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Abstract

We consider three variations of neuronal network models andapply mathematical anal-

ysis to investigate standing and traveling wave solutions to the models. We consider

solutions for both the scalar case and the system of equations. We establish existence

and uniqueness of the solutions and determine the stability/instability of the solutions

to the integral differential model equations. In addition we investigate the influence of

sodium currents on the solutions. We perform a speed analysis to determine the effect

of various biological parameters on the wave speed and wave structure.
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Introduction

Scientists have observed waves of neuron activity traveling across the surface of the

brain in migraine patients. Similar waves have been reproduced pharmacologically in

laboratory settings. These waves are propagated via actionpotentials which are all-or-

nothing phenomena that arise when the membrane potential reaches a specified thresh-

old value. This change in membrane potential occurs due to movement of the potassium

and sodium ions through passive channels and pumps in the cell membrane. The action

potential maintains a constant profile as it travels along the length of the neuron’s axon

to synaptic terminals which convert the electric signal to achemical neurotransmitter

which is then sent to surrounding neurons [47]. There have been many equations de-

veloped to model neurons, each focusing on different aspects of the signal transmission.

The first neuron model was proposed in 1952 by Hodgkin and Huxley [30] to describe

the propagation of the action potential along the squid giant axon. This is an empirical

model used to model a single neuron via curve fitting, hence ithas no closed solution.

More recently, focus has shifted to consider models of integral-differential equations to

model the response of a neuron based on the network of neuronsto which it is coupled.

The interaction between neurons in a synaptically coupled neuronal network is respon-

sible for the nonlocal term in the model. The first model of this type was proposed by

Amari [3] in 1977 and is given by:

ut + u = α

∫

R

K(x− y)H(u(y, t)− θ)dy. (1)

2



The variableu represents the membrane potential of a neuron at a positionx and timet.

The parameterα is the synaptic rate constant,θ is the threshold constant for excitation,

H is the Heaviside step function, andK is a function which represents the synaptic

coupling between neurons. As stated above, the integral is derived from the interaction

between neurons.

David Terman [53] expanded upon this model in 1998 by incorporating a cubic term

to represent the sodium ion flow as opposed to the linear term used in Amari’s model

given by:

ut + u(1− u)(u− a) = α

∫

<

K(x− y)H(u(y, t)− θ)dy. (2)

More recently, Pinto and Ermentrout[46] proposed a model which reverted to the lin-

ear representation of the sodium ion flow and incorporated a second equation represent-

ing the leaking current, which provides the negative feedback responsible for limiting

the excitation of the network. The model is given by

ut + u+ w = α

∫

<

K(x− y)H(u(y, t)− θ)dy (3)

wt = ε(u− γw). (4)

All variables are consistent with the previous models, in addition w denotes the

leaking current,γ denotes the decay rate,ε controls the fast/slow activation of chemical

ion channels and0 < ε � 1. By considering the traveling wave solution of the system,

we make the following assumptions on the parameters0 < 2θ < α, 0 < αγ < (1 + γ)θ

and0 < ε� 1 are constants.

Note that the model equation (1) is a special case of the system (3)-(4) whereε = 0

andw = 0. Other adaptations of this model have been considered including variations

for mechanisms such as temporal delay and the double threshold case. More recently
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Zhang and Hutt [65] and [66] have studied a more complex modeldesigned to accom-

modate both a pulse transmission delay and a feedback delay as follows:

∂u

∂t
+ f(u)

= (α− au)

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
u(y, t− τ)−Θ

)
dy

]
dτ. (5)

whereu = u(x, t) represents the membrane potential of a neuron at positionx and

time t in a synaptically coupled neuronal network,w = w(x, t) represents the leaking

current. The functionsξ ≥ 0 andη ≥ 0 are defined on(0,∞). The kernel functions

K andW are defined onR. They represent synaptic couplings between neurons. The

functionξ represents a statistical distribution of action potentialspeeds,ξ ≥ 0 on(0,∞)

and
∫∞

0
ξ(c)dc = 1. Additionally, ξ may have compact support(c1, c2), wherec1 and

c2 are positive numbers, denoting the lower and upper bounds ofbiologically possible

speeds, respectively.a ≥ 0, b ≥ 0, α ≥ 0, β ≥ 0, ε > 0, θ > 0 andΘ > 0 are constants,

representing biological mechanisms. In this model system,for simplicity, we choose the

gain function to be the Heaviside step function:H(u− θ) = 0 for all u < θ,H(0) =
1

2
,

andH(u − θ) = 1 for all u > θ. See [6], [7], [13], [32], [44], [46], [60], [61]for the

same or very similar equations.

Work in this area of mathematical neuroscience has developed dramatically since

Hodgkin and Huxley developed the first model in the 1950’s [30]. Recent work has

proved the existence, uniqueness and stability of various types of wave forms for varying

kernel functions including traveling waves and pulses [10][13] [12] [39] [46] [17] [52]

[59] [60] [61] [62] [63] [64] , standing waves [29] [46] spiral waves [40], etc. Work

continues to be done in these areas as model equations incorporate additional features

of the neuronal network as well as accounting for differences in neuronal networks based
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on its location and function in the brain or nervous system.

We will consider traveling wave solutions to three different models and standing

wave solutions to the two delay model. In general, one strives to establish the existence

and uniqueness of a wave solution that solves the model equations and satisfies initial

conditions. Beyond that we look at the exponential stability of the solution. In a more

practical sense, we push to establish the behavior of the various biological mechanisms

in the network on the wave and wave speed.

One remaining variation in the models is the kernel functionwhich summarizes the

synaptic coupling of neurons in the network. Suppose that the synaptic couplingK is at

least piecewise continuous, satisfying the following conditions

∫

R

K(x)dx = 1,

∫ 0

−∞

K(x)dx =

∫ ∞

0

K(x)dx =
1

2
, (6)

∫ 0

−∞

|x|K(x)dx ≥ 0, (7)

|K(x)| ≤ C exp(−ρ|x|) on R, (8)

for some constantsC > 0 andρ > 0. We are concerned with the following three classes

of synaptic couplings.

(A) Pure excitations between neurons (represented by nonnegative kernel functions).

For examples,K1(x) =
ρ

2
exp(−ρ|x|) andK2(x) =

√
ρ

π
exp

(
− ρ|x|2

)
may represent

pure excitations, whereρ > 0 is a constant. Here,ρ has a biological meaning. It indi-

cates how the excitation of a synaptic coupling is distributed. Roughly speaking, ifρ is

large, then a neuron is strongly coupled with neurons in a relatively small region; ifρ is

small, then a neuron is strongly coupled with all neurons in arelatively large region.

(B) Lateral inhibitions (represented by Mexican hat kernelfunctions, that is, each cou-

pling satisfiesK ≥ 0 on (−M,M) andK ≤ 0 on (−∞,−M) ∪ (M,∞) for a pos-

itive constantM . This implies that neurons close to one another have excitatory con-
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nections and neurons far away have inhibitory connections.) For example,K3(x) =

A exp(−a|x|2) − B exp(−b|x|2) may represent a lateral inhibition, whereA > B > 0

anda > b > 0 are positive constants, such that

A

a
≥ B

b
, A

√
π

a
− B

√
π

b
= 1, M =

√
1

a− b
ln
A

B
.

(C) Lateral excitations (represented by upside down Mexican hat kernel functions, that

is, each coupling satisfiesK ≤ 0 on(−M,M) andK ≥ 0 on(−∞,−M)∪(M,∞), for

some positive constantM). For example,K4(x) = A exp(−a|x|)− B exp(−b|x|) may

represent a lateral excitation, where0 < A < B and0 < a < b are positive constants,

such that

A

a
− B

b
=

1

2
,

A

a2
≥ B

b2
, M =

1

b− a
ln
B

A
.

See Amari [3], Bressloff and Folias [9], Bressloff, Folias,Prat and Li [45], Coombes,

Lord and Owen [13], Coombes and Owen [14], Ermentrout [19], Ermentrout and Ter-

man [21], Laing [40], Laing and Troy [41], Pinto and Ermentrout [46], Terman, Ermen-

trout and Yew [54], and [60]-[61]-[62]-[63] for more information on various synaptic

couplings represented by the kernel functions.
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Chapter 1

Standing Waves

1.1 Introduction

To begin our study of standing wave solutions, we will use rigorous mathematical anal-

ysis to establish the existence and stability/instabilityof the standing wave solutions to

the nonlinear singularly perturbed system of integral differential equations withε > 0.

First of all, we will obtain explicit standing wave solutions for the system. Then, by con-

structing and making use of some complex analytic functions, called Evans functions,

we will accomplish the stability/instability of the standing wave solutions.

1.1.1 The Model Equations

Consider the following nonlinear singular perturbed system of integral differential equa-

tions arising from synaptically coupled neuronal networks

∂u

∂t
+ f(u) + w

= (α− au)

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
u(y, t− τ)−Θ

)
dy

]
dτ, (1.1)

∂w

∂t
= ε

[
g(u)− w

]
, (1.2)
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where the parameters are consistent with the model described on page 4. In addition,

eitherf(u) + g(u) is a cubic polynomial function orf(u) + g(u) is a linear function,

sayf(u)+ g(u) = m(u−n)+k(u− l), wherek > 0 andm > 0 are positive constants,

l andn are real constants.

If ε = 0 andw = 0 in system (1.1)-(1.2), then we have a scalar integral differential

equation

∂u

∂t
+ f(u)

= (α− au)

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
u(y, t− τ)−Θ

)
dy

]
dτ. (1.3)

We will study the existence and stability of standing wave solutions, that is, solutions

of the form
(
u(x, t), w(x, t)

)
=

(
φ(x), ψ(x)

)
for system (1.1)-(1.2) and solutions of the

form u(x, t) = φ(x) for equation (1.3).

First of all, let us find the constant solutions of the system.

If f(u)+g(u) = m(u−n)+k(u−l), u0 < θ andu0 < Θ, thenm(u0−n)+k(u0−l) = 0.

Thus

u0 =
kl +mn

k +m
< θ.

If f(u)+g(u) = m(u−n)+k(u− l), u1 > θ andu1 > Θ, thenm(u1−n)+k(u1− l) =

α + β − au1 − bu1. Hence

u1 =
α+ β + kl +mn

a+ b+ k +m
> Θ.

Previously, Amari [3], Guo and Chow [29] and Pinto and Ermentrout [46] have stud-

ied the existence and stability of standing wave solutions of some integral differential

equations arising from synaptically coupled neuronal networks. However, the existence
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and stability of standing wave solutions of system (1.1)-(1.2) has been an open problem

for a long time. An interesting feature is that the eigenvalue problem derived from lin-

earization of the nonlinear system is nonlinear inλ (this is the eigenvalue parameter).

This difficulty arises because the system involves two kindsof delays and any of the two

delays may cause such a difficulty. We are able to overcome thedifficulty to find the

eigenvalues of the eigenvalue problem by constructing the Evans function and studying

its properties.
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1.1.2 The Mathematical Assumptions

For the duration of this chapter we assume that

K(−x) = K(x), for all x ∈ R, and
∫

R

K(x)dx = 1,

W (−x) = W (x), for all x ∈ R, and
∫

R

W (x)dx = 1,

∫ ∞

0

ξ(c)dc = 1,

∫ ∞

0

η(τ)dτ = 1,

∫ ∞

0

1

c
ξ(c)dc <∞,

∫ ∞

0

τη(τ)dτ <∞,

f ′(θ) + g′(θ) +
a

2
+ b

∫ −Z0

−∞

W (ζ)dζ > 0,

f ′(Θ) + g′(Θ) + a

∫ Z0

−∞

K(ζ)dζ +
b

2
> 0,

α 6= aΘ, β 6= bθ,

kl +mn

k +m
< θ ≤ Θ <

α+ β + kl +mn

a+ b+ k +m
,

k +m+ a

∫ x

−∞

K(ζ)dζ + b

∫ x−Z0

−∞

W (ζ)dζ > 0, for all x ∈ R,

(α− aθ)K(x) + (β − bθ)W (x− Z0) ≥ 0, for all x ∈ R,

(α− aΘ)K(x) + (β − bΘ)W (x− Z0) ≥ 0, for all x ∈ R,

(α− aθ)K(0) + (β − bθ)W (−Z0) > 0,

(α− aΘ)K(Z0) + (β − bΘ)W (0) > 0,
∫ −Z0

−∞

W (ζ)dζ =
(2k + 2m+ a)θ − (2kl + 2mn+ α)

2(β − bθ)
,

∫ Z0

−∞

K(ζ)dζ =
(2k + 2m+ b)Θ− (2kl + 2mn + β)

2(α− aΘ)
,

for some real constantZ0 ≥ 0.

Remark 1.1.1. By an intermediate value theorem, it is easy to show that there exists a

real numberZ0
′, such that

∫ −Z0
′

−∞

W (ζ)dζ =
(2k + 2m+ a)θ − (2kl + 2mn+ α)

2(β − bθ)
.
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Similarly, there exists another real numberZ0
′′, such that

∫ Z0
′′

−∞

K(ζ)dζ =
(2k + 2m+ b)Θ− (2kl + 2mn+ β)

2(α− aΘ)
.

For simplicity, we assume that the model parameters and the kernel functions are

chosen in such a way thatZ0
′ = Z0

′′ = Z0. If θ = Θ and (a + b + 2k + 2m)θ =

α + β + 2kl + 2mn, thenZ0 = 0.

1.2 Existence of the Standing Wave Solutions

1.2.1 Linear Functions

First of all, we establish the existence of the standing wavesolutions to the nonlinear

singularly perturbed system of integral differential equations with ε > 0 andf(u) +

g(u) = m(u − n) + k(u − l), wherek > 0 andm > 0 are positive constants,l andn

are real constants.

Theorem 1.2.1.Suppose thata ≥ 0, b ≥ 0, k > 0, l, m > 0, n, α ≥ 0, β ≥ 0, ε > 0,

θ > 0 andΘ > 0 are real constants. Letf(u) + g(u) = m(u − n) + k(u − l). Then

there exist two standing wave solutions

φ1(x) =
kl +mn + α

∫ x

−∞
K(ζ)dζ + β

∫ x−Z0

−∞
W (ζ)dζ

k +m+ a
∫ x

−∞
K(ζ)dζ + b

∫ x−Z0

−∞
W (ζ)dζ

,

φ2(x) =
kl +mn + α

∫∞

x
K(ζ)dζ + β

∫∞

x+Z0
W (ζ)dζ

k +m+ a
∫∞

x
K(ζ)dζ + b

∫∞

x+Z0
W (ζ)dζ

,
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to the system of integral differential equations

∂u

∂t
+ f(u) + w

= (α− au)

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H

(
U

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
u(y, t− τ)−Θ

)
dy

]
dτ,

∂w

∂t
= ε

[
g(u)− w

]
.
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Figure 1.1: Graph of the standing wave solutionsφ1(x) (solid line) andφ2(x) (dash-
dotted line) to the nonlinear singularly perturbed system of integral differential equa-
tions (1.1)-(1.2). In this graph,a = 2, b = 2, α = 5, β = 5, θ = 2,Θ = 2, f(u) = u−1,
g(u) = u− 2,K(x) = 1

2
exp(−|x|) andW (x) = 1

2
exp(−|x|).

Proof. Standing wave solutions satisfy
∂u

∂t
= 0 and

∂w

∂t
= 0. Substituting a solution

of the form
(
u(x, t), w(x, t)

)
=

(
φ(x), ψ(x)

)
into the system (1.1)-(1.2), we get

f
(
φ(x)

)
+ ψ(x) =

[
α− aφ(x)

] ∫ ∞

0

ξ(c)

[∫

R

K(x− y)H
(
φ(y)− θ

)
dy

]
dc

+
[
β − bφ(x)

] ∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
φ(y)−Θ

)
dy

]
dτ,

0 = ε
[
g
(
φ(x)

)
− ψ(x)

]
.
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Suppose that the standing wave solution satisfies the conditions φ < θ on (−∞, 0),

φ(0) = θ andφ > θ on (0,∞); φ < Θ on (−∞, Z0), φ(Z0) = Θ andφ > Θ on

(Z0,∞), for some real constantZ0 ≥ 0. Then the right hand side becomes

[
α− aφ(x)

] ∫

R

K(x− y)H
(
φ(y)− θ

)
dy

+
[
β − bφ(x)

] ∫

R

W (x− y)H
(
φ(y)−Θ

)
dy

=
[
α− aφ(x)

] ∫ ∞

0

K(x− y)dy +
[
β − bφ(x)

] ∫ ∞

Z0

W (x− y)dy

=
[
α− aφ(x)

] ∫ x

−∞

K(ζ)dζ +
[
β − bφ(x)

] ∫ x−Z0

−∞

W (ζ)dζ

= α

∫ x

−∞

K(ζ)dζ + β

∫ x−Z0

−∞

W (ζ)dζ

−
[
a

∫ x

−∞

K(ζ)dζ + b

∫ x−Z0

−∞

W (ζ)dζ

]
φ(x).

Hence the first standing wave solution to the integral differential equations (1.1)-(1.2) is

given by

φ(x) =
kl +mn+ α

∫ x

−∞
K(ζ)dζ + β

∫ x−Z0

−∞
W (ζ)dζ

k +m+ a
∫ x

−∞
K(ζ)dζ + b

∫ x−Z0

−∞
W (ζ)dζ

.

The derivative is given by

φ′(x) =

[
α− aφ(x)

]
K(x) +

[
β − bφ(x)

]
W (x− Z0)

k +m+ a
∫ x

−∞
K(ζ)dζ + b

∫ x−Z0

−∞
W (ζ)dζ

.

In particular

φ′(0) =
(α− aθ)K(0) + (β − bθ)W (−Z0)

k +m+ a
2
+ b

∫ −Z0

−∞
W (ζ)d

> 0,

φ′(Z0) =
(α− aΘ)K(Z0) + (β − bΘ)W (0)

k +m+ a
∫ Z0

−∞
K(ζ)dζ + b

2

> 0.

13



However, this is only a formal solution. We have to show that it is compatible, namely,

it satisfies the prescribed conditions. Letφ(0) = θ andφ(Z0) = Θ, respectively, we

have

2kl + 2mn+ α + 2β
∫ −Z0

−∞
W (ζ)dζ

2k + 2m+ a+ 2b
∫ −Z0

−∞
W (ζ)dζ

= θ,

2kl + 2mn+ 2α
∫ Z0

−∞
K(ζ)dζ + β

2k + 2m+ 2a
∫ Z0

−∞
K(ζ)dζ + b

= Θ.

Solving the system, we find

∫ −Z0

−∞

W (ζ)dζ =
(2k + 2m+ a)θ − (2kl + 2mn+ α)

2(β − bθ)
,

∫ Z0

−∞

K(ζ)dζ =
(2k + 2m+ b)Θ− (2kl + 2mn+ β)

2(α− aΘ)
.

The solution really satisfies the conditionsφ(0) = θ andφ(Z0) = Θ, because

φ(0) =
kl +mn+ α

∫ 0

−∞
K(ζ)dζ + β

∫ −Z0

−∞
W (ζ)dζ

k +m+ a
∫ 0

−∞
K(ζ)dζ + b

∫ −Z0

−∞
W (ζ)dζ

= θ,

φ(Z0) =
kl +mn+ α

∫ Z0

−∞
K(ζ)dζ + β

∫ 0

−∞
W (ζ)dζ

k +m+ a
∫ Z0

−∞
K(ζ)dζ + b

∫ 0

−∞
W (ζ)dζ

= Θ.

We also have to verify that the standing wave solution is below and above the threshold

θ on (−∞, 0) and(0,∞), respectively; and it is below and above the thresholdΘ on

(−∞, Z0) and(Z0,∞), respectively. The following inequalities are equivalentto one

another (below, the symbol “<=>” means that either we always take “<” or we always
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take “=” or we always take “>”):

kl +mn + α
∫ x

−∞
K(ζ)dζ + β

∫ x−Z0

−∞
W (ζ)dζ

k +m+ a
∫ x

−∞
K(ζ)dζ + b

∫ x−Z0

−∞
W (ζ)dζ

<=> θ;

kl +mn + α

∫ x

−∞

K(ζ)dζ + β

∫ x−Z0

−∞

W (ζ)dζ <=>

[
k +m+ a

∫ x

−∞

K(ζ)dζ

+b

∫ x−Z0

−∞

W (ζ)dζ

]
θ;

k(l − θ) +m(n− θ) + (α− aθ)

∫ x

−∞

K(ζ)dζ

+(β − bθ)

∫ x−Z0

−∞

W (ζ)dζ <=> 0;

(α− aθ)

∫ x

−∞

K(ζ)dζ + (β − bθ)

∫ x−Z0

−∞

W (ζ)dζ <=> k(θ − l) +m(θ − n).

Moreover, the following inequalities are equivalent to each other:

kl +mn+ α
∫ x

−∞
K(ζ)dζ + β

∫ x−Z0

−∞
W (ζ)dζ

k +m+ a
∫ x

−∞
K(ζ)dζ + b

∫ x−Z0

−∞
W (ζ)dζ

<=> Θ;

kl +mn+ α

∫ x

−∞

K(ζ)dζ + β

∫ x−Z0

−∞

W (ζ)dζ <=>

[
k +m+ a

∫ x

−∞

K(ζ)dζ

+ b

∫ x−Z0

−∞

W (ζ)dζ

]
Θ;

k(l −Θ) +m(n−Θ) + (α− aΘ)

∫ x

−∞

K(ζ)dζ

+(β − bΘ)

∫ x−Z0

−∞

W (ζ)dζ <=> 0;

(α− aΘ)

∫ x

−∞

K(ζ)dζ + (β − bΘ)

∫ x−Z0

−∞

W (ζ)dζ <=> k(Θ− l) +m(Θ− n).
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Definition 1.2.2. Define the following auxiliary functions

A(x) = (α− aθ)

∫ x

−∞

K(ζ)dζ + (β − bθ)

∫ x−Z0

−∞

W (ζ)dζ,

B(x) = (α− aΘ)

∫ x

−∞

K(ζ)dζ + (β − bΘ)

∫ x−Z0

−∞

W (ζ)dζ.

Then

A(0) =
1

2
(α− aθ) + (β − bθ)

∫ −Z0

−∞

W (ζ)dζ = k(θ − l) +m(θ − n),

B(Z0) = (α− aΘ)

∫ Z0

−∞

K(ζ)dζ +
1

2
(β − bΘ) = k(Θ− l) +m(Θ− n),

and by the assumptions made in Subsection 2.1.2, we have

A′(x) = (α− aθ)K(x) + (β − bθ)W (x− Z0) ≥ 0, for all x ∈ R,

B′(x) = (α− aΘ)K(x) + (β − bΘ)W (x− Z0) ≥ 0, for all x ∈ R,

A′(0) = (α− aθ)K(0) + (β − bθ)W (−Z0) > 0,

B′(Z0) = (α− aΘ)K(Z0) + (β − bΘ)W (0) > 0.

Hence, bothA(x) andB(x) are increasing functions onR. Therefore, we find thatφ < θ

on(−∞, 0), φ(0) = θ andφ > θ on(0,∞). Similarly,φ < Θ on(−∞, Z0), φ(Z0) = Θ

andφ > Θ on (Z0,∞).

The existence of the second standing wave solution can be proved very similarly.

Indeed, the equation becomes

m
[
φ(x)− n

]
+ k

[
φ(x)− l

]

=
[
α− aφ(x)

] ∫ ∞

x

K(ζ)dζ +
[
β − bφ(x)

] ∫ ∞

x+Z0

W (ζ)dζ.

Therefore, we get the second standing wave solution

φ2(x) =
kl +mn+ α

∫∞

x
K(ζ)dζ + β

∫∞

x+Z0
W (ζ)dζ

k +m+ a
∫∞

x
K(ζ)dζ + b

∫∞

x+Z0
W (ζ)dζ

.
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The derivative is given by

φ2
′(x) = −

[
α− aφ(x)

]
K(x) +

[
β − bφ(x)

]
W (x+ Z0)

k +m+ a
∫∞

x
K(ζ)dζ + b

∫∞

x+Z0
W (ζ)dζ

.

In particular

φ2
′(−Z0) = −(α− aΘ)K(−Z0) + (β − bΘ)W (0)

k +m+ a
∫∞

−Z0
K(ζ)dζ + b

2

< 0,

φ2
′(0) = −(α− aθ)K(0) + (β − bθ)W (−Z0)

k +m+ a
2
+ b

∫∞

Z0
W (ζ)dζ

< 0.

It is easy to check that this standing wave solution also satisfies the prescribed condi-

tions. The proof of Theorem 1.2.1is finished.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

x

φ
i
(x)

Figure 1.2: Graph of the standing wave solutionsφ3(x) (solid line) andφ4(x) (dash-
dotted line) to the scalar integral differential equation (1.3). In this graph,a = 2, b = 2,
α = 5, β = 5, θ = 2, Θ = 2, f(u) = u − 1, K(x) = 1

2
exp(−|x|) andW (x) =

1
2
exp(−|x|).
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Corollary 1.2.3. Suppose thata ≥ 0, b ≥ 0,m > 0, n, α ≥ 0, β ≥ 0, θ > 0 andΘ > 0

are constants. Letf(u) = m(u− n). Suppose that

θ = Θ, α + β + 2mn = (a+ b+ 2m)θ, n < θ <
α + β +mn

a+ b+m
,

m+ a

∫ x

−∞

K(ζ)dζ + b

∫ x

−∞

W (ζ)dζ > 0, for all x ∈ R,

(α− aθ)K(x) + (β − bθ)W (x) ≥ 0, (α− aθ)K(0) + (β − bθ)W (0) > 0.

Then there exist two standing wave solutions

φ3(x) =
mn+ α

∫ x

−∞
K(ζ)dζ + β

∫ x

−∞
W (ζ)dζ

m+ a
∫ x

−∞
K(ζ)dζ + b

∫ x

−∞
W (ζ)dζ

,

φ4(x) =
mn+ α

∫∞

x
K(ζ)dζ + β

∫∞

x
W (ζ)dζ

m+ a
∫∞

x
K(ζ)dζ + b

∫∞

x
W (ζ)dζ

,

to the scalar integral differential equation

∂u

∂t
+m(u− n)

= (α− au)

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
u(y, t− τ)−Θ

)
dy

]
dτ.

Proof. The proof follows from Theorem 1.2.1 and it is omitted.

Remark 1.2.4. It is not difficulty to show thatφ1(x) = φ2(−x) for system (1.1)-(1.2)

andφ3(x) = φ4(−x) for equation (1.3), for allx ∈ R.

1.2.2 Nonlinear Functions

Now we consider the system (1.1)-(1.2) withf(u) + g(u) = u(u − 1)(Du − 1) and

establish the existence of standing wave solutions.
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Theorem 1.2.5.Suppose thata ≥ 0, b ≥ 0, D > 0, α ≥ 0, β ≥ 0, ε > 0, θ > 0

andΘ > 0 are real constants. Letf(u) + g(u) = u(u− 1)(Du− 1). Then there exist

two standing wave solutions to the nonlinear singularly perturbed system of integral

differential equations (1.1)-(1.2).

Proof. It is easy to see that the standing wave solutions to the system (1.1)-(1.2)

with f(u) + g(u) = u(u− 1)(Du− 1) satisfy the equation

φ(φ− 1)(Dφ− 1) = α

∫ x

−∞

K(ζ)dζ + β

∫ x−Z0

−∞

W (ζ)dζ

−
[
a

∫ x

−∞

K(ζ)dζ + b

∫ x−Z0

−∞

W (ζ)dζ

]
φ.

Hence we have

Dφ3 − (1 +D)φ2 +

[
1 + a

∫ x

−∞

K(ζ)dζ + b

∫ x−Z0

−∞

W (ζ)dζ

]
φ

−
[
α

∫ x

−∞

K(ζ)dζ + β

∫ x−Z0

−∞

W (ζ)dζ

]

= 0.

Let

p = −1 +D

D
, q =

1

D

[
1 + a

∫ x

−∞

K(ζ)dζ + b

∫ x−Z0

−∞

W (ζ)dζ

]
,

r = − 1

D

[
α

∫ x

−∞

K(ζ)dζ + β

∫ x−Z0

−∞

W (ζ)dζ

]
.

Then we get

φ3 + pφ2 + qφ+ r = 0.

One real root of the cubic polynomialu3 + pu2 + qu+ r is given by [61]

u = −




r

2
− pq

6
+
p3

27
+

√(
r

2
− pq

6
+
p3

27

)2

+

(
q

3
− p2

9

)3





1/3

−




r

2
− pq

6
+
p3

27
−
√(

r

2
− pq

6
+
p3

27

)2

+

(
q

3
− p2

9

)3





1/3

− p

3
.
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By using this formula, we obtain the first standing wave solution. Very similarly, we

obtain the second standing wave solution. The proof of Theorem 1.2.5 is finished.

Corollary 1.2.6. Suppose thata ≥ 0, b ≥ 0, D > 0, α ≥ 0, β ≥ 0, θ > 0 andΘ > 0

are real constants. Letf(u) = u(u − 1)(Du − 1). Then there exist two standing wave

solutions to the scalar integral differential equation (1.3).

Proof. The proof follows from Theorem 1.2.5 and it is omitted.

1.3 Stability of the Standing Wave Solutions

In this section, we will derive an eigenvalue problem, construct a complex analytic func-

tion (namely, Evans function) corresponding to the eigenvalue problem, study properties

of the Evans function and then establish the stability or instability of the standing wave

solutions.

1.3.1 Derivation of the Eigenvalue Problem

Subtracting the following system of integral differentialequations

∂φ

∂t
+ f(φ) + ψ

=
[
α− aφ(x)

] ∫ ∞

0

ξ(c)

[∫

R

K(x− y)H
(
φ(y)− θ

)
dy

]
dc

+
[
β − bφ(x)

] ∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
φ(y)−Θ

)
dy

]
dτ,

∂ψ

∂t
= ε

[
g(φ)− ψ

]
,
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from the following system of integral differential equations

∂u

∂t
+ f(u) + w

= (α− au)

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
u(y, t− τ)−Θ

)
dy

]
dτ,

∂w

∂t
= ε

[
g(u)− w

]
,

keeping linear terms and neglecting higher order terms, we obtain the new system of

integral differential equations

∂v

∂t
+ f ′

(
φ(x)

)
v + w =

[
α− aφ(x)

]K(x)

φ′(0)

∫ ∞

0

ξ(c)v

(
0, t− 1

c
|x|

)
dc

+
[
β − bφ(x)

]W (x− Z0)

φ′(Z0)

∫ ∞

0

η(τ)v(Z0, t− τ)dτ

− av

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H
(
φ(y)− θ

)
dy

]
dc

− bv

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
φ(y)−Θ

)
dy

]
dτ,

∂w

∂t
= ε

[
g′
(
φ(x)

)
v − w

]
.

Suppose that
(
v(x, t), w(x, t)

)
=

(
ψ1(x), ψ2(x)

)
exp(λt) is a solution of this system,

whereλ is a complex number andψ1(x) andψ2(x) are complex functions. Then

λψ1(x) exp(λt) + f ′
(
φ(x)

)
ψ1(x) exp(λt) + ψ2(x) exp(λt)

=
[
α− aφ(x)

]K(x)

φ′(0)

∫ ∞

0

ξ(c)ψ1(0) exp

(
λt− λ

c
|x|

)
dc

+
[
β − bφ(x)

]W (x− Z0)

φ′(Z0)

∫ ∞

0

η(τ)ψ1(Z0) exp(λt− λτ)dτ

− aψ1(x) exp(λt)

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H
(
φ(y)− θ

)
dy

]
dc

− bψ1(x) exp(λt)

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
φ(y)−Θ

)
dy

]
dτ,

λψ2(x) exp(λt) = ε
[
g′
(
φ(x)

)
ψ1(x) exp(λt)− ψ2(x) exp(λt)

]
.
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By canceling out the exponential functionexp(λt), we obtain the eigenvalue problem

λψ1(x) + f ′
(
φ(x)

)
ψ1(x) + ψ2(x)

=
[
α− aφ(x)

]K(x)

φ′(0)

[∫ ∞

0

ξ(c) exp

(
−λ
c
|x|

)
dc

]
ψ1(0)

+
[
β − bφ(x)

]W (x− Z0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]
ψ1(Z0)

− a

{∫ ∞

0

ξ(c)

[∫

R

K(x− y)H
(
φ(y)− θ

)
dy

]
dc

}
ψ1(x)

− b

{∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
φ(y)−Θ

)
dy

]
dτ

}
ψ1(x),

λψ2(x) = ε
[
g′
(
φ(x)

)
ψ1(x)− ψ2(x)

]
.

The eigenvalue problem may be written as

L(λ)ψ = λψ, where ψ(x) =

(
ψ1(x)
ψ2(x)

)
∈
[
L∞(R)

]2
,

whereL(λ) :
[
L∞(R)

]2 →
[
L∞(R)

]2
is a linear operator.

Definition 1.3.1. If there exists a complex numberλ0 and there exists a nontrivial

bounded continuous solutionψ0 on R, such thatL(λ0)ψ0 = λ0ψ0, thenλ0 is called

an eigenvalue andψ0 is called an eigenfunction of the eigenvalue problem.

If ψ1(0) = ψ1(Z0) = 0, then

[
λ+ f ′

(
φ(x)

)
+

ε

λ+ ε
g′
(
φ(x)

)

+ a

∫ x

−∞

K(ζ)dζ + b

∫ x−Z0

−∞

W (ζ)dζ

]
ψ1(x)

= 0.

Henceψ ≡ 0 on R. Therefore, for a functionψ to be a nontrivial eigenfunction of

the eigenvalue problemL(λ)ψ = λψ, it must satisfy the conditionsψ1(0) 6= 0 and

ψ1(Z0) 6= 0.

22



1.3.2 Derivation of the Evans Function

Note that for the first standing wave solution
∫ ∞

0

ξ(c)

[∫

R

K(x− y)H
(
φ(y)− θ

)
dy

]
dc

=

∫

R

K(x− y)H
(
H(φ(y)− θ

)
dy =

∫ x

−∞

K(ζ)dζ,

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
φ(y)−Θ

)
dy

]
dτ

=

∫

R

W (x− y)H
(
H(φ(y)−Θ

)
dy =

∫ x−Z0

−∞

W (ζ)dζ.

Lettingx = 0 andx = Z0 in the eigenvalue problem, respectively, we have

λψ1(0) + f ′(θ)ψ1(0) + ψ2(0)

= (α− aθ)
K(0)

φ′(0)
ψ1(0)−

a

2
ψ1(0)− b

[∫ −Z0

−∞

W (ζ)dζ

]
ψ1(0)

+ (β − bθ)
W (−Z0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]
ψ1(Z0),

λψ2(0) = ε
[
g′(θ)ψ1(0)− ψ2(0)

]
,

and

λψ1(Z0) + f ′(Θ)ψ1(Z0) + ψ2(Z0)

= (α− aΘ)
K(Z0)

φ′(0)

[∫ ∞

0

ξ(c) exp

(
−λ
c
Z0

)
dc

]
ψ1(0)

− a

[∫ Z0

−∞

K(ζ)dζ

]
ψ1(Z0)−

b

2
ψ1(Z0)

+ (β − bΘ)
W (0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]
ψ1(Z0),

λψ2(Z0) = ε
[
g′(Θ)ψ1(Z0)− ψ2(Z0)

]
.

In each of the above systems, from the second equation, it is easy to see that

ψ2(0) =
ε

λ+ ε
g′(θ)ψ1(0), ψ2(Z0) =

ε

λ+ ε
g′(Θ)ψ1(Z0).
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In these two systems, if we plugψ2 into the first equation, then we get the following

equations

{
λ+ f ′(θ) +

ε

λ+ ε
g′(θ) +

a

2
+ b

[∫ −Z0

−∞

W (ζ)dζ

]
− (α− aθ)

K(0)

φ′(0)

}
ψ1(0)

=

{
(β − bθ)

W (−Z0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]}

ψ1(Z0),

{
λ+ f ′(Θ) +

ε

λ+ ε
g′(Θ) + a

[∫ Z0

−∞

K(ζ)dζ

]

+
b

2
− (β − bΘ)

W (0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]}

ψ1(Z0)

=

{
(α− aΘ)

K(Z0)

φ′(0)

[∫ ∞

0

ξ(c) exp

(
−λ
c
Z0

)
dc

]}
ψ1(0).

It is not difficult to find thatψ1(0) = 0 if and only if ψ1(Z0) = 0. If ψ1(0) = 0 or if

ψ1(Z0) = 0, then

[
λ+ f ′

(
φ(x)

)
+

ε

λ+ ε
g′
(
φ(x)

)

+ a

∫ x

−∞

K(ζ)dζ + b

∫ x−Z0

−∞

W (ζ)dζ

]
ψ1(x)

= 0.

Henceψ1(x) = 0, for all x ∈ R. Therefore, ifλ0 is an eigenvalue andψ0 =

(
ψ01

ψ02

)

is an eigenfunction of the eigenvalue problemL(λ)ψ = λψ, thenψ01(0) 6= 0 and

ψ01(Z0) 6= 0.
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If we multiply these two equations together, then we find that

{
λ+ f ′(θ) +

ε

λ+ ε
g′(θ) +

a

2
+ b

[∫ −Z0

−∞

W (ζ)dζ

]
− (α− aθ)

K(0)

φ′(0)

}

·
{
λ+ f ′(Θ) +

ε

λ+ ε
g′(Θ) + a

[∫ Z0

−∞

K(ζ)dζ

]

+
b

2
− (β − bΘ)

W (0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]}

ψ1(0)ψ1(Z0)

=

{
(β − bθ)

W (−Z0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]}

·
{
(α− aΘ)

K(Z0)

φ′(0)

[∫ ∞

0

ξ(c) exp

(
−λ
c
Z0

)
dc

]}
ψ1(0)ψ1(Z0).

Definition 1.3.2. Define the open unbounded simply connected domainΩ = {λ ∈ C:

Reλ > −ε}. Also define the domainΩ0 = {λ ∈ C: λ satisfies the following conditions},

Reλ > −f ′(θ)− g′(θ)− a

2
− b

[∫ −Z0

−∞

W (ζ)dζ

]
,

Reλ > −f ′(Θ)− g′(Θ)− a

[∫ Z0

−∞

K(ζ)dζ

]
− b

2
.

We define the Evans functionE = E(λ, ε) for the first standing wave solution of the

nonlinear singularly perturbed system (1.1)-(1.2) by

E(λ, ε) =

{
λ+ f ′(θ) +

ε

λ + ε
g′(θ) +

a

2
+ b

[∫ −Z0

−∞

W (ζ)dζ

]
− (α− aθ)

K(0)

φ′(0)

}

·
{
λ+ f ′(Θ) +

ε

λ+ ε
g′(Θ) + a

[∫ Z0

−∞

K(ζ)dζ

]

+
b

2
− (β − bΘ)

W (0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]}

−
{
(β − bθ)

W (−Z0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]}

·
{
(α− aΘ)

K(Z0)

φ′(0)

[∫ ∞

0

ξ(c) exp

(
−λ
c
Z0

)
dc

]}
,

for all λ ∈ Ω. We also define the Evans functionE = E(λ) for the first standing wave
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solution of the scalar integral differential equation (1.3) by

E(λ) =

{
λ+ f ′(θ) +

a

2
+ b

[∫ −Z0

−∞

W (ζ)dζ

]
− (α− aθ)

K(0)

φ′(0)

}

·
{
λ+ f ′(Θ) + a

[∫ Z0

−∞

K(ζ)dζ

]
+
b

2

− (β − bΘ)
W (0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]}

−
{
(β − bθ)

W (−Z0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]}

·
{
(α− aΘ)

K(Z0)

φ′(0)

[∫ ∞

0

ξ(c) exp

(
−λ
c
Z0

)
dc

]}
,

for all λ ∈ Ω0.

Remark 1.3.3. The Evans function for the second standing wave solution of (1.1)-(1.2)

can be defined very similarly. The Evans function for the second standing wave solution

of the scalar equation (1.3) can also be defined similarly. Weomit the details.

Theorem 1.3.4. (I) The Evans functionE = E(λ, ε) is a complex analytic function

in Ω and it is real valued if the eigenvalue parameterλ is real.

(II) The complex numberλ0 is an eigenvalue of the eigenvalue problemL(λ)ψ = λψ

if and only ifE(λ0, ε) = 0.

(III) The algebraic multiplicity of any eigenvalueλ0 of the eigenvalue problem

L(λ)ψ = λψ is equal to the order ofλ0 as a zero of the Evans functionE(λ, ε).

(IV) The Evans function enjoys the following limit

lim
|λ|→∞

E(λ, ε)
λ2

= 1.

Proof.

(I) Obviously, the assertion is true.
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Figure 1.3: Graph of the Evans functionE(λ, ε) for the nonlinear singularly perturbed
system of integral differential equations (1.1)-(1.2) with largeε. In this graph,a = 2,
b = 2, α = 5, β = 5, ε = 10, θ = 2, Θ = 2, f(u) = u − 1, g(u) = u − 2,
K(x) = 1

2
exp(−|x|),W (x) = 1

2
|x| exp(−|x|) andη(τ) = exp(−τ).

(II) If λ0 ∈ Ω is an eigenvalue, then there exists a nontrivial bounded continuous

solutionψ0 =

(
ψ01

ψ02

)
to the eigenvalue problemL(λ)ψ = λψ, such that

ψ01(0)ψ01(Z0) 6= 0. Therefore,E(λ0, ε) = 0. On the other hand, ifE(λ0, ε) =

0, then there exists a nontrivial
(
ψ01(0), ψ01(Z0)

)
, and there exists a nontrivial

bounded continuous functionψ0 =

(
ψ01

ψ02

)
, Therefore,λ0 is an eigenvalue of

the eigenvalue problemL(λ)ψ = λψ.

(III) It is very complicated and it is omitted.

(IV) Clearly, the conclusion is correct.

The proof of Theorem 1.3.4 is finished.
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Definition 1.3.5. Define the positive numberε0 for the standing wave solutions of the

system (1.1)-(1.2) by using the equation

∂E
∂λ

(0, ε0) = 0.

Theorem 1.3.6. (I) λ = 0 is a simple eigenvalue of the eigenvalue problemL(λ)ψ =

λψ, that is

E(0, ε) = 0,
∂E
∂λ

(0, ε) > 0, for all ε ∈ (ε0,∞),

E(0, ε) = 0,
∂E
∂λ

(0, ε) < 0, for all ε ∈ (0, ε0).

(II) For any ε ∈ (0, ε0), there exist two positive numbersλ1(ε) > λ0(ε) > 0, such that

∂E
∂λ

(
λ0(ε), ε

)
= 0, E

(
λ1(ε), ε

)
= 0.

(III) In the unbounded domainΩ, the Evans function

E(λ, ε) 6= 0, for all ε ∈ (ε0,∞), for all λ 6= 0,with Reλ ≥ 0.

Proof. Differentiating the traveling wave equations with respectto x, we get

f ′
(
φ(x)

)
φ′(x) + ψ′(x) =

[
α− aφ(x)

]
K(x) +

[
β − bφ(x)

]
W (x− Z0)

− aφ′(z)

∫ x

−∞

K(ζ)dζ − bφ′(x)

∫ x−Z0

−∞

W (ζ)dζ,

0 =
[
g′
(
φ(x)

)
φ′(x)− ψ′(x)

]
.

From this system, we see thatλ = 0 is an eigenvalue and
(
φ′(x), ψ′(x)

)
is an eigen-

function of the eigenvalue problemL(λ)ψ = λψ.
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Let us find the derivative of the Evans function. By using the definition, we find that

∂E
∂λ

(λ, ε)

=

{
1− ε

(λ+ ε)2
g′(θ)

}

·
{
λ + f ′(Θ) +

ε

λ+ ε
g′(Θ) + a

[∫ Z0

−∞

K(ζ)dζ

]
+
b

2

− (β − bΘ)
W (0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]}

+

{
λ + f ′(θ) +

ε

λ+ ε
g′(θ) +

a

2
+ b

[∫ −Z0

−∞

W (ζ)dζ

]
− (α− aθ)

K(0)

φ′(0)

}

·
{
1− ε

(λ+ ε)2
g′(Θ) + (β − bΘ)

W (0)

φ′(Z0)

[∫ ∞

0

τη(τ) exp(−λτ)dτ
]}

+

{
(β − bθ)

W (−Z0)

φ′(Z0)

[∫ ∞

0

τη(τ) exp(−λτ)dτ
]}

·
{
(α− aΘ)

K(Z0)

φ′(0)

[∫ ∞

0

ξ(c) exp

(
−λ
c
Z0

)
dc

]}

+

{
(β − bθ)

W (−Z0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]}

·
{
(α− aΘ)

K(Z0)

φ′(0)

[∫ ∞

0

Z0

c
ξ(c) exp

(
−λ
c
Z0

)
dc

]}
.
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Moreover

E ′(λ) =

{
λ+ f ′(Θ) + a

[∫ Z0

−∞

K(ζ)dζ

]
+
b

2

− (β − bΘ)
W (0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]}

+

{
λ+ f ′(θ) +

a

2
+ b

[∫ −Z0

−∞

W (ζ)dζ

]
− (α− aθ)

K(0)

φ′(0)

}

·
{
1 + (β − bΘ)

W (0)

φ′(Z0)

[∫ ∞

0

τη(τ) exp(−λτ)dτ
]}

+

{
(β − bθ)

W (−Z0)

φ′(Z0)

[∫ ∞

0

τη(τ) exp(−λτ)dτ
]}

·
{
(α− aΘ)

K(Z0)

φ′(0)

[∫ ∞

0

ξ(c) exp

(
−λ
c
Z0

)
dc

]}

+

{
(β − bθ)

W (−Z0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]}

·
{
(α− aΘ)

K(Z0)

φ′(0)

[∫ ∞

0

Z0

c
ξ(c) exp

(
−λ
c
Z0

)
dc

]}
.

In particular, asλ = 0, we have

∂E
∂λ

(0, ε) =

{
1− 1

ε
g′(θ)

}

·
{
f ′(Θ) + g′(Θ) + a

[∫ Z0

−∞

K(ζ)dζ

]
+
b

2
− (β − bΘ)

W (0)

φ′(Z0)

[∫ ∞

0

η(τ)dτ

]}

+

{
f ′(θ) + g′(θ) +

a

2
+ b

[∫ −Z0

−∞

W (ζ)dζ

]
− (α− aθ)

K(0)

φ′(0)

}

·
{
1− 1

ε
g′(Θ) + (β − bΘ)

W (0)

φ′(Z0)

[∫ ∞

0

τη(τ)dτ

]}

+

{
(β − bθ)

W (−Z0)

φ′(Z0)

[∫ ∞

0

τη(τ)dτ

]}{
(α− aΘ)

K(Z0)

φ′(0)

[∫ ∞

0

ξ(c)dc

]}

+

{
(β − bθ)

W (−Z0)

φ′(Z0)

[∫ ∞

0

η(τ)dτ

]}{
(α− aΘ)

K(Z0)

φ′(0)

[∫ ∞

0

Z0

c
ξ(c)dc

]}

< 0,

if ε ∈ (0, ε0), and
∂E
∂λ

(0, ε) > 0 if ε ∈ (ε0,∞).
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Moreover

E ′(0) =

{
f ′(Θ) + a

[∫ Z0

−∞

K(ζ)dζ

]
+
b

2
− (β − bΘ)

W (0)

φ′(Z0)

[∫ ∞

0

η(τ)dτ

]}

+

{
f ′(θ) +

a

2
+ b

[∫ −Z0

−∞

W (ζ)dζ

]
− (α− aθ)

K(0)

φ′(0)

}

·
{
1 + (β − bΘ)

W (0)

φ′(Z0)

[∫ ∞

0

τη(τ)dτ

]}

+

{
(β − bθ)

W (−Z0)

φ′(Z0)

[∫ ∞

0

τη(τ)dτ

]}

·
{
(α− aΘ)

K(Z0)

φ′(0)

[∫ ∞

0

ξ(c)dc

]}

+

{
(β − bθ)

W (−Z0)

φ′(Z0)

[∫ ∞

0

η(τ)dτ

]}

·
{
(α− aΘ)

K(Z0)

φ′(0)

[∫ ∞

0

Z0

c
ξ(c)dc

]}

> 0.

Let us also find the partial derivative of the Evans function with respect toε:

∂E
∂ε

(λ, ε) =
λ

(λ+ ε)2
g′(θ)

·
{
λ+ f ′(Θ) +

ε

λ+ ε
g′(Θ) + a

[∫ Z0

−∞

K(ζ)dζ

]
+
b

2

− (β − bΘ)
W (0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]}

+
λ

(λ+ ε)2
g′(Θ)

{
λ+ f ′(θ) +

ε

λ+ ε
g′(θ) +

a

2

+ b

[∫ −Z0

−∞

W (ζ)dζ

]
− (α− aθ)

K(0)

φ′(0)

}
,
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and

∂2E
∂ε2

(λ, ε) =
2λ2

(λ+ ε)4
g′(θ)g′(Θ)− 2λ

(λ+ ε)3
g′(θ)

·
{
λ+ f ′(Θ) +

ε

λ+ ε
g′(Θ) + a

[∫ Z0

−∞

K(ζ)dζ

]
+
b

2

− (β − bΘ)
W (0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]}

− 2λ

(λ+ ε)3
g′(Θ)

{
λ+ f ′(θ) +

ε

λ+ ε
g′(θ) +

a

2

+ b

[∫ −Z0

−∞

W (ζ)dζ

]
− (α− aθ)

K(0)

φ′(0)

}
.

Moreover

∂2E
∂λ∂ε

(λ, ε) =
λ− ε

(λ+ ε)3
g′(θ)

+
λ− ε

(λ+ ε)3
g′(Θ).

Therefore, we find that

ε0 = O(1).

Fix ε ∈ (0, ε0). Then
∂E
∂λ

(0, ε) < 0. For all positive, sufficiently largeλ > 0, we find

that

∂E
∂λ

(λ, ε) > 0.

By using intermediate value theorem, we know that there exists a positive number

λ0(ε) > 0, such that

∂E
∂λ

(
λ0(ε), ε

)
= 0.

Clearly, we know thatE(0, ε) = 0 and that

∂E
∂λ

(λ, ε) < 0,
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for all real numberλ ∈
(
0, λ0(ε)

)
. Therefore,E

(
λ0(ε), ε

)
< 0. Very similarly to before,

for all positive, sufficiently largeλ > 0, we find that

E(λ, ε) > 0.

By using intermediate value theorem again, we know that there exists a positive number

λ1(ε) > λ0(ε) > 0, such that

E
(
λ1(ε), ε

)
= 0.

Additionally, we also find that

λ0 = O(ε), λ1 = O(1).

Lemma 1.3.7.Suppose that the nonnegative functionω ≥ 0 is defined on(0,∞) and

suppose that0 <
∫∞

0
ω(x)dx <∞. For any complex numberλ 6= 0, if Reλ ≥ 0, then

∣∣∣∣
∫ ∞

0

exp(λx)ω(x)dx

∣∣∣∣ <
∫ ∞

0

ω(x)dx.

Proof. See [60].

For all ε ∈ (ε0,∞) and for allλ ∈ Ω, if Reλ ≥ 0, then by using Lemma 1.3.7, we
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have the following estimates

∣∣∣∣λ + f ′(θ) +
ε

λ+ ε
g′(θ) +

a

2
+ b

[∫ −Z0

−∞

W (ζ)dζ

]
− (α− aθ)

K(0)

φ′(0)

∣∣∣∣

>

∣∣∣∣f
′(θ) +

ε

λ+ ε
g′(θ) +

a

2
+ b

[∫ −Z0

−∞

W (ζ)dζ

]
− (α− aθ)

K(0)

φ′(0)

∣∣∣∣ ,
∣∣∣∣λ + f ′(Θ) +

ε

λ+ ε
g′(Θ) + a

[∫ Z0

−∞

K(ζ)dζ

]
+
b

2

− (β − bΘ)
W (0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]∣∣∣∣

>

∣∣∣∣f
′(Θ) + g′(Θ) + a

[∫ Z0

−∞

K(ζ)dζ

]
+
b

2
− (β − bΘ)

W (0)

φ′(Z0)

[∫ ∞

0

η(τ)dτ

]∣∣∣∣ ,
∣∣∣∣(β − bθ)

W (−Z0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]∣∣∣∣

<

∣∣∣∣(β − bθ)
W (−Z0)

φ′(Z0)

[∫ ∞

0

η(τ)dτ

]∣∣∣∣ ,
∣∣∣∣(α− aΘ)

K(Z0)

φ′(0)

[∫ ∞

0

ξ(c) exp

(
−λ
c
Z0

)
dc

]∣∣∣∣

<

∣∣∣∣(α− aΘ)
K(Z0)

φ′(0)

[∫ ∞

0

ξ(c) exp

(
−λ
c
Z0

)
dc

]∣∣∣∣ .

Therefore, we obtain

|E(λ, ε)| > |E(0, ε)| = 0.

The proof of Theorem 1.3.6 is finished.

Corollary 1.3.8. For the standing wave solutions of the integral differential equation

(1.3), there hold the following results

E(0) = 0, E ′(0) > 0.

Moreover, for all complex numberλ 6= 0 with Reλ ≥ 0, we have

E(λ) 6= 0.
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Proof. The first half is easy to prove. Let us establish the second half. We have the

following estimates

∣∣∣∣λ+ f ′(θ) +
a

2
+ b

[∫ −Z0

−∞

W (ζ)dζ

]
− (α− aθ)

K(0)

φ′(0)

∣∣∣∣

>

∣∣∣∣f
′(θ) +

a

2
+ b

[∫ −Z0

−∞

W (ζ)dζ

]
− (α− aθ)

K(0)

φ′(0)

∣∣∣∣ ,
∣∣∣∣λ+ f ′(Θ) + a

[∫ Z0

−∞

K(ζ)dζ

]
+
b

2

− (β − bΘ)
W (0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]∣∣∣∣

>

∣∣∣∣f
′(Θ) + a

[∫ Z0

−∞

K(ζ)dζ

]
+
b

2
− (β − bΘ)

W (0)

φ′(Z0)

[∫ ∞

0

η(τ)dτ

]∣∣∣∣ ,
∣∣∣∣(β − bθ)

W (−Z0)

φ′(Z0)

[∫ ∞

0

η(τ) exp(−λτ)dτ
]∣∣∣∣

<

∣∣∣∣(β − bθ)
W (−Z0)

φ′(Z0)

[∫ ∞

0

η(τ)dτ

]∣∣∣∣ ,
∣∣∣∣(α− aΘ)

K(Z0)

φ′(0)

[∫ ∞

0

ξ(c) exp

(
−λ
c
Z0

)
dc

]∣∣∣∣

<

∣∣∣∣(α− aΘ)
K(Z0)

φ′(0)

[∫ ∞

0

ξ(c)dc

]∣∣∣∣ .

Therefore, we obtain

|E(λ)| > |E(0)| = 0.

The proof of Corollary 1.3.8 is finished.

Remark 1.3.9. The Evans function for the second standing wave solution of system

(1.1)-(1.2) and the Evans function for the second standing wave solution of equation

(1.3) also enjoy the properties mentioned in Theorem 1.3.4,Theorem 1.3.6 and Corol-

lary 1.3.8.
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Figure 1.4: Graph of the Evans functionE(λ, ε) for the nonlinear singularly perturbed
system of integral differential equations (1.1)-(1.2) with smallε. In this graph,a = 2,
b = 2, α = 5, β = 5, ε = 10, θ = 2, Θ = 2, f(u) = u − 1, g(u) = u − 2,
K(x) = 1

2
exp(−|x|),W (x) = 1

2
|x| exp(−|x|) andη(τ) = exp(−τ).

1.3.3 Stability on the interval (ε0,∞)

Theorem 1.3.10.For all ε ∈ (ε0,∞), the standing wave solutionsφ1 and φ2 of the

singularly perturbed system of integral differential equations (1.1)-(1.2) with general

functionsf(u) andg(u) are exponentially stable.

Proof. For the standing wave solutionsφ1 andφ2, there exists no nonzero solution

to the eigenvalue problemL(λ)ψ = λψ in the region Reλ ≥ −ε. Moreover, the neutral

eigenvalueλ = 0 is simple. By using the linearized stability criterion, we find that the

standing wave solutions of the system (1.1)-(1.2) are exponentially stable. The proof of

Theorem 1.3.10 is finished.

Corollary 1.3.11. The standing wave solutionsφ3 andφ4 of the scalar integral differ-

ential equation (1.3) are exponentially stable.

Proof. The proof of Corollary 1.3.11 is very similar to that of Theorem 1.3.10 and
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it is omitted.
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Figure 1.5: Graph of the Evans functionE(λ) for the nonlinear integral differential
equation (1.3). In this graph,a = 2, b = 2, α = 5, β = 5, θ = 2, Θ = 2, f(u) = u− 1,
K(x) = 1

2
exp(−|x|),W (x) = 1

2
|x| exp(−|x|) andη(τ) = exp(−τ).

1.3.4 Instability on the interval (0, ε0)

Theorem 1.3.12.For all ε ∈ (0, ε0), the standing wave solutionsφ1 and φ2 of the

nonlinear singularly perturbed system of integral differential equations (1.1)-(1.2) with

general functionsf(u) andg(u) are exponentially unstable.

Proof. For the standing wave solutionsφ1 andφ2, there exists a positive eigenvalue

λ1(ε) > 0 to the eigenvalue problemL(λ)ψ = λψ in the region Reλ ≥ −ε. By the

linearized stability criterion, we see the standing wave solutions of the system (1.1)-

(1.2) are exponentially unstable. The proof of Theorem 1.3.12 is finished.
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1.3.5 Examples

Choose the model parameters and functions in the following way:

α = β = 5,

a = b = 2,

θ = Θ = 2,

k = m = 1,

n = 1, l = 2,

f(u) = u− 1, g(u) = u− 2,

K(x) =
1

2
exp(−|x|), W (x) =

1

2
|x|ρ exp(−|x|),

η(τ) = exp(−τ),

ε ∈ (0,∞), ρ = 0, 1.

ThenZ0 = 0 and

∫ x

−∞

K(ζ)dζ =
1

2
exp(x), for all x < 0,

= 1− 1

2
exp(−x), for all x ≥ 0,

∫ ∞

x

K(ζ)dζ =
1

2
exp(−x), for all x ≥ 0,

= 1− 1

2
exp(x), for all x < 0.
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Example 1.Let ρ = 0, that isW (x) = 1
2
exp(−|x|). Then

φ1(x) =
3 + 5 exp(x)

2 + 2 exp(x)
, for all x < 0,

φ1(x) =
13− 5 exp(−x)
6− 2 exp(−x) , for all x ≥ 0,

φ2(x) =
3 + 5 exp(−x)
2 + 2 exp(−x) , for all x ≥ 0,

φ2(x) =
13− 5 exp(x)

6− 2 exp(x)
, for all x < 0,

φ3(x) =
1 + 5 exp(x)

1 + 2 exp(x)
, for all x < 0,

φ3(x) =
11− 5 exp(−x)
5− 2 exp(−x) , for all x ≥ 0,

φ4(x) =
1 + 5 exp(−x)
1 + 2 exp(−x) , for all x ≥ 0,

φ4(x) =
11− 5 exp(x)

5− 2 exp(x)
, for all x < 0.

Example 2.Let ρ = 1, that isW (x) = 1
2
|x| exp(−|x|). Then

E(λ) = λ(λ+ 3),

E ′(λ) = 2λ+ 3,

E(λ, ε) =

[
λ− 1 +

ε

λ+ ε

] [
λ+ 3 +

ε

λ+ ε

]
,

∂E
∂λ

(λ, ε) = 2

[
λ +

ε

λ + ε

] [
1− ε

(λ+ ε)2

]
+ 2

[
1− ε

(λ+ ε)2

]
.

Example 3.Let ρ = 1, that isW (x) = 1
2
|x| exp(−|x|). Then

ε0 = 1,

λ0(ε) =
√
ε− ε,

λ1(ε) = 1− ε.
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Figure 1.6: Graph of the derivative of the Evans function
∂E
∂λ

(0, ε) for the nonlinear

singularly perturbed system of integral differential equations (1.1)-(1.2). In this graph,
a = b = 2, α = β = 5, ε ∈ (0,∞), θ = Θ = 2, f(u) = u − 1, g(u) = u − 2,
K(x) = 1

2
exp(−|x|),W (x) = 1

2
|x| exp(−|x|) andη(τ) = exp(−τ).

1.4 Concluding Remarks

1.4.1 Summary

For the nonlinear singularly perturbed system of integral differential equations (1.1)-

(1.2), suppose that the functionsξ ≥ 0 andη ≥ 0 on(0,∞), suppose thatf(u)+g(u) =
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m(u− n) + k(u− l) and suppose also that there exists a real numberZ0 ≥ 0, such that

K(−x) = K(x), for all x ∈ R, and
∫

R

K(x)dx = 1,

W (−x) = W (x), for all x ∈ R, and
∫

R

W (x)dx = 1,

∫ ∞

0

ξ(c)dc = 1,

∫ ∞

0

η(τ)dτ = 1,

∫ ∞

0

1

c
ξ(c)dc <∞,

∫ ∞

0

τη(τ)dτ <∞,

k +m+ a

∫ x

−∞

K(ζ)dζ + b

∫ x−Z0

−∞

W (ζ)dζ > 0, for all x ∈ R,

f ′(θ) + g′(θ) +
a

2
+ b

∫ −Z0

−∞

W (ζ)dζ > 0,

f ′(Θ) + g′(Θ) + a

∫ Z0

−∞

K(ζ)dζ +
b

2
> 0,

α 6= aΘ, β 6= bθ,

kl +mn

k +m
< θ ≤ Θ <

α+ β + kl +mn

a+ b+ k +m
,

(α− aθ)K(x) + (β − bθ)W (x− Z0) ≥ 0, for all x ∈ R,

(α− aΘ)K(x) + (β − bΘ)W (x− Z0) ≥ 0, for all x ∈ R,

(α− aθ)K(0) + (β − bθ)W (−Z0) > 0,

(α− aΘ)K(Z0) + (β − bΘ)W (0) > 0,
∫ Z0

−∞

K(ζ)dζ =
2kl + 2mn+ β − (2k + 2m+ b)Θ

2(aΘ− α)
,

∫ −Z0

−∞

W (ζ)dζ =
2kl + 2mn + α− (2k + 2m+ a)θ

2(bθ − β)
,

then there exist two standing wave solutionsφ1 = φ1(x) andφ2 = φ2(x), such thatφ1 <

θ on (−∞, 0), φ1(0) = θ andφ1 > θ on (0,∞); φ1 < Θ on (−∞, Z0), φ1(Z0) = Θ and

φ1 > Θ on (Z0,∞). Similarly,φ2 > θ on (−∞, 0), φ2(0) = θ andφ2 < θ on (0,∞);

φ2 > Θ on (−∞,−Z0), φ2(−Z0) = Θ andφ2 < Θ on (−Z0,∞).

If f(u)+g(u) = u(u−1)(Du−1) is a cubic polynomial function, then these results
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are also correct.

Additionally, if 0 < ε < ε0, then the standing wave solutions are unstable. However,

if ε > ε0, then the standing wave solutions are stable. The results for the system are

surprisingly interesting in mathematical neuroscience.

For the scalar integral differential equation, iff(u) = m(u− n) and

α + β + 2mn = (a + b+ 2m)θ, n < θ = Θ <
α + β + kl +mn

a + b+ k +m
,

(α− aθ)K(x) + (β − bθ)W (x) ≥ 0, for all x ∈ R,

(α− aθ)K(0) + (β − bθ)W (0) > 0,

then there exist two standing waves solutions. Iff is a cubic function, then similar

results are also true. Additionally, if(β−bθ)W (0) ≥ 0, then the standing wave solutions

are stable.

It is worth mentioning that for the scalar integral differential equation (1.3), the

standing wave solutions are always stable. While for the nonlinear singularly perturbed

system of integral differential equations (1.1)-(1.2), even though the parameterε plays

no role in the existence analysis, it does play a very important role in the stability anal-

ysis. In particular, asε crossesε0, the instability and stability of the standing wave

solutions are interchanged.

1.4.2 Open Problems

Under different conditions on the model parameters and functions, there may exist

standing pulse solutions rather than standing front solutions. But these problems have

not been investigated rigorously.
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Chapter 2

Influence of Sodium Currents

2.1 Introduction

Wave propagation in synaptically coupled neuronal networks is of great research interest

in computational neuroscience and in applied mathematics.Many mathematical mod-

els have been proposed to describe the propagation of nerve impulses. Mathematically,

traveling waves share the same properties as nerve impulses: they propagate with con-

stant shapes and constant velocities. Therefore, it is reasonable to use traveling waves to

model the propagation of nerve impulses. Traveling waves may also represent the stim-

uli in the turtle visual cortex [48] and cat visual cortex [28], as well as cortical epilepsy

[11] and migraine [43]. Let us briefly review how a nerve impulse is generated. Once

a cell membrane potential reaches a threshold, active sodium ion conductance gates are

opened and an inward flow of sodium ions results, causing further depolarization. This

depolarization increases sodium conductance, consequently inducing more sodium cur-

rent. This iterative cycle continues driving the membrane potential to sodium reversal

potential, and concludes with the closure of the sodium gates. As we can easily see, the

sodium current is the first cause of the nerve impulse. Roughly speaking, in a three-

dimensional phase space, a traveling pulse solution (that is, a nerve impulse) consists

of four pieces: the traveling wave front, the right, the traveling wave back and the left
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(recovery period). The traveling wave front is essentiallydue to the fast movement of

sodium ions from the exterior to the interior of the cell membrane and the traveling wave

back is essentially due to the movement of the potassium ionsfrom the interior to the

exterior of the membrane. Without the sodium current, therewould be no traveling wave

front, thus no pulse would exist.

The focus of this chapter is to investigate the influence of sodium currents (through

voltage gated channels, modeled with nonlinear functions,see [34], [21] and [30]) on

wave speeds of traveling wave fronts. There are many biological mechanisms to influ-

ence the speeds of traveling wave fronts. Mathematically, we want to apply the model

equations derived from neuroscience to investigate how themechanisms influence the

wave speeds. On the other hand, to keep things simple, we may assume that some

mechanisms are fixed while others change. Motivated by this idea, we will investigate

the influence of sodium currents on wave speeds.

2.1.1 Model equations and biological backgrounds

Consider the following nonlinear singularly perturbed systems of integral differential

equations

∂u

∂t
+ f(u) + w = α

∫

R

K(x− y)H
(
u(y, t)− θ

)
dy, (2.1)

∂w

∂t
= ε

(
g(u)− γw

)
, (2.2)

and

∂u

∂t
+ f(u) + w = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy, (2.3)

∂w

∂t
= ε

(
g(u)− γw

)
, (2.4)

respectively, where0 < c < ∞ in (2.3)-(2.4). See Amari [3], Bressloff [8], Bressloff

and Folias [9], Bressloff, Folias, Prat and Li [45], Coombes[12], Coombes, Lord and
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Owen [13], Coombes and Owen [14], Ermentrout [19], Ermentrout and McLeod [20],

Ermentrout and Terman [21], Folias and Bressloff [26]-[27], Pinto and Ermentrout [46],

Pinto, Jackson and Wayne [17], Terman, Ermentrout and Yew [54] and Zhang [60]-

[59]. The parameters are consistent with the models previously described. In addition

we note thatc > 0 represents the finite propagation speed of an action potential along

an axon, and
1

c
|x − y| denotes the spatial temporal delay. The functionf(u) usually

represents sodium currents across the cell membrane. The most popular sodium current

function isfc(u) = u(u − 1)(Du − 1), whereD > 0 is a constant. Another popular

function isf0(u) = u. Biologically speaking, the cubic representation is much better

than the linear representation to model sodium current because sodium channels are

voltage gated channels (in another word, sodium conductance should be a function of

voltage). On the other hand, mathematically, a linear function is much better than a cubic

function because a linear function is easy to handle. Note that if ε = 0 andw = 0, then

(2.1)-(2.2) and (2.3)-(2.4) reduce to the following scalarintegral differential equations

∂u

∂t
+ f(u) = α

∫

R

K(x− y)H
(
u(y, t)− θ

)
dy, (2.5)

(2.6)

∂u

∂t
+ f(u) = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy, (2.7)

respectively, where0 < c <∞ in (2.7). Additionally, iff(u) = m(u−n), wherem > 0

andn ∈ R are real constants, then (2.5) and (2.7) become the particular equations

∂u

∂t
+m(u− n) = α

∫

R

K(x− y)H
(
u(y, t)− θ

)
dy, (2.8)

and

∂u

∂t
+m(u− n) = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy. (2.9)

We may interpret the constantm as the sodium conductance and the constantn as the

sodium reversal potential. To investigate the speeds of thefast traveling pulse solutions
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of (2.1)-(2.2) and (2.3)-(2.4), we will study the speeds of the traveling wave fronts of

(2.5) and (2.7), respectively.

In this chapter, we will investigate the general scalar integral differential equation

∂u

∂t
+ f(u) = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy, (2.10)

where0 < c ≤ ∞, α > 0 and θ > 0 are constants. This model includes (2.5) if

c = ∞ and includes (2.7) if0 < c < ∞. The model equation involves both sodium

current function (in particular,f(u) could represent the cubic polynomial function) and

the spatial temporal delay. That is why it is more realistic than any previousscalar

integral differential equations. See [6], [7], [15], [18],[32], [33], [39], [40], [41] and

[42] for more information of the model equations (1)-(2), (2.3)-(2.4), (2.5), (2.7), (2.8),

(2.9) and (2.10). See [2], [4]-[5], [10], [22], [23], [24], [25], [29], [31], [38], [49], [50],

[51], [52], [56]-[57] for related model equations.

As well known, the cubic polynomial functionfc(u) = u(u−1)(Du−1) is the most

popular function used to describe sodium currents in neuronal networks, see Borisyuk,

Ermentrout, Friedman and Terman [1], Hodgkin and Huxley [30], and Zhang [61]. It

is not surprising to see that the linear functionf0(u) = u is the simplest function for

sodium current, it may be viewed as a linear approximation ofthe cubic polynomial

function, see [9]-[45], [12]-[15], [18], [46], [17], [52] and [60]. The sodium current

may be perturbed by many factors. Iff0(u) = u is the correct function for sodium

current, then we may think thatf+(u) =
1

D
sinh(Du) andf−(u) =

1

D
tanh(Du) are

perturbations off0(u) = u onR, whereD > 0 is a constant. Note that

lim
D→0

sinh(Du)

D
= u, lim

D→0

tanh(Du)

D
= u.

If f+(u) =
1

D
sinh(Du) or f−(u) =

1

D
tanh(Du) describes sodium currents in neu-

ronal networks, thenϕ+(u) =
1

Du
sinh(Du) orϕ−(u) =

1

Du
tanh(Du)may be viewed
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as sodium conductance in these networks (assuming that sodium reversal potential is

zero). Here we may interpretD as a biological perturbation parameter. It is worth men-

tioning that there are other nonlinear functions responsible for the sodium currents. For

example, the sodium current functions in the Morris-Lecar equations [21], in the ring

model [19] and in the Pelinovsky-Yakhno equations [19], aredifferent from those men-

tioned above. These sodium current functions are derived also based on Ohm’s law, but

with different formulations of sodium conductance.

2.1.2 The mathematical assumptions

Mathematically, the functionf(u) satisfiesf(n) = 0, f ′(n) > 0, andf ′(u) > 0 for all

sufficiently largeu > 0, wheren is a constant, representing sodium reversal potential.

Suppose that0 < 2f(θ) < α.

Notice that if the synaptic couplingK is in classes (A) or (C), then the traveling

wave front is nonnegative, for allz ∈ R, see [62], [63], [64]. However, if the synaptic

couplingK is in class (B), then the traveling wave front is negative on some interval

(−∞,−N), whereN > 0 is some constant, depending onK, see [64]. The(n,∞) in-

dicates that while assumptions are made on the interval(n,∞) if the synaptic couplings

are in classes (A) or (C), the same assumptions should be madeonR = (−∞,∞) if the

synaptic couplings are in class (B). More assumptions will be made in Section 2 for the

functions and parameters of the model equations.

2.1.3 The speed index functions

Motivation of a speed index function.Consider the scalar integral differential equation

∂u

∂t
+ u = α

∫

R

K(x− y)H
(
u(y, t)− θ

)
dy,

whereα andθ are constants such that0 < 2θ < α. Suppose that the front satisfies
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U(0) = θ, U < θ on (−∞, 0) andU > θ on (0,∞). Then the traveling wave equation

becomes a non homogeneous, first order, linear ordinary differential equation

νU ′ + U = α

∫

R

K(z − y)H
(
U(y)− θ

)
dy = α

∫ z

−∞

K(x)dx.

There exists a unique traveling wave frontu(x, t) = U(x+ ν0t) to this equation, explic-

itly

U(z) = α

∫ z

−∞

K(x)dx− α

∫ z

−∞

exp

(
x− z

ν0

)
K(x)dx,

U ′(z) =
α

ν0

∫ z

−∞

exp

(
x− z

ν0

)
K(x)dx,

whereν0 is the wave speed andz = x + ν0t is the moving coordinate. The wave speed

ν0 is the unique positive solution of the equation

α

∫ 0

−∞

exp
(x
ν

)
K(x)dx =

α

2
− θ.

This last equation is equivalent toU(0) = θ.

The functionφ(ν) ≡ α
∫ 0

−∞
exp

(
x
ν

)
K(x)dx is called the speed index function for that

integral differential equation, see [62]-[64].

Speeds play a very important role in the study of traveling waves of nonlinear inte-

gral differential equations. Indeed, once the speed is found, the traveling wave solution

is easy to solve by using techniques in differential equations. Moreover, the speeds are

closely related to the stability of traveling waves. Intuitively, stable waves are the most

important solutions. We have developed a method to construct the speed index functions

for equations (2.8) and (2.9), see [64]. The speed index functions are very interesting

and important. There exists a solution to the equationφ(ν) =
α

2
− θ, which involves

the speed index function and the intrinsic parameters, thisunique solution is precisely

the speed of the front. Through this, we are able to investigate how the speed depends

on various parameters such asα, θ andc, as well as the synaptic couplingK. Many
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estimates and asymptotic behaviors of the speed as the parameters approach certain

numbers can be investigated very clearly. More appropriately, the speed index function

should be called biological mechanism index function because it involves so many pa-

rameters (againα, θ andc) representing biological mechanisms. By using propertiesof

the speed index functions, we may be able to prove a simple butelegant identity, which

connects the speed of the front of the model (2.9) where thereis a spatial temporal delay

to the speed of the front of the model (2.8) where there is no delay. For the special case

m = 1 andn = 0, see [64].

It is very difficult to formulate a speed index function for (2.10) with a general non-

linear functionf(u). Even if we are able to find the speed index function whenf(u) is

nonlinear, it may be very complicated, and turns out to be almost useless. Therefore, we

will use the speed index functions for (2.8) and (2.9) with the particular linear function

fl(u) = m(u − n) to derive estimates on wave speeds of (2.10) with nonlinear func-

tion f(u). Roughly speaking, we are going to treat the problem (2.10) with nonlinear

functionf(u) as a perturbation of the problems (2.8) and (2.9) with the special linear

functionfl(u) = m(u− n).

2.1.4 Known results and open problems

Given any nonnegative kernel functionK, the existence, uniqueness and stability of

the fast traveling pulse solution of the nonlinear singularly perturbed system of integral

differential equations (2.1)-(2.2) and (2.3)-(2.4), respectively, and the existence, unique-

ness and stability of the traveling wave front of the scalar integral differential equation

(2.5) and (2.7), respectively, have been rigorously established before. See [10], [13],

[14], [39], [46], [17], [52], [60]-[59]. Moreover, the existence, uniqueness and/or stabil-

ity of standing waves [29] and [46], spiral waves [40], and lurching waves [54] of similar
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model equations have also been numerically or analyticallyestablished (partially). Let

us provide some concrete results about the traveling waves.

Theorem 2.1.1.Letm > 0, n ∈ R, α and θ be four appropriate real constants and

let f(u) be a smooth function defined onR, such thatf(n) = 0, m = f ′(n) > 0 and

0 < 2f(θ) < α, and the equationf(U) = α has a unique solutionU = β > θ,

such thatf ′(β) > 0. Then there exists a unique traveling wave frontU = Ufront(·) to

equation (2.10), such thatU(0) = θ, U < θ on (−∞, 0) andU > θ on (0,∞), where

z = x + µ0t and µ0 represents the unique positive speed. The traveling wave front

satisfies the differential equations

µ0U
′ + f(U) = α

∫

R

K(z − y)H
(
U
(
y − µ0

c
|z − y|

)
− θ

)
dy

= α

∫ cz/(c+s(z)µ0)

−∞

K(x)dx,

wheres(x) = −1 for x < 0, s(0) = 0 ands(x) = 1 for x > 0. The traveling wave front

enjoys the decay estimates

|U(z)| ≤ C exp(−ρ|z|), on (−∞, 0),

|U(z)− β| ≤ C exp(−ρ|z|), on (0,∞),

|U ′(z)| ≤ C exp(−ρ|z|), on R,

whereC > 0 andρ > 0 are positive constants.

See [13], [61] and [64].

Theorem 2.1.2.(Pinto and Ermentrout [46]) Consider the following nonlinear singu-

larly perturbed system of integral differential equations

∂u

∂t
+ u+ w = α

∫

R

K(x− y)H
(
u(y, t)− θ

)
dy, (2.11)

∂w

∂t
= ε

(
u− γw

)
. (2.12)
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Suppose that the parametersα, γ and θ satisfy the conditions0 < 2θ < α and

0 < αγ < (1 + γ)θ. Then there exists a numberε0, 0 < ε0 � 1. For each fixed

singular perturbation parameterε ∈ (0, ε0), there are exactly two positive wave speeds

νslow(ε) andνfast(ε), with 0 < νslow(ε) < νfast(ε). There exists a slow traveling pulse

solution(U,W ) =
(
Uslow(ε, ·),Wslow(ε, ·)

)
corresponding to the slow wave speedνslow,

and there exists a fast traveling pulse solution(U,W ) =
(
Ufast(ε, ·),Wfast(ε, ·)

)
corre-

sponding to the fast wave speedνfast. Both the fast traveling pulse solution and the slow

traveling pulse solution satisfy the traveling wave equations

ν(ε)U ′ + U +W = α

∫

R

K(z − y)H
(
U(y)− θ

)
dy,

ν(ε)W ′ = ε
(
U − γW

)
,

and the homogeneous boundary conditions

lim
z→±∞

(
U(ε, z),W (ε, z)

)
= lim

z→±∞

(
Uz(ε, z),Wz(ε, z)

)
= (0, 0).

The same results are also correct for the systems (2.1)-(2.2) and (2.3)-(2.4) under

appropriate conditions onf andg.

The slow pulse is unstable because there exists a positive eigenvalue to an associated

linear operator and biologically the slow pulse is not very interesting. The fast traveling

pulse solution is of great importance and that is why Zhang [60] studied its stability.

By the construction and application of Evans functions and by coupling ideas in dif-

ferential equations and functional analysis, Zhang analyzed the spectrum (in particular,

eigenvalues) of an associated linear differential operator L(ε), which is obtained by lin-

earizing the nonlinear system about the fast traveling pulse solution. By using linearized

stability criterion, he demonstrated the exponential stability of the fast traveling pulse

solution in [60]. This is the first mathematically rigorous stability result in the area of

nonlinear nonlocal neuronal networks.
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Theorem 2.1.3.Suppose that the positive parametersα > 0, γ > 0, ε > 0 andθ > 0

satisfy the conditions0 < 2θ < α, 0 < αγ < (1 + γ)θ, and ε ∈ (0, ε0) with 0 <

ε0 � 1. Then the unique fast traveling pulse solution(U,W ) =
(
Ufast(ε, ·),Wfast(ε, ·)

)

is exponentially stable in the sense ofL∞(R)× L∞(R)-norm, ast→ ∞.

See [60].

Some preliminary results on the speeds of the traveling wavefronts of (2.8) and

(2.9) have been obtained in [64], wherem = 1 andn = 0. Zhang has investigated the

influence of synaptic rate constantα, thresholdθ and action potential speedc on the

wave speed.

Moreover, there have been some other nice results on similarmodel equations. It

seems that lateral inhibition supports and stabilizes standing waves (see Guo and Chow

[29], Pinto and Ermentrout [46]) and lateral excitation leads to Turing-Hopf bifurcation

in delayed neuronal networks (see Atay and Hutt [6]).

The existence results in Theorem 2.1.1 and Theorem 2.1.2 canbe proved by using

fixed point theorem or other techniques in dynamical systems, see Coombes, Lord and

Owen [13], Coombes and Owen [14], Ermentrout and McLeod [20], Pinto and Ermen-

trout [46], Pinto, Jackson and Wayne [17], Sandstede [52] and Zhang [60]-[61].

Suppose thatf ∈ C∞(R). If c = ∞, then the traveling wave front of (2.10) is as

smooth as the kernel functionK. If 0 < c <∞ andK(0) 6= 0, then the front is at most

C1 smooth.

If f is a nonlinear function such that the equationf(u) = α has no solution which is

larger than the threshold, then there exists no traveling wave front to equation (2.10). If

neither the equationf(u) = 0 nor the equationf(u) = α has a solution, then the sodium

current functionf causes wave propagation failure. For example, ifD is sufficiently

large (i.e too much biological noises are present), then theequation
1

D
tanh(Du) = α
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has no solution at all. Iff(u) =
1

2
(1 + tanhu) is used to describe a sodium current,

then it causes wave propagation failure because neither theequation
1

2
(1 + tanh u) = 0

nor the equation
1

2
(1 + tanh u) = α has a solution, whereα > 1.

For the integral differential equations (2.8) and (2.9), wehave constructed the speed

index function and the stability index function by

φ(µ) = α

∫ 0

−∞

exp

(
c− µ

cµ
x

)
K(x)dx, E(λ) = 1− 1

φ(µ0)
φ

(
µ0

λ+ 1

)
,

where the wave speedµ0 is the unique solution of the equationφ(µ) =
α

2
− θ, see

[62]-[64]. The stability of the traveling wave front is determined completely by the

zeros of the stability index functionE(λ). The speed index function and the stability

index function may be used to study bifurcation of waves of the model equations, as the

parametersα, θ andc vary.

Summary

The mathematical study of the traveling waves are motivatedby several important

works in biology, see [11], [31], [36], [43], [16], [48], [38], [28], [35] and [55].

By using mathematical analysis as a main technical tool of investigation, we study

how wave speed of the traveling wave front of a scalar integral differential equation is

influenced by sodium currents.

If the sodium current functionf in equation (2.10) is linear and the synaptic coupling

K is an exponential function or a delta function, then we can compute the wave speed

exactly. If f+(u) =
1

D
sinh(Du) is used to describe the sodium current function, then

the speed is a decreasing function ofD, whereD > 0 is a real parameter. Iff−(u) =
1

D
tanh(Du) is used to describe the sodium current function, then the speed is an in-

creasing function ofD, whereD > 0 is a real parameter. Iffc(u) = u(u−1)(Du−1) is

used to describe the sodium current function, then the speedis an increasing function of
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D, whereD > 0 is a parameter. For any nonlinear sodium current functionf(u) and for

any synaptic couplingK in the three classes, we can derive upper and lower bounds for

the wave speed. We can also compare the wave speeds of (2.10) with different sodium

currents. In particular, stronger/weaker sodium current yields faster/slower propagation

speed, respectively, see Theorem 2.2.10 and Corollary 2.2.11.

These results are correct for the casec = ∞ (without spatial temporal delay) and the

case0 < c <∞ (with finite spatial temporal delay).

When investigating the influence of sodium current on wave speed, we must keep

in mind that there are many reasonable ways to formulate the sodium current function

f(u), see [34], [21] and [30]. That is why we study how the wave speed is influenced

by f(u). The sodium current functionf(u) in (2.10) is similar to that in the Hodgkin-

Huxley equations, which is an empirical model where the sodium current is derived

using Ohm’s law and also using curve fitting through exponential functions. It is not a

physiological model based on physical laws or biological theory. The Fitzhugh-Nagumo

equations is a simplified version of the Hodgkin-Huxley equations, see [37].

We hope the speed index functions will be helpful in estimating the speeds of spiral

waves and the speeds of other interesting waves and we want tofind connections and

applications of our results to neuroscience.

2.2 The Mathematical Analysis

In this section, we are going to provide rigorous mathematical investigations/analysis

of influence of sodium currents on wave speeds of (2.10), where the sodium current is

modeled with the nonlinear functionf(u) and the synaptic coupling is modeled with the

kernel functionK. We will use the speed index functions for (2.8) and (2.9) to establish

estimates and comparisons of wave speeds of the general equation (2.10).
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Definition 2.2.1. Letm > 0, c > 0, α > 0, µ > 0 andν > 0 be positive parameters.

Define the speed index functionsφ andψ by

φ(µ) = α

∫ 0

−∞

exp

(
m
c− µ

cµ
x

)
K(x)dx, (2.13)

ψ(ν) = α

∫ 0

−∞

exp
(
m
x

ν

)
K(x)dx. (2.14)

The definition is motivated by Subsection 3.1.4 and the papers [62]-[64].

Please see Figure 2.2 below for the graphs of three speed index functions.
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Figure 2.1: Graph of three speed index functions (A) Speed index function for a pure
excitation (solid curve). (B) Speed index function for a lateral inhibition (dotted curve).
(C) Speed index function for a lateral excitation (dash-dotted curve).

Influence of Sodium Currents: Constant Conductance

In this case, the sodium currents are modeled with linear functions. In particular,

we are concerned withf0(u) = u andfl(u) = m(u − n), wherem > 0 andn are real
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constants. As before,m represents the sodium conductance andn represents the sodium

reversal potential.

2.2.1 Influence of spatial temporal delay on wave speeds

Consider the model equations (2.8) and (2.9), that is

∂u

∂t
+m(u− n) = α

∫

R

K(x− y)H
(
u(y, t)− θ

)
dy,

and

∂u

∂t
+m(u− n) = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy.

See Coombes, Lord and Owen [13], Pinto and Ermentrout [46] for such integral differ-

ential equations. We want to associate the wave speeds between the case0 < c < ∞

and the casec = ∞. We will useν0(fl) andµ0(fl) to represent the wave speeds of (2.8)

and (2.9) with the special functionfl(u) = m(u− n), respectively.

Theorem 2.2.2.If n < θ < n+
α

2m
, then

1

µ0(fl)
=

1

c
+

1

ν0(fl)
.

There also hold the estimates

0 < µ0(fl) < min{c, ν0(fl)}.

Proof. By using the uniqueness, we find

1

µ0(fl)
=

1

c
+

1

ν0(fl)
.

The proof of Theorem 2.2.2 is finished.
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Corollary 2.2.3. (I) Let fl(u) = m(u − n) in equation (2.10), wherem > 0 and

n ∈ R are constants, such thatn < θ < n+
α

2m
. Then the wave speed enjoys the

limits

lim
c→0

µ0 = 0, lim
c→∞

µ0 = ν0,

whereν0 is the unique solution of

α

∫ 0

−∞

exp

(
m

ν0
x

)
K(x)dx =

α

2
−mθ +mn.

(II) Suppose thatK1(x) =
ρ
2
exp(−ρ|x|), whereρ > 0 is a constant. Then the wave

speed of (2.10) satisfies

1

µ0

=
1

c
+

ρ(θ − n)
α

2
−mθ +mn

.

As a function of the three parametersm, n and c, the speedµ0 is a decreasing

function ofm, an increasing function ofn and also an increasing function ofc.

The speed enjoys the limits

lim
m→0

µ0 =
cα

α + 2cρ(θ − n)
, lim

m→α/(2(θ−n))
µ0 = 0,

lim
n→θ− α

2m

µ0 = 0, lim
n→θ

µ0 = c,

lim
c→0

µ0 = 0, lim
c→∞

µ0 =
α− 2mθ + 2mn

2ρ(θ − n)
.

(III) Suppose that the synaptic couplingK2(x) =
1

2

[
δ(x+ρ)+δ(x−ρ)

]
, whereρ > 0

is a constant, then the wave speed

1

µ0
=

1

c
+

1

ν0
=

1

c
+

1

mρ
ln

α

α− 2mθ + 2mn
.

57



It enjoys the limits

lim
m→0

µ0 =
cαρ

αρ+ 2c(θ − n)
, lim

m→α/(2(θ−n))
µ0 = 0,

lim
n→θ− α

2m

µ0 = 0, lim
n→θ

µ0 = c,

lim
c→0

µ0 = 0, lim
c→∞

µ0 = mρ
1

ln
α

α− 2mθ + 2mn

.

Proof. It is straightforward and omitted.

Please see Figure 2.2.1, Figure 2.2.1 and Figure 2.2.1 for the dependence of the wave

speed on the parameters(m,n), (α, θ) and(c, ρ).

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0.5

1

1.5

2

2.5

3

3.5

4

4.5

n

µ(
n)

Figure 2.2: In this graph,c = 10, α = 5, θ = 2, ρ = 1, f(u) = m(u − n) andK(x) =
1

2
exp(−|x|). Influence of sodium conductancem and sodium reversal potentialn on

speeds:µ = µ(m,n), wherem ∈ [1, 2] andn ∈ [1, 1.75]. The wave speedµ is a
decreasing function ofm and it is an increasing function ofn. For the dotted curve,
m = 1.0. For the solid curve,m = 1.333. For the dash-dotted curve,m = 1.666. For
the dashed curve,m = 2.0.
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µ(
θ)

Figure 2.3: In this graph,m = 1, n = 0, c = 10, ρ = 1, f(u) = u andK(x) =
1

2
exp(−|x|). Influence of synaptic rate constantα and thresholdθ on speed:µ =

µ(α, θ), whereα ∈ [4, 6] andθ ∈ [0.5, 2]. The wave speedµ is an increasing function
of α and it is a decreasing function ofθ. For the dotted curve,α = 4.0. For the solid
curve,α = 4.5. For the dash-dotted curve,α = 5.0. For the dashed curve,α = 5.5.

2.2.2 Influence of related threshold on wave speeds

We would like to investigate the influence of related thresholds,m(θ − n)/α, on the

wave speeds of (2.10).

Theorem 2.2.4.Consider (2.10) with two pairs of parameters(α1, θ1, n1) and

(α2, θ2, n2) and two functionsf1(u) = m(u− n1) andf2(u) = m(u− n2), such that

0 <
m(θ1 − n1)

α1

<
m(θ2 − n2)

α2

.

We have the estimateµ2(α2, θ2, n2) < µ1(α1, θ1, n1). In particular, if θ1 −n1 < θ2 − n2

andα1 = α2, thenµ2(α2, θ2, n2) < µ1(α1, θ1, n1). If α1 > α2 andθ1 − n1 = θ2 − n2,
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0.5 1 1.5

0.15

0.2
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0.4

ρ

µ(
ρ)

Figure 2.4: In this graph,m = 1, n = 0, α = 5, θ = 2 and f(u) = u. Let the

synaptic couplingK(x) =
ρ

2
exp(−ρ|x|). Influence of speed of action potentialc and

distribution constantρ on wave speed:µ = µ(c, ρ), wherec ∈ [1, 4] andρ ∈ [0.5, 1.5].
The wave speedµ is an increasing function ofc and it is a decreasing function ofρ.
For the dotted curve,c = 1.0. For the solid curve,c = 1.4. For the dash-dotted curve,
c = 2.2. For the dashed curve,c = 4.0.

thenµ2(α2, θ2, n2) < µ1(α1, θ1, n1).

Proof. The wave speeds of (2.10) satisfy the following equations

1

2
−

∫ 0

−∞

exp

(
m
c− µ1

cµ1

x

)
K(x)dx =

mθ1 −mn1

α1

,

and
1

2
−

∫ 0

−∞

exp

(
m
c− µ2

cµ2

x

)
K(x)dx =

mθ2 −mn2

α2

.

Since
d

dµ

[
1

2
−

∫ 0

−∞

exp

(
m
c− µ

cµ
x

)
K(x)dx

]
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= −m

µ2

∫ 0

−∞

|x| exp
(
m
c− µ

cµ
x

)
K(x)dx < 0,

the function
1

2
−

∫ 0

−∞

exp

(
m
c− µ

cµ
x

)
K(x)dx

is a strictly decreasing function ofµ. Thus, we find that

µ2(α2, θ2, n2) < µ1(α1, θ1, n1), if
m(θ1 − n1)

α1
<
m(θ2 − n2)

α2
.

The proof of Theorem 2.2.4 is completed.

Suppose that a neuron located at positionx is coupled with only two neurons which

are located atx ± ρ, whereρ > 0 is a constant. This coupling may be described with

delta functions.

Corollary 2.2.5. Letf(u) = u andK(x) =
1

2

[
δ(x+ ρ) + δ(x− ρ)

]
, whereρ > 0 is a

constant. Consider equation (2.10) with two groups of parameters(α1, θ1) and(α2, θ2),

where

0 <
θ1
α1

<
1

2
, 0 <

θ2
α2

<
1

2
.

Then the speeds satisfy

1

µ(α1, θ1, ρ)
=

1

c
+

1

ρ
ln

α1

α1 − 2θ1
,

1

µ(α2, θ2, ρ)
=

1

c
+

1

ρ
ln

α2

α2 − 2θ2
.

If

θ1
α1

<
θ2
α2
,

then there holds the estimate

µ2(α2, θ2) < µ1(α1, θ1).

Proof. It is straightforward and omitted.

Please see Figure 2.2.2 for the dependence of the wave speed on the parametersα

andθ.
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Figure 2.5: In this graph,c = 10, ρ = 10, f(u) = u andK(x) =
1

2

[
δ(x+ρ)+δ(x−ρ)

]
.

Graph ofµ = µ0(θ/α), whereθ/α ∈ [0, 0.5]. The wave speedµ is a decreasing function
of θ/α.

2.2.3 Influence of on-center and off-center kernel functions

We would like to investigate the influence of an on-center kernel function and an off-

center kernel function on the wave speeds of (2.10).

Theorem 2.2.6.Let fl(u) = m(u − n) in (2.10). Given a kernel functionK(·) in class

(A), (B) or (C), letK(d, ·) be defined by

K(d, x) =





K(x+ d), for all x ≤ −d,
K(x− d), for all x ≥ +d,

0, for all |x| < d,

whered > 0 is a parameter. Then the wave speed of (2.10) is an increasingfunction of

d, that is,µ(d2) > µ(d1) > µ(0), for all d2 > d1 > 0. Furthermore

lim
d→∞

µ(d) = c and lim
d→∞

{
d[c− µ(d)]

}
=
c2

m
ln

α

α− 2mθ + 2mn
.
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Proof. We have defined the speed index functionφ(µ) by

φ(µ) = α

∫ 0

−∞

exp

(
m
c− µ

cµ
x

)
K(x)dx.

ForK(d, ·), we have

φ(d, µ) = α

∫ 0

−∞

exp

(
m
c− µ

cµ
x

)
K(d, x)dx

= α

∫ −d

−∞

exp

(
m
c− µ

cµ
x

)
K(x+ d)dx

= α exp

(
−mc− µ

cµ
d

)∫ 0

−∞

exp

(
m
c− µ

cµ
x

)
K(x)dx

= exp

(
−mc− µ

cµ
d

)
φ(µ).

Hence for each fixed numberµ ∈ (0, c), if φ(µ) > 0, then the functionφ(d, µ) is

monotonically decreasing ind, for all kernel functions in classes (A), (B) and (C). The

speedµ(d) is a solution of the equationφ
(
d, µ(d)

)
=
α

2
−mθ +mn. Explicitly

α

∫ 0

−∞

exp

[
m
c− µ(d)

cµ(d)
(x− d)

]
K(x)dx =

α

2
−mθ +mn.

Differentiating this equation with respect tod, we obtain

mα

∫ 0

−∞

{−µ(d)− µ′(d)(x− d)

[µ(d)]2
+

1

c

}
exp

[
m
c− µ(d)

cµ(d)
(x− d)

]
K(x)dx = 0.

That is

µ′(d)

∫ 0

−∞

(d− x) exp

[
m
c− µ(d)

cµ(d)
(x− d)

]
K(x)dx

=

{
µ(d)− [µ(d)]2

c

}∫ 0

−∞

exp

[
m
c− µ(d)

cµ(d)
(x− d)

]
K(x)dx.

Recall that
∫ 0

−∞

(d− x) exp

[
m
c− µ(d)

cµ(d)
(x− d)

]
K(x)dx > 0,

∫ 0

−∞

exp

[
m
c− µ(d)

cµ(d)
(x− d)

]
K(x)dx > 0,

0 < µ(d) < c, for all d ≥ 0.
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Thus,µ′(d) > 0. Note thatK may be in any of the three classes, i.e. the synaptic

coupling could be a pure excitation, lateral inhibition or lateral excitation. Regardless if

the spatial temporal delay is present (eitherc = ∞ or 0 < c <∞), the wave speed is an

increasing function ofd. Furthermore, it is straightforward to show that the limit

lim
d→∞

µ(d) = c,

exists. Additionally, suppose thatd[c − µ(d)] → L, asd → ∞, whereL ≥ 0 is a

constant. From

exp

[
−mc− µ(d)

cµ(d)
d

]
φ(µ(d)) =

α

2
−mθ +mn,

we find

exp

(
−mL
c2

)
φ(c) =

α

2
−mθ +mn.

But φ(c) =
α

2
. Thus

L =
c2

m
ln

α

α− 2mθ + 2mn
.

Therefore

lim
d→∞

{
d[c− µ(d)]

}
=
c2

m
ln

α

α− 2mθ + 2mn
.

The proof of Theorem 2.2.6 is completed.

The interesting point is that the result is true for all0 < c <∞ and for alld > 0.

Corollary 2.2.7. Let fl(u) = m(u − n) andK(x) =
1

2

[
δ(x + ρ) + δ(x − ρ)

]
, where

m > 0, n ∈ R andρ > 0 are constants. Then

K(d, x) =
1

2

[
δ(x+ d+ ρ) + δ(x− d− ρ)

]
.

The wave speedsµ(0) andµ(d) satisfy

1

µ(0)
=

1

c
+

1

mρ
ln

α

α− 2mθ + 2mn
,
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and

1

µ(d)
=

1

c
+

1

m(ρ+ d)
ln

α

α− 2mθ + 2mn
,

respectively. The speedµ(d) is an increasing function ofd andµ(0) < µ(d) < c, for all

d > 0.

Proof. It is straightforward and omitted.

Please see Figure 2.2.3 for the dependence of the wave speed on the parameterd.
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Figure 2.6: In this graph,c = 10, α = 5, θ = 2, ρ = 10 andf(u) = u. LetK(d, x) =
1

2

[
δ(x + ρ + d) + δ(x − ρ − d)

]
. The graph of the wave speedµ = µ0(d). The wave

speedµ is an increasing function ofd.

Influence of Sodium Currents: Voltage Related Conductance
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In this part, the sodium currents are modeled with nonlinearfunctions. In particular,

we are concerned withf+(u) =
1

D
sinh(Du), f−(u) =

1

D
tanh(Du), whereD > 0 is a

constant, and the cubic polynomial functionfc(u) = u(u−1)(Du−1), whereD > 0 is

also a constant. We will useν0(f) andµ0(f) to represent the wave speeds of (2.5) and

(2.7) with general nonlinear functionf(u), respectively.

2.2.4 Approximations of wave speeds

Given a nonlinear functionf(u), we would like to use a reasonable linear functionfl(u)

to approximate the nonlinear function. There are many ways to do this. Suppose that

fl(u) = m(u − n). To determine the constantsm andn, we use an average idea. The

average off andfl over [0, θ] should be the same, and the average off ′ andfl
′ over

[0, θ] should also be the same:

1

θ

∫ θ

0

f(u)du =
1

θ

∫ θ

0

m(u− n)du,

1

θ

∫ θ

0

f ′(u)du =
1

θ

∫ θ

0

mdu.

Solving the system, assuming thatf(θ) > f(0), we find

m =
f(θ)− f(0)

θ
, n =

θ

2
− 1

f(θ)− f(0)

∫ θ

0

f(u)du.

Therefore, we obtain the linear function

fl(u) =
f(θ)− f(0)

θ
u− f(θ)− f(0)

2
+

1

θ

∫ θ

0

f(u)du.

This approximation makes sense because iff itself is linear, thenfl = f .

Given any nonlinear functionf(u), if f(θ) > f(0), then we may generate the linear

functionfl(u) in the above way. Let us consider an approximate equation (2.10*) with
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the linear functionfl(u) = m(u− n):

∂u

∂t
+m(u− n) = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy. (2.10∗)

The approximate wave speedµappr satisfies the equation

α

∫ 0

−∞

exp

(
m
c− µ

cµ
x

)
K(x)dx =

α

2
−mθ +mn.

Theorem 2.2.8.The wave speed satisfies the estimate

|µ0 − µappr| ≤ ln
[
1 + max

u∈[0,θ]
|f(u)−m(u− n)|

]
.

Proof. Denote byµ0 andµappr the wave speeds of the traveling wave fronts of the

equations. Then (see Appendix)

Uappr(z) = n+
α

m

∫ cz/(c+s(z)µappr)

−∞

K(x)dx

− α

m

∫ z

−∞

exp

[
m

µappr
(x− z)

]
c

c + s(x)µappr
K

(
cx

c+ s(x)µappr

)
dx,

and

U(z) = n+
α

m

∫ cz/(c+s(z)µ0)

−∞

K(x)dx

− α

m

∫ z

−∞

exp

[
f ′(n)

µ0
(x− z)

]
c

c+ s(x)µ0
K

(
cx

c+ s(x)µ0

)
dx

+
1

µ0

∫ z

−∞

exp

[
f ′(n)

x− z

µ0

] [
f ′(n)(U(x)− n)− f(U(x))

]
dx.

Letting z = 0 in these solution representations, noticing thatUappr(0) = U(0) = θ and
∫ 0

−∞
K(x)dx =

1

2
, we have

θ = n +
α

2m
− α

m

∫ 0

−∞

exp

(
mx

µappr

)
c

c− µappr
K

(
cx

c− µappr

)
dx,
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and

θ = n +
α

2m
− α

m

∫ 0

−∞

exp

(
mx

µ0

)
c

c− µ0
K

(
cx

c− µ0

)
dx

+
1

µ0

∫ z

−∞

exp

(
mx

µ0

)[
m(U(x) − n)− f(U(x))

]
dx.

By using an intermediate value theorem, we may write

1

µ0

∫ z

−∞

exp

(
mx

µ0

)[
m(U(x) − n)− f(U(x))

]
dx

= ±
∫ 0

−∞

exp

(
κx+

c− µappr

cµappr
x

)
K(x)dx,

for some real numberκ. Hence we get

θ = n +
α

2m
− α

m

∫ 0

−∞

exp

(
mx

µappr

)
c

c− µappr

K

(
cx

c− µappr

)
dx,

and

θ = n +
α

2m
− α

m

∫ 0

−∞

exp

(
mx

µ0

)
c

c− µ0
K

(
cx

c− µ0

)
dx

±
∫ 0

−∞

exp

(
κx+

c− µappr

cµappr
x

)
K(x)dx.

Therefore

α

m

∫ 0

−∞

exp

(
mx

µappr

)
c

c− µappr

K

(
cx

c− µappr

)
dx

=
α

m

∫ 0

−∞

exp

(
mx

µ0

)
c

c− µ0
K

(
cx

c− µ0

)
dx

±
∫ 0

−∞

exp

(
κx+

c− µappr

cµappr
x

)
K(x)dx.

By uniqueness of the wave speed, the proof of Theorem 2.2.8 isfinished.

Corollary 2.2.9. Application 1. Let

f+(u) =
1

D
sinh(Du),

K1(x) =
ρ

2
exp(−ρ|x|),

K2(x) =
1

2

[
δ(x+ ρ) + δ(x− ρ)

]
,
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whereD > 0 andρ > 0 are constants. We have

m =
1

Dθ
sinh(Dθ), n =

θ

2
− cosh(Dθ)− 1

D sinh(Dθ)
,

mn =
1

2D
sinh(Dθ)− 1

D2θ

[
cosh(Dθ)− 1

]
.

The approximate speedsµappr andνappr satisfy

1

µappr
=

1

c
+

1

νappr
,

νappr =
α− 2mθ + 2mn

2ρ(θ − n)
, for K1(x) =

ρ

2
exp(−ρ|x|),

νappr = mρ
1

ln
α

α− 2mθ + 2mn

, for K2(x) =
1

2

[
δ(x+ ρ) + δ(x− ρ)

]
.

Application 2. Let

f−(u) =
1

D
tanh(Du)

K1(x) =
ρ

2
exp(−ρ|x|),

K2(x) =
1

2

[
δ(x+ ρ) + δ(x− ρ)

]
,

whereD > 0 andρ > 0 are constants. We have

m =
1

Dθ
tanh(Dθ), n =

θ

2
− ln[cosh(Dθ)]

D tanh(Dθ)
,

mn =
1

2D
tanh(Dθ)− 1

D2θ
ln[cosh(Dθ)].

The approximate speedsµappr andνappr satisfy

1

µappr
=

1

c
+

1

νappr
,

νappr =
α− 2mθ + 2mn

2ρ(θ − n)
, for K1(x) =

ρ

2
exp(−ρ|x|),

νappr = mρ
1

ln
α

α− 2mθ + 2mn

, for K2(x) =
1

2

[
δ(x+ ρ) + δ(x− ρ)

]
.
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Application 3. Let

fc(u) = u(u− 1)(Du− 1),

K1(x) =
ρ

2
exp(−ρ|x|)

K2(x) =
1

2

[
δ(x+ ρ) + δ(x− ρ)

]
,

whereD > 0 andρ > 0 are constants. We have

m = (θ − 1)(Dθ − 1),

n =
θ

2
− 1

θ(θ − 1)(Dθ − 1)

(
D

4
θ4 − 1 +D

3
θ3 − 1

2
θ2
)
,

mn =
1

2
θ(θ − 1)(Dθ − 1)− D

4
θ3 +

1 +D

3
θ2 − 1

2
θ.

The approximate speedsµappr andνappr satisfy

1

µappr
=

1

c
+

1

νappr
,

νappr =
α− 2mθ + 2mn

2ρ(θ − n)
, for K1(x) =

ρ

2
exp(−ρ|x|),

νappr = mρ
1

ln
α

α− 2mθ + 2mn

, for K2(x) =
1

2

[
δ(x+ ρ) + δ(x− ρ)

]
.

Proof. It is straightforward and omitted.

2.2.5 Comparison of wave speeds

The next theorem investigates the influence of sodium currents on the wave speeds of

(2.10).

Theorem 2.2.10.Letm > 0 andn ∈ R be two real constants, and letf andg be two

real functions such that

f(u) ≤ m(u− n) ≤ g(u), on (n,∞).
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Letu(x, t) = Uf (x+ µf t) andu(x, t) = Ug(x+ µgt) be the traveling wave fronts of

∂u

∂t
+ f(u) = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy,

and

∂u

∂t
+ g(u) = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy,

respectively, such thatUf (0) = Ug(0) = θ, Uf < θ andUg < θ on (−∞, 0), Uf > θ

andUg > θ on (0,∞), and the limits

lim
z→−∞

Uf (z) = Uf
−, lim

z→−∞
Ug(z) = Ug

−,

exist, whereUf
− andUg

− are real constants. Thenµf ≥ µg. In particular, if addition-

ally f 6= g, then

µf > µg.

Proof. First of all, the fronts satisfy the traveling wave equations

µfUf
′ + f(Uf) = α

∫

R

K(z − y)H
(
Uf

(
y − µf

c
|z − y|

)
− θ

)
dy,

wherez = x+ µf t and′ =
d

dz
, and

µgUg
′ + g(Ug) = α

∫

R

K(z − y)H
(
Ug

(
y − µg

c
|z − y|

)
− θ

)
dy,

wherez = x+ µgt. Using the assumptions

f(u) ≤ m(u− n) ≤ g(u), on (n, n+ θ),

we get

µfUf
′ +m(Uf − n) ≥ α

∫ cz/(c+s(z)µf )

−∞

K(x)dx,
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and

µgUg
′ +m(Ug − n) ≤ α

∫ cz/(c+s(z)µg)

−∞

K(x)dx,

on (−∞, 0). Now, we find

m
[
Uf (z)− n

]
≥ α

∫ cz/(c+s(z)µf )

−∞

K(x)dx

− α

∫ z

−∞

exp

[
m

µf
(x− z)

]
c

c+ s(x)µf
K

(
cx

c+ s(x)µf

)
dx,

and

m
[
Ug(z)− n

]
≤ α

∫ cz/(c+s(z)µg)

−∞

K(x)dx

− α

∫ z

−∞

exp

[
m

µg

(x− z)

]
c

c+ s(x)µg

K

(
cx

c+ s(x)µg

)
dx,

on (−∞, 0). Let z = 0, recall that
∫ 0

−∞
K(x)dx =

1

2
, we have

m(θ − n) = m
[
Uf (0)− n

]
≥ α

2
− α

∫ 0

−∞

exp

(
m
c− µf

cµf
x

)
K(x)dx.

Similarly, we have

m(θ − n) = m
[
Ug(0)− n

]
≤ α

2
− α

∫ 0

−∞

exp

(
m
c− µg

cµg
x

)
K(x)dx.

Note that

d

dµ

[
α

2
− α

∫ 0

−∞

exp

(
m
c− µ

cµ
x

)
K(x)dx

]

= −αm
µ2

∫ 0

−∞

|x| exp
(
m
c− µ

cµ
x

)
K(x)dx < 0.

Therefore, it follows from the above inequalities thatµf ≥ µg. Moreover, iff 6= g, then

µf > µg. Now we have finished the proof of Theorem 2.2.10.
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Corollary 2.2.11. Letf0(u) = u andfc(u) = u(u− 1)(Du− 1) onR, whereD > 0 is

a constant. Suppose that the functionsf+(u) andf−(u) satisfyf−(u) ≤ f0(u) ≤ f+(u)

on (0,∞) andfc(u) ≤ f−(u) on (0, θ). Letµ+, µ0, µ− andµc denote the wave speeds

of (2.10) with the functionsf+(u), f0(u), f−(u) andfc(u), respectively. Then we have

the estimates

µ+ < µ0 < µ− < µc.

Proof. Note that

fc(u) ≤ f−(u) ≤ f0(u) ≤ f+(u) on (0, θ).

Applying the general estimates in Theorem 2.2.10, we complete the proof of Corollary

2.2.11.

Please see Figure 2.2.5 for the graphs of four sodium currentfunctions.

2.2.6 Estimates of the wave speeds

The next theorem provides the estimates of the wave speeds of(2.10) where the sodium

current function is bounded by a linear function.

Theorem 2.2.12. (I) Suppose thatf(u) ≥ m(u − n) on (n,∞), such thatn < θ <

n+
α

2m
. Then

α

∫ 0

−∞

exp

(
m
c− µ0

cµ0

x

)
K(x)dx ≤ α

2
−mθ +mn.

In particular, let the synaptic couplingK1(x) =
ρ

2
exp(−ρ|x|), whereρ > 0 is a

constant, then

1

c
+

ρ(θ − n)
α

2
−mθ +mn

≤ 1

µ0

.
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Figure 2.7: Graph of four sodium current functions:f+(u) = sinh u (dotted curve),
f0(u) = u (solid curve),f−(u) = tanh u (dash-dotted curve) andfc(u) = u(u −
1)(3u− 1) (dashed curve).

Let the synaptic couplingK2(x) =
1

2

[
δ(x + ρ) + δ(x − ρ)

]
, whereδ represents

the Dirac delta impulse function andρ > 0 is a constant, then

1

c
+

1

mρ
ln

α

2
α

2
−mθ +mn

≤ 1

µ0

.

(II) Suppose thatf(u) ≤ m(u− n) on (n,∞), such thatn < θ < n+
α

2m
. Then

α

2
−mθ +mn ≤ α

∫ 0

−∞

exp

(
m
c− µ0

cµ0
x

)
K(x)dx.

In particular, let the synaptic couplingK1(x) =
ρ

2
exp(−ρ|x|), whereρ > 0 is a

constant, then

1

µ0
≤ 1

c
+

ρ(θ − n)
α

2
−mθ +mn

.
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Let the synaptic couplingK2(x) =
1

2

[
δ(x + ρ) + δ(x − ρ)

]
, whereρ > 0 is a

constant, then

1

µ0
≤ 1

c
+

1

mρ
ln

α

2
α

2
−mθ +mn

.

(III) Suppose that there are real constantsmk > 0 andnk ∈ R, for k = 1, 2, such that

m1(u− n1) ≤ f(u) ≤ m2(u− n2),

on (n1,∞). Then

α

∫ 0

−∞

exp

(
m1

c− µ0

cµ0
x

)
K(x)dx ≤ α

2
−m1θ +m1n1,

α

2
−m2θ +m2n2 ≤ α

∫ 0

−∞

exp

(
m2

c− µ0

cµ0
x

)
K(x)dx.

In particular, let the synaptic couplingK1(x) =
ρ

2
exp(−ρ|x|), ρ > 0 is a con-

stant, then

1

c
+

ρ(θ − n1)
α

2
−m1θ +m1n1

≤ 1

µ0
≤ 1

c
+

ρ(θ − n2)
α

2
−m2θ +m2n2

,

provided that

n1 < θ < n1 +
α

2m1

, and n2 < θ < n2 +
α

2m2

.

Let the synaptic couplingK2(x) =
1

2

[
δ(x + ρ) + δ(x − ρ)

]
, whereρ > 0 is a

constant, then

1

c
+

1

m1ρ
ln

α

2
α

2
−m1θ +m1n1

≤ 1

µ0
≤ 1

c
+

1

m2ρ
ln

α

2
α

2
−m2θ +m2n2

.
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Proof. Let u(x, t) = U(z) be the traveling wave front of (2.10), wherez = x+ µ0t,

such thatU(0) = θ, U < θ on (−∞, 0) andU > θ on (0,∞), and the limitU → U−

exists, asz → −∞, whereU− is a real constant. Then the integral differential equation

(2.10) becomes

µ0U
′ + f(U) = α

∫ cz/(c+s(z)µ0)

−∞

K(x)dx.

Moreover

µ0U
′ +m1(U − n1) ≤ α

∫ cz/(c+s(z)µ0)

−∞

K(x)dx,

and

µ0U
′ +m2(U − n2) ≥ α

∫ cz/(c+s(z)µ0)

−∞

K(x)dx,

on (−∞, 0). Solving these differential inequalities, we find

m1

[
U(z)− n1

]
≤ α

∫ cz/(c+s(z)µ0)

−∞

K(x)dx

− α

∫ z

−∞

exp

[
m1

µ0

(x− z)

]
c

c+ s(x)µ0

K

(
cx

c+ s(x)µ0

)
dx,

and

m2

[
U(z)− n2

]
≥ α

∫ cz/(c+s(z)µ0)

−∞

K(x)dx

− α

∫ z

−∞

exp

[
m2

µ0
(x− z)

]
c

c+ s(x)µ0
K

(
cx

c+ s(x)µ0

)
dx,

on (−∞, 0). In particular, lettingz = 0, we have

m1(θ − n1) ≤
α

2
− α

∫ 0

−∞

exp

(
m1

c− µ0

cµ0
x

)
K(x)dx,

and

m2(θ − n2) ≥
α

2
− α

∫ 0

−∞

exp

(
m2

c− µ0

cµ0

x

)
K(x)dx.
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In other words, we have the estimates

α

∫ 0

−∞

exp

(
m1

c− µ0

cµ0
x

)
K(x)dx ≤ α

2
−m1θ +m1n1,

and

α

2
−m2θ +m2n2 ≤ α

∫ 0

−∞

exp

(
m2

c− µ0

cµ0

x

)
K(x)dx.

For the synaptic couplingK1(x) =
ρ

2
exp(−ρ|x|), whereρ > 0 is a constant, we have

1

c
+

ρ(θ − n1)
α

2
−m1θ +m1n1

≤ 1

µ0
≤ 1

c
+

ρ(θ − n2)
α

2
−m2θ +m2n2

.

For the synaptic couplingK2(x) =
1

2

[
δ(x+ ρ) + δ(x− ρ)

]
, whereρ > 0 is a constant,

we have

1

c
+

1

m1ρ
ln

α

2
α

2
−m1θ +m1n1

≤ 1

µ0
≤ 1

c
+

1

m2ρ
ln

α

2
α

2
−m2θ +m2n2

.

The proof of Theorem 2.2.12 is completed.

Corollary 2.2.13. (I) Let f(u) = u. Then

α

∫ 0

−∞

exp

(
c− µ0

cµ0
x

)
K(x)dx =

α

2
− θ.

(II) Let f(u) satisfyu ≤ f(u) ≤ f(θ)

θ
u on (0, θ). Then there hold the estimates

α

∫ 0

−∞

exp

(
c− µ0

cµ0

x

)
K(x)dx ≤ α

2
− θ,

α

2
− f(θ) ≤ α

∫ 0

−∞

exp

(
f(θ)

θ

c− µ0

cµ0
x

)
K(x)dx.
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(III) Let f(u) satisfy
f(θ)

θ
u ≤ f(u) ≤ u on (0, θ). Then there hold the estimates

α

∫ 0

−∞

exp

(
f(θ)

θ

c− µ0

cµ0

x

)
K(x)dx ≤ α

2
− f(θ),

α

2
− θ ≤ α

∫ 0

−∞

exp

(
c− µ0

cµ0
x

)
K(x)dx.

(IV) Let f(u) = u(u− 1)(Du− 1) satisfyu+ f(θ)− θ ≤ f(u) ≤ u on (0, θ), where

D > 0 is a constant. Then there hold the estimates

α

2
− θ ≤ α

∫ 0

−∞

exp

(
c− µ0

cµ0
x

)
K(x)dx ≤ α

2
− f(θ).

Proof. The proof of Corollary 2.2.13 follows from Theorem 2.2.12.

2.2.7 More delicate estimates

We will provide more delicate estimates on the wave speeds.

Theorem 2.2.14. (I) Suppose that

f(u) ≥ fl(u) = m(u− n), on (n,∞).

Thenµ0(f) ≤ µ0(fl) and

1

µ0(f)
≥ 1

µ0(fl)
=

1

c
+

1

ν0(fl)
.

(II) Suppose that

f(u) ≤ fl(u) = m(u− n), on (n,∞).

Thenµ0(f) ≥ µ0(fl) and

1

µ0(f)
≤ 1

µ0(fl)
=

1

c
+

1

ν0(fl)
.
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(III) Suppose that

m1(u− n1) = fl1(u) ≤ f(u) ≤ fl2(u) = m2(u− n2), on (n,∞).

Thenµ0(fl2) ≤ µ0(f) ≤ µ0(fl1) and

1

c
+

1

ν0(fl1)
=

1

µ0(fl1)
≤ 1

µ0(f)
≤ 1

µ0(fl2)
=

1

c
+

1

ν0(fl2)
.

Proof. By combining the results of Theorem 2.2.2, Theorem 2.2.10 and Theorem

2.2.12, we finish the proof of Theorem 2.2.14 immediately.

Corollary 2.2.15. Suppose thatm1(u− n1) = fl1(u) ≤ f(u) ≤ fl2(u) = m2(u− n2),

for two positive constantsm1 andm2 and two real constantsn1 andn2

(I) LetK1(x) =
ρ

2
exp(−ρ|x|), whereρ > 0 is a constant. Then

1

c
+

1

ν0(fl1)
≤ 1

µ0(f)
≤ 1

c
+

1

ν0(fl2)
,

where

ν0(fl1) =
α− 2m1θ1 + 2m1n1

2ρ(θ − n1)
,

and

ν0(fl2) =
α− 2m2θ2 + 2m2n2

2ρ(θ − n2)
,

are the solutions of the equations

α

∫ 0

−∞

exp

[
m1

ν0(fl1)
x

]
K1(x)dx =

α

2
−m1θ +m1n1,

and

α

∫ 0

−∞

exp

[
m2

ν0(fl2)
x

]
K2(x)dx =

α

2
−m2θ +m2n2,

respectively.

79



(II) Let K2(x) =
1

2

[
δ(x+ ρ) + δ(x− ρ)

]
, whereρ > 0 is a constant. Then

1

c
+

1

ν0(fl1)
≤ 1

µ0(f)
≤ 1

c
+

1

ν0(fl2)
,

where

1

ν0(fl1)
=

1

m1ρ
ln

α

α− 2m1θ + 2m1n1

,

and

1

ν0(fl2)
=

1

m2ρ
ln

α

α− 2m2θ + 2m2n2
.

Proof. The proof follows from Theorem 2.2.14.

2.2.8 Asymptotic behaviors of the wave speeds

The next theorem investigates the asymptotic behaviors of the wave speeds as the pa-

rameters tend to zero or infinity.

Theorem 2.2.16. (I) Consider the integral differential equation (2.10) with the

sodium current functionf+(u) =
1

D
sinh(Du). Given the positive constantsα >

0 andθ > 0, there exist two positive numbersD∗
sinh > 0 andD∗∗

sinh > 0, defined

by

1

D∗
sinh

sinh(D∗
sinhθ) =

α

2
,

and

1

D∗∗
sinh

sinh(D∗∗
sinhθ) = α.

(I-1) For anyD ∈ (0, D∗
sinh), there exists a unique traveling wave frontU = Ufront(·),

such thatU(0) = θ, U < θ on (−∞, 0) andU > θ on (0,∞). Additionally,

lim
z→−∞

U(z) = 0, lim
z→∞

U(z) = βsinh, lim
z→±∞

U ′(z) = 0,

whereβsinh > θ is a constant such that
1

D
sinh(Dβsinh) = α.
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(I-2) For any D ∈ (D∗
sinh, D

∗∗
sinh), there exists a unique traveling wave frontU =

Ufront(·), such thatU(0) = θ, U > θ on (−∞, 0) andU < θ on (0,∞). Ad-

ditionally,

lim
z→−∞

U(z) = βsinh, lim
z→∞

U(z) = 0, lim
z→±∞

U ′(z) = 0,

whereβsinh > θ is a constant such that
1

D
sinh(Dβsinh) = α. (I-3) The wave

speed enjoys the limits

lim
D→0

µ0(D) = µ0, lim
D→D∗

sinh

µ0(D) = 0,

whereµ0 > 0 is the wave speed of the front of equation (2.7) withf0(u) = u. For

anyD ∈ (D∗∗
sinh,∞), there exists no traveling wave front.

(II) Consider the integral differential equation (2.10) with the sodium current function

f−(u) =
1

D
tanh(Du). Letα > 0 andθ > 0 be constants, such that0 < θ < α.

There are two cases to consider. Case One: If
α

2
< θ, then there exist two positive

numbersD∗
tanh > 0 andD∗∗

tanh > 0,D∗∗
tanh < D∗

tanh, defined by

1

D∗
tanh

tanh(D∗
tanhθ) =

α

2
,

and

1

D∗∗
tanh

tanh(D∗∗
tanhθ) = α.

(II-1) For anyD ∈
(
D∗

tanh,
1

α

)
, there exists a unique traveling wave front

U = Ufront(·), such thatU(0) = θ, U < θ on (−∞, 0) andU > θ on (0,∞).

Additionally,

lim
z→−∞

U(z) = 0, lim
z→∞

U(z) = βtanh, lim
z→±∞

U ′(z) = 0,

whereβtanh > θ is a constant such that
1

D
tanh(Dβtanh) = α.
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(II-2) For any D ∈ (D∗∗
tanh, D

∗
tanh), there exists a unique traveling wave frontU =

Ufront(·), such thatU(0) = θ, U > θ on (−∞, 0) andU < θ on (0,∞). Addition-

ally,

lim
z→−∞

U(z) = βtanh, lim
z→∞

U(z) = 0, lim
z→±∞

U ′(z) = 0,

whereβtanh > θ is a constant such that
1

D
tanh(Dβtanh) = α. (II-3) The wave

speed enjoys the limit

lim
D→D∗

tanh

µ0(D) = 0.

For anyD ∈ (0, D∗∗
tanh) ∪

(
1

α
,∞

)
, there exists no traveling wave front.

Case Two: If

θ <
α

2
,

then for allD ∈
(
0,

1

α

)
, there exists a unique traveling wave front

U = Ufront(·), such thatU(0) = θ, U < θ on (−∞, 0) andU > θ on (0,∞).

Additionally,

lim
z→−∞

U(z) = 0, lim
z→∞

U(z) = βtanh, lim
z→±∞

U ′(z) = 0,

whereβtanh > θ is a constant such that
1

D
tanh(Dβtanh) = α. Moreover, the

wave speed enjoys the limit

lim
D→0

µ0(D) = µ0, lim
D→1/α

µ0(D) = c,

whereµ0 > 0 is the wave speed of the front of equation (6) withf0(u) = u. If

D ∈
(
1

α
,∞

)
, then there exists no traveling wave front.
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(III) Consider the integral differential equation (2.10) with the sodium current function

fcubic(u) = u(u−1)(Du−1). Given the positive constantsα > 0 and0 < θ < 1,

there exist two real numbersD∗
cubic andD∗∗

cubic,D
∗∗
cubic < D∗

cubic, defined by

θ(θ − 1)(D∗
cubicθ − 1) =

α

2
,

and

θ(θ − 1)(D∗∗
cubicθ − 1) = α.

(III-1) For anyD ∈ (D∗
cubic,∞), we have

θ(θ − 1)(Dθ − 1) <
α

2
.

There exists a positive numberβ = βcubic, such thatβcubic > 1 and

β(β − 1)(Dβ − 1) = α.

There exists a unique traveling wave frontU = Ufront(·), such thatU(0) = θ,

U < θ on (−∞, 0) andU > θ on (0,∞). Additionally, we have

lim
z→−∞

U(z) = 0, lim
z→∞

U(z) = βcubic, lim
z→∞

U ′(z) = 0.

(III-2) For anyD ∈ (D∗∗
cubic, D

∗
cubic), we have

α

2
< θ(θ − 1)(Dθ − 1) < α.

There exists a positive numberβ = βcubic, such thatβcubic > 1 and

β(β − 1)(Dβ − 1) = α.

There exists a unique traveling wave frontU = Ufront(·), such thatU(0) = θ,

U > θ on (−∞, 0) andU < θ on (0,∞). Additionally, we have

lim
z→−∞

U(z) = βcubic, lim
z→∞

U(z) = 0, lim
z→∞

U ′(z) = 0.
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The wave speed enjoys the limits

lim
D→D∗

cubic

µ0(D) = 0, lim
D→∞

µ0(D) = c.

Proof. The existence and uniqueness of each of the numbersD∗
sinh, D∗∗

sinh, D∗
tanh,

D∗∗
tanh,D∗

cubic andD∗∗
cubic are obviously true. LetD ∈ (0, D∗

sinh). Then

0 <
1

D
sinh(Dθ) <

α

2
,

and the equation

1

D
sinh(Du) = α,

has a unique solutionβsinh > θ. The existence and uniqueness of the traveling wave

front may be proved very easily. LetD ∈ (D∗
sinh, D

∗∗
sinh). Then

α

2
<

1

D
sinh(Dθ) < α,

and the equation

1

D
sinh(Du) = α,

has a unique solutionβsinh > θ. The existence and uniqueness of the traveling wave

front may be proved very easily. LetD ∈ (D∗∗
sinh,∞). Suppose that there exists a

solutionβsinh ≥ θ to the equation
1

D
sinh(Du) = α, so that there exists a traveling

wave front connecting the fixed pointU = 0 at z = −∞ to the fixed pointU = βsinh

at z = ∞. Note that
1

D
sinh(Dθ) is an increasing function ofD and

1

D
sinh(Du) is an

increasing function ofu if D > 0 is fixed. Therefore, we get

α =
1

D
sinh(Dβsinh) ≥

1

D
sinh(Dθ) >

1

D∗∗
sinh

sinh(D∗∗
sinhθ) = α.

This is a contradiction. Hence there is no traveling wave front to equation (2.10) with

f+(u) =
1

D
sinh(Du) if D ∈ (D∗∗

sinh,∞).
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The mathematical analysis of the traveling wave front of equation (2.10) with

f−(u) =
1

D
tanh(Du) is very similar to the above analysis and is omitted.

LetD ∈ (D∗
cubic,∞). Then

θ(θ − 1)(Dθ − 1) <
α

2
,

and the equation

u(u− 1)(Du− 1) = α

has a solutionβcubic > 1. The existence and uniqueness of the traveling wave front may

be proved very easily. LetD ∈ (D∗∗
cubic, D

∗
cubic). Then

α

2
< θ(θ − 1)(Dθ − 1) < α,

and the equation

u(u− 1)(Du− 1) = α

has a solutionβcubic > 1. The existence and uniqueness of the traveling wave front may

be proved very easily.

Based on Theorem 2.2.10, for the traveling wave front of equation (2.10) with

f+(u) =
1

D
sinh(Du), f−(u) =

1

D
tanh(Du), fc(u) = u(u−1)(Du−1), respectively,

the wave speedµ0(D) is a decreasing, an increasing, an increasing function ofD. Note
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that0 < µ0(D) < c for all cases. Therefore, the limits

L∗
sinh := lim

D→0
µ0(D), and

L∗∗
sinh := lim

D→D∗
sinh

µ0(D), for f+(u) =
1

D
sinh(Du),

L∗
tanh := lim

D→0
µ0(D), and

L∗∗
tanh := lim

D→D∗
tanh

µ0(D), for f−(u) =
1

D
tanh(Du),

L∗
cubic := lim

D→∞
µ0(D), and

L∗∗
cubic := lim

D→D∗
cubic

µ0(D), for fc(u) = u(u− 1)(Du− 1),

exist. Let us find these limits. Note thatf(0) = 0 andf ′(0) = 1. First of all, we have

the traveling wave front representation

U(z) = α

∫ cz/(c+s(z)µ0)

−∞

K(x)dx

− α

∫ z

−∞

exp

(
x− z

µ0

)
c

c+ s(x)µ0

K

(
cx

c + s(x)µ0

)
dx

+
1

µ0

∫ z

−∞

exp

(
x− z

µ0

)[
U(x)− f(U(x))

]
dx.

Recall that the speed is determined by the conditionU(0) = θ, namely, the equation

α

∫ 0

−∞

K(x)dx− α

∫ 0

−∞

exp

(
c− µ0

cµ0
x

)
K(x)dx

+
1

µ0

∫ 0

−∞

exp

(
x

µ0

)[
U(x)− f(U(x))

]
dx = θ.

Note that

lim
D→0

1

D
sinh(Du) = u, lim

D→0

1

D
tanh(Du) = u.
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LettingD → 0 for f+(u) =
1

D
sinh(Du), lettingD → 0 for f−(u) =

1

D
tanh(Du),

lettingD → ∞ for fc(u) = u(u− 1)(Du− 1), we find that

α

2
− α

∫ 0

−∞

exp

(
c− µsinh

cµsinh
x

)
K(x)dx = θ.

α

2
− α

∫ 0

−∞

exp

(
c− µtanh

cµtanh

x

)
K(x)dx = θ.

α

2
− α

∫ 0

−∞

exp

(
c− µcubic

cµcubic
x

)
K(x)dx = 0.

Therefore, we find thatL∗
sinh = µ0, L∗

tanh = µ0 andL∗
cubic = c. For equation (2.10), note

that the traveling wave front also satisfies

µ0U
′ + f(U) = α

∫ cz/(c+s(z)µ0)

−∞

K(x)dx.

Lettingz = 0 andU = θ, we obtain

µ0U
′(0) + f(θ) =

α

2
.

Letting D → D∗
sinh for f+(u) =

1

D
sinh(Du), letting D → D∗

tanh for f−(u) =

1

D
tanh(Du), lettingD → D∗

cubic for fc(u) = u(u − 1)(Du − 1), respectively, we

findL∗∗
sinh = 0, L∗∗

tanh = 0, L∗∗
cubic = 0. The proof of Theorem 2.2.16 is finished.

Corollary 2.2.17. There hold the results

inf
K∈class (A)

µ0(K) = 0, sup
K∈class (A)

µ0(K) = c,

inf
K∈class (B)

µ0(K) = 0, sup
K∈class (B)

µ0(K) = c,

inf
K∈class (C)

µ0(K) = 0, sup
K∈class (C)

µ0(K) = c.
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Proof. It is not difficult to prove these results by using Theorem 2.2.2 through The-

orem 2.2.16.

Please see Figure 2.2.8, Figure 2.2.8 and Figure 2.2.8 for the dependence of the

wave speed on the parametersD andρ for the three sodium current functionsf+(u) =
1

D
sinh(Du), f−(u) =

1

D
tanh(Du) andfc(u) = u(u− 1)(Du− 1).
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0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ρ

µ(
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Figure 2.8: Influence ofD andρ on wave speed:µ = µ(D, ρ), whereD ∈ [0, 0.5] and
ρ ∈ [0.25, 4]. The wave speedµ is a decreasing function ofD and it is also a decreasing

function ofρ. In this graph, we usec = ∞, α = 5 andθ = 2. Let f+(u) =
1

D
sinh(Du)

andK(x) =
ρ

2
exp(−ρ|x|). For the dotted curve,D = 0.125. For the solid curve,

D = 0.25. For the dash-dotted curve,D = 0.375. For the dashed curve,D = 0.5.

2.2.9 Influence of synaptic couplings on wave speeds (some numer-
ical calculations)

Derivation of a speed formula.LetA > 0,B > 0, a > 0 andb > 0 be constants, such
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Figure 2.9: Influence ofD andρ on wave speed:µ = µ(D, ρ), whereD ∈ [0, 0.5] and
ρ ∈ [0.35, 4]. The wave speedµ is an increasing function ofD and it is a decreasing

function ofρ. In this graph, we usec = ∞,α = 5 andθ = 2. Letf−(u) =
1

D
tanh(Du)

andK(x) =
ρ

2
exp(−ρ|x|). For the dotted curve,D = 0.125. For the solid curve,

D = 0.25. For the dash-dotted curve,D = 0.375. For the dashed curve,D = 0.5.

that

A

a
− B

b
=

1

2
.

DefineK(x) = A exp(−a|x|)− B exp(−b|x|). Then

∫

R

K(x)dx = 1.

The speed of the traveling wave front of (2.5) withf(u) = u satisfies

α

∫ 0

−∞

exp
(x
ν

)
K(x)dx =

α

2
− θ.
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Figure 2.10: Influence ofD and ρ on speed:µ = µ(D, ρ), whereD ∈ [2, 4] and
ρ ∈ [0, 3.5]. The wave speedµ is an increasing function ofD and it is a decreasing
function ofρ. In this graph,c = 10, α = 5, θ = 0.5 andρ = 1. Let the sodium current

functionfc(u) = u(u − 1)(Du − 1) andK(x) =
ρ

2
exp(−ρ|x|). For the dotted curve,

D = 2.5. For the solid curve,D = 3.0. For the dash-dotted curve,D = 3.5. For the
dashed curve,D = 4.0.

In another word

α





A

a +
1

ν

− B

b+
1

ν





=
α

2
− θ.

This equation is equivalent to

α
[
Aν(1 + bν)−Bν(1 + aν)

]
=

(α
2
− θ

)
(1 + aν)(1 + bν),
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or

[
(Ab− Ba)− ab

(
1

2
− θ

α

)]
ν2 −

[
(a + b)

(
1

2
− θ

α

)
− (A− B)

]
ν

−
(
1

2
− θ

α

)

= 0.

Let

P = (Ab− Ba)− ab

(
1

2
− θ

α

)
= ab

θ

α
,

Q = (a+ b)

(
1

2
− θ

α

)
− (A−B),

R =
1

2
− θ

α
.

Then the wave speed of equation (2.5) withf(u) = u is given by

ν =
Q +

√
Q2 + 4PR

2P
.

Here we investigate the influence of synaptic couplings on wave speeds by using a series

of numerical calculations, instead of rigorous mathematical analysis.

Please see Figure 2.2.9, Figure 2.2.9, Figure 2.2.9, Figure2.2.9 and Figure 2.2.9

for the dependence of the wave speed on the parametersA, B, a, b, ρ andσ, where

ρ = A = a andσ = 2B = b for the kernel function used in Figure 2.2.9.

2.2.10 Applications to real biology

In this part, we try to find connections of our results to real wave speeds.

Pinto and Ermentrout [46] and Pinto, Patrick, Huang and Connors [16] have ob-

tained some hard numbers on wave speeds through experiments: µ = 4m/s (meters per

second). To match this speed, letK(x) = A exp(−a|x|)− B exp(−b|x|). If A, B, a, b,
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Figure 2.11: Influence ofa andA on speed:µ = µ(a, A), wherea ∈ [2, 4.2] and
A ∈ [1, 4]. The wave speedµ is an increasing function ofa and it is a decreasing
function ofA. In this graph, we usec = ∞, α = 5, θ = 2 andf(u) = u. Let the
synaptic couplingK(x) = A exp(−a|x|) − B exp(−b|x|), whereb = 1 is fixed and

B =
A

a
− 1

2
is a dependent variable. For the dotted curve,a = 2.0. For the solid curve,

a = 2.4. For the dash-dotted curve,a = 3.0. For the dashed curve,a = 4.2.

α andθ are constants such that

α





A

a +
1

4

− B

b+
1

4





=
α

2
− θ,

then the wave speedν = 4m/s. In particular, we may chooseA = 4, B = 1, a = 4,

b = 2, α = 17 andθ =
1

18
, and we find the speedν0 = 4m/s. We may also choose

A = 4, B = 1, D = 3, a = 4, b = 2, c = 10, α =
8360

27
≈ 309.63, θ = 2,

f(u) = u(u− 1)(Du− 1) andK(x) = A exp(−a|x|)−B exp(−b|x|), we also find the

speedµ0 = 4m/s. Of course we are not sure if these parameters are reasonably close to

real biological data. If yes, then we may be able to find real applications to biology.
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Figure 2.12: Influence ofB andb on speed:µ = µ(b, B), whereb ∈ [0, 4] andB ∈
[1, 4]. The wave speedµ is an increasing function ofb and it is a decreasing function of
B. In this graph, we usec = ∞, α = 5, θ = 2 andf(u) = u. Let the synaptic coupling

K(x) = A exp(−a|x|) − B exp(−b|x|), wherea = 4 is fixed andA = 4

(
1

2
+
B

b

)
is

a dependent variable. For the dotted curve,B = 1.0. For the solid curve,B = 2.0. For
the dash-dotted curve,B = 3.0. For the dashed curve,B = 4.0.

Below we offer a sketch of how we calculated the speed in the second case. Given

the differential equation

∂u

∂t
+ u(u− 1)(Du− 1) = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy,

as before, we can find the approximate equation

∂u

∂t
+m(u− n) = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy,
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Figure 2.13: Influence ofA andB on speed:µ = µ(A,B), whereA ∈ [1, 4] and
B ∈ [0, 5]. The wave speedµ is an increasing function ofA and it is a decreasing
function ofB. In this graph, we usec = ∞, α = 5, θ = 2 and f(u) = u. Let

K(x) = A exp(−a|x|) − B exp(−b|x|), whereb = 2 is fixed anda =
2A

1 +B
is a

dependent variable. For the dotted curve,A = 1.0. For the solid curve,A = 2.0. For
the dash-dotted curve,A = 3.0. For the dashed curve,A = 4.0.

on (0, θ), where

m = (θ − 1)(Dθ − 1),

n =
θ

2
− 1

θ(θ − 1)(Dθ − 1)

(
D

4
θ4 − 1 +D

3
θ3 +

1

2
θ2
)
,

mn =
1

2
θ(θ − 1)(Dθ − 1)− D

4
θ3 +

1 +D

3
θ2 − 1

2
θ.

Moreover, we can transform the approximate equation to

vτ + v = α

∫

R

K(x− y)H

(
v

(
y, τ − 1

C
|x− y|

)
−Θ

)
dy,
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Figure 2.14: Influence ofa andb on speed:µ = µ(a, b), wherea ∈ [2, 4] andb ∈ [1, 3].
The wave speedµ is an increasing function ofb and it is a decreasing function ofa. In
this graph, we usec = ∞, α = 5, θ = 2 andf(u) = u. LetK(x) = A exp(−a|x|) −
B exp(−b|x|), whereB = 1 is fixed andA = a

(
1

2
+

1

b

)
is a dependent variable. For

the dotted curve,b = 1.0. For the solid curve,b = 1.5. For the dash-dotted curve,
b = 2.0. For the dashed curve,b = 2.5.

where

τ = mt, v(x, τ) = m
[
u(x, t)− n

]
, C =

c

m
, Θ = mθ −mn.

Let the kernel functionK(x) = A exp(−a|x|)− B exp(−b|x|), whereA > B > 0 and

a > b > 0 are constants, satisfying the conditions

A

a
− B

b
=

1

2
,

A

a2
≥ B

b2
.

Therefore, if the model parametersA, B,D, a, b, c, α andθ satisfy

1

4
=

1

c
+

1

ν
, ν = mν̃,
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Figure 2.15: Influence of excitationρ and inhibitionσ on speed:µ = µ(ρ, σ), where
ρ ∈ [2, 4] andσ ∈ [1, 2]. The wave speedµ is an increasing function ofρ and it is a
decreasing function ofσ. In this graph, we usec = ∞, α = 5, θ = 2 andf(u) = u.
LetK(x) = ρ exp(−ρ|x|)− σ

2
exp(−σ|x|). For the dotted curve,σ = 1.0. For the solid

curve,σ = 1.333. For the dash-dotted curve,σ = 1.666. For the dashed curve,σ = 2.0.

α

{
A

a+ 1
ν̃

− B

b+ 1
ν̃

}
=
α

2
−Θ,

where we recall that

Θ = mθ −mn,

m = (θ − 1)(Dθ − 1),

n =
θ

2
− 1

θ(θ − 1)(Dθ − 1)

(
D

4
θ4 − 1 +D

3
θ3 +

1

2
θ2
)
,

mn =
1

2
θ(θ − 1)(Dθ − 1)− D

4
θ3 +

1 +D

3
θ2 − 1

2
θ,

thenµ = 4m/s. In particular, if we chooseA = 4, B = 1,D = 3, a = 4, b = 2, c = 10,

α = 8360/27 ≈ 309.63 andθ = 2, then we findm = 5, mn = 10/3, Θ = 20/3,
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ν̃ = 4/3, ν = 20/3 and the real wave speedµ = 4m/s.
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Chapter 3

Two Delay Model

3.1 Introduction

There have been many very interesting research results on traveling wave solutions of

these reduced model equations. Based on different biophysical interpretations, by using

concrete examples, through mathematical analysis and numerical simulations, impor-

tant properties of waves, such as their wave speeds as well astheir dependence on the

parameters and degree of homogeneity of the networks, have been established for the

reduced equations.

Our main goal is to use mathematical analysis to offer positive solutions to the open

problems. We will investigate how the biological pairs(a, b), (α, β), (θ,Θ), (ξ, η) and

(K,W ) influence the wave speeds. We will derive new lower bound and upper bound

for the wave speeds.

We will introduce speed index functions which, again, is very helpful in the study

of wave speeds. Through this we will be able to investigate how the speed depends on

various parameters as well as the synaptic couplings. Many estimates and asymptotic

behaviors of the speed as the parameters approach certain numbers can be investigated

very clearly. By using properties of the speed index functions, we are able to prove

simple but elegant identities, which connects the speed of the front of the model where
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there is a delay to the speed of the front where there is no delay. See Theorem 3.2.5, for

such a relationship.

We are going to investigate how various neurobiological mechanisms (in particular,

synaptic couplings, threshold and synaptic rate constant)influence traveling wave speed.

We will be concerned with the three classes of synaptic couplings. We are concerned

with asymptotic behaviors of the speed as various parameters approach certain numbers

or infinity.

3.1.1 The model equations

Consider the following integral differential equation arising from synaptically coupled

neuronal networks

∂u

∂t
+ f(u)

= (α− au)

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
u(y, t− τ)−Θ

)
dy

]
dτ. (3.1)

This model equation is motivated by several previous modelsappearing in Atay and

Hutt [6]-[7], Coombes, Lord and Owen [13], Hutt and Atay [32]-[33], Magpantay and

Zou [44], Pinto and Ermentrout [46], Wilson and Cowan [56]-[57], Yanagida and Zhang

[58], Zhang [61], [62], [64], Zhang and Hutt [65]-[66], Zhang, Wu and Stoner [67].

The parameters of the model are consistent with the description in earlier chapters

and the general assumptions are true. In addition, we note that the transmission speed

distributionξ and the feedback delay distributionη are probability density functions.

Typical examples of delayed functions are

ξ(c) =
p

cp+1
H(c− 1), η(τ) =

1

q!
τ q exp(−τ),
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wherep ≥ 1 andq ≥ 0 are integers, and

ξ(c) =
1

p

p∑

i=1

δ(c− ci), η(τ) =
1

q

q∑

i=1

δ(τ − τi),

whereδ represents the Dirac delta impulse function,0 < c1 < c2 < · · · < cp < ∞ and

0 < τ1 < τ2 < · · · < τq < ∞ are parameters. The kernel functionsK andW represent

synaptic couplings between neurons in the neuronal networks. Typical examples of

synaptic couplings are

K(x) =
1

2m!
ρm+1|x|m exp

(
− ρ|x|

)
, W (x) =

1

2n!
σn+1|x|n exp

(
− σ|x|

)
,

and

K(x) =
1

2m

m∑

i=1

[
δ(x− ρi) + δ(x+ ρi)

]
,

W (x) =
1

2n

n∑

i=1

[
δ(x− σi) + δ(x+ σi)

]
,

where0 < ρ < ∞, 0 < ρ1 < ρ2 < · · · < ρm < ∞, 0 < σ < ∞, 0 < σ1 < σ2 < · · · <

σn < ∞ are parameters,m ≥ 0 andn ≥ 0 are integers. Here we collect some known

results closely related to our general model equation. For the particular casea = 0,

b = 0, β = 0, f(u) = u, andξ(c) = δ(c − c0), wherec0 ∈ (0,∞) is a parameter,

Coombes, Lord and Owen [13] derived a speed equation for equation (3.1); Pinto and

Ermentrout [46] derived a speed equation and discussed the influence ofc0 andθ on

the speed for equation (3.1); Zhang [64] investigated the influence ofα, θ andc0 on

the speed for equation (3.1). For the special case,a = 0, b = 0 andf(u) = u, Zhang

and Hutt [65] investigated the influence ofα, β, θ, Θ, ξ, η, K andW on the speed for

equation (3.1). For the casea = 0, b = 0, β = 0 andξ(c) = δ(c−c0), wherec0 ∈ (0,∞)

is a parameter, in chapter 2 , we studied the influence off , c0, α andθ on the speed for

equation (3.1). However, the influence of the neurobiological mechanisms(a, b), (α, β),
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(θ,Θ), (ξ, η) and (K,W ) on the wave speeds has not been solved completely. The

general equation (3.1) contains many important integral differential equations arising

from synaptically coupled neuronal networks. The model maybe reduced to previous

equations

(I) if a = 0, b = 0, β = 0 andξ(c) = δ(c − c0), wherec0 ∈ (0,∞) is a parameter;

then (3.1) becomes the integral differential equation

∂u

∂t
+ f(u)

= (α− au)

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc.

See chapter 2 for details on this equation.

(II) if a = 0, b = 0, α = 0, f(u) = u andη(τ) = δ(τ − τ0), whereτ0 ∈ (0,∞) is a

parameter; then (3.1) becomes

∂u

∂t
+ f(u) = (β − bu)

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
u(y, t− τ)−Θ

)
dy

]
dτ.

See Coombes, Lord and Owen [13] and Hutt and Atay [33] for thisequation.

(III) if a = 0, b = 0 andf(u) = u; then (3.1) reduces to

∂u

∂t
+ u = α

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ β

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
u(y, t− τ)−Θ

)
dy

]
dτ.

See Zhang and Hutt [65],[66] for this equation.

(IV) if ξ(c) = δ(c− c0) andη(τ) = δ(τ − τ0), wherec0 ∈ (0,∞) andτ0 ∈ (0,∞) are

two positive parameters; then (3.1) becomes

∂u

∂t
+ f(u) = (α− au)

∫

R

K(x− y)H

(
u

(
y, t− 1

c0
|x− y|

)
− θ

)
dy

+ (β − bu)

∫

R

W (x− y)H
(
u(y, t− τ0)−Θ

)
dy.
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(V) if ξ(c) = δ(c−∞) andη(τ) = δ(τ). then (3.1) reduces to

∂u

∂t
+ f(u) = (α− au)

∫

R

K(x− y)H
(
u(y, t)− θ

)
dy

+ (β − bu)

∫

R

W (x− y)H
(
u(y, t)−Θ

)
dy.

See [62] for a reduced model of this equation, wheref(u) = u, a = 0 andb = 0. For

each of these reduced integral differential equations, under certain assumptions on the

model parameters and functions, there exists a traveling wave front with a positive wave

speed. See [7], [13], [14], [18], [32], [46], [61], [64] and [65], [66].

3.1.2 Assumptions

The functionw = f(u) is smooth, such that the equationf(u) = 0 has a unique solution

U0 = n < θ and the equationau + bu + f(u) = α + β has a unique solutionU1 =

U1(a, b, α, β, f) > Θ. Moreoverm = f ′(n) > 0 andf ′
(
U(a, b, α, β, f)

)
> 0.

If b = 0, β = 0 andf(u) = m(u − n), thenU0 = n < θ andU1 =
α +mn

a+m
> θ.

If a = 0, α = 0 andf(u) = m(u − n), thenU1 =
β +mn

b+m
> Θ. If a > 0, b > 0 and

f(u) = m(u− n), thenU1 =
α + β +mn

a+ b+m
> Θ.

Suppose that the parameters satisfy the following conditions

n < θ ≤ Θ, aθ + 2f(θ) < α, (3.2)

bΘ + 2f(Θ) < β, aθ + bθ + 2f(θ) < α + β, (3.3)

(α− aθ)K(0) + (β − bθ)W (0)

[∫ ∞

0

η(τ) exp(mτ)dτ

]
> 0. (3.4)

We assume that the distributed delay functions satisfy the conditions

ξ ≥ 0 and η ≥ 0 onR+,
∫ ∞

0

ξ(c)dc = 1,

∫ ∞

0

η(τ)dτ = 1,

∫ ∞

0

η(τ) exp(mτ)dτ <∞.
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Also, we assume that there exists a positive numberε0 > 0, such thatξ = 0 on [0, ε0].

We assume that the synaptic couplingK is at least piecewise smooth on the entire real

lineR, satisfying the conditions

∫

R

K(x)dx = 1,

∫ 0

−∞

K(x)dx =
1

2
,

∫ ∞

0

K(x)dx =
1

2
, (3.5)

∫ 0

−∞

|x|K(x)dx =

∫ ∞

0

|x|K(x)dx, (3.6)

|K(x)| ≤ C exp(−ρ|x|) on R, (3.7)

for two positive constantsC andρ.

There exists a unique stable traveling wave frontU = U(z) to equation (3.1), where

z = x+ µ0t andµ0 = µ0(a, b, α, β, θ,Θ, ξ, η,K,W ) represents the wave speed. It also

satisfies the traveling wave equation

µ0U
′ + f(U)

= (α− aU)

∫ ∞

0

ξ(c)

[∫

R

K(z − y)H
(
U
(
y − µ0

c
|z − y|

)
− θ

)
dy

]
dc

+ (β − bU)

∫ ∞

0

η(τ)

[∫

R

W (z − y)H
(
U(y − µ0τ)−Θ

)
dy

]
dτ, (3.8)

and the boundary conditions

lim
z→−∞

U(z) = n, lim
z→∞

U(z) = U(a, b, α, β, f), lim
z→±∞

U ′(z) = 0. (3.9)

3.2 Linear Speed Analysis

In this section, we will focus on the speed analysis of equation (3.1) with the linear

sodium current functionf(u) = m(u − n), wherem > 0 andn are real constants.

We may interpret the constantm as the sodium conductance and the constantn as the

sodium reversal potential.
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The general assumptions (3.2)-(3.4) become

n < θ ≤ Θ, (a+ 2m)θ < α + 2mn, (b+ 2m)Θ < β + 2mn,

(a + b+ 2m)θ < α+ β + 2mn,

(α− aθ)K(0) + (β − bθ)W (0)

[∫ ∞

0

η(τ) exp(mτ)dτ

]
> 0.

First of all, we consider the particular caseb = 0 andβ = 0.

Definition 3.2.1. Define the sign functions = s(x) by s(x) = −1 for all x < 0,

s(0) = 0 ands(x) = 1 for all x > 0. Define the following four auxiliary functions

ω1(z) =

∫ cz/(c+s(z)µ)

−∞

K(x)dx,

ω2(z) = m+ a

∫ cz/(c+s(z)µ)

−∞

K(x)dx,

ω3(z) = mz + az

∫ z

−∞

K(x)dx− a

∫ 0

z

|x|K(x)dx,

ω4(z) = exp

{
1

µ

[
mz + az

∫ cz/(c+s(z)µ)

−∞

K(x)dx

− a

∫ z

−∞

cx

c+ s(x)µ
K

(
cx

c+ s(x)µ

)
dx

]}
.

Then, on(−∞, 0), we have

ω1(0) =
1

2
, ω2(0) = m+

a

2
, ω3(0) = 0,

ω1
′(z) =

c

c+ s(z)µ
K

(
c

c+ s(z)µ
z

)
,

ω2
′(z) =

ca

c+ s(z)µ
K

(
c

c+ s(z)µ
z

)
,

ω3
′(z) = m+ a

∫ z

−∞

K(x)dx+ azK(z) + a|z|K(z)

= m+ a

∫ z

−∞

K(x)dx > 0.

104



Additionally, on(−∞, 0), we get

ω4(z) = exp

{
c− µ

cµ

[
cmz

c+ s(z)µ
+ a

cz

c+ s(z)µ

∫ cz/(c+s(z)µ)

−∞

K(x)dx

+ a

∫ cz/(c+s(z)µ)

−∞

|x|K(x)dx

]}
.

Moreover, on(−∞, 0), we find

lim
z→−∞

ω1(z) = 0, lim
z→−∞

ω2(z) = m, lim
z→−∞

ω4(z) = 0,

ω4
′(z) =

m+ aω1(z)

µ
ω4(z) =

1

µ
ω2(z)ω4(z),

ω4(0) = exp

[
a
c− µ

cµ

∫ 0

−∞

|x|K(x)dx

]
,

and

ω4(z)

ω4(0)
= exp

{
1

µ

[
mz + az

∫ cz/(c+s(z)µ)

−∞

K(x)dx

+ a
c− µ

c

∫ 0

cz/(c+s(z)µ)

xK(x)dx

]}

= exp

{
c− µ

cµ

[
cmz

c+ s(z)µ
+

acz

c+ s(z)µ

∫ cz/(c+s(z)µ)

−∞

K(x)dx

+ a

∫ 0

cz/(c+s(z)µ)

xK(x)dx

]}

= exp

[
c− µ

cµ
ω3

(
cz

c+ s(z)µ

)]
.

All of these auxiliary functionsω1(z), ω2(z), ω3(z) andω4(z) will help us find the

traveling wave front of the integral differential equation(3.1).

Definition 3.2.2. Define the speed index functionφ by

φ(µ) = m(α− an)

∫ 0

−∞

exp

[
c− µ

cµ
ω3(z)

]
K(z)

[
m+ a

∫ z

−∞
K(x)dx

]2dz.

105



Theorem 3.2.3.Let b = 0 andβ = 0. Let f(u) = m(u − n) in equation (3.1), where

m > 0 andn are real constants. Suppose that

n < θ, 0 < (2m+ a)(θ − n) < α− an,

and

m+ a

∫ z

−∞

K(x)dx > 0, on (−∞, 0).

Suppose that the traveling wave front satisfies the conditions U < θ on (−∞, 0),

U(0) = θ and U > θ on (0,∞). Then, there exists a unique positive wave speed

µ0 = µ0(a,m, n, α, θ, ξ,K), determined by the equation

(α− an)

∫ 0

−∞

exp

{
c− µ0

cµ0

[
mz + az

∫ z

−∞

K(x)dx− a

∫ 0

z

|x|K(x)dx

]}

· K(z)
[
m+ a

∫ z

−∞
K(x)dx

]2dz =
α− an

m(2m+ a)
− θ − n

m
.

Proof. Let µ ∈ (0, c) represent the wave speed and letz = x + µt. Suppose that

u(x, t) = U(x+ µt) is a traveling wave front of (3.1), then

µU ′(z) +m
[
U(z)− n

]

=
[
α− aU(z)

] ∫

R

K(z − y)H
(
U
(
y − µ

c
|z − y|

)
− θ

)
dy.

Let

ω = y − µ

c
|z − y|.

Then

z − y =
c

c+ s(z − ω)µ
(z − ω),

and the traveling wave equation becomes

µU ′(z) +m
[
U(z)− n

]

=
[
α− aU(z)

] ∫

R

c

c+ s(z − ω)µ
K

(
c(z − ω)

c+ s(z − ω)µ

)
H
(
U(ω)− θ

)
dω.
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Suppose thatU < θ on (−∞, 0), U(0) = θ andU > θ on (0,∞). Then we have the

simpler equation

µU ′(z) +m
[
U(z) − n

]

=
[
α− aU(z)

] ∫ ∞

0

c

c + s(z − ω)µ
K

(
c(z − ω)

c+ s(z − ω)µ

)
dω

=
[
α− aU(z)

] ∫ cz/(c+s(z)µ)

−∞

K(x)dx,

where in the last step

x =
c

c+ s(z − ω)µ
(z − ω).

Rewriting this equation as a nonhomogeneous, first order, linear differential equation

µ
[
U(z) − n

]′
+

[
m+ a

∫ cz/(c+s(z)µ)

−∞

K(x)dx

]
[
U(z)− n

]

= (α− an)

∫ cz/(c+s(z)µ)

−∞

K(x)dx.

That is

µ
[
U(z)− n

]′
+ ω2(z)

[
U(z)− n

]
= (α− an)ω1(z).

The integrating factor of this equation is exactly equal to the last auxiliary function

ω4(z). Now we have

µ
{
ω4(z)

[
U(z)− n

]}′
= (α− an)ω1(z)ω4(z).

Integrating this equation with respect toz over(−∞, z), we get

µω4(z)
[
U(z)− n

]
= (α− an)

∫ z

−∞

ω1(x)ω4(x)dx.

Therefore, the solution subject to the homogeneous boundary conditionU(−∞) = n is
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given by

U(z) = n +
α− an

µω4(z)

∫ z

−∞

ω1(x)ω4(x)dx

= n +
α− an

ω4(z)

∫ z

−∞

ω1(x)

ω2(x)
ω4

′(x)dx

= n +
(α− an)ω1(z)

ω2(z)
− m(α− an)

ω4(z)

∫ z

−∞

ω1
′(x)ω4(x)[
ω2(x)

]2 dx.

Now, we have

U(0) = n +
(α− an)ω1(0)

ω2(0)
− m(α− an)

ω4(0)

∫ 0

−∞

ω1
′(x)ω4(x)[
ω2(x)

]2 dx

= n +
α− an

2m+ a

− m(α − an)

∫ 0

−∞

exp

[
c− µ

cµ
ω3(z)

]
K(z)

[
m+ a

∫ z

−∞
K(x)dx

]2dz,

where

∫ 0

−∞

ω1
′(x)

[
ω2(x)

]2
ω4(x)

ω4(0)
dx

=

∫ 0

−∞

c
c−µ

K
(

cx
c−µ

)
exp

[
c−µ
cµ
ω3

(
cx
c−µ

)]

[
m+ a

∫ cx/(c−µ)

−∞
K(ξ)dξ

]2 dx

=

∫ 0

−∞

K(y) exp
[
c−µ
cµ
ω3(y)

]

[
m+ a

∫ y

−∞
K(ξ)dξ

]2dy.

Therefore, the wave speedµ is determined by the speed equation

m(α− an)

∫ 0

−∞

exp

[
c− µ

cµ
ω3(z)

]
K(z)

[
m+ a

∫ z

−∞
K(x)dx

]2dz = n+
α− an

2m+ a
− θ.
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Note that

m(α− an)

∫ 0

−∞

K(z)
[
m+ a

∫ z

−∞
K(ξ)dξ

]2dz =
−m(α−an)

a[
m+ a

∫ z

−∞
K(ξ)dξ

]

∣∣∣∣∣∣

0

−∞

=
m(α− an)

am
− m(α− an)

a

(
m+

1

2
a

)

=
m(α− an)

m(2m+ a)
=
α− an

2m+ a
.

Now we can easily verify that

lim
µ→0

φ(µ) = 0 < n+
α− an

2m+ a
− θ, lim

µ→c
φ(µ) =

α− an

2m+ a
> n+

α− an

2m+ a
− θ,

φ′(µ) = −m(α − an)

µ2

∫ 0

−∞

ω3(z) exp

[
c− µ

cµ
ω3(z)

]
K(z)

[
m+ a

∫ z

−∞
K(x)dx

]2dz.

The derivativeφ′(µ) > 0 on (0, c) if the kernel functionK is in class (A) or class (B).

However, the derivativeφ′(µ) < 0 on (0, c∗) andφ′(µ) > 0 on (c∗, c) if the kernel

functionK is in class (C), wherec∗ ∈ (0, c) is a constant, depending onK. Therefore,

the existence and uniqueness of the speed are guaranteed. The proof of Theorem 3.2.3

is completed.

Theorem 3.2.4.In equation (3.1), letb = 0, β = 0, (a + 2m)(θ − n) < α − an, let

f(u) = m(u− n), and let

ξ(c) = δ(c− c0), K(x) =
1

2

[
δ(x+ ρ) + δ(x− ρ)

]
,

wherem > 0, n, ρ > 0 are parameters. Then the wave speed is given by

1

µ0(a, c0, m, n, α, θ)
=

1

c0
− 2

(2m+ a)ρ
ln

[
(4m+ a)2

8m(α− an)

(
n +

α− an

2m+ a)
− θ

)]
.

Proof. Note that on(−∞, 0), we have
∫ z

−∞

K(x)dx =
1

2
H(z + ρ),

∫ 0

z

|x|K(x)dx =
ρ

2

[
1−H(z + ρ)

]
,
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m+ a

∫ z

−∞

K(x)dx = m+
a

2
H(z + ρ),

ω3(z) = mz + az

∫ z

−∞

K(x)dx− a

∫ 0

z

|x|K(x)dx

= mz +
1

2
azH(z + ρ)− 1

2
aρ

[
1−H(z + ρ)

]
.

Note that

1

2
m(α− an)

∫ 0

−∞

exp

{
c− µ

cµ

[
mz +

1

2
azH(z + ρ)− 1

2
aρ

(
1−H(z + ρ)

)]}

· δ(z + ρ) + δ(z − ρ)
[
m+ 1

2
aH(z + ρ)

]2dz

= n+
α− an

2m+ a
− θ.

Thus

8m(α− an)

(4m+ a)2
exp

{
−c− µ

cµ

[
mρ+

1

2
aρ

]}
= n+

α− an

2m+ a
− θ.

Finally, we obtain the speed formula

1

µ
=

1

c
− 2

(2m+ a)ρ
ln

[
(4m+ a)2

8m(α− an)

(
n+

α− an

2m+ a
− θ

)]
.

The proof of Theorem 3.2.4 is completed.

Theorem 3.2.5.Suppose thata ≥ 0, c > 0, α > 0 and θ > 0, such that0 < (a +

2m)(θ − n) < α− an. Suppose also that

m+ a

∫ z

−∞

K(x)dx > 0, on (−∞, 0).

Let µ0(a, c,m, n, α, θ) andµ0(a,m, n, α, θ) represent the wave speeds of the traveling

wave fronts of the integral differential equation

∂u

∂t
+m(u− n) = (α− au)

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy, (3.10)
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and the integral differential equation

∂u

∂t
+m(u− n) = (α− au)

∫

R

K(x− y)H
(
u(y, t)− θ

)
dy, (3.11)

respectively, where there is a spatial temporal delay in (3.10) and where there is no

delay in (3.11). Then the wave speeds satisfy the relationship

1

µ0(a, c,m, n, α, θ)
=

1

c
+

1

µ0(a,m, n, α, θ)
.

Proof. Note that the wave speedsµ0(a, c,m, n, α, θ) andµ0(a,m, n, α, θ) satisfy

the equations

α

∫ 0

−∞

exp

{
c− µ0(a, c,m, n, α, θ)

cµ0(a, c,m, n, α, θ)

[
z + az

∫ z

−∞

K(x)dx− a

∫ 0

z

|x|K(x)dx

]}

× K(z)
[
1 + a

∫ z

−∞
K(x)dx

]2dz =
α

2 + a
− θ,

and

α

∫ 0

−∞

exp

{
1

µ0(a,m, n, α, θ)

[
z + az

∫ z

−∞

K(x)dx− a

∫ 0

z

|x|K(x)dx

]}

× K(z)
[
1 + a

∫ z

−∞
K(x)dx

]2dz =
α

2 + a
− θ,

respectively. By uniqueness, we find that

c− µ0(a, c,m, n, α, θ)

cµ0(a, c,m, n, α, θ)
=

1

µ0(a,m, n, α, θ)
.

The proof of Theorem 3.2.5 is completed.

Now we consider more general casesa ≥ 0, b ≥ 0, α ≥ 0 andβ ≥ 0.
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Theorem 3.2.6. (I) Let α > 0 andβ = 0. Let c0 ∈ (0,∞) be a parameter and let

ξ(c) = δ(c− c0). Then

lim
c0→0

µ0(α, c0, K, θ) = 0,

lim
c0→0

{
1

c0
µ0(α, c0, K, θ)

}
= 1,

lim
c0→∞

µ0(α, c0, K, θ) = µ0(α,K, θ),

lim
c0→∞

{
c0
[
µ0(α,K, θ)− µ0(α, c0, K, θ)

]}
=

[
µ0(α,K, θ)

]2
.

(II) Let α = 0 andβ > 0. Let τ0 ∈ (0,∞) be a parameter and letη(τ) = δ(τ − τ0).

Then

lim
τ0→0

µ0(β, τ0,W,Θ) = µ0(β,W,Θ),

lim
τ0→0

µ0(β,W,Θ)− µ0(β, τ0,W,Θ)

τ0

=

[
µ0(β,W,Θ)

]2 {∫ 0

−∞
exp

[
x

µ0(β,W,Θ)

]
W (x)dx

}

∫ 0

−∞
|x| exp

[
x

µ0(β,W,Θ)

]
W (x)dx

,

lim
τ0→∞

µ0(β, τ0,W,Θ) = 0,

lim
τ0→∞

{
τ0µ0(β, τ0,W,Θ)

}
= Γ0,

whereΓ0 > 0 is a constant, such that

∫ 0

−Γ0

W (x)dx =
1

2
− Θ

β
.

Proof. For the first case, we have0 < µ0 < c0 and

1

µ0(α, c0, K, θ)
=

1

µ0(α,K, θ)
+

1

c0
.

From the estimate0 < µ0 < c0, we find

lim
c0→0

µ0(α, c0, K, θ) = 0.
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From the equation

1

µ0(α, c0, K, θ)
=

1

µ0(α,K, θ)
+

1

c0
,

we have

lim
c0→0

µ0(α, c0, K, θ)

c0
= 1.

Again, from the equation

1

µ0(α, c0, K, θ)
=

1

µ0(α,K, θ)
+

1

c0
,

we have

lim
c0→∞

µ0(α, c0, K, θ) = µ0(α,K, θ).

Moreover, we have

lim
c0→∞

{
c0
[
µ0(α,K, θ)− µ0(α, c0, K, θ)

]}

= lim
c0→∞

[
µ0(α, c0, K, θ)µ0(α,K, θ)

]
=

[
µ0(α,K, θ)

]2
.

From the speed equation

∫ 0

−µ0τ0

W (x)dx+ eτ0
∫ −µ0τ0

−∞

exp

(
x

µ0

)
W (x)dx =

1

2
− Θ

β
,

we get the limit

lim
τ0→0

µ0(β, τ0,W,Θ) = µ0(β,W,Θ),

whereµ0(β,W,Θ) is a unique solution of

∫ 0

−∞

exp

[
x

µ0(β,W,Θ)

]
W (x)dx =

1

2
− Θ

β
.
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Moreover

lim
τ0→0

µ0(β,W,Θ)− µ0(β, τ0,W,Θ)

τ0

= − lim
τ0→0

∂µ0(β, τ0,W,Θ)

∂τ0

= lim
τ0→0

[
µ0(β, τ0,W,Θ)

]2 ∫ −µ0τ0
−∞

exp
[

x
µ0(β,τ0,W,Θ)

]
W (x)dx

∫ −µ0τ0
−∞

|x| exp
[

x
µ0(β,τ0,W,Θ)

]
W (x)dx

=

[
µ0(β,W,Θ)

]2 {∫ 0

−∞
exp

[
x

µ0(β,W,Θ)

]
W (x)dx

}

∫ 0

−∞
|x| exp

[
x

µ0(β,W,Θ)

]
W (x)dx

.

It is not difficult to show that

lim
τ0→∞

µ0(β, τ0,W,Θ) = 0.

Additionally, we have
∣∣∣∣e

τ0

∫ −µ0τ0

−∞

exp

(
x

µ0

)
W (x)dx

∣∣∣∣

=

∣∣∣∣µ0e
τ0

∫ −τ0

−∞

exp(y)W (µ0y)dy

∣∣∣∣

≤
∣∣∣∣µ0e

τ0

∫ −τ0

−∞

exp(y)dy

∣∣∣∣ sup
x∈R

|W (x)|

= µ0 sup
x∈R

|W (x)|.

Therefore

lim
τ0→∞

{
eτ0

∫ −µ0τ0

−∞

exp

[
x

µ0(β,W,Θ)

]
W (x)dx

}
= 0.

It is easy to see from the speed equation

∫ 0

−µ0τ0

W (x)dx+ eτ0
∫ −µ0τ0

−∞

exp

(
x

µ0

)
W (x)dx =

1

2
− Θ

β
,

that

lim
τ0→∞

(
µ0τ0

)
= Γ0,
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whereΓ0 > 0 is a constant, such that

∫ 0

−Γ0

W (x)dx =
1

2
− Θ

β
.

The proof of Theorem 3.2.6 is finished.

Theorem 3.2.7.Suppose thatf(u) = u. Let ξ̃(c) = ρξ(ρc), K̃(x) = ρK(ρx) and

W̃ (x) = σW (σx), whereρ > 0 andσ > 0 are parameters.

(I) Let α > 0 andβ = 0. Thenµ0(ρ) =
1
ρ
µ0(1).

(II) Let α = 0 andβ > 0. Thenµ0(σ) =
1
σ
µ0(1).

(III) Let ρ = σ, α > 0 andβ > 0. Thenµ0(ρ) =
1
ρ
µ0(1).

Proof. (I) In the speed equation, if we replaceξ, K andµ0 by ξ̃, K̃ andµ̃0, respec-

tively, then we have

α

∫ ∞

0

ρξ(ρc)

[∫ 0

−∞

exp

(
c− µ̃0

cµ̃0
x

)
ρK(ρx)dx

]
dc =

α

2
− θ.

Making a change of variablesd = ρc andy = ρx and then replaced andy by c andx,

respectively, we find

α

∫ ∞

0

ξ(c)

[∫ 0

−∞

exp

(
c− ρµ̃0

cρµ̃0
x

)
K(x)dx

]
dc =

α

2
− θ.

Recall thatξ,K andµ0 satisfy

α

∫ ∞

0

ξ(c)

[∫ 0

−∞

exp

(
c− µ0

cµ0

x

)
K(x)dx

]
dc =

α

2
− θ.

Therefore, we obtainρµ̃0 = µ0. Henceµ̃0 =
µ0

ρ
.
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(II) In the speed equation, if we replaceW andµ0 by W̃ andµ̃0, respectively, then

we get

β

∫ ∞

0

η(τ)

[∫ 0

−µ̃0τ

σW (σx)dx

]
dτ

+ β

∫ ∞

0

η(τ)eτ
[∫ −µ̃0τ

−∞

exp

(
x

µ̃0

)
σW (σx)dx

]
dτ

=
β

2
−Θ.

Making a change of variabley = σx and then replacey by x, we find

β

∫ ∞

0

η(τ)

[∫ 0

−σµ̃0τ

W (x)dx

]
dτ

+ β

∫ ∞

0

η(τ)eτ
[∫ −σµ̃0τ

−∞

exp

(
x

σµ̃0

)
W (x)dx

]
dτ

=
β

2
−Θ.

Recall thatW andµ0 satisfy

β

∫ ∞

0

η(τ)

[∫ 0

−µ0τ

W (x)dx

]
dτ

+ β

∫ ∞

0

η(τ)eτ
[∫ −µ0τ

−∞

exp

(
x

µ0

)
W (x)dx

]
dτ

=
β

2
−Θ.

By uniqueness of the wave speed, we findσµ̃0 = µ0.

(III) In the speed equation, if we replaceξ, K, W andµ0 by ξ̃, K̃, W̃ and µ̃0,

respectively, whereσ = ρ, then we find

α

∫ ∞

0

ρξ(ρc)

[∫ 0

−∞

exp

(
c− µ̃0

cµ̃0

x

)
ρK(ρx)dx

]
dc

+ β

∫ ∞

0

η(τ)

[∫ 0

−µ̃0τ

ρW (ρx)dx

]
dτ

+ β

∫ ∞

0

η(τ)eτ
[∫ −µ̃0τ

−∞

exp

(
x

µ̃0

)
ρW (ρx)dx

]
dτ =

α + β

2
− θ.
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Making the change of variablesd = ρc andy = ρx and then replaced andy with c and

x, respectively, we see

α

∫ ∞

0

ξ(c)

[∫ 0

−∞

exp

(
c− ρµ̃0

cρµ̃0
x

)
K(x)dx

]
dc

+ β

∫ ∞

0

η(τ)

[∫ 0

−ρµ̃0τ

W (x)dx

]
dτ

+ β

∫ ∞

0

η(τ)eτ
[∫ −ρµ̃0τ

−∞

exp

(
x

ρµ̃0

)
W (x)dx

]
dτ =

α + β

2
− θ.

Recall thatξ,K,W andµ0 satisfy

α

∫ ∞

0

ξ(c)

[∫ 0

−∞

exp

(
c− µ0

cµ0
x

)
K(x)dx

]
dc

+ β

∫ ∞

0

η(τ)

[∫ 0

−µ0τ

W (x)dx

]
dτ

+ β

∫ ∞

0

η(τ)eτ
[∫ −µ0τ

−∞

exp

(
x

µ0

)
W (x)dx

]
dτ =

α+ β

2
− θ.

By uniqueness of the wave speed, we findρµ̃0 = µ0. The proof of Theorem 3.2.7 is

finished.

Theorem 3.2.8. (I) Let µ0 be the wave speed of the traveling wave front of the inte-

gral differential equation

∂u

∂t
+m(u− n)

= (α− au)

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc.

Then

0 <
m

2

α− aθ − 2mθ + 2mn

(α− aθ)K(0)
< µ0 ≤

m

ln
α

α− 2mθ + 2mn

∫

R

|x|K(x)dx,

(II) Let µ0 be the wave speed of the traveling wave front of the integral differential

117



equation

∂u

∂t
+m(u− n)

= (β − bu)

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
u(y, t− τ)−Θ

)
dy

]
dτ.

Then

µ0 <
m

ln
β

β − 2mθ + 2mn

∫

R

|x|W (x)dx,

µ0 >
m
2
(β − bθ − 2mθ + 2mn)

(β − bθ)W (0)
[∫∞

0
η(τ) exp(mτ)dτ

] > 0.

(III) Let µ0 be the wave speed of the traveling wave front of the integral differential

equation

∂u

∂t
+m(u− n)

= (α− au)

∫ ∞

0

ξ(c)

[∫

R

K(x− y)

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dx

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
u(y, t− τ)−Θ

)
dy

]
dτ.

Then

µ0 ≤
m

(α+ β) ln
α+ β

α + β − 2mθ + 2mn

∫

R

[
α|x|K(x) + β|x|W (x)

]
dx,

µ0 >
m

2
(α+ β − aθ − bθ − 2mθ + 2mn)

/

{
(α− aθ)K(0) + (β − bθ)W (0)

[∫ ∞

0

η(τ) exp(mτ)dτ

]}
> 0.

Proof. The proof of Theorem 3.2.8 may be completed by settingm1 = m2 = m > 0

andn1 = n2 = n in Theorem 3.3.6.
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3.3 Nonlinear Analysis

3.3.1 Representation of the traveling wave front of (3.1)

Definition 3.3.1. Define the following auxiliary functionsA(z) = A(µ, z), B(z) =

B(µ, z), C(z) = C(µ, z) andD(z) = D(µ, z) by

A(z) = (α− an)

∫ ∞

0

ξ(c)

[∫ cz/(c+s(z)µ)

−∞

K(x)dx

]
dc

+ (β − bn)

∫ ∞

0

η(τ)

[∫ z−µτ−Z0

−∞

W (x)dx

]
dτ,

B(z) = m+ a

∫ ∞

0

ξ(c)

[∫ cz/(c+s(z)µ)

−∞

K(x)dx

]
dc

+ b

∫ ∞

0

η(τ)

[∫ z−µτ−Z0

−∞

W (x)dx

]
dτ,

C(z) = exp

{[∫ ∞

0

ξ(c)
c− µ

cµ
dc

] [
mz + az

∫ z

−∞

K(x)dx − a

∫ 0

z

|x|K(x)dx

]}
,

D(z) = exp

{
m

µ
z +

a

µ
z

∫ ∞

0

ξ(c)

[∫ cz/(c+s(z)µ)

−∞

K(x)dx

]
dc

− a

µ

∫ ∞

0

ξ(c)

[∫ z

−∞

cx

c+ s(x)µ
K

(
cx

c+ s(x)µ

)
dx

]
dc

+
b

µ
z

∫ ∞

0

η(τ)

[∫ z−µτ−Z0

−∞

W (x)dx

]
dτ

− b

µ

∫ ∞

0

η(τ)

[∫ z

−∞

xW (x− µτ − Z0)dx

]
dτ

}
.

Note that the auxiliary functionsA,B, C andD depend ona, b,m, n, α, β, ξ, η,K,

W andµ. These functions will help us study the dependence of the wave speedµ0 on

the parametersa, b,m, n, α, β, θ and the kernel functions(ξ, η) and(K,W ).

Let us investigate the basic properties of the four auxiliary functions. First of all, we
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have

A(0) =
α− an

2
+ (β − bn)

∫ ∞

0

η(τ)

[∫ −µτ−Z0

−∞

W (x)dx

]
dτ,

B(0) = m+
a

2
+ b

∫ ∞

0

η(τ)

[∫ −µτ−Z0

−∞

W (x)dx

]
dτ,

C(0) = 1,

D(0) = exp

{
a

[∫ ∞

0

ξ(c)
c− µ

cµ
dc

] [∫ 0

−∞

|x|K(x)dx

]

+
b

µ

∫ ∞

0

η(τ)

[∫ 0

−∞

|x|W (x− µτ − Z0)dx

]
dτ

}
.

Second, we get

lim
z→−∞

A(z) = 0, lim
z→−∞

B(z) = m, lim
z→−∞

C(z) = 0, lim
z→−∞

D(z) = 0.

Third, we obtain

A′(z) = (α− an)

∫ ∞

0

ξ(c)

[
c

c+ s(z)µ
K

(
cz

c+ s(z)µ

)]
dc

+ (β − bn)

∫ ∞

0

η(τ)W (z − µτ − Z0)dτ,

B′(z) = a

∫ ∞

0

ξ(c)

[
c

c+ s(z)µ
K

(
cz

c+ s(z)µ

)]
dc

+ b

∫ ∞

0

η(τ)W (z − µτ − Z0)dτ,

C ′(z) =

{∫ ∞

0

ξ(c)
c− µ

cµ

[
m+ a

∫ z

−∞

K(x)dx

]
dc

}
C(z), if z < 0,

D′(z) =

{
m

µ
+
a

µ

∫ ∞

0

ξ(c)

[∫ cz/(c+s(z)µ)

−∞

K(x)dx

]
dc

+
b

µ

∫ ∞

0

η(τ)

[∫ z−µτ−Z0

−∞

W (x)dx

]
dτ

}
D(z)

=
1

µ
B(z)D(z).
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Fourth, ifz < 0, then

D(z)

D(0)
= exp

{
m

µ
z +

a

µ
z

∫ ∞

0

ξ(c)

[∫ cz/(c+s(z)µ)

−∞

K(x)dx

]
dc

+ a

∫ ∞

0

ξ(c)
c− µ

cµ

[∫ 0

cz/(c+s(z)µ)

xK(x)dx

]
dc

+
b

µ
z

∫ ∞

0

η(τ)

[∫ z−µτ−Z0

−∞

W (x)dx

]
dτ

+
b

µ

∫ ∞

0

η(τ)

[∫ 0

z

xW (x− µτ − Z0)dx

]
dτ

}
.

If b = 0 andz < 0, then

D(z)

D(0)
= exp

{[∫ ∞

0

ξ(c)
c− µ

cµ
dc

] [
mz̃ + az̃

∫ z̃

−∞

K(x)dx+ a

∫ 0

z̃

xK(x)dx

]}

= C(z̃), z̃ =
c

c− µ
z.

Definition 3.3.2. Define the speed index functionφ by

φ(µ) =

∫ 0

−∞

[
A(x)

B(x)

]′
D(x)

D(0)
dx− A(0)

B(0)
,

where the auxiliary functionsA, B, C andD have been defined in Definition 3.

The wave speed is a solution of the equation

φ(µ) = n− θ. (3.12)

This definition is motivated by the conditionU(0) = θ if f(u) = m(u − n) and

θ = Θ.

Theorem 3.3.3. (I) Suppose that the traveling wave front satisfies the conditionU <

θ on (−∞, 0), U(0) = θ andU > θ on (0,∞). Suppose also thatU < Θ on

(−∞, Z0), U(Z0) = Θ andU > Θ on (Z0,∞), for some constantZ0 ≥ 0. Then

there holds the following representation for the travelingwave front of the integral
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differential equation (3.1)

U(z) = n +
A(z)

B(z)
− 1

D(z)

∫ z

−∞

[
A(x)

B(x)

]′
D(x)dx

+
1

µ0D(z)

∫ z

−∞

D(x)
{
m
[
U(x)− n

]
− f

(
U(x)

)}
dx,

wherez = x + µ0t, µ0 is a positive number, representing the wave speed. The

wave speedµ0 satisfies the following equations

θ = n +
A(0)

B(0)
− 1

D(0)

∫ 0

−∞

[
A(x)

B(x)

]′
D(x)dx

+
1

µ0D(0)

∫ 0

−∞

D(x)
{
m
[
U(x)− n

]
− f

(
U(x)

)}
dx,

Θ = n +
A(Z0)

B(Z0)
− 1

D(Z0)

∫ Z0

−∞

[
A(x)

B(x)

]′
D(x)dx

+
1

µ0D(Z0)

∫ Z0

−∞

D(x)
{
m
[
U(x)− n

]
− f

(
U(x)

)}
dx.

(II) Let f(u) = m(u− n), for two constantsm andn. There exists a unique pair

(µ0, Z0), such thatU(0) = θ andU(Z0) = Θ.

(III) Suppose thatf is a nonlinear smooth function, such thatf(n) = 0 and

m = f ′(n) > 0, for two constantsm andn. There exists a unique pair(µ0, Z0),

such thatU(0) = θ andU(Z0) = Θ.

Proof. (I) The traveling wave equation

µU ′ + f(U)

= (α− aU)

∫ ∞

0

ξ(c)

[∫

R

K(z − y)H
(
U
(
y − µ

c
|z − y|

)
− θ

)
dy

]
dc

+ (β − bU)

∫ ∞

0

η(τ)

[∫

R

W (z − y)H
(
U(y − µτ)−Θ

)
dy

]
dτ
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may be written as

µU ′ +m(U − n)

= (α− aU)

∫ ∞

0

ξ(c)

[∫

R

K(z − y)H
(
U
(
y − µ

c
|z − y|

)
− θ

)
dy

]
dc

+ (β − bU)

∫ ∞

0

η(τ)

[∫

R

W (z − y)H
(
U(y − µτ)−Θ

)
dy

]
dτ

+ m(U − n)− f(U).

Making the following change of variables for these two integrals:

ω = y − µ

c
|z − y|, r = y − µτ,

we find that

z − y =
c(z − ω)

c+ s(z − ω)µ
, z − y = z − µτ − r,

respectively. Suppose that the traveling wave front satisfies the conditionsU < θ on

(−∞, 0), U(0) = θ andU > θ on (0,∞). Similarly, suppose that the traveling wave

front satisfies the conditionsU < Θ on (−∞, Z0), U(Z0) = Θ andU > Θ on (Z0,∞),
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for some constantZ0 ≥ 0. Then we have the traveling wave equation

µU ′ +m(U − n)

= (α− aU)

·
∫ ∞

0

ξ(c)

[∫

R

c

c+ s(z − ω)µ
K

(
c(z − ω)

c + s(z − ω)µ

)
H
(
U(ω)− θ

)
dω

]
dc

+ (β − bU)

∫ ∞

0

η(τ)

[∫

R

W (z − µτ − r)H
(
U(r)−Θ

)
dr

]
dτ

+ m(U − n)− f(U)

= (α− aU)

∫ ∞

0

ξ(c)

[∫ ∞

0

c

c+ s(z − ω)µ
K

(
c(z − ω)

c+ s(z − ω)µ

)
dω

]
dc

+ (β − bU)

∫ ∞

0

η(τ)

[∫ ∞

Z0

W (z − µτ − r)dr

]
dτ +m(U − n)− f(U)

= (α− aU)

∫ ∞

0

ξ(c)

[∫ cz/(c+s(z)µ)

−∞

K(x)dx

]
dc

+ (β − bU)

∫ ∞

0

η(τ)

[∫ z−µτ−Z0

−∞

W (x)dx

]
dτ +m(U − n)− f(U).

Rewriting this equation as a nonhomogeneous, first order, linear differential equation

µ(U − n)′ +

{
m+ a

∫ ∞

0

ξ(c)

[∫ cz/(c+s(z)µ)

−∞

K(x)dx

]
dc

+ b

∫ ∞

0

η(τ)

[∫ z−µτ−Z0

−∞

W (x)dx

]
dτ

}
(U − n)

= (α− an)

∫ ∞

0

ξ(c)

[∫ cz/(c+s(z)µ)

−∞

K(x)dx

]
dc

+ (β − bn)

∫ ∞

0

η(τ)

[∫ z−µτ−Z0

−∞

W (x)dx

]
dτ +m(U − n)− f(U).

That is

µ
[
U(z) − n

]′
+B(z)

[
U(z)− n

]
= A(z) +m

[
U(z)− n

]
− f

(
U(z)

)
.

The integrating factor of this equation is exactly equal toD(z). Multiplying the dif-

ferential equation by the integrating factorD(z) and integrating with respect toz over
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(−∞, z), we get

{
µD(z)

[
U(z) − n

]}′
= A(z)D(z) +D(z)

{
m
[
U(z)− n

]
− f

(
U(z)

)}
,

µD(z)
[
U(z)− n

]
=

∫ z

−∞

A(x)D(x)dx

+

∫ z

−∞

D(x)
{
m
[
U(x)− n

]
− f

(
U(x)

)}
dx.

Therefore, the traveling wave solution may be represented as

U(z)− n =
1

µD(z)

∫ z

−∞

A(x)D(x)dx

+
1

µD(z)

∫ z

−∞

D(x)
{
m
[
U(x)− n

]
− f

(
U(x)

)}
dx

=
A(z)

B(z)
− 1

D(z)

∫ z

−∞

[
A(x)

B(x)

]′
D(x)dx

+
1

µD(z)

∫ z

−∞

D(x)
{
m
[
U(x)− n

]
− f

(
U(x)

)}
dx,

where

1

µD(z)

∫ z

−∞

A(x)D(x)dx

=
1

D(z)

∫ z

−∞

A(x)

B(x)

[
1

µ
B(x)D(x)

]
dx

=
1

D(z)

∫ z

−∞

A(x)

B(x)
D′(x)dx

=
A(z)

B(z)
− 1

D(z)

∫ z

−∞

[
A(x)

B(x)

]′
D(x)dx.

Now lettingz = 0 andZ = Z0, respectively, we have

U(0)− n =
A(0)

B(0)
− 1

D(0)

∫ 0

−∞

[
A(x)

B(x)

]′
D(x)dx

+
1

µD(0)

∫ 0

−∞

D(x)
{
m
[
U(x) − n

]
− f

(
U(x)

)}
dx,

U(Z0)− n =
A(Z0)

B(Z0)
− 1

D(Z0)

∫ Z0

−∞

[
A(x)

B(x)

]′
D(x)dx

+
1

µD(Z0)

∫ Z0

−∞

D(x)
{
m
[
U(x)− n

]
− f

(
U(x)

)}
dx.
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The wave speedµ0 and the constantZ0 are determined by the system of equations

U(0) = θ andU(Z0) = Θ, that is

θ − n =
A(0)

B(0)
− 1

D(0)

∫ 0

−∞

[
A(x)

B(x)

]′
D(x)dx

+
1

µ0D(0)

∫ 0

−∞

D(x)
{
m
[
U(x)− n

]
− f

(
U(x)

)}
dx,

Θ− n =
A(Z0)

B(Z0)
− 1

D(Z0)

∫ Z0

−∞

[
A(x)

B(x)

]′
D(x)dx

+
1

µ0D(Z0)

∫ Z0

−∞

D(x)
{
m
[
U(x) − n

]
− f

(
U(x)

)}
dx.

By using fixed point theorem, we can establish the existence and uniqueness of the wave

speedµ0 and the traveling wave frontU , respectively. The proofs of (II) and (III) are

omitted. The proof of Theorem 3.3.3 is finished.

3.3.2 Estimates on the wave speeds

To derive the upper bound and the lower bound of the wave speed, we need to build

some technical lemmas.

Lemma 3.3.4.Letp > 0 andq > 0 be constants. Suppose thatψ ≥ 0 on (−∞, 0) and

∫ 0

−∞

ψ(x)dx > 0,

∫ 0

−∞

|x|ψ(x)dx > 0,

lim
x→−∞

[
x

∫ x

−∞

ψ(ξ)dξ

]
= 0,

∫ 0

−∞

exp(px)ψ(x)dx = q.

Then, there holds the following estimate

q >

[∫ 0

−∞

ψ(x)dx

]
exp

{
−p

[∫ 0

−∞

|x|ψ(x)dx
]
/

[∫ 0

−∞

ψ(x)dx

]}
.

Proof. See [65] for the proof of Lemma 3.3.4.

Lemma 3.3.5.Suppose thatp > 0, q > 0 andµ > 0 are positive constants. Suppose

that the functionψ satisfies the conditionsψ′ ≥ 0 on (−∞, 0) andψ(0) > 0. Suppose
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also that

lim
x→−∞

[
exp

(
x

µ

)
ψ(x)

]
= 0, p

∫ 0

−∞

exp

(
x

µ

)
ψ(x)dx ≥ q.

Then we have the estimate

µ >
q

pψ(0)
.

Proof. It is simple to see that

q

pµ
≤

∫ 0

−∞

[
exp

(
x

µ

)]′
ψ(x)dx

= exp

(
x

µ

)
ψ(x)

∣∣∣∣
0

−∞

−
∫ 0

−∞

exp

(
x

µ

)
ψ′(x)dx

= ψ(0)−
∫ 0

−∞

exp

(
x

µ

)
ψ′(x)dx < ψ(0).

Therefore,
q

pµ
< ψ(0), and we get the estimate

µ >
q

pψ(0)
.

The proof of Lemma 3.3.5 is finished.

Theorem 3.3.6.Letm1,m2, n1 andn2 be constants, withm1 > 0 andm2 > 0. Suppose

that

m1(u− n1) ≤ f(u) ≤ m2(u− n2),

for all u ∈ R. Suppose also that

α + β − 2m1θ + 2m1n1 > 0, α + β − aθ − bθ − 2m2θ + 2m2n2 > 0,

(α− aθ)K(0) + (β − bθ)W (0)

[∫ ∞

0

η(τ) exp(m2τ)dτ

]
> 0.

Then the wave speedµ0 satisfies the estimates

µ0 ≤
m1

(α+ β) ln
α + β

α + β − 2m1θ + 2m1n1

{∫

R

[
α|x|K(x) + β|x|W (x)

]
dx

}
,
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µ0 >
m2

2

(
α + β − aθ − bθ − 2m2θ + 2m2n2

)

(α− aθ)K(0) + (β − bθ)W (0)
[∫∞

0
η(τ) exp(m2τ)dτ

]

> 0.

Proof. Recall that the traveling wave equation is

µ0U
′ + f(U)

= (α− aU)

∫ ∞

0

ξ(c)

[∫

R

K(z − y)H
(
U
(
y − µ0

c
|z − y|

)
− θ

)
dy

]
dc

+ (β − bU)

∫ ∞

0

η(τ)

[∫

R

W (z − y)H
(
U(y − µ0τ)−Θ

)
dy

]
dτ.

Note that

m1(U − n1) ≤ f(U) ≤ m2(U − n2),

and

α− aθ ≤ α− aU ≤ α, β − bθ ≤ β − bU ≤ β,

on (−∞, 0). Now we get the following differential inequalities

µ0U
′ +m1(U − n1)

≤ α

∫ ∞

0

ξ(c)

[∫

R

K(z − y)H
(
U
(
y − µ0

c
|z − y|

)
− θ

)
dy

]
dc

+ β

∫ ∞

0

η(τ)

[∫

R

W (z − y)H
(
U(y − µ0τ)−Θ

)
dy

]
dτ

= α

∫ ∞

0

ξ(c)

[∫ cz/(c+s(z)µ0)

−∞

K(x)dx

]
dc

+ β

∫ ∞

0

η(τ)

[∫ z−µ0τ−Z0

−∞

W (x)dx

]
dτ,

128



and

µ0U
′ +m2(U − n2)

≥ (α− aθ)

∫ ∞

0

ξ(c)

[∫

R

K(z − y)H
(
U
(
y − µ0

c
|z − y|

)
− θ

)
dy

]
dc

+ (β − bθ)

∫ ∞

0

η(τ)

[∫

R

W (z − y)H
(
U(y − µ0τ)−Θ

)
dy

]
dτ

= (α− aθ)

∫ ∞

0

ξ(c)

[∫ cz/(c+s(z)µ0)

−∞

K(x)dx

]
dc

+ (β − bθ)

∫ ∞

0

η(τ)

[∫ z−µ0τ−Z0

−∞

W (x)dx

]
dτ.

Solving these differential inequalities, we obtain

U(z) ≤ n1 +
α

m1

∫ ∞

0

ξ(c)

[∫ cz/(c+s(z)µ0)

−∞

K(x)dx

]
dc

+
β

m1

∫ ∞

0

η(τ)

[∫ z−µ0τ−Z0

−∞

W (x)dx

]
dτ

− α

m1

∫ ∞

0

ξ(c)

[∫ z

−∞

exp

(
m1

x− z

µ0

)
c

c+ s(x)µ0
K

(
cx

c+ s(x)µ0

)
dx

]
dc

− β

m1

exp

(
m1

Z0

µ0

)

·
∫ ∞

0

η(τ) exp(m1τ)

[∫ z−µ0τ−Z0

−∞

exp

(
m1

x− z

µ0

)
W (x)dx

]
dτ,

and

U(z) ≥ n2 +
α− aθ

m2

∫ ∞

0

ξ(c)

[∫ cz/(c+s(z)µ0)

−∞

K(x)dx

]
dc

+
β − bθ

m2

∫ ∞

0

η(τ)

[∫ z−µ0τ−Z0

−∞

W (x)dx

]
dτ

− α− aθ

m2

·
∫ ∞

0

ξ(c)

[∫ z

−∞

exp

(
m2

x− z

µ0

)
c

c+ s(x)µ0
K

(
cx

c+ s(x)µ0

)
dx

]
dc

− β − bθ

m2

exp

(
m2

Z0

µ0

)

·
∫ ∞

0

η(τ) exp(m2τ)

[∫ z−µ0τ−Z0

−∞

exp

(
m2

x− z

µ0

)
W (x)dx

]
dτ.
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Settingz = 0 andU(0) = θ, we find

θ ≤ n1 +
α + β

2m1
− α

m1

∫ ∞

0

ξ(c)

[∫ 0

−∞

exp

(
m1

c− µ0

cµ0
x

)
K(x)dx

]
dc

− β

m1

∫ ∞

0

η(τ)

[∫ 0

−µ0τ−Z0

W (x)dx

]
dτ

− β

m1

exp

(
m1

Z0

µ0

)

·
∫ ∞

0

η(τ) exp(m1τ)

[∫ −µ0τ−Z0

−∞

exp

(
m1

x

µ0

)
W (x)dx

]
dτ,

and

θ ≥ n2 +
α + β − aθ − bθ

2m2

− α− aθ

m2

∫ ∞

0

ξ(c)

[∫ 0

−∞

exp

(
m2

c− µ0

cµ0
x

)
K(x)dx

]
dc

− β − bθ

m2

∫ ∞

0

η(τ)

[∫ 0

−µ0τ−Z0

W (x)dx

]
dτ

− β − bθ

m2
exp

(
m2

Z0

µ0

)

·
∫ ∞

0

η(τ) exp(m2τ)

[∫ −µ0τ−Z0

−∞

exp

(
m2

x

µ0

)
W (x)dx

]
dτ.

Rearranging terms, we have

α

m1

∫ ∞

0

ξ(c)

[∫ 0

−∞

exp

(
m1

c− µ0

cµ0
x

)
K(x)dx

]
dc

+
β

m1

∫ ∞

0

η(τ)

[∫ 0

−µ0τ−Z0

W (x)dx

]
dτ

+
β

m1
exp

(
m1

Z0

µ0

)∫ ∞

0

η(τ) exp(m1τ)

[∫ −µ0τ−Z0

−∞

exp

(
m1

x

µ0

)
W (x)dx

]
dτ

≤ n1 +
α+ β

2m1
− θ,
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and

α− aθ

m2

∫ ∞

0

ξ(c)

[∫ 0

−∞

exp

(
m2

c− µ0

cµ0
x

)
K(x)dx

]
dc

+
β − bθ

m2

∫ ∞

0

η(τ)

[∫ 0

−µ0τ−Z0

W (x)dx

]
dτ

+
β − bθ

m2

exp

(
m2

Z0

µ0

)

·
∫ ∞

0

η(τ) exp(m2τ)

[∫ −µ0τ−Z0

−∞

exp

(
m2

x

µ0

)
W (x)dx

]
dτ

≥ n2 +
α + β − aθ − bθ

2m2

− θ.

Let

c0 = sup
{
d > 0 : ξ(c) = 0 on (0, d)

}
.

Now we have
∫ 0

−∞

exp

(
m1

x

µ0

)[
α

m1

K(x) +
β

m1

W (x)

]
dx ≤ n1 +

α + β

2m1

− θ,

and

α− aθ

m2

∫ 0

−∞

exp

(
m2

x

µ0

)
exp

(
m2

|x|
c0

)
K(x)dx

+
β − bθ

m2

exp

(
m2

Z0

µ0

)∫ ∞

0

η(τ) exp(m2τ)dτ

[∫ 0

−∞

exp

(
m2

x

µ0

)
W (x)dx

]

≥ n2 +
α+ β − aθ − bθ

2m2
− θ.

By applying Lemma 3.3.4 and Lemma 3.3.5, we obtain the estimates on the wave speed

µ0 ≤
m1

(α+ β) ln
α + β

α + β − 2m1θ + 2m1n1

{∫

R

[
α|x|K(x) + β|x|W (x)

]
dx

}
,

and

µ0 >
m2

2

(
α + β − aθ − bθ − 2m2θ + 2m2n2

)

(α− aθ)K(0) + (β − bθ)W (0) exp
(
m2

Z0

µ0

) [∫∞

0
η(τ) exp(m2τ)dτ

]

> 0.
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If θ = Θ, thenZ0 = 0 and

µ0 >
m2

2

(
α + β − aθ − bθ − 2m2θ + 2m2n2

)

(α− aθ)K(0) + (β − bθ)W (0)
[∫∞

0
η(τ) exp(m2τ)dτ

]

> 0.

The proof of Theorem 3.3.6 is finished.

3.3.3 Several change of variables

Theorem 3.3.7.Make the following changes of variables

a0 =
a

m
, b0 =

b

m
, t0 = mt,

α0 = α− an, β0 = β − bn,

θ0 = mθ −mn, Θ0 = mΘ−mn,

c0 =
c

m
, τ0 = mτ,

ξ0(c0) = mξ(mc0), η0(τ0) =
1

m
η

(
1

m
τ0

)
,

v(x, t0) = m
[
u(x, t)− n

]
.

Then the integral differential equation

∂u

∂t
+m(u− n)

= (α− au)

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
u(y, t− τ)−Θ

)
dy

]
dτ

is equivalent to the following integral differential equation

∂v

∂t0
+ v

= (α0 − a0v)

∫ ∞

0

ξ0(c0)

[∫

R

K(x− y)H

(
v

(
y, t0 −

1

c0
|x− y|

)
− θ0

)
dy

]
dc0

+ (β0 − b0v)

∫ ∞

0

η0(τ0)

[∫

R

W (x− y)H
(
v(y, t0 − τ0)−Θ0

)
dy

]
dτ0.

Proof. The proof of Theorem 3.3.7 is simple and is omitted.
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3.4 Numerical Analysis

In this section, we will focus on the numerical analysis of equation (3.1) with a nonlinear

sodium current functionf(u), such thatf(n) = 0 andm = f ′(n) > 0, for two real

parametersm andn.

Given a nonlinear smooth functionw = f(u), we may find a linear functionfl(u) =

m0(u− n0), wherem0 > 0 andn0 are real constants, such that

max
[0,θ]

∣∣f(u)−m0(u− n0)
∣∣ = min

m,n

{
max
[0,θ]

∣∣f(u)−m(u− n)
∣∣
}
.

In another word,fl(u) = m0(u − n0) is the best function to approximate the nonlinear

functionw = f(u). This kind of optimal approximation has a great influence on the del-

icate estimate of the wave speed. As we see, the wave speed of the traveling wave front

of the integral differential equation (3.1) with a linear function satisfy a nice equation,

see Theorem 3.2.3 and Theorem 3.2.4 We can show that the wave speed of the traveling

wave front of the integral differential equation (3.1) withthe nonlinear equation is very

close to the wave speed of the traveling wave front of the integral differential equation

(3.1) with the particular linear functionfl(u) = m0(u− n0).

Theorem 3.4.1.Letµ0 andµappr represent the real speed and the approximate speed of

(3.1) with the nonlinear functionw = f(u) and the linear functionfl(u), respectively.

Then, there holds the following estimates

∣∣µ0 − µappr

∣∣ ≤ ln

{
1 + max

u∈[0,θ]

∣∣f(u)−m0(u− n0)
∣∣
}
. (3.13)

Proof. The approximate wave speedµappr is determined by the equation

θ − n0 =
A0(0)

B0(0)
− 1

D0(0)

∫ 0

−∞

[
A0(x)

B0(x)

]′
D0(x)dx.
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By an intermediate value theorem, there exists a real numberκ, such that the real speed

µ0 satisfies

θ − n =
A(0)

B(0)
− 1

D(0)

∫ 0

−∞

[
A(x)

B(x)

]′
D(x)dx

+
1

µ0D(0)

∫ 0

−∞

D(x)
{
m
[
U(x)− n

]
− f

(
U(x)

)}
dx

=
A(0)

B(0)
− 1

D(0)

∫ 0

−∞

[
A(x)

B(x)

]′
D(x)dx,

where

|κ| ≤ ln

{
1 + max

[0,θ]

∣∣f(u)−m(u− n)
∣∣
}
.

By uniqueness, we find

c− µ0

cµ0
+ κ =

c− µappr

cµappr
.

The proof of Theorem 3.4.1 is finished.

3.4.1 Numerical simulations

We perform some numerical simulations of (3.1) with a nonlinear functionf(u). See

Figure 3.4.1 to Figure 3.4.1.

Summary from numerical simulations of the wave speed:

* The wave speedµ0 is a decreasing function of the parametera.

* The wave speedµ0 is a decreasing function of the parameterb.

* The wave speedµ0 is an increasing function of the parameterρ if the synaptic cou-

plingK(x) =
1

2

[
δ(x+ ρ) + δ(x− ρ)

]
.

* The wave speedµ0 is a decreasing function of the parameterρ if the synaptic coupling

W (x) =
ρ

2
exp(−ρ|x|).
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Figure 3.1: Leta = 0, b = 0, c0 = ∞, α = 5, β = 0, θ = 2. Let f(u) =
1

D
sinh(Du),

ξ(c) = δ(c − c0) andK(x) =
1

2

[
δ(x + ρ) + δ(x − ρ)

]
. The graph of the wave speed

µ0 = µ0(ρ,D), whereρ > 0 andD > 0 are parameters. For the dotted curve,D = 2.5.
For the solid curve,D = 3.0. For the dash-dotted curve,D = 3.5. For the dashed curve,
D = 4.0.

* The wave speedµ0 is a decreasing function of the parameterD if the sodium current

function is modeled with the nonlinear functionf(u) =
1

D
sinh(Du).

* The wave speedµ0 is an increasing function of the parameterD if the sodium current

function is modeled with the nonlinear functionf(u) =
1

D
tanh(Du).

* The wave speedµ0 is an increasing function of the parameterD if the sodium current

function is modeled with the nonlinear functionf(u) = u(u− 1)(Du− 1).
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Figure 3.2: Leta = 0, b = 0, c0 = ∞, α = 5, β = 0, θ = 2. Let f(u) =
1

D
tanh(Du),

ξ(c) = δ(c − c0) andK(x) =
1

2

[
δ(x + ρ) + δ(x − ρ)

]
. The graph of the wave speed

µ0 = µ0(ρ,D), whereρ > 0 andD > 0 are parameters. For the dotted curve,D = 2.5.
For the solid curve,D = 3.0. For the dash-dotted curve,D = 3.5. For the dashed curve,
D = 4.0.

3.5 Discussions

Various models describing neuronal activities have been proposed and analyzed in recent

years. As we continue to develop the model equations, we havebeen able to incorporate

more biological mechanisms of neuronal networks in an effort to increase the accuracy

of the model equation and discover further impacts of these mechanisms. It is in this

light that our work expands upon recent models by incorporating not only two time delay

factors, but also the refractory terms. To add another layerof accuracy to the model, we

consider not only linear representations of sodium currents but also nonlinear terms

which allow us to capture more realistic behaviors of the sodium current. With these
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Figure 3.3: Leta = 0, b = 0, c0 = ∞, α = 5, β = 0, θ = 2. Letf(u) = u(u−1)(Du−
1), ξ(c) = δ(c− c0) andK(x) =

1

2

[
δ(x+ ρ) + δ(x− ρ)

]
. The graph of the wave speed

µ0 = µ0(ρ,D), whereρ > 0 andD > 0 are parameters. For the dotted curve,D = 2.5.
For the solid curve,D = 3.0. For the dash-dotted curve,D = 3.5. For the dashed curve,
D = 4.0.

changes to the model equation, we are considering a very general model that generalizes

most models in current literature.

We use the general integral differential equation

∂u

∂t
+ f(u)

= (α− au)

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
u(y, t− τ)−Θ

)
dy

]
dτ,

arising from synaptically coupled neuronal networks to investigate the influence of bi-

ological mechanisms on speeds of traveling wave fronts. In particular, we investigated
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Figure 3.4: Leta = 0, b = 0, τ0 = 0, α = 0, β = 5, Θ = 2. Let f(u) =
1

D
sinh(Du),

η(τ) = δ(τ − τ0) andW (x) =
ρ

2
exp(−ρ|x|). The graph of the wave speedµ0 =

µ0(ρ,D), whereρ > 0 andD > 0 are parameters. For the dotted curve,D = 2.5. For
the solid curve,D = 3.0. For the dash-dotted curve,D = 3.5. For the dashed curve,
D = 4.0.

how synaptic couplings, sodium conductance, sodium reversal potential, synaptic con-

ductance and synaptic reversal potential influence the wavespeeds. The mathematical

methods of analysis of this model equation are similar to methods used in our previous

work. Using these techniques, we were able to establish the existence and uniqueness

of traveling wave fronts to the model equations, despite theadded complexity of the

additional time delay and refractory term. The wave speed isa decreasing function with

respect to parametersa andb. The wave speed can be increasing or decreasing based

upon parameters within the kernel functionsK andW . The same is true depending

on the sodium current functionf(u) as illustrated by various examples. These results
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Figure 3.5: Leta = 0, b = 0, τ0 = 0, α = 0, β = 5, Θ = 2. Let f(u) =
1

D
tanh(Du),

η(τ) = δ(τ−τ0) andW (x) =
ρ

2
exp(ρ|x|). The graph of the wave speedµ0 = µ0(ρ,D),

whereρ > 0 andD > 0 are parameters. For the dotted curve,D = 2.5. For the solid
curve,D = 3.0. For the dash-dotted curve,D = 3.5. For the dashed curve,D = 4.0.

generalize and partly improve our previous results. We hopeto find real applications

to biological problems and that this work will continue to shed light on the behavior of

traveling wave fronts and wave pulses in the brain and their behavior consequential to

changes in the neuronal networks. There are still many important open problems to be

solved. For example, can we improve the upper bound and lowerbound of the wave

speed?

The traveling wave front has a unique wave speed and we are able to establish an

upper bound and a lower bound on this wave speed dependent upon parameters of the

neuronal networks. Letµ0 be the wave speed of the traveling wave front of the simpler
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Figure 3.6: Leta = 0, b = 0, τ0 = 0, α = 0, β = 5, Θ = 2. Let f(u) = u(u −
1)(Du−1), η(τ) = δ(τ − τ0) andW (x) =

ρ

2
exp(−ρ|x|). The graph of the wave speed

µ0 = µ0(ρ,D), whereρ > 0 andD > 0 are parameters. For the dotted curve,D = 2.5.
For the solid curve,D = 3.0. For the dash-dotted curve,D = 3.5. For the dashed curve,
D = 4.0.

integral differential equation

∂u

∂t
+m(u− n)

= (α− au)

∫ ∞

0

ξ(c)

[∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc

+ (β − bu)

∫ ∞

0

η(τ)

[∫

R

W (x− y)H
(
u(y, t− τ)−Θ

)
dy

]
dtau.

Then

µ0 <
m

(α + β) ln
α + β

α+ β − 2mθ + 2mn

∫

R

[
α|x|K(x) + β|x|W (x)

]
dx,
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Figure 3.7: Letb = 0, c0 = ∞, α = 5, β = 0, θ = 2 andρ = 1. Let f(u) =
1

D
sinh(Du), ξ(c) = δ(c− c0) andK(x) =

1

2

[
δ(x+ ρ) + δ(x− ρ)

]
. The graph of the

wave speedµ0 = µ0(a,D), wherea > 0 andD > 0 are parameters. For the dotted
curve,a = 0.01. For the solid curve,a = 0.13. For the dash-dotted curve,a = 0.24.
For the dashed curve,a = 0.36.

µ0 >
m
2

(
α + β − aθ − bθ − 2mθ + 2mn

)

(α− aθ)K(0) + (β − bθ)W (0)
[∫∞

0
η(τ) exp(mτ)dτ

]

> 0.

Once we establish boundaries of the wave speed, the need to determine the behavior

of the wave speed based upon changes in the neuronal networksbecomes biologically

relevant. We have been able to obtain the increasing and decreasing behavior of the

wave speed based on changes in specific biological parameters.

The speed index functions are very interesting and important concept in mathemat-

ical neuroscience. It has potential applications and impacts in applied mathematics.

With the introduction of the speed index functions, we can domuch more analysis on
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Figure 3.8: Letb = 0, c0 = ∞, α = 5, β = 0, θ = 2 andρ = 1. Let f(u) =
1

D
tanh(Du), ξ(c) = δ(c − c0) andK(x) =

1

2

[
δ(x + ρ) + δ(x − ρ)

]
. The graph of

the wave speedµ0 = µ0(a,D), wherea > 0 andD > 0 are parameters. For the dotted
curve,a = 0.01. For the solid curve,a = 0.09. For the dash-dotted curve,a = 0.20.
For the dashed curve,a = 0.36.

the speed than previously. One interesting point is that we may define a stability index

function that utilizes the speed index function. By using this relationship, the stability of

the traveling wave can be analyzed easily. This shows us thatadding complexity to the

model to account for more accurate conditions in neuronal networks does not affect the

stability of the wave front. The speed index functions may play very important roles in

rigorous mathematical analysis of traveling waves of nonlinear singularly perturbed sys-

tems of integral differential equations. Moreover, the analysis and results on the speeds

and the speed index functions can be applied to computational neuroscience.
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Figure 3.9: Letb = 0, c0 = ∞, α = 5, β = 0, θ = 2 andρ = 1. Let f(u) =

u(u− 1)(Du− 1), ξ(c) = δ(c− c0) andK(x) =
1

2

[
δ(x+ ρ) + δ(x− ρ)

]
. The graph of

the wave speedµ0 = µ0(a,D), wherea > 0 andD > 0 are parameters. For the dotted
curve,a = 0.01. For the solid curve,a = 0.16. For the dash-dotted curve,a = 0.30.
For the dashed curve,a = 0.36.
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Chapter 4

Traveling Waves with Lateral
Inhibition Kernel Functions

4.1 Introduction

As we described in the introduction, there are three classesof kernel function represent-

ing pure excitation, lateral inhibition, and lateral excitation. Most work regarding the

existence and uniqueness of traveling wave solutions and traveling pulse solutions has

been done by considering class (A) kernel functions, mainlyto ease the mathematical

analysis as those kernel functions are always positive. While they are nice to work with,

neuronal networks with pure excitation are rare. Neuronal networks with lateral inhi-

bition are much more common in the body. So in this work we expand upon previous

work by Zhang [61] [62], Pinto and Ermentrout [46], and Terman [53].

In this chapter we focus on the model equation proposed by Pinto and Ermentrout

in 2001 [46]. We let the kernel function be of class (B) and establish the existence and

uniqueness of the traveling wave solution. The goal is then to show that the unique solu-

tion is exponentially stable. Use use complex analytic functions as in previous chapters

along with the linearized stability criterion to establishthe stability of the wave.
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4.1.1 Model equation and biological background

Consider the following integral-differential equations to represent the membrane po-

tential of a neuron arising from synaptically coupled neuronal networks

ut + u+ w = α

∫

R

K(x− y)H(u(y, t)− θ)dy (4.1)

wt = ε(u− γw), (4.2)

whenu = u(x, t) represents the membrane potential at positionx and timet, w =

w(x, t) represents the leaking current. In this model we choose the gain function to be

the Heaviside step function:H(u− θ) = 0 for all u < θ,H(0) = 1
2
, andH(u− θ) = 1

for all u > θ. We represent the interactions between neurons by convoluting the kernel

function with the gain function. In addition, we use the assumptions on the class (B)

kernel functionK as described in the introduction.

4.1.2 Mathematical Assumptions

We begin our discussion of mathematical assumptions by considering restrictions to

the kernel functions representing the synaptic coupling inthe network. Suppose that

the kernel functionK in class (B) and which satisfy all assumptions described in the
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introduction along with the following

∫ 0

−∞

g(x)K(x− Z)dx < 0 (4.3)

∫ 0

−∞

|x|K(x)dx ≤ 0 (4.4)

2θ(γ + 1) > αγ (4.5)

αγ

γ + 1

∫ 0

−M

K(x) dx > θ (4.6)

4.2 Existence

4.2.1 System (4.1)-(4.2)

We begin by establishing the existence of the traveling wavesolution to equations (4.1)-

(4.2) with class (B) kernel functionK(x).

Theorem 4.2.1.Suppose thatα ≥ 0, ε > 0, θ > 0 are real constants and chooseK(x)

to be lateral inhibition. Then there exists traveling wave solutions(U(z),W (z)) to the
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system (4.1)-(4.2), namely

U(ε, z) =
αγ

γ + 1

∫ z

z−Z

K(ξ)dξ

− α

ω1 − ω2

·
∫ z

−∞

{
1− ω2

ω1
e

ω1
ν
(x−z) − 1− ω1

ω2
e

ω2
ν
(x−z)

}
[K(x)−K(x− Z)]dx

W (ε, z) =
α

γ + 1

∫ z

z−Z

K(ξ)dξ

+
αε

ω1 − ω2

∫ z

−∞

{
1

ω1
e

ω1
ν
(x−z) − 1

ω2
e

ω2
ν
(x−z)

}
[K(x)−K(x− Z)]dx

Proof: We begin to solve the system (4.1)-(4.2) for the speed of the traveling wave. We

begin by letting(u(x, t), w(x, t)) = (U(z),W (z)) where(U(z),W (z)) is the traveling

wave solution to the system (4.1)-(4.2) withz = x + νt. The traveling waveU(z) has

the following properties,U(z) < θ on (−∞, 0) ∪ (Z,∞), U(0) = θ, andU(z) > θ on

(0, Z) Then the system reduces to

νU ′(z) + U(z) +W (z) = α

∫

R

K(z − y)H(U(z)− θ)dy (4.7)

νW ′(z) = ε(U(z)− γW (z)), (4.8)

Note that

α

∫

R

K(z − y)H(U(z))− θ)dy = α

∫ Z

0

K(z − y)dy

= α

∫ z

z−Z

K(x)dx

So the system simplifies to
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νU ′(z) + U(z) +W (z) = α

∫ z

z−Z

K(x)dx (4.9)

νW ′(z)− εU(z) + γεW (z) = 0, (4.10)

To further simplify the system, we can write the system as a matrix equation, namely

ν

(
U
V

)′

+

(
1 1
−ε γε

)(
U
V

)
=

(
α
∫ z

z−Z
K(x)dx

0

)

To begin solving the new matrix equation we solve the homogeneous equation,

ν

(
U
V

)′

+

(
1 1
−ε γε

)(
U
V

)
= 0,

by finding its eigenvalues and eigenvectors to establish a fundamental solution.

∣∣∣∣
1− λ 1
−ε γε− λ

∣∣∣∣ = (1− λ)(γε− λ) + ε

= λ2 − (γε+ 1)λ+ ε(γ + 1)

Then we have the two eigenvalues,ω1 andω2 as follows;

ω1 =
1 + γε+

√
(γε+ 1)2 − 4ε(γ + 1)

2

=
1 + γε+

√
(γε− 1)2 − 4ε

2
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ω2 =
1 + γε−

√
(γε+ 1)2 − 4ε(γ + 1)

2

=
1 + γε−

√
(γε− 1)2 − 4ε

2

Remark 4.2.2.

ω1 + ω2 = γε+ 1

ω1ω2 =
(γε+ 1)2 − [(γε− 1)2 − 4ε]

4

= ε(1 + γ)

The corresponding eigenvectors arev1 =

(
1

ω1 − 1

)
v2 =

(
1

ω2 − 1

)
.

Now we can construct the fundamental solution to the matrix equation, namely

Φ(z) =

(
e−

ω1
ν
z e−

ω2
ν
z

e−
ω1
ν
z(ω1 − 1) e−

ω2
ν
z(ω2 − 1)

)
. (4.11)

Now we solve the inhomogeneous equation, by finding

1

ν(ω1 − ω2)

∫ z

−∞

Φ(z)Φ−1(x)Bdx,

whereB =

(
α
∫ z

z−Z
K(x)dx

0

)

Φ−1(x) =

(
e−

ω2
ν
z(ω2 − 1) −e−ω2

ν
z

e−
ω1
ν
z(1− ω1) e−

ω1
ν
z

)
· e

ω1+ω2
ν x

ω2 − ω1

=
1

ω2 − ω1

(
e

ω1
ν
z(ω2 − 1) −eω1

ν
z

e
ω2
ν
z(1− ω1) e

ω2
ν
z

)

=
1

ω1 − ω2

(
e

ω1
ν
z(1− ω2) e

ω1
ν
z

e
ω2
ν
z(ω1 − 1) −eω2

ν
z

)
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Φ(z)Φ−1(x) =
1

ω1 − ω2

·
(

(1− ω2)e
ω1
ν
(x−z) − (1− ω1)e

ω2
ν
(x−z) e

ω1
ν
(x−z) − e

ω2
ν
(x−z)

−εeω1
ν
(x−z) + εe

ω2
ν
(x−z) (ω1 − 1)e

ω1
ν
(x−z) − (ω2 − 1)e

ω2
ν
(x−z)

)

(
U
V

)
=

1

ω1 − ω2

∫ z

−∞

Φ(z)Φ−1(x)Bdx

=
1

ω1 − ω2

∫ z

−∞

Φ(z)Φ−1(x)

(
α
∫ x

x−Z
K(ξ)dξ

0

)
dx

Hence we have the solutions forU(z) andW (z):

U(ε, z) =
α

ν(ω1 − ω2)

∫ z

−∞

{
(1− ω2)e

ω1
ν
(x−z) − (1− ω1)e

ω2
ν
(x−z)

}

·
∫ x

x−Z

K(ξ)dξdx

W (ε, z) =
α

ν(ω1 − ω2)

∫ z

−∞

{
−εeω1

ν
(x−z) + εe

ω2
ν
(x−z)

}∫ x

x−Z

K(ξ)dξdx
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Using integration by parts we arrive at the solution,

U(ε, z) =
α

ω1 − ω2

·
[∫ x

x−Z

K(ξ)dξ

{
1− ω2

ω1
e

ω1
ν
(x−z) − 1− ω1

ω2
e

ω2
ν
(x−z)

}]∣∣∣∣
z

−∞

− α

ω1 − ω2

·
∫ z

−∞

{
1− ω2

ω1
e

ω1
ν
(x−z) − 1− ω1

ω2
e

ω2
ν
(x−z)

}
[K(x)−K(x− Z)]dx

=
α

ω1 − ω2

∫ z

z−Z

K(ξ)dξ

(
1− ω2

ω1

− 1− ω1

ω2

)

− α

ω1 − ω2

·
∫ z

−∞

{
1− ω2

ω1
e

ω1
ν
(x−z) − 1− ω1

ω2
e

ω2
ν
(x−z)

}
[K(x)−K(x− Z)]dx

=
αγ

γ + 1

∫ z

z−Z

K(ξ)dξ

− α

ω1 − ω2

·
∫ z

−∞

{
1− ω2

ω1

e
ω1
ν
(x−z) − 1− ω1

ω2

e
ω2
ν
(x−z)

}
[K(x)−K(x− Z)]dx
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W (ε, z) =
α

ω1 − ω2

[∫ x

x−Z

K(ξ)dξ

{−ε
ω1
e

ω1
ν
(x−z) +

ε

ω2
e

ω2
ν
(x−z)

}]∣∣∣∣
z

−∞

− α

ω1 − ω2

∫ z

−∞

{−ε
ω1

e
ω1
ν
(x−z) +

ε

ω2

e
ω2
ν
(x−z)

}
[K(x)−K(x− Z)]dx

=
α

ω1 − ω2

∫ z

z−Z

K(ξ)dξ

(−ε
ω1

+
ε

ω2

)

− α

ω1 − ω2

∫ z

−∞

{−ε
ω1

e
ω1
ν
(x−z) +

ε

ω2

e
ω2
ν
(x−z)

}
[K(x)−K(x− Z)]dx

=
α

γ + 1

∫ z

z−Z

K(ξ)dξ

+
αε

ω1 − ω2

∫ z

−∞

{
1

ω1
e

ω1
ν
(x−z) − 1

ω2
e

ω2
ν
(x−z)

}
[K(x)−K(x− Z)]dx

Since we are looking for the speed of the traveling wave solution for the membrane

potential, we focus on the solution forU(ε, z). We use the two initial conditions to

attempt to solve the system,U(0) = θ andU(Z) = θ. By letting x̃ = x − Z and

dx̃ = dx in the second case, we obtain the following two equations, which we will use

to generate speed index functions.

U(0) = θ

=
αγ

γ + 1

∫ 0

−Z

K(ξ)dξ

− α

ω1 − ω2

∫ 0

−∞

{
1− ω2

ω1
e

ω1
ν
x − 1− ω1

ω2
e

ω2
ν
x

}
[K(x)−K(x− Z]dx
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U(Z) = θ

=
αγ

γ + 1

∫ Z

0

K(ξ)dξ

− α

ω1 − ω2

∫ Z

−∞

{
1− ω2

ω1
e

ω1
ν
(x−Z) − 1− ω1

ω2
e

ω2
ν
(x−Z)

}

· [K(x)−K(x− Z)]dx

Remark 4.2.3.K(x) is symmetric, so
∫ Z

0
K(x)dx =

∫ −Z

0
K(x)dx.

4.2.2 Speed Index Functions

To establish the uniqueness of the wave speed, we begin by constructing speed index

functions.

Definition 4.2.4. We define two speed index functions,

ϕ1(ν) =
αγ

γ + 1

∫ 0

−Z

K(ξ)dξ

− α

ω1 − ω2

·
∫ 0

−∞

{
1− ω2

ω1
e

ω1
ν
x − 1− ω1

ω2
e

ω2
ν
x

}
[K(x)−K(x− Z)]dx (4.12)

ϕ2(ν) =
αγ

γ + 1

∫ Z

0

K(ξ)dξ

− α

ω1 − ω2

·
∫ Z

−∞

{
1− ω2

ω1
e

ω1
ν
(x−Z) − 1− ω1

ω2
e

ω2
ν
(x−Z)

}
[K(x)−K(x− Z)]dx,

=
αγ

γ + 1

∫ Z

0

K(ξ)dξ

− α

ω1 − ω2

·
∫ 0

−∞

{
1− ω2

ω1
e

ω1
ν
x − 1− ω1

ω2
e

ω2
ν
x

}
[K(x+ Z)−K(x)]dx. (4.13)

153



We want to show thatϕ1(ν1, Z) = ϕ2(ν2, Z) = θ has a unique solution. To establish

this, we need a unique solution to the equationϕ1(ν) = ϕ2(ν). We begin by looking at

the behavior ofϕ1(ν) andϕ2(ν). More specifically, we look at the derivatives ofϕ1(ν)

andϕ2(ν). It is easy to find

∂ϕ1

∂ν
= − α

ν2(ω1 − ω2)

·
∫ 0

−∞

|x|
{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
[K(x)−K(x− Z)]dx,

∂ϕ2

∂ν
= − α

ν2(ω1 − ω2)

·
∫ 0

−∞

|x|
{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
[K(x+ Z)−K(x)]dx.

For simplicity we make the following identifications,

g(x) = (1− ω2)e
ω1
ν
x − (1− ω1)e

ω2
ν
x,

h(x) =

(
1− ω2

ω1

)
e

ω1
ν
x −

(
1− ω1

ω2

)
e

ω2
ν
x,

K1(x) = K(x)−K(x− Z),

K2(x) = K(x)−K(x+ Z).

We also define the following notation, there exist constantsN,Ni,M,Mi > 0 such
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that

K(M) = K(−M) = 0,

Ki(−Mi) = 0,

g(−N, ν) = 0,

gi(−Ni, νi) = 0.

g′(−P, ν) = 0,

h(−Nh, ν) = 0,

h′(−Ph, ν) = 0,

Remark 4.2.5. We define−Mi as the first zero ofKi to the left of the origin for the

corresponding kernel function.

We consider the behavior of the functionsK, Ki, g, andh. The kernel function

K(x) is lateral inhibition, meaning thatK(x) > 0 on (−M,M) andK(x) < 0 on

(−∞,−M) ∪ (M,∞). We considerg(x) and findN(ν) =
ν

ω1 − ω2

ln

(
1− ω2

1− ω1

)
.

Theng(x) > 0 on (−N,∞) andg(x) < 0 on (−∞,−N). Similarly,νg′(x) = ω1(1 −

ω2)e
ω1
ν
x − ω2(1 − ω1)e

ω2
ν
x, andP =

ν

ω1 − ω2
ln

(
ω1(1− ω2)

ω2(1− ω1)

)
. Sog(x) is increasing

on (−P,∞) and decreasing on(−∞,−P ). NoteN < P . Lastly, we considerh(x). As
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h varies fromg by a few constants, structurally, they are similar. So we haveNh(ν) =

ν

ω1 − ω2
ln

(
ω2(1− ω2)

ω1(1− ω1)

)
. Thenh(x) > 0 on(−Nh,∞) andh(x) < 0 on(−∞,−Nh).

Similarly, νh′(x) = g(x), andPh = N =
ν

ω1 − ω2

ln

(
1− ω2

1− ω1

)
. Soh(x) is increasing

on (−N,∞) and decreasing on(−∞,−N). We also note thatN > Nh.

We first consider

Ψ(x, ν) =
α

ν2(ω1 − ω2)

∫ 0

−∞

|x|
{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
K(x)dx,

which reduces to

Ψ(x, ν) =
α

ν2(ω1 − ω2)

∫ 0

−∞

|x|g(x)K(x)dx. (4.14)

Lemma 4.2.6.Suppose−N < −M , then

Ψ(x, ν) =
α

ν2(ω1 − ω2)

∫ 0

−∞

|x|g(x)K(x)dx > 0. (4.15)

Proof: As noted above,g(x) > 0 andg(x) is increasing on(−N, 0). Sog is positive and

increasing on(−M, 0). Also we have the assumption that
∫ 0

−∞

|x|K(x)dx ≥ 0. We note

that on(−∞,−N)∪(−N,−M)K(x) < 0, so
∫ 0

−N

|x|K(x)dx ≥
∫ 0

−∞

|x|K(x)dx ≥ 0.

∫ 0

−N

|x|g(x)K(x)dx =

∫ −M

−N

|x|g(x)K(x)dx+

∫ 0

−M

|x|g(x)K(x)dx

> g(−M)

∫ −M

−N

|x|K(x)dx+ g(M)

∫ 0

−M

|x|K(x)dx

= g(−M)

∫ 0

−N

|x|K(x)dx

≥ 0
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SinceK(x) < 0 andg(x) < 0 on (−∞,−N), then

Ψ(x, ν) =

∫ 0

−∞

|x|g(x)K(x)dx

=

∫ −N

−∞

|x|g(x)K(x)dx+

∫ 0

−N

|x|g(x)K(x)dx

> 0

Since|x|g(x)K(x) goes to zero dramatically forx < −M ,
∫ −M

−∞

|x|g(x)K(x)dx

is negligible. Hence
∫ 0

−∞

|x|g(x)K(x)dx ≈
∫ 0

−M

|x|g(x)K(x)dx. As the slow pulse

does not have biological relevance, we consider only the fast pulse, so we restrict

our speedν away from zero. We shall only considerν > ν0 whereν0 is such that∫ 0

−M

|x|g(x)K(x)dx = 0, then notationally, we say thatg0(x) = g(x, ν0).

Lemma 4.2.7.Suppose−P < −M < −N < −N0, then

Ψ(x, ν) =
α

ν2(ω1 − ω2)

∫ 0

−∞

|x|g(x)K(x)dx > 0. (4.16)

Proof: NowK(x) < 0 andg(x) < 0 on (−∞,−M) so again we have∫ −M

−∞

|x|g(x)K(x)dx > 0, so it remains to show that
∫ 0

−M

|x|g(x)K(x)dx > 0.

Since
∂g

∂ν
=

|x|
ν2

[
ω1(1− ω2)e

ω1
ν
x − ω2(1− ω1)e

ω2
ν
x
]

which for

x > −N =
ν

ω1 − ω2

ln

(
1− ω1

1− ω2

)
is positive, we have thatg(x) > g0(x) on (−N0, 0)

andK(x) > 0 on (−M, 0) so we have

∫ 0

−M

|x|g(x)K(x)dx >

∫ 0

−M

|x|g0(x)K(x)dx

= 0
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Ψ(x, ν) =
α

ν2(ω1 − ω2)

∫ 0

−∞

|x|g(x)K(x)dx

=
α

ν2(ω1 − ω2)

∫ −M

−∞

|x|g(x)K(x)dx+
α

ν2(ω1 − ω2)

∫ 0

−M

|x|g(x)K(x)dx

> 0

We define three kernel functions in terms of the original kernel functionK(x) and

define their zeros.

Remark 4.2.8. Then we define−Mi as the first zero to the left of zero for the corre-

sponding kernel function. HenceK1(−M1) = 0 andK2(−M2) = 0.

Remark 4.2.9. We note thatZ = C
ε

for some value of C. and0 < ε � 1 soZ is large

compared to other values in the network.

SinceZ is large, we can assume thatZ is significantly larger thanM . HenceK(x) ≈

K(x)−K(x− Z) on (−∞, 0) andK(x) ≈ K(x)−K(x+ Z) on (−Z
2
, 0). Hence we

know that−M ≈ −M1 ≈ −M2. Then letν = νi be such that
∫ 0

−Mi

|x|g(x)Ki(x)dx =

0 for i = 1, 2 and as beforeν = ν0 be such that
∫ 0

−M

|x|g(x)K(x)dx = 0. Then

K1(x) > 0 on (−M1,M1) andK1(x) < 0 on (−∞,−M1)∪ (M1,∞).SinceK1(x) < 0

andg(x) < 0 on (−∞,−M1), then

∫ 0

−M1

|x|
{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
[K(x)−K(x− Z)]dx > 0.

Now we go back and consider
∂ϕ1

∂ν
and

∂ϕ2

∂ν
.

Theorem 4.2.10.Supposeν > max {ν1, ν2}, then
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(I)

∂ϕ1

∂ν
= − α

ν2(ω1 − ω2)

·
∫ 0

−∞

|x|
{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
[K(x)−K(x− Z)]dx

< 0.

(II)

∂ϕ2

∂ν
= − α

ν2(ω1 − ω2)

·
∫ 0

−∞

|x|
{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
[K(x+ Z)−K(x)]dx

> 0.

Proof of I: Forν > max (ν1, ν2) we have

∂ϕ1

∂ν
= − α

ν2(ω1 − ω2)

·
∫ 0

−∞

|x|
{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
[K(x)−K(x− Z)]dx

= − α

ν2(ω1 − ω2)

·
∫ −M1

−∞

|x|
{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
[K(x)−K(x− Z)]dx

= − α

ν2(ω1 − ω2)

·
∫ 0

−M1

|x|
{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
[K(x)−K(x− Z)]dx

< 0.

Proof of II: So we consider the integral
∫ 0

−∞

|x|g(x)K2(x)dx in three parts and show

that it is positive.
∫ 0

−∞

|x|g(x)K2(x)dx =

∫ −Z

−∞

|x|g(x)K2(x)dx+

∫ −Z
2

−Z

|x|g(x)K2(x)dx

+

∫ 0

−Z
2

|x|g(x)K2(x)dx
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We consider the three parts of the integral and name them as follows:

I1 =

∫ 0

−Z
2

|x|g(x)K2(x)dx

I2 =

∫ −Z
2

−Z

|x|g(x)K2(x)dx

I3 =

∫ −Z

−∞

|x|g(x)K2(x)dx

Then it suffices to show thatI1,I3, andI1 + I2 > 0 are each positive:

Lemma 4.2.11.For ν > max {ν1, ν2},

(I) I1 =

∫ 0

−Z
2

|x|g(x)K2(x)dx > 0.

(II) I1 + I2 =

∫ −Z
2

−Z

|x|g(x)K2(x)dx+

∫ 0

−Z
2

|x|g(x)K2(x)dx > 0.

(III) I3 =

∫ −Z

−∞

|x|g(x)K2(x)dx > 0.

Proof of I: Now on (−Z
2
,−M2), we haveK2(x) < 0, g(x) < 0 and |x| > 0. So

|x|g(x)K2(x) > 0 on (−Z
2
,−M2), hence

∫ −M2

−Z
2

|x|g(x)K2(x)dx > 0. Now we are

considering the fast pulse so we take only values ofν away from zero, mainlyν >

max (ν0, ν1, ν2). So
∫ 0

−M2

|x|g(x)K2(x)dx >

∫ 0

−M2

|x|g(x, ν3)K2(x)dx = 0. Hence,

I1 =

∫ 0

−Z
2

|x|g(x)K2(x)dx

=

∫ −M2

−Z
2

|x|g(x)K2(x)dx+

∫ 0

−M2

|x|g(x)K2(x)dx

> 0

Proof of II: If I2 > 0, then the proof is complete. If not, then−I2 > 0 andI1 + I2 =

I1 − (−I2). We look at−I2 and make a change of variables,−y = x+ Z.
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−I2 = −
∫ −Z

2

−Z

|x|g(x) [K(x)−K(x+ Z)] dx

= −
∫ −Z

2

0

| − y − Z|g(−(y + Z)) [K(−(y + Z))−K(−y)] (−dy)

=

∫ −Z
2

0

|y + Z|g(−(y + Z)) [K(y + Z)−K(y)] dy

=

∫ −Z
2

0

|x+ Z|g(−(x+ Z)) [K(x+ Z)−K(x)] dx

=

∫ 0

−Z
2

|x+ Z|g(−(x+ Z)) [K(x)−K(x+ Z)] dx

=

∫ 0

−Z
2

|x+ Z|g(−(x+ Z))K2(x)dx

Then, we note that|x + Z|g(−(x + Z)) < 0 and |x + Z||g(−(x + Z))| � 1 on

(−Z
2
, 0), then|x|g(x)− |x+ Z|g(−(x+ Z)) > |x|g(x).

I1 − (−I2) =

∫ 0

−Z
2

|x+ Z|g(−(x+ Z))K2(x)dx

=

∫ 0

−Z
2

|x|g(x)K2(x)dx−
∫ 0

−Z
2

|x+ Z|g(−(x+ Z))K2(x)dx

=

∫ 0

−Z
2

{|x|g(x)− |x+ Z|g(−(x+ Z))}K2(x)dx

=

∫ −M2

−Z
2

{|x|g(x)− |x+ Z|g(−(x+ Z))}K2(x)dx

+

∫ 0

−M2

{|x|g(x)− |x+ Z|g(−(x+ Z))}K2(x)dx

>

∫ −M2

−Z
2

{|x|g(x)− |x+ Z|g(−(x+ Z))}K2(x)dx

+

∫ 0

−M2

|x|g(x)K2(x)dx

> 0
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Proof of III: Let R > 0 be such that−∞ < −R < −Z andK2(−R) = 0. Now

on (−∞,−R), we haveK2(x) > 0, |x|g(x) < 0 and |x|g(x) is decreasing and on

(−R,−Z), we haveK2(x) < 0, |x|g(x) < 0 and|x|g(x) is decreasing.

I3 =

∫ −Z

−∞

|x|g(x)K2(x)dx

=

∫ −R

−∞

|x|g(x)K2(x)dx+

∫ −Z

−R

|x|g(x)K2(x)dx

> Rg(−R)
∫ −R

−∞

K2(x)dx+Rg(−R)
∫ −Z

−R

K2(x)dx

= Rg(−R)
∫ −Z

−∞

K2(x)dx

= −R|g(−R)|
∫ −Z

−∞

K2(x)dx

= −R|g(−R)|
∫ −Z

−∞

K(x)−K(x+ Z)dx

= −R|g(−R)|
∫ 0

−∞

K(x− Z)−K(x)dx

= R|g(−R)|
∫ 0

−∞

K(x)−K(x− Z)dx

≥ R|g(−R)|
∫ 0

−∞

K(x)dx

=
R|g(−R)|

2

> 0.

This completes the proof of Lemma 4.2.11.
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Hence,

∂ϕ2

∂ν
= − α

ν2(ω1 − ω2)

·
∫ 0

−∞

|x|
{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
[K(x+ Z)−K(x)]dx

=
α

ν2(ω1 − ω2)

∫ 0

−∞

|x|g(x)K2(x)dx

=
α

ν2(ω1 − ω2)
[I1 + I2 + I3]

> 0

which completes the proof of Theorem 4.2.10.

We now consider the derivatives with respect toZ of our speed index functions

ϕ1(ν) =
αγ

γ + 1

∫ 0

−Z

K(ξ)dξ

− α

ω1 − ω2

·
∫ 0

−∞

{
1− ω2

ω1
e

ω1
ν
x − 1− ω1

ω2
e

ω2
ν
x

}
[K(x)−K(x− Z)]dx

ϕ2(ν) =
αγ

γ + 1

∫ Z

0

K(ξ)dξ

− α

ω1 − ω2

·
∫ Z

−∞

{
1− ω2

ω1
e

ω1
ν
(x−Z) − 1− ω1

ω2
e

ω2
ν
(x−Z)

}
[K(x)−K(x− Z)]dx,

=
αγ

γ + 1

∫ Z

0

K(ξ)dξ

− α

ω1 − ω2

·
∫ 0

−∞

{
1− ω2

ω1
e

ω1
ν
x − 1− ω1

ω2
e

ω2
ν
x

}
[K(x+ Z)−K(x)]dx.
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It is easy to find

∂ϕ1

∂Z
=

αγ

γ + 1
K(−Z)− α

ω1 − ω2

∫ 0

−∞

{
1− ω2

ω1
e

ω1
ν
x − 1− ω1

ω2
e

ω2
ν
x

}
K ′(x− Z)dx

=
αγ

γ + 1
K(−Z)− α

ω1 − ω2

∫ 0

−∞

h(x)K ′(x− Z)dx,

∂ϕ2

∂Z
=

αγ

γ + 1
K(Z)− α

ω1 − ω2

∫ 0

−∞

{
1− ω2

ω1

e
ω1
ν
x − 1− ω1

ω2

e
ω2
ν
x

}
K ′(x+ Z)dx

=
αγ

γ + 1
K(Z)− α

ω1 − ω2

∫ 0

−∞

h(x)K ′(x+ Z)dx.

Theorem 4.2.12.Supposeν > max {ν1, ν2}, then

(I)

∂ϕ1

∂Z
=

α

ν(ω1 − ω2)

∫ 0

−∞

g(x)K(x− Z)dx

< 0.

(II)

∂ϕ2

∂Z
=

α

ν(ω1 − ω2)

∫ 0

−∞

g(x)K(x+ Z)dx

< 0.
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Proof of I:

∂ϕ1

∂Z
=

αγ

γ + 1
K(−Z)

− α

ω1 − ω2

∫ 0

−∞

{
1− ω2

ω1
e

ω1
ν
x − 1− ω1

ω2
e

ω2
ν
x

}
K ′(x− Z)dx

=
αγ

γ + 1
K(−Z)− α

ω1 − ω2

∫ 0

−∞

h(x)K ′(x− Z)dx

=
αγ

γ + 1
K(−Z)− α

ω1 − ω2
h(x)K(x− Z)

∣∣∣∣
0

−∞

+
α

ω1 − ω2

∫ 0

−∞

h′(x)K(x− Z)dx

=
αγ

γ + 1
K(−Z)− α

ω1 − ω2
h(0)K(−Z) + α

ω1 − ω2

∫ 0

−∞

h′(x)K(x− Z)dx

=
αγ

γ + 1
K(−Z)− αγ

γ + 1
K(−Z) + α

ω1 − ω2

∫ 0

−∞

h′(x)K(x− Z)dx

=
α

ν(ω1 − ω2)

∫ 0

−∞

g(x)K(x− Z)dx

It remains to show that
α

ν(ω1 − ω2)

∫ 0

−∞

g(x)K(x− Z)dx < 0.

− α

ν(ω1 − ω2)

∫ 0

−∞

g(x)K(x− Z)dx

=
α

ν(ω1 − ω2)

∫ 0

−∞

g(x) [−K(x− Z)] dx

=
α

ν(ω1 − ω2)

∫ −N

−∞

g(x) [−K(x− Z)] dx

+
α

ν(ω1 − ω2)

∫ 0

−N

g(x) [−K(x− Z)] dx

>
α

ν(ω1 − ω2)
[−K(−N − Z)]

∫ −N

−∞

g(x)dx

+
α

ν(ω1 − ω2)
[−K(−N − Z)]

∫ 0

−N

g(x)dx
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=
α

ω1 − ω2
[−K(−N − Z)]

∫ 0

−∞

1

ν
g(x)dx

=
α

ω1 − ω2

[−K(−N − Z)] h(x)|0−∞

=
α

ω1 − ω2
[−K(−N − Z)]h(0)

=
αγ

γ + 1
[−K(−N − Z)]

> 0

Then,
α

ν(ω1 − ω2)

∫ 0

−∞

g(x)K(x− Z)dx < 0 which completes the proof of I.

Proof of II:

∂ϕ2

∂Z
=

αγ

γ + 1
K(Z)

− α

ω1 − ω2

∫ 0

−∞

{
1− ω2

ω1

e
ω1
ν
x − 1− ω1

ω2

e
ω2
ν
x

}
K ′(x+ Z)dx

=
αγ

γ + 1
K(Z)− α

ω1 − ω2

∫ 0

−∞

h(x)K ′(x+ Z)dx

=
αγ

γ + 1
K(Z)− α

ω1 − ω2
h(x)K(x+ Z)

∣∣∣∣
0

−∞

+
α

ω1 − ω2

∫ 0

−∞

h′(x)K(x+ Z)dx

=
αγ

γ + 1
K(Z)− α

ω1 − ω2
h(0)K(Z) +

α

ω1 − ω2

∫ 0

−∞

h′(x)K(x+ Z)dx

=
αγ

γ + 1
K(Z)− αγ

γ + 1
K(Z) +

α

ω1 − ω2

∫ 0

−∞

h′(x)K(x+ Z)dx

=
α

ν(ω1 − ω2)

∫ 0

−∞

g(x)K(x+ Z)dx

Then for allK(x) that satisfy
∫ 0

−∞

g(x)K(x − Z)dx < 0. We have
∂ϕ2

∂Z
< 0. This

completes the proof of Theorem 4.2.12

Thus by implicit function theorem and by the equationsϕ1(ν, Z) = θ and as

ϕ2(ν, Z) = θ, respectively, we find that the functionsν = A(Z) and asν = B(Z)
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are well defined, such thatϕ1(A(Z), Z) = θ andϕ2(B(Z), Z) = θ+. We also note

A(ε) = Aε, A(+∞) = A+, B(ε) = Bε andB(+∞) = B+, whereAε, A+, Bε andB+,

satisfy

θ − αγ

γ + 1

∫ 0

−M

K(ξ)dξ (4.17)

= − α

ω1 − ω2

∫ 0

−∞

{
1− ω2

ω1

e
ω1
AM

x − 1− ω1

ω2

e
ω2
AM

x

}
[K(x)−K (x−M)] dx

θ − αγ

2(γ + 1)
(4.18)

= − α

ω1 − ω2

∫ 0

−∞

{
1− ω2

ω1

e
ω1
A+

x − 1− ω1

ω2

e
ω2
A+

x
}
K(x)dx

θ − αγ

γ + 1

∫ M

0

K(ξ)dξ (4.19)

= − α

ω1 − ω2

∫ 0

−∞

{
1− ω2

ω1
e

ω1
BM

x − 1− ω1

ω2
e

ω2
BM

x

}
[K (x+M)−K(x)] dx.

θ − αγ

2(γ + 1)
(4.20)

=
α

ω1 − ω2

∫ 0

−∞

{
1− ω2

ω1
e

ω1
B+

x − 1− ω1

ω2
e

ω2
B+

x
}
K(x)dx.

The existence and uniqueness of each of the numbersAM ,A+,BM andB+ are guar-

anteed by the assumptions on the parameters. Differentiating the equationsϕ1(ν, Z) = θ

and asϕ2(ν, Z) = θ with respect toZ, we obtain
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∂ϕ1

∂ν
(A(Z), Z)A′(Z) +

∂ϕ1

∂Z
(A(Z), Z) = 0

∂ϕ2

∂ν
(B(Z), Z)A′(Z) +

∂ϕ1

∂Z
(B(Z), Z) = 0.

Thus,

A′(Z) = −∂Zϕ1(A(Z), Z)

∂νϕ1(A(Z), Z)
< 0, B′(Z) = −∂Zϕ2(B(Z), Z)

∂νϕ2(B(Z), Z)
> 0.

It remains to show thatA+ < B+ andAM > BM .

Lemma 4.2.13.For A+ andB+ satisfying equations ( 4.17)-(4.20), and if2θ(γ + 1) >

αγ, thenA+ < B+.

Proof: From the equations 4.18 and 4.20 and the symmetric nature ofK(x), we can say

that if 2θ(γ + 1) > αγ, then

0 < θ − αγ

γ + 1

∫ 1√
ε

0

K(ξ)dξ

= −
∫ 0

−∞

{
1− ω2

ω1
e

ω1
A+

x − 1− ω1

ω2
e

ω2
A+

x
}
K(x)dx

=

∫ 0

−∞

{
1− ω2

ω1
e

ω1
B+

x − 1− ω1

ω2
e

ω2
B+

x
}
K(x)dx.

So we know that,

∫ 0

−∞

{
1− ω2

ω1
e

ω1
B+

x − 1− ω1

ω2
e

ω2
B+

x
}
K(x)dx > 0

∫ 0

−∞

{
1− ω2

ω1
e

ω1
A+

x − 1− ω1

ω2
e

ω2
A+

x
}
K(x)dx < 0.
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Now we look at
∫ 0

−∞

{
1− ω2

ω1
e

ω1
ν
x − 1− ω1

ω2
e

ω2
ν
x

}
K(x)dx. We know the following,

lim
ν→0+

∫ 0

−∞

{
1− ω2

ω1

e
ω1
ν
x − 1− ω1

ω2

e
ω2
ν
x

}
K(x)dx = 0

lim
ν→∞

∫ 0

−∞

{
1− ω2

ω1
e

ω1
ν
x − 1− ω1

ω2
e

ω2
ν
x

}
K(x)dx > 0.

We also know from previous lemmas, that
∫ 0

−∞

{
1− ω2

ω1
e

ω1
ν
x − 1− ω1

ω2
e

ω2
ν
x

}
K(x)dx

as a function ofν is decreasing on an initial interval(0, ν0) and increasing on the

remaining interval(ν0,∞). Hence there exists a numberν0h ∈ (ν0,∞) such that∫ 0

−∞

{
1− ω2

ω1
e

ω1
ν0h

x − 1− ω1

ω2
e

ω2
ν0h

x
}
K(x)dx = 0. ThusA+ < ν0h < B+.

Lemma 4.2.14.For AM andBM satisfying equations 4.17-4.20, and if

θ < αγ
γ+1

∫ 0

−M
K(x) dx, thenAM > BM .

Proof: Consider the graphs ofK(x) − K(x −M) andK(x +M) − K(x). We note

thatK(x)−K(x−M) is positive on(−M − k, 0) for some smallk > 0 and negative

on (−∞,−M − k) sinceK(x) − K(x − M) is a Mexican Hat kernel function and

K(x) − K(x − M) ≈ K(x). Also we note thatK(x + M) − K(x) is positive on

(−2M − k,−M
2
) for some smallk > 0 and negative on(−∞,−2M − k) ∪ (−M

2
, 0).

θ < αγ
γ+1

∫ 0

−M
K(x) dx implies that the integral are positive. Based on earlier lemmas,

we know thatAM must be large enough so that
∫ 0

−∞
g(x, ν)[K(x)−K(x−M)] dx > 0.

We can also see from the behavior ofg(x) andK(x +M) − K(x) thatBM must be

small enough that
∫ 0

−∞
g(x, ν)[K(x+M)−K(x)] dx > 0. Hence we can conclude that

BM < AM. This completes the proof of Lemma 4.2.14.

Now for all networks that satisfy the assumptions in Section4.1.2, we have estab-

lished that there is a unique solutionν0, Z0 that solves the equationϕ1(ν) = ϕ2(ν).

Hence, the wave speed is unique.
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4.3 Stability

We approach stability conditions and results by first deriving the eigenvalue problem

and creating an Evans function. After establishing the Evans function we look at the

zeros of the function and compare results to the linearized stability criterion to deter-

mine exponential stability. We begin here by linearizing the system and deriving the

eigenvalue problem.

We rewrite the system in moving coordinates, mainlyz ≡ x+ νt and set

(P (z, t), Q(z, t)) ≡ (u(x− νt, t), w(x− νt, t)), then the system becomes

νPz + Pt + P +Q = α

∫

R

K(z − y)H(P (y, t)− θ)dy (4.21)

νQz +Qt = ε(P − γQ). (4.22)

Now consider the difference between the system above and thetraveling wave solu-

tion (U(z),W (z)) and let(p(z, t), q(z, t)) = (P (z, t) − U(z), Q(z, t) −W (z)) which

yields the new system

νpz + pt + p+ q = α

∫

R

K(z − y) [H(P (y, t)− θ)−H(U(y)− θ)] dy

νqz + qt = ε(p− γq).

Using the same strategy as in [65], namely lemma 5, we obtain the linearization

νpz + pt + p+ q = α
K(z)

U ′(0)
p(0, t)− α

K(z − Z)

U ′(Z)
p(Z, t) (4.23)

νqz + qt = ε(p− γq). (4.24)

Let ψ =

(
ξ
η

)
∈ BC1(R,C2) ≡ [BC1(R,C)]2 and define

N = α
K(z)

U ′(0)
ξ(0, t)− α

K(z − Z)

U ′(Z)
ξ(Z, t) = a(z)ξ(λ, ε, 0) + b(z)ξ(λ, ε, Z)).
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Now define a linear operator and derive the eigenvalue problem,

L(ε) =
(

−νξz − ξ − η +N
−νηz + ε(ξ − γη)

)
= −ν ∂ψ

∂z
−
(

1 1
−ε εγ

)
ψ +

(
N 0
0 0

)
.

The associated eigenvalue problem isL(ε)ψ = λψ, more explicitly we have

ν
∂ψ

∂z
+

[
λI +

(
1 1
−ε εγ

)]
ψ =

(
N
0

)
.

We now prove a serious of lemmas that will help to verify the linearized stability

criterion for the solution.

Lemma 4.3.1.One solution of the eigenvalue problemL(ε)ψ = λψ is

Ψ(λ, ε, z) = Φ(λ, ε, z)

(
c(λ, ε)
d(λ, ε)

)

+
1

ν

∫ z

−∞

Φ(λ, ε, z)Φ−1(λ, ε, x)

(
1 0
0 0

)
N dx,

wherec andd are complex functions ofλ andε.

Proof: From previous calculations, we know that the eigenvalues for the matrix(
1 1
−ε εγ

)
areω1(ε) andω2(ε), therefore we have the eigenvalues for this opera-

tor areλ + ω1 andλ + ω2 with corresponding eigenvectorsv1 =

(
1

ω1 − 1

)
and

v2 =

(
1

ω1 − 1

)
. Hence when we consider the homogeneous system of differential

equations

νψ′ +

[
λI +

(
1 1
−ε εγ

)]
ψ = 0,

we obtain a fundamental solution matrix

Φ(λ, ε, z) =




e−
λ+ω1

ν
z e−

λ+ω2
ν

z

(ω1 − 1)e−
λ+ω1

ν
z (ω2 − 1)e−

λ+ω2
ν

z


 .
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In order to solve the inhomogeneous case, we need the inverseof the fundamental

solution matrix which we find to be

Φ−1(λ, ε, z) =
1

ω1 − ω2




(1− ω2)e
λ+ω1

ν
z e

λ+ω1
ν

z

(ω1 − 1)e
λ+ω2

ν
z −eλ+ω2

ν
z


 . (4.25)

We use the method of variation of parameters to solve the system of differential equa-

tions. In the process we compute the product of the fundamental solution matrix and its

inverse as follows

Φ(λ, ε, z)Φ−1(λ, ε, x) =
1

ω1 − ω2

(
ψ1 ψ2

)

where

ψ1 =




(1− ω2)e
λ+ω1

ν
(x−z) − (1− ω1)e

λ+ω2
ν

(x−z)

−εeλ+ω1
ν

(x−z) + εe
λ+ω2

ν
(x−z)


 .

and

ψ2 =




e
λ+ω1

ν
(x−z) − e

λ+ω2
ν

(x−z)

(ω2 − 1)e
λ+ω1

ν
(x−z) − (ω1 − 1)e

λ+ω2
ν

(x−z)


 .

The general solution of the linear system of differential equations is

Ψ(λ, ε, z) = Φ(λ, ε, z)

(
c(λ, ε)
d(λ, ε)

)

+
1

ν

∫ z

−∞

Φ(λ, ε, z)Φ−1(λ, ε, x)

(
1 0
0 0

)
N dx

We now attempt to find

(
c(λ, ε)
d(λ, ε)

)
explicitly. We begin by defining

R(λ, ε, z) =

(

e
−
λ+ ω1

ν
z
e
−
λ+ ω2

ν
z

)
.
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Then we letΨ =

(
ξ(λ, ε, z)
η(λ, ε, z)

)
, z = 0 and multiplying both sides of the solution to

the eigenvalue problem by the vector
(
1 0

)
, we obtain the following equation

(
1 0

)( ξ(λ, ε, 0)
η(λ, ε, 0)

)
=

(
1 0

)
Φ(λ, ε, 0)

(
c(λ, ε)
d(λ, ε)

)

+
(
1 0

) 1

ν

∫ 0

−∞

Φ(λ, ε, 0)Φ−1(λ, ε, x)

(
1 0
0 0

)
N dx

ξ(λ, ε, 0) = R(λ, ε, 0)

(
c(λ, ε)
d(λ, ε)

)

+
1

ν
ξ(λ, ε, 0)

∫ 0

−∞

R(λ, ε, 0)Φ−1(λ, ε, x)

(
a(x)
0

)
dx

+
1

ν
ξ(λ, ε, Z)

∫ 0

−∞

R(λ, ε, 0)Φ−1(λ, ε, x)

(
b(x)
0

)
dx

R(λ, ε, 0)

(
c(λ, ε)
d(λ, ε)

)
=

[
1− 1

ν

∫ 0

−∞

R(λ, ε, 0)Φ−1(λ, ε, x)

(
a(x)
0

)
dx

]

· ξ(λ, ε, 0)

− 1

ν
ξ(λ, ε, Z)

∫ 0

−∞

R(λ, ε, 0)Φ−1(λ, ε, x)

(
b(x)
0

)
dx

= 1−M11ξ(λ, ε, 0)−M12ξ(λ, ε, Z).

Now we complete the same calculation, however, we use the second initial valuez = Z

and multiply both sides of the solution to the eigenvalue problem by the vector
(
1 0

)
,

we obtain the following equation

(
1 0

)( ξ(λ, ε, Z)
η(λ, ε, Z)

)
=

(
1 0

)
Φ(λ, ε, Z)

(
c(λ, ε)
d(λ, ε)

)

+
(
1 0

) 1

ν

∫ Z

−∞

Φ(λ, ε, Z)Φ−1(λ, ε, x)

(
1 0
0 0

)
N dx
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ξ(λ, ε, Z) = R(λ, ε, Z)

(
c(λ, ε)
d(λ, ε)

)

+
1

ν
ξ(λ, ε, 0)

∫ Z

−∞

R(λ, ε, Z)Φ−1(λ, ε, x)

(
a(x)
0

)
dx

+
1

ν
ξ(λ, ε, Z)

∫ Z

−∞

R(λ, ε, Z)Φ−1(λ, ε, x)

(
b(x)
0

)
dx

R(λ, ε, Z)

(
c(λ, ε)
d(λ, ε)

)
=

[
1− 1

ν

∫ Z

−∞

R(λ, ε, Z)Φ−1(λ, ε, x)

(
b(x)
0

)
dx

]

· ξ(λ, ε, Z)

− 1

ν
ξ(λ, ε, 0)

∫ Z

−∞

R(λ, ε, Z)Φ−1(λ, ε, x)

(
a(x)
0

)
dx

= −M21ξ(λ, ε, 0) + (1−M22)ξ(λ, ε, Z).

Putting these two equations together we form a new equation and solve for the constant

solution,

(
c(λ, ε)
d(λ, ε)

)
.

(
R(λ, ε, 0)
R(λ, ε, Z)

)(
c(λ, ε)
d(λ, ε)

)
=

[
I −

(
M11 M12

M21 M22

)](
ξ(λ, ε, 0)
ξ(λ, ε, Z)

)

= (I −M)

(
ξ(λ, ε, 0)
ξ(λ, ε, Z)

)
.

(
c(λ, ε)
d(λ, ε)

)
=

(
R(λ, ε, 0)
R(λ, ε, Z)

)−1

(I −M)

(
ξ(λ, ε, 0)
ξ(λ, ε, Z)

)
.

Hence our solution to the eigenvalue problem is

Ψ(λ, ε, z) = Φ(λ, ε, z)

(
R(λ, ε, 0)
R(λ, ε, Z)

)−1

(I −M)

(
ξ(λ, ε, 0)
ξ(λ, ε, Z)

)

+
1

ν

∫ z

−∞

Φ(λ, ε, z)Φ−1(λ, ε, x)

(
1 0
0 0

)
N dx.

For the solution to the eigenvalue problem to be bounded on(−∞,∞), then

(
c(λ, ε)
d(λ, ε)

)
=

(
0
0

)
.
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However,

(
ξ(λ, ε, 0)
ξ(λ, ε, Z)

)
6= 0 so the solution is bounded iffdet (I −M) = 0. Hence

we define the Evans function as

E(λ, ε) = det I −M

.

We define four functions as follows:

A(x) =
1

ν(ω1 − ω2)

[
(1− ω2)e

λ+ω1
ν

x − (1− ω1)e
λ+ω2

ν
x
]

B(x) =
1

ν(ω1 − ω2)

[
−eλ+ω1

ν
x + e

λ+ω2
ν

x
]

C(x) =
1

ω1 − ω2

[
1− ω2

λ+ ω1
e

λ+ω1
ν

x − 1− ω1

λ+ ω2
e

λ+ω2
ν

x

]

D(x) =
1

ω1 − ω2

[
− 1

λ+ ω1
e

λ+ω1
ν

x +
1

λ+ ω2
e

λ+ω2
ν

x

]

M(x) =




∫ 0

−∞

A(x)a(x)dx

∫ 0

−∞

A(x)b(x)dx

∫ Z

−∞

A(x− Z)a(x)dx

∫ Z

−∞

A(x− Z)b(x)dx
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Hence,

E(λ, ε) = det (I −M)

= det



I −




∫ 0

−∞

A(x)a(x)dx

∫ 0

−∞

A(x)b(x)dx

∫ Z

−∞

A(x− Z)a(x)dx

∫ Z

−∞

A(x− Z)b(x)dx







= det



I −




∫ 0

−∞

A(x)a(x)dx

∫ 0

−∞

A(x)b(x)dx

∫ 0

−∞

A(x)a(x+ Z)dx

∫ 0

−∞

A(x)b(x+ Z)dx







= det




1−
∫ 0

−∞

A(x)a(x)dx −
∫ 0

−∞

A(x)b(x)dx

−
∫ 0

−∞

A(x)a(x+ Z)dx 1−
∫ 0

−∞

A(x)b(x + Z)dx




=

∣∣∣∣∣∣∣∣∣∣

1− α

U ′(0)

∫ 0

−∞

A(x)K(x)dx − α

|U ′(Z)|

∫ 0

−∞

A(x)K(x− Z)dx

− α

U ′(0)

∫ 0

−∞

A(x)K(x+ Z)dx 1− α

|U ′(Z)|

∫ 0

−∞

A(x)K(x)dx

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

E1(λ, ε) E2(λ, ε)

E3(λ, ε) E4(λ, ε)

∣∣∣∣∣∣

= E1(λ, ε)E4(λ, ε)− E2(λ, ε)E3(λ, ε)

=

[
1− α

|U ′(0)|

∫ 0

−∞

A(x)K(x)dx

] [
1− α

|U ′(Z)|

∫ 0

−∞

A(x)K(x)dx

]

− α

|U ′(Z)|
α

|U ′(0)|

∫ 0

−∞

A(x)K(x− Z)dx

∫ 0

−∞

A(x)K(x+ Z)dx
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We now investigate the behavior of eachEi(λ, ε). LetC =
α

ν(ω1 − ω2)
> 0, then

E1(λ, ε) = 1− C

|U ′(0)|

∫ 0

−∞

{
(1− ω2)e

ω1+λ

ν
x − (1− ω1)e

ω2+λ

ν
x
}
K(x)dx,

E2(λ, ε) = − C

|U ′(Z)|

∫ 0

−∞

{
(1− ω2)e

ω1+λ

ν
x − (1− ω1)e

ω2+λ

ν
x
}
K(x− Z)dx,

E3(λ, ε) = − C

|U ′(0)|

∫ 0

−∞

{
(1− ω2)e

ω1+λ

ν
x − (1− ω1)e

ω2+λ

ν
x
}
K(x+ Z)dx,

E4(λ, ε) = 1− C

|U ′(Z)|

∫ 0

−∞

{
(1− ω2)e

ω1+λ

ν
x − (1− ω1)e

ω2+λ

ν
x
}
K(x)dx.

Lemma 4.3.2.E(λ, ε) 6= 0, for all 0 < ε� 1 and allλ 6= 0 with Reλ ≥ 0.

Proof: Using the fact that

∣∣∣∣
∫ 0

−∞

e
1+λ
ν

xK(x) dx

∣∣∣∣ <
∫ 0

−∞

e
x
νK(x) dx
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from [64], we have the following results

|E1(λ, ε)| =

∣∣∣∣1−
C

|U ′(0)|

∫ 0

−∞

{
(1− ω2)e

ω1+λ

ν
x − (1− ω1)e

ω2+λ

ν
x
}
K(x)dx

∣∣∣∣

= 1− C

|U ′(0)|

∣∣∣∣
∫ 0

−∞

{
(1− ω2)e

ω1+λ

ν
x − (1− ω1)e

ω2+λ

ν
x
}
K(x)dx

∣∣∣∣

> 1− C

|U ′(0)|

∣∣∣∣
∫ 0

−∞

{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
K(x)dx

∣∣∣∣

=

∣∣∣∣1−
C

|U ′(0)|

∫ 0

−∞

{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
K(x)dx

∣∣∣∣

= |E1(0, ε)|

|E2(λ, ε)| =

∣∣∣∣
C

|U ′(Z)|

∫ 0

−∞

{
(1− ω2)e

ω1+λ

ν
x − (1− ω1)e

ω2+λ

ν
x
}
K(x− Z)dx

∣∣∣∣

<

∣∣∣∣
C

|U ′(Z)|

∫ 0

−∞

{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
K(x− Z)dx

∣∣∣∣

= |E2(0, ε)|

|E3(λ, ε)| =

∣∣∣∣
C

|U ′(0)|

∫ 0

−∞

{
(1− ω2)e

ω1+λ

ν
x − (1− ω1)e

ω2+λ

ν
x
}
K(x+ Z)dx

∣∣∣∣

<

∣∣∣∣
C

|U ′(0)|

∫ 0

−∞

{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
K(x+ Z)dx

∣∣∣∣

= |E3(λ, ε)|

E4(λ, ε) =

∣∣∣∣1−
C

|U ′(Z)|

∫ 0

−∞

{
(1− ω2)e

ω1+λ

ν
x − (1− ω1)e

ω2+λ

ν
x
}
K(x)dx

∣∣∣∣

= 1− C

|U ′(Z)|

∣∣∣∣
∫ 0

−∞

{
(1− ω2)e

ω1+λ

ν
x − (1− ω1)e

ω2+λ

ν
x
}
K(x)dx

∣∣∣∣

> 1− C

|U ′(Z)|

∣∣∣∣
∫ 0

−∞

{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
K(x)dx

∣∣∣∣

=

∣∣∣∣1−
C

|U ′(Z)|

∫ 0

−∞

{
(1− ω2)e

ω1
ν
x − (1− ω1)e

ω2
ν
x
}
K(x)dx

∣∣∣∣

= |E4(0, ε)|
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So then we have

E(λ, ε) =

∣∣∣∣∣∣

E1(λ, ε) E2(λ, ε)

E3(λ, ε) E4(λ, ε)

∣∣∣∣∣∣
= E1(λ, ε)E4(λ, ε)− E2(λ, ε)E3(λ, ε)

|E(λ, ε)| = |E1(λ, ε)| |E4(λ, ε)| − |E2(λ, ε)| |E3(λ, ε)|

> |E1(0, ε)| |E4(0, ε)| − |E2(0, ε)| |E3(0, ε)|

= |E(0, ε)| = 0

for all λ ≥ 0. Hence there are no nonzero solutions ofE(λ, ε) = 0 inside

{λ ∈ C : Reλ ≥ 0}. This complete the proof of Lemma 4.3.2.

Lemma 4.3.3.The asymptotic behavior for the Evans function is as followsE(λ, ε) →

1, as|λ| → ∞, insideΩ(ε).

Proof: We use Lebesgue’s Dominated Convergence Theorem to find that

lim
|λ|→∞

Mij(λ, ε) = 0

so we have that

lim
|λ|→∞

E(λ ε) = lim
|λ|→∞

det(I −M(λ, ε)) = lim
|λ|→∞

det(I) = 1

Lemma 4.3.4. There exists a positive but small constantκ, which may depend onε,

such that there is no eigenvalue ofL(ε) in the region{λ : Reλ > −κ, λ 6= 0}.

Proof: There exists a positive constantM whereM may depend onε such that there

is no eigenvalue of the linear operatorL(ε) outside the circle|λ| = M in the complex
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plane. Then consider the interior of the circle,|λ| ≤ M in the complex plane. Since

the region inside the circle is compact it has at most finitelymany eigenvalues ofL(ε)

contained in it. As we established in Lemma 4.3.2, there are no eigenvalues in the right

half plane Reλ ≥ 0 exceptλ = 0. Since there are finitely many eigenvalues in|λ| ≤M

and they all have Reλ < 0 exceptλ = 0, then choose−κ as the real part of the

eigenvalue with the smallest real component. This completes the proof of Lemma 4.3.4.

Lemma 4.3.5.The eigenvalueλ = 0 is simple.

Proof: If there is no bounded solution on(−∞,+∞) to the following variation equa-

tions, then the traveling wave solution is exponentially stable. Consider

ν
∂ψ

∂z
+

(
1 1
−ε εγ

)
ψ +

(
ϕz

ϕz

)
=

(
N
0

)
, (4.26)

where

N (0, ε, z) = α
K(z)

U ′(0)
ξ(0, ε, 0)−α

K(z − Z)

U ′(Z)
ξ(0, ε, Z) = a(z)ξ(0ε, 0)+ b(z)ξ(0, ε, Z).

Again using the method of variation of parameters, we obtainthe solution

Ψ(0, ε, z) = Φ(0, ε, z)

(
c(0, ε)
d(0, ε)

)

+
1

ν

∫ z

−∞

Φ(0, ε, z)Φ−1(0, ε, x)

(
a(x) 0
b(x) 0

)(
ξ(0, ε, 0)
ξ(0, ε, Z)

)
dx

− 1

ν

∫ z

−∞

Φ(0, ε, z)Φ−1(0, ε, x)

(
Ux(ε, x)
Wx(ε, x)

)
dx,
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Now we takez = 0 andz = Z in the first component of the solution. Forz = 0 we get

ξ(0, ε, 0) = R(0, ε, 0)

(
c(0, ε)
d(0, ε)

)

+
1

ν
ξ(0, ε, 0)

∫ 0

−∞

R(0, ε, 0)Φ−1(0, ε, x)

·
(
a(x) b(x)
0 0

)(
ξ(0, ε, 0)
ξ(0, ε, Z)

)
dx

− 1

ν

∫ 0

−∞

R(0, ε, 0)Φ−1(0, ε, x)

(
Ux(ε, x)
Wx(ε, x)

)
dx

R(0, ε, 0)

(
c(0, ε)
d(0, ε)

)
=

[
1− 1

ν

∫ 0

−∞

R(0, ε, 0)Φ−1(λ, ε, x)

(
a(x)
0

)
dx

]

· ξ(λ, ε, 0)

− 1

ν
ξ(0, ε, Z)

∫ 0

−∞

R(0, ε, 0)Φ−1(0, ε, x)

(
b(x)
0

)
dx

− 1

ν

∫ 0

−∞

R(0, ε, 0)Φ−1(0, ε, x)

(
Ux(ε, x)
Wx(ε, x)

)
dx

= 1−M11ξ(0, ε, 0)−M12ξ(0, ε, Z)− T1(0, ε).
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And for z = Z we get

ξ(0, ε, Z) = R(0, ε, Z)

(
c(0, ε)
d(0, ε)

)

+
1

ν
ξ(λ, ε, 0)

∫ Z

−∞

R(0, ε, Z)Φ−1(0, ε, x)

·
(
a(x) b(x)
0 0

)(
ξ(0, ε, 0)
ξ(0, ε, Z)

)
dx

− 1

ν

∫ Z

−∞

R(0, ε, Z)Φ−1(0, ε, x)

(
Ux(ε, x)
Wx(ε, x)

)
dx

R(0, ε, Z)

(
c(0, ε)
d(0, ε)

)
=

[
1− 1

ν

∫ Z

−∞

R(0, ε, Z)Φ−1(0, ε, x)

(
b(x)
0

)
dx

]

· ξ(0, ε, Z)

− 1

ν
ξ(0, ε, 0)

∫ Z

−∞

R(0, ε, Z)Φ−1(0, ε, x)

(
a(x)
0

)
dx

− 1

ν

∫ Z

−∞

R(0, ε, Z)Φ−1(0, ε, x)

(
Ux(ε, x)
Wx(ε, x)

)
dx

= −M21ξ(0, ε, 0) + (1−M22)ξ(0, ε, Z)− T2(0, ε).

We now put the to equations together in matrix notation as follows
(

R(0, ε, 0)
R(0, ε, Z)

)(
c(0, ε)
d(0, ε)

)
=

[
I −

(
M11 M12

M21 M22

)](
ξ(0, ε, 0)
ξ(0, ε, Z)

)

−
(
T1(0, ε)
T2(0, ε)

)

R(0, ε)

(
c(λ, ε)
d(λ, ε)

)
= (I −M)

(
ξ(0, ε, 0)
ξ(0, ε, Z)

)
− T (0, ε).

Note that

detR(0, ε) = det

∣∣∣∣
1 1

e−
ω1
ν
Z e−

ω2
ν
Z

∣∣∣∣

= e−
ω2
ν
Z − e−

ω1
ν
Z

6= 0.
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Also we examine the components ofT (0, ε),

T1(0, ε) = R(0, ε, 0)

∫ 0

−∞

Φ−1(0, ε, x)

(
Ux(ε, x)
Wx(ε, x)

)
dx

= O(1)

T2(0, ε) = R(0, ε, Z)

∫ Z

−∞

Φ−1(0, ε, x)

(
Ux(ε, x)
Wx(ε, x)

)
dx

= O(1)e
1
ε

SinceT (0, ε) 6=
(

0
0

)
and it is not perpendicular to the null space of the matrix[I −

M(0, ε)]T , anddet [I −M(0, ε)] = 0, hence

(
c(0, ε)
d(0, ε)

)
6=

(
0
0

)
. This implies

that there exists no bounded solution to the variation system 4.26. Hence, we have

established the simplicity of the eigenvalueλ = 0.

Theorem 4.3.6.The traveling pulse solution of the singularly perturbed system 4.1-4.2

of integral differential equations is exponentially stable ast→ +∞.

Proof: The proof follows from the linearized stability criterion and Lemmas 4.3.1 to

4.3.5.

We have now established that there is a traveling wave solution to the system of

integral differential equations with a unique speed for thefast pulse and that the solution

is exponentially stable.
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Appendix

The results in the Appendix have been used many times in Section 2, either explicitly or

implicitly.

Appendix A

Representation of traveling wave front:
linear sodium current

Letm > 0, n ∈ R, c > 0, α > 0 andθ > 0 be real constants, wheren is not necessarily

positive, such thatn < θ < n+
α

2m
. Then the integral differential equation

∂u

∂t
+m(u− n) = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy,

has a unique traveling wave frontU(z) = U(x+ µ0t):

U(z) = n +
α

m

∫ cz/(c+s(z)µ0)

−∞

K(x)dx

− α

m

∫ z

−∞

exp

[
m

µ0
(x− z)

]
c

c+ s(x)µ0
K

(
cx

c + s(x)µ0

)
dx.

Recall thats(x) = −1 for x < 0, s(0) = 0 ands(x) = 1 for x > 0. The front satisfies

U(0) = θ, U < θ on (−∞, 0), U > θ on (0,∞),

and the following boundary conditions

lim
z→−∞

U(z) = n, lim
z→∞

U(z) = n +
α

m
, lim

z→±∞
U ′(z) = 0.
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The wave speedµ0 is a positive number and it is the unique solution of the equation

φ(µ) = α

∫ 0

−∞

exp

(
m
c− µ

cµ
x

)
K(x)dx =

α

2
−mθ +mn.

Proof. There are two fixed pointsU0 = n andU1 = n +
α

m
with U0 < θ < U1.

Appendix B

Representation of traveling wave front: nonlinear sodium currents

Suppose that there is a real numbern, such thatf(n) = 0 andf ′(n) > 0. The traveling

wave front of (2.10) satisfies

U(z) = n +
α

f ′(n)

∫ cz/(c+s(z)µ0)

−∞

K(x)dx

− α

f ′(n)

∫ z

−∞

exp

[
f ′(n)

µ0
(x− z)

]
c

c+ s(x)µ0
K

(
cx

c+ s(x)µ0

)
dx

+
1

µ0

∫ z

−∞

exp

[
f ′(n)

x− z

µ0

] [
f ′(n)(U(x)− n)− f(U(x))

]
dx.

Proof. Using simple techniques from differential equations, we can easily obtain the

representation of the front.

Appendix C

Speed estimate - I

Let µ1 > 0, m1 > 0 andn1 ∈ R be real constants. Suppose thatU is a solution of the

differential inequality

µ1U
′ +m1(U − n1) ≤ α

∫ cz/(c+s(z)µ1)

−∞

K(x)dx, U(0) = θ, lim
z→−∞

U(z) = n1.

Then

α

∫ 0

−∞

exp

(
m1

c− µ1

cµ1
x

)
K(x)dx ≤ α

2
−m1θ +m1n1.
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Proof. Solving the given differential inequality, we find

m1

[
U(z)− n1

]
≤ α

∫ cz/(c+s(z)µ1)

−∞

K(x)dx

− α

∫ z

−∞

exp

[
m1

µ1
(x− z)

]
c

c+ s(x)µ1
K

(
cx

c+ s(x)µ1

)
dx.

Lettingz = 0, we have

m1(θ − n1) ≤
α

2
− α

∫ 0

−∞

exp

(
m1

c− µ1

cµ1
x

)
K(x)dx.

Therefore, the estimate follows.

Appendix D

Speed estimate - II

Let µ2 > 0, m2 > 0 andn2 ∈ R be real constants. Suppose thatU is a solution of the

differential inequality

µ2U
′ +m2(U − n2) ≥ α

∫ cz/(c+s(z)µ2)

−∞

K(x)dx, U(0) = θ, lim
z→−∞

U(z) = n2.

Then

α

2
−m2θ +m2n2 ≤ α

∫ 0

−∞

exp

(
m2

c− µ2

cµ2
x

)
K(x)dx.

Proof. Solving the given differential inequality, we find

m2

[
U(z)− n2

]
≥ α

∫ cz/(c+s(z)µ2)

−∞

K(x)dx

− α

∫ z

−∞

exp

[
m2

µ2
(x− z)

]
c

c+ s(x)µ2
K

(
cx

c+ s(x)µ2

)
dx.

Lettingz = 0, we have

m2(θ − n2) ≥
α

2
− α

∫ 0

−∞

exp

(
m2

c− µ2

cµ2
x

)
K(x)dx.
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Finally, we have the estimate

α

2
−m2θ +m2n2 ≤ α

∫ 0

−∞

exp

(
m2

c− µ2

cµ2
x

)
K(x)dx.

Therefore, the estimate follows.

Appendix E

Are the speeds of the fast traveling pulse solutions of (2.1)-(2.2) and
(2.3)-(2.4) singular perturbations of the speeds of the fronts of (2.5)
and (2.7), respectively?

In synaptically coupled neuronal networks, studying traveling wave fronts is basically

a preparation for studying traveling pulse solutions. In this paper, we investigated how

the speeds of fronts are influenced by sodium currents. It will make sense to investigate

how wave speeds of pulses are influenced by sodium currents. For that purpose, we

demonstrate that the wave speeds of the traveling pulse solutions of (2.1)-(2.2) and (2.3)-

(2.4) are singular perturbations of the corresponding wavespeeds of the traveling wave

fronts of (2.5) and (2.7), respectively, namely,|µpulse(ε)−µfront| ≤ C(ε), whereC(ε) >

0 for ε > 0 andC(ε) → 0, asε→ 0.

Proof. Let us consider the system

∂u

∂t
+ f(u) + w = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy,

∂w

∂t
= ε

(
g(u)− γw

)
,

and the scalar equation

∂u

∂t
+ f(u) = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy.

These are general equations of (2.1)-(2.2) and (2.5) (by taking c = ∞), respectively,

and of (2.3)-(2.4) and (2.7) (by taking0 < c < ∞), respectively. The traveling pulse
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solution
(
u(x, t), w(x, t)

)
=

(
Upulse(ε, z),Wpulse(ε, z)

)
, wherez = x+ µ(ε)t andµ(ε)

represents the wave speed, and the traveling wave frontu(x, t) = Ufront(z), wherez =

x+ µ0t andµ0 represents the wave speed, satisfy

µ(ε)U ′ + f(U) +W = α

∫

R

K(z − y)H

(
U

(
y − µ(ε)

c
|z − y|

)
− θ

)
dy,

µ(ε)W ′ = ε
(
g(U)− γW

)
,

and

µ0U
′ + f(U) = α

∫

R

K(z − y)H
(
U
(
y − µ0

c
|z − y|

)
− θ

)
dy,

respectively. These traveling waves are translation invariant. Without loss of generality,

suppose that

Upulse(ε, 0) = Upulse(ε,Z(ε)) = θ,

Upulse < θ on (−∞, 0) ∪
(
Z(ε),∞

)
, Upulse > θ on

(
0,Z(ε)

)
,

Ufront(0) = θ, Ufront < θ on (−∞, 0), Ufront > θ on (0,∞).

Let

η = y − µ

c
|z − y|.

Then

z − y =
c

c+ s(z − η)µ
(z − η).

By a series of change of variables, we find that the traveling waves satisfy the equations

µ(ε)U ′ + f(U) +W = α

∫ cz/(c+s(z)µ(ε))

c(z−Z(ε))/(c+s(z−Z(ε))µ(ε))

K(x)dx,

µ(ε)W ′ = ε
(
g(U)− γW

)
,
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and

µ0U
′ + f(U) = α

∫ cz/(c+s(z)µ0)

−∞

K(x)dx,

respectively. Lettingz = 0 in these equations, we have

µ(ε)U ′(0) + f(θ) +W (0) = α

∫ 0

−cZ(ε)/(c−µ(ε))

K(x)dx,

µ(ε)W ′(0) = ε
(
g(θ)− γW (0)

)
,

and

µ0U
′(0) + f(θ) =

α

2
.

It is not difficult to show thatZ(ε) = 1
ε
O(1) asε → 0, see [61]. The traveling pulse

solution also satisfies the estimate

|Upulse(ε, z)|+ |Wpulse(ε, z)| ≤ C exp(−ρ|z|), for all z < 0,

for some positive constantsC andρ. Thus

Wpulse(ε, 0) =

∫ 0

−∞

∂

∂z
Wpulse(ε, z)dz

=
ε

µ(ε)

∫ 0

−∞

[
g(Ufast(ε, z))− γWpulse(ε, z)

]
dz = εO(1).

By a geometric singular perturbation theory, we also find
∣∣∣∣
∂

∂z
Upulse(ε, 0)−

∂

∂z
Ufront(0)

∣∣∣∣ ≤ Cε.

Finally, we obtain the desired estimate

|µ(ε)− µ0| ≤ Cε.

Therefore, the speeds of the fast traveling pulse solutionsof systems (2.1)-(2.2) and

(2.3)-(2.4) are perturbations of speeds of traveling wave fronts of the scalar equations

(2.5) and (2.7), respectively.
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Appendix F

The Fitzhugh-Nagumo and Hodgkin-Huxley equations

To provide biophysical explanation of the nonlinear function f(u) in the model equa-

tions, we review the famous Fitzhugh-Nagumo equations and the well-known Hodgkin-

Huxley equations. The Fitzhugh-Nagumo equations ([4], [1], [22], [23] and [37]) are

∂u

∂t
=

∂2u

∂x2
+ u(1− u)(u− a)− w,

∂w

∂t
= ε

(
u− γw

)
,

where0 < a <
1

2
, 0 < γ < 4

(1−a)2
, and0 < ε � 1 are constants. The Hodgkin-Huxley

equations ([34], [21] and [30]) are

CM
∂u

∂t
= DM

∂2u

∂x2
−GNam

3h(u− uNa)−GKn
4(u− uK)−GL(u− uL),

∂m

∂t
= αm(1−m)− βmm,

∂n

∂t
= αn(1− n)− βnn,

∂h

∂t
= αh(1− h)− βhh,

where

αm = am
V + bm

exp
(

V+bm
bm

)
− 1

, βm = cm exp

(
V

dm

)
,

αn = an
V + bn

exp
(

V+bn
bn

)
− 1

, βn = cn exp

(
V

dn

)
,

αh = ah exp

(
V

bh

)
, βh =

1

exp
(

V+ch
dh

)
+ 1

,

where
(
CM , DM

)
,
(
GNa, GK, GL, uNa, uK, uL

)
,
(
am, bm, cm, dm

)
,
(
an, bn, cn, dn

)
,

(
ah, bh, ch, dh

)
are five groups of parameters. In general, the values of theseparameters

are different for different neurons. The empirical model which Hodgkin and Huxley
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developed is not a physiological model based on physical laws or biological theory, but it

is a model based on curve fitting by using exponential functions, see [30]. The Fitzhugh-

Nagumo equations are singularly perturbed, simplified version of the Hodgkin-Huxley

equations, see [37]. These reaction diffusion equations are more or less related to the

integral differential equations mentioned in the Introduction.

As in the Fitzhugh-Nagumo equations and the Hodgkin-Huxleyequations,f(u) usu-

ally describes the sodium currents. Recall that the maximumof sodium conductance is

GNa and the probability that a sodium channel is open ism3h. Therefore the sodium

conductance isGNam
3h. The numberuNa is called the sodium reversal potential and

the driving potential isu − uNa. Using Ohm’s law, the sodium current is modeled by

INa = GNam
3h(u−uNa), see [1] and [21]. The sodium reversal potential is the valueof

the membrane potential when the sodium concentration whichproduces an inward flux

of sodium through the sodium channel, is balanced by the electrical potential gradient

tending to move sodium ions in the channel in the opposite direction. The sodium chan-

nel depends on two variablesm andu. There are two gates to each sodium channel.

The functionf(u) characterizes when the gates are open so that the sodium ionsmay

flow through, see [1]. As is well known, sodium currents may beinfluenced by many

factors, such as the conductance of sodium channels, the distribution of sodium chan-

nels across the membrane, interior concentration and exterior concentration of sodium

ions, activationm and deactivationh of sodium channels. Notice that the activation and

deactivation of sodium channels may be influenced by many things, see the differen-

tial equations satisfied bym andh in the Hodgkin-Huxley equations. The investigation

of influence of sodium currents on wave speeds should be of interest to biologists and

mathematicians.
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