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Abstract

The index of a Lie algebra g is defined by ind g = minf∈g∗ dim(ker(Bf )), where f

is an element of the linear dual g∗ and Bf (x, y) = f([x, y]) is the associated skew-

symmetric Kirillov form. We develop a broad general framework for the explicit

construction of regular (index realizing) functionals for seaweed subalgbras of gl(n)

and the classical Lie algebras in type-A and type-C. (Type-B and type-D are also

considered - though subtle cases remain open).) Until now, this significant problem

has remained open in all cases.
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Chapter 1

Introduction

Notation: All Lie algebras (g, [·, ·]) will be finite dimensional over the complex num-

bers.

The index of a Lie algebra g is an important algebraic invariant which was first

formally introduced by Dixmier ([15], 1974). It is defined by

ind g = min
f∈g∗

dim(ker(Bf )),

where f is an element of the linear dual g∗ and Bf is the associated skew-symmetric

Kirillov form defined by

Bf (x, y) = f([x, y]), for all x, y ∈ g,

and

kerBf = {x ∈ g | f([x, y]) = 0, for all y ∈ g}.

In this thesis, we focus on a class of matrix algebras called seaweed algebras,

or simply “seaweeds”. These algebras were first introduced by Dergachev and A.

Kirillov in ([13], 2000), where they defined such algebras as subalgebras of gl(n)

preserving certain flags of subspaces developed from two compositions of n (see

Definition 2.1.1). The passage to the classical types is accomplished by requiring

2



that elements of the seaweed subalgebra of gl(n) satisfy additional algebraic condi-

tions. For example, the Type-A case (An−1 = sl(n)) is defined by a vanishing trace

condition.

Here, while we have more than a passing interest in the index theory of sea-

weed subalgebras of the classical families of Lie algebras, our main focus is on the

production of index-realizing functionals in these types. On a given g, such index-

realizing functionals are called regular and exist in profusion, being dense in both

the Zariski and Euclidean topolgies of g∗ (see [24]). Even so, methods for explicitly

constructing regular functionals are few.

One such method is due indirectly to Kostant. In 1960, and after the fashion

of the Gram-Schmidt orthogonalization process, Kostant developed an algorithm,

called a cascade1, that produces a set of strongly orthogonal roots from a root system

which defines a Lie algebra. In 2004, Tauvel and Yu [27] noted that, in many cases,

and as a byproduct of this process, a regular functional could be constructed using

representative elements in g of the root spaces for the highest roots generated by

the cascade. For Frobenius (index zero) seaweeds, the cascade will always produce a

regular (Frobenius) functional (see [21], p. 19), but in the non-Frobenius case, the

cascade will often fail (see Examples B.2.6, B.2.9, B.2.10, and B.2.12). Beyond the

Kostant cascade and prior to our work here, we knew of no algorithmic procedure

that will produce a regular functional – and Joseph has noted that the resolution

of this gap is a significant open problem noted by Joseph in even the Type-A case

(see [21], p. 774).

Why the cascade fails to produce a regular functional, or rather for what sea-

weeds it fails, is the starting point for our investigation. We find that the obstruction

to the cascade producing a regular functional is linked to the component structure of

a certain planar graph, called a meander, which is associated with a given seaweed.

1See ([20], 1976) for an early description of the cascade by Anthony Joseph. This paper cites

Bertram Kostant and Jacques Tits as discovering this process independently. Tits is cited as

([28], 1960), although the author could not find the original article, and Kostant is cited as private

communication with no specified year. For a more recent paper on the cascade by Kostant, see

([22], 2012).
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Meanders were introduced in [13] by Dergachev and A. Kirillov, where they showed

that the index of a seaweed subalgebra of gl(n) or sl(n) could be computed by an

elementary combinatorial formula based on the number and type of the connected

components of the meander associated with the seaweed. Even so, significant com-

putational complexity persists. This complexity can be can be mitigated somewhat

by “winding-down” the meander through a sequence of deterministic graph-theoretic

moves (“winding-down moves”) which yields the meander’s essential configuration

which we call the meander’s homotopy type. (Reversing the winding-down moves

yields “winding-up” moves from which any meander (and so any seaweed), of any

size or configuration, can be constructed.)2

The strategy for producing a regular functional on a seaweed g in the various

classical types is to first develop an explicit regular functional Fn on gl(n). At

this juncture, we make critical use of g’s meander by showing how the meander’s

components identify a configuration of admissible positions in g. Each of these

configurations contains certain square matrix blocks Cc×c, called core blocks of the

configuration. The union of all core blocks over all configurations constitutes C - the

core of the seaweed g. To build a regular functional on g, one inserts a copy of Fc

into Cc×c for all C in C, and zeros elsewhere in the admissible locations of g – with

some exceptions based on aspects of the seaweed’s “shape”. The regularity of the

adjusted functional is established by Theorem 3.2.8. This not only resolves the open

problem for seaweed subalgebras of gl(n), but (in conjunction with Theorem 3.3.1)

more broadly delivers an algorithmic procedure for constructing a regular functional

on a seaweed in the classical Type-A and Type-C - as well as a large class of those

in Type-B and Type-D.

The organization of this dissertation is as follows. In Chapter 2, we define the

fundamental objects necessary for our study of seaweed subalgebras g of gl(n). In

2In [9], Coll et al extended this formulaic construction to the Type-C and Type-B cases (cf.,

[26]). More recently, Cameron (in his 2019 Ph.D. thesis at Lehigh University [4]) has extended

these results to the Type-D case, thus completing the combinatorial classification of seaweeds in

the classical types (cf., [19]).

4



particular, we review the construction of meanders and discuss homotopy types and

the associated winding-up and winding-down machinery.

In Chapter 3, we develop a broad analytic framework for producing regular

functionals on a given seaweed g. An important first step is the development of a

relations matrix B associated with the space ker(BF ) for F ∈ g∗. A relations matrix

is a bookkeeping device which encodes, among other things, the degrees of freedom

in the system of the equations which define ker(BF ).

Associated with a relations matrix B is a non-unique set P of matrix positions

(i, j). The entries in the remaining positions of B are explicitly determined as linear

combinations of the entries in the positions in P . Each assignment ~b = (bi,j | (i, j) ∈
P ) of complex numbers to the positions in P yields an element of ker(BF ), so

dim ker(BF ) = |P |, and the resulting kernel elements span ker(BF ).

Now, for each winding up move m of Lemma 2.3.4 (which can be construed as

yielding an algebra m(g)), we define maps fm : g∗ → m(g)∗ which send a functional

F to a functional fm(F ) ∈ m(g)∗. If m is not a Component Creation move, we will

have that dim ker(Bfm(F )) = dim ker(BF ). When m is a Component Creation C(c)

we utilize a new functional Fc ∈ gl(c)∗ and F 7→ FC ⊕ F . In this case, we will have

dim ker(BfC(c)(F )) = dim ker(BF )− c.
The inductive proof method accomplishes more than just showing that ker(BF )

has the “right” dimension as long as F ∈ gl(c)∗ was regular. it provides an explicit

relations matrix of ker(BF ). The chapter closes by providing an explicit regular

functional Fn ∈ gl(n)∗ (see Theorem 3.3.1). In Section 3.4 we develop several other

regular functionals in gl(n)∗.

Chapter 4 begins by reviewing the classification of simple Lie algebras by their

root systems. Of particular interest are the seaweed subalgebras of the classical Lie

algebras An = sl(n + 1), Bn = so(2n + 1), Cn = sp(2n), and Dn = so(2n). We

note that the Kostant cascade can fail to produce a regular functional on a given

seaweed subalgebra of classical type.3 The obstruction to a successful cascade is a

3In [3], Baur and Moreau remark that the cascade successfully produces a regular functional

for any seaweed of classical type. This is NOT true (see Examples B.2.6, 4.3, B.2.9, B.2.10, and

B.2.12).

5



certain homotopy type (see Conjecture 5.2.5). The main result of Chapter 4 (and of

this thesis) is to show how the framework of Chapter 3 can be leveraged to create a

regular functional on seaweed subalgebras of classical type (i.e., a subalgebra of An,

Bn, Cn, or Dn.)

Chapter 5 presents directions for future work and details questions which arise

from our current study.

6



Chapter 2

Preliminaries

2.1 Seaweed Subalgebras of gl(n)

Definition 2.1.1. A Lie Algebra over a field F is an F-vector space g together

with a skew-symmetric bilinear operator

[·, ·] : g× g→ g

satisfying the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, for all x, y, z ∈ g.

Ongoing, we tacitly assume that all Lie algebras g are finite-dimensional over

the complex numbers and by Ado’s theorem (see [1]) may therefore be assumed to

be subalgebras of gl(n).

We assume that g comes equipped with a triangular decomposition

g = u+ ⊕ h⊕ u−,

where h is a Cartan subalgebra of g and u+ and u− consist of the upper and lower

triangular matrices, respectively. Let ei,j be the matrix in g with a 1 in position

(i, j) and 0’s elsewhere, and let ei represent the vector in Cn with a 1 in the ith

position and 0’s elsewhere. Denote by g∗ the linear dual of g and let e∗i,j be the

element in g∗ which chooses the field entry in position (i, j) from a matrix in g.
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The basic objects of our study are the evocatively named “seaweed” Lie algebras

first introduced by Dergacev and A. Kirillov in [13] and defined as follows.

Definition 2.1.2. Let (a1, · · · , am) and (b1, · · · , bt) be two compositions of n, and

let {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vm = Cn, and Cn = W0 ⊃ W1 ⊃ · · · ⊃ Wt = {0}, where

Vi = span{e1, · · · , ea1+···+ai} and Wj = span{eb1+···+bj+1, · · · , en}. The standard1

seaweed2 g of type a1|···|am
b1|···|bt is the subalgebra of gl(n) which preserves the spaces Vi

and Wj (see Example 2.1.3).

Example 2.1.3. We construct the seaweed g of type 4|1
2|1|2 . Let X = [xi,j] ∈ g.

Definition 2.1.2 yields the following vector spaces.

1. V0 = {0},

2. V1 = span{e1, e2, e3, e4},

3. V2 = C5,

4. W0 = C5,

5. W1 = span{e3, e4, e5},

6. W2 = span{e4, e5},

7. W3 = {0}.

Requiring that Xvi ∈ Vi and Xwj ∈ Wj for all i, j forces that any nonzero entries of

X can only occur in starred locations illustrated in Figure 2.1 (left). In general, the

seaweed of type a1|···|am
b1|···|bt can only have nonzero entries illustrated in the grey region

of Figure 2.1 (right).

1Standard is defined with respect to a specific Borel (maximal solvable) subalgebra. We use

the upper triangular matrices.
2Joseph elsewhere calls these algebras biparabolic( cf., Definition 4.1.6).
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* *
* *
* * *
* * * * *

*

4

1

2

1

2

a1

a2

...

am

b1

b2

...

bt−1

bt

Figure 2.1: Seaweeds of type 4|1
2|1|2 (left) and type a1|···|am

b1|···|bt (right)

To each seaweed of type a1|···|am
b1|···|bt we associate a planar graph called a meander,

constructed as follows. First, place n vertices v1 through vn in a horizontal line.

Next, create two partitions of the vertices by forming top and bottom blocks of

vertices of size a1, a2, · · · , am, and b1, b2, · · · , bt, respectively. Place edges in each

top (likewise bottom) block in the same way. Add an edge from the first vertex of

the block to the last vertex of the same block. Repeat this edge addition on the

second vertex and the second to last vertex within the same block and so on within

each block of both partitions. Top edges are drawn concave down and bottom edges

are drawn concave up. We say that the meander is of type a1|···|am
b1|···|bt (see Example

2.1.4).

Example 2.1.4. Here, we construct the meander of type 4|1
2|1|2 (cf., Example 2.1.3).

The actual meander appears in Figure 2.2 (right). The bars and numbers in Figure

2.2 (left) are visual aids for the construction of the edges.

v1 v2 v3 v4 v5

4 1

2 1 2

=
v1 v2 v3 v4 v5

Figure 2.2: Meander of type 4|1
2|1|2
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Remark 2.1.5. A meander can be visualized inside its associated seaweed g if one

views the diagonal entries ei,i of g as the n vertices vi of the meander and reckons

the top edges (vi, vj) with i < j of the meander as the unions of line segments

connecting the matrix locations (i, i) → (j, i) → (j, j) and the bottom edges (vi, vj)

with i < j of the meander as the unions of line segments connecting the matrix

locations (i, i)→ (i, j)→ (j, j). See Figure 2.3.

* *
* *
* * *
* * * * *

*

4

1

2

1

2

Figure 2.3: Meander of type 4|1
2|1|2 visualized in its seaweed

2.2 The Index of a Seaweed Algebra

Recall from the Introduction that the index of a Lie algebra g is defined by

ind g = min
f∈g∗

dim kerBf .

Using the meander associated with a Lie algebra, Dergachev and A. Kirillov provide

a combinatorial formula for the index of g in terms of the number and type of the

meander’s connected components.

Theorem 2.2.1 (Dergachev and A. Kirillov [13]). If g is a seaweed subalgebra of

gl(n) and M is its associated meander, then

ind g = 2C + P,

where C is the number of cycles and P is the number of paths in M .
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We have the following immediate Corollary.

Theorem 2.2.2. The Lie algebra gl(n) has index n.

Proof. The Lie algebra gl(n) is a seaweed of type n
n
. If n is even, then the meander

associated with gl(n) consists of n
2

nested cycles (see Figure 2.4). By Theorem

2.2.1, the index is 2 · n
2

+ 0 = n. If n is odd, then the meander of type n
n

consists of

bn
2
c nested cycles with a vertex (degenerate path) in the interior (see Figure 2.4).

Therefore, by Theorem 2.2.1, the index of gl(n) is 2 · bn
2
c+ 1 = (n− 1) + 1 = n.

... ... ... ...

Figure 2.4: Meander of type n
n for n even (left) and n odd (right)

Note that in Example 2.1.4, the meander of g consists of exactly one path, so

ind g = 1 for g of type 4|1
2|1|2 . The combinatorial formula in Theorem 2.2.1 is elegant,

but computational complexity persists (see Example 2.2.3).

Example 2.2.3. Let g be the seaweed of type 2|6|18|6|11
5|18|6|14

(see Figure 2.5).

Figure 2.5: Meander of type 2|6|18|6|11
5|18|6|14
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This meander consists of one path and one cycle, so by Theorem 2.2.1, g is of

index 3. These components of the meander are colored in Figure 2.6.

Figure 2.6: Cycle (blue) and path (red) of the meander of type 2|6|18|6|11
5|18|6|14

2.3 The Homotopy Type of a Seaweed Algebra

To aid in the application of Theorem 2.2.1, and following Coll et al, [7], we note that

any meander can be contracted or “wound down” to the empty meander through

a sequence of graph-theoretic moves; each of which is uniquely determined by the

structure of the meander at the time of the move application. In [7], the authors

established that there are five such moves, only one of which affects the component

structure of the graph and is therefore the only move capable of modifying the index

of the meander which we define as the index of the associated seaweed. Since the

sequence of moves which contracts a meander to the empty meander uniquely iden-

tifies the graph, we call the sequence the meander’s signature. Although developed

independently in [12], the authors in find that the signature is essentially a graph

theoretic recasting of Panyushev’s reduction algorithm, which in [25] was used to

develop inductive formulas for the index of seaweeds in gl(n). There, these inductive

formulas are expressed in terms of elementary functions, which are laid plain by the

explicit nature of the signature.

Lemma 2.3.1 (Coll, Hyatt, and Magnant [11]). Let g be a seaweed of type a1|···|am
b1|···|bt

with associated meander M . Create a meander M ′ by one of the following moves.
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1. Block Elimination (B): If a1 = 2b1, then M 7→M ′ of type b1|a2|···|am
b2|b3|···|bt .

2. Rotation Contraction (R): If b1 < a1 < 2b1, then M 7→ M ′ of type
b1|a2|···|am

(2b1−a1)|b2|···|bt .

3. Pure Contraction (P): If a1 > 2b1, then M 7→M ′ of type (a1−2b1)|b1|a2|···|am
b2|b3|···|bt .

4. Flip (F): If a1 < b1, then M 7→M ′ of type b1|b2|···|bt
a1|···|am .

5. Component Deletion (C(c)): If a1 = b1 = c, then M 7→ M ′ of type
a2|···|am
b2|···|bt .

These moves are called winding-down moves. For all moves, except the compo-

nent deletion move, g and g′ (the seaweed with meander M ′) have the same index.

Given a meander M , there exists a unique sequence of moves (elements of the

set {B,R, P, F, C(c)}) which reduces M to the empty meander. This sequence is

called the signature of M . If C(c1), · · · , C(ch) are the component deletion moves

which appear (in order) in the signature of M , then M ’s homotopy type , denoted

H(c1, · · · , ch), is the meander of type c1|···|ch
c1|···|ch

. The individual meanders of type ci
ci

for each i are the components of the homotopy type, with the numbers ci referred

to as the sizes of the respective components. We similarly refer to the homotopy

type, signature, and components of a seaweed g to be the corresponding object of

the meander associated with g. Analogously, the index of a meander is taken to be

the index of its associated seaweed.

Example 2.3.2. Let M be the meander of type 17|3
10|4|6 . By repeated applications of

Lemma 2.3.1, M has signature RPC(4)FBC(3). The unwinding of M is demon-

strated in Figure 2.7, and the homotopy type of M is H(4, 3). See Figure 2.8.
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17|3
10|4|6

R7→
10|3
3|4|6

P7→
4|3|3
4|6

C(4)7→
3|3
6

F7→
6

3|3

B7→
3
3

C(3)7→ ∅
0
0

Figure 2.7: Winding down the meander of type 17|3
10|4|6

Figure 2.8: The homotopy type of 17|3
10|4|6 is H(4, 3).

Theorem 2.3.3. If g is a seaweed with homotopy type H(c1, · · · , ch), then

ind (g) =
h∑
i=1

ci.

Proof. Let M be the meander associated with g. The only winding-down move

which alters the index of M is the component deletion move. To apply C(ci), the

meander M must be of type ci|a1|···|am
ci|b1|···|bt . In this case, g = gl(ci) ⊕ g′ where g′ is of

type a1|···|am
b1|···|bt . By Theorem 2.2.2, the index of gl(ci) is ci, so the application of C(ci)

produces a new meander M ′ whose index is exactly ci less than the index of g. Once

the vertex set is of size zero, the meander has been completely “wound down”, and

the index is zero. Therefore, the index of g is
∑h

i=1 ci, as claimed.

In the following Lemma 2.3.4, we introduce the winding-up moves which

reverse the winding-down moves of Lemma 2.3.1. Note that not every winding-up

move can be applied to an arbitrary meander of type a1|···|am
b1|···|bt . For example, a Pure

Expansion move can only be applied if the given meander has at least two top blocks;

14



the only moves that can be applied after a Component Creation move are a Block

Creation move or another Component Creation move; and, per force, we disallow

consecutive Flip moves.

Lemma 2.3.4 (Coll, Hyatt, and Magnant [11]). Every meander is the result of a

sequence of the following moves starting with C(c) for some c ∈ N. Given a meander

M of type a1|···|am
b1|···|bt , create a meander M ′ by one of the following moves.

1. Block Creation: M 7→ 2a1|a2|···|am
a1|b1|···|bt ,

2. Rotation Expansion: M 7→ (2a1−b1)|a2|···|am
a1|b2|···|bt ,

3. Pure Expansion: M 7→ (a1+2a2)|a3|···|am
a2|b1|···|bt ,

4. Flip: M 7→ b1|···|bt
a1|···|am ,

5. Component Creation: M 7→ c|a1|···|am
c|b1|···|bt , for c ∈ N.

These moves are called winding-up moves. For all moves, except the Component

Creation move, M and M ′ have the same index.

Using the the winding-up moves of Lemma 2.3.4, we now define another type of

meander associated with a seaweed.

Definition 2.3.5. Given a seaweed g with signature S, the component meander

CM of g is the meander with the same signature as g except that the component

deletions are all of size 1.

The component meander is created to highlight the path of each meander com-

ponent inside the associated seaweed. The component meander is created using

Lemma 2.3.4 (see Example 2.3.6).

Example 2.3.6. Consider g of type 10|2|4
16

. The signature of g is FRPC(2)C(4),

and g has homotopy type H(2, 4). The component meander of g has signature

FRPC(1)C(1). Using the winding-up moves of Lemma 2.3.4 (see Figure 2.9, where
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the path which results from the component of size four is red and the path which re-

sults from the component of size two is blue), we construct the component meander

of g.

∅
C(1)7→ C(1)7→ P7→

R7→ F7→

Figure 2.9: Winding-up of the component meander for g of type 10|2|4
16

See Figure 2.10 (left) which illustrates g’s meander with the component of size

two in blue and the component of size four in red. Figure 2.10 (right) illustrates the

component meander associated with g with the resulting paths from the components

of size four and two in red and blue, respectively.

Figure 2.10: Meander (left) and component meander (right) of g of type 10|2|4
16

The vertices of CM are vA1 , · · · , vAt , where Ai is the set of indices for the adjacent

vertices that were merged into one vertex in CM from M . The size of the subscript

for vAi is equal to cj for its corresponding component in the homotopy type of g.

The labels for the new vertices can be tracked inductively under the winding up

moves as follows.
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1. For each component deletion C(c) replaced from S, replace it with Cc(1) as a

bookkeeping method.

2. For the initial Component Creation Cc(1), place the vertex v{1,··· ,c}.

3. Assume CM is of type a1|···|am
b1|···|bt with vertices vA1 , · · · , vAn . Let N = max(A1).

(a) Component Creation (Cc(1)): Place the vertex v{N+1,··· ,N+c} on the

left of the meander.

(b) Block Creation (B): Place a1 vertices on the left of the meander labeled

vBa1 , · · · , vB1 with B1 = {N + 1, · · · , N + |A1|} and Bi = {max(Bi−1) +

1, · · · ,max(Bi−1) + |Ai|}.

(c) Rotation Expansion (R): Place a1 − b1 vertices on the left of the

meander labeled vRa1−b1 , · · · , vR1 with R1 = {N + 1, · · · , N + |Aa1+1|}
and Ri = {max(Ri−1) + 1, · · · ,max(Ri−1) + |Aa1+i|}.

(d) Pure Expansion (P): Place a2 vertices on the left of the meander

labeled vPa1 , · · · , vP1 such that P1 = {N + 1, · · · , N + |Aa1+1|} and

Pi = {max(Pi−1) + 1, · · · ,max(Pi−1) + |Aa1+i|}.

(e) Flip move (F): Leave the vertices fixed.

4. Finally, reverse the elements in the labels of the vertices vA1 , · · · , vAh . In other

words, replace each vertex label Ai with

A′i =

{
h∑
s=1

|Ai|+ 1− a

∣∣∣∣∣ a ∈ Ai
}
.

Example 2.3.7. Consider g of Example 2.3.6. The vertex labels for CM are

v{1,2,3,4}, v{5,6}, v{7,8,9,10}, v{11,12}, v{13,14,15,16}.

2.4 Distinguished Subsets of a Seaweed Algebra

In this section, we highlight several important subsets of a seaweed. These subsets

are defined by configurations of positions cut out of the seaweed by the components

of the meander associated with the seaweed.
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Definition 2.4.1. Let g be a seaweed, and let M be the meander associated with g

with homotopy type H(c1, · · · , ch). Let Ici represent the index set of the component

ci in M . In other words, visualize the meander in the matrix form of g (see Example

2.4.2); Ici consists of each index (j, k) “covered” by an edge in the component ci of

M . Denote by g|ci the configuration of positions in the component ci, to be the

set of all matrices generated by ej,k such that (j, k) ∈ Ici.

Example 2.4.2. Let g be the seaweed from the running Example 2.3.6, and let M

be its associated meander. See Figure 2.11 (left). By Lemma 2.3.1, the homotopy

type of g is H(2, 4). As before (see Figure 2.3), we can visualize M inside of g (see

Figure 2.11 (right)).
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Figure 2.11: Meander of type 10|2|4
16 (left), visualized in the seaweed (right)

The restriction of g to its individual components is illustrated in Figure 2.12.
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Figure 2.12: Restriction of g of type 10|2|4
16 to its component of size four (left) and its

component of size two (right)

Remark 2.4.3. A seaweed might have multiple components of the same size. Fur-

ther, the restriction of a seaweed to one of its components often has no algebraic

structure; it may simply be a subspace of g.

The following Theorem 2.4.4 is a trivial consequence of Definition 2.4.1.

Theorem 2.4.4. If g is a seaweed with homotopy type H(c1, · · · , ch), then

g =
h∑
i=1

g|ci .

We now highlight two other important subsets of g, called the core of g and peak

set of g.

Definition 2.4.5. Let g be a seaweed with homotopy type H(c1, · · · , ch) and com-

ponent meander CM . Consider one component ci. Define the sets

Vci = {Aj | vAj is a vertex in CM on the path of ci},

Cci = {AI × AI | AI ∈ Vci}.

The set Cci is the core of g|ci – the set of ci×ci blocks on the diagonal of g contained

in g|ci.
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Fix a vertex vAI on the path of ci in CM . Partition Vci into two sets:

Aci = {Aj | the path from vAI to vAj has odd length},

Bci = {Aj | the path from vAI to vAj has even or zero length}.

Note: The choice of partitioning by distance from VAI is arbitrary.

Now orient CM counter-clockwise (i.e., top edges are oriented from right to left,

bottom edges are oriented left to right). Let ECM be the set of edges in the oriented

CM . Define the peak set of g|ci as

Pci = {AI × AJ | AI , AJ ∈ Vci with (AI , AJ) ∈ ECM}.

We define the core of g and the peak set of g as the union over the components.

In other words,

Cg =
h⋃
i=1

Cci , and Pg =
h⋃
i=1

Pci .

Example 2.4.6. Consider once again g from our running Example 2.3.6. Table

2.1 lists Vci, Cci, Aci, Bci, and Pci for c1 = 2 and c2 = 4. In the second and third

columns of Table 2.1, g|ci is shaded to better highlight which configuration of g|ci is

being identified. Further, Cci and Pci are represented as matrices with an asterisk

to represent every index (i, j) which could appear in
⋃
C∈Cci

C or
⋃
P∈Pci

P . Each

individual ci × ci block is a set of indices in the corresponding core or peak set.
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c1 = 2 c2 = 4

Vci {{5, 6}, {11, 12}} {{1, 2, 3, 4}, {7, 8, 9, 10}, {13, 14, 15, 16}}
Cci

****

****

****

****

****

****

****

****

****

****

****

****

****

****

Aci {{11, 12}} {{7, 8, 9, 10}, {13, 14, 15, 16}}
Bci {{5, 6}} {{1, 2, 3, 4}}
Pci

**** ****

****

****

****

****

****

****

****

Table 2.1: Vci , Cci , Aci , Bci , and Pci in g of type 10|2|4
16
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Chapter 3

Regular Functionals

In this chapter, we construct a regular functional F on a seaweed g with homotopy

type H(c1, · · · , ch). We do this by developing a broad analytic framework (see

Section 3.1) which relies on the choices of regular functionals Fci ∈ gl(ci)
∗. The

construction of the functional F involves embedding copies of Fci into the core of g

in such a way that the constructed functional F satisfies

dim ker(BF ) =
h∑
i=1

dim ker(BFci
).

The regularity of the constructed F is assured by Theorem 3.2.8, the proof for

which is an induction on the winding-up moves of Lemma 2.3.4. The induction

makes heavy use of a relations matrix (see Section 3.1), a bookkeeping device

which encodes, among other things, the degrees of freedom in the system of the

equations which define ker(BF ).

Associated with a relations matrix B is a non-unique set P of matrix positions

(i, j). The entries in the remaining positions of B are explicitly determined as linear

combinations of the entries in the positions in P . Each assignment ~b = (bi,j | (i, j) ∈
P ) of complex numbers to the positions in P yields an element of ker(BF ), so

dim ker(BF ) = |P |, and the resulting kernel elements span ker(BF ).

In Section 3.2 we develop a framework for the construction of a regular functional

on gl(n). The explicit functional is built in Section 3.3. We close the Chapter with

22



Section 3.4, where several more explicit regular functionals on gl(n) are established.

3.1 A Relations Matrix of a Space

Let g be a seaweed of type a1|···|am
b1|···|bt . Every F ∈ g∗ is defined in terms of the functionals

e∗i,j. We may therefore write F in the form F =
∑

(i,j)∈IF
ci,je

∗
i,j, with ci,j ∈ C and

IF ⊆ {1, . . . , n}× {1, . . . , n} the index set of F . For any matrix B, denote by Bt

the transpose of B. Similarly, if F =
∑

(i,j)∈IF
ci,je

∗
i,j, define by F t the transpose

of F (i.e., F t =
∑

(i,j)∈IF
ci,je

∗
j,i and IF t = {(j, i) | (i, j) ∈ IF}). We call F (and

similarly IF ) symmetric with respect to the main diagonal if F = F t (i.e., IF =

IF t). Using the same terminology, we call g symmetric if gt := {X t | X ∈ g} = g.

This happens if and only if a = b, or equivalently if and only if g =
⊕m

i=1 gl(ai).

Denote by Ig the set of all admissible locations in g (i.e., g is the linear span of

{ei,j | (i, j) ∈ Ig}). If F ∈ g∗ then we assume IF ⊆ Ig. We will use the superscript

t̂ to represent transposition across the antidiagonal (i.e., if F is defined on gl(n), then

F t̂ =
∑

(i,j)∈IF
e∗n+1−j,n+1−i, etc.), and we have analogous definitions with respect

to the antidiagonal. We will also use the superscript R to represent rotation of a

matrix twice (i.e., BR = (An)−1B(An), where An =
∑n

i=1 ei,n+1−i), and we have the

analogous definitions.

The relations matrix of a space of matrices is defined in Definition 3.1.1.

Definition 3.1.1. Given a subspace q ⊆ gl(n) with dim q = m, fix a basis {q1, · · · , qm}
of q. Define a linear transformation f : Cm → q by f(ei) = qi for each i. Given

variables b1, · · · , bm, the matrix form

B := f(b1, · · · , bm) =
m∑
i=1

biqi

is a relations matrix of q. By substitution of the variables bi with complex coeffi-

cients, B satisfies the following statement: q = {B | bi ∈ C}.

Remark 3.1.2. A relations matrix is defined (up to a relabeling of the variables

bi) by a choice of basis for a space, and so it is defined up to conjugation by G ∈
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GL(n;C), a change of basis. Our purpose in constructing relations matrices for

spaces is to infer the number of degrees of freedom of a space from it, so actual form

does not matter.

Example 3.1.3. Let q ⊆ gl(2) be the space of matrices

(
x1 x2

x3 x4

)
subject to the

constraints x1 = x2 + x4 and x3 = x2. A basis for the space is{(
1 1

1 0

)
,

(
1 0

0 1

)}
.

The matrix

B = b1q1 + b2q2 = b1

(
1 1

1 0

)
+ b2

(
1 0

0 1

)
=

(
b1 + b2 b1

b1 b2

)

is a relations matrix of q.

To facilitate the construction of a relations matrix of ker(BF ), we make use of

the following technical lemmas. The first, Lemma 3.1.4, is used to shorten the

calculations by any existent symmetry in the seaweed and functional.

Lemma 3.1.4. Let F ∈ g∗ for a seaweed g such that F and g are symmetric with re-

spect to the main diagonal (or the antidiagonal). Let B = [bi,j] be a relations matrix

of ker(BF ). Let B = {bi,j} be the set of free variables in B – i.e., if I is the set of

indices in B, then for each (i, j) ∈ Ig, there exist complex coefficients cα,β such that

bi,j =
∑

(α,β)∈I cα,βbα,β. For all (i, j) ∈ Ig, if bi,j =
∑

(α,β)∈I cα,βbα,β with cα,β ∈ C,

then bj,i =
∑

(α,β)∈I cα,βbβ,α (respectively, bn+1−j,n+1−i =
∑

(α,β)∈I cαβbn+1−β,n+1−α).

Proof. We establish the theorem for symmetry across the main diagonal (the an-

tidiagonal proof is similar.) For each (i, j) ∈ Ig, there exist coefficients cα,β ∈ C
such that

bi,j =
∑

(α,β)∈I

cα,βbα,β

by definition of B. For each B ∈ ker(BF ), consider Bt = [b′i,j] and note that

b′i,j = bj,i. Evidently, Bt ∈ ker(BF t), where F t is defined on gt. However, gt = g and
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F t = F by assumption. Therefore, Bt ∈ ker(BF ), and

bj,i = b′i,j =
∑

(α,β)∈I

cα,βb
′
α,β =

∑
(α,β)∈I

cα,βbβ,α.

We have the following easy corollary to Lemma 3.1.4.

Lemma 3.1.5. If F ∈ g∗ for a seaweed g and F and g are symmetric with respect to

the main diagonal (or the antidiagonal), then for any relations matrix B of ker(BF ),

bi,j = 0 if and only if bj,i = 0 (respectively, bn+1−j,n+1−i = 0).

To prove that a matrix B is in ker(BF ) for F ∈ g∗ amounts to showing that the

entries bi,j in B satisfy a specific system of equations. This system is developed in

Lemma 3.1.6.

Lemma 3.1.6. Let g be a seaweed, and let F =
∑

(i,j)∈IF
ci,je

∗
i,j ∈ g∗ with ci,j ∈ C.

The space ker(BF ) is spanned by all matrices B = [bi,j] whose entries bi,j form a

solution to the two sets of equations

1.
∑

(s,j)∈IF
cs,jbs,i =

∑
(i,s)∈IF

ci,sbj,s, for all (i, j) ∈ Ig;

2. bi,j = 0, for all (i, j) 6∈ Ig.

Proof. Let B = [bi,j] ∈ ker(BF ). Since B ∈ g, we know bi,j = 0 for all (i, j) 6∈ Ig by

definition. This handles the equations in (2).

By definition, ker(BF ) = {B ∈ g | BF (B,X) = 0 for all X ∈ g}. Therefore, to

show B ∈ ker(BF ), it is necessary and sufficient to require BF (B, ei,j) = 0 for all

(i, j) ∈ Ig. Consider the image of ei,j under BF (B, ·). Recall that

BF (B,X) = F ([B,X]) = F (BX −XB),

and

[B, ei,j] =



0 0 0 · · · 0 b1,i 0 · · · 0

0 0 0 · · · 0 b2,i 0 · · · 0

0 0 0 · · · 0 b3,i 0 · · · 0
...

0 0 0 · · · 0 bn−1,i 0 · · · 0

0 0 0 · · · 0 bn,i 0 · · · 0


−



0 0 0 · · · 0 0 0

0 0 0 · · · 0 0 0
...

0 0 0 · · · 0 0 0

bj,1 bj,2 bj,3 · · · bj,n−2 bj,n−1 bj,n

0 0 0 · · · 0 0 0
...

0 0 0 · · · 0 0 0


,
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where the above matrices are n × n matrices with a potentially non-zero column j

and row i respectively. It follows that

F ([B, ei,j]) =
∑

(s,j)∈IF

cs,jbs,i −
∑

(i,s)∈IF

ci,sbj,s. (3.1)

Upon evaluating (3.1) at zero, the result in 1. follows.

3.2 A Framework for Building Regular Function-

als on Seaweed Algebras

To describe how we will construct a functional on a seaweed g, first assume that Fc

represents a functional (not necessarily regular) on gl(c) for any c > 0. The function-

als Fci will be our building blocks for any seaweed of homotopy type H(c1, · · · , ch).
Several explicit examples of regular functionals are provided in Sections 3.3 and 3.4.

The indices in IFc will be fixed as a subset of c× c.
We then describe a set of winding-up moves on the space g∗ so that, when applied

to some F ∈ g∗, the produced functional F ′ is such that dim ker(BF ′) = dim ker(BF ).

The basis step will be the Component Creation moves, which will be a direct sum of

functionals to produce a new functional defined on the direct sum of their domains.

We first introduce several technical lemmas to accomplish this. Then, we define

what are intuitively two choices of winding-up moves on g∗ in Definition 3.2.5. The

proof is inductive in nature on the winding-up of the meander associated with g to

show that the kernels of the Kirillov forms are of the same dimension. The proof

does something stronger in that it develops an explicit relations matrix of ker(BF )

which can be tracked under these moves (see Theorem 3.2.10).

Definition 3.2.1. Given a seaweed g, a functional F ∈ g∗, and a ∈ N, define the

shift of F by a as the new functional

F a :=
∑

(i,j)∈IF

e∗i+a,j+a. (3.2)

Note: The right-hand side of (3.2) is defined only when the indices are admissible

indices in the seaweed.
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Given two algebras g1 ⊆ gl(n1) and g2 ⊆ gl(n2) with Fi ∈ g∗i , we define the

functional F1 ⊕ F2 in (g1 ⊕ g2)∗ by F1 + F n1
2 .

Lemma 3.2.2. Let g be a seaweed and assume that there exist gi ⊆ gl(ni) such that

g =
⊕k

i=1 gi (it must be true that n =
∑k

i=1 ni). Let Fi ∈ g∗i for all i and define

F =
⊕k

i=1 Fi. A matrix B is a relations matrix of ker(BF ) if and only if

B =
k⊕
i=1

Bi,

where Bi is a relations matrix of ker(BFi) for each i. It follows that

dim ker(BF ) =
k∑
i=1

dim ker(BFi).

Proof. Let 0m×n represent the m× n zero matrix.

By induction, it suffices to prove the claim for g = g1 ⊕ g2 with gi ⊆ gl(ni). Let

Fi ∈ g∗i for each i, and define F = F1 ⊕ F2. By construction,

ker(BF ) = ker(BF1)⊕ ker(BF2).

Pick a basis B = {k1, · · · , km} of ker(BF ). Relabeling if necessary, {k1, · · · , km1} is

a basis for ker(BF1)⊕0n2×n2 and {km1+1, · · · , km1+m2} is a basis for 0n1×n1⊕ker(BF2).

Note that m = m1 + m2. Now, if B = [bi,j] is a relations matrix of ker(BF ) with

respect to B, then there exist ni × ni matrices Bi such that B = B1 ⊕ B2. In this

case,

B1 ⊕ 0n2×n2 = f(b1, · · · , bm1 , 0, · · · , 0)

is a relations matrix of ker(BF1)⊕0n2×n2 . By isomorphism, B1 is a relations matrix

of ker(BF1). Similarly,

0n1×n1 ⊕B2 = f(0, · · · , 0, bm1+1, · · · , bm)

is a relations matrix of 0n1×n1 ⊕ ker(BF2), so by the natural isomorphism, B2 is a

relations matrix of ker(BF2).
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For the reverse direction, assume Bi a relations matrix of ker(BFi). By definition,

there exist linear transformations fi : Cmi → ker(BFi) appropriately defined so that

Bi = f(bi1, · · · , bimi). Define f : Cm → ker(BF ) by

f(x1, · · · , xm) = f1(x1, · · · , xm1)⊕ f2(xm1+1, · · · , xm).

The matrix B = f(b1, · · · , bm) = f1(b1, · · · , bm1)⊕ f2(bm1+1, · · · , bm) = B1⊕B2 is a

relations matrix of ker(BF ). The dimension result follows.

Since we are ultimately interested in constructing regular functionals on g the

following Theorem 3.2.3 is essential.

Theorem 3.2.3. If g ⊆ gl(n) is such that g =
⊕k

i=1 gi for gi ⊆ gl(ni), and F ∈ g∗,

then F is regular if and only if F =
⊕k

i=1 Fi with Fi regular on gi for each i.

Proof. Fix Fi ∈ g∗i such that F =
⊕k

i=1 Fi.

Assume that F is regular and, towards a contradiction, that there exists j such

that Fj is not regular on gj. Fix F ′j regular on gj and define

F ′ =

j−1⊕
i=1

Fi ⊕ F ′j
k⊕

i=j+1

Fi.

By definition, dim ker(BF ′j
) < dim ker(BFj), and by Lemma 3.2.2

dim ker(BF ′) =
k∑
i=1
i6=j

dim ker(BFi) + dim ker(BF ′j
)

<

k∑
i=1
i 6=j

dim ker(BFi) + dim ker(BFj)

= dim ker(BF ).

This contradicts the regularity of F .

Now, assume that Fi is regular for all i. Again, if F is not regular fix a regular

F ′ ∈ g∗. Let F ′i ∈ g∗i be such that F ′ =
⊕k

i=1 F
′
i . We have

k∑
i=1

dim ker(BFi) = dim ker(BF ) > dim ker(BF ′) =
k∑
i=1

dim ker(BF ′i
).
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Let j be the first index such that dim ker(BFi) > dim ker(BF ′i
) (such an index must

exist). Then Fi is not regular on gi, a contradiction.

Lemma 3.2.4. Let g be a seaweed. If g = gt, then

dim ker(BF ) = dim ker(BF t).

Similarly, if g = gt̂, then

dim ker(BF ) = dim ker(BF t̂).

It follows that F is regular if and only if F t (respectively F t̂) is regular on g.

Proof. We know that if F ∈ g∗, then F t ∈ (gt)∗ = g∗. It is easy to see that

B ∈ ker(BF ) ⇔ Bt ∈ ker(BF t).

Since transposition is an isomorphism of spaces, the result follows. The argument is

identical for transposition across the antidiagonal, and regularity follows from the

definition of the index.

Now, using the component meander associated with a seaweed g, we describe

a method for building a functional F ∈ g∗ using functionals Fci ∈ gl(ci)
∗ over the

components ci of g’s homotopy type H(c1, · · · , ch).

Definition 3.2.5. Let g be a seaweed with homotopy type H(c1, · · · , ch). Let Aci

and Bci be defined as in Definition 2.4.5. Let FR
c represent the functional obtained

through a rotation of the indices in IFc (i.e., FR
c =

∑
(i,j)∈IFc

e∗c+1−i,c+1−j). Define

sets

Da
ci

=
⋃
P∈P{(I ′ − s, J ′ + s) | s ∈ [0, ci − 1], I ′ = maxAI , J ′ = minAJ , for P = AI × AJ}.

and

Dci =
⋃
P∈P{(I ′ + s, J ′ + s) | s ∈ [0, ci − 1], I ′ = minAI , J ′ = minAJ , for P = AI × AJ}.
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The sets Da
ci

and Dci are just the entries on the antidiagonal and main diagonal

(respectively) of each ci× ci square AI ×AJ in Pci. Given a functional Fci ∈ gl(ci)
∗,

define functionals F
a

ci
and F ci in g∗ as follows:

F
a

ci
:=

∑
A∈Aci

(FR
ci

)min(A)−1 +
∑
A∈Bci

(Fci)
min(A)−1 +

∑
(i,j)∈Da

ci

e∗i,j,

F ci :=
∑

A∈Aci∪Bci

(Fci)
min(A)−1 +

∑
(i,j)∈Dci

e∗i,j.

Define two functionals F
a
, F ∈ g∗ by

F
a

:=
h∑
i=1

F
a

ci
, and F :=

h∑
i=1

F ci .

Remark 3.2.6. Intuitively, the functionals defined in Definition 3.2.5 are a way of

keeping track of a set of indices under the winding-up moves of each configuration of

positions g|ci. The method is as follows. Fix Fci ∈ gl(ci)
∗ and embed this functional

to a core block C ∈ Cci. Let P be the matrix embedded into a peak block adjacent to

C (i.e. P = Ici or P = Aci – the matrix with one’s on the antidiagonal). If IF is the

coefficient matrix of F (i.e., if F =
∑

(i,j)∈IF
ci,je

∗
i,j, then IF =

∑
(i,j)∈IF

ci,jei,j),

embed the functional with coefficient matrix P−1IFP to the block C ′ ∈ Cci such

that P is the peak block on the edge between C and C ′ in the component meander

associated with g.

We denote by F and F
a

the functionals where the same method is used throughout

(i.e., we always embed functionals along the main diagonal of the peak blocks for F

and we always embed functionals along the antidiagonal of the peak blocks for F
a
).

The proof of Theorem 3.2.8 deals explicitly with F and F
a
, but no aspect of the proof

requires the consistent choice of functionals in the peak blocks. Therefore, it follows

that these methods may be mixed.

Example 3.2.7. Let g be the seaweed of our running Example 2.3.6. Recall that

g has type 10|4|2
16

and homotopy type H(2, 4). The function F
a

constructed using
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F2 ∈ gl(2)∗ and F4 ∈ gl(4)∗ of Theorem 3.3.1 is

F
a

=e∗1,1 + e∗1,2 + e∗1,3 + e∗1,4 + e∗1,16 + e∗2,1 + e∗2,2 + e∗2,3 + e∗2,15 + e∗3,1 + e∗3,2 + e∗3,14

+ e∗4,1 + e∗4,13 + e∗5,5 + e∗5,6 + e∗5,12 + e∗6,5 + e∗6,11 + e∗7,4 + e∗7,10 + e∗8,3 + e∗8,9 + e∗8,10+

e∗9,2 + e∗9,8 + e∗9,9 + e∗9,10 + e∗10,1 + e∗10.7 + e∗10,8 + e∗10,9 + e∗10,10 + e∗11,12 + e∗12,11

+ e∗12,12 + e∗13,16 + e∗14,15 + e∗14,16 + e∗15,14 + e∗15,15 + e∗15,15 + e∗16,13 + e∗16,14 + e∗16,15

+ e∗16,16.

The functional F constructed using the same F2 and F4 is

F =e∗1,1 + e∗1,2 + e∗1,3 + e∗1,4 + e∗1,13 + e∗2,1 + e∗2,2 + e∗2,3 + e∗2,14 + e∗3,1 + e∗3,2 + e∗3,15

+ e∗4,1 + e∗4,16 + e∗5,5 + e∗5,6 + e∗5,11 + e∗6,5 + e∗6,12 + e∗7,1 + e∗7,7 + e∗7,8 + e∗7,9 + e∗7,10+

e∗8,2 + e∗8,7 + e∗8,8 + e∗8,9 + e∗9,3 + e∗9,7 + e∗9,8 + e∗10,4 + e∗10,7 + e∗11,11 + e∗11,12

+ e∗12,11 + e∗13,13 + e∗13,14 + e∗13,15 + e∗13,16 + e∗14,13 + e∗14,14 + e∗14,15 + e∗15,13 + e∗15,14

+ e∗16,13.

We illustrate the sets IF
a and IF by placing a black dot in each entry (i, j) ∈ IF

and (i, j) ∈ IF
a in the matrix form of g in Figure 3.1 (left and right, respectively).

The configuration of positions g|4 is left shaded in grey to emphasize the embedding

of the functionals F2 and F4 into the core and how the peak dots affect this choice.

The functionals F 4 and F
a

4 are the sum of e∗i,j where (i, j) is in the shaded region,

while the functionals F 2 and F
a

2 are the sum of e∗i,j over the indices (i, j) outside the

shaded region.

Figure 3.1: Constructed functionals F
a

and F on g of type 10|4|2
16
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Theorem 3.2.8. Let g be a seaweed with homotopy type H(c1, · · · , ch), and let

Fci ∈ gl(ci)
∗, for each i. The functionals F , F

a ∈ g∗ of Definition 3.2.5 are such

that

dim ker(BF
a) = dim ker(BF ) =

t∑
i=1

dim ker(BFci
). (3.3)

Assuming Theorem 3.2.8 for the moment, we have the following immediate Corol-

lary.

Theorem 3.2.9. The functionals F and F
a

ini Definition 3.2.5 are regular if and

only if Fci is regular on gl(ci), for each i.

Proof of Theorem 3.2.8. The proof is an induction on the winding-up moves of

Lemma 2.3.4. We first show how the winding-up moves affect the index set of

F , where F is either F or F
a
. Consider the seaweed g′ obtained by a Component

Creation move C(c) applied to the meander associated with g. The new functional

constructed by Definition 3.2.5 is Fc⊕F , and the dimension result of equation (3.3)

follows trivially. Further, if B is a relations matrix of ker(BF ) and Bc is a relations

matrix of ker(BFc), then Bc⊕B is a relations matrix of ker(BFc⊕F ). The Flip move

is trivial, F 7→ F t, and Bt is a relations matrix of ker(BF t).

Now, assume that g is of type a1|···|am
b1|···|bt . Consider the seaweed g′ constructed by

applying a Block Creation move to g and, without loss of generality, assume that

the block a1 in the meander M associated with g is part of a single component of

size a1 – the argument for multiple components is a finite number of arguments

identical to the following argument. Under Definition 3.2.5, there are two choices

for F ′ on g′. If F[a,b] =
∑

(i,j)∈IF
i,j∈[a,b]

e∗i,j is the functional defined on gl(b + 1− a), then

let F ′1 = (F |[1,a1] ⊕ F ) +
∑a1

i=1 e
∗
a1+i,i (the direct copying of the indices to the new

a1×a1 block in g′ and the addition of functionalsalong the main diagonal of the peak

block), and let F ′2 = ((F |[1,a1])
R⊕F ) +

∑a1
i=1 e

∗
a1+i,a1+1−i (the rotation of the indices

being copied to the new a1 × a1 block in g′ and the addition of the antidiagonal

functionals in the peak block). Let B′ be a relations matrix of F ′1 and consider the

following division of B′ into four quadrants, whose indices (i, j) are relabeled as

indicated.
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2a1

a2
. . .

am

a1

b1
. . .

br

. . .

bt

I
II

III IV

−a1
...
-1
1

...

n

−a1· · · -1 1 · · · n

Figure 3.2: The four quadrants of B′.

Now, fix i, j ∈ [1, n] and consider the images of the basis elements e−i,j, ei,j, and

ei,−j (basis elements in quadrant II). We get the following three expressions under

the map BF ′1
([B, ·]).

e−i,−j 7→

 ∑
(s,−j)∈IF ′1

bs,−i −
∑

(−i,s)∈IF ′1

b−j,s

 (3.4)

ei,−j 7→

 ∑
(s,−j)∈IF ′1

bs,i −
∑

(i,s)∈IF ′1

b−j,s

 (3.5)

ea1+1−i,a1+1−j 7→

 ∑
(s,a1+1−j)∈IF ′1

bs,a1+1−i −
∑

(a1+1−i,s)∈IF ′1

ba1+1−j,s

 (3.6)

Consider the equations provided by setting the right hand side of (3.5) equal to

zero. Note that (s,−j) ∈ IF ′1
if and only if s = a1 + 1− j (i.e., e∗s,−j is the unique

functional in the new peak block in column −j) or s < 0. If s < 0, then (s, i) 6∈ Ig′ ,

so bs,i = 0. Similarly, (i, s) ∈ IF ′1
if and only if s = i − a1 − 1 or s > 0. If s > 0,

then b−j,s = 0 as (−j, s) 6∈ Ig′ . Therefore, the system of equations resulting from

(3.5) reduces to

ba1+1−j,i = b−j,i−a1−1. (3.7)
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That is, the top a1 × a1 block of B′ is equal to the second a1 × a1 block of B′. An

identical argument on the basis elements ei,−j mapped under BF ′2
([B, ·]) shows that

b−i,−j = bi,j for all i, j ≤ n, meaning the top a1 × a1 block of B′ is the rotation of

the second a1 × a1 block of B′. To show that the application of a Block Creation

move does not change the index of the seaweed, it suffices to show that elements in

the peak block [1, a1]× [−1,−a1] indicated in Figure 3.2 are zero. We will show that

the elements in the peaks must be a direct copy of previous peak blocks (if any).

Therefore, by recursion it will suffice to consider a seaweed of the form 2n+m
n|a1|···|ak|n

,

with
∑
ai = m (i.e., the outer most peak block created in a component of size n in

g). The recursion on the peak blocks is justified by evaluating the right hand side

of (3.4) and (3.6) at zero and summing. Notice that (s,−j) ∈ IF ′1
if and only if

s = a1 + 1− j or s < 0 (i.e. (s,−j) is one of the copied indices), and (−i, s) ∈ IF ′1

implies s < 0. Therefore, the equation given by evaluating (3.4) at zero combined

with (3.7) is equivalent to teh system∑
(s,−j)∈IF ′1

s<0

bs,−i + ba1+1−j,−i =
∑

(−i,s)∈IF ′1
s<0

b−j,s

⇔
∑

(s,a1+1−j)∈IF ′1
s>0

bs,a1+1−i + ba1+1−j,−i =
∑

(a1+1−i,s)∈IF ′1
s>0

ba1+1−j,s. (3.8)

When evaluated at zero, the right hand side of (3.6) is equivalent to system∑
(s,a1+1−j)∈IF ′1

s>0

bs,a1+1−i =
∑

(a1+1−i,s)∈IF ′1
0<s≤a1

ba1+1−j,s +
∑

(a1+1−i,s)∈IF ′1
a1<s

ba1+1−j,s + ba1+1−j,−i.

(3.9)

Combining equations (3.8) and (3.9) so that the appropriate summations cancel,

we have the following equation:

ba1+1−j,−i =
−1

2

∑
(a1+1−i,s)∈IF ′1

a1<s

ba1+1−j,s. (3.10)

The same argument for F ′2 yields an equation similar to equation (3.10). The

Rotation Expansion move and the Pure Expansion move only require an appropriate
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relabeling of indices. Hence, by recursion it suffices to compute what the first peak

block must be (which will be a zero matrix), and to show that any indices bi,j which

occur outside the peak and core blocks are equal to zero.

Without loss of generality, consider the seaweed g of type 2n+m
n|m|n . Let Gm be a

functional on gl(m), define F ′1 = (Fn ⊕ Gm ⊕ Fn) +
∑n

i=1 e
∗
n+m+i,i, and let F ′2 =

(Fc⊕Gm⊕FR
c ) +

∑n
i=1 e

∗
2n+m+1−i,i. The indices in these functionals are pictured in

Figure 3.3.

n

n

n n

m

m

IFn

IFn

IGm

...

n

n

n n

m

m

IFn

IFRn

IGm

. .
.

Figure 3.3: Indices in IF ′1
(left) and IF ′2

(right)

For F ′1, consider the images of the basis elements under BF ′1
(B, ·):

1. ei,j 7→
∑

(s,j)∈IFn
bs,i + bn+m+j,i −

∑
(i,s)∈IFn

bj,s,

for i, j ∈ [1, n],

2. ei,j 7→
∑

(s,j)∈IFn
bs,i + bn+m+j,i −

∑
(i−n,s−n)∈IGm

bj,s,

for i ∈ [n+ 1,m], j ∈ [1, n],

3. ei,j 7→
∑

(s−n,j−n)∈IGm
bs,i −

∑
(i−n,s−n)∈IGm

bj,s,

for i, j ∈ [n+ 1,m],

4. ei,j 7→
∑

(s,j)∈IFn
bs,i + bn+m+j,i −

∑
(i−n,m,s−n−m)∈IFn

bj,s − bj,i−n−m,

for i ∈ [n+m+ 1, 2n+m], j ∈ [1, n],
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5. ei,j 7→
∑

(s−n,j−n)∈IGm
bs,i −

∑
(i−n,m,s−n−m)∈IFn

bj,s − bj,i−n−m,

for i ∈ [n+m+ 1, 2n+m], j ∈ [n+ 1,m],

6. ei,j 7→
∑

(s−n−m,j−n−m)∈IFn
bs,i −

∑
(i−n,m,s−n−m)∈IFn

bj,s − bj,i−n−m,

for i, j ∈ [n+m+ 1, 2n+m].

The expressions in (1.), when evaluated at zero, combine with the expressions in

(6.) evaluated at zero to show that bj,i = 0 for all j[n + m + 1, 2n + m], i ∈ [1, n].

The equations generated by evaluating (4.) at zero yield that bi,j = bi+n+m,j+n+m

for all i, j ∈ [1, n] (since both summations in the expression must evaluate to zero

as bs,i = bj,s = 0 on their given domains due to the indices not being in Ig). The

expressions in (1.), knowing now that bn+m+j,i = 0, solve to a relations matrix B1

of ker(BFn).

In (2.), both summations are zero since the indices are not in Ig, and so the

equation which results from evaluating the right hand side at zero simplifies to

bn+m+j,i = 0 for all j ∈ [1, n], and i ∈ [n + 1,m]. This is the n × m rectangle in

the bottom row of Figure 3.3 (left). The same argument on the expressions in (5.)

generates the m × n rectangle in the first column of Figure 3.3 (left) must also be

a zero matrix. Finally, the expressions in (3.) when evaluated at zero will yield a

relations matrix B2 of ker(BGm).

The final evaluation of the system of equations given by mapping the basis

elements to zero under BF ′1
([B, ·]) will be that a relations matrix B of ker(BF ′1

) is

B = B1 ⊕B2 ⊕B1.

Hence, dim ker(BF ′1
) = dim ker(BFn) + dim ker(BGm). A similar argument on F ′2

shows that a relations matrix B′ is of the form

B′ = B1 ⊕B2 ⊕BR
1 ,

and the dimension argument holds.

We have the following immediate Corollary from the proof of Theorem 3.2.8.
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Theorem 3.2.10. Let g be a seaweed with homotopy type H(c1, · · · , ch), and let

Fci ∈ gl(ci)
∗ for each i. Any functional F constructed via the methods of Definition

3.2.5 using the functionals Fci is such that, if B ∈ ker(BF ) and bi,j 6= 0, then

(i, j) is in the core of g. Further, if Cci1 ⊕ Cci2 ⊕ · · · ⊕ Ccik is the core of g (i.e.,

ij ∈ {1, · · · , h} for all j), then a relations matrix of the space ker(BF ) is

Br
i1
⊕ · · · ⊕Br

ik
,

where the superscript r represents the appropriate rotation of the matrix where nec-

essary.

Example 3.2.11. Consider the functionals F and F
a

of Example 3.2.7 on the sea-

weed g of type 10|2|4
16

. By direct computation (as demonstrated in the proof of Theorem

3.3.1), F2 and F4 are regular, and they have the respective relations matrices:

B4 =


b1 + b2 + b3 + b4 b1 + b2 + b3 b1 + b2 b1

b1 + b2 + b3 b1 + b2 + b4 b1 + b3 b2

b1 + b2 b1 + b3 b2 + b4 b3

b1 b2 b3 b4

 , B2 =

(
b5 + b6 b5

b5 b6

)
.

A relations matrix of ker(BF ) is the matrix B4 ⊕B2 ⊕B4 ⊕B2 ⊕B4,



b1 + b2 + b3 + b4 b1 + b2 + b3 b1 + b2 b1 0 0 0 0 0 0 0 0 0 0 0 0

b1 + b2 + b3 b1 + b2 + b4 b1 + b3 b2 0 0 0 0 0 0 0 0 0 0 0 0

b1 + b2 b1 + b3 b2 + b4 b3 0 0 0 0 0 0 0 0 0 0 0 0

b1 b2 b3 b4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 b5 + b6 b5 0 0 0 0 0 0 0 0 0 0

0 0 0 0 b5 b6 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 b1 + b2 + b3 + b4 b1 + b2 + b3 b1 + b2 b1 0 0 0 0 0 0

0 0 0 0 0 0 b1 + b2 + b3 b1 + b2 + b4 b1 + b3 b2 0 0 0 0 0 0

0 0 0 0 0 0 b1 + b2 b1 + b3 b2 + b4 b3 0 0 0 0 0 0

0 0 0 0 0 0 b1 b2 b3 b4 0 0 0 0 0 0

b5 + b6 b5 0 0 0 0

b5 b6 0 0 0 0

b1 + b2 + b3 + b4 b1 + b2 + b3 b1 + b2 b1

b1 + b2 + b3 b1 + b2 + b4 b1 + b3 b2

b1 + b2 b1 + b3 b2 + b4 b3

b1 b2 b3 b4



,

and a relations matrix of ker(BF
a) is the matrix B4 ⊕B2 ⊕BR

4 ⊕BR
2 ⊕BR

4 ,
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b1 + b2 + b3 + b4 b1 + b2 + b3 b1 + b2 b1 0 0 0 0 0 0 0 0 0 0 0 0

b1 + b2 + b3 b1 + b2 + b4 b1 + b3 b2 0 0 0 0 0 0 0 0 0 0 0 0

b1 + b2 b1 + b3 b2 + b4 b3 0 0 0 0 0 0 0 0 0 0 0 0

b1 b2 b3 b4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 b5 + b6 b5 0 0 0 0 0 0 0 0 0 0

0 0 0 0 b5 b6 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 b4 b3 b2 b1 0 0 0 0 0 0

0 0 0 0 0 0 b3 b2 + b4 b1 + b3 b1 + b2 0 0 0 0 0 0

0 0 0 0 0 0 b2 b1 + b3 b1 + b2 + b4 b1 + b2 + b3 0 0 0 0 0 0

0 0 0 0 0 0 b1 b1 + b2 b1 + b2 + b3 b1 + b2 + b3 + b4 0 0 0 0 0 0

b6 b5 0 0 0 0

b5 b5 + b6 0 0 0 0

b4 b3 b2 b1

b3 b2 + b4 b1 + b3 b1 + b2

b2 b1 + b3 b1 + b2 + b4 b1 + b2 + b3

b1 b1 + b2 b1 + b2 + b3 b1 + b2 + b3 + b4



.

Example 3.2.12. In accordance with Remark 3.2.6, the functional F whose indices

IF are shown in Figure 3.4 is also regular on g of type 10|4|2
16

.

Figure 3.4: Indices in IF

A relations matrix of F is B4 ⊕B2 ⊕B4 ⊕BR
2 ⊕BR

4 ,



b1 + b2 + b3 + b4 b1 + b2 + b3 b1 + b2 b1 0 0 0 0 0 0 0 0 0 0 0 0

b1 + b2 + b3 b1 + b2 + b4 b1 + b3 b2 0 0 0 0 0 0 0 0 0 0 0 0

b1 + b2 b1 + b3 b2 + b4 b3 0 0 0 0 0 0 0 0 0 0 0 0

b1 b2 b3 b4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 b5 + b6 b5 0 0 0 0 0 0 0 0 0 0

0 0 0 0 b5 b6 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 b1 + b2 + b3 + b4 b1 + b2 + b3 b1 + b2 b1 0 0 0 0 0 0

0 0 0 0 0 0 b1 + b2 + b3 b1 + b2 + b4 b1 + b3 b2 0 0 0 0 0 0

0 0 0 0 0 0 b1 + b2 b1 + b3 b2 + b4 b3 0 0 0 0 0 0

0 0 0 0 0 0 b1 b2 b3 b4 0 0 0 0 0 0

b6 b5 0 0 0 0

b5 b5 + b6 0 0 0 0

b4 b3 b2 b1

b3 b2 + b4 b1 + b3 b1 + b2

b2 b1 + b3 b1 + b2 + b4 b1 + b2 + b3

b1 b1 + b2 b1 + b2 + b3 b1 + b2 + b3 + b4



.
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3.3 Explicit Regular Functionals on gl(n)

The purpose of this section is to provide an explicit regular functional Fn on gl(n).

We will leverage this construction through Definition 3.2.5 to construct regular fuc-

tionals on any seaweed subalgebra g ⊆ gl(n) with homotopy type H(c1, · · · , ch) by

embedding the functionals Fci appropriately.

Theorem 3.3.1. The functional Fn =
∑n

i=1

∑n+1−i
j=1 e∗i,j is regular on gl(n).

The indices in IFn are illustrated in Figure 3.5.

0

Figure 3.5: Indices in IFn

Proof. Let B = [bi,j] be a relations matrix of ker(BFn). It follows from Theorem

2.2.2 that the minimum dimension of ker(BF ) over all F ∈ g∗ is n. Therefore, to

show that Fn is regular it suffices to determine n degrees of freedom bi in B and

show that every other entry in B is defined as a linear combination the elements bi.

The proof will follow from the verification of the following two claims:

Claim 1 For each (i, j) ∈ (n− 1)× (n− 1), bi,j =
∑n

s=1 csbs,n +
∑n−1

s=1 c
′
sbn,s for

suitable coefficients cs ∈ C,

and

Claim 2 bn,s = bs,n, for all s ∈ [1, n].

To understand why these claims are sufficient, we argue as follows. Claim 1

will define the top (n − 1) × (n − 1) matrix in terms of the elements in the last
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row/column of B, determining there are at most 2n − 1 degrees of freedom in B.

Claim 2 will then prove that there are exactly (as it cannot possibly be smaller due

to minimality of the index) n degrees of freedom in these 2n− 1 positions.

Proof of Claim 1

The proof is by induction. We proceed according to the following steps.

1. An application of Lemma 3.1.4 (“symmetry lemma”) halves the work by al-

lowing us to only consider indices (i, j) illustrated in Figure 3.6.

2. The system of equations F ([B, ei,j]) = 0 is developed explicitly, along with

two formulas which will be needed in the inductive step.

3. For the base case, we show that the first and last row are explicit sums of

elements bn,s. Proceeding by induction on pairs of rows (first and last) moving

towards the center of B in the halved domain, we show that for i ∈
[
1, dn

2
e
]
,

any elements bi,j and bn+1−i,j can be defined in terms of the previous row

defined. More specifically, bi,j = bi−1,j−1+bn,s for some s ∈ [1, n] and bn+1−i,j =

bn+2−i,j−1 + bn,r for some r ∈ [1, n].

Step 1: For ease of notation, let bs = bn,s and b′s = bs,n for all s ∈ [1, n] – note

that bn = b′n. By invoking Lemma 3.1.4 (and making use of our convenient choice

for bs and b′s being symmetric across the diagonal), it suffices to show the claim for

all elements bi,j such that

(i, j) ∈ I =

{
(i, j)

∣∣∣∣∣ i ∈ [1, ⌈n2⌉] , j ∈ [i, n+ 1− i]

}

∪

{
(i, j)

∣∣∣∣∣ i ∈ (⌈n2⌉ , n] , j ∈ (n+ 1− i, i]

}
.

The indices in I are illustrated in Figure 3.6.
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Figure 3.6: Indices in I .

We will define bi,j in terms of elements bs over all (i, j) ∈ I , and it will follow

that every (i, j) 6∈ I (and all (i, i) on the diagonal) are defined in terms of elements

b′s.

Step 2: To begin, observe

IFn = {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ n+1−i} = {(i, j) | 1 ≤ j ≤ n, 1 ≤ i ≤ n+1−j}

and refer to Lemma 3.1.6 to see that B must satisfy n2 conditions of the form

n+1−j∑
s=1

bs,i =
n+1−i∑
s=1

bj,s (3.11)

over (i, j) ∈ Igl(n). There are no additional requirements on B as there are no forced

zeroes in gl(n). For all i ∈ [2, n − 1] consider the following equation obtained by

applying equation (3.11) as follows:

bi,j =
i∑

s=1

bs,j −
i−1∑
s=1

bs,j

=

n+1−(n+1−i)∑
s=1

bs,j −
n+1−(n+1−(i−1))∑

s=1

bs,j

=

n+1−j∑
s=1

bn+1−i,s −
n+1−j∑
s=1

bn+1−(i−1),s
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⇒ bn+2−i,n+1−j =

(
n−j∑
s=1

bn+1−i,s −
n−j∑
s=1

bn+1−(i−1),s

)
+ bn+1−i,n+1−j − bi,j

=

n+1−(j+1)∑
s=1

bn+1−i,s −
n+1−(j+1)∑

s=1

bn+1−(i−1),s

+ bn+1−i,n+1−j − bi,j

=

n+1−(n+1−i)∑
s=1

bs,j+1 −
n+1−(n+1−(i−1))∑

s=1

bs,j+1

+ bn+1−i,n+1−j − bi,j

=

(
i∑

s=1

bs,j+1 −
i−1∑
s=1

bs,j+1

)
+ bn+1−i,n+1−j − bi,j

= bi,j+1 + bn+1−i,n+1−j − bi,j.

Thus, we get the following formula:

bn+2−i,n+1−j = bi,j+1 + bn+1−i,n+1−j − bi,j. (3.12)

By expressing bi,j as
∑j

s=1 bi,s −
∑j−1

s=1 bi,s instead and applying equation (3.11), we

get a second formula:

bn+1−i,n+1−j = bi,j + bn+2−i,n+1−j − bi,j+1. (3.13)

Step 3: We proceed by induction. The base of the induction will be filling in

the first and last rows of B for positions in I in terms of bs. From there, assuming

we have defined bi,j appropriately for all (i, j) ∈ I with i ∈ [1, I] ∪ [n + 1 − I, n]

(i.e., the first and last I rows of B), we will define bI+1,j and bn+1−(I+1),j for (I +

1, j), (n+ 1− (I + 1), j) ∈ I in terms of elements bs.

The last row is already filled by bn,i = bi for i ∈ [1, n]. The first row comes from

equation (3.11) evaluated for j = n:

b1,i =
n+1−n∑
s=1

bs,i =
n+1−i∑
s=1

bn,s =
n+1−i∑
s=1

bs. (3.14)

Now, assume that for some I ∈ [1, bn
2
c), bi,j and bn+1−i,j are defined in terms of

elements bs for all (i, j), (n+1− i, j) ∈ I with i ≤ I (some care is needed if I = bn
2
c
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– we handle this separately for each claim depending on whether n is even or odd).

We assert the following claims about indices

(i, j), (n+ 1− i, j) ∈ I :

bi,j = bi−1,j−1 − bn+3−i−j (3.15)

for (i, j) ∈ I such that i ∈
[
1,
⌊
n
2

⌋]
if n is odd and i ∈

[
1, n

2
+ 1
]

if n is even,

bn+1−i,j = bn+2−i,j+1 + bj−i+1 (3.16)

for (i, j) ∈ I such that i ∈
[
1,
⌊
n
2

⌋
+ 1
]

if n is odd and i ∈
[
1, n

2

]
if n is even. The

need for the domains is due to the necessary conditions that n+3−i−j, j−i+1 > 0.

Assuming Equations (3.15) and (3.16) are true, consider bI+1,j and bn+1−(I+1),j

(since I < bn
2
c, there is no domain issue with these equations). By the inductive

hypothesis and definition of I , if (I + 1, j) ∈ I and (n+ 1− (I + 1), j) ∈ I , then

(I, j−1) ∈ I and (n+1−I, j−1) ∈ I . Moreover, bI,j−1 and bn+1−I,j+1 are defined

in terms of elements bs, so bI+1,j and bn+1−I,j are also defined in terms of elements

bs for appropriate indices. Therefore, it suffices to prove these equations and then

address I = bn
2
c. We proceed by induction.

Assume that Equations (3.15) and (3.16) are true for all bi,j and bn+1−i,j with

i ∈ [2, I] and (i, j), (n + 1 − i, j) ∈ I . We will show it’s true for all appropriate

(I+1, j) and (n+1−(I+1), j) and then we will show the basis step. Let i = n+1−I
and s = n+ 1− j. We invoke the formula in equation (3.12) twice below,

bI+1,j = bn+2−i,n+1−s

= bi,s+1 + bn+1−i,n+1−s − bi,s
= bn+1−I,s+1 + bI,n+1−s − bn+1−I,s,

and

bI,j−1 = bn+2−(i+1),n+1−(s+1)

= bi+1,s+2 + bn+1−(i+1),n+1−(s+1) − bi+1,s+1

= bn+2−I,s+2 + bI−1,n−s − bn+2−I,s+1.
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Therefore, by the induction hypotheses on (I, s + 1), (I, n + 1 − s), and (I, s), we

get

bI,j−1 − bI+1,j = (bn+2−I,s+2 − bn+1−I,s+1) + (bI−1,n−s − bI,n+1−s)− (bn+2−I,s+1 − bn+1−I,s)

= −bs+2−I + bn+3−I−(n+1−s) + bs+1−I

= −bs+2−I + bs+2−I + bs+1−I

= bs+1−I

= bn+3−j−(I+1).

It is easy to see this is the desired result for the formula in (3.15) on (I+1, j). Now,

if n is even we can repeat the above steps for I = n
2

since all of the above indices

will still be defined (i.e., since i = I + 1 and (i, j) ∈ I forces j = n
2

or j = n
2

+ 1,

we know

n+ 3− j − (I + 1) = n+ 3− j − n+ 2

2
= 1 +

n+ 2

2
− j =

n

2
+ 2− j ∈ {1, 2}

which gives the extended domain for the formula in (3.15) if n is even; this does not

hold if n is odd).

In a similar manner, we invoke Formula 3.13 twice below,

bn+1−(I+1),j = bn+1−(I+1),n+1−s

= bI+1,s + bn+2−(I+1),n+1−s − bI+1,s+1

= bI+1,s + bn+1−I,n+1−s − bI+1,s+1,

and

bn+2−(I+1),j+1 = bn+1−I,n+1−(s−1)

= bI,s−1 + bn+2−I,n+1−(s−1) − bI,s
= bI,s−1 + bn+2−I,n+2−s − bI,s.

By the inductive hypotheses and equation (3.15), with the result above being proven

for I + 1, (I + 1, s), (I, n+ 1− s), and (I + 1, s+ 1), we get
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bn+1−(I+1),j − bn+2−(I+1),j+1 = (bI+1,s − bI,s−1) + (bn+1−I,n+1−s − bn+2−I,n+2−s)− (bI+1,s+1 − bI,s)

= −bn+3−(I+1)−s + bn+1−s−I+1 + bn+3−(I+1)−(s+1)

= −bn+2−I−s + bn+2−I−s + bn+1−I−s

= bn+1−I−s

= bn+1−I−(n+1−j)

= bj−(I+1)+1.

It is easy to see that this is the desired result for the formula in (3.16) on (I + 1, j).

Further, if n is odd the above calculations for I = bn
2
c = n−1

2
may be repeated since

all of the above indices will still be defined (i.e., since i = n+ 1− (I + 1) = n+1
2

and

(i, j) ∈ I forces j = n+1
2

, we know

j − (I + 1) + 1 =
n+ 2

2
− n+ 2

2
+ 1 = 1

which gives the extended domain for Formula (3.16) if n is odd; this does not hold

if n is even). Therefore, To complete Claim 1 it suffices show that this result holds

as a relation between the indices of I for I = 2 (the basis step).

Recall from equation (3.14), that b1,j =
∑n+1−j

s=1 bs for all j ∈ [1, n]. By the

formula in (3.12),

b2,j = bn,n+2−j + b1,j − bn,n+1−j

= bn+2−j +

(
n+1−j∑
s=1

bs

)
− bn+1−j

=

(
n+2−j∑
s=1

bs

)
− bn+2−j + bn+2−j − bn+1−j

= b1,j−1 + bn+1−j.

This proves the formula in (3.15) for I = 2. Now, by the formula in (3.13) and the
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equation justified immediately above,

bn−1,j = b2,n+1−j + bn,j − b2,n+2−j

= (b1,n−j − bj) + bj − (b1,n+1−j − bj−1)

=

n+1−(n−j)∑
s=1

bs

−
n+1−(n+1−j)∑

s=1

bs

+ bj−1

=

(
j+1∑
s=1

bs

)
−

(
j∑
s=1

bs

)
+ bj−1

= bj+1 + bj−1

= bn,j+1 + b(j−2)+1.

This establishes Claim 1.

Proof of Claim 2

The proof is by induction along the diagonal of B through the application of

Lemma 3.1.4, as every element bi,i will be defined explicitly in terms of elements

bn,s and bs,n through Claim 1. Odd and even values of n are addressed separately

to carefully cross the center of B.

Assume that n is even.

Claim 2.1.1: For k ∈
[
0, n

2
− 1
]
,

bn−k,n−k =
k∑
s=0

bn−2s and bn−2k = b′n−2k.

Claim 2.1.1 will yield that for all even indices s, bs = b′s – which is half of Claim

2, provided that n is even. The proof is by induction. Trivially, bn,n = bn = b′n.

Further, by Formula (3.16),

bn−1,n−1 = bn,n + bn−2
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(this is seen using i = 2, j = n−1). Now, by Lemma 3.1.4, since bn−1,n−1 = bn−1,n−1

trivially we get

b′n + b′n−2 = bn + bn−2 ⇒ bn−2 = b′n−2.

Now, fix k < n
2
− 1 assume for all K ≤ k the claim holds. By Formula (3.16), we

have

bn−(k+1),n−(k+1) = bn−k,n−k + bn−2k−2 =
k∑
s=0

bn−2s + bn−2(k+1)

(this is seen using i = k + 2, j = n− (k + 1)). By Lemma 3.1.4, we have

k∑
s=0

bn−2s + bn−2(k+1) =
k∑
s=0

b′n−2s + b′n−2(k+1).

By induction, bn−2(k+1) = b′n−2(k+1) and bn−(k+1),n−(k+1) =
∑k+1

s=0 bn−2s. This proves

Claim 2.1.1.

Claim 2.1.2: For k ∈
[
0, n

2
− 1
]
,

bn
2
−k,n

2
−k = bn

2
+1,n

2
+1 +

k∑
s=0

b1+2s and b1+2k = b′1+2k

Claim 2.1.2 will yield that for all odd indices s, bs = b′s which is the second half

of Claim 2 provided n is even. The proof is by induction.

Since n is even, by Formula (3.15) and the fact that n− (n
2
− 1) = n

2
+ 1, we can

see that

bn
2
,n
2

= bn
2

+1,n
2

+1 + bn+3−(n
2

+1)−(n
2

+1) = bn
2

+1,n
2

+1 + b1.

By Lemma 3.1.4 and Claim 2.1.1, b1 = b′1. Now, assume for some k < n
2
−1 we have

that the above claim WHICH ONE? holds for all K ≤ k. Then by Formula (3.15),

we have

bn
2
−(k+1),n

2
−(k+1) = bn

2
−k,n

2
−k + b3+2k =

(
bn

2
+1,n

2
+1 +

k∑
s=0

b1+2s

)
+ b1+2(k+1).

47



By Lemma 3.1.4, b1+2(k+1) = b′1+2(k+1) and bn
2
−(k+1),n

2
−(k+1) = bn

2
+1,n

2
+1 +

∑k+1
s=0 b1+2s,

as desired. This proves the Claim 2.1.2 and suffices to establish Claim 2 if n is even.

Assume that n is odd.

We will take an identical approach to that taken when n was even.

Claim 2.2.1: For k ∈
[
0, n−1

2

]
,

bn−k,n−k =
k∑
s=0

bn−2s and bn−2k = b′n−2k.

Establishing Claim 2.2.1 will give us that all odd indices s, bs = b′s, which is half

of Claim 2 provided n is odd. Because of the extended domain for Formula (3.16)

when n is odd we can induction step further than in Claim 2.1.1, but otherwise the

induction is identical to that used in the proof of Claim 2.1.1.

Claim 2.2.2: For k ∈
[
1, n−1

2

]
,

bn+1
2
−k,n+1

2
−k = bn+1

2
,n+1

2
+

k∑
s=1

b2s and b2k = b′2k.

Establishing Claim 2.2.2 will complete the proof of Claim 2 by showing that for

all even indices s, bs = b′s. The proof of Claim 2.2.2 is inductive.

For the base case (showing Claim 2.2.2 for k = 1), by the formula in (3.15), we

have

bn+1
2
−1,n+1

2
−1 = bn+1

2
,n+1

2
+ b2,

as claimed. Further, by Lemma 3.1.4 we get b2 = b′2. Now, assume that for some

k ∈ [1, n−1
2

) the Claim 2.2.2 is true on all K ≤ k. Then by Formula (3.15) and the

induction hypotheses,

bn+1
2
−(k+1),n+1

2
−(k+1) = bn+1

2
−k,n+1

2
−k + b2+2k =

(
bn+1

2
,n+1

2
+

k∑
s=0

b2s

)
+ b2(k+1).

By Lemma 3.1.4, we have that bn+1
2
−(k+1),n+1

2
−(k+1) = bn+1

2
,n+1

2
+
∑k+1

s=0 b2s and

b2(k+1) = b′2(k+1), as desired.
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Example 3.3.2. Consider gl(5), and let F5 be as defined in Theorem 3.3.1. A

relations matrix B described in the proof of Theorem 3.3.1 is

B =



b1 + b2 + b3 + b4 + b5 b1 + b2 + b3 + b4 b1 + b2 + b3 b1 + b2 b1

b1 + b2 + b3 + b4 b1 + b2 + b3 + b5 b1 + b2 + b4 b1 + b3 b2

b1 + b2 + b3 b1 + b2 + b4 b1 + b3 + b5 b2 + b4 b3

b1 + b2 b1 + b3 b2 + b4 b3 + b5 b4

b1 b2 b3 b4 b5


,

and we get the following basis for ker(BF5):





1 1 1 1 1

1 1 1 1 0

1 1 1 0 0

1 1 0 0 0

1 0 0 0 0


,



1 1 1 1 0

1 1 1 0 1

1 1 0 1 0

1 0 1 0 0

0 1 0 0 0


,



1 1 1 0 0

1 1 0 1 0

1 0 1 0 1

0 1 0 1 0

0 0 1 0 0


,



1 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0


,



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




.

By Lemma 3.2.4, we know that F t̂
n is regular on gl(n).

3.4 Three More Regular Functionals

We define the size of a functional F to be equal to |IF |. Computationally, smaller

is better. In this section we develop seven additional regular functionals Hn, H ′n,

Kn, K ′n, Gn, G′n, and F ′n all of which are based on Fn. Their relative sizes are:

|IF ′n| ≤ |IGn| = |IG′n| ≤ |IHn| = |IH′n| ≤ |IKn| = |IK′n| ≤ |IFn|.

The smallest of these functionals, F ′n = (0) ⊕ Fn−2 ⊕ (0), is smaller than Fn by

2n− 1 degrees of freedom (i.e., |IFn| = |IF ′n|+ 2n− 1). The proofs of these seven

functionals are closely related, starting with Gn which is developed in Theorem 3.4.1

through an induction on the images of ei,1 for i ∈ [2, n] under BGn([B, ·]) to show

that b1,i = 0 (and a similar argument to show that bi−1,n = 0). This will show that

ker(BGn) is a subalgebra of the seaweed of type 1|n−2|1
1|n−2|1 . Therefore, by Lemma 3.2.3

and the regularity of Fn−2, we obtain Gn’s regularity.
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Theorem 3.4.1. The functional Gn = e∗1,1 +
∑n−1

i=2

∑n+1−i
j=2 e∗i,j = e∗1,1 ⊕ Fn−2 ⊕ (0)

is regular on gl(n) for n ≥ 4.

As a visual aid, the indices of the functional of Gn Theorem 3.4.1 is the functional

such that IGn is the set of indices illustrated by the grey region in Figure 3.7.

0
0
0
...
0
0
0

0
0
0
...
0
0
0

0 0 0 · · · 0 0 0

0 0 0 · · · 0 0 0

0

Figure 3.7: Indices in IGn

Proof. Let B = [bi,j] ∈ ker(BGn). We first prove the following.

Claim: For i ∈ [2, n], b1,i = bi,1 = bi−1,n = bn,i−1 = 0.

By establishing the claim, we will have shown that ker(BGn) is a subalgebra of

the seaweed gl(1)⊕gl(n−2)⊕gl(1). We will then move on to a direct sum argument.

By Lemma 3.1.5, to establish the Claim it suffices to show b1,i = bi−1,n = 0 for all

i ∈ [2, n]. Note that

IGn = {(1, 1)} ∪ {(i, j) | 2 ≤ i ≤ n− 1, 2 ≤ j ≤ n+ 1− i}.

We start by showing b1,i = 0 for all i ∈ [2, n]. By Lemma 3.1.6, en,1 7→ b1,n since

there is only one element in IGn which is of the form (s, 1) and none of the form

(n, s). Similarly,

en,i 7→
n−i∑
j=1

bj+1,n,

for i ∈ [2, n − 1], as there is are no indices in IGn of the form (n, s) and the only

indices of the form (s, i) in IGn are indexed by s ∈ [2, n + 1 − i]. By evaluating
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BGn([B, en,i]) = 0, we have immediately that b1,n = 0 and

bn+1−i,n = −
n−i−1∑
j=1

bj+1,n (3.17)

for all i ∈ [2, n − 1]. For the basis step, b1,2 = 0 by evaluating equation (3.17)

at i = n. Now, if bs,n = 0 for all s < k, then from equation (3.17) evaluated at

i = n+ 1− k, it follows that bk,n = −
∑k−2

j=1 bj+1,n = 0. By induction, bi,n = 0 for all

i ∈ [1, n− 1].

Now, by Lemma 3.1.6 we have for all i ∈ [2, n− 1], that

e1,i 7→

(
n−i∑
j=1

bj+1,1

)
− bi,1 (3.18)

since the only indices (1, s) in IGn is (1, 1) and the only indices (s, i) in IGn are

indexed by s ∈ [2, n− i+ 1]. To show that bi,1 = 0 for all i ∈ [2, n− 1], we address n

even and n odd separately. The problem is translated to a linear algebra problem by

solving the matrix for the system of equations and showing that the vectors formed

by the coefficients of bi,1 are linearly independent. Hence, we will show the following

set of vectors in Rn−2 is linearly independent:

V =





1

0

0

0

0
...

0

0

0

0

−1



,



1

1

0

0

0
...

0

0

0

−1

0



,



1

1

1

0

0
...

0

0

−1

0

0



, · · · ,



1

1

0

1

1
...

1

1

1

0

0



,



1

0

1

1

1
...

1

1

1

1

0



,



0

1

1

1

1
...

1

1

1

1

1





.

This set of vectors is formed by considering the order of the elements bi,1 to be

in reverse order (i.e., position i of a vector v is for the coefficient of bn−i,1 in each
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equation), then the equations as row vectors for the positive coefficients (i.e., before

subtracting bi,1 from each equation) are

〈1 1 1 1 · · · 1 1 1 1〉,
〈0 1 1 1 · · · 1 1 1 1〉,
〈0 0 1 1 · · · 1 1 1 1〉,
〈0 0 0 1 · · · 1 1 1 1〉,

...

〈0 0 0 0 · · · 1 1 1 1〉,
〈0 0 0 0 · · · 0 1 1 1〉,
〈0 0 0 0 · · · 0 0 1 1〉,
〈0 0 0 0 · · · 0 0 0 1〉.

By subtracting off bi,1 from equation i, we get the defined set of vectors V . This

(n − 2) × (n − 2) matrix is illustrated in Figure 3.8, for n even (left) and n odd

(right).

R1

R2

R3

R4

...

Rm
2

vm
2

...

v4

v3

v2

v1



1 1 1 1 · · · 1 1 · · · 1 1 1 0

0 1 1 1 · · · 1 1 · · · 1 1 0 1

0 0 1 1 · · · 1 1 · · · 1 0 1 1

0 0 0 1 · · · 1 1 · · · 0 1 1 1
...

...

0 0 0 0 · · · 1 0 · · · 1 1 1 1

0 0 0 0 · · · −1 1 · · · 1 1 1 1
...

...

0 0 0 −1 · · · 0 0 · · · 1 1 1 1

0 0 −1 0 · · · 0 0 · · · 0 1 1 1

0 −1 0 0 · · · 0 0 · · · 0 0 1 1

−1 0 0 0 · · · 0 0 · · · 0 0 0 1



R1

R2

R3

R4

...

Rm−1
2

V

vm−1
2
...

v4

v3

v2

v1



1 1 1 1 · · · 1 1 1 · · · 1 1 1 0

0 1 1 1 · · · 1 1 1 · · · 1 1 0 1

0 0 1 1 · · · 1 1 1 · · · 1 0 1 1

0 0 0 1 · · · 1 1 1 · · · 0 1 1 1
...

...

0 0 0 0 · · · 1 1 0 · · · 1 1 1 1

0 0 0 0 · · · 0 0 1 · · · 1 1 1 1

0 0 0 0 · · · −1 0 1 · · · 1 1 1 1
...

...

0 0 0 −1 · · · 0 0 0 · · · 1 1 1 1

0 0 −1 0 · · · 0 0 0 · · · 0 1 1 1

0 −1 0 0 · · · 0 0 0 · · · 0 0 1 1

−1 0 0 0 · · · 0 0 0 · · · 0 0 0 1



Figure 3.8: Matrix of image coefficients for e1,i with i ∈ [2, n − 1] for n even (left) and

n odd (right).

Assume that n is even. To show that the columns are linearly independent (and

hence bi,1 = 0 for all i ∈ [2, n − 1]), it suffices to show that there are m = n − 2

leading 1’s. In other words, if vi is the vector with a −1 in position i and 1’s in
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positions m + 1 − i through m over i ∈ [1, m
2

] (i.e., vi enumerates the last half of

the rows in the matrix above), we must show that we can get the leading 1’s into

the final m
2

positions of these vectors. For each i < m
2

, we can get the leading 1 into

position m− i and then we can get the leading one for the vector vm
2

into position

m. For each i, let Ri represent the respective row in the top half of the matrix.

Consider the vector v′i = vi +Ri −Ri+1 for each i < m
2

. This yields the vector

〈0, 0, · · · , 0, 1, 0, 1, 1, · · · , 1〉,

where the first 1 is in position m− i (vi +Ri cancels the −1 in position i, puts a 1

in every zero between position i + 1 and position m − i, position m + 1 − i had a

zero from Ri so it remains as a 1 from vi, but everything after is now a 2, gaining 1

from each vector; when you subtract off Ri+1, everything from position i+ 1 to the

end goes down by 1 except position m − i). Therefore, from vectors v1, · · · , vm
2
−1

we get the leading 1’s in positions m
2

+ 1, · · · ,m− 1 which row-reduces the matrix

in Figure 3.8 (left) to the matrix depicted in Figure 3.9.

R1

R2

R3

R4

...

Rm
2

vm
2

v′m
2
−1

v′m
2
−2

v′m
2
−3

...

v′3

v′2

v′1



1 1 1 1 · · · 1 1 1 1 1 · · · 1 1 1 0

0 1 1 1 · · · 1 1 1 1 1 · · · 1 1 0 1

0 0 1 1 · · · 1 1 1 1 1 · · · 1 0 1 1

0 0 0 1 · · · 1 1 1 1 1 · · · 0 1 1 1
...

...

0 0 0 0 · · · 1 0 1 1 1 · · · 1 1 1 1

0 0 0 0 · · · −1 1 1 1 1 · · · 1 1 1 1

0 0 0 0 · · · 0 1 0 1 1 · · · 1 1 1 1

0 0 0 0 · · · 0 0 1 0 1 · · · 1 1 1 1

0 0 0 0 · · · 0 0 0 1 0 · · · 1 1 1 1
...

...

0 0 0 0 · · · 0 0 0 0 0 · · · 1 0 1 1

0 0 0 0 · · · 0 0 0 0 0 · · · 0 1 0 1

0 0 0 0 · · · 0 0 0 0 0 · · · 0 0 1 0



Figure 3.9: Reduced matrix of image coefficients for e1,i with i ∈ [2, n− 1] for even n
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Now, consider the vector vm
2

of the form 〈0, 0, · · · ,−1, 1, · · · , 1〉. Define

v′m
2

= vm
2

+Rm
2

= 〈0, · · · , 0, 1, 2, · · · , 2〉

with the 1 in position m
2

+ 1. Consider the following six row operations applied to

v′m
2

.

v′m
2
− v′m

2
−1 = 〈0, · · · , 0, 2, 1, 1, · · · , 1〉, 2 in position

m

2
+ 2;

v′m
2
− v′m

2
−1 − 2v′m

2
−2 = 〈0, · · · , 0, 0, 1,−1, · · · ,−1〉, 1 in position

m

2
+ 3;

v′m
2
− v′m

2
−1 − 2v′m

2
−2 − v′m

2
−3 = 〈0, · · · , 0,−1,−2, · · · ,−2〉 -1 in position

m

2
+ 4.

Define V := v′m
2
− v′m

2
−1 − 2v′m

2
−2 − v′m

2
−3.

V + v′m
2
−4 = 〈0, · · · , 0,−2,−1,−1, · · · ,−1〉, -2 in position

m

2
+ 5;

V + v′m
2
−4 + 2v′m

2
−5 = 〈0, · · · , 0, 0,−1, 1, · · · , 1〉, -1 in position

m

2
+ 6;

V + v′m
2
−4 + 2v′m

2
−5 + vm

2
−6 = 〈0, · · · , 0, 1, 2, · · · , 2〉 1 in position

m

2
+ 7.

A result of the above calculation is that recursively, the matrix in Figure 3.9 can be

row-reduced into a form which shows the column vectors are linearly independent,

and thus bi,1 = 0 for i ∈ [2, n− 1] if n is even.

Now, assume that n is odd and refer to the matrix in Figure 3.8 (right). Again,

let m = n − 2. We must ensure that there are leading 1’s in the last m+1
2

columns

to ensure that the matrix in Figure 3.8 is invertible. As was done for even n, define

vi as the vector with a -1 in position i and 1’s in positions m+ 1− i through m over

i ∈ [1,m − 1/2] (the strict bottom half of the rows enumerated going up). Define

v′i = vi + Ri − Ri+1 where Ri represents row i of Figure 3.8 (right). This puts a

leading 1 in position m− i for each i. In this way, the only column still in need of

a leading 1 is the last column. The matrix in Figure 3.8 (right) is now row-reduced

to the matrix shown in Figure 3.10.
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R1

R2

R3

R4

...

Rm−1
2

V

v′m−1
2

v′m−1
2
−1

v′m−1
2
−2

...

v′3

v′2

v′1



1 1 1 1 · · · 1 1 1 1 1 · · · 1 1 1 0

0 1 1 1 · · · 1 1 1 1 1 · · · 1 1 0 1

0 0 1 1 · · · 1 1 1 1 1 · · · 1 0 1 1

0 0 0 1 · · · 1 1 1 1 1 · · · 0 1 1 1
...

...

0 0 0 0 · · · 1 1 0 1 1 · · · 1 1 1 1

0 0 0 0 · · · 0 0 1 1 1 · · · 1 1 1 1

0 0 0 0 · · · 0 1 0 1 1 · · · 1 1 1 1

0 0 0 0 · · · 0 0 1 0 1 · · · 1 1 1 1

0 0 0 0 · · · 0 0 0 1 0 · · · 1 1 1 1
...

...

0 0 0 0 · · · 0 0 0 0 0 · · · 1 0 1 1

0 0 0 0 · · · 0 0 0 0 0 · · · 0 1 0 1

0 0 0 0 · · · 0 0 0 0 0 · · · 0 0 1 0


Figure 3.10: Reduced matirx of image coefficients for e1,i with i ∈ [2, n− 1] for odd n

Now, let V = 〈0, · · · , 0, 1, · · · , 1〉 where the first 1 is in position m+1
2

+ 1 (V is

the center row of the matrix). Consider the following four row operations applied

to V :

V − v′m−1
2
−1

= 〈0, · · · , 0, 1, 0, · · · , 0〉, 1 in position
m+ 1

2
+ 1;

V − v′m−1
2
−1
− v′m−1

2
−2

= 〈0, · · · , 0,−1,−1, · · · ,−1〉, -1 in position
m+ 1

2
+ 2.

Define V ′ := V − v′m−1
2
−1
− v′m−1

2
−2

.

V ′ + v′m−1
2
−3

= 〈0, · · · , 0,−1, 0, · · · , 0〉, -1 in position
m+ 1

2
+ 3;

V ′ + v′m−1
2
−3

+ v′m−1
2
−4

= 〈0, · · · , 0, 1, 1, · · · , 1〉, 1 in position
m+ 1

2
+ 4.

Hence, we have row reduced the matrix in Figure 3.8 (right) to an invertible
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matrix. Therefore, the column vectors are linearly independent, and so bi,1 = 0 for

i ∈ [2, n− 1] if n is odd. This establishes the claim.

By the claim, ker(BGn) is a subalgebra of the seaweed gl(1)⊕ gl(n− 2)⊕ gl(1),

and by Theorem 3.2.3, Gn is regular if and only if the restriction of Gn to its three

components is regular in each case. We know F = e∗1,1 and F = 0 are regular on

gl(1). Further, IGn ∩ [2, n−2]× [2, n−2] is the functional Fn−2 from Theorem 3.3.1

defined on gl(n− 2). Hence, Gn is regular. Further, a relations matrix of ker(BGn)

is (b1) ⊕ B ⊕ (bn), where B is a relations matrix of ker(BFn−2) on gl(n − 2) which

uses the variables {b2, · · · , bn−1}.

Remark 3.4.2. It is necessary to specify that n ≥ 4 to use Gn, as it is not defined on

n = 1 or n = 2, and for n = 3 there are not enough conditions to force b1,2 = b2,1 = 0.

Instead, e1,2 7→ b2,1− b2,1 = 0 and e2,1 7→ b1,2− b1,2 = 0 under BG3 and we lose those

conditions. This adds 2 to the dimension of the kernel.

As immediate corollaries to the proof of Theorem 3.4.1, we have two more regular

functionals on gl(n).

Theorem 3.4.3. The functional Hn =
∑n−1

i=1

∑n−i
j=1 e

∗
i,j = Fn−1 is regular on gl(n).

As a visual aid, the indices in IHn are illustrated in Figure 3.11.

0
0
0
...
0
0
00 0 0 · · · 0 0 0

0

Figure 3.11: Indices in IHn

Theorem 3.4.4. The functional Kn = e∗1,1 +
∑n

i=2

∑n+2−i
j=2 ei,j = Gn+1 is regular on

gl(n).
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As a visual aid, the indices in IKn are illustrated in Figure 3.12.

0
0
0
...
0
0

0 0 0 · · · 0 0

0

Figure 3.12: Indices in IKn

Proof. The proof for Theorems 3.4.3 and 3.4.4 will follow from Lemma 3.2.3. Recall

that Gn = e∗1,1 ⊕ Fn−2 ⊕ (0) is such that ker(BGn) is a subalgebra of gl(1)⊕ gl(n−
2)⊕ gl(1) (see proof of theorem 3.4.1). Then Gn = (e∗1,1 ⊕ Fn−2)⊕ (0) is such that

ker(BGn) is a subalgebra of gl(n− 1)⊕ gl(1). By Lemma 3.2.3, e∗1,1 ⊕ Fn−1 must be

regular on gl(n − 1). This is Kn. Similarly, Gn = e∗1,1 ⊕ (Fn−2 ⊕ (0)) is such that

ker(BGn) is a subalgebra of gl(1)⊕ gl(n− 1), so Fn−2 ⊕ (0) is regular on gl(n− 1).

These are the functionals proposed in Theorems 3.4.3 and 3.4.4. a relations matrix

of ker(BHn) is B⊕ (bn), where B is a relations matrix of ker(BFn−1), and a relations

matrix of ker(BKn) is (b1)⊕B′, where B′ is a relations matrix of ker(BFn−1) defined

on variables {b2, · · · , bn}.

Through an identical linear algebra argument to the one constructed in the proof

of Theorem 3.4.1, we get four more functionals.

Theorem 3.4.5. The functionals

G′n = 0⊕ Fn−2 ⊕ e∗1,1, K ′n = Fn−1 ⊕ e∗1,1,

H ′n = 0⊕ Fn−1, and F ′n = 0⊕ Fn−2 ⊕ 0

are regular on gl(n).

Let f be a functional of Theorem 3.4.5. A relations matrices for ker(Bf ) is an

appropriate direct sum of relations matrices of ker(BFn−1), ker(BFn−2), and (bi).
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As in Section 3.3, the transposition across the antidiagonal of any functional

defined in this section is also regular on gl(n). Note that F ′n is the smallest of the

eight regular functionals thus far constructed.
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Chapter 4

Semisimple Lie Algebras

In this chapter, we transition from building regular functionals on seaweed subalge-

bras of gl(n) to building regular functionals on seaweed subalgebras of the classical

Lie algebras: An = sl(n+ 1), Bn = so(2n+ 1), Cn = sp(2n), and Dn = so(2n). We

note that the Kostant cascade, in general, fails to produce a regular functional on a

given seaweed subalgebra of classical type. The obstruction to a successful cascade

is a certain homotopy type (see Conjecture 5.2.5).

The main result of this Chapter is to show how the framework of Chapter 3 can

be leveraged to create a regular functional on any seaweed subalgebra of classical

type.

Due to the fundamental work by Killing, Ado, Cartan, Dynkin, and others, the

simple Lie algebras are defined in terms of root systems, which we review in the

following Definition 4.0.1.

Definition 4.0.1. A subset R of a real inner-product space (E, (·, ·)) is a root

system if it satisfies the following axioms.

1. R is finite, it spans E, and it does not contain 0.

2. If α ∈ R, then the only scalar multiples of α in R are ±α.

3. If α ∈ R, then the reflection sα(β) = β − 2(β,α)
(α,α)

α permutes the elements of R.

4. If α, β ∈ R, then 〈α, β〉 = 2(α,β)
(β,β)

∈ Z.
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4.1 The Classification

Recall from Chapter 2 that each Lie algebra g comes equipped with a triangular

decomposition g = u− + h + u+, where u+ and u− are the upper and lower trian-

gular matrices respectively and h is a Cartan subalgebra of g (specifically it is the

diagonal matrices in g). Every Lie algebra g has an associated root system, based

on functionals α ∈ g∗.

Definition 4.1.1. For each α ∈ g∗, define

gα = {X ∈ g | [H,X] = α(H)X ∀H ∈ h}.

Define Φ as the set of nonzero α such that gα 6= ∅. The set Φ is the root system

associated with g and we call each α ∈ Φ a root of g. The associated set gα is called

the root space of α in g. By definition, Φ is finite. Therefore, there exists a vector

d which is not orthogonal to any α ∈ Φ. Allow the hyperplane through the origin

defined by this vector to split the real inner-product space into two parts, where the

positive roots are defined as those on the same side of the hyperplane as d and the

negative roots are on the opposite side. The positive roots which cannot be written

as a sum of positive roots are called simple. The set of simple roots is denoted by Π.

Remark 4.1.2. Note that the choice of positive roots and negative roots is not

unique.

A Lie algebra (g, [·, ·]) is called simple if it contains no nontrivial ideals (a

subspace which is absorbing under [·, ·]), and semisimple if it is a direct sum of

simple Lie algebras. The methods developed in this chapter and in Appendix B.1

require the use of a Chevalley basis for g, (see Definition 4.1.3).

Definition 4.1.3. Let g be a simple Lie algebra with Cartan subalgebra h, root

system Φ, and set of simple roots Π. For each α ∈ Φ, choose hα ∈ h so that

hα ∈ [g−α, gα], and α(hα) = 2. Further, choose xα ∈ gα such that [xα, x−α] = hα

and [xα, xβ] = ±(p + 1)eα+β, where p is the greatest integer for which β + pα ∈ Φ.

The set

{hα | α ∈ Π} ∪ {xα | α ∈ Φ}
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is a basis for g, called a Chevalley basis.

Example 4.1.4. Consider the Lie algebra g = sl(4). Its root system is

ΠA3 = {αi = ei − ei+1 | i = 1, 2, 3}

ΦA3 =

{
±βi,j = ±

j∑
s=i

αs = ±(ei − ej+1)

∣∣∣∣∣ i < j and i, j ∈ [1, 3]

}
(see Table B.2 and Appendix B.1 for more details on this). The Cartan subalgebra

h is generated by {ei,i − ei+1,i+1 | i ∈ [1, 3]}. Fix H = diag(h1, h2, h3, h4) ∈ g

an arbitrary element of h (so
∑4

i=1 hi = 0). Given a root α = ea − eb ∈ Φ, this

corresponds to the functional e∗a,a − e∗b,b ∈ g∗. Fix X = [xi,j] ∈ g, and note that

[H,X] = K, where K is the matrix [(hi − hj)xi,j]. Furthermore, α(H) = (ha − hb).

To require K = α(H)X for all H ∈ h (which must be true for X ∈ gα, by definition),

we can see that it must be the case that xi,j = 0 for any (i, j) 6= (a, b), and therefore

gα is generated by ea,b, and by a similar computation, g−α is generated by eb,a. Now,

[ea,b, eb,a] is the matrix with a 1 in position (a, a) and a -1 in position (b, b). This

element of [g−α, gα] is hα, it satisfies that α(hα) = 2, and we allow xα = ea,b. It is

easy to verify that the rest of the conditions in Definition 4.1.3 are satisfied, and the

basis for sl(4) is

{ei,i − ei+1,i+1 | i = 1, 2, 3} ∪ {ei,j | i 6= j and i, j ∈ [1, 4]}.

Due to work of Dynkin [16], Cartan [6], and Ado [1], we know that every finite-

dimensional Lie algebra over an algebraically closed field of characteristic 0 can be

represented as a Lie algebra of square matrices over C with the commutator bracket,

and further if the algebra is simple then it is isomorphic to one of the following:

Classic Lie algebras: An = sl(n+1), Bn = so(2n+1), Cn = sp(2n), Dn = so(2n),

Exceptional Lie algebras: E6, E7, E8, F4, and G2.

The first four algebra families are referred to as the classical Lie algebras, while

the remaining five algebras are called the exceptional Lie algebras. The subscripts
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in each case refer to the number of simple roots (or the rank , the dimension of

the root space) associated with the algebra. In the typical way, we define sα(β)

for α, β ∈ Φ to be the reflection of β across the hyperplane defined by α. In other

words,

sα(β) := β − 2(β, α)

(α, α)
α.

We define also

〈α, β〉 :=
2(α, β)

(β, β)
.

Lemma 4.1.5. For any roots α, β ∈ Φ with β 6= ±α,

〈α, β〉〈β, α〉 ∈ {0, 1, 2, 3}.

Proof. By definition, 〈α, β〉 ∈ Z for any two roots, so it suffices to show there are

only four possibilities. Recall that the angle θ between α and β is such that

(α, β)2 = (α, α)(β, β) cos2 θ.

This gives

〈α, β〉〈β, α〉 = 4 cos2 θ ≤ 4. (4.1)

The only way to have equality in (4.1) is if cos2 θ = 1, meaning θ is an integer

multiple of π. This would contradict our assumption that β 6= ±α, satisfying our

claim.

We detail one choice of simple roots of each of the simple Lie algebras above.

They are listed in Table 4.1. The simple Lie algebras are defined by their Dynkin

diagrams, a multi-graph which places a node for each simple root αi and draws

di,j = 〈αi, αj〉〈αj, αi〉 edges between αi and αj. In the case that di,j > 1, then αi

and αj have different lengths, so an arrow is added pointing from the longer root

to the shorter root. The nine Dynkin diagrams corresponding to the simple Lie

algebras are illustrated in Table 4.2.
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Algebra Set of Simple Roots αi

A`, ` ≥ 1 {αi := ei − ei+1 | 1 ≤ i ≤ n}
B`, ` ≥ 2 {αi := ei − ei+1 | 1 ≤ i < n} ∪ {αn := en}
C`, ` ≥ 3 {αi := ei − ei+1 | 1 ≤ i < n} ∪ {αn := 2en}
D`, ` ≥ 4 {αn := ei − ei+1 | 1 ≤ i < n} ∪ {αn := en−1 + en}

G2 {α1 := −2e1 + e2 + e3, α2 := e1 − e2}
F4 {αi := ei − ei+1 | 1 ≤ i < 3} ∪

{
α3 := e3, α4 := 1

2
(−e1 − e2 − e3 + e4)

}
E6

{
α1 := 1

2
(−e1 − e8 +

∑7
i=2 ei)

}
∪ {α2 := −e1 − e2} ∪ {αi := ei−2 − ei−1 | 3 ≤ i ≤ 6}

E7

{
α1 := 1

2
(−e1 − e8 +

∑7
i=2 ei)

}
∪ {α2 := −e1 − e2} ∪ {αi := ei−2 − ei−1 | 3 ≤ i ≤ 7}

E8

{
α1 := 1

2
(−e1 − e8 +

∑7
i=2 ei)

}
∪ {α2 := −e1 − e2} ∪ {αi := ei−2 − ei−1 | 3 ≤ i ≤ 8}

Table 4.1: Simple roots for the simple Lie algebras

A`, ` ≥ 1
α1 α2 α`−2 α`−1 α`

· · · G2

α1 α2

B`, ` ≥ 2
α1 α2 α`−2 α`−1 α`

· · · F4

α1 α2 α3 α4

C`, ` ≥ 3
α1 α2 α`−2 α`−1 α`

· · · E6

α1 α3 α4 α5 α6

α2

D`, ` ≥ 4

α1 α2 α`−3 α`−2

α`

α`−1
· · ·

E7

α1 α3 α4 α5 α6 α7

α2

E8

α1 α3 α4 α5 α6 α7

α2

Table 4.2: Dynkin diagrams of the simple Lie algebras

Definition 4.1.6. A biparabolic (or seaweed) subalgebra of a matrix Lie algebra g

is the intersection of two parabolic subalgebras p and p′ (subalgebras which contain

a Borel subalgebra of g, such as the upper or lower triangular matrices) such that

p + p′ = g. We call p ∩ p′ standard if p ⊇ h ⊕ u+ and p′ ⊇ h ⊕ u−. If p ∩ p′ is a

standard seaweed, let Π be the set of simple roots in the root system associated with

g, and define Ψ = {α ∈ Π | g−α 6∈ p}, and Ψ′ = {α ∈ Π | gα 6∈ p′}. It is customary

to write p ∩ p′ = pm(Ψ | Ψ′), where m = |Π|.

As addressed by Joseph in [21], every seaweed Lie algebra g = p∩p′ is conjugate

to a seaweed g′ = pm(Ψ | Ψ′) which is standard. It will be a standing assumption
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for the rest of this paper that g refers to a seaweed in standard form. The rest of

this chapter deals with semisimple Lie algebras of the classical variety.

It was previously noted (see [3]) that, given any seaweed g = pm(Ψ | Ψ′),

Kostant’s cascade would be one method of producing a regular functional on g. This

is NOT always the case. The cascade is explained in detail in Appendix B.1, and

explicit counter examples to the regularity of the produced functional are provided

therein.

4.2 Type-A Seaweeds

Recall that the simple Lie algebra An is sl(n+ 1). It has simple roots

αi = ei − ei+1 for i ∈ [1, n].

We denote seaweed subalgebras of An by pAn (Ψ | Ψ′). By direct computation, the

root system ΦAn is the set of roots ±βi,j = ±
∑j

s=i αs over 1 ≤ i ≤ j ≤ n. Further,

gβi,j = span{ei,j+1} and g−βi,j = span{ej+1,i}.

We fix the Chevalley basis for An to be

{xβi,j = ei,j+1, x−βi,j = ej+1,i | 1 ≤ i ≤ j ≤ n} ∪ {hαi = ei,i − ei+1,i+1 | αi ∈ Π}.

See Section B.1.1 and Example 4.1.4 for example computations of the root system

and its root spaces for A4 and A3, respectively.

Example 4.2.1. Consider g = A4. The root spaces gβ for β ∈ ΦA4 are indicated in

the root space matrix of Figure 4.1.

∗ gα1 gα1+α2 gα1+α2+α3 gα1+α2+α3+α4

g−α1 ∗ gα2 gα2+α3 gα2+α3+α4

g−α1−α2 g−α2 ∗ gα3 gα3+α4

g−α1−α2−α3 g−α2−α3 g−α3 ∗ gα4

g−α1−α2−α3−α4 g−α2−α3−α4 g−α3−α4 g−α4 ∗


Figure 4.1: Root space matrix for A4
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Now, to construct a parabolic subalgebra of An, one selects a set of simple roots

to omit. The effect of this omission is demonstrated in the following example.

Example 4.2.2. Consider the seaweed g = pA4 ({α4} | {α2, α3}). By excluding g−α4

from p, we eliminate the root spaces for all roots

{−α4, −α3 − α4, −α2 − α3 − α4, −α1 − α2 − α3 − α4}

from the algebra. This is pictured in Figure 4.2 (left). Similarly, by excluding gα2

and gα3 from p′, we eliminate the root spaces for the eight roots which include α2

or α3 in their sum. This is illustrated in Figure 4.2 (center). These are parabolic

subalgebras of sl(5), and their intersection is shown in Figure 4.2 (right). It is easy

to see that this is a subalgebra of the seaweed of type 4|1
2|1|2 contained in gl(5) (cf.,

Example 2.1.3).

* * * * *
* * * * *
* * * * *
* * * * *

*

4

1

p

* *
* *
* * *
* * * * *
* * * * *

2

1

2

p′

* *
* *
* * *
* * * * *

*

4

1

2

1

2

p ∩ p′

Figure 4.2: Construction of pA4 ({α4} | {α2, α3})

In general, the seaweed pAn ({αi1 , · · · , αik} | {αj1 , · · · , αj`}) with is < is+1 and

js < js+1 is a subalgebra of the seaweed g ⊆ gl(n+ 1) of type i1|i2−i1|···|ik−ik−1|n+1−ik
j1|j2−j1|···|j`−j`−1|n+1−j`

.

Notation: As we will often refer to the block compositions for the seaweed, we use

the notation pAn
i1|i2−i1|···|ik−ik−1|n+1−ik
j1|j2−j1|···|j`−j`−1|n+1−j`

to mean pAn ({αi1 , · · · , αik} | {αj1 , · · · , αj`}).
We will adopt a similar naming convention in the other classical types. We define

the meander, signature, and homotopy type of pAn (Ψ | Ψ′) according to Chapter 2.
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4.2.1 Type-A Regular Functionals

To begin, we must know how restricting to algebras of trace zero affects the index

of a seaweed.

Theorem 4.2.3 (Dergachev and A. Kirillov, [13]). If g = pAn (Ψ | Ψ′), then

ind g = 2C + P − 1,

where C is the number of cycles and P is the number of paths and isolated points in

the meander associated with g.

We have the following immediate Corollary.

Theorem 4.2.4. If g = An, then

ind g = n.

Proof. Recall that if g = An, then g is a seaweed subalgebra of the seaweed of type
n+1
n+1

= gl(n+ 1) which has index n+ 1 = 2C + P (since the meander for g and the

seaweed of type n+1
n+1

are the same). The result follows.

Theorem 4.2.5. The functional Fn =
∑n

i=1

∑n+1−i
j=1 e∗i,j of Theorem 3.3.1 is regular

on An.

Proof. Our proof will be through the equivalence of the systems of equations for

BFn(B, b) and BFn(B, b′) with {b} a basis for An and {b′} a basis for gl(n).

Consider the Chevalley basis for An as our chosen basis. For all i 6= j with

i, j ≤ n, we have

ei,j 7→

(
n+1−j∑
s=1

bs,i −
n+1−i∑
s=1

bj,s

)
. (4.2)

The system of equations which results when the expressions in (4.2) are evaluated

at zero is identical to the system of equations for the image under BFn of basis

elements ei,j with i 6= j on gl(n). Now, consider the basis elements ei,i − ei+1,i+1
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with i ≤ n. By requiring BFn(B, ei,i − ei+1,i+1) = 0, we get the weaker condition

that BFn(B, ei,i) = BFn(B, ei+1,i+1) for all i. However, we have

BFn(B, en+1,n+1) = 0

as there are no indices (i, j) ∈ IFn with i = n + 1 or j = n + 1. Therefore, the

system of equations for the n2 basis elements of An mentioned thus far is isomorphic

to the system of equations on gl(n). It suffices to address the last 2n basis elements

ei,n+1 and en+1,i for i 6= n+1. Consider the image of the first n basis elements under

BFn([B, ·]):

ei,n+1 7→ −
n+1−i∑
s=1

bn+1,s. (4.3)

Setting the right hand side of (4.3) equal to zero and inducting from i = n down

to i = 1, we get bn+1,i = 0 for all i ∈ [1, n]. The argument is similar for bi,n+1 = 0

for all i ∈ [1, n], or Lemma 3.1.5 may be applied. The resulting relations matrix

of ker(BFn) on An is B ⊕ (b), where B is a relations matrix of ker(BFn) defined on

gl(n) and b = −
∑n

i=1 bi,i.

Remark 4.2.6. Note that Fn defined on An is the sum of functionals e∗i,j strictly

above the antidiagonal, as An is a subalgebra of gl(n+ 1), and not gl(n).

Remark 4.2.7. The other functionals of Section 3.4 when defined on gl(n+ 1) will

also be regular on An, but we omit spending further time on the proving of regular

functionals here.

Now, we address proper seaweed subalgebras of An.

Theorem 4.2.8. If pAn
a1|···|am
b1|···|bt is a seaweed with homotopy type H(c1, · · · , ch), any

funcitonal F built using Definition 3.2.5 with functionals fci embedded into the com-

ponents of size ci is such that

dim ker(BF ) = −1 +
h∑
i=1

dim ker(Bfci
),

where dim ker(BF ) is over sl(n+1), but dim ker(Bfci
) is the dimension of the kernel

in gl(ci).
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Proof. The proof is similar to the proof of Theorem 3.2.8. We apply induction along

the winding-up moves of Lemma 2.3.4 to place appropriately adjusted copies of

ker(Bfci
) into the core of g. The difference in Type-A is that in the first Component

Creation move in the winding-up of the meander associated with g, there is an

index t such that bt,t is the negative sum of the diagonal to ensure the vanishing

trace condition of An (this was bn+1,n+1 for B a relations matrix of Fn in Theorem

4.2.5). Under the winding up, we will map the functional as we did in Definition

3.2.5, but the kernel adjustments must be such that the sum of all instances of bt,t

on the diagonal maintains the vanishing trace condition.

This completely resolves the problem of naming regular functionals for seaweed

subalgebras of Type-A. See Example 4.2.9.

Example 4.2.9. Consider g = pA7
4|4
8

. The functional described in Theorem 4.2.8

by embedding F3 of Theorem 4.2.5 yields

F
a

= e∗1,1 + e∗1,2 + e∗1,3 + e∗1,8 + e∗2,1 + e∗2,2 + e∗2,7 + e∗3,1 + e∗3,6 + e∗4,5 + e∗6,8 + e∗7,7 + e∗7,8 + e∗8,6 + e∗8,7 + e∗8,8.

The indices for F
a

are shown in Figure 4.3.

Figure 4.3: Indices IF
a on pA7 ({α4} | ∅)

A messy calculation yields a relations matrix B of ker(BF
a). Note that blank

spaces are inadmissible locations for the seaweed, and are, per force, filled with zeroes.
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This relations matrix B is given by

b1 + b2 + b3 b1 + b2 b1 0 0 0 0 0

b1 + b2 b1 + b3 b2 0 0 0 0 0

b1 b2 b3 0 0 0 0 0

0 0 0 −2b1 − b2 − 3b3 0 0 0 0

−2b1 − b2 − 3b3 0 0 0

0 b3 b2 b1

0 b2 b1 + b3 b1 + b2

0 b1 b1 + b2 b1 + b2 + b3


.

It is apparent that, since ind g = 3, F
a

is regular.

4.3 Type-C

Recall that the simple Lie algebra Cn is sp(2n). It has simple roots

αi = ei − ei+1 for i ∈ [1, n− 1], αn = 2en.

We denote seaweed subalgebras of Cn by pCn (Ψ | Ψ′). Note that

ΦCn =

{
±βi,j = ±

j∑
s=i

αs

∣∣∣∣∣ 1 ≤ i ≤ j < n

}

∪

{
±ρi = ±αn ± 2

n−1∑
s=i

αs

∣∣∣∣∣ i ∈ [1, n]

}

∪

{
±δi,j = ±

n−1∑
s=i

αs ±
n−1∑
s=j

αs + αn

∣∣∣∣∣ 1 ≤ i < j ≤ n

}
.

We now compute the Chevalley basis and the root spaces gα for g = Cn. Consider

an element H = diag(h1, · · · , h2n) of the Cartan subalgebra h of Cn. It must be true

that hi = −h2n+1−i for all i. Recall from Example 4.1.4 that for any X = [xi,j] ∈ g,

[H,X] = K, where K is the matrix [(hi − hj)xi,j]. As elements of the dual, we

have βi,j = e∗i,i − e∗j+1,j+1, ρi = 2e∗i,i, and δi,j = e∗i,i + e∗j,j. Therefore, βa,b(H)X =

(ha − hb+1)X, and K = βa,b(H)X for all H ∈ h if and only if xi,j = 0 for all

(i, j) 6= (a, b+ 1), (2n− b, 2n+ 1− a). Thus,

gβi,j = span{ei,j+1 − e2n−j,2n+1−i} and g−βi,j = span{ej+1,i − e2n+1−i,2n−j}.
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Similarly, ρa(H)X = 2haX = (ha − h2n+1−a)X, and K = ρa(H)X for all H ∈ h if

and only if xi,j = 0 for all (i, j) 6= (a, 2n+ 1− a). Thus,

gρi = span{ei,2n+1−i} and g−ρi = span{e2n+1−i,i}.

Finally, δa,b(H)X = (ha+hb)X = (ha−h2n+1−b)X, and K = δa,b(H)X for all H ∈ h

if and only if xi,j = 0 for all (i, j) 6= (a, 2n+ 1− b), (b, 2n+ 1− a). Hence,

gδi,j = span{ei,2n+1−j + ej,2n+1−i} and g−δi,j = span{e2n+1−j,i + e2n+1−i,j}.

We fix the Chevalley basis for Cn to be following union:

{xβi,j = ei,j+1 − e2n−j,2n+1−i, x−βi,j = ej+1,i − e2n+1−i,2n−j | 1 ≤ i ≤ j < n}

∪ {xρi = 2ei,2n+1−i, x−ρi = 2e2n+1−i,i | 1 ≤ i ≤ n}

∪ {xδi,j = ei,2n+1−j + ej,2n+1−i, x−δi,j = e2n+1−j,i + e2n+1−i,j | 1 ≤ i < j ≤ n}

∪ {hαi = ei,i − e2n+1−i,2n+1−i | i ∈ [1, n]}.

See Table A.3 for the computation of the root system of C4.

Example 4.3.1. Consider g = C3. The root spaces gβ for β ∈ ΦC3 are indicated in

the root space matrix of Figure 4.4.



∗ gα1 gα1+α2 gα1+α2+α3 gα1+2α2+α3 g2α1+2α2+α3

g−α1 ∗ gα2 gα2+α3 g2α2+α3 gα1+2α2+α3

g−α1−α2 g−α2 ∗ gα3 gα2+α3 gα1+α2+α3

g−α1−α2−α3 g−α2−α3 g−α3 ∗ gα2 gα1+α2

g−α1−2α2−α3 g−2α2−α3 g−α2−α3 g−α2 ∗ gα1

g−2α1−2α2−α3 g−α1−2α2−α3 g−α1−α2−α3 g−α1−α2 g−α1 ∗


Figure 4.4: Root space matrix for C3

Now, to construct a parabolic subalgebra of Cn, one selects a set of simple roots

to omit. The effect of such an omission is demonstrated in the following example.
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Example 4.3.2. Consider the seaweed g = pC3 ({α3} | {α2}). As was done in

Type-A, we eliminate any root space from p which relied on the root −α3, and we

eliminate any root space from p′ which relied on α2. The parabolic subalgebras p

and p′ are illustrated in Figure 4.3.4 below (left and center, respectively). These are

parabolic subalgebras of sp(6), and the seaweed g (the intersection of p and p′) is

then displayed in Figure 4.3.4 (right). It is easy to see that this is a subalgebra of

the seaweed g′ ⊆ gl(6) of type 3|3
2|2|2 .
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Figure 4.5: Construction of pC3 ({α3} | {α2})

In general, the seaweed pCn ({αi1 , · · · , αik} | {αj1 , · · · , αjt}) with is < is+1 and

js < js+1 is a subalgebra of the seaweed g ⊆ gl(2n) of type

i1|i2 − i1| · · · |ik − ik−1|2n− 2ik|ik − ik−1| · · · |i2 − i1|i1
j1|j2 − j1| · · · |jt − jt−1|2n− 2jt|jt − jt−1| · · · |j2 − j1|j1

. (4.4)

To ease computations, we can leverage the symmetry across the antidiagonal of

a seaweed subalgebra subalgebra of Cn, and make use of a meander on n vertices

instead of the full 2n vertices that a seaweed subalgebra of gl(2n) would normally

require.

Definition 4.3.3. Let g = pCn ({αi1 , · · · , αik} | {αj1 , · · · , αjt}) with is < is+1 and

js < js+1. The meander associated with g (denoted MC
n to indicate that it has
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been shortened from the meander of the full type), is constructed as follows. Place

n vertices v1 through vn in a line. Create two partitions (top and bottom) of the

vertices based on the partial compositions of n,

a = (i1, i2 − i1, · · · , ik − ik−1)

and

b = (j1, j2 − j1, · · · , jt − jt−1).

Draw arcs in the first k top blocks and the first t bottom blocks as you would a

meander in gl(n). There may be vertices left over. We define the following sets:

Ta = {vi | i > ik} and Tb = {vi | i > jt}. The tail Tg of the meander MC
n is the

symmetric difference of Ta and Tb (i.e., (Ta ∪ Tb)\(Ta ∩ Tb)). The aftertail T ag of

the meander is Ta ∩ Tb. (The aftertail is so named because it consists of the vertices

which occur to the right of the tail in MC
n ). (See Example 4.3.4).

Example 4.3.4. Consider the seaweed g = pC7 ({α1, α2, α5} | {α3, α6}). The mean-

der MC
n associated with g is illustrated in Figure 4.6 (right). The bars and numbers

in Figure 4.6 (left) are visual aids for the construction of the meander and not a

part of the meander itself.

1 1 3

3 3

=

Figure 4.6: Meander MC
7 associated with pC7 ({α1, α2, α5} | {α3, α6})

By definition, we have

Ta = {v6, v7}, Tb = {v7}, Tg = {v6}, and T ag = {v7}.

As in gl(n), we can visualize the meander within the seaweed by mapping vi to ei,i

(see Figure 4.7). We color the tail vertices blue and the aftertail vertices red for

illustration purposes.
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Figure 4.7: Meander MC
7 visualized in the seaweed pC7 ({α1, α2, α5} | {α3, α6})

When describing how to construct a regular functional in Section 4.3.1, we first

address any component of the meander MC
n which interacts with the tail, and we

next address the aftertail. From there, the embedding of functionals Fn will be as

it is in gl(n) for any part of the meander which remains unaddressed.

4.3.1 Type-C Regular Functionals

To begin, we must know how restricting to algebras in sp(2n) affects the index of a

seaweed.

Theorem 4.3.5 (Coll, Hyatt, and Magnant [9]). If g = pCn (Ψ1 | Ψ2) is a seaweed

of Type-C, then

ind g = 2C + P̃ ,

where C is the number of cycles and P̃ is the number of paths with zero or two

endpoints in the tail of the meander MC
n associated with g.

We have the following immediate Corollary.
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Theorem 4.3.6. If g = Cn, then

ind g = n.

Proof. If g = Cn, then the meander MC
n associated with g consists of n vertices

vi all of which occur in the aftertail. This means MC
n consists of n isolated points

outside of the tail, contributing n to the index.

Just as we used a meander half the size of the full meander in gl(2n), when there

is symmetry across the antidiagonal, it suffices to consider functional with indices on

or above the antidiagonal only. The functional F ′ = F +
∑

(i,j)∈IF
ci,je

∗
2n+1−j,2n+1−i,

where ci,j is the negative coefficient of e∗i,j in F for i, j ∈ [1, n], and equal to the

coefficient of e∗i,j in F otherwise, has the same kernel of the Kirillov form.

Theorem 4.3.7. The Functional Fn =
∑n

i=1

∑n+1−i
j=1 e∗i,j of Theorem 3.3.1 is regular

on Cn.

Proof. Consider the Chevalley basis for Cn as our chosen basis. For i, j ≤ n, we

have

ei,j − e2n+1−j,2n+1−i 7→

(
n+1−j∑
s=1

bs,i −
n+1−i∑
s=1

bj,s

)
. (4.5)

This system of equations which results from evaluating the n2 expressions on the

right hand side of (4.5) at zero is equivalent to the system of equations for the image

of the basis elements ei,j for Fn defined on gl(n). For (i, j) with i + j ≤ 2n + 1,

i ≤ n, and j > n we have

ei,j + e2n+1−j,2n+1−i 7→

(
−

n+1−i∑
s=1

bj,s −
j−n∑
s=1

b2n+1−i,s

)
. (4.6)

Through a linear algebra argument similar to those in Chapter 3, the solution to

the system of equations which results from evaluating the right hand side of (4.6)

at zero is bj,i = 0 for all i, j defined. By Lemma 3.1.5, this implies bi,j = 0. A

relations matrix of ker(BFn) is B⊕ (−B t̂), where B is a relations matrix of ker(BFn)

on gl(n).
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Example 4.3.8. Consider the Lie algebra C4. A relations matrix B of ker(BF4) is

B =



b1 + b2 + b3 + b4 b1 + b2 + b3 b1 + b2 b1 0 0 0 0

b1 + b2 + b3 b1 + b2 + b4 b1 + b3 b2 0 0 0 0

b1 + b2 b1 + b3 b2 + b4 b3 0 0 0 0

b1 b2 b3 b4 0 0 0 0

0 0 0 0 −b4 −b3 −b2 −b1

0 0 0 0 −b3 −b2 − b4 −b1 − b3 −b1 − b2

0 0 0 0 −b2 −b1 − b3 −b1 − b2 − b4 −b1 − b2 − b3

0 0 0 0 −b1 −b1 − b2 −b1 − b2 − b3 −b1 − b2 − b3 − b4


Now, we address proper seaweed subalgebras of Cn. We describe the adjustments

needed from Definition 3.2.5 to account for the aftertail and tail in Theorem 4.3.9.

Theorem 4.3.9. Let g be a seaweed of type C with associated meander MC
n and

full meander M defined on 2n vertices whose homotopy type is H(c1, · · · , ch). Let

fc represent a functional on gl(c) for all c. Let A = ITg ×ITg be the indices in the

square block on the diagonal of g which contains the tail and B = ITag ×ITag be the

indices in the square block on the diagonal of g which contains the aftertail. For each

ci such that Cci∩A 6= ∅ (i.e., each component whose core interacts with the tail of the

meander MC
n ), define F ci as in Definition 3.2.5 by embedding a functional fbci/2c,

except only sum over e∗i,j with i+j < 2n+1 (i.e., strictly above the antidiagonal). For

each ci such that Cci ∩A = Cci ∩B = ∅, define F ci as in Definition 3.2.5 except only

sum over e∗i,j with i+j < 2n+1. As in Definition 3.2.5, in both these embeddings we

allow for the choice to rotate the indices or not by adding the appropriate functionals

in the peak blocks for any peak block which occurs strictly above the antidiagonal of

g. The only difference is that, when crossing the antidiagonal, we require the choice

of functionals over the main diagonal of the peak block (which occur on or above the

antidiagonal). Finally, if t = |T ag |, then the final functional

F =
∑

F ci + fn−tt

is such that

dim ker(BF ) =
∑

dim ker(Bfci
) +

∑
dim ker(Bfbci/2c

) + dim ker(Bft),
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where dim ker(BF ) is over g, for each i dim ker(Bfci
) over gl(ci) and dim ker(Bfbci/2c

)

is over pCci({ci} | ∅), and dim ker(Bft) is over Ct.

As before, the constructed functional is regular if and only if we embed regular

functionals in each component.

We first introduce the following nontrivial example which demonstrates Theorem

4.3.9 and highlights the differences with the tail and after tail.

Example 4.3.10. Consider g = pC18({α5, α15} | {α2, α6, α9, α10, α11}). This is a

subalgebra of the seaweed of type 5|10|6|10|5
2|4|3|1|1|14|1|1|3|4|2 . The meanders MC

18 and M are

shown in Figures 4.8 and 4.9, respectively, with the tail vertices and components

colored blue and the aftertail vertices and component colored red. It follows from

Theorem 4.3.5 that ind g = 7.

Figure 4.8: Meander MC
18 associated with pC18({α5, α15} | {α2, α6, α9, α10, α11})

Figure 4.9: Meander M associated with pC18({α5, α15} | {α2, α6, α9, α10, α11})

A functional described by Theorem 4.3.9 by embedding functionals Fc from The-

orem 3.3.1 is

F =e∗1,1 + e∗1,2 + e∗2,1 + e∗3,6 + e∗4,2 + e∗4,5 + e∗5,1 + e∗5,4 + e∗5,5 + e∗7,7

+ e∗11,10 + e∗12,9 + e∗12,23 + e∗13,8 + e∗13,24 + e∗14,7 + e∗14,14 + e∗15,6 + e∗15,22

+ e∗16,16 + e∗16,17 + e∗16,18 + e∗17,16 + e∗17,17 + e∗18,16.
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The seaweed g is illustrated in Figure 4.10, where the indices in the aftertail

component are colored red, the indices in the tail components are colored blue, and a

black dot is placed in each index of IF . We have added lines to emphasize the core

and components of g.

Figure 4.10: Indices in IF on pC18({α5, α15} | {α2, α6, α9, α10, α11})
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Figure 4.10 illustrates the embedding of F3 to the aftertail component (red) in the

center of the seaweed, the embedding of Fb3/2c = F1 to the component of size three

which interacts with the tail (blue) and that in the 3× 3 block where this component

crosses the diagonal, the functionals over the main diagonal are used. Further, the

embedding for every component independent of the tail and aftertail are embedded

as expected.

A messy computation yields the following portion of a relations matrix of ker(BF )

(see Figure 4.11). Only the entries on or above the antidiagonal are shown; the

remaining positions should be filled in according to the symmetry in sp(36). Further,

blank spaces are left for inadmissible positions of the seaweed, and are, per force,

filled with zeroes.



b1 + b2 b1

b1 b2

0 0 0 0 0 0

0 0 0 b2 b1 0

0 0 0 b1 b1 + b2 0

0

0 b3 0 0

0 0 0 0

0 0 0 −b3

0 0 0 0 b4

0 0 0 0 0 b4

0 0 0 0 0 0 −b3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 b3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b5 + b6 + b7 b5 + b6 b5 0 0 0

b5 + b6 b5 + b7 b6 0 0

b5 b6 b7 0

0 0 0

0 0

0



Figure 4.11: Top half of a relations matrix of ker(BF ) on

pC18({α5, α15} | {α2, α6, α9, α10, α11})
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Proof of Theorem 4.3.9. The proof follows almost entirely from the proof of Theo-

rem 3.2.8. Some care is needed to address the tail and aftertail (Component Creation

in Type-C is, once again, a direct sum unlike in Type-A). By definition, the aftertail

is a self-contained component (a set of nested cycles which is not wound-up) and,

therefore, the proof follows from the proof of Theorem 3.2.8. For the components

which have cores that intersect the tail nontrivially, the induction is the same as in

the proof of Theorem 3.2.8, except that a separate base case is needed.

Note that a component of size ci no longer contributes ci to the index of g, but

rather b ci
2
c. For the base case on tail components, consider the seaweed pCci({ci} | ∅)

and the functional

F = Fbci/2c +

dci/2e∑
i=1

e∗i,ci+i.

Let B be a b ci
2
c × b ci

2
c relations matrix of ker(BFbci/2c

) on gl(b ci
2
c). By direct com-

putation, if ci is even then ker(BF ) has a relations matrix

B ⊕ (−B t̂)⊕B ⊕ (−B t̂).

If n is odd, then a relations matrix of ker(BF ) is

B ⊕ (0)⊕ (−B t̂)⊕B ⊕ (0)⊕ (−B t̂).

We introduce the following reduced homotopy type for seaweeds of Type-C to

construct the analogue of Theorem 2.3.3. We use the word “reduced” as some of

the ci’s are omitted from the full homotopy type H(c1, · · · , ch).

Definition 4.3.11. Let g be a seaweed subalgebra of Cn with reduced meander MC
n

and full meander M . Color the aftertail component (if any) of M red and the

tail components (if any) of M blue. Eliminate any arcs and vertices to the right

of vn in M which are not colored red or blue. This produces a meander M ′ on

I vertices with I ∈ [n, 2n]. Apply Lemma 2.3.1 to M ′ to unwind it, and in each

Component Elimination move C(c), color c the color of the component removed.

Then HC(c1, · · · , ch) is the reduced homotopy type of a Type-C seaweed.
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Example 4.3.12. Let g = pC18({α5, α15} | {α2, α6, α9, α10, α11}) (cf., Example 4.3.10).

The meander M is in Figure 4.9. The meander M ′ of Definition 4.3.11 is shown in

Figure 4.12.

Figure 4.12: Reduced meander M ′ of pC18({α5, α15} | {α2, α6, α9, α10, α11})

The reduced homotopy type of g is HC(2, 1,1,3,6), shown in Figure 4.13.

Figure 4.13: Reduced homotopy type HC(2, 1,1,3,6)

The following theorem is the Type-C analogue of the theorem in Type-A and

gl(n) (cf., Theorem 2.3.3). Note that in Type-A, there is no tail or aftertail.

Theorem 4.3.13. If g is a seaweed of Type-C with reduced homotopy type

HC(c1, · · · , ch1 , ch1+1, · · · , ch2 , ch2+1),

then

ind g =

h1∑
i=1

ci +

h2∑
i=h1+1

⌊ci
2

⌋
+
ch2+1

2
.

4.4 Type-B

While Type-B and Type-D seaweeds are both subalgebras of so(n) (for odd and

even n, respectively), their root systems are significantly different and, therefore,

80



must be addressed separately.

Recall that the simple Lie algebra Bn is so(2n+ 1). It has simple roots

αi = ei − ei+1 for i ∈ [1, n− 1], αn = en.

We denote seaweed subalgebras of Bn by pBn (Ψ | Ψ′). By direct computation, the

root system ΦBn is the set of roots{
±βi,j = ±

j∑
s=i

αs

∣∣∣∣∣ 1 ≤ i ≤ j < n

}

∪

{
±ρi = ±

n∑
s=i

αs

∣∣∣∣∣ i ∈ [1, n]

}

∪

{
±δi,j = ±

n∑
s=i

αs ±
n∑
s=j

αs

∣∣∣∣∣ 1 ≤ i < j ≤ n

}
.

We now compute the Chevalley basis and the root spaces gα for g = Bn. Consider

an element H = diag(h1, · · · , h2n+1) of the Cartan subalgebra h of Bn. It must be

true that hi = −h2n+2−i for all i, and therefore hn+1 = 0. Recall from Example 4.1.4

that for any X ∈ g, [H,X] = K, where K is the matrix [(hi − hj)xi,j]. As elements

of the dual, we have βi,j = e∗i,i − e∗j+1,j+1, ρi = e∗i,i, and δi,j = e∗i,i + e∗j,j. Therefore,

βa,b(H)X = (ha − hb+1)X, and K = βa,b(H)X for all H ∈ h if and only if xi,j = 0

for all (i, j) 6= (a, b+ 1), (2n+ 1− b, 2n+ 2− a). Thus,

gβi,j = span{ei,j+1−e2n+1−j,2n+2−i} and g−βi,j = span{ej+1,i−e2n+2−i,2n+1−j}.

Similarly, ρBa (H)X = haX = (ha − hn+1)X, and K = ρBa (H)X for all H ∈ h if and

only if xi,j = 0 for all (i, j) 6= (a, n+ 1), (n+ 1, 2n+ 2− a). Thus,

gρi = span{ei,n+1 − en+1,2n+2−i} and g−ρi = span{en+1,i − e2n+2−i,n+1}.

Finally, δa,b(H)X = (ha+hb)X = (ha−h2n+2−b)X, and K = δa,b(H)X for all H ∈ h

if and only if xi,j = 0 for all (i, j) 6= (a, 2n+ 2− b), (b, 2n+ 2− a). Thus,

gδi,j = span{ei,2n+2−j − ej,2n+2−i} and g−δi,j = span{e2n+2−j,i − e2n+2−i,j}.
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We fix the Chevalley basis for Bn to be

{xβi,j = ei,j+1 − e2n+1−j,2n+2−i, x−βi,j = ej+1,i − e2n+2−i,2n+1−j | 1 ≤ i ≤ j < n}

∪ {xρi = ei,n+1 − en+1,2n+2−i, x−ρi = en+1,i − e2n+2−i,n+1 | 1 ≤ i ≤ n}

∪ {xδi,j = ei,2n+2−j − ej,2n+2−i, x−δi,j = e2n+2−j,i − e2n+2−i,j | i ≤ i < j ≤ n}

∪ {hαi = ei,i − e2n+2−i,2n+2−i | i ∈ [1, n]}.

See Table A.2 for the computation of the root system ΦB4 .

Example 4.4.1. Consider g = B3. The matrices in g have the following form with

respect to the root spaces gβ for β ∈ ΦB3:

∗ gα1 gα1+α2 gα1+α2+α3 gα1+α2+2α3 gα1+2α2+2α3 0

g−α1 ∗ gα2 gα2+α3 gα2+2α3 0 gα1+2α2+2α3

g−α1−α2 g−α2 ∗ gα3 0 gα2+2α3 gα1+α2+2α3

g−α1−α2−α3 g−α2−α3 g−α3 0 gα3 gα2+α3 gα1+α2+α3

g−α1−α2−2α3 g−α2−2α3 0 g−α3 ∗ gα2 gα1+α2

g−α1−2α2−2α3 0 g−α2−2α3 g−α2−α3 g−α2 ∗ gα1

0 g−α1−2α2−2α3 g−α1−α2−2α3 g−α1−α2−α3 g−α1−α2 g−α1 ∗


.

To construct a seaweed subalgebra of Bn, one selects a set of simple roots to

omit. The effect of this omission is demonstrated in the following example.

Example 4.4.2. Consider the seaweed g = pB3 ({α3} | {α2}). As was done in

Type-C, we eliminate any root space from p which relied on the root −α3, and we

eliminate any root space from p′ which needed α2. The parabolic subalgebras p and p′

are demonstrated in Figure 4.14 (left and center, respectively). These are parabolic

subalgebras of so(7), and the seaweed g (the intersection) is displayed in Figure 4.14

(right). It is easy to see that g is a subalgebra of the seaweed g′ ⊆ gl(7) of type 3|1|3
2|3|2 .
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Figure 4.14: Construction of pB3 ({α3} | {α2})

In general, the seaweed pBn ({αi1 , · · · , αik} | {αj1 , · · · , αjt}) with is < is+1 and

js < js+1 is a subalgebra of the seaweed g ⊆ gl(2n+ 1) of type

i1|i2 − i1| · · · |ik − ik−1|2n+ 1− 2ik|ik − ik−1| · · · |i2 − i1|i1
j1|j2 − j1| · · · |jt − jt−1|2n+ 1− 2jt|jt − jt−1| · · · |j2 − j1|j1

. (4.7)

As in Cn, we introduce the meander MB
n defined on n vertices instead of the full

meander on 2n+ 1 vertices to capitalize on the symmetry of so(2n+ 1).

Definition 4.4.3. Let g = pBn ({αi1 , · · · , αik} | {αj1 , · · · , αjt}) with is < is+1 and

js < js+1. The meander MB
n is defined identically to the meander MC

n associated

with pCn ({αi1 , · · · , αik} | {αj1 , · · · , αjt}). The tail and aftertail in MB
n are defined

the same as for MC
n .

Example 4.4.4. Let g = pB9 ({α1, α2, α5} | {α3, α6, α7}). The meander MB
n asso-

ciated with g is illustrated in Figure 4.15 (right). The bars and numbers in Figure

4.15 (left) are not part of the meander itself, rather are visual aids for the meander

construction.
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1 1 3

3 3 1

Figure 4.15: Meander MB
9 associated with pB9 ({α1, α2, α5} | {α3, α6, α7})

By Definition 4.4.14, we have

Ta = {v6, v7, v8, v9}, Tb = {v8, v9}, Tg = {v6, v7}, and T ag = {v8, v9}.

As in gl(n), we can visualize the meander within the seaweed by mapping vi to

ei,i (see Figure 4.23). The tail vertices are colored blue and the aftertail vertices are

colored red.
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Figure 4.16: Meander MB
9 visualized within the seaweed pB9 ({α1, α2, α5} | {α3, α6, α7})
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The approach used to construct a regular functional in Type-B is exactly as

it is in Type-C: to take a sum over a functional defined on the aftertail compo-

nent, functionals defined on the tail components, and the typical functionals F ci on

components of M which do not interact with the tail.

4.4.1 Type-B Regular Functionals

To begin, we must once again know how restricting to algebras in so(2n+ 1) affects

the index of a seaweed. The effect is identical to that which occurs in Type-C.

Theorem 4.4.5 (Coll, Hyatt, and Magnant [12]; Panyushev and Yakimova [26]).

If g = pBn (Ψ1 | Ψ2) is a seaweed of Type-B, then

ind g = 2C + P̃ ,

where C is the number of cycles and P̃ is the number of paths and isolated points

with zero or two endpoints in the tail of the meander MB
n associated with g.

Theorem 4.4.5 yields the following immediate Corollary. The proof carries over

mutatis mutandis from the Type-C case (see Theorem 4.3.6).

Theorem 4.4.6. If g = Bn, then

ind g = n.

As in Section 4.3, we only consider Type-B functionals F =
∑

(i,j)∈IF
e∗i,j with

i + j < 2n + 2 (i.e., strictly above the antidiagonal), a smaller functional than the

full functional F ′ =
∑

(i,j)∈IF
(e∗i,j − e∗2n+2−j,2n+2−i) such that ker(BF ) = ker(BF ′).

Theorem 4.4.7. The functional Fn of Theorem 3.3.1 is regular on Bn.

Proof. The systems of equations generated by BFn(B, ei,j − e2n+2−j,2n+2−i) = 0 on

so(2n + 1) and BFn(B, ei,j) = 0 on gl(n) for i, j ≤ n are equivalent. To prove Fn is

regular on Bn, it suffices to show that bi,j = 0 for all i ∈ [1, n], j > n. Note that

ei,n+1 − en+1,2n+1−i 7→
n+1−i∑
s=1

bn+1,s. (4.8)
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By setting the expressions on the right hand side of (4.8) equal to zero, we get a

system of equations n whose solution is bn+1,i = 0 for s ∈ [1, n] (this is seen by

induction, the base case is i = n and the induction goes down to i = 1). We get

bi,j = 0 for all (i, j) ∈ [1, n] × [n + 2, 2n + 1] through a linear algebra argument

similar to that in the proof of Theorem 3.4.1 on the set of equations

BFn(B, ej,i − e2n+2−i,2n+2−j) =
n+1−i∑
s=1

bs,j +

j−(n+1)∑
s=1

bs,2n+2−i = 0.

In conclusion, a relations matrix of ker(BFn) on Bn will be

B ⊕ (0)⊕
(
−B t̂

)
,

where B is an n× n relations matrix of ker(BFn) on gl(n).

The reduced homotopy type HB(c1, · · · , ch1 , ch1+1, · · · , ch2 , ch2+1) on g is de-

fined the same as in Type-C. We have the immediate analogue of Theorem 4.3.13.

Theorem 4.4.8. If g is a seaweed of Type-B with reduced homotopy type

HB(c1, · · · , ch1 , ch1+1, · · · , ch2 , ch2+1),

then

ind g =

h1∑
i=1

ci +

h2∑
i=1

⌊ci
2

⌋
+
ch2+1 − 1

2
.

Theorem 4.4.9. Let g be a Type-B seaweed with reduced homotopy type

HB(c1, · · · , ch1 , ch1+1, · · · , ch2 , ch2+1)

such that ci is even for all i ∈ [h1 + 1, h2 − 1]. Let F be the functional constructed

as in Theorem 4.3.9 except that if cch2
is odd, instead of adding the the functional

e∗i,j on the antidiagonal of g (note that g must have zeroes on the antidiagonal), add

the corresponding functional e∗i,n+1. Then the index of the constructed functional F

is equal to
∑

dim ker(BFci
) as in Theorem 4.3.9.

The proof requires a modification to the base case on the tail components for

the odd component.
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Modification of the tail base case. Denote by 0m the zero functional on gl(m).

Consider the seaweed pBn ({ci} | ∅), and let Fci ∈ gl(b ci
2
c)∗ and Fc ∈ gl(n− ci)∗. Let

F ′ci = Fci ⊕ 0dci/2e, and let B and B′ be relations matrices of ker(BFci
) on gl(b ci

2
c)

and ker(BFc) on gl(n− ci), respectively.

Assume that n is even, and let

F = (F ′ci ⊕ Fc) +

ci/2∑
i=1

e∗i,2n−ci+1+i.

By direct computation, B⊕ (−B t̂)⊕B′⊕ (0)⊕ (−(B′)t̂)⊕B⊕ (−B t̂) is a relations

matrix of ker(BF ).

Assume that n is odd, and let

F = (F ′ci ⊕ Fc) +

bci/2c∑
i=1

e∗i,2n−ci+1+i + e∗d ci
2
e,n+1.

By direct computation, B ⊕ (0)⊕ (−B t̂)⊕ B′ ⊕ (0)⊕ (−(B′)t̂)⊕ B ⊕ (0)⊕ (−B t̂)

is a relations matrix of ker(BF ).

We conclude this section with the following nontrivial example which demon-

strates the changes necessary in Theorem 4.3.9.

Example 4.4.10. Consider g = pB15({α5, α15} | {α1, α8, α10}). This is a subalgebra

of the seaweed of type 5|10|5|10|5
1|7|2|15|2|7|1 . The meanders MB

15 and M are shown in Figures

4.17 and 4.18, respectively, with the tail vertices and components colored blue. It

follows from Theorem 4.4.5 that ind g = 3.

Figure 4.17: Meander MB
15 associated with pB15({α5, α15} | {α1, α8, α10})
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Figure 4.18: Meander M associated with pB15({α5, α15} | {α1, α8, α10})

A functional described by Theorem 4.3.9 adapted to Type-B (using functionals

Fc from Theorem 3.3.1) is

F =e∗2,2 + e∗2,8 + e∗3,7 + e∗4,6 + e∗5,1 + e∗8,8 + e∗9,9 + e∗11,10 + e∗11,20

+ e∗12,9 + e∗12,12 + e∗13,9 + e∗13,13 + e∗13,17 + e14,8 + e∗14,16 + e∗15,7

The seaweed g is illustrated in Figure 4.19, where the indices in the tail components

are colored blue, and a black dot is placed over each index in IF . We have added

lines to emphasize the core components of g.

0
0

0
0

0
0

Figure 4.19: Indices in IF on pB15({α5, α15} | {α1, α8, α10})
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A messy computation yields the following portion of a relations matrix for ker(BF )

(see Figure 4.20). Only the entries on or above the antidiagonal are shown; the re-

maining positions should be filled in according to the symmetry in so(31). Further,

inadmissible positions of g are left blank. They are, per force, filled with zeroes.

B =



b1

0 b2 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −b2 0 0 0 0

0 0 0 0 b1 0 0 0

−b2 0 0

0 0 0

0 0 b2

0 0 0 b3 0

0 0 0 0 −b3

0 0 0 0 0 −b3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 b3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 b2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −b2 0 0



.

Figure 4.20: Top half of a relations matrix of ker(BF ) on pB15({α5, α15} | {α1, α8, α10})

4.4.2 Type-D

The difference between the root spaces ΦBn and ΦDn results in Type-D seaweeds

not always having seaweed “shape”. This problem is discussed in greater detail

in Section 5.1.1. For the remainder of this section, we assume that each seaweed

pDn (Ψ | Ψ′) is such that if αn (or αn−1) is in Ψ, then αn−1 (respectively, αn) is not

in Ψ′.

Recall that the simple Lie algebra Dn is so(2n). It has simple roots

αi = ei − ei+1 for i ∈ [1, n− 1], αn = en−1 + en.
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We denote seaweed subalgebras of Dn by pDn (Ψ | Ψ′). By direct computation, the

root system ΦDn is the set of roots{
±βi,j = ±

j∑
s=i

αs

∣∣∣∣∣ 1 ≤ i ≤ j < n

}

∪

{
±δi,j = ±

n−2∑
s=i

αs ±
n∑
s=j

αs

∣∣∣∣∣ 1 ≤ i < j ≤ n

}
.

We now compute the Chevalley basis and the root spaces gα for g = Dn. Consider

an element H = diag(h1, · · · , h2n) of the Cartan subalgebra h of Dn. It must

be true that hi = −h2n+1−i for all i. Recall from Example 4.1.4 that for any

X ∈ g, [H,X] = K, where K is the matrix [(hi − hj)xi,j]. As elements of the

dual, we have βi,j = e∗i,i − e∗j+1,j+1 and δi,j = e∗i,i + e∗j,j. Therefore, βa,b(H)X =

(ha − hb+1)X, and K = βa,b(H)X for all H ∈ h if and only if xi,j = 0 for all

(i, j) 6= (a, b+ 1), (2n− b, 2n+ 1− a). Thus,

gβi,j = span{ei,j+1 − e2n−j,2n+1−i} and g−βi,j = span{ej+1,i − e2n+1−i,2n−j}.

Similarly, δa,b(H)X = (ha + hb)X = (ha − h2n+1−b)X, and K = δa,b(H)X for all

H ∈ h if and only if xi,j = 0 for all (i, j) 6= (a, 2n+ 1− b), (b, 2n+ 1− a). Thus,

gδi,j = span{ei,2n+1−j − ej,2n+1−i} and g−δi,j = span{e2n+1−j,i − e2n+1−i,j}.

We fix the Chevalley basis for Dn to be

{xβi,j = ei,j+1 − e2n−j,2n+1−i, x−βi,j = ej+1,i − e2n+1−i,2n−j | 1 ≤ i ≤ j < n}

∪ {xδi,j = ei,2n+1−j − ej,2n+1−i, x−δi,j = e2n+1−j,i − e2n+1−i,j | i ≤ i < j ≤ n}

∪ {hαi = ei,i − e2n+1−i,2n+1−i | i ∈ [1, n]}.

See Table A.4 for the computation of the root system ΦD4 .

Example 4.4.11. Consider g = D4. The matrices in g have the following form
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with respect to the root spaces gβ for β ∈ ΦD4:

∗ gα1 gα1+α2 gα1+α2+α3 gα1+α2+α4 gα1+α2+α3+α4 gα1+2α2+α3+α4 0

g−α1 ∗ gα2 gα2+α3 gα2+α4 gα2+α3+α4 0 gα1+2α2+α3+α4

g−α1−α2 g−α2 ∗ gα3 gα4 0 gα2+α3+α4 gα1+α2+α3+α4

g−α1−α2−α3 g−α2−α3 g−α3 ∗ 0 gα4 gα2+α4 gα1+α2+α4

g−α1−α2−α4 g−α2−α4 g−α4 0 ∗ gα3 gα2+α3 gα1+α2+α3

g−α1−α2−α3−α4 g−α2−α3−α4 0 g−α4 g−α3 ∗ gα2 gα1+α2

g−α1−2α2−α3−α4 0 g−α2−α3−α4 g−α2−α4 g−α2−α3 g−α2 ∗ gα1

0 g−α1−2α2−α3−α4 g−α1−α2−α3−α4 g−α1−α2−α4 g−α1−α2−α3 g−α1−α2 g−α1 ∗


.

Now, to construct a parabolic subalgebra of Dn, one selects a set of simple roots

to omit. The effect of such an omission is demonstrated in the following example.

Example 4.4.12. Consider the seaweed g = pD4 ({α2} | ∅). As in Type-B, we

eliminate any root space from p which is reliant on the root −α2. The algebra g is

isomorphic to the parabolic p (see Figure 4.21). Evidently, g is a subalgebra of the

seaweed of type 2|4|2
8

contained in gl(8).

0
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0
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0
0

0
0*

*
*
*
*
*
*
*
*

*
*
*
*

*

*
*
*

*
*

*
*

*
*
*

*

*
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*
*
*
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*
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*
*

2

4

2

Figure 4.21: Construction of pD4 ({α2} | ∅)

In general, the seaweed pDn ({αi1 , · · · , αik} | {αj1 , · · · , αjt}) with is < is+1 and

js < js+1 is a subalgebra of the seaweeds g ⊆ gl(2n) of type

i1|i2 − i1| · · · |ik − ik−1|2n− 2ik|ik − ik−1| · · · |i2 − i1|i1
j1|j2 − j1| · · · |jt − jt−1|2n− 2jt|jt − jt−1| · · · |j2 − j1|j1

. (4.9)

Remark 4.4.13. If ik = n− 1 (or jt = n− 1), then in Type-D we will assume the

corresponding center block is actually two blocks of size one, and g is of the form

i1|i2 − i1| · · · |ik − ik−1|1|1|ik − ik−1| · · · |i2 − i1|i1
j1|j2 − j1| · · · |jt − jt−1|2n− 2jt|jt − jt−1| · · · |j2 − j1|j1

. (4.10)
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Definition 4.4.14. Let g = pDn ({αi1 , · · · , αik} | {αj1 , · · · , αjt}), with is < is+1

and js < js+1. The meander MD
n is identical to the meander MC

n associated with

pCn ({αi1 , · · · , αik} | {αj1 , · · · , αjt}), but the tail is defined different. Let Tg represent

the tail per Definition 4.3.3. Per the work of Cameron ([4]), the tail for MD
n is

defined as:

1. Tg if |ik − jt| is even or zero,

2. Tg ∪ {vmax{ik,jt}+1} if |ik − jt| is odd and max{ik, jt} 6∈ {n− 1, n},

3. Tg\{vn} if |ik − jt| is odd and max{ik, jt ∈ {n− 1, n}.

The aftertail is defined the same, and so there is the possibility to have a vertex in

both the tail and aftertail and it is possible to have a vertex between the tail and

aftertail which is in neither.

Example 4.4.15. Let g = pD9 ({α1, α2, α5} | {α3, α6}). The meander MD
9 associated

with g is illustrated in Figure 4.22 (right).

=

1 2 3

3 3

Figure 4.22: Meander MD
9 associated with pD9 ({α1, α2, α5} | {α3, α6})

By Definition 4.4.14, we have

Ta = {v6, v7, v8, v9}, Tb = {v7, v8, v9}, Tg = {v6, v7}, and T ag = {v7, v8, v9}.

As in gl(n), we can visualize the meander within the seaweed by mapping vi to

ei,i (see Figure 4.23). We color the tail vertices blue, the aftertail vertices red, and

the vertex in both purple.
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Figure 4.23: Meander MD
9 visualized within the seaweed pD9 ({α1, α2, α5} | {α3, α6})

When constructing regular functionals in Dn, the approach is similar to Bn. We

first address the aftertail and tail components. As in Type-B, special attention

is needed for the tail components of odd size, but type-D also requires additional

definition for any component which might have a vertex in both the tail and after-

tail and any component which might not be contained entirely in the tail. Every

component which does not interact with the tail is embedded as in Definition 3.2.5.

4.4.3 Type-D Regular Functionals

To begin, we must know how restricting to algebras in so(2n) affects the index of a

seaweed.

Theorem 4.4.16 (Cameron [4]). If g = pDn (Ψ1 | Ψ2) is a seaweed of Type-D, then

ind g = 2C + P̃ ,

where C is the number of cycles and P̃ is the number of paths (and isolated points)

with zero or two endpoints in the tail of the meander MD
n associated with g.
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Theorem 4.4.16 yields the following immediate Corollary. The proof carries over

mutatis mutandis from the Type-C case (See Theorem 4.3.6).

Theorem 4.4.17. If g = Dn, then

ind g = n.

As in Section 4.3, we only consider Type-D functionals F =
∑

(i,j)∈IF
e∗i,j with

i + j < 2n + 2 (i.e., strictly above the antidiagonal), a smaller functional than the

full functional F ′ =
∑

(i,j)∈IF
(e∗i,j − e∗2n+2−j,2n+2−i) such that ker(BF ) = ker(BF ′).

The following theorem is the analogue of theorem 4.4.7.

Theorem 4.4.18. The functional Fn of Theorem 3.3.1 is regular on Dn.

We have the immediate analogue of Definition 4.3.11 in Type-D to construct a

reduced homotopy type HD(c1, · · · , ch1 , ch1+1, · · · , ch2 , ch2+1, ch2+2, ch2+3) on g.

Definition 4.4.19. Let g be a seaweed subalgebra of Dn with reduced meander MD
n

and full meander M . Color the vertex in both the tail and aftertail (if present)

purple, color the vertex after the tail but before the aftertail (if any) green, color

any remaining tail vertices blue and any remaining aftertail vertices red. Consider

every component whose vertex set contains a colored vertex. Color the component

containing the purple vertex purple, the component containing the green vertex green,

and then any other components in the tail or aftertail blue or red, respectively.

Eliminate any arcs and vertices ot the right of vn in M which are not colored. This

produces a meander M ′ on I vertices with I ∈ [n, 2n]. Apply Lemma 2.3.1 to M ′

to unwind it, and in each Component Elimination move C(c), color c the color of

the component removed. Then HD(c1, · · · , ch1 , ch1+1, · · · , ch2 , ch2+1, ch2+2, ch2+3)

is the reduced homotopy type of a Type-D seaweed.

Remark 4.4.20. Note that at most one of ch2+1, ch2+2,and ch2+3 can be nonzero,

depending on the tail adjustments (if any) made to MD
n .

Example 4.4.21. Consider pD9 ({α1, α2, α5} | {α3, α6}) of Example 4.4.15. The

colored meander M is illustrated in Figure 4.24 and the reduced homotopy type is

HD(1, 1,1,6).
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Figure 4.24: Colored meander M of pD9 ({α1, α2, α5} | {α3, α6})

Example 4.4.22. Consider pD9 ({α3, α9} | {α1, α2, α6}). The colored meander M is

illustrated in Figure 4.25 and the reduced homotopy type is HD(1,1,2).

Figure 4.25: Colored meander M of pD9 ({α3, α9} | {α1, α2, α6})

We have the following analogue of Theorem 4.4.8.

Theorem 4.4.23. If g is a seaweed of Type-D with reduced homotopy type

HD(c1, · · · , ch1 , ch1+1, · · · , ch2 , ch2+1, ch2+2, ch2+3),

then

ind g =

h1∑
i=1

ci +

h2∑
i=1

⌊ci
2

⌋
+
ch2+1 − 2

2
+

⌊
ch2+2 − 2

2

⌋
+
ch2+3

2
.

Theorem 4.4.24. Let g be a Type-D seaweed with reduced homotopy type

HD(c1, · · · , ch1 , ch1+1, · · · , ch2 , ch2+1, ch2+2, ch2+3)

such that ci is even for all i ∈ [h1 + 1, h2] and ch2+1 = ch2+2 = ch2+3 = 0. The

functional constructed as in Theorem 4.3.9 is regular.

The proof is exactly as in Type-B.
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Chapter 5

Future Work

5.1 Closing the Problem

The most natural next step is to close the problem of naming regular functionals for

the few seaweeds in Type-B and Type-D which have not been handled. We have

the following conjectures and next steps.

Conjecture 5.1.1. Let g be a Type-B seaweed with reduced homotopy type

HB(c1, · · · , ch1 , ch1+1, · · · , ch2 , ch2+1).

Fix functionals Fci ∈ gl(ci)
∗ for all i ∈ [1, h1], Fci ∈ gl(b ci

2
c) for i ∈ [h1 + 1, h2], and

Fch2+1
∈ gl(

ch2+1−1

2
). For i ∈ [h1 + 1, h2], define recursively

Dh2+1−i = Dh2+1−(i−1) ∪

{
n+ 1 +

i−1∑
s=1

ch2+1−s +
(⌊ch2+1−i

2

⌋
+ 1
)}

with Dh2 = {n+ 1}. The adjusted framework to construct a functional F on g is

such that anytime the framework in Theorem 4.3.9 requires the use of a functional

e∗i,j on the antidiagonal of g, replace e∗i,j with
∑

s∈Dh2+1−t
e∗i,s, where ch2+1−t is the tail

component for which e∗i,j is in Pch2+1−t. Then dim ker(BF ) =
∑
i = 1h2+1 dim ker(BFci

)

over the reduced homotopy type components ci.

Remark 5.1.2. This framework is not one such that ker(BF ) is a subalgebra of the

core C associated with g.
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Example 5.1.3. Consider pB20({α3, α7, α14, α16, α19, α20} | ∅). The functional de-

scribed in Conjecture 5.1.1 using the functionals Fn of Theorem 3.3.1 is F =∑
(i,j)∈IF

e∗i,j, where IF is illustrated in Figure 5.1. This functional is regular. Only

the portion of g on or above the antidiagonal is illustrated in Figure 5.1.
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0

Figure 5.1: Indices in IF for pB20({α3, α7, α14, α16, α19, α20} | ∅)

Conjecture 5.1.4. Let g be a Type-D seaweed with reduced homotopy type

HD(c1, · · · , ch1 , ch1+1, · · · , ch2 , ch2+1, ch2+2, ch2+3)

such that ch2+1 = 0 and if ch2+2 6= 0, ch2+2 is odd. Fix functionals Fci ∈ gl(ci)
∗ over

i ∈ [1, h1] ∪ {t ∈ [h1 + 1, h2] | ct is odd } and Fci ∈ gl( ci
2

)∗ over i ∈ [h1 + 1, h2] with

ci even. If ch2+3 6= 0, fix Fch2+3
∈ gl(

ch2+3

2
)∗; if ch2+2 6= 0, fix Fch2+2

∈ gl(ch2+2− 2)∗.

Define Dh2+1−i over i ∈ [1, h2] as in Conjecture 5.1.1 with Dh2 = ∅. Construct a

functional F ∈ g∗ such according to the framework in Theorem 4.3.9, replacing any

e∗i,j on the antidiagonal of g with e∗i,I for I ∈ Dh2+1−i\Dh2+1−(i−1) for any component

in the tail, and embed the functional Fch2+2
+ e∗ch2+2,1

to the core blocks of ch2+2. The

functional F constructed in this way is such that dim ker(BF ) =
∑h2+3

i=1 dim ker(BFci
)

over the reduced homotopy type components ci.

Remark 5.1.5. As in Conjecture 5.1.1, the functional F constructed according to

Conjecture 5.1.4 is not necessarily such that ker(BF ) is a subalgebra of the core C

associated with g.
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Example 5.1.6. Consider g = pD11({α2, α5, α6, α11} | ∅). The reduced homotopy

type of g is HD(2,3,1,5). The functional described by Conjecture 5.1.4 using the

functionals Fn of Theorem 3.3.1 is F =
∑

(i,j)∈IF
e∗i,j, where IF is illustrated in

Figure 5.2. This functional is regular. Note that only the portion of g on or above

the antidiagonal is illustrated in Figure 5.2.
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Figure 5.2: Indices in IF for pD11({α2, α5, α6, α11} | ∅).

To close the problem for Type-D seaweeds, it suffices to determine how to embed

functionals to components ch2+1 for odd and even sizes and to address how to embed

functionals to components ch2+2 of even size. These are the new basis steps for the

framework in Type-B and Type-D. The proofs for the basis steps will be inductive

on components of the tail. Further, there are two more classes of seaweeds we aim

to develop regular functionals on:

1. seaweed subalgebras of Dn which do not have seaweed “shape” (i.e. pDn (Ψ | Ψ′)
with αn in either Ψ or Ψ′ and αn−1 in the other, but neither is in both – see

Section 5.1.1), and

2. seaweed subalgebras of the exceptional Lie algebras, for which the meandric

machinery has not yet been developed.

The final thing to consider is an optimization of this procedure. In Section 3.4,

we provide seven additional regular functionals on gl(n) which are all smaller than
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Fn, as this is computationally better. It would be interesting to explore whether or

not there is a “smallest” (minimal) functional Sn on gl(n) and if there is a way to

prove a minimum number of indices needed in ISn for Sn to be regular on gl(n).

5.1.1 Discussion of Seaweeds without Seaweed “Shape”

By examining the root space matrix in Example 4.4.11, the natural question arises:

what happens when we exclude α3 but not α4? The matrix form of pD4 (∅ | {α3}) is

illustrated in Figure 5.3.

0
0

0
0

0
0

0
0*

*
*
*
*
*
*

*
*
*
*
*
*

*

*
*
*
*
*

*
*

*

*
*
*

*
*
*

*
*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

Figure 5.3: Matrix form of pD4 (∅ | {α3})

Due to work by Cameron [4], and Panyushev and Yakimova (see [19]), we under-

stand that there is only one situation when the resulting seaweed is not isomorphic

to a standard seaweed with seaweed shape (as defined in Definition ??. Assume

αn−1 ∈ Ψ. One of the following four cases must be true:

1. αn−1, αn ∈ Ψ′,

2. αn−1 ∈ Ψ′ and αn 6∈ Ψ′,

3. αn ∈ Ψ′ and αn−1 6∈ Ψ′,

4. αn−1, αn 6∈ Ψ′.

Through examination of the Dynkin diagrams, under the isomorphism which switches

αn−1 and αn, the seaweeds in cases (1), (2), and (4) are isomorphic to a seaweed
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with seaweed shape. Therefore, the only situation which produces a seaweed which

is not isomorphic to a standard seaweed of type a1|···|am
b1|···|bt in gl(2n) occurs in case (3).

5.2 More Work with Functionals

The framework described in Chapter 3 was inspired by observing how the cascade

functional changed under the winding-up of a Type-A seaweed. In Type-A the cas-

cade creates a functional which sums over functionals on the indices of the peaks of

the blocks in a seaweed g. While this is not demonstrated in either method outlined

in Chapter 3, it seems to point to a third method of constructing functionals.

Definition 5.2.1. Let g be a seaweed with homotopy type H(c1, · · · , ch), and let

Fci ∈ gl(ci)
∗, for all i. Define the functionals

F+
ci

=
∑

(i,j)∈IF
i≤j

e∗i,j

and

F−ci =
∑

(i,j)∈IF
i≥j

e∗i,j.

Embed F+
ci

into a ci × ci block in the core of g such that the vertex vAI corresponds

to an endpoint in the component meander on the path ci. Embed (F−ci )
r into the

ci × ci block which corresponds to the other endpoint for appropriate rotation based

on main diagonal or antidiagonal functionals in peaks.

Conjecture 5.2.2. The functional F constructed according to Definition 5.2.1 is

such that dim ker(BF ) =
∑h

i=1 dim ker(BFci
).

Remark 5.2.3. It is important to note (see Examples B.2.7 and B.2.8) that the

framework described in Definition 5.2.1 is not necessarily one for which ker(BF ) is

a subalgebra of the core of g.
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If Conjecture 5.2.2 is true, then the cascade on seaweeds of Type-A and Type-C

is constructed via Definition 5.2.1 through the use of the functionals

Fci =

bci/2c∑
s=1

(e∗i,ci+1−i + e∗ci+1−i,i).

Substantial empirical evidence suggests the following conjectures.

Conjecture 5.2.4. The cascade functional ϕg succeeds on any classical simple Lie

algebra g if and only if g = A1 or g = A2. In fact, the dimension of ker(Bϕg) is as

follows.

(1) In Type-A,

ker(BϕAn
) =span({ei,j + en+2−i,n+2−j | i ∈ [1, n], i 6= bn/2c, j ∈ [1, bn/2c], i 6= j}

∪ {ei,i + en+2−i,n+2−i − P | i ∈ [1, bn/2c]}),

where P = en
2
,n
2

+ en
2

+1,n
2

+1 if n is even and P = 2edn
2
e,dn

2
e if n is odd. It follows

that dim ker(BϕAn
) = 2

(
bn

2
c
)2 − (n mod 2). Therefore, ϕAn is regular on An for

n ∈ {1, 2}. This is verified through direct computation as a relations matrix Bn for

ker(BϕAn
) for n ∈ {1, 2} is

B1 =

(
0 b1

b1 0

)
, and B2 =


b1 0 b2

0 −2b1 0

b2 0 b1

 .

(2) In Type-C,

ker(BϕCn
) =span({ei,j − ej,i − e2n+1−j,2n+1−i + e2n+1−i,2n+1−j | i, j ∈ [1, n], i 6= j}

∪ {ei,j + ej,i + e2n+1−i,2n+1−j + e2n+1−j,2n+1−i

| i ∈ [1, n], j > n, i+ j ≤ 2n+ 1}).

It follows that dim ker(BϕCn
) = n2.
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(3) In Type-B,

ker(B
Bn

) =span({ei,j + ej,i − e2n+2−j,2n+2−i − e2n+2−i,2n+2−j

| i ∈ [1, n] ∪ [n+ 2, 2n+ 1], i+ j < 2n+ 2, i 6= j}

∪ {ei,n+1 − en+1,2n+2−i + (−1)i+1(en+1,i − e2n+2−i,n+1) | i ∈ [1, n]}).

It follows that dim ker(BϕBn
) = n2.

(4) In Type-D,

ker(BϕDn
) =span{ei,j + ej,i − e2n+1−i,2n+1−j − e2n+1−j,2n+1−i

| i ∈ [1, 2n], i+ j < 2n+ 1, i 6= j}.

It follows that dim ker(BϕDn
) = n2 − n.

Conjecture 5.2.5. (Obstruction Theory)

(1) If g is a Type-A seaweed with homotopy type H(c1, · · · , ch), then the cascade

functional fails if there exists i with ci ≥ 4.

(2) If g is a Type-BCD seaweed with reduced homotopy type

HC(c1, · · · , ch1 , ch1+1, · · · , ch2 , ch2+1),

then the cascade functional fails if there exists i ∈ [1, h1] with ci ≥ 4, or if there

exists i ∈ [h1 + 1, h2] with ci ≥ 5, or if ch2+1 ≥ 2.

From the fact that the zero functional is regular on gl(1), we have the following

Theorem.

Theorem 5.2.6. Let g be a Type-A or Type-C seaweed with homotopy type H(1, · · · , 1).

Then ϕg is regular on g.

The proof of Theorem 5.2.6 follows from the fact that the functional ϕg is equal

to the functional constructed in Chapter 3. By Theorem 4.2.3, a Type-A seaweed

g is Frobenius if and only if the meander associated with g consists of exactly one
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path (i.e., is of homotopy type H(1)). By Theorems 4.3.5, 4.4.5, and 4.4.16, a Type-

BCD seaweed g is Frobenius if and only if the meander MBCD
n associated with g

is a forest rooted in the tail (i.e., is of reduced homotopy type HC(1, · · · ,1)). By

Theorem 5.2.6, we have the following immediate corollary.

Theorem 5.2.7. If g is a Frobenius seaweed subalgebra of a classic Lie algebra,

then the cascade functional ϕg is regular on g.

Of further interest to investigate is the method in which functionals are embedded

in the frameworks developed in Chapter 3. Given F ∈ gl(c)∗, if F =
∑

(i,j)∈IF
ci,je

∗
i,j,

let IF =
∑

(i,j)∈IF
ci,jei,j be the c× c coefficient matrix whose entry in position

(i, j) is the coefficient of e∗i,j in F .

Conjecture 5.2.8. Let g ⊆ gl(n) be a seaweed and let F ∈ g∗ have coefficient

matrix IF . For any P ∈ GL(n), the functional F ′ ∈ (P−1gP )∗ with coefficient

matrix P−1IFP is such that dim ker(BF ) = dim ker(BF ′).

Let Ac =
∑c

i=1 ei,2n+1−i and Ic be the identity matrix. When embedding func-

tionals in Chapter 3, the funcitonal Fc whose coefficients form the coefficient ma-

trix IcIF Ic = (Ic)
−1IF Ic is embedded in the core if the main diagonal function-

als (i.e., Ic) are added, and the functional FR
c whose coefficients form the matrix

AcIFAc = (Ac)
−1IFAc is embedded in the core if the antidiagonal funtionals (i.e.,

Ac) are added. This may point to a more general approach to building a framework

which represents the winding-up of functionals. It may also explain why the method

outlined in Definition 5.2.1 is such that ker(BF ) is not a subalgebra of the core of g.

Similarly, while we were not interested in an explicit basis for ker(BF ) in any

part of this paper, the methods outlined in Chapter 3 name a basis. Exploration of

this basis may provide insight to other problems in the field.

5.3 Quasireductive Lie Algebras

A quasi-reductive Lie algebra (see Baur and Moreau [3], and Moreau and Yaki-

mova [23]) is a Lie algebra for which there exists f ∈ g∗ of reductive type (i.e.,
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a functional such that g(f)/z is a reductive Lie algebra whose center consists of

semisimple elements of g, where z is the center of g and

g(f) = {X ∈ g | ad∗X ◦ f = 0},

where ad∗ is the coadjoint representation of g).1 Although they use different ter-

minology, Moreau and Yakimova (see [23]) explicitly compute the Maximal Re-

ductive Stabilizer (“MRS”), which is the stabilizer of f , of any quasi-reductive

seaweed g using a meander-type mechanism. They note that when it exists, the

MRS is essentially unique and is a conjugation invariant. (The conjugation takes

place over the associated algebraic group.) The homotopy type of a quasi-reductive

seaweed can be seen explicitly in the matrix representation of the MRS. It is of

important note that seaweeds in Type-A and Type-C are quasi-reductive. It follows

that the homotopy type is also a conjugation invariant in Type-A and Type-C. We

conjecture that this is true more generally – i.e., in Type-B and Type-D.

Conjecture 5.3.1. The homotopy type is a conjugation invariant in all the classical

cases.

5.4 Unbroken Spectrum of a Frobenius Seaweed

Of keen current interest is the spectrum of a Frobenius Lie algebra g (see [18] and

[14]). This is the spectrum of eigenvalues associated with adX ∈ g∗ (where adX

is the adjoint endomorphism, see Definition B.2.1), where X is a principal element

of g (i.e., an element of g such that F ◦ adX = F ). Generally, the spectral values

of a Frobenius Lie algebra take on any value in the ground field. (See [14], for

examples.) But when g is also a seaweed, the eigenvalues must be integers (see

[21]). Topical work on the spectrum has established that in the classical cases, the

1Although the definition of quasi-reductive may seem overly technical and abstruse, it captures

a great deal of tangible information about the Lie algebra. For example, recent work by Ammari

[2] establishes that the rigidity of a seaweed is equivalent to the quasi-reductivity of the seaweed.

Although this does not preclude the existence of Lie cohomolgy it is suggestive that such Lie

algebras are cohomologically inert – which is known to be true in the Type-A case (see [17]).
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spectrum is, in fact, an unbroken sequence of integers centered about one-half for

seaweed algebras in Type-A (see [10]), Type-B and Type-C (see [8]), and Type-D

(see [5]). Extensive simulations suggest that this sequence is unimodal (see [12]).

The techniques of building up a functional via the winding up moves may be useful

for analytically tracking what happens to the spectrum of a Frobenius algebra as

the moves are applied - and may give insight into what geometric property of the

associated Lie group the unbroken spectrum of the Lie algebra is manifesting.
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Appendix A

Root System Calculations

We include some example calculations of the full root system for the classical Lie

algebras An, Bn, Cn, and Dn. The positive roots of every system are generated

through reflections in the hyperplane about the simple roots – our chosen basis for

the system. Recall that we already provide the simple roots for each algebra in

Table 4.1. The calculations for A4, B4, C4, and D4 are detailed below.

Root β Simple Root Vector sα1(β) sα2(β) sα3(β) sα4(β)

Coefficients

α1 (1,0,0,0) (1,-1,0,0,0) −α1 β1 := α1 + α2 α1 α1

α2 (0,1,0,0) (0,1,-1,0,0) β1 −α2 β2 := α2 + α3 α2

α3 (0,0,1,0) (0,0,1,-1,0) α3 β2 −α3 β3 := α3 + α4

α4 (0,0,0,1) (0,0,0,1,-1) α4 α4 β3 −α4

β1 (1,1,0,0) (1,0,-1,0,0) α2 α1 β4 := β1 + α3 β1

β2 (0,1,1,0) (0,1,0,-1,0) β4 α3 α2 β5 := β2 + α4

β3 (0,0,1,1) (0,0,1,0,-1) β3 β5 α4 α3

β4 (1,1,1,0) (1,0,0,-1,0) β2 β4 β1 β6 := β4 + α4

β5 (0,1,1,1) (0,1,0,0,-1) β6 β3 β5 β2

β6 (1,1,1,1) (1,0,0,0,-1) β5 β6 β6 β4

Table A.1: Positive roots in ΦA4
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Root β Simple Root Vector sα1(β) sα2(β) sα3(β) sα4(β)

Coefficients

α1 (1,0,0,0) (1,-1,0,0) −α1 β1 := α1 + α2 α1 α1

α2 (0,1,0,0) (0,1,-1,0) β1 −α2 β2 := α2 + α3 α2

α3 (0,0,1,0) (0,0,1,-1) α3 β2 −α3 β3 := α3 + 2α4

α4 (0,0,0,1) (0,0,0,1) α4 α4 β4 := α3 + α4 −α4

β1 (1,1,0,0) (1,0,-1,0) α2 α1 β5 := β1 + α3 β1

β2 (0,1,1,0) (0,1,0,-1) β5 α3 α2 β6 := β2 + 2α4

β3 (0,0,1,2) (0,0,1,1) β3 β6 β3 α3

β4 (0,0,1,1) (0,0,1,0) β4 β7 := β4 + α2 α4 β4

β5 (1,1,1,0) (1,0,0,-1) β2 β5 α3 β8 := β5 + 2α4

β6 (0,1,1,2) (0,1,0,1) β8 β3 β9 := β6 + α3 β2

β7 (0,1,1,1) (0,1,0,0) β10 := β7 + α1 β4 β7 β7

β8 (1,1,1,2) (1,0,0,1) β6 β8 β11 := β8 + α3 β5

β9 (0,1,2,2) (0,1,1,0) β11 β9 β6 β9

β10 (1,1,1,1) (1,0,0,0) β7 β10 β10 β10

β11 (1,1,2,2) (1,0,1,0) β9 β12 := β11 + α2 β8 β11

β12 (1,2,2,2) (1,1,0,0) β12 β11 β12 β12

Table A.2: Positive roots in ΦB4

Root β Simple Root Vector sα1(β) sα2(β) sα3(β) sα4(β)

Coefficients

α1 (1,0,0,0) (1,-1,0,0) −α1 β1 := α1 + α2 α1 α1

α2 (0,1,0,0) (0,1,-1,0) β1 −α2 β2 := α2 + α3 α2

α3 (0,0,1,0) (0,0,1,-1) α3 β2 −α3 β3 := α3 + α4

α4 (0,0,0,1) (0,0,0,2) α4 α4 β4 := 2α3 + α4 −α4

β1 (1,1,0,0) (1,0,-1,0) α2 α1 β5 := β1 + α3 β1

β2 (0,1,1,0) (0,1,0,-1) β5 α3 α2 β6 := β2 + α4

β3 (0,0,1,1) (0,0,1,1) β3 β6 β3 α3

β4 (0,0,2,1) (0,0,2,0) β4 β7 := β4 + 2α2 α4 β4

β5 (1,1,1,0) (1,0,0,-1) β2 β5 β1 β8 := β5 + α4

β6 (0,1,1,1) (0,1,0,1) β8 β3 β9 := β6 + 2α3 β2

β7 (0,2,2,1) (0,2,0,0) β10 := β7 + 2α1 β4 β7 β7

β8 (1,1,1,1) (1,0,0,1) β6 β8 β11 := β8 + α3 β5

β9 (0,1,2,1) (0,1,1,0) β11 β9 β6 β9

β10 (2,2,2,1) (2,0,0,0) β7 β10 β10 β10

β11 (1,1,2,1) (1,0,1,0) β9 β12 := β11 + α2 β8 β11

β12 (1,2,2,1) (1,1,0,0) β12 β11 β12 β12

Table A.3: Positive roots in ΦC4
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Root β Simple Root Vector sα1(β) sα2(β) sα3(β) sα4(β)

Coefficients

α1 (1,0,0,0) (1,-1,0,0) −α1 β1 := α1 + α2 α1 α1

α2 (0,1,0,0) (0,1,-1,0) β1 −α2 β2 := α2 + α3 β3 := α2 + α4

α3 (0,0,1,0) (0,0,1,-1) α3 β2 −α3 α3

α4 (0,0,0,1) (0,0,1,1) α4 β3 α4 −α4

β1 (1,1,0,0) (1,0,-1,0) α2 α1 β4 := β1 + α3 β5 := β1 + α4

β2 (0,1,1,0) (0,1,0,-1) β4 α3 α2 β6 := β2 + α4

β3 (0,1,0,1) (0,1,0,1) β5 α4 β6 α2

β4 (1,1,1,0) (1,0,0,-1) β2 β4 β1 β7 := β4 + α4

β5 (1,1,0,1) (1,0,0,1) β3 β5 β7 β1

β6 (0,1,1,1) (0,1,1,0) β7 β6 β3 β2

β7 (1,1,1,1) (1,0,1,0) β6 β8 := β7 + α2 β5 β4

β8 (1,2,1,1) (1,1,0,0) β8 β7 β8 β8

Table A.4: Positive roots in ΦD4

In general, we have the following.

Theorem A.0.1. The root systems for the classical Lie algebras are as follows.

(1) The root system for An is a subset of the real inner product space Rn+1. If

{αi}ni=1 is the set of simple roots for An, then ΦAn has n(n+1)
2

positive roots, each of

the form ei − ej =
∑j−1

s=i αs over i, j ∈ [1, n+ 1] with i < j.

(2) The root system for Bn is a subset of the real inner product space Rn. If

{αi}ni=1 is the set of simple roots for Bn, then ΦBn has n2 positive roots, each of one

of the following three forms over i, j ∈ [1, n] with i < j:

1. ei − ej =
∑j−1

s=i αs,

2. ei =
∑n

s=i αs, and

3. ei + ej =
∑n

s=i αs +
∑n

s=j αs.
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(3) The root system for Cn is a subset of the real inner product space Rn. If

{αi}ni=1 is the set of simple roots for Cn, then ΦCn has n2 positive roots, each of one

of the following three forms over i, j ∈ [1, n] with i < j:

1. ei − ej =
∑j−1

s=i αs,

2. 2ei = αn + 2
∑n−1

s=i αs, and

3. ei + ej =
∑n−1

s=i αs +
∑n

s=j αs.

(4) The root system for Dn is a subset of the real inner product space Rn. If

{αi}ni=1 is the set of simple roots for Dn, then ΦDn has n(n− 1) positive roots, each

of one of the following forms for i, j ∈ [1, n] with i < j:

1. ei − ej =
∑j−1

s=i αs, and

2. ei + ej =
∑n−2

s=i αs +
∑n

s=j αs.
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Appendix B

The Cascade

It has previously been noted (see [3]) that Kostant’s cascade can be used to construct

a regular functional on any seaweed. In this appendix, we outline how the cascade

works, provide example calculations using it, and detail explicit counterexamples to

the cascade producing a regular functional in certain cases.

B.1 The Cascade

The cascade is a method of constructing a subset Γ ⊆ Φ of strongly orthogonal

roots (i.e. a subset of orthogonal roots such that for α, β ∈ Γ, if α 6= β, then

α ± β 6∈ Φ ∪ {0}). Given a subset Π′ of the simple roots Π, the cascade KΠ′ is

defined by induction on the cardinality of Π′ as follows:

1. K∅ := ∅

2. If π′1, · · · , π′r are the connected components of Π′ (connected according to the

Dynkin diagram), then

KΠ′ =
r⋃
i=1

Kπ′r

3. If Π′ is connected, then KΠ′ := {Π′}∪KT , where T := {α ∈ Π′ | 〈α, ε∨Π′〉 = 0},
where ε∨Π′ is the highest root generated by Π′ (i.e. the root with the largest

sum of coefficients when expressed as a sum of simple roots).
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Remark B.1.1. It is important to note that KΠ′ is a set of sets of simple roots,

not a set of roots. The set of strongly orthogonal roots the cascade points to is the

set {βK | K ∈ KΠ′}, where βK is the highest root generated by the set K in KΠ′.

Note that 〈α, β〉 = 0 is equivalent to saying (α, β) = 0.

A table of the highest roots in each progressive step of the cascade for the simple

Lie algebras (acting on all of Π and not a proper subset) is provided by Baur and

Moreau in [3], and included here in Tables B.1 and B.2.

G2

α1 α2

ε1 := 2α1 + 3α2, ε2 := α2

F4

α1 α2 α3 α4

ε1 := 2α1 + 3α2 + 4α3 + 2α4,

ε2 := α2 + 2α3 + 2α4,

ε3 := α2 + 2α3, ε4 := α2

E6

α1 α3 α4 α5 α6

α2 ε1 := α1 + 2α3 + 3α4 + 2α5 + α6 + 2α2,

ε2 := α1 + α3 + α4 + α5 + α6,

ε3 := α3 + α4 + α5, ε4 := α4

E7

α1 α3 α4 α5 α6 α7

α2 ε1 := 2α1 + 3α3 + 4α4 + 3α5 + 2α6 + α7 + 2α2,

ε2 := α3 + 2α4 + 2α5 + 2α6 + α7 + α2,

ε3 := α3 + 2α4 + α5 + α2, ε4 := α7,

ε5 := α2, ε6 := α3, ε7 := α5

E8

α1 α3 α4 α5 α6 α7

α2 ε1 := 2α1 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8 + α2,

ε2 := 2α1 + 3α3 + 4α4 + 3α5 + 2α6 + 1α7 + 2α2,

ε3 := α3 + 2α4 + 2α5 + 2α6 + α7 + α2,

ε4 := α3 + α4 + α5 + α2, ε5 := α7,

ε6 := α2, ε7 := α3, ε8 := α5

Table B.1: Highest roots in the cascade calculation for the exceptional Lie algebras
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A`, ` ≥ 1
α1 α2 α`−2 α`−1 α`

· · · {
εi := αi + · · ·+ αi+(`−2i+1) | i ≤

⌊
`+1

2

⌋}
B`, ` ≥ 2

α1 α2 α`−2 α`−1 α`
· · · {εi := αi−1 + 2αi + · · ·+ 2α` | i even , i ≤ `− 1}

∪{εi := αi | i odd , i ≤ `}

C`, ` ≥ 3
α1 α2 α`−2 α`−1 α`

· · · {εi := 2αi + · · ·+ 2α`−1 + α` | i even , i ≤ `} ∪ {ε` := α`}

D`, ` even, ` ≥ 4

α1 α2 α`−3 α`−2

α`

α`−1
· · ·

{εi := αi−1 + 2αi + · · ·+ 2α`−2 + α`−1 + α` | i even , i < `− 1}
∪{εi := αi | i odd , i < `} ∪ {ε` := α`}

D`, ` odd, ` ≥ 4

α1 α2 α`−3 α`−2

α`

α`−1
· · ·

{εi := αi−1 + 2αi + · · ·+ 2α`−2 + α`−1 + α` | i even , i < `− 1}
∪{εi := αi | i odd , i < `} ∪ {ε`−1 := α`−2 + α`−1 + α`}

Table B.2: Highest roots in the cascade calculation for the classical Lie algebras

B.1.1 Examples

In this section, we demonstrate how the cascade operates on several example sets of

simple roots. First, we address the simple roots for the Lie algebras A4, B4, C4, D4,

and D5. These examples will be referenced in section B.2. We then demonstrate

running the cascade on proper subsets of the simple roots for the simple Lie algebras.

Example B.1.2. Consider ΠA4 (the simple roots in ΦA4). The positive roots of ΦA4

are calculated in Table A.1 of Appendix A. Evidently, β6 is the highest root in the

table. Now, we have

(β6, α1) = 1, (β6, α2) = 0, (β6, α3) = 0, (β6, α4) = 1.

Therefore, the cascade is equal to {{α1, α2, α3, α4}} ∪ K{α2,α3}. Referencing Table

A.1 once more, the highest root generated by {α2, α3} is β2. To repeat the process,

(β2, α2) = (β2, α3) = 1.

Therefore, the cascade is completed and gives the following:

{{α1, α2, α3, α4}, {α2, α3}}. (B.1)
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The set of strongly orthogonal roots the cascade points to is the set of highest roots

for each set in (B.1). In other words,

{α1 + α2 + α3 + α4, α2 + α3}.

It is easy to verify that this agrees with Table B.2.

Example B.1.3. Consider ΠB4. Referencing Table A.2 in Appendix A, we find

that β12 is the highest positive root in the system. The next step of the cascade is

to determine which simple roots are orthogonal to β12. As α2 is the only simple

root not orthogonal to β12, the cascade will be {{α1, α2, α3, α4}} ∪K{α1,α3,α4}, and

it is now sufficient to determine the highest root generated by {α1, α3, α4}. Since

{α1, α3, α4} is not connected in the Dynkin diagram for B4, by condition (2) of the

cascade construction, the cascade splits into a union of the cascade on the connected

components {α1} and {α3, α4}. The cascade on {α1} is complete. By referencing

Table A.2, the highest root generated by {α3, α4} is β3. Only α3 is orthogonal to β3.

Therefore, the cascade yields the following set

{{α1, α2, α3, α4}, {α1}, {α3, α4}, {α3}},

with set of highest roots

{α1 + 2α2 + 2α3 + 2α4, α3 + 2α4, α1, α3}.

Again, this agrees with Table B.2.

Example B.1.4. Consider ΠC4. Refering to Table A.3, the highest positive root

in ΦC4 is β10. Note that α1 is the only simple root not orthogonal to β10. The

new subset {α2, α3, α4} generates β7 as its highest root. The simple root α2 is not

orthogonal to β7, and the highest root generated by {α3, α4} is β4. Finally, α3 is not

orthogonal to β4 and the cascade gives the following results in agreement with Table

B.2:

{{α1, α2, α3, α4}, {α2, α3, α4}, {α3, α4}, {α4}},

{2α1 + 2α2 + 2α3 + α4, 2α2 + 2α3 + α4, 2α3 + α4, α4}.
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Example B.1.5. Consider ΠD4. The highest positive root in ΦD4 is β8. The roots

{α1, α3, α4} are orthogonal to β8. By examining the Dynkin diagram for D4 (see Ta-

ble 4.2), it is apparent that this set is three separate connected singleton components,

and so the cascade is complete. The result is

{{α1, α2, α3, α4}, {α1}, {α3}, {α4}},

with set of highest roots

{α1 + 2α2 + α3 + α4, α1, α3, α4}.

This agrees with Table A.4.

To highlight why n even and odd are listed separately in Table B.2, consider the

following Example B.1.6.

Example B.1.6. Consider ΠD5. The highest positive root in ΦD5 (cf., Table B.2)

is

β1 = α1 + 2α2 + 2α3 + α4 + α5 = (1, 1, 0, 0, 0).

The only simple root which is not orthogonal to β1 is α2. The next step of the

cascade splits over the two connected subsets of simple roots which result from the

elimination of α2. These sets are {α1} and {α3, α4, α5}. Now, there are two ways to

consider the latter set. With a list of the positive roots in ΦD5, it becomes obvious

that the highest root generated by these three roots is

β2 = α3 + α4 + α5 = (0, 0, 1, 1, 0).

However, this can also be seen from the fact that the portion of the Dynkin diagram

generated by these three roots is isomorphic (with appropriate relabeling of simple

roots) to the Dynkin diagram for A3. The only root in {α3, α4, α5} orthogonal to β2

is α3. Hence, the cascade on ΠD5 is

{{α1, α2, α3, α4, α5}, {α1}, {α3, α4, α5}, {α3}},

with set of highest roots

{α1 + 2α2 + 2α3 + α4 + α5, α1, α3 + α4 + α5, α3}.

This agrees with Table B.2 for Dn with n odd.
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Now, consider the following examples of subsets of the simple root systems.

Example B.1.7 (Π′ := {α1, α2, α3, α5} ⊂ ΠA5). Consider the proper subset of the

simple roots for A5 designated by Π′. There are two connected components of the

Dynkin diagram generated by Π′:

{α1, α2, α3} and {α5}.

The cascade for the second component is done. The first component is isomor-

phic to the Dynkin diagram of A3, and we know the cascade on ΠA3 will yield

{{α1, α2, α3}, {α2}}. The final set of highest roots is

{α1 + α2 + α3, α2, α5}.

Example B.1.8 (Π′ := {α1, α2, α4, α6, α7} ⊂ ΠD7). By considering the Dynkin

diagram for D7, it is evident that there are four separate connected components

generated by Π′. They are {α1, α2}, {α4}, {α6}, and {α7}. Hence, it suffices to

determine the cascade for the first connected component. This portion of the Dynkin

diagram is isomorphic to A2, and the cascade on ΠA2 is {{α1, α2}}. Therefore, the

cascade yields K (Π′) = {{α1, α2}, {α4}, {α6}, {α7}}, and the set of highest roots is

{α1 + α2, α4, α6, α7}.

Example B.1.9 (Π′ := {α1, α2, α4, α5, α6} ⊂ ΠE7). Again, we first split Π′ into a

union of the connected components:

{α1} and {α2, α4, α5, α6}.

The cascade for the latter component is equal to (with appropriate relabeling of simple

roots) the cascade on ΠA4, so we compute K (Π′) = {{α1}, {α2, α4, α5, α6}, {α4, α5}}.
The resulting set of highest roots is

{α1, α2 + α4 + α5 + α6, α4 + α5}.

Example B.1.10 (Π′ := {α1, α2, α3, α4, α6, α7, α8, α9} ⊂ ΠD9). The first connected

component of the Dynkin diagram generated by Π′ is isomorphic to A4, and so the
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cascade on this set is {{α1, α2, α3, α4}, {α2, α3}}. The second connected component

is isomorphic to D4, so referencing the calculations in Example B.1.5, the final

cascade calculation is

K (Π′) = {{α1, α2, α3, α4}, {α2, α3}, {α6, α7, α8, α9}, {α6}, {α8}, {α9}},

with set of highest roots

{α1 + α2 + α3 + α4, α2 + α3, α6 + 2α7 + α8 + α9, α6, α8, α9}.

B.2 Creating a Functional

Through the use of the Killing form (see Definition B.2.1), the dual of a seaweed g

is identified with gt (see Lemma B.2.2). This information is necessary to describe

how a set of roots (such as the set generated by the cascade) points to a specific

functional in g∗.

Definition B.2.1. Let g be a Lie algebra. For any X ∈ g, the adjoint endor-

morphism adX ∈ g∗ is defined by adX(Y ) = [X, Y ]. The symmetric, bilinear form

κ defined by

κ(X, Y ) = trace(adX ◦ adY )

for all X, Y ∈ g is the Killing form.

Lemma B.2.2. If g ⊆ gl(n) is a matrix Lie algebra, then g∗ can be identified with

gt via the map f : gt → g∗ such that

f(ej,i) = κ(ej,i, ·) = ci,je
∗
i,j,

for an appropriate nonzero constant ci,j ∈ C.

Proof. Through direct computation, we show κ(eb,a, ·) = ca,be
∗
a,b for some nonzero

constant ca,b ∈ C. Fix X = [xi,j] ∈ g. To compute trace(adej,i ◦adX), we identify the

space of n×n matrices with Cn2
and add up the coefficients of the sth basis element
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es in the image of es under this map. In other words, we consider the coefficient of

er,s in adej,i ◦ adX(er,s) = [ej,i, [X, er,s]]. This gives

[X, er,s] = Xer,s − er,sX =



x1,r

x2,r

...

−xs,1 −xs,2 · · · −xs,n
xn,r


,

where the entries −xs,t occur in row r and xt,r occur in column s. Let A = [X, er,s].

Then, in a similar fashion, we have

[ej,i, A] = ej,iA− Aej,i =



−A1,j

−A2,j

...

Ai,1 Ai,2 · · · Ai,n

−An,j


,

where the entries Ai,t occur in row j and −At,j occur in column i. If r 6= i and

s 6= j, then

[ej,i, [X, er,s]] = xi,rej,s + xs,jer,i.

If r = i but s 6= j, then

[ej,i, [X, er,s]] =

(
n∑
t=1

−xs,tej,t

)
+ xr,rej,s + xs,jer,i.

If r 6= i but s = j, then

[ej,i, [X, er,s]] = xi,rej,s +

(
n∑
t=1

−xt,ret,i

)
+ xs,ser,i.

Finally, if (r, s) = (i, j), then

[ej,i, [X, er,s]] =

(
n∑
t=1

−xs,tej,t

)
+ xi,rej,s +

(
n∑
t=1

−xt,ret,i

)
+ xs,ser,i.
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Assume that i 6= j.

When r 6= i and s 6= j, then er,s shows up in [ej,i, [X, er,s]] if j = r or i = s.

When r = j but i 6= s (which occurs for n− 1 indices (r, s)), the coefficient of er,s is

xi,j. This contributes (n− 1)xi,j to the trace calculation. Similarly, when s = i but

r 6= j (which occurs for n − 1 new indices (r, s)), the coefficient of er,s is xi,j. This

contributes (n− 1)xi,j to the calculation of the trace. Finally, if (r, s) = (j, i), then

the coefficient of er,s is 2xi,j. The total trace calculation for all the indices of the

appropriate form is 2nxi,j. When r = i and s 6= j, the basis element er,s appears in

[ej,i, [X, er,s]] if s = i. The coefficient of er,s will be xi,j. Similarly, when s = j and

r 6= i, the basis element er,s appears in [ej,i, [X, er,s]] if r = j. The coefficient of er,s

will be xi,j. Finally, if (r, s) = (i, j), then the coefficient of er,s is zero. Putting this

all together: if i 6= j, then

κ(ej,i, X) = (2n+ 2)xi,j,

making κ(ej,i, ·) = (2n+ 2)e∗i,j.

Assume that i = j.

If r 6= i and s 6= i, then er,s appears in [ei,i, [X, er,s]] when i = r or i = s. However,

both of these scenarios contradict the standing assumption, so the coefficient of er,s

must always be zero in this situation. If r = i but s 6= i, then er,s has coefficient

−xs,s + xr,r in [ei,i, [X, er,s]] for all (n− 1) choices of s. If r 6= i and s = i, then er,s

has coefficient −xr,r+xs,s in [ei,i, [X, er,s]] for all (n−1) choices of r. If (r, s) = (i, i),

then the basis element er,s has coefficient −6xi,i. Putting this all together: if i = j,

then

κ(ei,i, X) = −4xi,i,

making κ(ei,i, ·) = −4e∗i,i.

Consider the functional ϕψ1,ψ2 defined as follows.

Definition B.2.3. Let pm(ψ1 | ψ2) be a seaweed subalgebra of a Lie algebra g with

root system Φ, simple roots Π, and Chevalley basis {hα | α ∈ Π} ∪ {xα | α ∈ Φ}.
Let K1 and K2 be the set of highest roots formed from running the cascade on Π\ψ1
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and Π\ψ2 respectively. Fix vectors a ∈ C|K1| and b ∈ C|K2| with with ai, bj 6= 0 for

all i, j, and let

ua,bψ1,ψ2
=
∑
α∈K1

aixα +
∑
α∈K2

bjx−α.

Define a functional ϕ
ua,bψ1,ψ2

∈ pm(ψ1 | ψ2)∗ by

ϕ
ua,bψ1,ψ2

(x) = κ(u, x).

The set functionals formed over all choices a and b are the cascade functionals

on a given seaweed pm(Ψ1 | Ψ2).

Remark B.2.4. For the purposes of this chapter, we refer to the cascade functional,

meaning the functional defined by the vectors a and b so that the image of aier,s and

bjer,s under the killing form is exactly e∗s,r. We denote this functional by ϕg on the

given seaweed g.

B.2.1 Examples

We introduce the following examples of cascade functionals on seaweed subalgebras

of the classic Lie algebras, and we calculate explicitly the subalgebras ker(Bϕg) for

each one. For calculations of the Chevalley basis, see Sections 4.2, 4.3, 4.4, and 4.4.2

of Chapter 4.

Example B.2.5. Consider the seaweed g = pA4 ({α4} | {α2, α3}) of Example 4.2.2.

The meander associated with g, previously constructed in Example 2.1.4 and dis-

played in Figure 2.2, consists of exactly one path. Therefore, by Theorem 4.2.3 the

seaweed g has index zero, and is Frobenius.

To construct ϕg, we must first run the cascade on {α1, α2, α3}, and {α1, α4}.
The set of highest roots K1 is {α1 + α2 + α3, α2}, and the set of highest roots K2

is {α1, α4}. Therefore, we have

u =
∑
α∈K1

aixα +
∑
α∈K2

bix−α

= a1xα1+α2+α3 + a2xα2 + b1x−α1 + b2x−α4

= a1e1,4 + a2e2,3 + b1e2,1 + b2e5,4,
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where the vectors a and b are chosen according to Remark B.2.4. We then have

ϕg = κ(u, ·) = e∗1,2 + e∗4,5 + e∗4,1 + e∗3,2.

The indices of Iϕg are displayed in Figure B.1.

Figure B.1: Indices in Iϕg for g = pA4 ({α4} | {α2, α3})

We now compute dim ker(Bϕg). The image of Bϕg(B, b) for B = [bi,j] over the

basis elements b of g is calculated in Table B.3.

Basis Basis Basis

Element Bϕg(B, b) Element Bϕg(B, b) Element Bϕg(B, b)

b b b

e1,1 − e2,2 b4,1 − b1,2 − b1,2 − b3,2 e1,2 b1,1 + b3,1 − b2,2 e4,1 b4,4 − b1,1 − b1,5

e2,2 − e3,3 b1,2 + b3,2 + b3,2 e2,1 b4,2 e4,2 b1,4 + b3,4 − b2,1 − b2,5

e3,3 − e4,4 b4,1 + b4,5 − b3,2 e3,1 b4,3 − b1,2 e4,3 −b3,1 − b3,5

e4,4 − e5,5 −b4,1 − b4,5 − b4,5 e3,2 b1,3 + b3,3 − b2,2 e4,5 b4,4 − b5,1 − b5,5

Table B.3: Image of Bϕg(B, b) over basis elements b of pA4 ({α4} | {α2, α3})

If B ∈ ker(Bϕg), we require that Bϕg(B, b) = 0 for all basis elements b of g.

Setting the expressions in columns two, four, and six of Table B.3 equal to zero

yields twelve equations which, together with the assumption that B ∈ g, requires that

B can only be the zero matrix. Hence, dim ker(Bϕg) = 0, and ϕg is regular.

In Example B.2.5, ϕg is regular on g. We now include an example in Type-A

where ϕg is not regular (see Example B.2.6).
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Example B.2.6. Consider the seaweed pA3 (∅ | ∅) = A3. The cascade on ΠA3 pro-

duces a set of two roots: {α1 + α2 + α3, α2}, and the cascade functional for A3

is

ϕA3 = e∗1,4 + e∗2,3 + e∗3,2 + e∗4,1.

The indices of IϕA3
are illustrated in Figure B.2.

Figure B.2: Indices in IϕA3

The image of BϕA3
(B, b) for B = [bi,j] over all basis elements b of A3 is calculated

in Table B.4.

Basis Basis Basis

Element BϕA3
(B, b) Element BϕA3

(B, b) Element BϕA3
(B, b)

b b b

e1,1 − e2,2 b4,1 + b2,3 − b3,2 − b1,4 e1,4 b1,1 − b4,4 e3,2 b3,3 − b2,2

e2,2 − e3,3 b3,2 + b3,2 − b2,3 − b2,3 e2,1 b4,2 − b1,3 e3,4 b1,3 − b4,2

e3,3 − e4,4 b2,3 + b4,1 − b1,4 − b3,2 e2,3 b2,2 − b3,3 e4,1 b4,4 − b1,1

e1,2 b3,1 − b2,4 e2,4 b1,2 − b4,3 e4,2 b3,4 − b2,1

e1,3 b2,1 − b3,4 e3,1 b4,3 − b1,2 e4,3 b2,4 − b3,1

Table B.4: Image of Bϕg(B, b) over basis elements b of A3

If B ∈ ker(BϕA3
), then BϕA3

(B, b) = 0 for all basis elements b of A3. Setting the

expressions in columns two, four, and six of Table B.4 equal to zero yields fifteen

equations which, together with the assumption that B ∈ sl(4), requires that B must
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be of the following form:

B =


b1 b2 b3 b4

b5 −b1 b6 b7

b7 b6 −b1 b5

b4 b3 b2 b1

 .

Therefore, dim ker(BϕA3
) = 7, but we know ind A3 = 3. Hence, ϕA3 is not regular

on A3.

Example B.2.7. Consider the seaweed g = pA7 ({α4} | ∅). The cascade on ΠA7\{α4}
yields the set of roots

{α1 + α2 + α3, α2, α5 + α6 + α7, α6}.

The cascade on ΠA7 yields the set of roots

{α1 + α2 + α3 + α4 + α5 + α6 + α7, α2 + α3 + α4 + α5 + α6, α3 + α4 + α5, α4}.

Hence,

ϕg = e∗4,1 + e∗3,2 + e∗8,5 + e∗7,6 + e∗1,8 + e∗2,7 + e∗3,6 + e∗4,5.

The indices in Iϕg are illustrated in Figure B.3.

Figure B.3: Indices in Iϕg for g = pA7 ({α4} | ∅)
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Through direct computation, we get that a relations matrix B of ker(Bϕg) is

B =



b1 b2 b3 b4 0 0 b3 b4

b5 −b1 b6 b7 0 0 b6 b7

b7 b6 −b1 b5 −b7 −b6 0 0

b4 b3 b2 b1 −b4 −b3 0 0

b1 b2 b3 b4

b5 −b1 b6 b7

b7 b6 −b1 b5

b4 b3 b2 b1


.

Blank spaces are inadmissible locations of g and are, per force, filled with zeroes.

Hence, dim ker(Bϕg) = 7, but ind g = 3 by Theorem 4.2.3. Therefore, ϕg is not

regular.

The conjecture this example seems to point to is that if there is a component ci

in the homotopy type H(c1, · · · , ch) of a Type-A seaweed g such that ϕAci−1 is not

regular on sl(ci), then ϕg is not regular on g. This is discussed in greater detail in

Chapter 5.

Example B.2.8. Consider the seaweed g = pC7 ({α1, α2, α5} | {α3, α6}) of Example

4.3.4. The meander associated with g consists of a path rooted in the tail, a vertex

in the aftertail, a path disjoint from the tail, and an isolated point disjoint from both

the tail and aftertail. Hence, ind g = 3. To construct ϕg, we must first run the

cascade on {α3, α4, α6, α7} and {α1, α2, α4, α5, α7}. The set of highest roots K1 is

{α3 +α4, 2α6 +α7, α7}, and the set of highest roots K2 is {α1 +α2, α4 +α5, α7}.
Therefore, we have

u =
∑
α∈K1

aixα +
∑
α∈K2

bix−α

= a1xα3+α4 + a2x2α6+α7 + a3xα7 + b1x−α1−α2 + b2x−α4−α5 + b3x−α7

= a1(e3,5 − e10,12) + a2e6,9 + a3e7,8 + b1(e3,1 − e14,12) + b2(e6,4 − e11,9) + b3e8,7,

where the vectors a and b are chosen according to Remark B.2.4. We then have

ϕg = κ(u, ·) = e∗5,3 − e∗12,10 + e∗6,9 + e∗8,7 + e∗1,3 − e∗12,14 + e∗4,6 + e∗7,8.
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Due to the symmetry in C7, it suffices to use

ϕ′g = e∗5,3 + e∗6,9 + e∗8,7 + e∗1,3 + e∗4,6 − e∗9,11 + e∗7,8.

The indices in Iϕ′g are illustrated in Figure B.4.

Figure B.4: Indices in Iϕ′g on g = pC7 ({α1, α2, α5} | {α3, α6})

Let B = [bi,j] ∈ ker(Bϕ′g). Consider how the Kirillov form Bϕ′g(B, ·) acts on the

basis of g. These calculations are shown in Table B.5.

Basis Basis Basis

Element Bϕ′g(B, b) Element Bϕ′g(B, b) Element Bϕ′g(B, b)

b b b

e1,1 − e14,14 b1,3 e4,4 − e11,11 −b4,6 e6,6 − e9,9 b4,6 + b9,6

e1,2 − e13,14 −b2,1 − b2,3 e4,5 − e10,11 −b5,6 e7,6 − e9,8 b4,7 + b9,7 + b8,6 − b7,9 − b6,8

e1,3 − e12,14 b1,1 + b5,1 − b3,1 − b3,3 e4,6 − e9,11 b4,4 + b9,4 − b6,6 e7,7 − e8,8 2b8,7 − 2b7,8

e2,2 − e13,13 0 e5,3 − e12,10 b1,5 + b5,5 − b3,3 e7,8 b7,7 − b8,8

e2,3 − e12,13 b1,2 + b5,2 e5,4 − e11,10 −b4,3 e8,6 + e9,7 b4,8 + b9,8 + b8,9 − b6,7 − b7,6

e3,3 − e12,12 b1,3 − b5,3 e5,5 − e10,10 −b5,3 e8,7 b8,8 − b7,7

e4,3 − e12,11 b1,4 + b5,4 − b3,6 e5,6 − e9,10 b4,5 + b9,5 − b6,3 e9,6 b4,9 + b9,9 − b6,6

Table B.5: Image of basis for pC7 ({α1, α2, α5} | {α3, α6}) under Bϕ′g(B, ·)
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As B ∈ ker(Bϕ′g), we require that Bϕ′g(B, b) = 0 for all basis elements b. Set-

ting the expressions in columns two, four, and six equal to zero yields twenty-one

equations which, coupled with teh requirement that B ∈ g, produces the following

relations matrix of ker(Bϕ′g):

B =



b1 0 0

b2 0

b1

0 0 0 0

0 0 b1 0

0

0 0 b3

0 b3 0

0 0 0 0 0 0

−b1 0

0 0

0 0 −b1 0 0

−b2 0

−b1



.

Consistent with our previous examples, the blank spaces are inadmissible loca-

tions of g and are, per force, filled with zeroes. We conclude that ϕ′g is regular on

g.

In Example B.2.8, ϕ′g is regular on g. We now present an example in Type-C

where ϕg is not regular (see Example B.2.9).

Example B.2.9. Consider the simple Lie algebra C3. The functional ϕC3 described

by the cascade is

ϕC3 = e∗1,6 + e∗2,5 + e∗3,4 + e∗4,3 + e∗5,2 + e∗6,1.

The indices in IϕC3
are illustrated in Figure B.5.
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Figure B.5: Indices in IϕC3
on C3

Let B = [bi,j] ∈ ker(BϕC3
). Consider how the Kirillov form BϕC3

(B, ·) acts on

the basis of C3. These calculations are shown in Table B.6.

Basis Basis Basis

Element BϕC3
(B, b) Element BϕC3

(B, b) Element BϕC3
(B, b)

b b b

e1,1 − e6,6 2b6,1 − 2b1,6 e3,2 − e5,4 b5,3 − b3,5 − b2,4 + b4,2 e5,1 + e6,2 b6,5 + b5,6 − b1,2 − b2,1

e1,2 − e5,6 b5,1 − b1,5 − b2,6 + b6,2 e3,3 − e4,4 2b4,3 − 2b3,4 e1,6 b1,1 − b6,6

e1,3 − e4,6 b4,1 − b1,4 − b3,6 + b6,3 e1,4 + e3,6 b3,1 + b1,3 − b4,6 − b6,4 e2,5 b2,2 − b5,5

e2,1 − e6,5 b6,2 − b2,6 − b1,5 + b5,1 e1,5 + e2,6 b2,1 + b1,2 − b5,6 − b6,5 e3,4 b3,3 − b4,4

e2,2 − e5,5 2b5,2 − 2b2,5 e2,4 + e3,5 b3,2 + b2,3 − b4,5 − b5,4 e4,3 b4,4 − b3,3

e2,3 − e4,5 b4,2 − b2,4 − b3,5 + b5,3 e4,1 + e6,3 b6,4 + b4,6 − b1,3 − b3,1 e5,2 b5,5 − b2,2

e3,1 − e6,4 b6,3 − b3,6 − b1,4 + b4,1 e4,2 + e5,3 b5,4 + b4,5 − b2,3 − b3,2 e6,1 b6,6 − b1,1

Table B.6: Image of basis for C3 under BϕC3
(B, ·)

Since B ∈ ker(BϕC3
), we require that BϕC3

(B, b) = 0 for all basis elements b.

Setting the expressions in columns two, four, and six equal to zero yields twenty-one

equations which, together with the requirement that B ∈ sp(6), produces a relations

matrix B of ker(BϕC3
) of following form:

B =



0 b1 b2 b3 b4 b5

−b1 0 b6 b7 b8 b4

−b2 −b6 0 b9 b7 b3

b3 b7 b9 0 −b6 −b2

b4 b8 b7 b6 0 −b1

b5 b4 b3 b2 b1 0


.
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It follows that dim ker(BϕC3
) = 9. However, ind C3 = 3 (see Theorem 4.3.6), and

so the functional ϕC3 is not regular.

It is also true that ϕg for g = pC4 ({α4} | ∅) is not regular (we omit showing this

explicitly, the calculation is similar to the one done in Example B.2.7). Therefore,

as in Type-A, we conjecture that the cascade functional ϕg fails to be regular in

direct correspondence with some aspect of the homotopy type associated with g.

This is discussed in further detail in Chapter 5.

Example B.2.10. Consider the seaweed g = pB9 ({α1, α2, α5} | {α3, α6, α7}) of Ex-

ample 4.4.4. The meander associated with g consists of a path and an isolated point

(a degenerate path) rooted in the tail, a path and an isolated point disjoint from

the tail and the aftertail, along with two points in the aftertail. It follows from

Thoerem 4.4.5 that ind g = 4. To construct ϕg, we must first run the cascade on

{α3, α4, α6, α7, α8, α9} and {α1, α2, α4, α5, α8, α9}. The set of highest roots K1 is

{α3 + α4, α6 + 2α7 + 2α8 + 2α9, α8 + 2α9, α6, α8} and the set of highest roots

K2 is {α1 + α2, α4 + α5, α8 + 2α9, α9}. Therefore, we have

u =
∑
α∈K1

aixα +
∑
α∈K2

bix−α

=a1xα3+α4 + a2xα6+2α7+2α8+2α9 + a3xα8+2α9 + a4xα6 + a5xα8

+ b1x−α1−α2 + b2x−α4−α5 + b3x−α8−2α9 + b4x−α9

=a1(e3,5 − e15,17) + a2(e6,13 − e7,14) + a3(e8,11 − e9,12)

+ a4(e6,7 − e13,14) + a5(e8,9 − e11,12)

+ b1(e3,1 − e19,17) + b2(e6,4 − e16,14) + b3(e11,8 − e12,9) + b4(e9,8 − e12,11),

where the vectors a and b are chosen according to Remark B.2.4. We then have

ϕg = κ(j, ·) =e∗5,3 − e∗17,15 + e∗13,6 − e∗14,7 + e∗11,8 − e∗12,9 + e∗7,6 − e∗14,13 + e∗9,8 − e∗12,11

+ e∗1,3 − e∗17,19 + e∗4,6 − e∗14,16 + e∗8,11 − e∗9,12 + e∗8,9 − e∗11,12.

As in Type-C, it suffices to use

ϕ′g = e∗5,3 + e∗13,6 + e∗11,8 + e∗7,6 + e∗9,8 + e∗1,3 + e∗4,6 + e∗8,11 + e∗8,9.
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The indices in Iϕ′g are displayed in Figure B.6.

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

Figure B.6: Indices in Iϕ′g on g = pB9 ({α1, α2, α5} | {α3, α6, α7})

We omit the table of images under Bϕ′g(B, ·) of the basis elements for g, but by a

similar computation to those carried out previously in this section we find an explicit

relations matrix for ker(Bϕ′g) to be
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B =



b1 0 0

b2 0

b1

0 0 0 0

0 0 b1 0

0

0 0

0 0 0 b3 b4 b5 0

0 0 b3 0 b6 0 −b5

0 0 −b4 b6 0 −b6 −b4

0 0 b5 0 −b6 0 −b3

0 0 0 −b5 b4 −b3 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

−b1 0

0 0

0 0 −b1 0 0

−b2 0

−b1



.

Consistent with our previous examples, the blank spaces are inadmissible loca-

tions of g and are, per force, filled with zeroes. Therefore, ind ker(Bϕ′g) = 6, and ϕ′g

is not regular.

Example B.2.11. Consider the simple Lie algebra B2. The functional ϕ′B2
described

by the cascade and reduced by the symmetry of the algebra is

ϕ′B2
= e∗1,2 + e∗1,4 + e∗2,1 + e∗4,1.

The indices in Iϕ′B2
are illustrated in Figure B.7.

Figure B.7: Indices in Iϕ′B2
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Let B = [bi,j] ∈ ker(Bϕ′B2
). Consider how the Kirillov form Bϕ′B2

(B, ·) acts on

the basis of B2. These calculations are shown in Table B.7.

Basis Basis Basis

Element Bϕ′B2
(B, b) Element Bϕ′B2

(B, b) Element Bϕ′B2
(B, b)

b b b

e1,1 − e5,5 b2,1 + b4,1 − b1,2 − b1,4 e2,1 − e5,4 b2,2 + b4,2 − b1,5 − b1,1 e3,1 − e5,3 b2,3 + b4,3

e1,2 − e4,5 b1,1 + b5,1 − b2,2 − b2,4 e2,2 − e4,4 b1,2 + b4,1 − b1,4 − b2,1 e3,2 − e4,3 b1,3 + b3,1

e1,3 − e3,5 −b3,2 − b3,4 e2,3 − e3,4 −b1,3 − b3,1 e4,1 − e5,2 b2,4 + b4,4 − b1,5 − b1,1

e1,4 − e2,5 b1,1 + b5,1 − b4,2 − b4,4

Table B.7: Image of basis for B2 under Bϕ′B2
(B, ·)

Since B ∈ ker(Bϕ′B2
), we require that Bϕ′B2

(B, b) = 0 for all basis elements b.

Evaluating the expressions in columns two, four, and six at zero yields ten equations

which, coupled with the requirement that B ∈ so(5), produces a relations matrix B

of ker(Bϕ′B2
) of the following form:

B =



0 b1 b2 b3 0

b1 0 b4 0 −b3

−b2 b4 0 −b4 −b2

b3 0 −b4 0 −b1

0 −b3 b2 −b1 0


.

It follows that dim ker(Bϕ′B2
) = 4. However, ind B2 = 2 (see Theorem 4.4.5), and

so the functional ϕ′B2
is not regular on B2.

Example B.2.12. Consider the simple Lie algebra D4. The functional ϕ′D4
de-

scribed by the cascade and reduced by the symmetry of the algebra is

ϕ′D4
= e∗1,2 + e∗,7 + e∗2,1 + e∗3,4 + e∗3,5 + e∗4,3 + e∗5,3 + e∗7,1.

The indices in Iϕ′D4
are illustrated in Figure B.8.
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Figure B.8: Indices in Iϕ′D4

We omit the table of images under Bϕ′D4
(B, ·) of the basis elements for g, but

by a similar computation to those carried out previously in this section we find an

explicit relations matrix for ker(Bϕ′D4
) to be

B =



0 b1 b2 b3 b4 b5 b6 0

b1 0 b7 b8 b9 b10 0 −b6

b2 b7 0 b11 b12 0 −b10 −b5

b3 b8 b11 0 0 −b12 −b9 −b4

b4 b9 b12 0 0 −b11 −b8 −b3

b5 b10 0 −b12 −b11 0 −b7 −b2

b6 0 −b10 −b9 −b8 −b7 0 −b1

0 −b6 −b5 −b4 −b3 −b2 −b1 0


.

It follows that dim ker(Bϕ′D4
) = 12. However, ind D4 = 4 (see 4.4.16). Therefore,

ϕ′D4
is not regular on D4.
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