve)) = 2.5. For the solid

curve,D = 3.0. For the dash-dotted curvé) = 3.5. For the dashed

curve,D = 4.0. . . . . . . e e e e e 90

Xi



2.11 Influence of: and A on speed:u = p(a, A), wherea € [2,4.2] and
A € [1,4]. The wave speed is an increasing function of and it is a
decreasing function afl. In this graph, we use = oo, @ = 5,60 = 2
and f(u) = u. Let the synaptic couplind((z) = Aexp(—alz|) —
Bexp(—b|x|), whereb = 1 is fixed andB = é - % is a dependent
variable. For the dotted curve,= 2.0. For the solid curveg = 2.4.
For the dash-dotted curve,= 3.0. For the dashed curve,=4.2. . .. 92
2.12 Influence ofB andb on speed:i = u(b, B), whereb € [0,4] and
B € [1,4]. The wave speed is an increasing function dfand it is a
decreasing function oB. In this graph, we use = co, @ = 5, 0 = 2
and f(u) = u. Let the synaptic couplindS(z) = Aexp(—alz|) —
Bexp(—b|x|), wherea = 4 is fixed andA = 4 <% + %) is a de-
pendent variable. For the dotted curvg,= 1.0. For the solid curve,
B = 2.0. For the dash-dotted curvé& = 3.0. For the dashed curve,
B=4.0.. . . . 93
2.13 Influence ofA and B on speed:u = u(A, B), whereA € [1,4] and
B € [0,5]. The wave speed is an increasing function ol and it is a

decreasing function oB. In this graph, we use = co, @ = 5,0 = 2

andf(u) = u. Let K(z) = Aexp(—alz|) — B exp(—b|z|), whereb = 2

L 2A . .
is fixed anda = T B is a dependent variable. For the dotted curve,
A = 1.0. For the solid curve A = 2.0. For the dash-dotted curve,

A =3.0. Forthedashedcurv&l =4.0. . . ... ... .. ... .... 94

Xil



2.14 Influence ofa andb on speed:y = p(a,b), wherea € [2,4] and
b € [1,3]. The wave speegd is an increasing function df and it is
a decreasing function ef. In this graph, we use = oo, = 5,0 =2
and f(u) = u. Let K(x) = Aexp(—alz|) — Bexp(—blz|), where
B = 1isfixed andA = a (% + %) is a dependent variable. For the
dotted curvep = 1.0. For the solid curveh = 1.5. For the dash-dotted
curve,b = 2.0. For the dashed curvé=25. . . . ... ... ... .. 95
2.15 Influence of excitatiop and inhibitions on speedy. = u(p, o), where
p € [2,4] ando € [1,2]. The wave speed is an increasing function
of p and it is a decreasing function ef In this graph, we use = oo,
a=5,0=2andf(u) = u. LetK(z) = pexp(—pl|z|) — § exp(—o|z|).
For the dotted curves = 1.0. For the solid curveg = 1.333. For the
dash-dotted curve; = 1.666. For the dashed curve,=2.0. . . . . . . 96

31 Leta =0,b=0,¢c0 =00, =5 =0,0=2 Letf(u =
%sinh(Du), £(¢) = (c — c) and K (z) = %[5(93 4 0) + bz — ).
The graph of the wave speed = 1(p, D), wherep > 0 andD > 0
are parameters. For the dotted cury®e,= 2.5. For the solid curve,
D = 3.0. For the dash-dotted curvé) = 3.5. For the dashed curve,
D=40.. .. . . 135
32 Leta =0,0=0,¢0 =00, a=250=0,0=2 Letf(u =
%tanh(Du), £(c) = 0(c — o) and K (z) = %[5@ +p) + 0(z — p)].
The graph of the wave speed = 1(p, D), wherep > 0 andD > 0
are parameters. For the dotted curye,= 2.5. For the solid curve,
D = 3.0. For the dash-dotted curvé) = 3.5. For the dashed curve,
D=40.. .. . . 136

Xiii



33 Leta =0,6=0,¢0 =00, a=50=0,0=2. Letf(u =

w(u—1)(Du—1),&(c) = d(c—cp) and K (z) = %[5(x+p)+5(x—0)].

The graph of the wave speed = 1o(p, D), wherep > 0 andD > 0

are parameters. For the dotted cury®e,= 2.5. For the solid curve,

D = 3.0. For the dash-dotted curvé) = 3.5. For the dashed curve,

D=4.0.. . . . . e 137
34 Leta =0,0=0,79=0,a0a=0,08=25 60 =2 Let f(u) =

%sinh(Du), n(t) = 6(t — 10) andW(x) = gexp(—p|x|). The graph

of the wave speed, = 1o(p, D), wherep > 0 andD > 0 are parame-

ters. For the dotted curvé) = 2.5. For the solid curveD = 3.0. For

the dash-dotted curvé) = 3.5. For the dashed curvé) =4.0. . ... 138
35 Leta = 0,0 =0,79=0,a=0,=250 = 2. Let f(u) =

% tanh(Du), 1(r) = 6(r — ) andi¥ (x) = ¥ exp(pl). The graph of

the wave speefd, = 1o(p, D), wherep > 0 andD > 0 are parameters.

For the dotted curve) = 2.5. For the solid curvepD = 3.0. For the

dash-dotted curvd) = 3.5. For the dashed curvé) =4.0. . ... .. 139
36 Leta =0,b=0,79=0,a=0,8=250 =2 Letf(u =

uw(u — 1)(Du — 1), n(r) = d(r — 7o) andW (z) = gexp(—pm). The

graph of the wave speedy = uo(p, D), wherep > 0 andD > 0

are parameters. For the dotted cury®e,= 2.5. For the solid curve,

D = 3.0. For the dash-dotted curvé) = 3.5. For the dashed curve,

D=4.0.. . . . . 140

Xiv



3.7 Letb=0,c0 =00,a=5=0,0=2andp = 1. Let f(u) =
%Sinh(Du), &(c) = 6(c — ) and K (x) = %[5@ + p) + 6(z — p)].

The graph of the wave speed = o(a, D), wherea > 0 andD > 0

are parameters. For the dotted curwes= 0.01. For the solid curve,

a = 0.13. For the dash-dotted curve,= 0.24. For the dashed curve,

3.8 Leth=0,¢g =oc0,a=5,0=0,0=2andp = 1. Let f(u) =
%tanh(Du), £(c) = 0(c — o) and K (z) = %[5@ + p) + 0(z — p)].
The graph of the wave speed = o(a, D), wherea > 0 andD > 0
are parameters. For the dotted curwes= 0.01. For the solid curve,

a = 0.09. For the dash-dotted curve,= 0.20. For the dashed curve,

39 Lethb=0,¢g =00, =05=0,0=2andp = 1. Let f(u) =
w(u—1)(Du—1), £(¢) = 6(c—co) andK (z) %[5(x+p)+5(x—p)].
The graph of the wave speed = p(a, D), wherea > 0 andD > 0
are parameters. For the dotted curwe= 0.01. For the solid curve,

a = 0.16. For the dash-dotted curve,= 0.30. For the dashed curve,

XV



Abstract

We consider three variations of neuronal network modelsaqpdy mathematical anal-
ysis to investigate standing and traveling wave solutianthé models. We consider
solutions for both the scalar case and the system of eqsatMe establish existence
and uniqueness of the solutions and determine the stdimstgbility of the solutions

to the integral differential model equations. In additioae imvestigate the influence of
sodium currents on the solutions. We perform a speed asdlysietermine the effect

of various biological parameters on the wave speed and wavesre.



Introduction

Scientists have observed waves of neuron activity tragedicross the surface of the
brain in migraine patients. Similar waves have been repredyharmacologically in
laboratory settings. These waves are propagated via gobit@mtials which are all-or-
nothing phenomena that arise when the membrane poterdiies a specified thresh-
old value. This change in membrane potential occurs due tement of the potassium
and sodium ions through passive channels and pumps in theeeibrane. The action
potential maintains a constant profile as it travels alomgéhgth of the neuron’s axon
to synaptic terminals which convert the electric signal tthamical neurotransmitter
which is then sent to surrounding neurons [47]. There haes lbeany equations de-
veloped to model neurons, each focusing on different aséthe signal transmission.
The first neuron model was proposed in 1952 by Hodgkin and éyufd0] to describe
the propagation of the action potential along the squidtg@aaon. This is an empirical
model used to model a single neuron via curve fitting, henbastno closed solution.
More recently, focus has shifted to consider models of natedifferential equations to
model the response of a neuron based on the network of netararigch it is coupled.
The interaction between neurons in a synaptically coup&danal network is respon-
sible for the nonlocal term in the model. The first model ofttype was proposed by

Amari [3] in 1977 and is given by:

U+ u=o /R K(x —y)H (u(y,t) — 0)dy. (1)

2



The variable: represents the membrane potential of a neuron at a positoil timet.
The parametet: is the synaptic rate constastjs the threshold constant for excitation,
H is the Heaviside step function, arid is a function which represents the synaptic
coupling between neurons. As stated above, the integralrigedi from the interaction
between neurons.

David Terman [53] expanded upon this model in 1998 by incaag a cubic term
to represent the sodium ion flow as opposed to the linear teed in Amari’'s model
given by:

w (= w(u=a) =a | K= p)H(uy.t) = 0)dy. @

More recently, Pinto and Ermentrout[46] proposed a modétkvieverted to the lin-
ear representation of the sodium ion flow and incorporatextarsl equation represent-
ing the leaking current, which provides the negative feelbvasponsible for limiting

the excitation of the network. The model is given by

ut+u+w:a/%K(x—y)H(u(y,t)—G)dy (3)

wy = e(u — yw). 4)

All variables are consistent with the previous models, iditoh w denotes the
leaking current;y denotes the decay ratecontrols the fast/slow activation of chemical
ion channels and < ¢ < 1. By considering the traveling wave solution of the system,
we make the following assumptions on the parameter20 < «, 0 < ay < (1 + )0
and0 < ¢ < 1 are constants.

Note that the model equation (1) is a special case of thersy@p(4) wheres = 0
andw = 0. Other adaptations of this model have been considereddimgwariations

for mechanisms such as temporal delay and the double tHdesage. More recently



Zhang and Hutt [65] and [66] have studied a more complex madegigned to accom-

modate both a pulse transmission delay and a feedback defallaws:

ou

E*‘f(u)
~ (a—aw [ e | [ K- (u (st 2o -ol) -0) ay) ac
+ (B—bu) /Ooon(f) [/}RW(x—y)H(u(y,t—T}—@)dy} dr. (5)

whereu = u(z,t) represents the membrane potential of a neuron at positand
time ¢ in a synaptically coupled neuronal netwotk,= w(z,t) represents the leaking
current. The function§ > 0 andn > 0 are defined o0, co). The kernel functions
K andWW are defined orfiR. They represent synaptic couplings between neurons. The
functioné represents a statistical distribution of action potersjeedss > 0 on (0, co)
and ¥ £(c)de = 1. Additionally, ¢ may have compact suppdidt; , ¢;), wherec; and
co are positive numbers, denoting the lower and upper bountgtdgically possible
speeds, respectively.> 0,6 > 0,a > 0,8 > 0, > 0,6 > 0 and® > 0 are constants,
representing biological mechanisms. In this model systensimplicity, we choose the
gain function to be the Heaviside step functidh(u — 6) = 0 forallu < 6, H(0) = %
andH(u —0) = 1forallu > 0. See [6], [7], [13], [32], [44], [46], [60], [61]for the
same or very similar equations.

Work in this area of mathematical neuroscience has develdpgmatically since
Hodgkin and Huxley developed the first model in the 1950’g.[3Recent work has
proved the existence, uniqueness and stability of variypestof wave forms for varying
kernel functions including traveling waves and pulses [1@] [12] [39] [46] [17] [52]
[59] [60] [61] [62] [63] [64] , standing waves [29] [46] spiravaves [40], etc. Work

continues to be done in these areas as model equations enataf@additional features

of the neuronal network as well as accounting for differanoeeuronal networks based

4



on its location and function in the brain or nervous system.

We will consider traveling wave solutions to three differemodels and standing
wave solutions to the two delay model. In general, one srigeestablish the existence
and uniqueness of a wave solution that solves the modeliegsatind satisfies initial
conditions. Beyond that we look at the exponential stabditthe solution. In a more
practical sense, we push to establish the behavior of theusbiological mechanisms
in the network on the wave and wave speed.

One remaining variation in the models is the kernel functdmch summarizes the
synaptic coupling of neurons in the network. Suppose tresymaptic couplinds is at

least piecewise continuous, satisfying the following atads

0 00 1
/RK(x)dx =1, /_OO K(x)dx = /0 K(z)dx = 3 (6)
0
JRCLEEE @
|[K(z)| < Cexp(=plz[)  on R, (8)

for some constants' > 0 andp > 0. We are concerned with the following three classes
of synaptic couplings.

(A) Pure excitations between neurons (represented by gaine kernel functions).
For examplesK, (z) = gexp(—pm) andK,(x) = \/gexp (= plz|*) may represent
pure excitations, wherg > 0 is a constant. Heregy has a biological meaning. It indi-
cates how the excitation of a synaptic coupling is distelutRoughly speaking, f is
large, then a neuron is strongly coupled with neurons inaively small region; ifp is
small, then a neuron is strongly coupled with all neuronsrielatively large region.

(B) Lateral inhibitions (represented by Mexican hat keffoeictions, that is, each cou-
pling satisfiesK’ > 0 on (=M, M) and K < 0 on (—oo,—M) U (M, ) for a pos-

itive constant)M/. This implies that neurons close to one another have escytabn-



nections and neurons far away have inhibitory connectioRsr example K3(x) =
Aexp(—alz|*) — Bexp(—b|z|*) may represent a lateral inhibition, whede> B > 0

anda > b > 0 are positive constants, such that

A B T T 1 A
P A\/; B\/; Lo M=oy

(C) Lateral excitations (represented by upside down Mexlaat kernel functions, that

is, each coupling satisfigs < 0 on(—M, M) andK > 0 on(—oco, —M)U(M, oo), for
some positive constadt’). For exampleiy(z) = Aexp(—alz|) — B exp(—b|x|) may
represent a lateral excitation, whérez A < B and0 < a < b are positive constants,

such that

> M =

SHIS
Syllwy)
SIS
| &

B
2’ "

b—a
See Amari [3], Bressloff and Folias [9], Bressloff, Foli#&at and Li [45], Coombes,
Lord and Owen [13], Coombes and Owen [14], Ermentrout [18hé&ntrout and Ter-
man [21], Laing [40], Laing and Troy [41], Pinto and Ermenir§16], Terman, Ermen-
trout and Yew [54], and [60]-[61]-[62]-[63] for more inforation on various synaptic

couplings represented by the kernel functions.



Chapter 1

Standing Waves

1.1 Introduction

To begin our study of standing wave solutions, we will usemgs mathematical anal-
ysis to establish the existence and stability/instabditthe standing wave solutions to
the nonlinear singularly perturbed system of integraledéhtial equations with > 0.

First of all, we will obtain explicit standing wave soluti®for the system. Then, by con-
structing and making use of some complex analytic functicaed Evans functions,

we will accomplish the stability/instability of the standjwave solutions.

1.1.1 The Model Equations

Consider the following nonlinear singular perturbed systd integral differential equa-

tions arising from synaptically coupled neuronal networks

%%—f(u)vw,u

— (a—an) [0 | [ -t (u(ne- Lo -al) -0) @] a

+ (B —bu) /OOO n(7) {/R W(x —y)H (u(y,t —7) — @)dy} dr, (1.1)

88—1: = e[g(u) —w], (1.2)



where the parameters are consistent with the model dedonibgage 4. In addition,
either f(u) + g(u) is a cubic polynomial function of (u) + g(u) is a linear function,
sayf(u)+g(u) = m(u—n)+ k(u—1), wherek > 0 andm > 0 are positive constants,
[ andn are real constants.

If ¢ = 0 andw = 0 in system (1.1)-(1.2), then we have a scalar integral diffgal

equation
Wy )
~ (a—aw ["e@ | [ K- (u (it 2o -ol) - 0) ay) ac
+ (B —bu) /Ooon(T) [/R Wiz — y)H(u(y,t —7)— @)dy} dr. (1.3)

We will study the existence and stability of standing wavkisons, that is, solutions
of the form (u(z, ¢), w(x,t)) = (¢(x), ¥ (z)) for system (1.1)-(1.2) and solutions of the
form u(x,t) = ¢(x) for equation (1.3).

First of all, let us find the constant solutions of the system.
If f(u)+g(u) =m(u—n)+k(u—1),uy < 6anduy < O, thenm(ug—n)+k(uy—I[) = 0.
Thus

kl +mn
k+m

Ug =

If f(u)+g(u)=m(u—n)+k(u—1),u; > 0andu; > O, thenm(u; —n)+k(u;—1) =

a+ 8 — auy — buy. Hence

a+ B+ kl+mn

O.
at+b+k+m ”

Uy =

Previously, Amari [3], Guo and Chow [29] and Pinto and Ermeutt[46] have stud-
ied the existence and stability of standing wave solutidnsome integral differential

equations arising from synaptically coupled neuronal oeka. However, the existence



and stability of standing wave solutions of system (1.1¥(has been an open problem
for a long time. An interesting feature is that the eigenggdltwoblem derived from lin-
earization of the nonlinear system is nonlineanifthis is the eigenvalue parameter).
This difficulty arises because the system involves two kofatelays and any of the two
delays may cause such a difficulty. We are able to overcomditfieulty to find the
eigenvalues of the eigenvalue problem by constructing tlen& function and studying

its properties.



1.1.2 The Mathematical Assumptions

For the duration of this chapter we assume that
K(—z) = K(z), forallz € R, and / K(z)dx =1,
R

W(—x) =W(x), forall x € R, and / W(zx)dx =1,
R
/0 &(e)de =1, /0 n(r)dr =1,

/ 1§(c)dc < 00, / n(T)dT < 00,
o C 0
—Z

FO)+g @) +5+b [ W0,
Zo

F(O)+¢©) +a [ KQdc+ 7 >0,

— 00

a#a®,  [#00,
kl+mn<9§®<a+ﬁ+kl+mn’
kE+m a+b+k+m

A

k+m+a/_;K(C)d§+b/_oo W()dc >0,  forallz € R,
(0 —af)K(x)+ (B—W)W(x —Z) >0, forallzeR,

(0 —a®)K(x) + (8 — bO)W(x — Z) >0,  forallz € R,

(o — ab)K(0) + (5 — bYW (~Zo) > 0,

(o —a®)K(Zy) + (B — b©)W(0) > 0,

—Zo ~ (2k+2m + a)f — (2kl + 2mn + a)
. (C)dC - 2(6 _ b@) ’
Zo 2k +2m+b)© — (2kl + 2mn + )
. K(Q)d¢ = 2(a —aB) 7

for some real constarf, > 0.

Remark 1.1.1. By an intermediate value theorem, it is easy to show thattbgists a

real numberZ,’, such that
—Z’ (2k 4+ 2m + a)8 — (2Kl + 2mn + «)

L, VQde= 2(8 — b0)

10




Similarly, there exists another real numhgy”, such that

20" k b)O — (2kl
K(O)dC = (2k 4+ 2m + 2)(@_22@)—1—277171—1—@

—00

For simplicity, we assume that the model parameters andghsekfunctions are
chosen in such a way thaty’ = Z," = Z,. If 6 = © and(a + b + 2k + 2m)f =

a+ B+ 2kl + 2mn, thenZ, = 0.

1.2 Existence of the Standing Wave Solutions

1.2.1 Linear Functions

First of all, we establish the existence of the standing wsnlations to the nonlinear
singularly perturbed system of integral differential eipras withe > 0 and f(u) +
g(u) = m(u —n) + k(u — 1), wherek > 0 andm > 0 are positive constantsandn

are real constants.

Theorem 1.2.1.Suppose that > 0,6 > 0,k > 0,l,m > 0,n,a >0, > 0,e > 0,
6 > 0and© > 0 are real constants. Lef(u) + g(u) = m(u —n) + k(u —1). Then
there exist two standing wave solutions

kL +mn +a [*_K(Q)d¢ + B[22 W(¢)d¢
ktm+af® K(QdAC+b [* P W()d¢

¢1(z) =

kKl +mn+a [ K(C)AC+ B [, W()d¢

Pa(z) = ]{;—i—m—'—afmoo K(C)dc_'_bfxoj.zo W (¢)d¢ 7

11



to the system of integral differential equations

ou
E +f(u) +w

ot

2.3
221 B

21

LGP
181

1.7

161 B

15
2

Figure 1.1: Graph of the standing wave solutienéz) (solid line) andg,(z) (dash-
dotted line) to the nonlinear singularly perturbed systdrmtegral differential equa-
tions (1.1)-(1.2). Inthisgrapl,= 2,6 =2,a =5,5=5,0=2,0 =2, f(u) =u—1,
glu) =u—2,K(z) = %exp(—|x|) andW (z) = %exp(—|x|).

. . . 0 I .
Proof. Standing wave solutions satls%? =0 anda—l: = 0. Substituting a solution

of the form (u(z, t), w(z,t)) = (¢(z), ¥ (x)) into the system (1.1)-(1.2), we get

Fo) + o) = a—a@)] [~ )| [ K= (o) - o)) e

- [B-bo()] / ) { [ W= - e)dy] ar,
0 = [g(6(a)) — ()],

12



Suppose that the standing wave solution satisfies the ¢onslit < 6 on (—oo, 0),
»(0) = fandy > 0 on (0,00); ¢ < O on (—o0,Zy), ¢(Zy) = © and¢p > O on
(Zy, 00), for some real constaif, > 0. Then the right hand side becomes
o~ ao(o)] [ Ko~ n)H (o) - 6)dy
+ [5=vota)] [ Wie = 9)H (o) - ©)dy
— o] [ K= gdy+ [5-bo@)] [ Wiy

— [a—ag(x)] / " K(OAC + [B - b(a)] / T woac

~ /_ Oo K(C)dC_JrB /_ :ZOW(OdC

{a | m@acr [ OOZ W(Odc} o).

Hence the first standing wave solution to the integral déiféial equations (1.1)-(1.2) is
given by

KL+ mn+a [*_K(Qd¢+ 8 [* 2 W(¢)d¢

) = T [* K(QdC+b [T 2w ()

The derivative is given by

@ — ag(2)] K (x) + [8 — bd(2)| W (z — Zo)

) =t [* K(QdC+b [F 2w
In particular
s0) = G- DKO+E-WW(-Z)
k+m+5+0b [ W(C)d

k+m+a [P K(C)d¢+ 2

13



However, this is only a formal solution. We have to show th& compatible, namely,

it satisfies the prescribed conditions. ) = 6 and¢(Z,) = O, respectively, we
have

2kl + 2mn + a + 26 [ W (¢)d¢
2k +2m +a+2b [T W(¢)d¢ ’

2kl + 2mn + 20 [P K(¢)d¢ +
2%k +2m + 2a [P K(¢)d¢ + b

Solving the system, we find

—Z W(Ode = (2k +2m + a)f — (2Kl + 2mn + «)

. 2(3 — bo) ’

Zo

2k + 2 b)® — (2kl + 2
i K(Q)d¢ = (2k + m+2)(a_2@)+ mn+ﬁ).

The solution really satisfies the conditiop®)) = 0 and¢(Z,) = ©, because

sy PEmna L KO 5L IWEOA
C ktmtafl K(QdACHb[TW(QAC

kL4 mn+a [ K(Qd¢+ 8 [°_W(¢)d¢
¢(ZO) = Zo 0 =
k4+m+a 70 K(QAC+b [ W(C)dC

We also have to verify that the standing wave solution iswelnd above the threshold

0 on (—o0,0) and (0, o), respectively; and it is below and above the thresk®ldn
(—o0, Zy) and (Z,, oo), respectively. The following inequalities are equivalenbne

another (below, the symbok'=>" means that either we always take™or we always

14



take “=" or we always take %"):

KL+ mn+a [*_K(Qd¢+ 8 [* 2 W(¢)d¢
ktmtaf* KQdAC+b[S2W(Qde

I

kl+mn+a/ K(¢ dC+B/ Q)¢ <=> k+m+a/ K(¢)d¢
r—2Z

—|—b/ W(C)dg}e;

k(1 —6) +m(n —6) oz—a@/ K(¢

z—2Zo
+(5 — b@)/_ W({)d¢ <=> 0;

(a — ab) /_ K(O)dC + (8 — b) /_x_ W) <=> k(0 — 1)+ m(0 — n).

Moreover, the following inequalities are equivalent toleather:

kKl+mn+a [ K¢+ 5 [* 2 W(¢)d¢ 3
ktmtaf® KA +b[* 2 W()d¢

I

k:l+mn+a/ K(¢ dC+6/ ¢)d¢ <= >lk+m+a/ K(¢)d¢
4 /_:ZOW(C)dg]@

k(I — ©) + m(n — ©) + (o — a0) /_ K(C)dc

r—2Z
+(8 — b@)/ W({)d¢ <=> 0;

(o — a®) /_ K(Q)dC + (8 — bO) /_x_ W) <=> k(O — 1) + m(O — n).

15



Definition 1.2.2. Define the following auxiliary functions
T x—20
Aw) = (a—a) [ K@Qic+E-19) [ T wec,

Bz) = (a—a®) / K(Qac+(5-10) [ w0,

A(0) = %(a — ab) + (B — bA) __ CWO)AC = k(0 — 1) + m(0 — n),
B(Z) = (a—a0) [ K(QC+ 5(5—b6) = k(O ~1) +m(6 —n)

—0o0

and by the assumptions made in Subsection 2.1.2, we have

Allz) = (a—ab)K(x)+ (8 —bO)W(x — Zy) > 0, forall z € R,
B'(z) = (a—aO)K(z)+ (8 —O)W(x— Zy) >0, forallz € R,
A0) = (a—abd)K(0)+ (8 —bO)W(-Zy) > 0,

B'(Z) = (a—a®)K(Zy)+ (8 —bO)W(0) > 0.

Hence, bot(x) andB(z) are increasing functions d. Therefore, we find that < ¢
on(—o0,0), (0) = 8 ande > 6 on (0, 00). Similarly,¢ < © on(—oo, Zy), ¢(Zy) = ©
and¢ > © on(Z, c0).

The existence of the second standing wave solution can hegneery similarly.

Indeed, the equation becomes

m[p(x) —n] + k[(x) — ]
= [a—ag(x)] / K(Q)d¢ + [8 — bo(x)] ()dC.

xz+7o
Therefore, we get the second standing wave solution

kKl +mn+ o [ K(Q)dC+ B [}, W()d¢

Pa(x) = ]{;—l—m-l—afzoo K(§)d§+bfz°izo W(¢)d¢ .

16



The derivative is given by

bo(e) = — [0 — agp(z)]| K (z) + [B — bo(x)|W (z + Zp)
? T ktmta[CKQAC+b [, WA

In particular

, (e =a®)K(=Z) + (8 = bO)W(0)
¢2(=2) = k+m+a % K(Q)d+12

(v — af)K(0) + (B — bYW (—Zy)

¢2/(0) = - k‘+m+%+bf;:W(C)dC < 0.

It is easy to check that this standing wave solution alsa®asi the prescribed condi-

tions. The proof of Theorem 1.2.1is finished. [ |

23

00 1ol

15

Figure 1.2: Graph of the standing wave solutienéz) (solid line) andg4(x) (dash-
dotted line) to the scalar integral differential equati@r8j. In this graphg = 2, b = 2,
a=508=50=206=2fu =u—1, Kz) = Lexp(—|z|) andW(z) =

3 exp(—z]).
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Corollary 1.2.3. Suppose that > 0,6 > 0,m > 0,n,a > 0,3 > 0,0 >0and® > 0

are constants. Lef(u) = m(u — n). Suppose that

a+ B +mn
a+b+m

)

0=0,a+p+2mn = (a+ b+ 2m)b, n<6<

m+a/x K(g)d(+b/x W(¢)d¢ > 0, forall x € R,

(v —al)K(z) + (B — bO)W(z) > 0, (v —ab)K(0) + (B —b0)W(0) > 0.

Then there exist two standing wave solutions

mn+a [*_K(Q)dC+ B [ W(¢)d¢
m+a " K()d¢+b [T W(¢)d¢

¢3()

mn+a [JTK(dC+ B [ W(¢)d¢
m+a [ K(QAC+b [ZW(()dC ]

Pa(z)
to the scalar integral differential equation

u
E—I—m(u—n)

~ (a—aw [ €@ | [ K-t (u (e 2o -al) ~0) ay) ac

+ (B- bu)/ n(T) {/ Wz — y)H(u(y,t —7)— @)dy] dr.
0 R
Proof. The proof follows from Theorem 1.2.1 and it is omitted. [ |

Remark 1.2.4. It is not difficulty to show that, (x) = ¢o(—z) for system (1.1)-(1.2)
and¢s(z) = ¢4(—x) for equation (1.3), for alk € R.

1.2.2 Nonlinear Functions

Now we consider the system (1.1)-(1.2) wiffw) + g(u) = u(u — 1)(Du — 1) and

establish the existence of standing wave solutions.

18



Theorem 1.2.5.Suppose that > 0,6 > 0, D >0, > 0,8 >0,e > 0,0 >0
and© > 0 are real constants. Lef(u) + g(u) = u(u — 1)(Du — 1). Then there exist
two standing wave solutions to the nonlinear singularlytpdyed system of integral

differential equations (1.1)-(1.2).

Proof. It is easy to see that the standing wave solutions to the rayglel)-(1.2)

with f(u) + g(u) = u(u — 1)(Du — 1) satisfy the equation

o6 —1)(Db—1) = / O)dC + / "W (o

{a | m@ac [ OOZ W(Od@ s

r—2Z
D¢* — (1+ D)¢p* + [1+a/ K(¢ d§+b/ W(g)dg]gﬁ

- oo [k

Hence we have

Let
r—2Z
p = —#, g = é[ua/ K(¢C d§+b/_ W(g)dg],
1
e JRC T
Then we get

¢+ pd* +qp+1r =0.

One real root of the cubic polynomiaf + pu? + qu + r is given by [61]




By using this formula, we obtain the first standing wave sohut Very similarly, we

obtain the second standing wave solution. The proof of Téradt.2.5 is finished. =

Corollary 1.2.6. Suppose that > 0,6 >0,D >0, > 0,8 > 0,0 > 0and© > 0
are real constants. Lef(u) = u(u — 1)(Du — 1). Then there exist two standing wave

solutions to the scalar integral differential equation3}L.

Proof. The proof follows from Theorem 1.2.5 and it is omitted. [ ]

1.3 Stability of the Standing Wave Solutions

In this section, we will derive an eigenvalue problem, camndta complex analytic func-
tion (hamely, Evans function) corresponding to the eigkra/problem, study properties
of the Evans function and then establish the stability caini$ity of the standing wave

solutions.

1.3.1 Derivation of the Eigenvalue Problem

Subtracting the following system of integral differenégjuations

¢
§+f(¢)+¢

= fo—asta)] [ e | [ K= (o) - o) ac

+ [p-bo] [ 0o [ [ W= - @)dy] dr,

0
5 = clo@)-l,

20



from the following system of integral differential equat®

ou

a*‘f( u) +

- <a—au>/0°°s<c> [ wG—wtt (u (e 2o vl) o) ] ac

+ (B —bu) /OOO n(7) {/R Wz —y)H (u(y,t —7) — @)dy} dr,

ow
E = ¢ [Q(U) - ’LU],

keeping linear terms and neglecting higher order terms, btaim the new system of
integral differential equations

v K(z) [~ 1
E—I—f (gb( ))v—l—w: [a—agb(x)] 7(0) / &(c)v <O,t—z|a¢|) de

+ - o) )Z)/ WT)o(Zost = 7Y

- a/ {/Kz— H)dy]dc
_ / [/Wx— @)dy}dﬂ

ow
= E[Q (gb(x))v — w}.

Suppose thafv(z,t), w(z,t)) = (¢1(z),¥a(z)) exp(At) is a solution of this system,

where) is a complex number ang, () andy»(x) are complex functions. Then

Ay () exp(At) + f'((x)) dr(x) exp(At) + () exp(Ae)

= |a—ag(z K,(I)) 0 £(c)y1(0) exp ( t— —|:17|) de

+ (B bo(z o7 /0 n(T)1(Zp) exp(At — AT)dr

— ayr(z) exp(At) / &(c { K(x 9) dy] de
0 R

— b (x) exp(At) n(t [ Wz @) dy} dr,
0 R

AMbo(x) exp(At) = ¢ g'(¢(x)) 1(z) exp(At) — ho(x )exp()\t)}.



By canceling out the exponential functierp(\t), we obtain the eigenvalue problem

M) + 1 (9(0)a) + (o)
— fa—ast@ ] | [Tees (-2l ) ac] o)

b 5= bo) ) [ / ") expl-Anyir| iz

_ {/ {/K vy H)dy] dc}¢1(x)
- {/ UW (x—y @)dy] dT} (@),

My(z) = e[g'( x))wm e )]

The eigenvalue problem may be written as

L)Y = \ip, where  ¢(z) = < z;g; ) € [L‘X’(R)}z’

whereL(\) : [LOO(]R)]2 — [L‘X’(]Rﬂ2 is a linear operator.
Definition 1.3.1. If there exists a complex numbe@g and there exists a nontrivial

bounded continuous solutiafy, on R, such thatC(\g)ve = Aotho, then ), is called

an eigenvalue andy is called an eigenfunction of the eigenvalue problem.
If Uy (0) =1y (Z(]) =0, then

[A+f’(¢< )+ 59 (0()

o K@t f OOZO W(Odﬂ e

Hencey = 0 onR. Therefore, for a function) to be a nontrivial eigenfunction of

the eigenvalue problemi(\)y = A, it must satisfy the conditiong, (0) # 0 and
1 (Zy) # 0.
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1.3.2 Derivation of the Evans Function

Note that for the first standing wave solution

/ [/Km— Q)dy]d

_ /RKx—y 6(y) — 0)dy = _OOK<<>dc
/ [/Wx— @)dy]dT
= /RWx—y y)—®)dy=/_:ZOW(C)dC-

Lettingx = 0 andx = Z, in the eigenvalue problem, respectively, we have

N (0) + /(03 (0) + o(0)

KO

= (o= B0 - fno -0 [ Wi v
W(=2o)

- [ n()exp(—xﬂdf] ().

Mpo(0) = 5[9’(9)¢1(0) - ?/)2(0)},

and

A1 (Zo) + f’( )¥1(Zo) + 12(Z)

= ( {/g exp(—izo)dc}qﬁl()

_ [i K(0)d }m(zo)——wl(Zo)
o | [ e exp(-aniar] vz
Mo (Zo) = e[g'(©)1(Zo) — ¥a(Z)].-

+ (B —100)

In each of the above systems, from the second equation,asiste see that

9 €

Ua(0) = =g OB, alZ) = 7

9'(©)¢1(Z).
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In these two systems, if we plug, into the first equation, then we get the following

equations
{A PO+ g 0+ [ w W(Odc] - a@%} $1(0)
_ {(5 -y [ 0 exp(—mdf] } (%),

{A F(0)+ 1 9(O) +a { i K(Odﬂ

vy = @ =00) 5 | [T exp-aniar | bz
SR/ ONA R

2 ¢'(Zo)
It is not difficult to find thaty, (0) = 0 if and only if ¢ (Z,) = 0. If ¢,(0) = 0 or if

’l/)l(ZQ) =0, then

=g (¢(x))

{)\+f'(¢(x)) + P

+af OO KO+ [ OOZ W(Od@ ()
= 0.

Hencey, (z) = 0, for all z € R. Therefore, if\, is an eigenvalue and, = ( ZOI )
02
is an eigenfunction of the eigenvalue problett\)y = A\, theny (0) # 0 and

¢01 (ZO> % 0.
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If we multiply these two equations together, then we find that

K(0) }

{)\Jrf’( 0+ (9)+9+b{ __ZOW(g)dg] ~ (o —af) g

Nte 2 o

A PO+ ) va [ KOw]

{
v i w—be)W(O’ [T es-anar] bz
- {v

)
51 o]
{a-a0) [ [ stres (<220) ae| funtoyuniza

Definition 1.3.2. Define the open unbounded simply connected dofaain {\ € C:

Re\ > —c}. Also define the domain, = {\ € C: X satisfies the following conditiofis

Rel > —f(0)—g(0) — g —b[ __ 0W<C)d<},

Zo

b

Red > —f'(©)—¢(©®)—a { K(C)d(} — 5

We define the Evans functigh= £(\, ¢) for the first standing wave solution of the

nonlinear singularly perturbed system (1.1)-(1.2) by

Ene) = {A+ff<>+ig<e>+a+b[ W0ac] - (o - a)

0 70

¢'(0)

Zo

€]
~6- bg)%?) V 7 esp(-air

b
5

— {(5 — b@)M {/Ooon(T) eXp(—AT)dT:| }
{

for all A € ). We also define the Evans functién= £(\) for the first standing wave
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solution of the scalar integral differential equation (118

—Z

N = {A+f’<9>+g+b[ W(Odé}—(a‘“@) 585}

— 00

{A+f +a{ K (g)dghg
~ (@- { ) expl AT)dTH
. (ZO [/wm ) exp(—Ar)dr }

~— —

o |
oo B8 [ o 25)u]}

forall \ € Q.

Remark 1.3.3. The Evans function for the second standing wave solutioh. bj-(1.2)
can be defined very similarly. The Evans function for the sgésbanding wave solution

of the scalar equation (1.3) can also be defined similarly.ovié the details.

Theorem 1.3.4. (I) The Evans functiod = £(),¢) is a complex analytic function

in Q and it is real valued if the eigenvalue parameleis real.

(I) The complex numbex, is an eigenvalue of the eigenvalue probl€ii\)y) = A\

if and only if€(Xg, ) = 0.

(11 The algebraic multiplicity of any eigenvalug, of the eigenvalue problem

L(N)y = M\ is equal to the order ok, as a zero of the Evans functiéii), ¢).

(IV) The Evans function enjoys the following limit

lim £(\e)

=1.
A—oo A2

Proof.

() Obviously, the assertion is true.
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Figure 1.3: Graph of the Evans functiéti), ¢) for the nonlinear singularly perturbed
system of integral differential equations (1.1)-(1.2)wlargec. In this grapha = 2,
b=2a=508=5¢=10,0 =2,0 =2, flu) =u—1, gu) = u—2
K(x) = g exp(=|z]), W(z) = glz|exp(~|z]) andn(r) = exp(-7).

(I If X9 € Q is an eigenvalue, then there exists a nontrivial boundediraovus
solution ¢y, = < Vor ) to the eigenvalue problemi(\)y) = \¢, such that

Vo2
101(0)101(Zo) # 0. Therefore & (o,

e) = 0. On the other hand, (), ¢) =
0, then there exists a nontrivigt/o; (0), ¢01(Zo)), and there exists a nontrivial
(G

bounded continuous function, = ( 01 ) Therefore,\q is an eigenvalue of

Vo2
the eigenvalue problei(\)y = A\i).

(1) It is very complicated and it is omitted.
(IV) Clearly, the conclusion is correct.

The proof of Theorem 1.3.4 is finished. [ |
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Definition 1.3.5. Define the positive numbey for the standing wave solutions of the

system (1.1)-(1.2) by using the equation

o€
5(0, 50) =0.

Theorem 1.3.6. (I) A = 0isasimple eigenvalue of the eigenvalue probl&n) =

A, that is
o€
E(0,e) =0, 5(0,5) >0, foralle e (g9,0),
£(0,e) =0, g—i(o,e) <0, foralle e (0,¢ep).

() Foranye € (0,¢y), there exist two positive numbexg(s) > A\o(¢) > 0, such that

g_i()\o(g),g) =0, E(M(e),e) =0.

(111 In the unbounded domaift, the Evans function
E(N\e) #£0, forall e € (g9, ), for all A # 0, with Re\ > 0.

Proof. Differentiating the traveling wave equations with respect, we get

F(¢(@) ¢ (x) +4'(x) = [a—ad(x)]K(z)+ [B = bo(x)|W(zx — Z)

- ) [ " K(O)dC - b6 (@) |
0 = [¢(6@)d(x) - ().

From this system, we see that= 0 is an eigenvalue an@'(z),v’(z)) is an eigen-

function of the eigenvalue probleg(\)y) = \i.
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Let us find the derivative of the Evans function. By using teérdtion, we find that

s sde [ ra +
(86— b@)m [/000 n(T) eXp(—)\T)dT] }

e e r0) g0+ S [/_;Z W(C)dc} ~(a- ae)%}
-5 j 6)29/(@) +(B— b@);Z%)) {/OOO (1) eXP(—AT)dT} }
N PR L(E 1) [/w () exp(_m)dr} }
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Moreover

¢ (Zo)
+ {A+f’(9)+%+b[/_;
& Fien
Gl
. {a—a@)ifzo)
+ { :

In particular, as\ = 0, we have

oo ={i-10)}

- {f<@>+g U K<>d<]+

: .
. { o a@)% UOOO %5(0) exp (—%ZO) dc} } |

)

]}
@;cb()) [ e}

o L o ooy | e

+ {f )+4d'(0) + = +b[/ W(Cd(} (03}
i Z(O)> [ e
{0 SB [ o
+ {5 69
< 0,
if e € (0,¢9), andgi( g) > 0if € € (g9, 00).
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Moreover

0 - (s[4 385 "]
+ {f(9)+ +b[/ W dg} (o — 9)%}
R )

- -0y / ratrvr
Qe [ o)
- (= |, o))
e [ e
> 0.
Let us also find the partial derivative of the Evans functiothwespect tae
509 = (Aia) g(0)

© A+ (O) + %g'(@) +a {/j K(()dg] + g

- (B~ b@)g(—% { /O T exp(—)w)dr} }
.

590) {3+ 10+ o0
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and

P& 22 22
@(A,é) = mg (0)g'(©) — ()\+€)3g (0)

{A FF(0) + g (0) +a [ K(Odc] +2

Ate o
W) [ [~
- (B- b®)<b’(Zo) {/o n(7) exp(—A7)dr }
2 / / € / g
- @ o )+
0 K(0)
+ b[ W({)d } — (a—ab }
Moreover
0*E A—¢e
530: M9 = et )
n A—c¢ (o)
(A +2)8?
Therefore, we find that
&g = O(l)

: o€ . . :
Fix € € (0, ¢y). Thena(o,s) < 0. For all positive, sufficiently large > 0, we find
that

o€
a—)\()\, 5) > 0.

By using intermediate value theorem, we know that theret®xspositive number

Ao(g) > 0, such that

o€
o\ (Ao(e),€) = 0.

Clearly, we know tha€ (0, <) = 0 and that

o€
a—)\()\, E) < 0,
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for all real numben € (0, \o(¢)). Therefore€ (A\o(g), €) < 0. Very similarly to before,

for all positive, sufficiently large\ > 0, we find that
E(N\e) > 0.

By using intermediate value theorem again, we know thattkgists a positive number

A1(g) > Ao(e) > 0, such that
E(M(e),e) =0.
Additionally, we also find that
Ao = O(e), A1 = O(1).

Lemma 1.3.7. Suppose that the nonnegative functiorn> 0 is defined on0, cc) and

suppose thal < [, w(z)dz < co. For any complex number # 0, if Re\ > 0, then

< /OOO w(x)dz.

Proof. See [60]. [ |

/O " exp(Ar)w(z)dz

For alle € (g9,00) and for allA € €, if ReA > 0, then by using Lemma 1.3.7, we
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have the following estimates

A F(0)+ g (0) + 5+ [ B W(C)dg} ~(a—af) fg; ‘
> |rO+ s+ g o] [T wou] - -3 g,
A () + A%gg'(@) +a { ] O K(g)d(} + g
- -1y | [T ewi-anr
> |r@rrge)+al [ |+ g - -1 [Tumar] |
(68— b0) W;/((—Zf)o) [/000 n(7) exp(—)\T)dT]
— W(—Z) h T)dr
< [o-m Ty [ ]|
—a K<ZO) h c)ex —é C
-9 [ aom (22)o
K(Z) [ [ A
< |(a—a®) 700) [/0 &(c) exp <_EZO) dc} :
Therefore, we obtain
€\ &) > |€(0,2)] = 0.
The proof of Theorem 1.3.6 is finished. [ |

Corollary 1.3.8. For the standing wave solutions of the integral differehéiguation

(1.3), there hold the following results

Moreover, for all complex number # 0 with Re\ > 0, we have

E(N) # 0.
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Proof. The first half is easy to prove. Let us establish the secorfd W& have the

following estimates

AP0+ 2 b [ __ OW(()dg] (- ab)

K(0) ‘
2 .

¢'(0)
K(0) ‘
¢'(0)]”

> |F@)+ 5+ [ __ ' W(C)dg} (- af)

A f1(©) —l—a[ j: K(g)dc} +g

— (6—-100) CZE(ZOO) {/000 n(T) eXp(—)\T)dT}

> [r@rval [ rioad] + 2 - -0 5 O [ [*aimar]|.
5= ™) exp-anyar

< |o-wZ 2 [T,
oK [ e ()]

< (a—a@KZO [/ £(e) }

Therefore, we obtain

[EN)] > 1€(0)] =
The proof of Corollary 1.3.8 is finished. |

Remark 1.3.9. The Evans function for the second standing wave solutiorysies
(1.1)-(2.2) and the Evans function for the second standiagensolution of equation
(1.3) also enjoy the properties mentioned in Theorem 1Théprem 1.3.6 and Corol-

lary 1.3.8.
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Figure 1.4: Graph of the Evans functiéii), ) for the nonlinear singularly perturbed
system of integral differential equations (1.1)-(1.2)lwsmalle. In this grapha = 2,
b=2a=5p=5¢=10,0=2,0 =2, flu) =u—1,gu) = u— 2,

K(z) = gexp(—|zl), W(x) = 3|z| exp(—|x|) andn(r) = exp(-7).

1.3.3 Stability on the interval (g(, o)

Theorem 1.3.10.For all ¢ € (g9, ), the standing wave solutiorg and ¢, of the
singularly perturbed system of integral differential etjoas (1.1)-(1.2) with general

functionsf(u) and g(u) are exponentially stable.

Proof. For the standing wave solutiogs and¢,, there exists no nonzero solution
to the eigenvalue problemfi(\):) = A in the region R& > —e. Moreover, the neutral
eigenvalue\ = 0 is simple. By using the linearized stability criterion, wedithat the
standing wave solutions of the system (1.1)-(1.2) are eaptally stable. The proof of

Theorem 1.3.10 is finished. n

Corollary 1.3.11. The standing wave solutiorg and ¢, of the scalar integral differ-

ential equation (1.3) are exponentially stable.

Proof. The proof of Corollary 1.3.11 is very similar to that of Theor 1.3.10 and
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it is omitted. n

15 2 25

Figure 1.5: Graph of the Evans functigi{\) for the nonlinear integral differential
equation (1.3). Inthisgraph,= 2,0 =2, =5,=5,0=2,0 =2, f(u) = u — 1,

K(z) = gexp(—|z|), W(x) = 3|z| exp(—|z|) andy(r) = exp(—7).

1.3.4 Instability on the interval (0, &¢)

Theorem 1.3.12.For all ¢ € (0,¢), the standing wave solutions and ¢, of the
nonlinear singularly perturbed system of integral diffetial equations (1.1)-(1.2) with

general functiong (u) andg(u) are exponentially unstable.

Proof. For the standing wave solutiogs and ¢, there exists a positive eigenvalue
A1(e) > 0 to the eigenvalue problemi(\)) = A\ in the region Ra > —e. By the
linearized stability criterion, we see the standing wavieltsans of the system (1.1)-

(1.2) are exponentially unstable. The proof of Theoreml2.& finished. [ |
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1.3.5 Examples

Choose the model parameters and functions in the followiag w

a = f[f=
a = b=2,
§ — =2
k= m=1,
n = 1, =2,
f) = -l gl =u-2
K@) = gesp(-lel), W) = glalf exp(~a)

ThenZ, =0 and

| x©u

| Ko

p=0,1
1
5 exp(z), forallx <0,
1
1- 5 exp(—x), forall z > 0,
1
3 exp(—x), forall z > 0,
1
1-— 5 exp(x), forall x < 0.
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Example 1.Letp = 0, thatisW (z) = 1 exp(—|z|). Then

p1(z) = %, forall z < 0,

¢1(z) = 163—_25;(;)((—_;))’ forallz >0,
Pa(x) = ;’Bi—gg:g, forall z > 0,
Pa(z) = %m, forall z < 0,
¢3(z) = 112%238, forall z < 0,

oaa) = Gy orallez0,
Pa(x) = igg—zigig, forall z > 0,
Ga(w) = %m, forall z < 0.

Example 2.Letp = 1, that isW (z) = %|z| exp(—|z|). Then
EN) = AMA+3),
() = 2\+3,

ENe) = {

vl o]
9 = 2 WH HJ die=d]

Example 3.Letp = 1, that isW (z) = 1|z| exp(—|z|). Then

gy — 1,
)\0<6) = \/g - &
A(e) = 1—e
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Figure 1.6: Graph of the derivative of the Evans functag(o,g) for the nonlinear
singularly perturbed system of integral differential efjpas (1.1)-(1.2). In this graph,

a=b=2,a=0=5¢¢€(0,x),0 =0=2 fluy=u—-1, gu) = u-—2,
K(z) = exp(—|z|), W(z) = 3|z|exp(—|z|) andn(r) = exp(—7).

1.4 Concluding Remarks

1.4.1 Summary

For the nonlinear singularly perturbed system of integréiéential equations (1.1)-

(1.2), suppose that the functiofs> 0 andn > 0 on (0, o), suppose thaf(u) + g(u) =
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m(u —n) + k(u — [) and suppose also that there exists a real nuper 0, such that

K(—x) = K(z), forall z € R, and [ K(x)dx =1,

W(—x) =W(x), forall z € R, and [ W(z)dz =1,
/0 &(e)de=1, /0 n(r)dr =1,

1 o0
/0 Eg(c)dc < 00, /0 n(T)dT < 00,

A

k+m+a/_m K(C)d§+b/ W(()d¢ > 0, forall x € R,

—0o0

—Z

FO)+gO) +5+b [ WO >0,

—00

Zo

F(O)+¢©) +a [ KQdc+ 7 >0,

—0o0

a # aB, B # b,

)

k +mn<6<®<a+5+kl+mn
k+m a+b+k+m

(v —ab)K(z) + (8 — bO)W (x — Zy) > 0, forallz € R,

)

(o —a®O)K(z)+ (8 —bO)W (x — Zy) > 0, forall x € R,
(v —ab)K(0) + (B —bO)W(—Zp) > 0,

(o —a©)K(Zy) + (B — b©)W(0) > 0,

“o 2kl +2 — (2k +2m +b)©
i K(C)d¢ = + mn;(i@ﬁa)%— m + b) ’
—% 2kl +2mn + o — (2k +2m 4+ a)0

then there exist two standing wave solutighs= ¢ () andg, = ¢2(x), such thaty; <
6 on(—o00,0),¢1(0) =0 andp; > 6 on(0,00); 1 < © on(—o0, Zy), p1(Zy) = © and
¢1 > O on(Zy,00). Similarly, po > 6 on (—o0,0), ¢2(0) = 6 andgp, < 6 on (0, co);
¢a > O 0N (—00, —Zy), p2(—Zy) = © andep, < O on(—Zp, o).

If f(u)+g(u) =u(u—1)(Du—1)is a cubic polynomial function, then these results
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are also correct.

Additionally, if 0 < £ < gy, then the standing wave solutions are unstable. However,
if £ > g9, then the standing wave solutions are stable. The resulthéosystem are
surprisingly interesting in mathematical neuroscience.

For the scalar integral differential equationfifu) = m(u — n) and

a+ B+ kl+mn
a+b+k+m

a+ B +2mn=(a+b+2m)b, n<f=0< ,

(v —al)K(z) + (B — b0)W (z) > 0, forall z € R,

(a—af)K(0)+ (8 —0b8)IW(0) > 0,

then there exist two standing waves solutions.f lis a cubic function, then similar
results are also true. Additionally,(if—b0)1/ (0) > 0, then the standing wave solutions
are stable.

It is worth mentioning that for the scalar integral diffetiah equation (1.3), the
standing wave solutions are always stable. While for thdinear singularly perturbed
system of integral differential equations (1.1)-(1.2)eethough the parametermplays
no role in the existence analysis, it does play a very imporile in the stability anal-
ysis. In particular, as crosses, the instability and stability of the standing wave

solutions are interchanged.

1.4.2 Open Problems

Under different conditions on the model parameters andtiommg, there may exist
standing pulse solutions rather than standing front smigti But these problems have

not been investigated rigorously.
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Chapter 2

Influence of Sodium Currents

2.1 Introduction

Wave propagation in synaptically coupled neuronal netwalof great research interest
in computational neuroscience and in applied mathemakitasmy mathematical mod-
els have been proposed to describe the propagation of maprdses. Mathematically,
traveling waves share the same properties as nerve imputtegspropagate with con-
stant shapes and constant velocities. Therefore, it ionadnte to use traveling waves to
model the propagation of nerve impulses. Traveling waveg aso represent the stim-
uliin the turtle visual cortex [48] and cat visual cortex [28s well as cortical epilepsy
[11] and migraine [43]. Let us briefly review how a nerve inmgmils generated. Once
a cell membrane potential reaches a threshold, active soidin conductance gates are
opened and an inward flow of sodium ions results, causingdudepolarization. This
depolarization increases sodium conductance, consdyguraiicing more sodium cur-
rent. This iterative cycle continues driving the membraateptial to sodium reversal
potential, and concludes with the closure of the sodiumsyate we can easily see, the
sodium current is the first cause of the nerve impulse. Rgugiaking, in a three-
dimensional phase space, a traveling pulse solution ($hat nerve impulse) consists

of four pieces: the traveling wave front, the right, the &lavg wave back and the left
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(recovery period). The traveling wave front is essentidlle to the fast movement of
sodium ions from the exterior to the interior of the cell mearte and the traveling wave
back is essentially due to the movement of the potassiumfrons the interior to the
exterior of the membrane. Without the sodium current, thexeld be no traveling wave
front, thus no pulse would exist.

The focus of this chapter is to investigate the influence dfisa currents (through
voltage gated channels, modeled with nonlinear functieas,[34], [21] and [30]) on
wave speeds of traveling wave fronts. There are many bicébgnechanisms to influ-
ence the speeds of traveling wave fronts. Mathematicakywant to apply the model
equations derived from neuroscience to investigate howrtbéehanisms influence the
wave speeds. On the other hand, to keep things simple, we ssayn@ that some
mechanisms are fixed while others change. Motivated by deia,iwe will investigate

the influence of sodium currents on wave speeds.

2.1.1 Model equations and biological backgrounds

Consider the following nonlinear singularly perturbedteyss of integral differential

equations
%+f(u)+w = o | K@ —y)H(uly1) - 0)dy, (2.1)
W= () ), (22)

and

@%—f(u)%—w = a/ﬂ{K(x—y)H(u(y,t—;x—gA)—H)dy, (2.3)

ot
ow

i E(g(u)—vw), (2.4)

respectively, wher@® < ¢ < oo in (2.3)-(2.4). See Amari [3], Bressloff [8], Bressloff

and Folias [9], Bressloff, Folias, Prat and Li [45], CoomlpE2], Coombes, Lord and
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Owen [13], Coombes and Owen [14], Ermentrout [19], Ermaritemd McLeod [20],
Ermentrout and Terman [21], Folias and Bressloff [26]-[&ihto and Ermentrout [46],
Pinto, Jackson and Wayne [17], Terman, Ermentrout and Ye\y dhd Zhang [60]-
[59]. The parameters are consistent with the models prelyalescribed. In addition
we note that > 0 represents the finite propagation speed of an action patexiting
an axon, andi»|x — y| denotes the spatial temporal delay. The functign) usually
represents sodium currents across the cell membrane. Tétgoopular sodium current
function is f.(u) = u(u — 1)(Du — 1), whereD > 0 is a constant. Another popular
function is fy(u) = u. Biologically speaking, the cubic representation is muettdy
than the linear representation to model sodium currentusecaodium channels are
voltage gated channels (in another word, sodium conduetahould be a function of
voltage). On the other hand, mathematically, a linear fongs much better than a cubic
function because a linear function is easy to handle. Naeith = 0 andw = 0, then

(2.1)-(2.2) and (2.3)-(2.4) reduce to the following scafaegral differential equations

% + f(u) = oz/RK(:c —y)H (u(y,t) — 0)dy, (2.5)

(2.6)

%—'—f(U) za/RK(x—y)H (u <y,t— %Ifﬂ—y\) —9> dy, (2.7)

respectively, wheré < ¢ < ocoin (2.7). Additionally, if f (u) = m(u—n), wherem > 0

andn € R are real constants, then (2.5) and (2.7) become the patieglations

G mlu=m =a [ Ko=) () = o)y, (2.8)

and

v —a [ K-t (u(p=To—sl) ~0)an @9
R C

We may interpret the constant as the sodium conductance and the constaaxt the

sodium reversal potential. To investigate the speeds dbstdraveling pulse solutions
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of (2.1)-(2.2) and (2.3)-(2.4), we will study the speedstd traveling wave fronts of
(2.5) and (2.7), respectively.

In this chapter, we will investigate the general scalargraédifferential equation

—+f —a/Kx— (u (y,t—%|x—y|) —9) dy, (2.10)

where0) < ¢ < oo, @« > 0 andf > 0 are constants. This model includes (2.5) if
¢ = oo and includes (2.7) il < ¢ < oo. The model equation involves both sodium
current function (in particularf (u) could represent the cubic polynomial function) and
the spatial temporal delay. That is why it is more realistiart any previouscalar
integral differential equations. See [6], [7], [15], [18B2], [33], [39], [40], [41] and
[42] for more information of the model equations (1)-(2).32(2.4), (2.5), (2.7), (2.8),
(2.9) and (2.10). See [2], [4]-[5], [10], [22], [23], [24]25], [29], [31], [38], [49], [50],
[51], [52], [56]-[57] for related model equations.

As well known, the cubic polynomial functiofa(u) = u(u—1)(Du—1) is the most
popular function used to describe sodium currents in nalnogtworks, see Borisyuk,
Ermentrout, Friedman and Terman [1], Hodgkin and Huxley},[a@d Zhang [61]. It
is not surprising to see that the linear functifyiu) = w is the simplest function for
sodium current, it may be viewed as a linear approximatiothefcubic polynomial
function, see [9]-[45], [12]-[15], [18], [46], [17], [52]rad [60]. The sodium current
may be perturbed by many factors. fif(u) = wu is the correct function for sodium
current, then we may think that, (u) = %sinh(Du) andf_(u) = %tanh(Du) are
perturbations off,(u) = v onRR, whereD > 0 is a constant. Note that

sinh(Du) . tanh(Du)
im ——— = u, im ———= = u.
D—0 D D—0

1 1 : . .
If fi(u) = 5 sinh(Du) or f_(u) = 5tamh(Du) describes sodium currents in neu-
1 1 :
ronal networks, thep, (u) = Du sinh(Du) ory_(u) = Du tanh(Du) may be viewed
u Uu
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as sodium conductance in these networks (assuming thatrsa@versal potential is
zero). Here we may interpré? as a biological perturbation parameter. It is worth men-
tioning that there are other nonlinear functions respdeasdr the sodium currents. For
example, the sodium current functions in the Morris-Leaguragions [21], in the ring
model [19] and in the Pelinovsky-Yakhno equations [19],difierent from those men-
tioned above. These sodium current functions are derisslEsed on Ohm'’s law, but

with different formulations of sodium conductance.

2.1.2 The mathematical assumptions

Mathematically, the functiorf (u) satisfiesf(n) = 0, f'(n) > 0, andf’(u) > 0 for all
sufficiently largeu > 0, wheren is a constant, representing sodium reversal potential.
Suppose thal < 2f(0) < a.

Notice that if the synaptic coupling is in classes (A) or (C), then the traveling
wave front is nonnegative, for all € R, see [62], [63], [64]. However, if the synaptic
coupling K is in class (B), then the traveling wave front is negative oms interval
(—o00,—N), whereN > 0 is some constant, depending &in see [64]. Theén, co) in-
dicates that while assumptions are made on the inténvab) if the synaptic couplings
are in classes (A) or (C), the same assumptions should be omdle- (—oo, 00) if the
synaptic couplings are in class (B). More assumptions wliiade in Section 2 for the

functions and parameters of the model equations.

2.1.3 The speed index functions

Motivation of a speed index function.Consider the scalar integral differential equation

0
Ziu= a/ K(z —y)H (u(y,t) — 0)dy,
ot R
where« and @ are constants such that< 20 < a. Suppose that the front satisfies
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U0)=0,U < 6on(—oc0,0)andU > 6 on (0, c0). Then the traveling wave equation

becomes a non homogeneous, first order, linear ordinamrdiffial equation

I/U/—i-U:oz/RK(z—y)H(U(y)—G)dy:oz/_z K(z)dz

There exists a unique traveling wave fratit:, t) = U(x + vt) to this equation, explic-

U(z) = / K(z dx—a/ exp(x;oz)K(x)dx,

V) = ] ew (’C — Z) K(z)dz,

14 )

itly

wherev, is the wave speed and= x + 14t is the moving coordinate. The wave speed

vy IS the unique positive solution of the equation

a/o exp <£> K(x)dxz%—@.

oo v
This last equation is equivalent t6(0) = 6.
The functiong(v) = « f exp (£) K (z)dx is called the speed index function for that
integral differential equation, see [62]-[64].

Speeds play a very important role in the study of travelingeseof nonlinear inte-
gral differential equations. Indeed, once the speed isdpthre traveling wave solution
is easy to solve by using techniques in differential equatidvioreover, the speeds are
closely related to the stability of traveling waves. Initety, stable waves are the most
important solutions. We have developed a method to congtraspeed index functions
for equations (2.8) and (2.9), see [64]. The speed indextifume are very interesting
and important. There exists a solution to the equation = % — 6, which involves
the speed index function and the intrinsic parameters,uthigue solution is precisely
the speed of the front. Through this, we are able to inveigtigaw the speed depends

on various parameters such@sé andc, as well as the synaptic coupling. Many
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estimates and asymptotic behaviors of the speed as the @@m@napproach certain
numbers can be investigated very clearly. More appropyiatee speed index function
should be called biological mechanism index function beedtiinvolves so many pa-
rameters (again, # andc) representing biological mechanisms. By using propedies
the speed index functions, we may be able to prove a simplelégant identity, which
connects the speed of the front of the model (2.9) where therspatial temporal delay
to the speed of the front of the model (2.8) where there is tayd€or the special case
m = 1 andn = 0, see [64].

It is very difficult to formulate a speed index function for.1R) with a general non-
linear functionf (u). Even if we are able to find the speed index function wiién) is
nonlinear, it may be very complicated, and turns out to beoatraseless. Therefore, we
will use the speed index functions for (2.8) and (2.9) wité garticular linear function
fi(u) = m(u — n) to derive estimates on wave speeds of (2.10) with nonlineae-f
tion f(u). Roughly speaking, we are going to treat the problem (2.1f) monlinear
function f(u) as a perturbation of the problems (2.8) and (2.9) with theiapénear

function f;(u) = m(u — n).
2.1.4 Known results and open problems

Given any nonnegative kernel functidi, the existence, uniqueness and stability of
the fast traveling pulse solution of the nonlinear singylperturbed system of integral
differential equations (2.1)-(2.2) and (2.3)-(2.4), resively, and the existence, unique-
ness and stability of the traveling wave front of the scatéegral differential equation
(2.5) and (2.7), respectively, have been rigorously esstiabdl before. See [10], [13],
[14], [39], [46], [17], [52], [60]-[59]. Moreover, the exisnce, uniqueness and/or stabil-

ity of standing waves [29] and [46], spiral waves [40], anadthing waves [54] of similar
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model equations have also been numerically or analytiesitgblished (partially). Let

us provide some concrete results about the traveling waves.

Theorem 2.1.1.Letm > 0, n € R, a andf be four appropriate real constants and
let f(u) be a smooth function defined & such thatf(n) = 0, m = f'(n) > 0 and
0 < 2f(0) < «a, and the equatiorf(U) = « has a unique solutiod/ = 5 > 6,
such thatf’(5) > 0. Then there exists a unique traveling wave froht= Up,n(+) tO
equation (2.10), such th&f(0) = 0, U < # on(—o0,0) andU > 6 on (0, c0), where
z = x + upt and o represents the unique positive speed. The traveling wave fr

satisfies the differential equations
' _ _ _Hoy, ) =
wU"+ F0) = o [ K= (U (5="21z = 1) =) dy

cz/(c+s(z)po)
= a/ K(z)dz,

wheres(z) = —1 forz < 0, s(0) = 0 ands(x) = 1 for z > 0. The traveling wave front

enjoys the decay estimates

IN

U()] < Cexp(=plz[), on  (=00,0),

U(z) =Bl < Cexp(—plz]), on  (0,00),

U'(2)] < Cexp(—plz]), on R,
whereC' > 0 andp > 0 are positive constants.
See [13], [61] and [64].

Theorem 2.1.2.(Pinto and Ermentrout [46]) Consider the following nonlaresingu-

larly perturbed system of integral differential equations

%Jrquw = aAK(x—y)H(U(y7t)—9)dyv (2.11)
) (2.12)

50



Suppose that the parametess v and ¢ satisfy the condition® < 20 < « and

0 < ay < (1 4+ v)0. Then there exists a numbe§, 0 < ¢y < 1. For each fixed
singular perturbation parameter € (0, ¢,), there are exactly two positive wave speeds
Vslow (€) @Nnd s (€), With 0 < 150w (€) < vpast(€). There exists a slow traveling pulse
solution(U, W) = (Uslow(e, ), Walow (£, )) corresponding to the slow wave speed,,

and there exists a fast traveling pulse solutidh W) = (Utast (€, -), Wrast (€, -)) corre-
sponding to the fast wave speed;. Both the fast traveling pulse solution and the slow

traveling pulse solution satisfy the traveling wave equiadgi

vEe) U +U+W = /Kz— (U(y) —0)dy,

v(eW' = e(U—-W),
and the homogeneous boundary conditions

lim (U(e, 2),W(e, z)) = lim (U.(e, 2),W.(g,2)) = (0,0).

z—+o00 z—+oo

The same results are also correct for the systems (2.1)4B® (2.3)-(2.4) under
appropriate conditions ofiandg.

The slow pulse is unstable because there exists a posijgawlue to an associated
linear operator and biologically the slow pulse is not vertgresting. The fast traveling
pulse solution is of great importance and that is why Zha®g $6udied its stability.

By the construction and application of Evans functions anddupling ideas in dif-
ferential equations and functional analysis, Zhang amalyhe spectrum (in particular,
eigenvalues) of an associated linear differential opetréte), which is obtained by lin-
earizing the nonlinear system about the fast travelinggosddution. By using linearized
stability criterion, he demonstrated the exponential itglof the fast traveling pulse
solution in [60]. This is the first mathematically rigorousatsility result in the area of

nonlinear nonlocal neuronal networks.
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Theorem 2.1.3.Suppose that the positive parametars- 0,y > 0, > 0 andf > 0
satisfy the condition§ < 20 < «, 0 < ay < (1 + )0, ande € (0,g9) With 0 <
g9 < 1. Then the unique fast traveling pulse soluti@h W) = (Up.t (e, ), Whast (€, *))

is exponentially stable in the sensel6f(R) x L>*(R)-norm, ast — oo.

See [60].

Some preliminary results on the speeds of the traveling Viieres of (2.8) and
(2.9) have been obtained in [64], where= 1 andn = 0. Zhang has investigated the
influence of synaptic rate constamt thresholdd and action potential speedon the
wave speed.

Moreover, there have been some other nice results on simgael equations. It
seems that lateral inhibition supports and stabilizesdétgrwaves (see Guo and Chow
[29], Pinto and Ermentrout [46]) and lateral excitationde#o Turing-Hopf bifurcation
in delayed neuronal networks (see Atay and Hutt [6]).

The existence results in Theorem 2.1.1 and Theorem 2.1.Beg@noved by using
fixed point theorem or other techniques in dynamical systeses Coombes, Lord and
Owen [13], Coombes and Owen [14], Ermentrout and McLeod, [RBjto and Ermen-
trout [46], Pinto, Jackson and Wayne [17], Sandstede [5@]Zrang [60]-[61].

Suppose thaf € C*(R). If ¢ = oo, then the traveling wave front of (2.10) is as
smooth as the kernel functidk. If 0 < ¢ < co andK(0) # 0, then the front is at most
C' smooth.

If fis a nonlinear function such that the equatjdn) = « has no solution which is
larger than the threshold, then there exists no travelingeiimnt to equation (2.10). If
neither the equatiofi(u) = 0 nor the equatiorf(u) = « has a solution, then the sodium
current functionf causes wave propagation failure. For exampld) iis sufficiently

. . . . 1
large (i.e too much biological noises are present), theredn&anonﬁ tanh(Du) = «
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has no solution at all. If(u) = %(1 + tanhu) is used to describe a sodium current,
then it causes wave propagation failure because neitheqlhmion%(l + tanhu) =0
nor the equatiopér(l + tanh u) = a has a solution, where > 1.

For the integral differential equations (2.8) and (2.9),hage constructed the speed
index function and the stability index function by

o o () s0-1- gt ()

where the wave speed, is the unique solution of the equatieriy) = % — 0, see
[62]-[64]. The stability of the traveling wave front is det@ned completely by the
zeros of the stability index functiofi(\). The speed index function and the stability
index function may be used to study bifurcation of waves efrttodel equations, as the
parametersy, § andc vary.

Summary

The mathematical study of the traveling waves are motivatedeveral important
works in biology, see [11], [31], [36], [43], [16], [48], [38[28], [35] and [55].

By using mathematical analysis as a main technical tool\@stigation, we study
how wave speed of the traveling wave front of a scalar integjfeerential equation is
influenced by sodium currents.

If the sodium current functioyi in equation (2.10) is linear and the synaptic coupling
K is an exponential function or a delta function, then we canmate the wave speed
exactly. If f, (u) = %Sinh(Du) is used to describe the sodium current function, then
the speed is a decreasing function/ofwhereD > 0 is a real parameter. If_(u) =
%tanh(Du) is used to describe the sodium current function, then thedsean in-
creasing function oD, whereD > 0 is a real parameter. |f.(u) = u(u—1)(Du—1)is

used to describe the sodium current function, then the sgesdincreasing function of
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D, whereD > 0 is a parameter. For any nonlinear sodium current funcfier and for
any synaptic coupling( in the three classes, we can derive upper and lower bounds for
the wave speed. We can also compare the wave speeds of (2th@jfferent sodium
currents. In particular, stronger/weaker sodium currégitlg faster/slower propagation
speed, respectively, see Theorem 2.2.10 and Corollar§2.2.

These results are correct for the case oo (without spatial temporal delay) and the
casel) < ¢ < oo (with finite spatial temporal delay).

When investigating the influence of sodium current on wawsedpwe must keep
in mind that there are many reasonable ways to formulatedtieisi current function
f(u), see [34], [21] and [30]. That is why we study how the wave dgeenfluenced
by f(u). The sodium current functiofi(u) in (2.10) is similar to that in the Hodgkin-
Huxley equations, which is an empirical model where the wodcurrent is derived
using Ohm’s law and also using curve fitting through expoiaéfinctions. It is not a
physiological model based on physical laws or biologicabtty. The Fitzhugh-Nagumo
equations is a simplified version of the Hodgkin-Huxley dapres, see [37].

We hope the speed index functions will be helpful in estingathe speeds of spiral
waves and the speeds of other interesting waves and we wéntitoonnections and

applications of our results to neuroscience.

2.2 The Mathematical Analysis

In this section, we are going to provide rigorous matherahiiovestigations/analysis
of influence of sodium currents on wave speeds of (2.10), evtiex sodium current is
modeled with the nonlinear functigf{«) and the synaptic coupling is modeled with the
kernel function/’. We will use the speed index functions for (2.8) and (2.9)st@alelish

estimates and comparisons of wave speeds of the generaiceq{2al0).
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Definition 2.2.1. Letm > 0,¢ > 0, a > 0, p > 0 andv > 0 be positive parameters.

Define the speed index functiohgnd by

o(n) = a/_o exp (mc_ “x) K(z)dz, (2.13)

oo

Y(v) = a/_o exp (mf) K(x)dx. (2.14)

0o 14

The definition is motivated by Subsection 3.1.4 and the a|6&]-[64].
Please see Figure 2.2 below for the graphs of three speexifunietions.

Figure 2.1: Graph of three speed index functions (A) Speddxriunction for a pure
excitation (solid curve). (B) Speed index function for afal inhibition (dotted curve).
(C) Speed index function for a lateral excitation (dashetbturve).

Influence of Sodium Currents: Constant Conductance

In this case, the sodium currents are modeled with lineatctfons. In particular,

we are concerned witlfy(u) = w and f;(u) = m(u — n), wherem > 0 andn are real
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constants. As before; represents the sodium conductance amnepresents the sodium

reversal potential.

2.2.1 Influence of spatial temporal delay on wave speeds

Consider the model equations (2.8) and (2.9), that is

% +m(u—n)= a/RK(x—y)H(U(y,t) - Q)dy,

and

g—?—i-m(u—n):a K(x—y)H(u <y,t—1|x—y|) —9) dy.
c

R
See Coombes, Lord and Owen [13], Pinto and Ermentrout [4&doh integral differ-
ential equations. We want to associate the wave speedsdretive cas® < ¢ <
and the case = co. We will usevy( f;) andu( f;) to represent the wave speeds of (2.8)

and (2.9) with the special functiofi(u) = m(u — n), respectively.

Theorem 2.22.1fn< 0 <n+ 2i, then
m

There also hold the estimates

0 < po(fy) < min{e, vo(fi)}-

Proof. By using the uniqueness, we find

L1,
po(fy) ¢ wlfi)
The proof of Theorem 2.2.2 is finished. |
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Corollary 2.2.3.  (I) Let fi(u) = m(u — n) in equation (2.10), where: > 0 and
n € R are constants, such that< 6 < n + 2&. Then the wave speed enjoys the
m
limits

lim pg = 0, lim po = 1y,
c—0 c—00

wherevr, is the unique solution of

0
a/ exp (Tx) K(x)dx = 2 mb + mn.
— o0 IZ0) 2

(I) Suppose thak;(x) = £ exp(—p|z|), wherep > 0 is a constant. Then the wave

speed of (2.10) satisfies

1 1 pl0=n)
= — .
Ho ¢ §—m9+mn

As a function of the three parameters n andc, the speed,, is a decreasing
function ofm, an increasing function of and also an increasing function of

The speed enjoys the limits

. o .
rlnl£n>0 fo = o+ 2Cp(8 — n)’ m—)a}l(IZI(IG—n)) Ho = 0’
lim wy = 0, lim o = c,
n—0—5— n—0
limpy = 0 lim iy — a —2mb + 2mn
c—0 ’ c—00 2p(9 — n)

[6(z+p)+6(x—p)], wherep > 0

DN | —

(I1) Suppose that the synaptic couplitg (z) =

is a constant, then the wave speed

1 1 1 1 1 «
—=—-+4+—=-"4+—In )
o € Vg ¢ mp «—2mb+2mn
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It enjoys the limits

I cap I 0
1m = 1m =
ms0 0 ap+2c¢(0 —n)’ m—a/(2(0—n)) Ho ’
lim wy = 0, lim po = c,
n—0—5— n—0

. . 1

limpy = 0, lim pg = mp a

c—0 c—00 n

a —2mb + 2mn

Proof. It is straightforward and omitted. [ |

Please see Figure 2.2.1, Figure 2.2.1 and Figure 2.2.1dalgpendence of the wave

speed on the parametdrs, n), («, #) and(c, p).

Figure 2.2: In this graph; = 10, a = 5,0 = 2, p =1, f(u) = m(u — n) and K (z) =
1 . . :
5 exp(—|z|). Influence of sodium conductanee and sodium reversal potentialon

speeds:u = p(m,n), wherem € [1,2] andn € [1,1.75]. The wave speed is a
decreasing function of» and it is an increasing function of. For the dotted curve,
m = 1.0. For the solid curve;n = 1.333. For the dash-dotted curve, = 1.666. For
the dashed curvep = 2.0.

58



H(B)

Figure 2.3: In this graphyn = 1, n = 0,¢c = 10, p = 1, f(u) = vand K(x) =
1exp(—\:c|). Influence of synaptic rate constamtand threshold) on speed:y =

wu(a, 8), wherea € [4,6] andd € [0.5,2]. The wave speed is an increasing function
of « and it is a decreasing function 6f For the dotted curvey = 4.0. For the solid
curve,a = 4.5. For the dash-dotted curve,= 5.0. For the dashed curve,= 5.5.

2.2.2 Influence of related threshold on wave speeds

We would like to investigate the influence of related thrédbon (6 — n)/«, on the

wave speeds of (2.10).
Theorem 2.2.4.Consider (2.10) with two pairs of parametérs,, 61, n;) and
(cva, 02, m5) and two functiong; (u) = m(u — ny) and fo(u) = m(u — ny), such that

0 < m(@l — nl) < m(92 — ng).

(03] 9
We have the estimaﬁ@(ag, 92, 7’L2) < ul(al, 91, nl). In partiCl,”ar, if 91 —ny < 92 — Ty

anda1 = Qg, then,ug(OéQ,eg,HQ) < ul(al,ﬁl,nl). If a1 > Qo and91 —ny = 92 — No,
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0.4

0.35f

0.3

H(p)

0.25

0.2

0.15} —
0.5 1 15

Figure 2.4: In this graphyn = 1, n = 0, « = 5, 0 = 2 and f(u) = u. Let the
synaptic couplingk (z) = geXp(—p|x|). Influence of speed of action potentiahnd

distribution constanp on wave speedu = u(c, p), wherec € [1,4] andp € [0.5, 1.5].
The wave speeg is an increasing function aof and it is a decreasing function of
For the dotted curve; = 1.0. For the solid curve; = 1.4. For the dash-dotted curve,
¢ = 2.2. For the dashed curve = 4.0.

then,ug(ag, 92, ng) < ,Ul(Oél, 91, nl).

Proof. The wave speeds of (2.10) satisfy the following equations

1 0 — —
5—/ exp(mC Mlx)K(m)dx:M,

—o0 Cl1 o351
and
% - /_io exp (mcc_ujzx> K(x)dzx = mbz — mnz ;Zmnz.
Since

i o= oo (5 e

60



m [0 c—
=—— |x| exp [ m
12 J o cul

1 0 c—u
5—/_Ooexp (m ” 93) K(x)dx

is a strictly decreasing function of Thus, we find that

'ux) K(x)dz <0,

the function

pa(ag, Oy, no) < py(aq, 01,n1), if m(f —ni) < m(6y — n2).
aq Q9

The proof of Theorem 2.2.4 is completed. |
Suppose that a neuron located at positiaa coupled with only two neurons which
are located at + p, wherep > 0 is a constant. This coupling may be described with

delta functions.

Corollary 2.2.5. Let f(u) = v and K (z) = %[6(9: +p) +6(xz — p)], wherep > Ois a

constant. Consider equation (2.10) with two groups of pasars(«, 6;) and(«s, 6),

where
81 1 82 1
I<—< = 0< —=<=.
(03] 27 (6) 2
Then the speeds satisfy
1 1 1 (05) 1 1 1 (0]
———=-+-In , =—+-In—F"—.
pwlon,01,p) ¢ p o ap—20, plaz,0a,p) ¢ p ay—20,
If
0, 0,
(03] Oég’

then there holds the estimate
(g, 02) < py(aq,by).
Proof. Itis straightforward and omitted. [ |

Please see Figure 2.2.2 for the dependence of the wave spdbd parametera

andg.
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0/a

Figure 2.5: In this graph; = 10, p = 10, f(u) = vandK (z) = %[5(:):+p)+5(x—p)].
Graph ofu = uo(6/a), whered/a € [0, 0.5]. The wave speed is a decreasing function
of 6/«

2.2.3 Influence of on-center and off-center kernel functioa

We would like to investigate the influence of an on-centenkefunction and an off-

center kernel function on the wave speeds of (2.10).

Theorem 2.2.6.Let f;(u) = m(u — n) in (2.10). Given a kernel functioR () in class

(A), (B) or (C), letK (d, -) be defined by

K(x +d), forall z < —d,
K(d,z) =4 K(z—d), forall x> +d,
0, forall |z| <d,

whered > 0 is a parameter. Then the wave speed of (2.10) is an incredsimgion of

d, thatis,pu(dy) > u(dy) > p(0), for all dy > d; > 0. Furthermore

c? @

lim p(d) =c and lim {dlc—p(d)]} = —1In

d—>00 d—oo m o —2mb + 2mn’
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Proof. We have defined the speed index functigip) by

o(u) = a/O exp (mc - “g:) K(x)d.

o cp

For K(d, -), we have

o(d,p) = a/o exp (mc_ “x) K(d, z)dx

o cp
—d .
= a/ exp (mc 'ux) K(z + d)dx
s cp
— 0 —_—
= aexp <—mc ud) / exp <mc Mx) K(z)dx
cp . cp
C —_—
- o (o
cp

Hence for each fixed number € (0,c¢), if ¢(u) > 0, then the functions(d, i) is

monotonically decreasing i, for all kernel functions in classes (A), (B) and (C). The

speedu(d) is a solution of the equation(d, x«(d)) = % — m#@ + mn. Explicitly

a /_(; exp {m%’(“g)d)(x . d)] K(z)dz = % — mf + mn.

Differentiating this equation with respect #owe obtain

o A0 o 8] o

—00

That is

1/ (d) /_ (;(d — ) exp {mcc_ué)d) (z — d)] K(z)dz

_ { u(d) — me } /_ io exp [mcc_ué)d) (- d)} K (2)dz.

Recall that

/_Ooo(d — ) exp {m%ég;l)(x — d)} K(z)dz >0,

O J—
/ exp mci,u(d)@ — d)] K(z)dx > 0,
0 < pu(d) <c, foralld > 0.

cp(d)
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Thus, 1/(d) > 0. Note thatK may be in any of the three classes, i.e. the synaptic
coupling could be a pure excitation, lateral inhibition atelral excitation. Regardless if
the spatial temporal delay is present (either oo or 0 < ¢ < o0), the wave speed is an

increasing function ofl. Furthermore, it is straightforward to show that the limit

lim p(d) = ¢,

d—o00
exists. Additionally, suppose thdfc — p(d)] — L, asd — oo, whereL > 0 is a

constant. From

¢ — p(d)
cp(d)

o

d] S(u(d)) = & — b+ mn,

exp [—m

we find

But ¢(c) = % Thus

C «
=—1 .
L m na—2m9+2mn
Therefore
c? a
; _ =1 .
dlggo {d[c ,u(d)]} m . a —2mb + 2mn
The proof of Theorem 2.2.6 is completed. |

The interesting point is that the result is true for@ak ¢ < oo and for alld > 0.

Corollary 2.2.7. Let fi(u) = m(u — n) and K (z) = = [6(z + p) + 6(z — p)], where

N —

m > 0,n € Randp > 0 are constants. Then

K(d,z)==[6(x +d+p)+d(x—d—p)].

N —

The wave speedg0) and x(d) satisfy

1 1 n 1 | o
- = _ —In
w@) ¢ mp  a—2mb+2mn’
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and

1 1 1 o

1
p(d) c+m(p—i—d) o= 2mb + 2mn’

respectively. The speedd) is an increasing function af and ;(0) < u(d) < ¢, for all

d> 0.

Proof. It is straightforward and omitted. [ |

Please see Figure 2.2.3 for the dependence of the wave spéeel parametet.

0 100 200 300 400 500

Figure 2.6: In this graph; = 10, = 5,0 = 2, p = 10 and f(u) = u. Let K(d, z) =

% [6(z + p+d) + 6(x — p — d)]. The graph of the wave spegd= 1,(d). The wave
speedu is an increasing function af.

Influence of Sodium Currents: Voltage Related Conductance
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In this part, the sodium currents are modeled with nonlifigactions. In particular,
we are concerned witfy, (u) = %sinh(Du), f-(u) = %tanh(Du), whereD > 0is a
constant, and the cubic polynomial functififfu) = u(u—1)(Du—1), whereD > 0 is
also a constant. We will use(f) andp(f) to represent the wave speeds of (2.5) and

(2.7) with general nonlinear functiof{«), respectively.

2.2.4 Approximations of wave speeds

Given a nonlinear functiori(u), we would like to use a reasonable linear functfpfu)
to approximate the nonlinear function. There are many waydotthis. Suppose that
fi(u) = m(u — n). To determine the constants andn, we use an average idea. The
average off and f; over [0, 6] should be the same, and the averagg’adind f; over

[0, 6] should also be the same:

%/Oef(u)du = %/Oem(u—”)duj
i Plode = 1 / .

Solving the system, assuming thd®) > f(0), we find

1 0
m=T g ":5_f<9>—f<0>/of<“>d“'

Therefore, we obtain the linear function

f0) - f(0)  f(O)—f©O) 1 [
= u— 5 +5/0 f(u)du.

This approximation makes sense becaugeiiself is linear, thenf; = f.
Given any nonlinear functioifi(u), if f(¢#) > f(0), then we may generate the linear

function f;(u) in the above way. Let us consider an approximate equatid@{pwith
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the linear functionf;(v) = m(u — n):

(Z—T;er(u—n):a/RK(:c—y)H (u (y,t—ax—y\) —9) dy. (2.10%)

The approximate wave spegg,,, satisfies the equation

0 E—
a/ exp (mc 'ux) K(z)dx = Y b+ mn.
oo cu 2

Theorem 2.2.8.The wave speed satisfies the estimate

1o — Happr| < In [1 + urg[%%} | f(u) —m(u— n)”

Proof. Denote by, and ., the wave speeds of the traveling wave fronts of the

equations. Then (see Appendix)

o el etsEmap)
Uappr (2) = n+—/ K(z)dz
m —0o0

a [ m c cT
- — exp (x — z)} K < ) dz,
m /—oo lﬂappr c+ S(x)luappr c+ 5($)Uappr

and

o [ellersEm)
Ulz) = n+—/ K(z)dx
m — o

B g/Z o {%(x _Z)} c+SC(93)M0K <C+§(xx)“°) v

- o / Z exp {f’(n)x - } [F'(n)(U(x) — n) — f(U(x))]d.

Letting z = 0 in these solution representations, noticing gy, (0) = U(0) = 6 and

1
ffoo K(z)dz = 5 we have

0
o o mx C Ccx
0:n+———/ exp( ) K( )dx,
2m m J_« Mappr / € — Happr C — [Mappr
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and

=g [ o () e (75 o
to [ e () (@) - ) - f(O))ar

By using an intermediate value theorem, we may write

1 [* m
N exp <E) [m(U(z) —n) — f(U(x))]dz

0 JR—
= j:/ exp (/-zx + mx) K(z)dz,

[e'e) Cllappr

for some real numbet. Hence we get

0
9:n+i_g/ eXp<m$) c K( cx )dl‘,
2m m J_ Mappr / € — Happr C — Happr

0
2m m J_ Mo /) € — o C— Mo

0 —
:I:/ exp <f~€x + mx) K(x)dz.

—0o0 appr

0
g/ exp(mx) ¢ K( o )dx
m J_so HMappr / € — Happr € — Happr
0
() (e
m J Ko/ €= [o €= Ho

0 p—
j:/ exp (H{L‘ + mx) K(z)dx.

[e'e) Cllappr

By uniqueness of the wave speed, the proof of Theorem 2. #riisked.

and

Therefore

Corollary 2.2.9. Application 1. Let
filw) = 5 sinh(Du),
Ki() = Lexp(—plal),
1
Ky(z) = 5[0z +p)+0(x —p)],

[o)]
(o]



whereD > 0 andp > 0 are constants. We have

1 0 cosh(DO) —1
mo= pgsh(Pl). n =5 D)
I 1
mn = o5 sinh(D@) — D79 [ cosh(DO) — 1].

The approximate speegs,,,, andv,,,, satisfy

1 1 1

= 4 7

Happr c Vappr
a —2mb + 2mn p
Vappr = 2p(0 — n) for Ky (x) = 2 exp(—plz|),
1 1
Vappr = mpl a ,for Ky(x) = 5[5(I—l—p)—|—5(:ﬁ—p)].
n

a — 2mb + 2mn

Application 2. Let

1
f-(u) = Etanh(Du)
Fi(@) = 5 exp(—pla])
Kolw) = 5[5+ p)+ 0 )],

whereD > 0 andp > 0 are constants. We have

1 0 Inf[cosh(D@)]
mo= pgtanh(De).  m=5 - D0
1 1
mn = 5 tanh(D6) — %9 In[cosh(D6)].

The approximate speegs,,,, andv,,,, satisfy

11 1
Happr c Vappr7
a — 2mb + 2mn p
Vappr = 2p(9_n) 7for K1<x> = ieXp(—pLT‘),
1 1
Vappr = mpl a ,for Ky(x) = 5 [6(z + p) + 6(z — p)].
n

a — 2mb + 2mn
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Application 3. Let

fe(w) = wu(u—1)(Du—1),
exp(—p|z|)

[6(z+ p) +0(z— p)],

N =N

whereD > 0 andp > 0 are constants. We have

m = (0—1)(D6—1),
0 1 D, 1+D, 1,
T3 9(9—1)(1)9—1)(49 5 ! 29)’
1 D, 14D, 1
mn = 29(9 1) (D6 —1) 49+ 3 0 29.
The approximate speegs,,,, andv,,,, satisfy
1 1 1
= — -+ ,
Happr € Vappr
_a—2mb +2mn P
Vappr = 2p(9_n) 7f0rK1('r)_2eXp( p‘l’|)7
1 1
Vappr = mp1 a ,forKg(x)25[5(x+p)+5(x—p)].
n

a — 2mb + 2mn

Proof. It is straightforward and omitted. [ |

2.2.5 Comparison of wave speeds

The next theorem investigates the influence of sodium ctgrem the wave speeds of

(2.10).

Theorem 2.2.10.Letm > 0 andn € R be two real constants, and l¢tand g be two

real functions such that

flu) <m(u—n) <g(u),  on(n,o0).
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Letu(x,t) = Up(x + pyst) andu(x,t) = U,(z + p4t) be the traveling wave fronts of

G+ 1 =a [ K- (u (e o -al) -0)
—+g —a/Ka:— (u(y,t—%|x—y|)—9)dy,

respectively, such thdf;(0) = U,(0) = 6, Uy < § andU, < 6 on (—o0,0), Us > 6

and

andU, > 6 on (0, c0), and the limits

lim Uf( ) Uf_, lim U( ) Ug_,

Z——00 Z——00

exist, wherd/;~ andU, ™ are real constants. Them; > 1. In particular, if addition-

ally f # g, then

Hf > Hg-

Proof. First of all, the fronts satisfy the traveling wave equasion
niy + £05) = a [ K=t (U (5= 2212~ vl) - 0) dy,
R

d
wherez = z + pst and’ = o and
z

11Uy + 9(Uy) = Oz/RK(z —y)H (Ug (y - %Iz - yl) - 9) dy,

wherez = x + p,t. Using the assumptions

f(u) Sm(u_n) Sg(u)a On(nan_l_e)a
we get
e/ (cHs()my)
U +m(Uy —n) > a/ K (z)dz,
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and
cz/(c+5(2)11g)
pUy +m(Uy, —n) < a/ K(z)dz,

—00

on (—oo, 0). Now, we find

cz/(cts(2)py)
m[Us(z) —n] > a/ K(x)dx

- /_oo o {Nﬁf@ - 2)} ¢+ Szx)ufK (C + zfx)uf) o

m [Ug(z) - n}

IN

cz/(c+5()itg)
a/ K(z)dx

—00

- /_oo o L%(x - Z)} c+ Sc(x)ugK (C + jfﬂ)ug) o

1
on (—o00,0). Let> = 0, recall that/°_ K (z)dz = 5+ We have

| R

0 J—
m(0 —n) =m[U;(0) —n] > = — a/ exp (mccu'ufx) K(x)dz.
— 00 f
Similarly, we have

m(0 —n) = m[U,(0) —n] <

(Sl
|
Q
\O
@
i
o
PR
3

o
Q||
=
<=
Q@
8
~
=
=
o
IS

Note that

d |« 0 c—
I {E—a/_mexp (m ” x) K(x)dx}

am [°
:—? |z| exp [ m

— 00

¢ 'ux) K(z)dz < 0.
cp

Therefore, it follows from the above inequalities that> 1,. Moreover, iff # g, then

wr > 11g. Now we have finished the proof of Theorem 2.2.10. |
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Corollary 2.2.11. Let fo(u) = w and f.(u) = u(u — 1)(Du — 1) onR, whereD > 0 is
a constant. Suppose that the functigh$u) and f_(u) satisfyf_(u) < fo(u) < fi(u)
on (0,00) and f.(u) < f_(u) on(0,0). Let ., uo, p— and p,. denote the wave speeds
of (2.10) with the functiong, (u), fo(u), f—(u) and f.(u), respectively. Then we have

the estimates

fy < o < i < fle-

Proof. Note that

fe(u) < f-(u) < fo(u) < fi(u)  on(0,6).

Applying the general estimates in Theorem 2.2.10, we cotaples proof of Corollary
2.2.11. [

Please see Figure 2.2.5 for the graphs of four sodium cuiwantions.

2.2.6 Estimates of the wave speeds

The next theorem provides the estimates of the wave speddslO) where the sodium

current function is bounded by a linear function.

Theorem 2.2.12. (l) Suppose thaf(u) > m(u — n) on(n,c0), such thatr < 6 <

n-+ i. Then
2m

0 —_—
a/ exp <mc Mox) K(x)dx < 2 mb + mn.
Clbo 2

—00

In particular, let the synaptic coupling, (z) = p exp(—plz|), wherep > 0 is a

2
constant, then
1 0—n 1
L plO0-—n) 1
c 5~ ml +mn Mo
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2.5

0 0.5 1 15 2

Figure 2.7: Graph of four sodium current functions:(u) = sinh u (dotted curve),
fo(u) = wu (solid curve), f_(u) = tanhu (dash-dotted curve) anfl.(u) = wu(u —
1)(3u — 1) (dashed curve).

Let the synaptic coupling’y(z) = %[5@ + p) + 0(z — p)], whereé represents

the Dirac delta impulse function and> 0 is a constant, then

11 5 1
St Ing -
¢ mp §—m9+mn Ho

(1) Suppose thaf (u) < m(u —n) on(n,c0), such that < § < n + %. Then

0 J—
S b+ mn < a/ exp (mc Mox) K(x)dx.
2 o0 Clig

In particular, let the synaptic coupling; (z) = gexp(—p\xb, wherep > 0 is a

constant, then

1 p(6 —n)
o

< .
§—m9+mn

1
Ho
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[6(x + p) + 6(z — p)], wherep > 0 is a

. . 1
Let the synaptic coupling(s(z) = 5

constant, then

(8
11 1 3

Ho € mp %—m9+mn.

(1) Suppose that there are real constamtg > 0 andn; € R, for k = 1,2, such that
mi(u—mn1) < flu) < mo(u —ny),

on (ny,00). Then

O —_
a/ exp (mlc Mox) K(z)dz < @ mi0 + minq,
Clbo 2

—00

0 _
a_ mel + mong < a/ exp (m2c 'uosc) K(x)dz.
2 0 Clio

In particular, let the synaptic coupling’,(z) = Bexp(—p|x ), p > 0is acon-

2

stant, then

Loopb-n) 11 pB-m)

C %_m19+m1n1_ﬂo_c %—m20+m2n2
provided that

n1<9<n1+2i, and n2<9<n2+i.

mq 2m2
. . 1 .

Let the synaptic coupling(,(z) = 3 [6(z + p) + 6(z — p)], wherep > 0 is a

constant, then
(6% (6%
11 5 1 1 1 5
C

-+ In & < :
c myp 5 —mq0 + ming Ho map 5 — mab + many




Proof. Letu(z,t) = U(z) be the traveling wave front of (2.10), whete= x + pt,
such that/(0) = 6, U < 6 on(—o0,0) andU > 6 on (0, c0), and the limitU — U~
exists, as — —oo, whereU ™ is a real constant. Then the integral differential equation

(2.10) becomes

ex/(cts(2)po)
uOU'+f(U):a/ K(z)dz.

—00

Moreover
cz/(c+s(2)po)
polU" +mi(U —nyp) < a/ K(z)dz,

—00

and
cz/(c+s(z)po)
U’ + mo(U —ng) > a/ K(x)dz,

— 00

on (—oo, 0). Solving these differential inequalities, we find

cz/(c+s(2)po)
mi[U(z) —ni] < a/ K(x)dx

o0

- /_oo o [%@ - Z>] ¢+ Sc(l“)uoK (c + jﬂf)ﬂo) o

cz/(c+s(z)po)
ma[U(z) —na] > a/ K(x)dx

oo

- /_oo o [%(x - Z)] ¢+ Sc(l“)uoK (c + EZ;)MO) o

on (—o0,0). In particular, letting: = 0, we have

0 —
- a/ exp <mlc Mox) K(z)dz,

o Clho

m1(9 — nl) S

| Q

and




In other words, we have the estimates

0 —_
a/ exp (mlc Mox) K(x)dx < ¢ mi0 + ming,
— 00 Clg 2

and

0 JR—
@ Mol + mony < a/ exp (mgc Mox) K(z)dx.
2 Clio

—00

For the synaptic coupling’, (z) = g exp(—p|z|), wherep > 0 is a constant, we have

1 p(6 —ni)
¢ % — m19 + miny Ho

1 0 —
Sy p(0 —ny)
C

a .
5 — m29 + Mono

For the synaptic coupling’,(z) = = [6(z + p) + 6(z — p)], wherep > 0 is a constant,

1
2
we have
(6] (6]
1 1 b) < 1 1 b)
&

1
ey — + In )
¢ myp 5 —mq0 + ming Ho map 5 — mab + many

<

The proof of Theorem 2.2.12 is completed. [ |

Corollary 2.2.13. () Let f(u) = w. Then

0 —_—
a/ exp <C MOx) K(x)dx = ')
oo clg 2

(I Let f(u) satisfyu < f(u) < f(@)u on (0, ). Then there hold the estimates




() Let f(u) satisfy@u < f(u) < uwon(0,0). Then there hold the estimates

a/O exp <@ﬂx) K(r)dr < &~ 7(6),

—o0 0 Clo

0 —
%—an/ exp(c MOx)K(m)dx.

—00 Clo
(IV) Let f(u) = u(u — 1)(Du — 1) satisfyu + f(0) — 0 < f(u) < won(0,6), where

D > 0is a constant. Then there hold the estimates

%—Qﬁa/O exp<C_M0$)K($)d93§%_f(9)'

PN Clo

Proof. The proof of Corollary 2.2.13 follows from Theorem 2.2.12. |
2.2.7 More delicate estimates
We will provide more delicate estimates on the wave speeds.
Theorem 2.2.14. (I) Suppose that
f(u) = filu) =m(u—mn), —on  (n,o0).

Thenuo(f) < po(f;) and

1 1 1 1
po(f) = pmo(fi) ¢ wl(fi)

V
Il

|
+

(I) Suppose that
fw) < filu) =m(u—mn), on  (n,o0).

Thenpo(f) > po(f:) and

Lo 1 1
wo(f) ~ mo(f) ¢ wl(f)
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(1) Suppose that
mi(u—mn1) = fi,(u) < f(u) < fi,(w) = ma(u — na), on (n, 00).

Then:“O(fh) S ,UO(f) S :u()(fh) and

1 1 1 1 1 1 1

-+ < < + :
¢ w(fn)  wo(fu) = wolf) = wo(f) ¢ wo(f)
Proof. By combining the results of Theorem 2.2.2, Theorem 2.2. XD &meorem

2.2.12, we finish the proof of Theorem 2.2.14 immediately. |

Corollary 2.2.15. Suppose that; (u — ny) = fi, (u) < f(u) < fi,(u) = mae(u — na),

for two positive constants;; andm, and two real constants; andn,

() Let Ky(z) = gexp(—pm), wherep > 0 is a constant. Then

1 n 1 < 1 < 1 n 1
¢ w(fn) = w(f) ¢ wl(fi)
where
L a— 2mq1 67 + 2ming
vo(fiy) = 0 —ny)
and
— 2mol 2
I/O(fl2) _ o moUs + ™mono

2p(0 —n2)

are the solutions of the equations

0
m _a
a/ exp [mx] Ki(x)dz = 5 mi0 + ming,

— o y

and

0

mo «
Q@ ex x| Ky(x)dr = = — maob + mona,
[ o [tie] e = 5~ mio

respectively.
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(I) Let Ky(z) =

N | —

[6(x + p) + 0(z — p)], wherep > 0 is a constant. Then

1 1 1

—_

) S D) S )

where
1 «
vo(fi,) N mip ta- 2mq6 + 2myny’
and
1 «
vo(f1,) - Map Mz 2mab + 2mansy
Proof. The proof follows from Theorem 2.2.14. [ |

2.2.8 Asymptotic behaviors of the wave speeds

The next theorem investigates the asymptotic behaviorseiviave speeds as the pa-

rameters tend to zero or infinity.

Theorem 2.2.16.

(I) Consider the integral differential equation (2.10) lvihe

. . 1 . "
sodium current functiotf, (u) = 5 sinh(Du). Given the positive constanis>

0 and# > 0, there exist two positive numbef%, , > 0 and D%;

by

and

(I-1) Forany D € (0, D

> 0, defined

sinh

D* Sinh<D:inh9) = %7

sinh

D** Sil’lh( :ltlhe) = Q.

sinh

), there exists a unique traveling wave frant= Up,on (),

such that/(0) =60, U < 6 on(—o0,0) andU > 6 on (0, co). Additionally,

lim U(z) =0,

Z——00

lim U(2) = Bsinn, lim U'(z) =0,

Z—00 z—Fo0

. 1
wheref,;,, > 6 is a constant such thazs sinh(D Bsinn) = .
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(I-2) Forany D € (D

D**

sinh’ ~"sinh

), there exists a unique traveling wave fralit =

Utont (), such thatU(0) = 6, U > 6 on (—o0,0) andU < 6 on (0,00). Ad-

ditionally,
lim U(z) = Bsinn, lim U(z) =0, lim U'(z) =0,
zZ——00 Z—00 z—Fo0

. 1
where 5., > 6 is a constant such tha{E sinh(DBsnn) = «. (I-3) The wave

speed enjoys the limits

lim jio(D) = po,  lim  po(D) = 0,

sinh

wherey, > 0 is the wave speed of the front of equation (2.7) with:) = u. For
anyD € (D%

sinh>

o0), there exists no traveling wave front.

(I) Consider the integral differential equation (2.10)tlvihe sodium current function

(II-1)

1
f-(u) = D tanh(Du). Leta > 0 andé > 0 be constants, such that< 6 < a.

There are two cases to consider. Case Onege K 6, then there exist two positive

numbersD;, , > 0andD;, >0, D, < D; ., defined by

1
* tanh(D;:kanhe) = g)
tanh 2
and
1 kk
o tanh(D;r . 0) = a.

tanh

1 : , :
Forany D ¢ (D;mh, —) , there exists a unique traveling wave front
(67

U = Ugont(+), such thatU(0) = 6, U < 6 on (—oo,0) andU > 6 on (0, o).

Additionally,
lim U(z) =0, lim U(z) = Banh, lim U'(z) =0,

. 1
wherep;..., > 6 is a constant such thazt5 tanh(D Biann) = .
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(I-2) For any D € (Dg .. D;,..). there exists a unique traveling wave fralit =

Utront (), such that/(0) = 0, U > # on(—o0,0) andU < 6 on (0, co). Addition-
ally,

lim U(z) = Biann, lim U(z) =0, lim U'(z) =0,

Z——00 Z—00 z—*+oo

. 1
where .., > 6 is a constant such thaﬁ tanh(DfBiann) = a. (11-3) The wave

speed enjoys the limit

lim po(D) = 0.

*
D—>Dtanh

1 . .
ForanyD € (0, D) U (—, oo) , there exists no traveling wave front.
(0%

Case Two: If

(6%
0 < —
27

1 . . .
then forallD € (0, —) , there exists a unique traveling wave front
(8

U = Ugont(+), such thatU(0) = 6, U < 6 on(—o0,0) andU > 6 on (0, c0).

Additionally,
lim U(z) =0, lim U(2) = Bianh, lim U'(z) =0,
Z——00 Z—00 z—+00

. 1
where 5.1, > 6 is a constant such thai5 tanh(Df.nn) = «. Moreover, the

wave speed enjoys the limit

li D) = li D) =
Dlg})uo() Lo, Dgg/auo() c,

wherey, > 0 is the wave speed of the front of equation (6) wigtw) = u. If

1 . .
D e (—, oo) , then there exists no traveling wave front.
(8
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(Il1) Consider the integral differential equation (2.10)tlvthe sodium current function

feubic(u) = u(u—1)(Du—1). Given the positive constants> 0 and0 < ¢ < 1,

there exist two real numbers; .. andD*,. , D . < Dz .. defined by
66— 1)(Diicf = 1) = 5.

and

(0 — 1)(D50 — 1) = a.

cubic
(IN-1) Forany D € (D} ., <), we have

6(0 —1)(D — 1) <

|

There exists a positive numbér= ..., such thats.,;. > 1 and
BB -1(DE-1) =a.
There exists a unique traveling wave frdnt= U (), Such thatU(0) = 6,

U < 6fon(—o0,0)andlU > 6 on (0, c0). Additionally, we have

lim U(z) =0, lim U(2) = Beubics lim U'(z) = 0.

Z——00 Z—00 Z—00

*
D cubic

(-2) Forany D € (D

cubic?

), we have
[0
5 < 00 —1)(DO—1) < a.
There exists a positive numbér= S..pi., such that3...;. > 1 and
BB—-1)(DB—1) =a.

There exists a unique traveling wave frdnt= U (), such thatU(0) = 6,

U > 6on(—o0,0)andU < #on(0,c0). Additionally, we have

lim U(2) = Beubics lim U(z) =0, lim U'(z) = 0.

Z——00 Z—00 Z—00
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The wave speed enjoys the limits

p e, FolP) =0 i polB) = e

cubic

Proof. The existence and uniqueness of each of the numbgrs, D%, D ..

sinh?

D** . D* . andD**

tanh? cubic cubic

are obviously true. LeD € (0, DZ_,). Then

sinh
0<—1 inh(D0) < —
D S 2’
and the equation
—1 inh(Du) =
sin u) = «,

has a unique solutiof;,,, > #. The existence and uniqueness of the traveling wave

front may be proved very easily. Lé&t € (D2, , DX

sinh» ~’sinh

). Then

1

<5 sinh(D0) < a,

| e

and the equation
_Dl inh(Du)
sinh(Du) = a,

has a unique solutiof;,,, > #. The existence and uniqueness of the traveling wave

front may be proved very easily. Ldd € (D%

sinh?

o0). Suppose that there exists a
solution 5, > 6 to the equationl% sinh(Du) = «, so that there exists a traveling
wave front connecting the fixed poibt = 0 at z = —oo to the fixed point/ = S,
atz = co. Note thatl sinh(D#) is an increasing function ap andi sinh(Du) is an

D D
increasing function of, if D > 0 is fixed. Therefore, we get

sinh(DZr,.0) = a.

sinh

1 . 1 . 1
a=3 sinh(D fsinn) > D sinh(D@) > e

sinh

This is a contradiction. Hence there is no traveling wavetfto equation (2.10) with

sinh?

fi(u) = %sinh(Du) if De (DX, 00).
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The mathematical analysis of the traveling wave front ofegigun (2.10) with
1 . I . . .
fo(u) = D tanh(Du) is very similar to the above analysis and is omitted.
LetD € (D

cubic?

o0). Then
(%
00 —1)(DO—1) < 5
and the equation
u(u—1)(Du—1) =«

has a solutio...,;c > 1. The existence and uniqueness of the traveling wave frogt ma

*
Dcubic

be proved very easily. LdD € (D

cubic?

). Then
«
5 < 00 —1)(DI—1) < a,
and the equation
u(u—1)(Du—1)=«

has a solutio...,; > 1. The existence and uniqueness of the traveling wave frogt ma
be proved very easily.

Based on Theorem 2.2.10, for the traveling wave front of 8qung2.10) with
fi(u) = %sinh(Du), fo(u) = %tanh(Du), fe(u) = u(u—1)(Du—1), respectively,

the wave speed, (D) is a decreasing, an increasing, an increasing functidn.dfiote
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that0 < po(D) < cfor all cases. Therefore, the limits

sinh = 11)1930 MO(D)7 and

1
L := lim po(D), for f(u) = & sinh(Du),

sinh

L:anh = 11711?0 IUO(D)v and

1
Litw = lm  po(D), for () = - tanh(Du),

k%

e = lim pe(D), for fo(u) = u(u — 1)(Du — 1),

exist. Let us find these limits. Note that0) = 0 and f’(0) = 1. First of all, we have

the traveling wave front representation

cz/(c+s(z)po)
U(z) = a/ K(z)dx

—00

z T —z c cT
- o ex K dx
/—oo P ( o ) ¢+ s(z) o <C+ 5@)#0)

oo [ e () 0w - f0@))ar

Recall that the speed is determined by the conditioh) = ¢, namely, the equation

0 0 ¢ — g
a K(x)dz — « exp x| K(z)dz
—00 —00 Clo
1 0

+— [ exp (i) [U(x) — f(U(x))]dz = 6.

Ho J o Ho

Note that

1 .1
})11130 ) sinh(Du) = u, Ll)lgl)0 5 tanh(Du) = u.
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, 1 . 1
Letting D — 0 for f,(u) = 5sinh(Du), letting D — 0 for f_(u) = 5tanh(Du),
letting D — oo for f.(u) = u(u — 1)(Du — 1), we find that

0 p— .
— - / exp (ﬂx> K(z)dz = 0.
— 0 Clsinh
a ’ € = fltanh
- — a/ exp <71’) K(z)dx = 6.
2 — 00 Cltanh

0 J— .
e a/ exp (Mx) K(z)dz = 0.
2 —c0 Cllcubic

Therefore, we find that, , = s, L{,,, = o @andL? ;. = c. For equation (2.10), note

cubic

|0

that the traveling wave front also satisfies

cz/(c+s(=)no)

uOU'+f(U):a/ K(z)dz.

—00

Letting z = 0 andU = 6, we obtain

ol (0) + £(0) = 5.

: 1 .
Letting D — D%, for fi(u) = 5sinh(Du), letting D — Dy, for f_(u) =

1 . .
5tzmh(Du), letting D — D} ,.. for f.(u) = u(u — 1)(Du — 1), respectively, we

cubic

find L

sinh

=0, L, =0, L. =0. The proof of Theorem 2.2.16 is finished. m

cubic

Corollary 2.2.17. There hold the results

inf  pio(K) =0, sup  po(K) =,
Keclass (A) keclass (A)

inf po(K) =0, sup  po(K) =,
Keclass (B) keclass (B)

inf  po(K) =0, sup  po(K) =c.
keclass (C) keclass (C)
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Proof. It is not difficult to prove these results by using Theorem2tArough The-
orem 2.2.16. |

Please see Figure 2.2.8, Figure 2.2.8 and Figure 2.2.8 éodé¢ipendence of the
wave speed on the parametérsandp for the three sodium current functiorfis(u) =

I 1
D sinh(Du), f_(u) = 5 tanh(Du) and f.(u) = u(u — 1)(Du — 1).

0.5

0.45
0.4F

0.35

0.15f
0.1

0.05f

0.5 1 15 2 25 3 3.5 4

Figure 2.8: Influence ob andp on wave speed: = u(D, p), whereD € [0,0.5] and
p € [0.25,4]. The wave speed is a decreasing function d and it is also a decreasing

function ofp. In this graph, we use= oo, o = 5andf = 2. Let f, (u) = %Sinh(Du)

and K(x) = gexp(—p|x|). For the dotted curveD = 0.125. For the solid curve,
D = 0.25. For the dash-dotted curv®, = 0.375. For the dashed curvé) = 0.5.

2.2.9 Influence of synaptic couplings on wave speeds (somemer-
ical calculations)

Derivation of a speed formula.Let A > 0, B > 0, a > 0 andb > 0 be constants, such
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0.2f
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Figure 2.9: Influence ob andp on wave speed: = u(D, p), whereD € [0,0.5] and
p € [0.35,4]. The wave speed is an increasing function ab and it is a decreasing

. : 1
function of p. In this graph, we use= oo, « = 5andf = 2. Let f_(u) = 5 tanh(Du)

and K (z) = gexp(—p|m\). For the dotted curve]) = 0.125. For the solid curve,
D = 0.25. For the dash-dotted curv®, = 0.375. For the dashed curvé) = 0.5.

that

SR

B
b
Define K (z) = Aexp(—alz|) — Bexp(—b|z|). Then

/R K(2)dz = 1.

The speed of the traveling wave front of (2.5) wijtfu) = u satisfies

a/o exp <£> K(x)dxz%—@.

o v
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0 0.5 1 15 2 25 3 35

Figure 2.10: Influence oD and p on speed:u = u(D,p), whereD € [2,4] and

p € [0,3.5]. The wave speed is an increasing function ab and it is a decreasing
function of p. In this graphge = 10, « = 5,0 = 0.5 andp = 1. Let the sodium current
function f.(u) = u(u — 1)(Du — 1) and K (z) = gexp(—pm). For the dotted curve,

D = 2.5. For the solid curveD = 3.0. For the dash-dotted curvé) = 3.5. For the
dashed curve) = 4.0.

In another word

A B «

1
a+— b+ -
v v

This equation is equivalent to

a[Av(1 +bv) — Bu(1 + av)] = (% . 9) (1+av)(1 + bv),
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or

Let

2 o)
Q = @+ (3-2)-(a-5)
1 4
R o= 5=

Then the wave speed of equation (2.5) with.) = « is given by

L Q++/Q*+4PR
N oP '

Here we investigate the influence of synaptic couplings orevepeeds by using a series
of numerical calculations, instead of rigorous mathenahticalysis.

Please see Figure 2.2.9, Figure 2.2.9, Figure 2.2.9, Fig@® and Figure 2.2.9
for the dependence of the wave speed on the paramétels «, b, p ando, where

p=A=aando = 2B = b for the kernel function used in Figure 2.2.9.

2.2.10 Applications to real biology

In this part, we try to find connections of our results to reale/speeds.
Pinto and Ermentrout [46] and Pinto, Patrick, Huang and ©onifil6] have ob-
tained some hard numbers on wave speeds through experimeatdm/s (meters per

second). To match this speed, létx) = A exp(—alx|) — Bexp(—b|z|). If A, B, a, b,
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Figure 2.11: Influence of and A on speed:y = u(a, A), wherea € [2,4.2] and
A € [1,4]. The wave speeg is an increasing function of and it is a decreasing
function of A. In this graph, we use = oo, « = 5,0 = 2 and f(u) = u. Let the
synaptic couplingk (z) = Aexp(—alz|) — Bexp(—b|z|), whereb = 1 is fixed and

1. . .
B = — — — is a dependent variable. For the dotted cutve; 2.0. For the solid curve,
a
a = 2.4. For the dash-dotted curve = 3.0. For the dashed curve,= 4.2.

« andd are constants such that

A B Q
o — =——90
Lot o2
a/ — —
4 4

then the wave speed = 4m/s. In particular, we may chooseé = 4, B = 1, a = 4,

1 .
b=2a=17andf = s and we find the speed) = 4m/s. We may also choose

A=4,B=1,D =3,a =4,b=2,¢c=10,a = %%309.63,9:2,
f(u) =u(u—1)(Du—1)andK(x) = Aexp(—alz|) — Bexp(—>b|z|), we also find the
speeduy = 4m/s. Of course we are not sure if these parameters are rédgaizse to

real biological data. If yes, then we may be able to find repliagtions to biology.
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Figure 2.12: Influence oB andb on speed;u = u(b, B), whereb € [0,4] andB €
[1,4]. The wave speed is an increasing function dfand it is a decreasing function of
B. In this graph, we use= co, « = 5,0 = 2 and f(u) = u. Let the synaptic coupling

K(x) = Aexp(—ale]) — Bexp(~ble]), wherea = 4 is fixed andA = 4 (% * §> o

a dependent variable. For the dotted cu®es= 1.0. For the solid curvepB = 2.0. For
the dash-dotted curvé3 = 3.0. For the dashed curvés = 4.0.

Below we offer a sketch of how we calculated the speed in therskcase. Given

the differential equation

%—I—u(u—l)(Du—l):a/RK(f—y)H (u (y,t—%lx—m) —9) dy,

as before, we can find the approximate equation

%er(u—n):a/RK(x—y)H(u (y,t—%lw—m) —9) dy,
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Figure 2.13: Influence of\ and B on speed:. = u(A, B), whereA € [1,4] and
B € [0,5]. The wave speeg is an increasing function aofl and it is a decreasing
function of B. In this graph, we use = oo, « = 5,0 = 2 and f(u) = u. Let
K(x) = Aexp(—alz|) — Bexp(—b|z|), whereb = 2 is fixed anda = =B

dependent variable. For the dotted curde= 1.0. For the solid curveA = 2.0. For
the dash-dotted curvel = 3.0. For the dashed curvel, = 4.0.

is a

on (0, 8), where

m = (0—1)(D0—1),
0 1 D 1+ D 1
- _‘94_7‘93 _92
T3 9(9—1)(1)9—1)(4 5 7 T3 )
! Dy 14D, 1
mn = 29(9 1)(DO —1) 49 + 3 6 29.

Moreover, we can transform the approximate equation to
1
UT+v:a/K(x—y)H (v (y,f— 5|x—y|) —@) dy,
R
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0.16
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0.1f

v(a)
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0.06

0.04

0.02t

Figure 2.14: Influence aof andb on speedy = u(a, b), wherea € [2,4] andb € [1, 3].
The wave speed is an increasing function dfand it is a decreasing function of In
this graph, we use = co, @ = 5,0 = 2 and f(u) = u. Let K(x) = Aexp(—alz|) —

- 1 1Y. .
Bexp(—b|z|), whereB = 1is fixed andA = a sty )isa dependent variable. For

the dotted curveb = 1.0. For the solid curvep = 1.5. For the dash-dotted curve,
b = 2.0. For the dashed curvé = 2.5.

where

T = mt, v(z,7) = mu(z,t) — n], C=—, © = mf — mn.

C
m
Let the kernel functior'(z) = A exp(—alz|) — B exp(—b|x|), whereA > B > 0 and
a > b > 0 are constants, satisfying the conditions

A B 1 A _B

> .
a b 2 a? — b?
Therefore, if the model parametefs B, D, a, b, ¢, « andf satisfy

1 1 1 ~
-= -4 -, v =mv,
4 ¢ v
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Figure 2.15: Influence of excitatiomand inhibitiono on speed:;x = u(p, o), where
p € [2,4] ando € [1,2]. The wave speed is an increasing function gf and it is a
decreasing function of. In this graph, we use = oo, @ = 5,6 = 2 and f(u) = u.
Let K(x) = pexp(—pl|z|) — § exp(—o|z|). For the dotted curve; = 1.0. For the solid
curve,oc = 1.333. For the dash-dotted curve,= 1.666. For the dashed curve,= 2.0.

A B o
“{H%‘@}—a—Q

where we recall that

© = mf—mn,
m = (0—1)(DO—1),

0 1 D, 1+D., 1,
T3 9(9—1)(1)9—1)(49 5 ¢ +29)’
1 D, 1+D_, 1
— 9O -1)(DO—1) - S T2 -

mn 29(6’ (DO —1) 49 + 3 0 29,

theny = 4m/s. In particular, if we chooséd =4, B=1,D =3,a =4,b =2, ¢ = 10,
o = 8360/27 ~ 309.63 andd = 2, then we findm = 5, mn = 10/3, © = 20/3,
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v =4/3, v = 20/3 and the real wave speed= 4m/s.
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Chapter 3
Two Delay Model

3.1 Introduction

There have been many very interesting research result@weslitrg wave solutions of
these reduced model equations. Based on different biogddysterpretations, by using
concrete examples, through mathematical analysis and neahsimulations, impor-
tant properties of waves, such as their wave speeds as whikaslependence on the
parameters and degree of homogeneity of the networks, heare éstablished for the
reduced equations.

Our main goal is to use mathematical analysis to offer pasgolutions to the open
problems. We will investigate how the biological pajtsb), («, 3), (¢,0), (£,n) and
(K, W) influence the wave speeds. We will derive new lower bound apetubound
for the wave speeds.

We will introduce speed index functions which, again, isyMeelpful in the study
of wave speeds. Through this we will be able to investigate tiee speed depends on
various parameters as well as the synaptic couplings. Msatiypates and asymptotic
behaviors of the speed as the parameters approach certalreraican be investigated
very clearly. By using properties of the speed index fumdjove are able to prove

simple but elegant identities, which connects the speeleofront of the model where
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there is a delay to the speed of the front where there is ng.de&e Theorem 3.2.5, for
such a relationship.

We are going to investigate how various neurobiologicalmecsms (in particular,
synaptic couplings, threshold and synaptic rate consitafience traveling wave speed.
We will be concerned with the three classes of synaptic ¢ogp! We are concerned
with asymptotic behaviors of the speed as various paramapgroach certain numbers

or infinity.
3.1.1 The model equations

Consider the following integral differential equationsang from synaptically coupled

neuronal networks

Ny )
~ (a—aw [Te@ | [ K- (u (e 2o -ol) - 0) ay) ac
+ (B—bu) /OOO n(7) UR Wz — y)H (uly,t — 1) — @)dy} dr. (3.1)

This model equation is motivated by several previous modpfgearing in Atay and
Hutt [6]-[7], Coombes, Lord and Owen [13], Hutt and Atay [43B], Magpantay and
Zou [44], Pinto and Ermentrout [46], Wilson and Cowan [56F], Yanagida and Zhang
[58], Zhang [61], [62], [64], Zhang and Hutt [65]-[66], Zhg\Wu and Stoner [67].

The parameters of the model are consistent with the demxript earlier chapters
and the general assumptions are true. In addition, we natdtth transmission speed
distribution¢ and the feedback delay distributignare probability density functions.

Typical examples of delayed functions are

p

€)= g Hle=1. glr) = St exp(=),
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wherep > 1 andg > 0 are integers, and

S0 =Y be—a)  nn) = o> 8=,

whered represents the Dirac delta impulse functions ¢; < c; < -+ < ¢, < oo and
0<7m <7 <--- <7, < oo are parameters. The kernel functiddsandV represent
synaptic couplings between neurons in the neuronal nesvoiliypical examples of

synaptic couplings are

K() = g™l exp (— plel),  Wia) = 50" al"exp  — olal),
and
K(z) = %Z [5(m —pi) +0(x +/)i)]7
W(z) = % Z [6(z — 03) + 0(z + 07)],

i=1

where0 < p<00,0< p1 <P < <P <00,0<0<00,0<0;<0<--<
o, < oo are parametersy > 0 andn > 0 are integers. Here we collect some known
results closely related to our general model equation. Remparticular case = 0,
b=20,68=0, f(u) = u, and{(c) = d(c — o), Wherec, € (0,00) is a parameter,
Coombes, Lord and Owen [13] derived a speed equation fortiequ@.1); Pinto and
Ermentrout [46] derived a speed equation and discussedtlhence ofc, andd on
the speed for equation (3.1); Zhang [64] investigated tfl@ence ofa, 6 andc, on
the speed for equation (3.1). For the special case,0, b = 0 and f(u) = w, Zhang
and Hutt [65] investigated the influence @f 3, 0, ©, &, n, K andW on the speed for
equation (3.1). Forthe case=0,b =0, 8 = 0 and{(c) = d(c—cp), wherecy € (0, 00)
is a parameter, in chapter 2 , we studied the influencg af, o andé on the speed for

equation (3.1). However, the influence of the neurobiolalgitechanisméa, b), (a, 3),
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(0,0), (&,n) and (K, W) on the wave speeds has not been solved completely. The
general equation (3.1) contains many important integrifémintial equations arising

from synaptically coupled neuronal networks. The model fp@yeduced to previous
equations
() ifa=0,b=0,8=0and&(c) = é(c — o), Wherecy, € (0,00) is a parameter;
then (3.1) becomes the integral differential equation

ou

E+f( u)

= (a-an) ["e | [ 56—t (u (vt -2 l) - 0) ] ac

See chapter 2 for details on this equation.

M if a=0,0=0,a=0, f(u) =wvandn(r) = d(r — 1), wherery, € (0,00) is a

parameter; then (3.1) becomes

g_?+f() (5_bu/ UW:C— u(y,t —7) — @)dy]dr.

See Coombes, Lord and Owen [13] and Hutt and Atay [33] forehisation.
() if a=0,b=0andf(u) = u; then (3.1) reduces to
0_u+u = a/ &(c) {/K(x—y)H (u (y,t—1|x—y|) —9) dy] de
ot 0 c
+ ﬁ/ [/Wx— u(y,t—7) — @)dy}df.
0

See Zhang and Hutt [65],[66] for this equation.

(IV) if £(c) = 0(c — o) andn(7) = 0(T — 79), Wherecy € (0,00) andry € (0,00) are

two positive parameters; then (3.1) becomes

%H(u) = (a—au)/K(:):—y)H<u (y,t—c—lolx—m)—@) dy

+ —bu/W:c— y,t—To) @)dy.
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(V) if £(¢) = 6(c — 00) andn(7) = §(7). then (3.1) reduces to

—+ f(u) = (oz—au)/RK(x—y)H(u(y,t)—H)dy

+ (B —bu) /R Wiz — y)H(u(y,t) — @)dy.

See [62] for a reduced model of this equation, whire) = u, a = 0 andb = 0. For
each of these reduced integral differential equationseundrtain assumptions on the
model parameters and functions, there exists a traveling fvant with a positive wave

speed. See [7], [13], [14], [18], [32], [46], [61], [64] an6d], [66].

3.1.2 Assumptions

The functionw = f(u) is smooth, such that the equatipf:) = 0 has a unique solution
Uy = n < 0 and the equationu + bu + f(u) = a + $ has a unique solutiot; =

Ui(a,b,a, 8, f) > ©. Moreoverm = f'(n) > 0 andf’'(U(a, b, 3, f)) > 0.

o+ mn

Ifb=0,0=0andf(u) = m(u—n), thenlUy =n < § andU; = g > 6.
a
If a =0, =0andf(u) =m(u—n), thenlU; = 6617:;” >0.1fa>0,b>0and
B _a+B+mn
f(u) =m(u —n), thenU; = P — > 0.
Suppose that the parameters satisfy the following conditio
n<60<0o, ab +2f(0) < «, (3.2)
bO 4+ 2f(O) < 3, ab + b0 +2f(0) < a+ 3, (3.3)

(a—ab)K(0) + (5 — b0)W(0) {/ n(7) exp(mr)dT} > 0. (3.4)
0
We assume that the distributed delay functions satisfy dinelitions

§>0 and >0 onR",

/Omg(C)dc =1, /000 n(r)dr =1, /Ooon(T) exp(m7)dr < .
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Also, we assume that there exists a positive numaper 0, such that = 0 on [0, o).
We assume that the synaptic couplilgis at least piecewise smooth on the entire real

line R, satisfying the conditions

0 /RK(x)dx = 1, /_ZOK(x)dx:%, /OOOK(x)dx:%, (3.5)
/_ K@y = /Ooo|x\K(x)dx, (3.6)

[K(x)] < Cexp(—plz|])  on R, (3.7)

for two positive constant§’ andp.
There exists a unigue stable traveling wave frignt U(z) to equation (3.1), where
z =x+ pot andpug = po(a, b, a, 5,60,0,&,n, K, W) represents the wave speed. It also

satisfies the traveling wave equation

U’ + f(U)
= (a=a) [ e | [ K-t (U (521 - ol) - 0) ]

b @) [Tom | [ We - HUG - wn) - )] ar @8)
0 R
and the boundary conditions

lim U(z) = n, lim U(z) = Ul(a,b,, 3, f), Erin Uz)=0. (3.9

Z——00 Z2—00

3.2 Linear Speed Analysis

In this section, we will focus on the speed analysis of equa(B.1) with the linear
sodium current functiorf(u) = m(u — n), wherem > 0 andn are real constants.
We may interpret the constant as the sodium conductance and the constaaxt the

sodium reversal potential.
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The general assumptions (3.2)-(3.4) become

n<6<0, (a+2m)f < a + 2mn, (b+2m)© < B+ 2mn,
(a+b+2m)f < a+ B+ 2mn,

(v —ab)K(0) + (B — b0)W(0) [/ n(t)exp(mr)dr| > 0.
0
First of all, we consider the particular case- 0 andj = 0.

Definition 3.2.1. Define the sign function = s(x) by s(z) = —1 for all x < 0,
s(0) = 0 ands(x) = 1 for all z > 0. Define the following four auxiliary functions

cz/(cs(2)u)
wi(z) = / K(z)dz,

—00

cz/(ct+s(z)p)
wo(z) = m+a/ K(z)dz,

—00

wy(z) = mz—l—az/_;K(x)dm—a/o\x|K(m)dx,

z

1 cz/(cs(2)u)
we(2) = exp m mz+az/ K(z)dx

- %[;c+§@uK<c+§@u)dﬂ}'

Then, on(—o0, 0), we have

1 a
wl(O) = 5, w2(0)2m+§, OJ3(O):O,

wi(z) = c+;@uK<C+;@”%’

i) = i ()

z

wi'(z) = m+a : K(z)dx + azK(2) + al]z| K (2)

= m+a/ K(z)dz > 0.
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Additionally, on(—o0, 0), we get

_ cz/(cts(z)p)
we(z) = exp S L= / K(z)dx
cu |e+sp e+ s(2)p o
cz/(c+s(2)1)
+ a/ |z| K (z)dz| o .
Moreover, on—oo, 0), we find
Am ) =0 Imowlh=m, o I wlz) =0
m + awi (2 1
wy'(z) = 71(%)4(2) = Zwa(2)wa(2),
1 1
o 0
wi(0) = exp {ac K / |x|K(x)dx],
e J oo
and
wil2) 1 /cz/<c+s<z>u>
= exp{ — |mz+az K(x)dx
0] p{u . )
_ 0
+ aS M/ xK(:)s)dx}}
¢ Jezj(crs(z)n)
— cz/(c+s(2)p)
_ oexpl TR amE A% / K(z)de
cu et sz cts(zp ) o

0
+ a/ :L'K(ﬁ)dl’:|}
cx/(cHs(=)m)
o[ (i)
= X .
P P et s

All of these auxiliary functionsuv;(z), ws(2), ws(z) andw,(z) will help us find the

traveling wave front of the integral differential equatil).

Definition 3.2.2. Define the speed index functiorby

" K(z)

[m+a[”  K(z)dz] ?

Cc —

Cu“%(z)} dz.

o) = mla —an) [

—00

exp [

105



Theorem 3.2.3.Letb = 0 and 5 = 0. Let f(u) = m(u — n) in equation (3.1), where

m > 0 andn are real constants. Suppose that
n <6, 0<(@2m+a)d —n)<a-—an,
and
m+a/z K(z)dz >0, on(—00,0).

Suppose that the traveling wave front satisfies the comditid < 6 on (—o0,0),
U(0) = #andU > 60 on (0,00). Then, there exists a unique positive wave speed

o = pola, m,n, «, 6,¢, K), determined by the equation

(@ — an) /_:exp{c;u:fo {mzmz/_; K(g:)dx—a/zo|x|K(x)dx}}

‘ K(z) & a—an_  f-—n
[m+a[°_ K(x)dx] 2 m(2m + a) m

Proof. Let i € (0, c) represent the wave speed anddet = + ut. Suppose that

u(z,t) = U(x + ut) is a traveling wave front of (3.1), then

pU'(z) + —n]

= [a—aU(z /Kz— (y—%\z—m)—ﬁ)dy.
Let

ol
W:y—z|2—y|-

Then

C

Z—1Y = (Z—CU),

c+s(z—w)u
and the traveling wave equation becomes

pU'(2) + m[U(z) — n]
= [a—aU(z)}/RC_I_S(C K( oz —w) )H(U(w)—@)dw.

Z—w)p c+s(z—w)p

106



Suppose thal/ < § on (—o0,0), U(0) = § andU > 6 on (0, 00). Then we have the

simpler equation

pU’'(2) + m[U(z) — n]

= |a—aU(z)] /OOO c+ s(zc— w)uK (C ﬂfiz(z_—wl)ﬂ) w
cz/(cts(2)p)
= [a—aU(2)] /_OO K(z)dz,

where in the last step

r = m(z—w).

Rewriting this equation as a nonhomogeneous, first oraatfidifferential equation

ez/(c+s(2)n)
m+ a/ K(z)dx

[e.e]

ez /(c+5(2)1)
= (a— an)/ K(x)dz.

—00

,u[U(z)—n}/—l— [U(z) — n]

That is
p[U(2) = n] + wa(2)[U(2) — n] = (a — an)wi(2).

The integrating factor of this equation is exactly equaltie tast auxiliary function

wy(z). Now we have

p{wa(2)[U(z) = n] }/ = (o — an)wy (2)wy(2).

Integrating this equation with respecti@ver(—oc, z), we get

pws(2)[U(z) — n] = (o — an) /z w1 (7)wy(x)dz.

—00

Therefore, the solution subject to the homogeneous boyrdaditionlU (—oc) = n is
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given by

o —an

Uliz) = n+ /_Z wi (x)wy(z)da

piws (2)
_ g a—an ? wl(x)w,x .
- ey L e
_ (@ —an)wi(z) m(a—an) [~ wl’(m)w4($)dx.
i /_oo [ws(2)]?

wo(z) wy(2)

Now, we have

_ (@ —an)wi(0)  m(a —an) O W) (2)wy(z) .
Uuo) = n+ wo(0) w4(0) /_ o @) d
2m+a

- mla—an) /—Ooo P {CC_MMWS(Z)} [m+a f[_joizl)((:):)dx] 742

where

O w'(x) wilx) -
/—oo [wz(a?)]2w4(0)d

o (5) oo [z (2)]

0
_ oH
g ey

X

) / K (y) exp [S2uws(y)] N
o [m+af' K@

Therefore, the wave speeds determined by the speed equation

mia — an) /_io o {cc—ﬂu%(z)} m+a fé?((x)dx} e =+ gm0,
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Note that

m(a —an ’ K(z) . _M
| )/_OO [m+affoo K(f)df]zd [m+af_zoo K(g)dg} N
m(a — an) m(a — an)

am B L 1
alm+ =a
2

m(a—an) «a—an

m2m+a)  2m-+a’

Now we can easily verify that

a —an a —an o — an

}}E(l)gb(u):o<n+2m+a_9’ }Li—rgqb('u):Qm—i—a " 2m—|—a_9’
, m(a —an) [° {c — i } K(z)
- _ d
o'n) e /_oo wa(2) exp cp wa(7) [m+a 2. K (z)dz] 26

The derivativep’ (1) > 0 on (0, ¢) if the kernel functionk is in class (A) or class (B).
However, the derivative’(1) < 0 on (0,c,) and¢’(x) > 0 on (c,, ¢) if the kernel
function K is in class (C), where, € (0, ¢) is a constant, depending dt. Therefore,
the existence and uniqueness of the speed are guarantezg@rddi of Theorem 3.2.3

is completed. [
Theorem 3.2.4.In equation (3.1),leb = 0, 8 = 0, (a + 2m)(0 —n) < o — an, let

f(u) =m(u—n), and let

e)=dlc—co),  K(z)=3[d(z+p)+d(z—p)],

N —

wherem > 0, n, p > 0 are parameters. Then the wave speed is given by

1 1 2 (4m + a)? a—an
= — - n n —-0)|.
pol(a,co,m,n,a,0) ¢cg  (2m-+a)p |8m(a—an) 2m + a)
Proof. Note that on(—oo, 0), we have

[I—H(z—l—p)],

N

/_Z K(z)dz = %H(z + ), / | K (2)dar =
10

9



m—l—a/ K(z)dz = m—l—%H(z—l—p),

z 0
wsy(z) = mz+az/ K(a:)dx—a/ |z| K (z)dx
1 1

= mz—|—§azH(z—|—p)—§ap[1—H(z—|—,0)}.

Note that

%m(a—an)/o exp{c_'u [mZﬂL%aZH(ZﬂLP)—%ap(l_H('H’p))]}

o i
z4+p)+d(z—p)
[m+ 1aH (2 —l—,O)}2
a—an
2m+a

:’)’L—l—

Thus

8m(a—om)e c—p +1 ny 270 g
——————"expq — mp + =a = —46.
(4m + a)? P cp pegar 2m+a

Finally, we obtain the speed formula

1 1 2 I (4m + a)? ny 270 g
pw ¢ (2m+a)p  [8m(a—an) 2m+a '

The proof of Theorem 3.2.4 is completed. |

Theorem 3.2.5.Suppose that > 0, ¢ > 0, « > 0 andf > 0, such thatd < (a +

2m)(0 —n) < a — an. Suppose also that
m+ a/ K(z)dz >0, on (—oo,0).

Let uo(a, c,m,n, o, 0) and po(a, m, n, o, ) represent the wave speeds of the traveling

wave fronts of the integral differential equation
1
En +m(u—n) = (o — au) / K(z—y)H (u <y,t — —|x — y\) - 9) dy, (3.10)
R C
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and the integral differential equation

ou

En +m(u—n) = (o — au) /RK(x —y)H (u(y,t) — 0)dy, (3.11)

respectively, where there is a spatial temporal delay ii1@3.and where there is no

delay in (3.11). Then the wave speeds satisfy the relatipnsh

1 1 1

pola,c,m,n,a,0) ¢ * po(a, m,n, a,6)
Proof. Note that the wave speeds(a, c, m,n, «,0) and po(a, m, n, a, 0) satisfy

the equations

0 o 0 z 0
a/ exp ¢ = tola,e;mym, @, 6) Z+ az/ K(z)dz — a/ |z| K (z)dx
—00 CM(](CL? ¢, m,n,q, 6) —00 z

K(z) Qe O
[1+af_zoo K(x)dx]2 24+a

X

)

and

a/_ioexp{uo(a’ml’n’a’e) [z—l—az/_; K(x)dx—a/zomm(x)dx”

" K(z) - e
[1 +af_zoo K(x)dx} 2+a

respectively. By uniqueness, we find that

c—po(a,c,m,n, o, 0) 1
CMO<G,C, m, n,oz,@) B /,L()(CL,W, TZ,OZ,G).
The proof of Theorem 3.2.5 is completed. [ |

Now we consider more general cases 0,b > 0, > 0 andg > 0.
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Theorem 3.2.6. (I) Leta > 0andg = 0. Letcy, € (0,00) be a parameter and let

&(c) = d(c— ). Then
clon—n>0 M(](Oé, Cos K7 9) = 07

co—0

1
lim {—,uo(a,co,K, 9)} =1,
Co

lim po(e, co, K,0) = po(a, K, 0),

co— 00

lim {co[po(a, K,0) — po(a, co, K,0)] } = [po(ev, K, 6’)]2.

co— 00

(I) Leta = 0andj > 0. Letr, € (0,00) be a parameter and lef(7) = 6(7 — 7).
Then

lim ,UO(677-07 VV7 @) = M0(67 W @)7

T70—0
limo Mo(ﬁ, VV; @) _ MO(ﬁu 70, VV; @)
T0O— 7'0

00 W, 001" { I 50 [y | W ()}

0 x
Joo || exp [uo(B,W@)] W(x)dx
lim MO(B7 70, W7 @> = 07

TO— 00

lim {7op0(8, 70, W,0)} = Iy,

TO— 00

wherel'; > 0 is a constant, such that

’ W(z)dx =

—To

9
5

N —

Proof. For the first case, we have< uy < ¢q and

1 1 1

+—.
MO(au Co, K7 9) M(](Oé, K7 0) Co

From the estimate < 1y < ¢y, we find

lim po(av, ¢, K,0) = 0.

co—0

112



From the equation

1 1 1

+ D)
MO(au Co, K7 9) M(](Oé, K7 0) Co

we have
lim F0(C0 K0)
co—0 CO
Again, from the equation
1 1 1

+ D)
,U()(Oz, Co, K7 9) IUO(aa Kv 9) Co

we have

lim ,U()(Oé,C(),K, 9) = MO(aaKv 9)

co— 00

Moreover, we have

tim{eo [uo(er, K, 0) — puo(er. o, K. 0)]}

co—r00

= lim [po(e, co, K,0)po(a, K, 0)] = [uo(a,K,H)r.

co—r00

From the speed equation

0

N —

W (2)de + €7 / e <£) W (z)de =

—H0TO —00 Ho
we get the limit

"rl()igoﬂo(ﬁ7 70, VV; @) = /”LO(B7 W’ G))’

wherep (5, W, ©) is a unique solution of

[0 [y wone=3-5

—00
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Moreover

lim Mo(ﬂv w, @) - Mo(ﬁﬂ'm w, @)

T0—0 T0

— — lim 8#0(577—07‘/‘/7 ®>

T0—0 87'0

I R 0N 27 exp [ oy | W ()
" J22 |l exp [m} W (z)de
[10(8, W, 0)]” {ffoo exp [m} W(x)dx}

SO lal exp | e | W)z |

It is not difficult to show that

lim M0(57T07 W7 6) =0.

TO— 00

—HoTo T
67—0/ exp <—) W(x)dx
—00 Ho

—m
= |poe™ / exp(y)W(uoy)dy‘

Additionally, we have

=,
< |poe™ / exp(y)dy Sung(x)l
—00 S
= posup [W(z)|.
zeR

Therefore

' N —p070 o B
Tgl_{noo {e /_OO exp [Mo(ﬁ,W, @)} W(m)dx} =0.

It is easy to see from the speed equation
0 —poTo T
W(z)dz + €™ / exp <—) W(x)dx =
—H0TO —00 Ho
that
lim (pom0) = T,

TO—> 00
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wherel’y > 0 is a constant, such that

O W(x)dzx =

—To

9
5

|~

The proof of Theorem 3.2.6 is finished. [ |

Theorem 3.2.7.Suppose thaf () = u. Leté(c) = p¢(pc), K (z) = pK (pz) and

W(x) = oW (ox), wherep > 0 ando > 0 are parameters.
(1) Leta > 0andg = 0. Thenuy(p) = %uo(l).
(I Leta =0andg > 0. Thenug(o) = Lpe(1).
() Let p=o0,a >0and3 > 0. Thenuy(p) = %Mo(l)-

Proof. (1) In the speed equation, if we replagek andy, by £, K and]i, respec-

tively, then we have

o) 0 7
a/o p&(pc) [/_oo exp <Ccﬁ50x> pK(px)dx} de = % —40.

Making a change of variables= pc andy = px and then replacé andy by c andz,

respectively, we find

a/ooog(c) {/_OOO exp (C;pgfox) K(x)dx} de = % —0.

Recall thatt, K andyu, satisfy

a/OOO £(c) U_: exp (Cc_ﬂf‘)x) K(x)dx] de = % "y

Therefore, we obtaipiy = 9. Henceng = “70.
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(1) In the speed equation, if we repla¢g and, by 1% and g, respectively, then

8 / [ /_ - W(ax)dx} dr
+ B / [ / B exp <%) UW(ax)dx} dr
S

2

we get

Making a change of variable = o and then replacg by x, we find

; /mm [ oo
+ 8 / { / _WOTeXp (Uiﬁo) W(:)s)dx} dr
- L e

2

Recall thatiV” and . satisfy

B / { /_ . (x)dx] dr
+ B / { / e (%) W(x)dx} dr

2

By uniqueness of the wave speed, we fing = 1.
(11N In the speed equation, if we replage K, W and pu, by E K, W and 110,

respectively, where = p, then we find

a /0 £(pc) [ / exp( ;:0 ) pK(px)dx] de
LB / [ [ oW dx] ar
+ 6/0 n(r)e” {/_:()Texp (i ) pW(px)dx] dr O‘gﬂ 9.
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Making the change of variables= pc andy = px and then replacé andy with ¢ and

[/0 exp (C — Py ) K(x)dx] de
Ccpio
+ 5/ [ Wz }dT
—plioT B o _‘_6 B
+ B/O l/oo exp (PMO) W(x)dx} dr = 5 6.
Recall thatt, K, W andy satisfy
[e%S) 0 c— o
a/ £(c) l/ exp < ” x) K(x)dx} de
+ 5/ [ ) W(z )dx} dr
THoT x _a+p8
+ 5/ [/ exp <%) W(x)dx} dr = 5 6.

By uniqueness of the wave speed, we fng = po. The proof of Theorem 3.2.7 is

x, respectively, we see

finished. n

Theorem 3.2.8. () Let o be the wave speed of the traveling wave front of the inte-

gral differential equation

ou
N +m(u—n)

= (o) e | [ K- (o (=2 vl) - 0) ] ac

Then

mao — af — 2mb + 2mn m
0< — < < K(z)d
Ry S [k
a — 2mb + 2mn

(I Let o be the wave speed of the traveling wave front of the integftdrdntial
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equation

@ﬂLm(u—n)

ot

= (5—bu/ [/Wx— u(y,t —7) — ©)dy| dr.

Then

o < mﬂ /|:)3|W(x)dx
1 R
t B —2mb 4 2mn

> 0.

%(6 — b0 — 2m9 + 2mn)
Mo >
(B =00)W(0) [[;° n(r) exp(mT)dr]
(1) Let o be the wave speed of the traveling wave front of the integfedrdntial
equation

a—u—l-m(u—n)

ot

~ (a—aw [ e | [ K- (u (0o Ho-ol) ~0) ar] ac

+ (B—bu) /00077(7) {/R Wz —y)H (u(y,t —7) — @)dy} dr.

Then
m
o < . [olal (@) + Blel W ()] da
(a+5)lna+ﬂ—2m6’+2mn
m
o > 5(a+5—a9—b6’—2m6’—|—2mn)

/ {(a — af) K (0) + (8 — b9)W(0) [ /0 h n(r) exp(mf)df] } > 0.

Proof. The proof of Theorem 3.2.8 may be completed by setting= m, = m > 0

andn; = n, = nin Theorem 3.3.6. ]
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3.3 Nonlinear Analysis

3.3.1 Representation of the traveling wave front of (3.1)

Definition 3.3.1. Define the following auxiliary functiond(z) = A(y, z), B(z) =
B(u, ), C(2) = C(p, z) and D(z) = D(u, z) by

00 cz/(c+s(z)p)
Az) = (a—an) /0 (o) [ /_ K(x)dx] de

oo

+ (B—1bn) /0 o) [ / e W(x)da:} dr,

—00

—00

+ b /0 ) [ /_ :M_ZO W(:):)dx} dr,

{ “dc} [mz +az /_OO K(z)dz —a /ZO |xu<(x)d4 } :
D(z) = exp {Tz + %

B(z) = m+a /0 T elo) [ / e K(x)dx] de

C(s) = exp [ | e

o
0o . cz/(c+s(z)p) K| de
"2 e [ /| (@) ]
[ /O°° ) U_oo c +ngzx)uK <C +féx)u) dx} e
+ %Z/Ooo n(T) [/_:M_ZO W(x)dx} dr

- %/Ooon(f) U_;xvv(x—m— Zo)dx} df}.

Note that the auxiliary functiond, B, C'and D depend om, b, m, n, a, 3, &, 1, K,

W andp. These functions will help us study the dependence of theewspeed:, on
the parameters, b, m, n, a, 3, 6 and the kernel functiong, n) and(K, ).

Let us investigate the basic properties of the four auxilfanctions. First of all, we
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have

Second, we get
lim A(z) = 0,
Z——00

Third, we obtain

_|_
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Fourth, ifz < 0, then

gg§::@m{%z+ggAma@[[:WmeKmm4dc
vl @ gt [, e

; %5AwMﬂ{K:W4%V@M4dT

+ %/OOO n(r) [/0 oW (z — i — Zo)dx] dT} .

If b=0andz < 0, then

oy = L] 0

= (), 7=

0

4@ﬁﬂg;mmﬁﬁéw@q}

c—u

Definition 3.3.2. Define the speed index functiorby

= [ 560 D=~ 500

where the auxiliary functiond, B, C' and D have been defined in Definition 3.

The wave speed is a solution of the equation
o(p) =n—20. (3.12)

This definition is motivated by the conditidi(0) = 6 if f(u) = m(u — n) and
6= 0.

Theorem 3.3.3. (I) Suppose that the traveling wave front satisfies the domdi/ <
6 on(—o00,0), U(0) = #andU > 6 on (0,00). Suppose also thdf < © on
(—o0, Zy), U(Zy) = © andU > © on (Z,, oo), for some constant, > 0. Then

there holds the following representation for the travemgve front of the integral
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differential equation (3.1)

_ Alz) 1 7 TA®@)T
U(z) = n+ BG) D) /_OO [B(x)] D(z)dz
1 z
+ D) /_OO D(z){m[U(z) —n] — f(U(z)) }du,

wherez = = + puot, 1o IS @ positive number, representing the wave speed. The

wave speeg, satisfies the following equations

o = v 5o [ 503) P
+ g()/ x{m[ (#) —n] ~ F(U@) Yo,
+g§ D {gﬂ

+ / {m[ ]~ F(U()) Y

(I Let f(u) = m(u — n), for two constantsn andn. There exists a unique pair

(o, Zp), such that/(0) = # andU(Z,) = ©.

(1) Suppose thaf is a nonlinear smooth function, such th&t:) = 0 and
m = f'(n) > 0, for two constantsn andn. There exists a unique paff, Zy),

such that/(0) = # andU(Z,) = ©.

Proof. (I) The traveling wave equation

pU’ + f(U)

— (a=at) e | [ KG- (U (sl o) - 0) ar]

@) [Tam | [ W pH@ - ) - )] ar
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may be written as

pU" +m(U —n)

— (a=a) "€ | [ G-t (U (sl o) - 0) ar] a

w3 [ [ [ W= H@E =) - @)dy} ar
+om(U —n) — F(U).

Making the following change of variables for these two im&dg;

_ H _
w—y—glz—y\, r=y — puT,
we find that
c(z —w)
-y =—""""—— Z—Y=Z—uUT—7T

respectively. Suppose that the traveling wave front satighie conditiong/ < 6 on
(—00,0), U(0) = # andU > 0 on (0,00). Similarly, suppose that the traveling wave

front satisfies the conditios < © on (—oo, Zy), U(Zy) = © andU > © on (7, ),

123



for some constant, > 0. Then we have the traveling wave equation

pU" +m(U —n)
= (a—al)
/0“5(0) [/R ¢+ S(ZC— w) MK (C fiz(z_—wl)u) HUE) - e)dw] e

+ (ﬁ—bU)/Ooon(r) /Wz— r—7) U(r)—@)dr}dT
+ m(U —n)— f(U)

= (a—al) /OOO §(c) /0°° C+8(;_M)MK (cfgz(z_—wi)ﬂ) dw} o

+ (B=0U) /Ooon(r) - ZwW(z—uT—r)dr} dr +m(U —n) — f(U)

— (a—al) /0 T e _ /_ Zﬂm(z)u) K(x)da:] de

+(B=bU) /OOO n(7) /_OO” v W(:):)dx} dr +m(U —n) — f(U).

Rewriting this equation as a nonhomogeneous, first oraatfidifferential equation

) cz/(c+s(z)p)
WU —n) + {m + a/o (o) [/ K(m)dx] de

—0o0

4 b/ooo n(7) U_:”_ZO W(w)dx] df} (U = n)
~ (a—an) / T (o) [ /_ Z/(C+S(ZM K(:):)dx] de

+ (B—tn) /0 ) [ / e W(x)dx} dr +m(U —n) — F(U).

—00

[e=]

That is

u[U(2) = n]"+ B(2)[U(2) — n] = A(z) + m[U(2) —n] — f(U(2)).

The integrating factor of this equation is exactly equaltp:). Multiplying the dif-

ferential equation by the integrating factbxz) and integrating with respect toover
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(—o0, 2), we get

{uD(2)[U(z) — n] }, = A(2)D(z) + D(2){m[U(z) —n] — f(U(2)) },

uD()[U(z) —n] = /_ " A(2)D(2)dx
+ /_Z D(m){m[U(m) — n} — f(U(:c)) }d:c.

Therefore, the traveling wave solution may be represerged a

U(z)—n = MDl(Z) /_ ;A(x)D(x)dx

1 z

T D) /_oo D(x){m[U(x) =n] = f(U(x)) }dz
Az 1 (7 [A@)]

B(z) D(z) /_oo [B(:r)] Ployds

* D) / () {m[U(x) = n] ~ £(U(x)) }dz.

where

(
AR 1P TA@] b
50 o0 ) 56 P
Now lettingz = 0 andZ = Z,, respectively, we have
_A(0) 12 TA@)Y
U0)—n = W — W/—w [%} D(z)dx
1

+ MT(W/ D(z){m[U(z) —n] — f(U(z)) }dz,

U(Zy) —n = O[BH

+ND / @){m[U(z) —n] - F(U@)) }dz.
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The wave speed, and the constant, are determined by the system of equations

U(0) =0 andU(Z,) = ©, thatis

oo gt ] o

s [ D@06 a) - s (U) s

0
o= = o | [ata] P
1

toD(Zy)

By using fixed point theorem, we can establish the existendeiaiqueness of the wave

/_i:D(x){m[U(x) — n} _ f(U(x))}dx

+

speedu, and the traveling wave frorit, respectively. The proofs of (lI) and (lIl) are

omitted. The proof of Theorem 3.3.3 is finished. [ |

3.3.2 Estimates on the wave speeds

To derive the upper bound and the lower bound of the wave speedeed to build

some technical lemmas.

Lemma 3.3.4.Letp > 0 andq > 0 be constants. Suppose that> 0 on (—o0,0) and

0 0
/ Y(z)de > 0, / |z|1p(x)dz > 0,

lim [:c /_;w@dg} o, /_Oooexp@x)w(x)dx:q.

T——00

Then, there holds the following estimate

o> | [ v e (= [ [ o] [ [ v .

Proof. See [65] for the proof of Lemma 3.3.4. [ |

Lemma 3.3.5. Suppose that > 0, ¢ > 0 andp > 0 are positive constants. Suppose

that the function) satisfies the conditiong’ > 0 on (—oo,0) and(0) > 0. Suppose
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also that

i fer (o] o f (D)oo

Then we have the estimate

Vv
B

7
HZ o)

Proof. It is simple to see that
0 /
£ [ foo ()]s
T 0 0 T ,
= €Xp (ﬁ) U(z) . - /_OO exp (ﬁ) V' (z)dz

= 4(0) - / " e (%) Y/(2)dz < 1(0).

—00

Therefore L < 1(0), and we get the estimate
pu

q
pY(0)

The proof of Lemma 3.3.5 is finished. |

o>

Theorem 3.3.6.Letmy, ms, n; andn, be constants, withn; > 0 andm, > 0. Suppose

that
mi(u—mn1) < f(u) < mo(u —no),
for all w € R. Suppose also that

a—+ B —2mq0 4+ 2ming > 0, a—+ B —ab — bl — 2mof 4 2mony > 0,

(v —ab)K(0) + (B — b0)W(0) {/Oon(T) exp(mgT)dr| > 0.
0
Then the wave speed satisfies the estimates
o < " {[ lalelseta) + platw @ as |

(a+p)In

o+ ﬁ - 2m19 + 2m1n1
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mT(O‘ + 3 —ab — b9 — 2mof + 2m2n2)
(= af) K (0) + (8 — )W (0) [ [§~ n(7) exp(mo7)dr]
> 0.

Ho >

Proof. Recall that the traveling wave equation is

poU’ + f(U)

= (a=at) [ €@ | [ K=t (U (521 - vl) - 0) ]

L) /Ooow) UR W= — y)H(U(y - por) — @)dy} dar.
Note that
mi(U —n1) < f(U) < ma(U — na),
and
a—al <a—aU < a, B—b0 < pB—0bU < B,
on (—oo, 0). Now we get the following differential inequalities

poU" +my (U — ny)

/ [ K(z—y y—%|z—y|>—9>dy}dc
[/Wz— VH (U(y — MOT)—@)dy}dT

_ Q/O“g [
|

cz/(c+s(z)po)
/ x)dx | de
) 2—poT— Zo
+ B / n(r / :|d7'
0 [e'¢)

IN
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and
toU" + ma(U — ny)
Ho
> a—a9/§ /}RK(z—y)H(U<y—?|z—y|> 9>dy]dc

# @=) [) | [ W= H - ) - )y ar

0o i cz/(c+s(z)po)
— (a—a0) /0 () /_ o K(x)dx] de

+ (B —b0) /0 ) n(7) /_ :HOT_ZOW(x)dm} dr.

Solving these differential inequalities, we obtain

0o cz/(c+s(z)po)
U(z) < n1—|—i/ &(c) [/ e K(:)s)dx] de
0

my —00
00 z—po7T—20
+ mﬁl i n(7) [/_OO W(x)dx} dr
a [ # T —z c cx
S AC [/oo e (ml o ) cHs@mo (c+s<x>uo) dx} &
8 < Zo)
— —exp | mp—
my Ho

[ nreptmn [ e (m =2 ) winyas] o

and
_ o cz/(cts(z)po)
U(z) > no+ 2 a@/ &(c) [/ K(x)dm] de
ma 0 —oo
_ 00 2—poT—Zo
+ P 69/ n(T) [/ W(x)dm} dr
ma 0 —00
o a- af
me

/0°°§<C) [/_oo o (mzxu_oz) ¢+ S(ESC)MOK <c+ jfﬂ)uo) dx} e

p—bo ( ZO)
- exXp | mo—

ma Ho

/00077(7) exp(meT) [/_:W_ZO exp (mzxﬂ_oz) W(x)dx} dr.
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Settingz = 0 andU(0) = ¢, we find

00 0
0 < nl—i—o;;;ﬁ—i/o &(c) {/ exp (mlc_'uox) K(x)dm} de

1 my —c0 Clo
5 0 0
- — (1) [/ W(x)dx} dr
mi Jo —poT—2Zo
3 ( Zo)
— —exp|m—
ma Mo

/0 " () expmar) [ /_ :OT_ZO exp <m1%) W(w)dx] dr,

and

a+ B —ab — bl
2m2

a—af [ 0 c—
- 0/0 &(c) [/_w exp (m2 Cujoa?) K(x)dx} de
B — bo e 0
- /0 n(7) {/—um—zo W(x)dx} dr
B — bl ( ZO)
— exp | mo—

ma Ho

/000 n(T) exp(mar) [/_:(JT_ZO exp (mgi) W(m)dx] dr.

Rearranging terms, we have

[0 ) o

PN { /0 W(m)dx} dr

0 > no+

mi Jo —poT—2Zo
7 00 —poT—Zo
+ ﬁexp (ml—o) / n(7) exp(my) {/ exp (mli) W(x)dx} dr
my Mo/ Jo —o0 Fo
< m+ ot B - 9,
2m1
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and

a ;@:9 /0 el { /_ io exp <m2 ¢ C_Mg‘o x) K(m)dx] de
M nfb;’@ /0 ) [ /_ (,)m_zo W(x)dx} dr

ma Ho
o0 —poT—Zo T
/ n(7) exp(mo7) [/ exp <mzu—) W(:)s)da:} dr
0 —00 0
> nz+a+ﬁ—a9—b€_9‘
2m2

Let
co=sup{d>0:&(c)=00n(0,d)}.

Now we have

/0 exp (mli) {&K(x) + ﬁW(x)} dr < ny + O‘2+ by,

Ho m1 m1 mi

—00

and

_ 0
a—ab / exp (mgi) exp (mgg) K(z)dx
) —00 o Co

oo 0
+ p— b exp (mgé) / n(7) exp(meo7)dT [/ exp (mgi) W(x)dx}
> to ) Jo —00 Ho
at+pf—abl —b p

2m2

Z Ng +

By applying Lemma 3.3.4 and Lemma 3.3.5, we obtain the estisnan the wave speed

o < - a+p {/ ol (@) +5|$‘W(xﬂdx} ’
(a+ﬁ)lna+ﬁ—2m19+2m1n1 )
and
Mo > %(a+ﬁ—a«9—b9—2m29+2m2n2)

(o = aB) K (0) + (8 = W)W (0) exp (ma22 ) [ n(7) exp(mar)dr]
> 0.
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If 9 = 0O, thenZ, =0 and
mT(oz + 5 —ab — b9 — 2mof + 2m2n2)

>
Ho (a0 — ab) K (0) + (B — bYW (0) [ [~ n(7) exp(ma)dr]
> 0.
The proof of Theorem 3.3.6 is finished. |

3.3.3 Several change of variables

Theorem 3.3.7.Make the following changes of variables

a b
ag = by = —, to = mt,
m’ m
oy = «a—an, Bo =0 — bn,
0y = mb—mn, Oy = mO — mn,
c
o = —, To = mMT7,
m
1 1
lcr) = me(maa), i) =2 (),
m \m
v(z,to) = mlu(z,t) —n].

Then the integral differential equation

Nt m(u—n)
or M

~ (a—an) [ e [/K@—@H(u(y,t—éwx—m)—e)dy] do
+ (5—bu/ UW:C— u(y,t —7) — @)dy]dr

is equivalent to the following integral differential eqit

v
8—t0 +v
= (ap— aov)/ &o(co) [/ K(x—y)H (v <y,t0 - C—lo|x — y|) — 90) dy] deg
+ (8o — bov) / no(70) [/ Wz — v(y,to — 7o) — @o)dy] dro.
0

Proof. The proof of Theorem 3.3.7 is simple and is omitted.
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3.4 Numerical Analysis

In this section, we will focus on the numerical analysis ai&tipn (3.1) with a nonlinear
sodium current functiorf (u), such thatf(n) = 0 andm = f’(n) > 0, for two real
parametersn andn.

Given a nonlinear smooth function= f(u), we may find a linear functiof (u) =

mo(u — ng), wheremy > 0 andn, are real constants, such that

wma | () — mo(u — o) = min {max () — mu— n)}} |

[0,6] mn | [0,0]

In another word f;(u) = mgo(u — ng) is the best function to approximate the nonlinear
functionw = f(u). This kind of optimal approximation has a great influencerendel-
icate estimate of the wave speed. As we see, the wave speeel tohveling wave front
of the integral differential equation (3.1) with a lineanfiion satisfy a nice equation,
see Theorem 3.2.3 and Theorem 3.2.4 We can show that the pew®e of the traveling
wave front of the integral differential equation (3.1) witte nonlinear equation is very
close to the wave speed of the traveling wave front of thegnatledifferential equation

(3.1) with the particular linear functiofj(u) = mg(u — no).

Theorem 3.4.1.Let i, and i, represent the real speed and the approximate speed of
(3.1) with the nonlinear functiom = f(u) and the linear functiory;(u), respectively.

Then, there holds the following estimates

},uo —,uappr‘ < ln{l + max }f(u) —mo(u—no)‘}. (3.13)

u€(0,0]

Proof. The approximate wave speggl,,. is determined by the equation

e—nozAO(O)— ! /0 [AO—(ZE)],DO(:c)dx.

By(0)  Dy(0) J_o | Bo(x)
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By an intermediate value theorem, there exists a real numiserch that the real speed

Lo satisfies
_ A 10 TAw)
b=n = Bo) T Doy /_oo {B(fﬂ)} Ployds
1 0
N m/_OOD(x){m[U(x)—n] — f(U(x)) }dz
A0) 1 [° [A®@)Y
~ B0) D(0) /_oo [B(x)} Pl

where

k| < ln{l—l—%%?‘f(u)—m(u—n)}}.

By uniqueness, we find

C — o L= C_:“appr.
Clho Clbappr
The proof of Theorem 3.4.1 is finished. [ |

3.4.1 Numerical simulations

We perform some numerical simulations of (3.1) with a nogdinfunctionf(u). See
Figure 3.4.1 to Figure 3.4.1.

Summary from numerical simulations of the wave speed:
* The wave speeg is a decreasing function of the parameter
* The wave speeg is a decreasing function of the paraméter

* The wave speed, is an increasing function of the parametef the synaptic cou-

pling K (x) = %[6(93 +p) +6(z — p)].

* The wave speeg, is a decreasing function of the parametérthe synaptic coupling

W(a) = £ exp(—plel).
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, 1
Figure 3.1: Lett = 0,b =0,¢p =00, a =5, =0, 60 = 2. Let f(u) = 5 sinh(Du),

1
£(c) = 0(c — ¢p) and K (z) = 3 [6(z + p) + 6(z — p)]. The graph of the wave speed
o = pol(p, D), wherep > 0 andD > 0 are parameters. For the dotted curlze= 2.5.
For the solid curveD = 3.0. For the dash-dotted curv®, = 3.5. For the dashed curve,
D = 4.0.

* The wave speed, is a decreasing function of the parameteif the sodium current

function is modeled with the nonlinear functigifu) = %sinh(Du).

* The wave speedg, is an increasing function of the parameieif the sodium current

function is modeled with the nonlinear functigifu) = %tanh(Du).

* The wave speeg, is an increasing function of the parameieif the sodium current

function is modeled with the nonlinear functigifu) = u(u — 1)(Du — 1).
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: 1
Figure 3.2: Letu = 0,b=0,cp =00, a =5, =10,0 = 2. Let f(u) = Etanh(Du),

&(c) = d(c — ) and K (x) = %[6@ + p) + 6(z — p)]. The graph of the wave speed

o = pol(p, D), wherep > 0 andD > 0 are parameters. For the dotted curlze= 2.5.
For the solid curveD = 3.0. For the dash-dotted curv®, = 3.5. For the dashed curve,
D = 4.0.

3.5 Discussions

Various models describing neuronal activities have beepgsed and analyzed in recent
years. As we continue to develop the model equations, weltese able to incorporate
more biological mechanisms of neuronal networks in an eftoncrease the accuracy
of the model equation and discover further impacts of thesehanisms. It is in this
light that our work expands upon recent models by incorpagatot only two time delay
factors, but also the refractory terms. To add another lafyaccuracy to the model, we
consider not only linear representations of sodium cusrénit also nonlinear terms

which allow us to capture more realistic behaviors of theiwodcurrent. With these
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Figure3.3: Lett = 0,0 =0,¢p =00, =5, =0,0 = 2. Let f(u) = u(u—1)(Du—
1),&(c) = §(c — ¢p) and K (z) = %[5@ +p) + 6(z — p)]. The graph of the wave speed

o = po(p, D), wherep > 0 andD > 0 are parameters. For the dotted curide= 2.5.
For the solid curveD = 3.0. For the dash-dotted curv®, = 3.5. For the dashed curve,
D =4.0.

changes to the model equation, we are considering a veryaenedel that generalizes
most models in current literature.

We use the general integral differential equation

ou
E*‘f(u)

~ (a—aw [ e | [ K- (u (st 2o -ol) -0) ay) ac

+ (B —bu) /00077(7) [/R Wz —y)H (u(y,t —7) — @)dy] dr,

arising from synaptically coupled neuronal networks tcestigate the influence of bi-

ological mechanisms on speeds of traveling wave fronts.ahtiqular, we investigated
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Figure3.4: Let = 0,0 =0,70 =0,a =0, =5,0 = 2. Let f(u) = 5 sinh(Du),
n(t) = d(r — 1) andW(x) = geXp(—p|xD. The graph of the wave speed =
wo(p, D), wherep > 0 andD > 0 are parameters. For the dotted curlze= 2.5. For
the solid curve,D = 3.0. For the dash-dotted curvé) = 3.5. For the dashed curve,
D = 4.0.
how synaptic couplings, sodium conductance, sodium ravergential, synaptic con-
ductance and synaptic reversal potential influence the wpgeds. The mathematical
methods of analysis of this model equation are similar tdhiods used in our previous
work. Using these techniques, we were able to establishxiseeace and uniqueness
of traveling wave fronts to the model equations, despiteatthded complexity of the
additional time delay and refractory term. The wave speediiscreasing function with
respect to parametetsandb. The wave speed can be increasing or decreasing based

upon parameters within the kernel functioRsand /. The same is true depending

on the sodium current functiofi(u) as illustrated by various examples. These results
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Figure3.5: Let = 0,6 =0,70 =0, =0,8=5,0 = 2. Let f(u) = %tanh(Du),
n(t) =d(r—m9) andW(z) = g exp(p|z|). The graph of the wave spegg = 1o(p, D),
wherep > 0 andD > 0 are parameters. For the dotted cunie= 2.5. For the solid
curve,D = 3.0. For the dash-dotted curv®), = 3.5. For the dashed curvé&} = 4.0.
generalize and partly improve our previous results. We hogdend real applications
to biological problems and that this work will continue taeshight on the behavior of
traveling wave fronts and wave pulses in the brain and thefialior consequential to
changes in the neuronal networks. There are still many itapbopen problems to be
solved. For example, can we improve the upper bound and lbawend of the wave
speed?

The traveling wave front has a unique wave speed and we aget@lelstablish an
upper bound and a lower bound on this wave speed dependemipapameters of the

neuronal networks. Lei, be the wave speed of the traveling wave front of the simpler
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Figure 3.6: Leta = 0,6 =0, 70 =0, =0, 5 = 5,0 = 2. Let f(u) = u(u —
1)(Du—1),n(1) =0(1 —79) andW (z) = gexp(—p|x|). The graph of the wave speed

o = po(p, D), wherep > 0 andD > 0 are parameters. For the dotted curide= 2.5.
For the solid curveD = 3.0. For the dash-dotted curv®, = 3.5. For the dashed curve,
D = 4.0.

integral differential equation

a—u—l-m(u—n)

ot

~ (a—aw [ e | [ K- (u (st 2o -ol) -0) ay) ac

+ (8 —bu) /00077(7) {/R Wz —y)H (u(y,t —7) — @)dy} dtau.

Then

m
a+f
a+ B —2mb +2mn

Mo <

/R [af2] K (2) + Bl W (2)] de,

(a+F)In
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2.5

Figure 3.7: Leth = 0, ¢p = o0, = 5,8 = 0,0 = 2andp = 1. Let f(u) =
%sinh(Du), £(c) = d(c — ¢p) and K (z) = %[5(1’ + p) + 6(z — p)]. The graph of the

wave speeqy = po(a, D), wherea > 0 andD > 0 are parameters. For the dotted
curve,a = 0.01. For the solid curveg = 0.13. For the dash-dotted curve,= 0.24.
For the dashed curve,= 0.36.

%(a+ﬁ—a9—b8—2m9+2mn)
(a — ab)K(0) + (8 — bO)W(0) [ [~ n(7) exp(m7)d7]
> 0.

Mo >

Once we establish boundaries of the wave speed, the needetondlee the behavior
of the wave speed based upon changes in the neuronal netie&mes biologically
relevant. We have been able to obtain the increasing aneéasiog behavior of the
wave speed based on changes in specific biological paraneter

The speed index functions are very interesting and impbdamcept in mathemat-
ical neuroscience. It has potential applications and ingpacapplied mathematics.

With the introduction of the speed index functions, we camudah more analysis on
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Figure 3.8: Leth = 0, ¢p = o0, = 5,8 = 0,0 = 2andp = 1. Let f(u) =

1 1

Btanh(Du), £(c) = 8(c — ¢p) and K (z) = 3 [6(z + p) + 6(z — p)]. The graph of
the wave speefdy = po(a, D), wherea > 0 andD > 0 are parameters. For the dotted
curve,a = 0.01. For the solid curveq = 0.09. For the dash-dotted curve,= 0.20.
For the dashed curve,= 0.36.

the speed than previously. One interesting point is that &g define a stability index
function that utilizes the speed index function. By using tklationship, the stability of
the traveling wave can be analyzed easily. This shows usatidihg complexity to the
model to account for more accurate conditions in neuronsloris does not affect the
stability of the wave front. The speed index functions mayplery important roles in
rigorous mathematical analysis of traveling waves of madr singularly perturbed sys-

tems of integral differential equations. Moreover, thelgsia and results on the speeds

and the speed index functions can be applied to computatienaoscience.
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Figure 3.9: Leth = 0, ¢y = o0, « = 5, = 0,0 = 2andp = 1. Let f(u) =
u(u—1)(Du—1),&(c) = §(c—cp) andK (z) = %[5(x+p) +6(z — p)]. The graph of

the wave speefdy = po(a, D), wherea > 0 andD > 0 are parameters. For the dotted
curve,a = 0.01. For the solid curveq = 0.16. For the dash-dotted curve,= 0.30.

For the dashed curve,= 0.36.
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Chapter 4

Traveling Waves with Lateral
Inhibition Kernel Functions

4.1 Introduction

As we described in the introduction, there are three clasidemrnel function represent-
ing pure excitation, lateral inhibition, and lateral eatibn. Most work regarding the
existence and uniqueness of traveling wave solutions aveling pulse solutions has
been done by considering class (A) kernel functions, mamlgase the mathematical
analysis as those kernel functions are always positivela/fthey are nice to work with,
neuronal networks with pure excitation are rare. Neuroefalvarks with lateral inhi-
bition are much more common in the body. So in this work we agpapon previous
work by Zhang [61] [62], Pinto and Ermentrout [46], and Temja3].

In this chapter we focus on the model equation proposed by Rimd Ermentrout
in 2001 [46]. We let the kernel function be of class (B) andbbsh the existence and
uniqueness of the traveling wave solution. The goal is tbesmbw that the unique solu-
tion is exponentially stable. Use use complex analytic fioms as in previous chapters

along with the linearized stability criterion to establible stability of the wave.
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4.1.1 Model equation and biological background

Consider the following integral-differential equations&present the membrane po-

tential of a neuron arising from synaptically coupled nexalanetworks

wHutw = a/RK(x—y)H(u(y,t)—H)dy 4.1)

wy = e(u—yw), (4.2)

whenu = u(x,t) represents the membrane potential at positicend timet, w =
w(x, t) represents the leaking current. In this model we choosedhefgnction to be
the Heaviside step functioti (v — 0) = 0 forall u < 0, H(0) = 3, andH (u —0) = 1
for all ©w > 6. We represent the interactions between neurons by comgltiite kernel
function with the gain function. In addition, we use the asptions on the class (B)

kernel functionk as described in the introduction.

4.1.2 Mathematical Assumptions

We begin our discussion of mathematical assumptions byidemsg restrictions to
the kernel functions representing the synaptic couplinthennetwork. Suppose that

the kernel functionX in class (B) and which satisfy all assumptions describedhén t
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introduction along with the following

/0 g()K(x — Z)dx < 0 4.3)
0
/_ |z| K (z)dz < 0 (4.4)
200y +1) > ay (4.5)
ay [°
o /_MK(x) dr > 0 (4.6)

4.2 EXistence

4.2.1 System (4.1)-(4.2)

We begin by establishing the existence of the traveling veahation to equations (4.1)-
(4.2) with class (B) kernel functioi ().

Theorem 4.2.1.Suppose that > 0, > 0, § > 0 are real constants and choo$é&(z)

to be lateral inhibition. Then there exists traveling wawtusions(U(z), W (z)) to the

146



system (4.1)-(4.2), namely

z

ary
U(E,Z) == ﬁ ZK(S)df
B o
W1 — Wa
/Z l—wy sy 1owi ey [K(z) — K(z — Z))dx
o w1 W2

O{ z
W) = % / K

i 1w
ae / {—ev(x_z)——ef(x_z)}[K(x)—K(x—Z)]d:):

W1 — W2

[e.e]

Proof: We begin to solve the system (4.1)-(4.2) for the speed ofrdhweling wave. We
begin by letting(u(z,t), w(z,t)) = (U(z), W(z)) where(U(z), W(z)) is the traveling
wave solution to the system (4.1)-(4.2) with= = + vt. The traveling wavé/(z) has
the following propertiesy/(z) < 6 on (—o0,0) U (Z,00), U(0) = 6, andU(z) > 6 on

(0, Z) Then the system reduces to

vU'(2)+U(2) + W(2) = « /R K(z—y)H(U(z) —0)dy 4.7)

W'(2) = e(U(z) —4W(2)), 4.8)
Note that
o / K(z— ) HU) - O)dy = o / K(= — y)dy

= a / ;K(x)dx

So the system simplifies to
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vU' (2) +U(2) + W(z) = a/iZK(x)dx (4.9)

vW'(2) —eU(2) +yeW(z) = 0, (4.10)
To further simplify the system, we can write the system as @ir@quation, namely

(1)) () (P

To begin solving the new matrix equation we solve the homegas equation,

U 11 U
() (L) (V)=
by finding its eigenvalues and eigenvectors to establisimdanental solution.

‘1—)\ 1 ’

Y (I1=XN(yve—=X)+e

= M —(ye+DA+e(y+1)

Then we have the two eigenvalues,andws as follows;

L+ve++/(ve+1)2 —de(y+1)
2
14+ + /(7 —1)2 —4e
2
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y 14+ve—/(ve+1)2 —de(y+ 1)
2 pum—
2
L4+ —+/(ve—1)2 —4e
2

Remark 4.2.2.

W1—|—W2:’}/€+1

(ve+1)* — [(ve = 1)* — 4e]
4

Wiwy =

= e(1+7)

The corresponding eigenvectors arg = 1 = 1

Now we can construct the fundamental solution to the matfiaéion, namely

_w1, _wa,
€ v € v
(p - w1 w . 4.11
(2) ( eV (w —1) eV (wy — 1) ) ( )
Now we solve the inhomogeneous equation, by finding

! / ®(2)® () Bd,

v(wr —w2) J oo

whereB = ( O‘fz_zgf(x)dx )
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) = ! /_ ®(2)® () Bdx

W1 — Wy 0o

- / @(z)q)-l(x)(aff_zK@)dg

W1 —Wa J_o 0

Hence we have the solutions foi(z) andWW (z):

) as

Ule,z) = ﬁ /_; {(1 —wp)e @ (1 wl)e“’—f(x—z)}
/1‘ K(§)dgdx
o—7
W) = [ (et st} [ i
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Using integration by parts we arrive at the solution,

«
Ule,z) = o
g Lowp oy 1w ey |]]
K(§)d¢ e - e
7 W1 w2 -0
B «Q
W1 — Wo
/ {1 e Bl “’le‘”f“‘”} K(2) — K(z — 2))du
oo w1 W2
el L ( “ “l)
wr —ws J._z ! w2
«
W1 — W2
21— wy “1 () 1—wq “2 (3 2)
e _ ev [K([L’)—K([E—Z)]dl'
oo w1 W2
ay  [*
= K(&)d
7 + 1 z2—7Z (5) 6
«
W1 — W2
[ e - s ok k) - kG- 2)as
oo w1 )
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W1 — Wy 7z “i 2 -
- 0 [ e S ik - K- 2
W1 — W2 oo ! w2
a z —& £
_ JLGL (— + —)
Wwp —wWe J,_z w1 w2
S / {—Ee%@—z) + ie%(x_Z)} [K(z) — K(z— Z)]dz
Wi — W2 J_o (W1 w2
a 4
_ d
L
z 1 wy 1 w
n Qg {_ey(l‘—z) —61'2(96_2)} [K({L‘) - K(ZL’ a Z)]d:L’
W1 — W2 J_ o (W1 w2

|
Since we are looking for the speed of the traveling wave swoidbr the membrane
potential, we focus on the solution féf(c, z). We use the two initial conditions to
attempt to solve the syster;(0) = ¢ andU(Z) = 6. By lettingz = = — Z and
dr = dx in the second case, we obtain the following two equationschwve will use

to generate speed index functions.

uo) = 46
0
ay
= — K(&)d
el LIGL:
O (1—wy wr, 1—w; w
- a / { Y2 e wleTx}[K(x)—K(x—Z]dx
w1 — w2 J w1 Wa
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Uz) = ¢

S
- L[ K
(0%

/Z 1w sz 1-wi 2 g
W1 — w2 J w1 Wa

[K(x) — K(z — Z)]dx

Remark 4.2.3. K (x) is symmetric, sngZ K(x)dx = fO_Z K(x)dz.
4.2.2 Speed Index Functions

To establish the uniqueness of the wave speed, we begin Isgraoting speed index

functions.

Definition 4.2.4. We define two speed index functions,

0

ary
= K(&)d
(pl(V> ’Y+1 _z <£) g
B «
W1 — Wa
0 _ wy — w3
[ ae e e K2 @)
oo L Wi W2
A
ary
- K(&)d
902(1/) ’Y‘i‘l 0 (5) 5
_ «
W1 — Wa
Z _ wy — w2
/ {ﬂeﬂx_m N ﬂev(r—z)} [K(x) — K(z — Z))dx,
o w1 w2
Z
ary
- K(&)d
1), (€)ds
B «
W1 — Wa
0 — wq ]_ - w2
oo L Wi W2



We want to show thap, (v, Z) = ¢2(12, Z) = 6 has a unique solution. To establish
this, we need a unique solution to the equatigfv) = ¢o(r). We begin by looking at
the behavior ofp; () andy,(v). More specifically, we look at the derivativesof(v)

andyps(v). Itis easy to find

8301 «

ov V2 (wy — wo)

/0 o] {1~ wa)e ™ — (1 —w)e P} [K(2) — Ko — 2)]da,

—00

0pa a

v V2 (wy — wo)

/0 || {(1 —wa)e s T — (1— wl)e“’%x} [K(z + Z) — K(x)]da.

—00

For simplicity we make the following identifications,

gl@) = (L—w)e” = (1—w)e ™,

1—- wp 1—- w
hz) = ( w;"z)eyz_( w:“)efx,

Ki(z) = K(z)— K(z—2),

Ky(z) = K(x)—K(x+Z).

We also define the following notation, there exist constantd/;, M, M; > 0 such
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that

h(—Nh, l/) = 0,

h,(—Ph,l/) = 0,

Remark 4.2.5. We define-M; as the first zero of<; to the left of the origin for the

corresponding kernel function.

We consider the behavior of the functioh§ K;, g, andh. The kernel function

K(x) is lateral inhibition, meaning thak'(x) > 0 on (—M, M) and K(z) < 0 on

(—o0, —M) U (M, o0). We considerg(z) and find N(v) = ———In (1 —w2).
w1 — w2 1—w;

Theng(z) > 0on(—N, 00) andg(z) < 0 on(—oo, —N). Similarly, vg'(z) = wy(1 —

w w ]_ -
wa)e v ™ — wy(l —wy)e s *, andP = G (M
W1 — W2 wQ(l—wl)

on (—P, c0) and decreasing of+-oco, —P). Note N < P. Lastly, we consideh(z). As

) . Sog(x) is increasing
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h varies fromg by a few constants, structurally, they are similar. So weehgyv) =

G (w2<1 — wz)) . Thenh(z) > 0 on(—Ny, 00) andh(z) < 0 on(—oo, —Ny,).

W1 — Wo w1(1 — wl)

Similarly, vh/(z) = g(z), andP, = N = G (1 — w2). Soh(z) is increasing

W1 — W2 1-— w1
on (—N, o0) and decreasing off-co, —N). We also note thalv > N,,.

We first consider

0
U(z,v) = M/_ |x|{(1—w2)e%~f—(1—w1)e%x}K(x)dx,
which reduces to
0
U(z,v) = m /_ lz|g(2) K (z)dx. (4.14)

Lemma 4.2.6.Suppose-N < —M, then

V()= — S / lz|g(2) K (z)dz > 0. (4.15)

V2w —w2) Jooo

Proof: As noted above;(z) > 0 andg(z) is increasing ori— N, 0). Sog is positive and

0
increasing or{— A/, 0). Also we have the assumptiontk%t |z| K (x)dz > 0. We note

that on(—oco, —N)U(—N,—-M) K(z) < 0, SO/ON |x| K (x)dz > /0 |x| K (x)dz > 0.

—00

/_ ey (@) = / lelg(o) K (o) + / Jelola) K (@)da

> g(=M) /_;V 2| K (2)dz + g(M) /_M\xm(x)dx
= gt-a1) [ el @)is

N

v

0
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SinceK (z) < 0 andg(x) < 0on(—oo, —N), then

U(z,v) :/ |z|g(z) K (z)dz

= [ @K@t [ el K@)

> 0

|
-M
Since|z|g(z) K (z) goes to zero dramatically far < —M, / |z|g(z) K (z)dx

0 0
is negligible. Hence/ |z|g(z) K (z)dz ~ / |z|g(z) K (z)dz. As the slow pulse
M

—00 —

does not have biological relevance, we consider only the gate, so we restrict
our speedr away from zero. We shall only consider > 1, wherey, is such that

0
/ |z|g(z) K (z)dz = 0, then notationally, we say thag(z) = g(x, vp).
M

Lemma 4.2.7.Suppose-P < —M < —N < —N, then

V()= — S / lz|g(2) K (z)dz > 0. (4.16)

V2w —w2) Jooo

Proof: Now K (z) < 0 andg(z) < 0 on(—oco, —M) so again we have
0

y |z|g(x) K (z)dz > 0.

o0

—-M
/ |z|g(x) K (x)dz > 0, so it remains to show thi[
} i
2

. a w1 w9 .
Slnceﬁ—i = |V—| [wl(l — wf)eT:” —ws(1 — wl)eTm] which for
z>-N=_" ln< — wl) is positive, we have thaf(z) > go(z) on (—Ny,0)
W1 — Wy — W9

andK (x) > 0 on(—M,0) so we have

/ felg@)K(@)dr > / l2lgo(2) K (2)dx

M
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U(zr,v) = 7/ |z|g(z) K (z)dz

V2(W1 - WQ) —00

- o | @K@+ =t [ el K@

V2 (w; —wa) J_oo V2 (w; —wa) J_um

|
We define three kernel functions in terms of the original kéfanction K (x) and

define their zeros.

Remark 4.2.8. Then we define-M; as the first zero to the left of zero for the corre-

sponding kernel function. Hendé, (— ;) = 0 and K»(—M;) = 0.

Remark 4.2.9. We note that/ = g for some value of C. antl < ¢ < 1soZ is large

compared to other values in the network.

SinceZ is large, we can assume thats significantly larger thaf/. HenceK (x) ~

K(z) — K(z — Z) on(—o0,0) andK (z) ~ K(z) — K(z + Z) on(—%,0). Hence we
0
know that— M ~ —M; ~ —M,. Then letv = v; be such tha% |z|g(x)K;(z)dx =

—-M;
0

0 for i = 1,2 and as befores = 1, be such that/ |z|g(x)K (z)dx = 0. Then
M

Ki(z) > 0on (=M, M;)andK;(z) < 0on(—oo, —M;)U (M, 00).SinceK;(x) < 0

andg(x) < 0 on(—oo, —M;), then

w2

/_o || {(1 —wy)e ' — (1— wl)eTl‘} [K(z) — K(x — Z)]dz > 0.

My

iy

Now we go back and consid%g andﬁ—.
14 14

Theorem 4.2.10.Suppose > max {vy,1»}, then
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(1

O9pr _ __ a
v V2 (wy — wo)
/_(; Iz| {(1 e (1 - wl)e“*fx} K (2) — K(z — Z)|dz
< 0.
(1)
O _ @
v V2 (wyp — wo)
/_OOO 2] {(1 e (1 wl)e“%x} (K(z+ Z) — K(2)|dz
> 0.

Proof of I: Forv > max (v, v») we have

dp1 _ «
o T )
/_OO || {(1 — )T — (1 — wl)e%zx} [K(z) — K(x — Z)|dx

V2 (wy — wo)

/_—M1 || {(1 — WQ)FJ%U’U —(1- wl)e%zx} [K(x) — K(z — Z)]dx

00
(0%

V2 (wy — wo)

/0 Iz| {(1 e (1— wl)e%“} K (2) — K(z — 2)|dz

—M;
< 0.

0
Proof of Il: So we consider the integr7( |x|g(z) K3(x)dx in three parts and show
that it is positive.
Zz
-2

| @i = [ g Koo+ [ lalgo)aa)da

Z

+ [ elol) oot

N
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We consider the three parts of the integral and name thenllaw$o

I :/ 12]g(2) Ko (2)da

A
2

wlN

L - / 29 (2) Ka(2)da
I = / T elg(2) Ko(e)de

Then it suffices to show thdt, /5, and/; + I, > 0 are each positive:

Lemma 4.2.11.For v > max {v, 10},

O :/ |z|g(x) Ky (x)dz > 0.

S

[N

an L+1,= /__Z |:):|g(:)3)K2(x)dx+/_ |z|g(x) Ko(x)dx > 0.

SN

~z
my Iz = / |z|g(x) Ko(x)dx > 0.

o

Proof of I: Now on (—%, —M>), we haveK,(z) < 0, g(z) < 0 and|z| > 0. So

— M,
z|g(z) Ky(x) > 0 on(—Z,—M,), hence/Z |z|g(x)Ko(x)dx > 0. Now we are

2
considering the fast pulse so we take only values @fwvay from zero, mainly >

0 0
max (v, V1, Va). SO/ |z|g(x) Ko (x)dx > / |z|g(x, v3) Ky(z)dx = 0. Hence,
— My

— Mo

L o= /Z|x|g(x)K2(x)dx

2

— /__ 2|x|g(x)K2(9:)dx+/ |z|g(x) K2 (x)dx

—Ma

N[N

> 0

Proof of Il: If I, > 0, then the proof is complete. If not, thenl, > 0 andl; + I, =

I — (—15). We look at—1, and make a change of variablesy = = + Z.
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L = - / j2lg(a) [K () — K(z + Z)] dz

= - / ey Zlg(—(y+ 2) [K(~(y + 2)) — K(—)] (~dy)

= [ T Zlal—to+ 2) 1K+ 2) - Kl dy

= [ Tt e+ 2) (K@ + 2) - K@) da

Then, we note thatr + Z|g(—(z + Z)) < 0 and|z + Z||g(—(x + Z))| < 1 on
A
(=5 0), thenjzlg(z) — |o + Zlg(—(z + 2)) > |z|g(2).

L —(—L) = |z 4+ Z|g(—(z + Z2))Ks(z)dx

= |zlg(x) Ko()de — [ |w+ Zlg(=(x + 2Z)) Ky(x)dx

z _Z
2 2
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Proof of lll: Let R > 0 be such that-co < —R < —Z and K,(—

R) = 0. Now

on (—oo, —R), we haveK,(z) > 0, |z|g(z) < 0 and|z|g(z) is decreasing and on

(—R,—Z%), we haveK,(z) < 0, |z|g(x) < 0 and|x|g(x) is decreasing.

I - /  Jelg(@) Ka(z)de
R —Z
= [ elgte)atayin + / [2lg(x) Ks(a)da

[e.e]

> R / K2 dﬂf -+ Rg / K2

-z

= Rg(—R) Ks(x)dx

= —R|g(— \/ K(z—Z)— K(z)dx
~ Rlg(- |/ K _ Z)da
> Rlg(— I/ K(x
_ Rlg(=

2
> 0

This completes the proof of Lemma 4.2.11.
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Hence,

0pa «

v V2 (wp — wo)

/ e {1 = @)™ = (1= w)e P} [K (o + 2) - K(@)da

—00

e L

Vz(wl - w2) —00

a
= —[Lh+DL+]1
Vz(wl—w2)[1+ o + I3]

> 0

which completes the proof of Theorem 4.2.10.

We now consider the derivatives with respecttof our speed index functions

0

ary
= K(&)d
(pl(V> ’Y+1 _z <£) g
B o
W1 — Wa
0 1—(4)2 wy 1—(,{)1 w2
T TS |K — K(z—Z)|d
/_Oo{ o e s e }[ (93) (I )]x
A
ary
902(1/) ’Y‘i‘l 0 (5) 5
B o
W1 — Wa
Z 1— wy 1-— w2
/ {7“)267(90—@ — 700167@—2)} [K(x) — K(x — Z)]dz,
o w1 w2
A
ary
1), (€)ds
B o
W1 — Wa
0 1 —wy 1—wy w
Lz _ TTA K Z)—-K dx.
/—oo{ w1 ‘ W2 ‘ }[ w7 e



It is easy to find

991
0z

iy
oz

Theorem 4.2.12.Suppose > max {vy, 1, }, then

(1

(I

0 a 0

8@21 = o — ) / g(x)K(x — Z)dz
< 0

0pa Q@ 0

57 — o —) /- g(x)K(z + Z)dx
< 0
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Proof of I:

9o
0z

ary
K(—Z
v+1 ( )

O (1—wy l—w
a / { 2o 2T W, 2”E}K’(:B—Z)alzv

w1 —wWa J_ w1 W9
0

ay o) ,

K(-Z7)— h(x)K'(x — Z)d
LKD) - 2 [ oK@ 2

0

ary Q@

K(-Z2) - h(x)K(x — Z
LK 2 - @K - 2)|

«

/ Zo W(2)K(z — Z)dx

w1 —wWa J_
0

ary « « ,

K(—Z7)— K(—Z K(x—Z7
LK (2) = S hOK(-2)+ o [ W@k (e - 2)ds

0
ary ary o ,
—7) - - Kz—2Z

SLK2) - R+ [ WG -2

[0

0
It remains to show thati/ g(x)K(x — Z)dx < 0.

(w1 — wa)

a wl - Wz /

= / )] dx
wl — u)g

= / 7)) dx
(.Ul — CUQ

+ / )] dz
wl - w2

L K(—N—Z)]/__ g(x)dz

v(wp — wa)

+ Y K(-N-2) / g(z)dz

v(wy — wa) -N
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«
Then,i/‘
v(wy — wo)

a |

= S KN-2) [ Syl
= o FEEN =20 @)

- = - - [ (=N = Z)] h(0)

- Y

= S EKEN-2)

> 0

0

g(x)K(z — Z)dx < 0 which completes the proof of I.

o

Proof of Il:
D2 ay
K(Z
oz v+1 (%)
0 . o . "
« / {1 w267x_1 Wlefx}Kl(x_l_Z)dx
W1 — W2 J_ w1 w2
0
ary o /
Z) — hi(z)K Z)d
SR [ et s e
0
ary o
7)) — h(x)K A
K2 - K Z)|
a /0 W(2)K(z + Z)d
o —n ) x x X
ary

K(Z) - —2 ho)K(2) + —2 /0 W (2)K (z + Z)dx

K2Z) - k(z)+ 2 / : W (2)K (z + Z)dx

0
Then for all K (x) that satisfy/ g(x)K(z — Z)dx < 0. We haveaﬁ% < 0. This

completes the proof of Theorem 4.2.12

Thus by implicit function theorem and by the equatignév, Z) = 6 and as

wo(v, Z) = 0, respectively, we find that the functions= A(Z) and asv = B(Z7)
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are well defined, such that;(A(Z),Z2) = 0 andps(B(Z),Z) = 6+. We also note
Ae) = A., A(+00) = Ay, B(e) = B- andB(+o0) = B, whereA,, A, B. andB.,

satisfy

0

o— - | K(¢)de (4.17)
Y+1J m
Q O (1—wy w1, 1—w w2,
_ / { e _ e }[K(:):) _ K (2 — M)]da
W1 — W2 J_ w1 )
ay
= 4.18
2(y+1) ( )
0 wq _ w:
- ¢ / {1_w26““+x—71 wle““ix}K(x)dx
W — W2 J_ w1 W2
M
ay
0 — —— d 4.19
el ARAGL (4.19)
o 0 1—wy =1, 1—wp w2,
. / { o5 o5 } K (z+ M) — K(x)] do
W1 — Wy — o w1 (09))
ay
— 4.20
2(y+1) ( )
0 _ wq _ w
= a / {1 W2 BT _ 1-w wlegix} K(x)dz.
W1 — W2 J_ o w1 w2

The existence and uniqueness of each of the numgrsA, , By, andB,. are guar-
anteed by the assumptions on the parameters. Differergitite equationg, (v, Z) = 6

and aspsy (v, Z) = 0 with respect taZ, we obtain
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5, (A2), )X (Z) + 57 (AZ), Z) = 0
8S02 1 8901 .
2 B(2), A (2) + SR B2).7) = 0
Thus
A(Z) = _aZSDI(A(Z)az) <0, B(Z) = _8Z<p2(B(Z),Z) - 0.

A1 (A(Z), Z) Oyip2(B(Z), Z)

It remains to show thatl, < B, and. A, > By,.

Lemma 4.2.13.For A, and B, satisfying equations ( 4.17)-(4.20), anQ#f(y + 1) >

ay, thenAd, < B,.

Proof: From the equations 4.18 and 4.20 and the symmetric natuke of, we can say

that if 20(~y + 1) > a, then

ay Ve
0 < — —— K(&)d

0 _ w _
_ _/ {1 w26A}r:c 1 WleA :c}
— o0 w1

So we know that,
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0
1 — w 1 — w
Now we look at/ { W2 e _ 1T W 2

ev } K (x)dz. We know the following,

e v
— o0 w1 Wo

. 0 Il—wy en, 1—wy e,

lim ev?® — ev®y K(z)de = 0
v—=0t J_ o w1 Wo

O (1

. — Wy @1 Il —wp

lim ev?® — ev s K(x)de > 0.
V—00 — o wl (UZ

]_—w w 1—(,4} w
2. 1ow g

} K(x)dx
Wi )
as a function ofv is decreasing on an initial intervag0,»,) and increasing on the

0
We also know from previous lemmas, th]ét {

remaining interval(vy, c0). Hence there exists a numbey, € (1, o0) such that

—X —=X

01— w) 1— wp
/ { P2 v Lo }K(m)dm = 0. ThusA, < 1y, < By. n

—00 w1 W9

Lemma 4.2.14.For A,,; and BB,, satisfying equations 4.17-4.20, and if

0 < 2% [°), K(x) do, thenAy > By

Proof: Consider the graphs df (z) — K(x — M) and K (z + M) — K(z). We note
that K (z) — K (z — M) is positive on(—M — k, 0) for some smalk > 0 and negative
on (—oo,—M — k) sinceK(z) — K(x — M) is a Mexican Hat kernel function and
K(x) — K(x — M) ~ K(x). Also we note that(z + M) — K(x) is positive on
(—2M — k,—%) for some smalk > 0 and negative ofi—co, —2M — k) U (—4,0).
0 < % ffM K (x) dz implies that the integral are positive. Based on earliemhas,
we know thatA . must be large enough so thﬁftoo g(z,v)[K(x)— K(x—M)] dz > 0.
We can also see from the behaviorgdfr) and K (x + M) — K (z) that By, must be
small enough thaffoo g(z,v)[K(x+ M)— K(x)] dz > 0. Hence we can conclude that
By < Apn. This completes the proof of Lemma 4.2.14. [ |
Now for all networks that satisfy the assumptions in Sectidh2, we have estab-
lished that there is a unique solutiog, Z, that solves the equatiop, (v) = @2 (v).

Hence, the wave speed is unique.
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4.3 Stability

We approach stability conditions and results by first dagvihe eigenvalue problem
and creating an Evans function. After establishing the Bvfanction we look at the
zeros of the function and compare results to the linearitabilgy criterion to deter-
mine exponential stability. We begin here by linearizing #ystem and deriving the
eigenvalue problem.

We rewrite the system in moving coordinates, mainkyg = + vt and set

(P(z,1),Q(z,t) = (u(x — vt, t),w(xz — vt,t)), then the system becomes

vP,+ P+ P+Q = /Kz— y,t) — 0)dy (4.21)

vQ: +Q = e(P—1Q). (4.22)

Now consider the difference between the system above artdatreding wave solu-
tion (U(2), W(2)) and let(p(z, 1), q(z,1)) = (P(z,1) — U(2), Q(z,t) — W(=)) which

yields the new system

VDAt pta = /Kz— (P(y.t) — 0) — H(U(y) — 0)] dy

v + ¢ = e(p—q).

Using the same strategy as in [65], namely lemma 5, we oldtaitiriearization

vp.+p+p+q = a(fj.(,((g;p((], t) — %1)(1 t) (4.23)
ve. +q = €(p—q). (4.24)

Lety = ( f} ) € BC'Y(R,C?) = [BCY(R, C)]? and define

K(z—2)
U17)

E(Z,t) =a(2)E(N,e,0)+b(2)E(N g, 2)).
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Now define a linear operator and derive the eigenvalue pmoble

o Ve &=+ N\ W L N0
E(a)-( v 2 (E— ) )__VE_<_E 57)¢+< 0 0).

The associated eigenvalue problentis)y = A, more explicitly we have

s (4 2)o=()

We now prove a serious of lemmas that will help to verify theeérized stability

criterion for the solution.

Lemma 4.3.1.One solution of the eigenvalue probleite)y = Ay is

V(A e, z) = ‘P(A’E’Z)<fl<k,€))

1 [ 1 10
+ ;/_ P\ e, 2)P (A,s,x)(o O)Ndx,

o0

wherec andd are complex functions of ande.

Proof: From previous calculations, we know that the eigenvaluethi® matrix

( —15 517 ) arew;(¢) andws(¢), therefore we have the eigenvalues for this opera-

tor are A + w; and A + w, with corresponding eigenvectors = < w L 1 ) and
L —

vy = ( 1 ) Hence when we consider the homogeneous system of different

w1—1
W+[M+<_1€ 517 )]w:o,

equations
we obtain a fundamental solution matrix

_A+w1 _>\+w2
e v * e v 7

D\ e, 2) =
(w1 — 1)6_A+lez (we — e™ v
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In order to solve the inhomogeneous case, we need the invetbe fundamental

solution matrix which we find to be

A+wq Atwq
1 (I—wy)e v 2 e v ?
d (N, z) = (4.25)
W1 — Wo ( 1) Awg Atwy
wp — 1l)e v —e v

We use the method of variation of parameters to solve thesysf differential equa-

tions. In the process we compute the product of the fundaahsolution matrix and its

inverse as follows

1

W1 — W2

DN, e, 2)0 (N g, 2) =

(U o)

where
(1 —wo)e w2 — (1 — wy)e s 2@=2)
(I
—ee™E R @—2) 4 o2 (a—2)
and
e)x«b;wl (ZB—Z) B e)\th (IE—Z)
o =

(wz _ 1)6A+Vw1 (z—z) _ (w1 _ 1)6>\th (z—2)

The general solution of the linear system of differentialaipns is

U(\e,2) = D(\e,2) ( fi(“)>

+ l/Z @(A,e,z)@‘l()\,a,x)((l) S)Ndx

v 00

We now attempt to finc( 28’ 3 ) explicitly. We begin by defining

A+ w A+ w
R()\,s,z):(— Loo- 22).

e v e v
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n(A e, z)
the eigenvalue problem by the vec(oﬂ 0 ) we obtain the following equation

)00 = (1 oseso ()

+ (1 0)1/0 @(A,g,o@—l(x,g,x)(é 8)Ndx

VJ-x

Then we letV = < £(A.e.2) ) z = 0 and multiplying both sides of the solution to

§Xe0) = Rre0) ( 2&3 )

) _ {1 _ %/_io RO\ 2,001 (\, 2, 2) ( “%”C) )da:}

£(Ng,0)
- %f(k,s, Z) /_0 R(\,e,000 (N, e, 2) ( 5(66) )dx

= 1- Mllg()Ug) 0) - M12§()\7€7 Z)

Now we complete the same calculation, however, we use tlondenitial valuez = 7
and multiply both sides of the solution to the eigenvaluéofm by the vectof 1 0 ),

we obtain the following equation

o (hig) - Goeean (7))

+ (1 0)1/_2 @(A,E,Z)(I)_l()\,s,x)((ll g)Ndx

v 00
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£\ e, Z) = R@"g’Z)(ccl((i:?))
. %g(k,a,o)/_ipb()"gz L\ e, 2) (a( )
+ %5(%6,2)/_13(“2 o) (box )

) _ [1 _ %/_i RO\ e, )51 (\ 2, 2) ( b%” )da:}

£\, e, 7)

- %5(&6,0) /_Z R(\ e, 2)0 (A, e, 2) ( a<0w> )dm
= —Mxn&(A e, 0) + (1 — My2)§(A, €, 2).

Putting these two equations together we form a new equatidrsalve for the constant

solution, ( 2& ?) ) .

(ros2 ) G ) = - (am )] (6022

Hence our solution to the eigenvalue problem is

V(A e,2) = ®(Ae,2) < g()\@z) )_1 (1= M) ( fg(())\\:gg)) )

+ l/ D\, g, 2)07 (N &, 1) ( é 8 )./\fdx.

14

For the solution to the eigenvalue problem to be bounde@-ow, o), then
che)\ (0
dhe) )\ 0 )"
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However,( g(())\";’g)) ) # 0 so the solution is bounded iffet (I — M) = 0. Hence

we define the Evans function as

ENe)=detI — M

We define four functions as follows:

1 M Atwy Atwo
A = — (1 - v —(1— v F
(@) = Sy (1w = 1w
1 M Atwy Atwo
B = — | — v T v x]
(x) o= | e +e
B I [l—wy e, 1—wy rwy,
C(I) B w1 — W9 _)\+w1€ )\‘i‘&)ge :|
1 [ 1 Atwy ]_ Atwo
D = — — ¥ 7
(x) W) — W2 | )\"—(A}le )\‘i‘&)ge :|
0 0
/ A(x)a(x)dx / A(z)b(x)dx
M) = | _
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Hence,

E\e) =

det

det

det

«

(67

-~ U(0) /-

/ : A(@)K (2)dx

51()\,5) 52()\,5)
Clane  &0ne)
= &\, 5)54 (N e) — &N e)&(N e)

— /0 A(x)a(x + Z)dx 1 — /0 A(z)b(z + Z)dz

0
[0
2 [ a
|U'Z|/_w

—m/_ioA( VK (z+ Z)dx 1 — |U’ |/

- 1w \/
- |U, \U/ow/

“"H U7 \/

/ A(@)K (z + Z)dz
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We now investigate the behavior of eagfi), ¢). LetC' = > 0, then

v(w —wo)

0 A wo+A
fhe) = 1-—C / {(l—wg)e 5T (1 —wy)e fr}K(x)dx,

|U"(0)]
&\ e) = —%/j}o{(l—wg)ewlﬁx—(l—wl)ewﬁx}K(:):—Z)dx,
&\ e) = —‘U%)'/_Ooo{a—w2)e“’b“x—(1—w1)e“%“x}K(g;+Z)dx,

w1 +A w9 +A

c 0 )
E(\e) = 1—m/_m{(1—w2)e P (1 wy)e S

w} K(x)dx.

Lemma4.3.2.€£(\,e) #0,forall 0 < ¢ < 1 and all A # 0 with Re\ > 0.

Proof: Using the fact that

0
‘/ elymK(m) dz

0
< / ev K(z) dr

—00
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from [64], we have the following results

|81)\€| = ‘1—

[E2(A, €]

[€3(A €]

84()\, 8)

e (1-— wl)e%—vﬂz} K(x — Z)dx

oo [ {0} K- 2y

‘%/_(;{(l—w)e —(1—w)e }K(x+Z)dx
‘% _w{(l—wQ)e —(1—wy)e vzx}K(a?+Z)dx
E3(A,€)]

‘1‘uﬁ2ﬂ[;{ﬂ—wmf* — (1= w)e™ e L K (@)da
1 |U,fZ)‘ /_OO {(1 )T (1 wy)e S } K(z)dz
= |U,(CZ)| /_OO [ =)o — (1= w)e ) K(a)da

‘1 _ |U,fz)| /_OO [ w)e™ — (1= w)e e} K(2)da
1£4(0, )]

178




So then we have

51()\,6) 52()\,6)
E\e) =
53()\,6) 54()\,6)
= 51()\,6)54()\,6)—52()\,6)53()\,6)
€)= [&(X )l [Es(A o) = |€2(A )] [E5(A, €]

> [€:(0,€)[[€4(0, )] = [€2(0, )] [€3(0, €)]

— 1£(0,)] =0

for all A > 0. Hence there are no nonzero solutiong ¢k, ) = 0 inside

{\ € C:Re\ > 0}. This complete the proof of Lemma 4.3.2. u

Lemma 4.3.3. The asymptotic behavior for the Evans function is as foll6\ws ) —

1, as|\| — oo, insidef)(e).
Proof: We use Lebesgue’s Dominated Convergence Theorem to find that

lim Mij<)\7€> =0

[A| =00

so we have that

lim £(Ae) = lim det(I — M(\e)) = lim det(]) =1

[A| =00 [A| =00 [A| =00

Lemma 4.3.4. There exists a positive but small constantwhich may depend on

such that there is no eigenvalue&fc) in the region{ A : ReX > —x, A # 0}.

Proof: There exists a positive constaht where M/ may depend on such that there

is no eigenvalue of the linear operaiffs) outside the circlé\| = M in the complex
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plane. Then consider the interior of the circlg] < M in the complex plane. Since
the region inside the circle is compact it has at most finiteny eigenvalues of (¢)
contained in it. As we established in Lemma 4.3.2, there areigenvalues in the right
half plane Re\ > 0 except\ = 0. Since there are finitely many eigenvaluesih< M
and they all have Re. < 0 exceptA = 0, then choose-x as the real part of the
eigenvalue with the smallest real component. This compksie proof of Lemma 4.3.4.

|
Lemma 4.3.5. The eigenvalue = 0 is simple.

Proof: If there is no bounded solution gr-oo, +00) to the following variation equa-

tions, then the traveling wave solution is exponentialabse. Consider

O 1 1 . N
y$+(_€ ev)w+(£z):(0>’ (4.26)
where
N(0,e,2) = a([]{/((z))é(O, £,0) — a%f(o, e, 7) = a(2)&(0e,0) 4+ b(2)£(0, ¢, Z).

Again using the method of variation of parameters, we oliteersolution

W(0,5,2) = B(0,z,2) ( o) )

N % /_ C 80,2, 28710, 2,2) ( Zg; 8)(5{85% )dm

o0

- %/_ (0,2, 2)7(0, 2, 2) ( VUV((*;;) )daz,

o0
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Now we takez = 0 andz = Z in the first component of the solution. For= 0 we get

£(0,6,0) = R(0,¢,0) ( d(O’,E))
b E(0,2,0) / " R(0,6,0)07(0,2,2)

(4 5 ()

_ %/_io R(0,¢,0)07'(0, ¢, 7) < v({/((ge% )dx

) _ [1 - %/_(; R(0, 2,000 (\, 2, 7) < a(z) )dx}

€(N\,¢e,0)
- %g(O,E,Z)/_OROEO 05:):<b( )

_ 1/_0001-2(050)@ (0593)< 5’55))619;

14

e}

= 1- Mllg(O,E,O) — M12§(0,6, Z) — Tl(O,E).
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And for z = Z we get
_ c(0,¢)
5(0757 Z) R(O,&?,Z) d(O,é?)
+ 2ene0) [ " RO 2)87(0.2.1)
alx) bz £(0,¢,0
' ( (o) (0))(550,5,2)))“

1 Z 1 Ux g,
_ ;/_OOR(O,e,Z)Q (0,¢e,) ( Woe.

R(0,e, 2) < 2283 ) - [1 - %/_Z R(0,2,2)07 0, ¢, 2) < b(éﬂ) )dz}
. £(0,e,7) )

1 Z —1

—_—
SIS
\_/\_/
~_
QU
S

15
1 Z
- —/OOR(O,a,Z)qfl(O,a,x)(gi :

v J_

= —M21£(0,€,O) -+ (1 — M22)§(O,5, Z) — TQ(O,E).

We now put the to equations together in matrix notation devic
R(O,E,O) 0(0,8) . I— Mll M12 5(0,8,0)
R(O,€, Z) d(O,E) N M21 M22 S(O,E,Z)
. Tl (Oa E)
TQ(O, E)

R(0,2) ( N ) - (- ( 0oy ) ~T(0,).

Note that
1 1
det R(0,e) = det -z 27
g e_%z — e_%z
# 0.
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Also we examine the componentsBf0, ¢),

Ti(0,e) = R(O,a,O)/_ @‘1(0,5,:5)(%22‘5)))@
= 0(1)

Ty(0,6) — R(O,a,Z)/_ @—1<o,g,x><v%((i”;)))dx
= O(1)e:

SinceT'(0,¢) # < 8 and it is not perpendicular to the null space of the mdtfix

d(0,¢) 0
that there exists no bounded solution to the variation ayste26. Hence, we have

M(0,¢)]", anddet [I — M(0,¢)] = 0, hence( <(0,¢) ) # ( 0 ) This implies

established the simplicity of the eigenvalue- 0. ]

Theorem 4.3.6.The traveling pulse solution of the singularly perturbedtsyn 4.1-4.2

of integral differential equations is exponentially stalalst — +oc.

Proof: The proof follows from the linearized stability criteriomé Lemmas 4.3.1 to

4.3.5. ]

We have now established that there is a traveling wave soldt the system of
integral differential equations with a unique speed forfdst pulse and that the solution

is exponentially stable.
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Appendix

The results in the Appendix have been used many times inddeZtieither explicitly or

implicitly.

Appendix A

Representation of traveling wave front:
linear sodium current

Letm > 0,n € R, c > 0, a > 0andf > 0 be real constants, whereis not necessarily

positive, such that < 6 < n + — Then the integral differential equation

@—i-mu—n —oz/Kx— (u(y,t—1|x—y|)—9)dy,
ot c

has a unique traveling wave frobit z) = U(x + puot):

cz/(c+s(z)po)
Ulz) = n+—/ K(z)dx
m —0o0

N % /_; P {%@ N Z>] ¢+ Sc(x)MOK (C + gfx)uo) dr

Recall thats(x) = —1 for z < 0, s(0) = 0 ands(x) = 1 for z > 0. The front satisfies

U) =2, U<fon(—0,0), U >0on(0,00),
and the following boundary conditions
lim U(z) =mn, lim U(z) =n+ g, lim U'(z) = 0.
Z——00 Z—00 m z—r+00
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The wave speed, is a positive number and it is the unique solution of the equat

O J—
o(p) = a/ exp (mc 'ux) K(x)dzx = % —mb + mn.
oo c

Proof. There are two fixed points, = n andU; = n + @ with Uy < 0 < Uj. [ ]
m

Appendix B

Representation of traveling wave front: nonlinear sodium cirrents

Suppose that there is a real numbesuch thatf(n) = 0 and f’'(n) > 0. The traveling

wave front of (2.10) satisfies

U(2) o /cz/<c+s<z>uo> K@)
z) = n+ —— x)dx
f'(n) J -

- f’?n) /—; o {f;i? (@~ Z>] c+ Sc(x)MOK (C + gfx)uo) &

A e [fmnﬁu‘oﬂ [ ()(U () - n) — (U (x))]da.

Ho J—oo

Proof. Using simple techniques from differential equations, we easily obtain the

representation of the front. [ |

Appendix C

Speed estimate - |

Letu; > 0, m; > 0 andn; € R be real constants. Suppose thais a solution of the
differential inequality
cz/(c+s(z)m)

U +mi (U —mny) < a/ K (z)dz, U(0) =9, lim U(z) = ni.

—00

Then

0 p—
a/ exp (mlc 'ulx) K(z)dz < *_ mi0 + ming.
_ cl 2
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Proof. Solving the given differential inequality, we find
cz/(c+s(z)m)

mi[U(z) —ni] < a/ K(z)dx

—00

- /_oo o {%(gj - Z)] ¢+ Sc(x)ulK (C + gfx)m) o

Letting z = 0, we have

O J—
mi(0 —ny) < e a/ exp (mlc 'ulx) K(z)dx.
2 —00 Cly
Therefore, the estimate follows. ]
Appendix D

Speed estimate - Il

Let uo > 0, me > 0 andn, € R be real constants. Suppose thais a solution of the
differential inequality

cz/(ct+s(z)u2)
poU" +mo(U — ng) > a/ K(x)dz, U(0) =46, lim U(z) = n,.

—00

Then

0 p—
@ Mol + mong < a/ exp <m20 Mx) K(z)dx.
2 —00 Cli2

Proof. Solving the given differential inequality, we find
cz/(ct+s(z)u2)

ma[U(z) —na] > a/ K(x)dx

— 00

- /_oo o {%(gj - Z)] ¢+ Sc(x)uzK (C + gfx)uz) o

Letting z = 0, we have

‘ C— H2
my(0 —ng) > - —« exp | ma x| K(z)dz.
—00 Cl2
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Finally, we have the estimate

0 JR—
@ Mol + maong < a/ exp <m20 sz) K(z)dx.
2 —00 Cli2

Therefore, the estimate follows. ]

Appendix E

Are the speeds of the fast traveling pulse solutions of (2.42.2) and
(2.3)-(2.4) singular perturbations of the speeds of the fnats of (2.5)
and (2.7), respectively?

In synaptically coupled neuronal networks, studying thagewave fronts is basically
a preparation for studying traveling pulse solutions. s flaper, we investigated how
the speeds of fronts are influenced by sodium currents. lltvake sense to investigate
how wave speeds of pulses are influenced by sodium curretsth&t purpose, we
demonstrate that the wave speeds of the traveling pulse@mwf (2.1)-(2.2) and (2.3)-
(2.4) are singular perturbations of the corresponding vepe=ds of the traveling wave
fronts of (2.5) and (2.7), respectively, namey,use(¢) — iront| < C(€), WhereC'(e) >
0fore > 0andC(e) — 0, ase — 0.

Proof. Let us consider the system

g—?%—f(UH-w = aAK(x—y)H<U<y,t—%|x—y|)—9)dy>
M~ () ),

and the scalar equation

%—l—f(U):oz/RK(x—y)H <u <y,t—%|x—y\) —9) dy.

These are general equations of (2.1)-(2.2) and (2.5) (byndak = oc), respectively,
and of (2.3)-(2.4) and (2.7) (by takimg< ¢ < o0), respectively. The traveling pulse
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solution (u(z, t), w(z,t)) = (Upuse(€, 2), Wpuise(€, 2)), Wherez = z + p(e)t andp(e)
represents the wave speed, and the traveling wave diant) = Upon(2), Wherez =

x + pot andy represents the wave speed, satisfy

(o) o

pEWw' = ¢ — W),

wEe)U' + f(U)+ W

and

U+ $0) = [ K= (U (5="121=41) =0) a,

respectively. These traveling waves are translation iam&rWithout loss of generality,

suppose that

Upulse(Ea O) = Upulse(ga Z(S)) = 97
Upulse < 9 on (—OO, O) U (2(8)7 OO), Upulse > 9 on (07 Z(E)),

Ufront(o) - 9) Ufront < 9 on (—OO, 0)7 Ufront > 9 on (07 OO)
Let

o
n=y——|z—yl
C

Then

Cc

e L

z—Yy=
By a series of change of variables, we find that the traveliages satisfy the equations

cz/(cts(2)u(e))
pE)U + f(U)+W = a/ K(x)dx,
c(z=Z2(e))/(c+s(z=Z())ule))

pEW' = e(g(U) —yW),
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and

cz/(c+s(=)no)

U+ () =a [ K (z)dz,

respectively. Letting = 0 in these equations, we have

0

WEU(0) + (6) + W(0) = a / s K@

pE)W'(0) = <(g(8) —yW(0)),
and

(0%

ol (0) + £(6) = 5

It is not difficult to show thatZ(¢) = 1O(1) ase — 0, see [61]. The traveling pulse

solution also satisfies the estimate
|Upuise (€, 2)| + [Whuse(€, 2)| < Cexp(—p|z]|), forall z < 0,

for some positive constants andp. Thus

0
0
Wpulso(& 0) = / gwpulso(g, z)dz
0
£
— m/ [g(UfaSt(€7 Z)) — ’)/Wpulse(g, Z)] dz = 50(1)

By a geometric singular perturbation theory, we also find

0 0
)&Upmse(g? 0) - &Ufront(o) S Ce.

Finally, we obtain the desired estimate
|1(e) — po| < Ce.

Therefore, the speeds of the fast traveling pulse solutodrsy/stems (2.1)-(2.2) and
(2.3)-(2.4) are perturbations of speeds of traveling wawat$ of the scalar equations

(2.5) and (2.7), respectively. [ |
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Appendix F

The Fitzhugh-Nagumo and Hodgkin-Huxley equations

To provide biophysical explanation of the nonlinear fuostj («) in the model equa-
tions, we review the famous Fitzhugh-Nagumo equations lamgvell-known Hodgkin-

Huxley equations. The Fitzhugh-Nagumo equations ([4],[A2], [23] and [37]) are

ou d%u

E = W—i—u(l—u)(u—a)—w,
ow

o = clu—mw),

1
where0 < a < = 5 0<y< a2 and0 < ¢ < 1 are constants. The Hodgkin-Huxley

equations ([34], [21] and [30]) are

ou J%u
CME = DM@ - GNamgh(u — UNa) — GKn4(u —uk) — Gr(u — uy),
%—T = ap(l—=m)—B.m,
80_7; - an(l - n) - Bnna
oh
o = an(l—h)= b,
where
V+b, 5 . ( 1% )
Uy = Qp 3 m — Cm €EXP | 7 |,
exp (V-l—bn ) -1 dm
a, = a VAt b B =c exp(z)
" neXp (V+bn> _1’ " " dn ’
Vv 1
ap = ap€exp (bh) Br =

exp <V+Ch> + 1

where (CM, DM), (GNa, GK, GL, UNay UK, UL), (am, bm, Cmyy dm), (a'nl bn’ Cny dn),
(ah, bh, Ch, dh) are five groups of parameters. In general, the values of {heeseneters

are different for different neurons. The empirical modelishhHodgkin and Huxley
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developed is not a physiological model based on physica tawiological theory, but it
is a model based on curve fitting by using exponential funstisee [30]. The Fitzhugh-
Nagumo equations are singularly perturbed, simplifiedigarsf the Hodgkin-Huxley
equations, see [37]. These reaction diffusion equatioasraire or less related to the
integral differential equations mentioned in the Introtiwc.

As in the Fitzhugh-Nagumo equations and the Hodgkin-Hugtgyationsf (u) usu-
ally describes the sodium currents. Recall that the maximusedium conductance is
Gna and the probability that a sodium channel is opemig. Therefore the sodium
conductance i&'x,m*h. The numbeny, is called the sodium reversal potential and
the driving potential i3, — uy,. Using Ohm’s law, the sodium current is modeled by
Ina = Gnam®h(u —una), see [1] and [21]. The sodium reversal potential is the vafue
the membrane potential when the sodium concentration wirictiuces an inward flux
of sodium through the sodium channel, is balanced by ther&akpotential gradient
tending to move sodium ions in the channel in the opposiexctdon. The sodium chan-
nel depends on two variables andu. There are two gates to each sodium channel.
The functionf(u) characterizes when the gates are open so that the sodiurmans
flow through, see [1]. As is well known, sodium currents mayirifeienced by many
factors, such as the conductance of sodium channels, ttréodi®n of sodium chan-
nels across the membrane, interior concentration andiextamcentration of sodium
ions, activationn and deactivationh of sodium channels. Notice that the activation and
deactivation of sodium channels may be influenced by mamgshisee the differen-
tial equations satisfied by, andh in the Hodgkin-Huxley equations. The investigation
of influence of sodium currents on wave speeds should be @fesit to biologists and

mathematicians.
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