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Abstract

A partially ordered set (poset), P=(X, <), is a set X together with a relation, <,
that is irreflexive and transitive. An interval order is a poset which has an interval
representation: an assignment of a closed interval, I, in the real number line to
cach € X so that x <y if and only if I, is completely to the left of I,. Wiener
and Fishburn characterized interval orders as posets which do not contain a 2+2
as an induced suborder [5, 22]. Define P[p,q] to be posets for which there exists
an interval representation with interval lengths in [p,q]. We will consider p and ¢
to be positive integers. Scott and Suppes characterize P[1,1] as posets which do
not contain a 242 or a 3+1 as induced suborders, and Fishburn generalizes this
result to characterize P[1,q] as posets which do not contain a 2+2 or a (q+2)+1 as
induced suborders [20, 8]. We use the weighted digraph techniques of [2] to develop
complete lists of minimal forbidden substructures for P[2,q] and P[3,¢| and partial
lists for P[p,q]. We also relate Plp,kp+1] and Plp+1,k(p+1)+1] and give a list of

relationships for structures in P[p,q].



Chapter 1

Introduction

1.1 Problem Description

Suppose a hospital needs to schedule a set of surgeries on a given day. Some surgeries
must occur before others: surgeries on the same patient or surgeries performed
by the same surgical team. There could also be surgeries that must overlap: a
patient that requires multiple surgeries but cannot be sedated more than once. The
hospital administrators must decide which surgeries to schedule on which days to
maximize healthy outcomes and minimize cost. How can a hospital know which sets
of surgeries can be scheduled in the desired way? Mathematics and computer science
of course! This is an applied example of what mathematicians call the Interval Order
Problem. We will focus on a variation of the Interval Order Problem, but before we
discuss the variation, we must first understand its origins.

Wiener was first interested in interval orders in 1914 [22]. However, the term
interval order was introduced by Fishburn in 1970 [5]. Our work in the following
chapters was inspired by Fishburn’s book Interval Orders and Interval Graphs, and
so we will often use his definitions. With the goal of defining an interval order, we

first define a partially ordered set (poset).

Definition 1.1.1. A partially ordered set (poset), P=(X, R), is a set X together
with a relation, R, that is irreflexive (not(zRx)) and transitive (if z Ry and y Rz then



rRz).

Many authors define the poset relation to be reflexive (zRx), antisymmetric (if
xRy, then not(yRx)), and transitive. Note that the relation in Definition 1.1.1 is an-
tisymmetric since if x Ry and yRx, transitivity says xRz, which breaks irreflexivity.
Thus, the only difference is whether or not xRx.

We will denote our relation, <, and we read z<vy as x precedes y or y succeeds x.
We write zNy to indicate that x Ay and yAz. If xNy, we will say that x and y are
incomparable. We note that N is not the standard notation. Often || or ~ is used
in place of N. However, since we are working with intervals, using set intersection is
natural when discussing elements whose intervals overlap. Our definition of interval

order will be based on the following definition of interval representation.

Definition 1.1.2. An interval representation of a poset, P=(X, <), is an as-
signment of a closed interval, I, in the real number line, R, to each x€ X so that

x <y if and only if I, is completely to the left of I,.
We can now present our definition on interval order.

Definition 1.1.3. An interval order, P=(X, R), is a poset which has an interval

representation.

If we can decide if a poset is an interval order, then we could decide if a hospital
can schedule a given set of surgeries since surgery time slots are just intervals in time.
The following characterization (credited to Fishburn, but inspired by Wiener [10])
for interval orders provides a way to decide if a poset has an interval representation

or not.

Theorem 1.1.4 ([5, 22]). A poset, P, has an interval representation if and only if

it does not contain a 242 (see Figure 1.1) as an induced sub-poset.

| |

Figure 1.1: Structure that cannot appear in an interval order



Figure 1.3 shows the Hasse diagram of the minimal order that does not have an
interval representation. In Hasse diagrams, if a variable, x, is not connected to a
variable, y, then 2Ny and if = is connected to y and below y, then z <y [21]. We
call x1>=x9>--->x, a chain of length n. The notation m+n refers to a poset
consisting of a chain of length m and a chain of length n such that each pair of
elements from different chains is incomparable.

In an interval representation, we do not restrict the length of the intervals. How-
ever, this might not be practical. For example, a surgeon cannot preform surgery
for 10 hours without adding complications. Thus, we might want to add further
restrictions to the interval order problem in the form of interval length restrictions.
Fishburn calls adding the restriction that the length of each interval must be between

p and ¢, inclusive,

Plo.d (X,<):  (X,<) is a finite interval order some
D, 4q]= )
representation of which has p(X)C|p,q]

where p,geR™Y, p<q, and p(X) is the set of lengths of intervals in a representation
8].

The first investigation into P[p,q| was P[1,1]- meaning that all intervals have
length one. By scaling, this is equivalent to all intervals having the same length.
These posets are called unit interval orders or semiorders. Semiorders were intro-
duced by Luce in 1956 in the context of utility theory [15]. In 1958, Scott and Suppes
mathematically defined a semiorder to be a poset, P=(X, <), for which there is a
function, f:X —R, such that x<y if and only if f(y)> f(z)+1 [20]. This definition
makes it clear that semiorders and unit interval orders are equivalent. Theorem 1.1.5
of Scott and Suppes gives a complete list of minimal forbidden induced suborders

(i.e., subposets) which prevent a poset from having a unit interval representation.

Theorem 1.1.5 ([20]). A poset, P, has a unit interval representation if and only if

it does not contain a 242 or a 3+1 (see Figure 1.2) as an induced suborder.



[

Figure 1.2: Structures that cannot appear in a unit interval order

We will refer to 242 and 3+1 as the minimal forbidden substructures for unit

interval orders. We offer the following definition.

Definition 1.1.6. A minimal forbidden substructure for a certain criteria is a
poset, P, which does not satisfy the desired criteria, but when a single element is

removed from P, the resulting poset satisfies the criteria.

For example, 441 does not have a unit interval representation, but removing
one element in the chain of four elements does not create a poset with a unit interval
representation. Thus, 4+1 is a forbidden substructure but not a minimal forbidden
substructure.

Definition 1.1.6 implies that if a poset, P, contains a minimal forbidden sub-
structure, P’, as an induced subposet, then P also does not satisfy the criteria. We
will often interchange substructure and suborder with substructure used mostly in
reference to the Hasse diagram of an order. In our context, the criteria will always
be that the poset can be represented on the real line by closed intervals with lengths
between positive integers, p and ¢. Beyond unit interval orders, Fishburn also con-
sidered posets with interval representations with lengths between 1 and positive
integer, ¢. Theorem 1.1.7 gives the list of minimal forbidden substructures for these
length restrictions. Note that the notation (N?)(<?)C< means that if anbNc=<d=<e,
then a<e.

Theorem 1.1.7 ([8]). Suppose (X, <) is a poset and g€Z*. Then, (X,<)eP]1,q]
if and only if (N)(=7)C<.



q+2< °

[T

Figure 1.3: Structures that cannot appear in a [1,q| representable interval order

Figure 1.3 shows the Hasse diagram of the minimal interval order such that
(M) (=4 Z=<. Tt is a (q+2)+1. There are only two minimal forbidden suborders
for P[1,q]. When the lower bound on length is greater than one, the minimal forbid-
den substructures list is longer. We will develop similar lists of minimal forbidden
substructures for other values of p and q. We will use the following notation for

these minimal lists.
Definition 1.1.8. Let F} be the set of minimal forbidden substructures for Pp,q|.

Our lists will be minimal in two senses. First, each structure is minimal as in

Definition 1.1.6. This implies the second sense of minimality stated as Fact 1.1.9.

Fact 1.1.9. If any structure is removed from F/, then the list no longer characterizes

the posets with interval representations with the desired lengths.

Thus, both the list and its structures are minimal.

Fishburn’s work will be used as a basis for our inquiry. First, by scaling,
P1,q/p|="P[p,q]. For example P[1,2]="P[2,4]. Also, if ¢/p is irrational, then
there is not a finite list of minimal forbidden suborders, and the infinite list is
not efficiently enumerable [8]. Thus, we will only consider relatively prime p,q with
p,q€Z" [8]. The following theorem of Fishburn will also help to focus our approach.

This result implies that F! is finite when ¢/p is rational.

Theorem 1.1.10 ([8]). Suppose p and ¢ are positive integers with p<g that are
relatively prime. Suppose also that (X, <) is an interval order. Then, (X, <)€P|p,q]

6



if and only if (X, <) satisfies A[p,ql, for n=1,...,p where A[p,q|, says:
For all (ov,B1,- .., 0, 0)>(2,2,...,2,1) with > a;=¢+nand > fi=p+n—1,
we have <101 ... <P C< and NP <o ... < C<.

Theorem 1.1.10 is very useful in that it gives necessary and sufficient conditions
for an interval order to have a representation with interval lengths in [p,q], but the
conditions do not directly yield minimal forbidden substructures. Fishburn only
gives the complete structures for P[1,¢| as in Theorem 1.1.7. The conditions could
be used to narrow the search for minimal forbidden substructures, but the notation
can be challenging to follow. Instead we will use different, more accessible methods
to first recreate these conditions (Chapter 2) and then find minimal forbidden sub-
structures in some cases (Chapters 3, 4, and 5). Fishburn notes that we technically
only need to consider one of <® NP1 ... <P C< and NP <n...NAL <1 C <. Our
approach will also only require one analogous condition.

Any introduction to interval orders should mention their relationship to interval
graphs. A graph, G=(V, E), is an interval graph if and only if there is an assignment
of a closed interval, I,, in the real number line to each v €V so that uwve E if
and only if I, and I, intersect. This definition is similar to interval orders except
that when two vertices are comparable, there is no precedence between the two.
This means that the interval representation of an interval graph can correspond to
the interval representation of many different interval orders which Fishburn calls
agreeing interval orders. Fishburn refers to a graph with an interval representation

with interval lengths in [p,q] as Z[p,q] [8]. He states the following theorem:

Theorem 1.1.11 ([8]). An interval graph, G, is in Z[p, ¢ if and only if every interval
order that agrees with G is in P|p,q].

Theorem 1.1.11 implies that any results stated for P[p,q] have implications for
Z[p,q]. Since edges in the graph correspond to incomparability, and edges in a
Hasse diagram correspond to comparability, we look at structures in F! to get the
complements (zy€ E if and only if z Ay and yAx in P) of their agreeing graphs.
For example, a (q+2)+1 becomes a graph with one vertex of degree ¢+2 and g+2



vertices of degree one adjacent to it (i.e., a Kj442). This correspondence between
the graph and interval versions of a problem does not always exist. For example, if
the lower bound on length can be different for each element of the set, the interval
problem is polynomial solvable while the graph problem is NP-hard [18].

The field of reasoning about time is rich with areas of study. One could investi-
gate adding length constraints specific to each element of a poset [13], providing a
set of values into which the interval lengths must fit [1, 7], or using other relation
sets (subalgebras of Allen’s algebra) [14]. These areas could also be analyzed for
minimal forbidden substructures. There are similar areas of study for length con-
strained interval graphs, but the results are not always as related to interval orders
as they are in the case of Z[p,q] and P|p,q| [9, 18, 12]. In fact Reasoning about time
can be particularly interesting because of its applications to scheduling. Knowing
that a set of events is an interval order is wonderful, but the interval representation
could require that one event or task be ten times as long as another which might not
be practical. Being able to set restrictions on the lengths of the intervals improves

the usefulness of scheduling algorithms.

1.2 Organization

Chapter 2 presents the model and methods we will use. Chapter 3 defines Fy
giving the minimal forbidden substructures of P[2,¢|: partial orders which have
interval representations with lengths between 2 and an odd integer ¢, and Chapter 4
defines Fj for P[3,q]: partial orders which have interval representations with lengths
between 3 and an integer ¢ not divisible by 3. Lastly, Chapter 5 presents partial
results that apply for all values of p and discusses the challenges of large p values.
Some of the results of Chapters 3 and 4 are implied by Proposition 5.2.4. However,
the earlier chapters provide the details of the specific structures and their Hasse

Diagram representations necessitating their inclusion.



Chapter 2

Digraph model for Plp,q]

2.1 Preliminaries

For a poset, P, we add additional constraints to the interval order problem statement
in the form of minimum and maximum interval lengths. We seek to create a list of
minimal forbidden suborders which prevent P from having an interval representation
with lengths in [p,¢]. Our method involves translating the partial order into a
weighted, directed graph and then searching for negative cycles in this associated
digraph. We will first consider the translation of our problem into a system of linear
inequalities. The flows in the associated digraph will then correspond to these
inequalities. This technique of using potentials in a digraph to model an interval
representation was used first by Doignon in [3, 4], Isaak in [11], and more recently
to give a simple proof of Theorem 1.1.7 in [2]. We seek to extend the work of [2]
to larger minimum interval lengths. We note that Fishburn’s work with picycles for
P[p.q] also uses inequalities but not in the context of digraphs [6].
Let P=(X,<) be a partial order. If P has an interval representation,
IT={1,}sex={[L(x),R(x)]}sex, the endpoints must satisfy the following inequalities

for some €>0:

1. R(x)<L(y)—e for all z,ye X with x<y,
2. L(y)<R(z) for all z,ye X with zNy or z=y.

9



Adding the restriction that the length of each interval must be between p and ¢
adds the following inequalities for all z€ X:

We now explain how to translate an instance of the problem into a weighted
digraph generalizing the model in [2]. We provide an upper bound for € to assure
that when we are later calculating cycle weights, the number of weight € arcs will

not impact whether or not the cycle is negative.

Definition 2.1.1. Let P=(X,<). Let O<e<ﬁ. Let DZ(P) be the digraph
defined as follows: For each variable, x€ X, add two vertices: x, and x,, and add
arc, xy—x,, with weight ¢ and arc, x,—x,, with weight —p.

Additionally, for x <y add the arc, y,—x,, with weight —€, where € is an arbitrarily
small positive constant, and for xNy add x,—y, and y,.—x, each with weight —e.

See Figure 2.1.

Ty Tr  Yr Tr  Yr
0 < ®
| X
[ ]
Ty Ly Ye Ly Ye

(a) (b) ()

Figure 2.1: Digraph representations of (a) z, (b) xNy, and (¢) z=<y

Fact 2.1.2. Since D{(P) contains 2| X| vertices, a negative cycle in D#(P) contains
at most 2|.X| arcs. Since at least one of these arcs does not have weight —€ the total

weight contributed by the —e weight arcs is less than -1.

Once we translate the problem to a digraph, we use a well known result from

graph theory on potentials in digraphs defined as follows.

10



Definition 2.1.3. A potential function on a weighted digraph, D=(V, A), is a
function, f:V —R, satisfying f(v)— f(u) <w,, for all (u,v)€A.

Potential functions will be useful in the proof of Theorem 3.2.2 due to the fol-
lowing theorem relating potential functions and the negative cycles which we seek
to characterize. A cycle in a digraph is a sequence of arcs,

C'=(uyug), (ugus), (usuyg),. .., (Un—1,u,), such that each wu; is unique except u; =1u,,.
We will often denote C' as uq,us,...,u,_1,u;. Cycle C' has length n—1, and the
weight of C' is the sum of its arc weights. Later we will use shortest cycle to refer

to a cycle with the shortest length.

Theorem 2.1.4 (see Chapter 8 of [19]). A weighted digraph has a potential function

if and only if it contains no negative cycles.

The following result holds for all positive integer values of p and ¢ and provides
the basis for the use of the digraph model. We will always assume that our posets
are finite and that p and q are positive integers. We note that all results in Chapter
2 except for Lemma 2.2.10 hold for all positive values of p and ¢, but we will only

use them in the context of integer p and q.
Theorem 2.1.5. Let P=(X;=<) be a partial order. The following are equivalent:

1. Poset, P, has an interval representation with lengths between integer p and ¢

(inclusive).
2. The weighted digraph D{(P) contains no negative cycles.

Proof. (1) = (2) Suppose P has an interval representation [={I,}.cx, where
I,=[L(x), R(x)], with lengths between p and ¢q. Then, the endpoints satisfy the

following inequalities:
1. R(x)—L(y)<-e for all x,ye X with z<y,
2. L(y)—R(z)<0 for all x,ye X with zNy,
3. L(z)—R(x)<-p for all ze X,

11



4. R(x)—L(x)<q for all z€ X.

L(z) if y=x, for some z€X
Define f:V(Dg(P))—ﬂR by f(y)= . Then, f satis-
R(z) if y=x, for some z€X

fies
L. f(z,)— f(ye) <-€ for all z,ye X with x<y,
2. f(ye)— f(x,) <0 for all z,ye X with zNy,
3. flxe)— f(x,)<-p for all z€ X,
4. f(x,)—f(ze)<q for all z€ X.

Thus, for all u,veV (Dg(P)), we have f(v)— f(u) <wyy, so by Definition 2.1.3, f is
a potential function on DZ(P). Then, by Theorem 2.1.4, DZ(P) contains no negative
cycles.

(2) = (1) If D(P) contains no negative cycles, then by Theorem 2.1.4, there
exists a potential function f on DI(P). For each v€ X, let L(z)=f(x¢), R(z)=f(z,),
and I,=[L(z), R(z)]. As above, we can show that the inequalities f needs to satisfy
as a potential function on DI(P) can be rewritten in terms of L(x) and R(z), which
then guarantees that {I,}.cx forms a valid interval representation of P with lengths

between p and gq. O

We will use the second equivalence to determine lists of minimal forbidden sub-
orders. Thus, we will be considering negative cycles in the digraph model. The

following fact will be useful in later the proofs.

Fact 2.1.6. Since each arc of DI(P) connects an { vertex to an r vertex, DI(P) is

bipartite, and thus all cycles have even length.
To simply our language, we offer the following definition.

Definition 2.1.7. We call a shortest negative cycle in DZ(P) with the least negative

weight a minimal negative cycle.
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In the following sections we develop a set of lemmas on the structure of a minimal
negative cycle in D,?(P). Our negative cycles are analogous to Fishburn’s picycles

[6], but we use common graph theoretical language.

2.2 Minimal negative cycle structure

The first lemma simply shows that the digraph model confirms that P cannot contain

an induced 242 and have an interval representation.

Lemma 2.2.1. Let P be a poset. Let C' be a minimal negative cycle in Di(P). All

the arcs of C' have weight —¢ or 0 if and only if P contains an induced 2+2.

Proof. If P contains an induced 242, say x1>To, T3> T4, £1MNT3, T1NTy, ToNT3
and x9Ny, then DI(P) contains the cycle x1y,2a,, 734, T4y, 714 Call it C'. Cycle C"
has weight -2e. We claim that C” is a minimal cycle. By Fact 2.1.6, the length of
any cycle in D#(P) is even. Thus, a cycle cannot be shorter than length two. Now,
a length two cycle would have the form vy, vy2,,y1,. If y1=y2, then the cycle has
weight p—q¢>0. If y1#ys., then y; =y, and y; Ny, which is a contradiction. Thus, C’
is a shortest negative cycle. Since —¢ is the least negative weight of a left right arc,
any other negative cycle of length four would have weight at most -2¢. Therefore
(' is a minimal negative cycle and it contains only arcs of weight —¢ or 0.

Now, assume C' is a minimal negative cycle that contains only arcs of weight
—e or 0. Cycle C' can be written in the form xq,,x9,,23,, T4y, Ty, 1, We have
X1 T Nx3 =Ty, SO T1F# X9, x3. Now, If vy =14, then x3>124=121 > 29, and by
transitivity, x3>xs which is a contradiction. Also, xo#x3, x4 and x3#x4, so our
four elements are distinct.

Now consider x; and x4. If 21 <zy4, then o <21 <x4<23NT5 Which contradicts
transitivity. If xy>x4, removing x5, and x3, from C' creates a shorter negative cycle
which contradicts our assumption of minimality. Thus, z1Nxy.

Next, consider the relationship between 1 and x3. If 1 <x3, then ro <21 <x3N 2>
which contradicts transitivity. If x;>x3, then x> x3>x4Nx, which contradicts

transitivity. Thus, z1Nxs.
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Finally, if x9<xy4, then x3>x4>2x2Nx3 contradicting transitivity. If xo>x4, then
r1>-xo-x4MNxy again contradicting transitivity. Thus, xoNxy. Therefore, x1, x4, x3,
and x4 form an induced 2+2 in D{(P). O

Corollary 2.2.2. If the digraph of an interval order, P, contains a negative cycle,

C, then C contains at least one arc of weight —p.

Proof. By Fact 2.1.2, if all negative arcs in C' have weight —¢, then C' cannot contain
any arcs of weight ¢ or the cycle would not have negative weight. Thus, C' contains
only arcs of weight —€ or 0. By Lemma 2.2.1, P is not an interval order because it

contains an induced 2-+2. O

The next lemma uses transitivity to show that negative cycles in the digraph of

an interval order must contain at least one positive weight arc.

Lemma 2.2.3. Let P be a poset. Let C' be a minimal negative cycle in Di(P). If

C contains an arc of weight -p, then C' contains an arc of weight g.

Proof. (By contradiction)
Assume C' contains an arc of weight —p but no positive weight arcs.

Then, C contains a sequence of vertices of the form z,y,, y¢, 2. Now, w(y,y,)=-p
and z=y=z. By transitivity, =2 and so (7, 2¢) is an arc of D#(P). Thus, replacing

To,Yr, Yo, 2 With z,2, in C yields a shorter negative weight cycle. ]

The following lemma further restricts the structure of a minimal negative cycle

in the digraph.
Lemma 2.2.4. Let P be a poset. Let C' be a minimal negative cycle in DI(P).

(a) If C contains a weight -p arc and a weight ¢ arc with only weight e and weight 0
arcs in between them, then they are separated by exactly one weight —¢/weight

0 pair.

(b) If C' contains two weight ¢ arcs with only weight € and weight 0 arcs in between

them, then they are separated by a single weight 0 arc.
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(c) If C contains two weight —p arcs with only weight € and weight 0 arcs in between

them, then they are separated by a single weight -¢ arc.

Proof. (by contradiction) If we assume that (a), (b), or (¢) is not true, then we have
a minimal negative cycle, C', which contains the path Q=wx1,, xs,, 23/, 24, or the path
Q' =Y1,,Y20, Y3, Yap- If x1 <4, then o <11 <14 <T3NT5 contradicting transitivity.
If 21> x4 then replacing ) in C' with x1,— x4, creates a shorter negative cycle.
If x1Nxy, then {x1, 29, 23,24} is a 2+ 2 contradicting minimality. Thus, there is
no relationship between x; and x4 which preserves minimality, and our minimality
assumption was false. Similarly, y; Ny, creates a shorter negative cycle (using the
arc Y1, —y4,) and y; <y, creates a 2+2. If y; =y, then consider the vertex before
y1, in C. If it is yy,, then replacing ) with y;,—y4, — Y4, creates a shorter negative
cycle. If it is 24, then 24, 91,, Y24, ys3, is a path like @) in C', so there is no relationship
between z and y, which preserves minimality. Thus, the conclusions of (a), (b), and
(¢) hold.

O

Definition 2.2.5. The term adjacent will refer to pairs of weight —-p and/or weight
q arcs separated only by the minimum number of weight —¢/weight 0 arcs as dictated
by Lemma 2.2.4.

Thus, Lemma 2.2.4 says that our minimal cycles are sequences of adjacent sets
of adjacent weight ¢ arcs and adjacent weight -p arcs. We will always consider our
cycles to start with a set of weight —p arcs and thus end with a set of weight ¢ arcs.

The next lemma determines the number of weight —p arcs based on the number

of weight ¢ arcs in a minimal cycle in the digraph.

Lemma 2.2.6. Let P be a poset. Let C' be a minimal negative cycle in Di(P). If

C has contains o weight ¢ arcs, then C' contains {%-‘ arcs of weight —p.

Proof. Let C' be a minimal negative cycle in D{(P), and let o be the number of
weight ¢ arcs in C'. Let § be the number of weight -p arcs in C. Since C' has
negative weight, 8> [%] Assume 3> {%—‘. Since ¢>p, >« and in C there are
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at least two adjacent weight —p arcs giving us the path x, 23,29, 23, in C' (after
relabeling). This gives 1 >x5>x3. Now, by transitivity, 1 >x3, but then replacing
r1p—x3, in C gives a cycles with o weight ¢ arcs and §—1 weight —p arc. Now,

g—1> {%W so this is a shorter negative cycle which is a contradiction. ]

In Lemma 2.2.7, we consider the possibility of there existing elements of P whose
right and left vertices are both on a minimal negative cycle, but are not adjacent
on the cycle. The only possible elements in this category are those not represented
by a weight ¢ edge or a weight —p edge. In Fishburn’s terminology, a cycle with all

distinct elements is called pure [6].

Lemma 2.2.7. Let P be a poset. Let C be a minimal negative cycle in DI(P). Let
a; be the number of weight —p arcs in the i set of adjacent weight —p arcs and let
B; be the number of weight ¢ arcs in the i** set of adjacent weight -p arcs. Let N
be the number of such sets. Let z;, be the vertex immediately following the i** set
of adjacent weight —p arcs and let y;, be the vertex immediately following the " set

of adjacent weight ¢ arcs. We have the following:

(a) If

. itk
() Tl [M] or

.. ) N Zl;l a_+ZN:i ai)g
(if) 1+Zj=1 5j+2j:z‘+k+1 B> [( =1 - h 1) -‘7
then x; and y;, are distinct elements in P.

(b) If

i+k—1

() 14355 02 {—< = aﬂ, or

.. i N 1+ a4+ ay)g
(11) 231/8]—'_2]14_1%’_1/8]2’,( j=1 Jp =itk J) —‘7

then y; and x;.x, k>1 are distinct elements in P.
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Proof. If x;=y; , then the cycle, C’ created by following C' from xir—>yi+k£:mw
and then taking the arc (z;,,x;,) has 1+Z ; o arcs of weight ¢ and Z] T 5] arcs

of weight -p. If Z;Hf Hl > [%—‘, then C" is shorter negative cycle than

Figure 2.2: Generic minimal negative cycle in D{(P): Each arc directed vertically down-

YN

ward has weight -p, the arc directed vertically upward has weight ¢, arcs
directed diagonally downward have weight 0, and arcs directed diagonally

upward have weight —e.

Also, if x; =y;+x, the cycle C” that is C with x;, = yi4x, =2y replaced by
the arc (x;,,2;). Cycle C" has 1+Z;:1 ﬁj+2f:i+k+lﬁj arcs of weight -p and
(Z;;ll ozj+2jy:i+k+1 ozj> arcs of weight ¢. If

) i1, N @
1—1—2;.:153-4—2?;%“ B> [(Zjl ﬁz;’:”'““ ])q—‘, C” is a negative cycle that is
shorter than C'.

Next, if y;=w;1k, then the cycle C" which follows C' from v;, — 1k, =i, and

then takes arc (y;,,yi,) contains 1+Z§t§+1 p; arcs of weight -p and (Z;+I:+1l aj)

+k S as)a : .
3 T B> [W , then C" is a shorter negative

arcs of weight ¢, so if 1+
cycle than C.

Also, if y;=w;1), then the cycle C” which is C' with y;,— x;1r, =y;, replaced
with the arc (y;,y;,) contains 23:1 @-%—Z;V:HHI B; arcs of weight -p and
<1+Z§-:1 aj+2§.vzi+k ozj> arcs of weight ¢. If

. i aN
> e ﬁj+2§\fzi+,€+l B> [(Hzrlaﬁzj_”k %)q—‘ , then C” is a shorter negative cycle

p

than C. ]
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Our main use of Lemma 2.2.7 will be in the form of the following corollary which
states that elements on opposite sides of a set of either weight ¢ or weight —p arcs
must be distinct. This is particularly useful when a minimal negative cycle contains
at most two sets of each type because it implies that all elements of the cycle are

distinct.
Corollary 2.2.8. Using the notation of Lemma 2.2.7, y; and x;/z;,, are distinct.

Proof. Let o and 8 be the numbers of weight ¢ and weight -p arcs, respectively, in
a minimal negative cycle.
First, consider z; and ;. Using Lemma 2.2.6, we have

1—1

. SN
1+Z;‘:1 5j+2j‘vzi+1 Bi=1+5> [%-‘ > [(Zjl 2 ])q—‘ , S0 by Lemma 2.2.7.a,

P
x; and y; are distinct.

Next, consider y; and x;,1. We have 1+Z;§+1 p;>0= [M—‘ , so by Lemma

2.2.7.b, y; and x;4; are distinct. O

Lemma 2.2.9 determines the minimal forbidden substructure which corresponds
to a poset whose minimal negative cycle contains only one positive weight arc. This

result holds for p>1.

Lemma 2.2.9. Let P be a poset. Let C' be a minimal negative cycle in DZ(P). If

C has exactly one weight ¢ arc, then P contains an induced {%ﬁpw +1.

Proof. By Lemma 2.2.4, C' can be written with k-3 arcs of weight -p at the beginning

of the cycle as

T1py X103 X2y X203 L3py X3p5vey Xle—3py Lh—3ps Lh—2ps Lhi—1gy Lh—14y Lhety L1y

Since C'is a cycle, all of the x;’s are distinct except possibly x;_s and xy, but by
Corollary 2.2.8, they are distinct. Thus, all elements represented in C' are distinct.

See Figure 2.3 for a diagram of C.
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Tlp

°
Tip T2 T3 Tp_3 Tp_1 Tk

Figure 2.3: Cycle in D}(P) with one weight g arc: Each arc directed vertically downward
has weight -p, the arc directed vertically upward has weight ¢, arcs directed
diagonally downward have weight 0, and arcs directed diagonally upward

have weight -e.

Now, by Lemma 2.2.6, k—3= Lﬂ. Thus, we have :U(gw+3>x1 >x2>--->x[ﬂ -

P

T[] +1ﬂx[ﬂ +2ﬂx(%1 3> and there are % +3 elements in this forbidden structure.

Next, consider the relationship between x[gwﬁ and z; for i {%—‘ +3 or {ﬂ +1.

p
By transitivity IIC[%MQ%% and :c[ﬂﬁ%xi. Thus, x[ﬂwﬂwi for each i, and D{(P)
corresponds to a qg-‘ +2) +1. O
Our final lemma determines the largest number of positive weight arcs that a
minimal negative cycle can contain based on the value of p. This is also a conse-
quence of Fishburn’s work on picycles as Theorem 1.1.10 only considers Alp,g],, for

n=1,...,p [8].

Lemma 2.2.10. Let P be a poset, and let C' be a minimal negative cycle in DI(P).
If v is the number of weight ¢ arcs in C, then a<p.

Proof. (by contradiction)
Let C and « be as in the statement of the lemma. Assume that a>p. By Lemma
2.2.6, C contains f:= [%W arcs of weight —p.

We wish to show that somewhere in C' there is a path, @), containing p weight ¢
arcs and ¢ weight p arcs. Toward a contradiction assume that no such () occurs in
C.

Let 3; be the number of —p weight arcs in the set immediately following the 7
weight ¢ arc in C. Then, 0<3;<p, Vi€[a], and f=3"7", ;. We will consider the

subscripts to be cyclic, so when we reach «, we return to 1.
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Case 1. We have Ji€[a] such that Z?;g Bivi=q
Then, we have a path in C' that contains exactly p weight ¢ arcs and ¢ weight -p

arcs. In fact, the path starts and ends with a weight ¢ arc.

Case 2. We have 7i€[a] such that Z§_2 Bl-ﬂ—q, but i€ [a] such that Zp_g Bi+i<q.
Then, there are two possibilities. If 2~ ]__1 Bi+j=>q, then we have a () path in C.
However, if zg;il Bi+j <g, then moving around the cycle, either we find a path

with our desired arc weights, or Vi, we have Z’.’;l_l Bi+; <q. Then, summing over

the positive weight arcs, we have (p+1)5=> (Z]—_1ﬁz+j) <agq.
Dividing by p+1, this gives B< L < aq < { . W . This contradicts Lemma, 2.2.6.

Case 3. We have Z?;O Bivi>q, Vie(al.
Since each f; is an integer, Z?;g Bi+;j=>q-+1 for each <. Summing over each ¢, we
have (p—1)5=>"1, < ;’;(2) Biﬂ-) >a(q+1). Dividing by p—1, this gives §> 5L q+1) >

olatl) —egyasaqy gy [%—‘ , a contradiction.
) p 'p”p )

Thus, we can always find a path, @), in C' that contains exactly p weight ¢ arcs
and g weight —p arcs. If the first arc in @) has weight -p, then extend ) back one edge
along C'. If the last arc in ) has weight —p, then extend @) forward one edge along
C'. Call this (possibly) extended path @)'. This extension forces @)’ to start at a left
vertex and end at a right vertex. See Figure 2.4 for the possible starting and ending
configurations of )’. Path @’ still contains exactly p weight ¢ arcs and ¢ weight
-p arcs and C'— ()’ contains (a—p) weight ¢ arcs and {%-‘ —q= [%—%"-‘ = {@-‘
weight -p arcs.

Do /‘L’V PR T8 /'L\f

Thp—1 Tk Thp—1 Tk

a C

Figure 2.4: Portion of C' in DE(P) with p weight ¢ arcs and q weight —p arcs: The four

possible ending configurations of )" are shown.

Let x; and z; be the elements in P represented by the first and last vertices
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of Q) respectively. If xq >z}, then replacing the path z1,—z, in C' with the arc

@W weight —p arcs and

(14, Tk, ), creates a cycle with (a«—p) weight ¢ arcs and [
some —¢ weight arcs for an overall negative weight cycle.

Similarly, if 21 Nz, then replacing the path zy, —x1, in C with the arc (x,., x1,),
creates a cycle with p weight ¢ arcs and ¢ weight —p arcs and some —-¢ weight arcs
for an overall negative weight cycle.

Next, if x7 <y, then we encounter a few cases. If z1, and xy, are on Q' ((a)
of Figure 2.4), then replacing zy,— 1, on C with the arc (xg,,x1,) creates a cycle
with p—2 weight ¢ arcs and ¢ weight -p arcs which gives a negative cycle. If xy,
and z, are not on Q) ((b) of Figure 2.4), then the cycle Q'xy,x1,71, is a cycle with
p weight ¢ edges and g+2 weight -p edges, yielding a shorter negative cycle than C.
The other two combinations of z;, and x, on/not on C' produce similar negative
cycles.

Lastly, in case (b) of Figure 2.4, if 1=z, then @', x; is a cycle with p weight ¢
arcs and g+ 1 weight —-p arcs: a shorter negative cycle.

Thus, any relationship between x; and x;, yields a shorter negative cycle than C'

contradicting minimality. ]

Lemma 2.2.10 creates a manageable list of negative cycle possibilities for p=2
and p=3. Lemmas 2.2.4, 2.2.6, and 2.2.10 are analogous to Theorem 1.1.10.

In the remaining chapters, we will present lists of minimal forbidden substruc-
tures for interval lengths in [p,q] where p and ¢ are positive integers. We present

the following notation for these lists. Recall that we refer to these lists as F.

2.3 Algorithm

We conclude with a proposition demonstrating how we could use D{(P) to algo-
rithmically construct an interval representation of a poset P with lengths between

p and g or determine that no such representation exists.

Proposition 2.3.1. Let P=(X, <) be a poset, and let p and ¢ be relatively prime

numbers. In polynomial time, we can either construct an interval representation
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of P in which all interval lengths are between p and g or determine that no such

representation exists.

Proof. Given a partial order P=(X, <), p and ¢, construct the associated weighted
digraph DI(P) using Definition 2.1. Use a standard shortest-paths algorithm that
can handle negative arc weights and which finds minimal negative cycles, such as
the Bellman-Ford algorithm, on DI(P) to compute the minimum weight of a path
between each pair of vertices or detect a negative cycle. If a negative cycle is
detected, then by Theorem 2.1.5, there is no interval representation of P in which
all interval lengths are between p and ¢. Also, a minimal negative cycle will be
detected, so a minimal forbidden substructure can be determined by the structure
of the negative cycle. If the digraph contains no negative cycles, then the function
f:V (DY(P)) =R, where f(y) is the minimum weight of a path in DZ(P) ending at
y, is a potential function on DZ(P). Then, as we showed in the proof of (2) = (1)
of Theorem 2.1.5, we can construct an interval for each element of the poset such
that this collection of intervals forms an interval representation of P with lengths
between p and g. Note that each step in this process takes at most polynomial time,
so the entire construction can be carried out in polynomial time. Thus, we have a

polynomial-time certifying algorithm. [
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Chapter 3

Interval orders with lengths in
2,q): PI2,q]

In this chapter, we will focus on determining F for p=2 and integer ¢ (Theorem
3.2.2). We will then illustrate the result for small values of g. Completely determin-
ing the minimal forbidden substructures goes beyond the work of Fishburn. First,

we prove another new result which applies for all values of p.

3.1 Minimal negative cycles with two weight ¢

arcs

Proposition 3.1.2 characterizes structures in ! which correspond to minimal nega-
tive cycles in the digraph which contain exactly two weight ¢ arcs. The smallest p
value for which this proposition is useful is p=2. Figure 3.1 contains modified Hasse
diagrams. They are Hasse diagrams except that the dashed lines indicate optional
precedence. For example, in structure (i7) either y; <z; or y1Nzy. If y1 <21, y1 Ny is
no longer an option due to transitivity. If a diagram contains one dashed precedence
at the top and one at the bottom, then it represents four different posets: one where
no precedences are chosen, one where both are chosen, one where the top is a prece-

dence but the bottom is incomparable, and one where the bottom is a precedence
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but the top is incomparable. If a diagram contains two dashed precedences at the
top and two at the bottom, then it represents nine different posets as in Figures

3.13 and 3.14.

(i) (i) ae{s+1,...,2s}

Figure 3.1: Labeling for posets in F(2) with s= L%J

We use Figure 3.1 to make the following definition.

Definition 3.1.1. Let F(2) be the posets labeled as in Figure 3.1 with the following

relationships where s= {%J and g(mod p)<%:
Subfigure (i) 1. wy,

(a) <y,

) <z forie{l,2,..., s},

(c) Nz for ie{s+1,s4+2,...,25+1},
) Nz,

(a) Ny,
(b) Nz for i€{1,2,...,s+1},
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3.

Subfigure (ii) 1.

(c) =z forie{s+2,5+3,...,25+1},
(d) 1,

Y1217 27> Z[2q/p] — L1,

uy,
(a) <o,
(b) <z forie{l,2,...,a—s—1},
(¢) Nz forie{a—s,...,a},
(d) Nz; for jef{fa+1,...,25+1},
(e) Nxog,
(f) Nus,
(g) Ny,
(h) Ny,
Ug,
(a) Nz forie{l,2,...,s+1},
(b) =z for ie{s+2,...,a},
(c) »=x,
(d) Ny,
(e) Nz; for je{a+1,...,2s+1},
(f) Ny,
(8) Ny2,
Y1,
(a) { MNyo a:S—l—l’
<Ny, a>s+1
(b) <Nz; for i€{1,2,...,a—s—2},

)

(¢) Nz forie{a—s—1,a—s},
) =z forie{a—s+1,...,a},
)

>'l'1,
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(d) N>=z; for ie{s+3,...,a},
{ Nx; a=s+1
(¢) ,
N=x7 a>s+1
5. z; for je{a+1,...,2s+1},
(a) <y2,
(b) <z forie{l,2,...,7—s—2},
(c
(d
(e

6. Yoz =29+ =2 =1,

)

)

) Nz forie{j—s—1,j—s},
) =z forie{j—s+1,...,a},
)

>'ZE1,

7. Y17 Za+17 Rat2 7 7 295417 T9.

Posets in family (ii) of Definition 3.1.1 will contain 2s+1+6= {%-‘ +6 elements.
Since a€{s+1,...,2s}, there are s structures in this family when we disregard the
dashed lines. Now, taking the dashed lines into consideration, the family contains

S
Zi2 posets. We explain this calculation for p=2 in Proposition 3.2.3. Next, we
i=1
use Definition 3.1.1 to state Proposition 3.1.2.
Proposition 3.1.2. Let P be a poset. Let C be a minimal negative cycle in DZ(P).
If C' has exactly two weight g arcs, then P contains an induced subposet isomorphic

to one of the posets in F!(2).

Proof. In what follows, when calculating cycle weight, we will disregard the con-
tribution of the weight —e arcs. Thus, a cycle with weight zero below is actually a

negative cycle since each cycle we consider will contain at least one —e weight arc.
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By Lemma 2.2.6, we have that S= hﬂ . Now, g=ps+d where de{1,2,...,p—1}
2s+1 d<Zt
with ged(p,d)=1. Then, = {E—‘ = [M—‘ =25+ [Q—d-‘ . Now, = ot -2
b P P 254+2 d>%

We will consider two cases: when the weight ¢ arcs are adjacent on the cycle and

when they are not.

Case 1. The two weight ¢ arcs are adjacent on C'.

Cycle C' can be written as

Zlpy R14y 2203 2245 - 72[37»7Zﬁg7£1r7u1€7ulr7u2lau2'r‘7ylé7'r17"

Here, since we have a cycle, all vertices must be distinct and so all elements must
be distinct except possibly z; and y;, but by Corollary 2.2.8 they are distinct.

If 5=2s542, consider the relationship between z,,; and wuy. Transitivity elimi-
nates uy > 2zs41. If ug <241, then replacing zs11,—uy, in C' with the arc (2541, u1,.)
creates a cycle, C" with s+1 weight -p arcs and one weight ¢ arc for a total weight
less than ¢—p(s+1)=ps+d—ps—p=d—p<0. Thus, ' is a shorter negative cycle
than C. If uyNzstq, then replacing uy, —xs11, in C with the arc (uy,, 2541,) creates
a cycle C" with 2s+2—(s+1)=s+1 weight —p arcs and one weight g arc. As above,
C" is a shorter negative cycle than C'. Since all relationships between z,,; and w4
yield shorter negative cycles, C' is not minimal when d>2.

For the remainder of this case we will assume d<%. Thus, f=2s+1.

Cycle C' can be drawn as in Figure 3.2.

Zlr [ ]

Z1¢ ()
22 22s4+1 T1 ul u2 Y1

Figure 3.2: Cycle in D}(P) with two weight ¢ arcs that are adjacent on C: Each arc
directed vertically downward has weight —p, each arc directed vertically up-
ward has weight ¢, arcs directed diagonally downward have weight 0, and

arcs directed diagonally upward have weight -e.
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This cycle gives y; > 21>+ > 29541 =1 Nug Nua Ny (relationships i(1)d, i(2)a,
and i3 of Definition 3.1.1). The relationships between u; and y; or z; for i€
{1,2,...,2s+1} and between uy and z; for j=1,2,...,25s+1 or z; need to be
determined. The possibilities to consider for the z;’s are u; <Nz; and uy N>z, for

the z;’s due to transitivity.

Relationship i(1)a: If y; >y, then replacing y;,—u, in C with the arc (yi,,u1,)
creates a cycle with weight ¢>0. If y; Ny, then replacing uy, —y;, in C' with the
arc (u1,,y1,) creates a cycle with weight g—p(2s+1)<0. Thus, y; >u;.

Relationships i(1)b and i(1)c: If u; <z;, then replacing z;,—uy,. in C' with the arc
(zi0,u1,) creates a cycle with weight ¢—p(i) which is positive for i€ {1,2,... L%—‘ —1}=
{1,2,...,s}. If uyNz;, then replacing z;, —uq, in C' with the arc (z;,,uq,) creates a cy-
cle with weight 2¢—p(i—1)>0 and replacing u;, — z;, in C with the arc (uy,., z;) cre-
ates a cycle with weight ¢—p(2s+1—1) which is positive for i€ {s+1,s+2,...,2s+1}.

Thus, u;<z; for i€{1,2,...,s} and u;Nz; for i€{s+1,s4+2,...,2s+1}.

Relationship i(2)d: If x; <us, then replacing us,— 1, in C' with the arc (ugy, z1,)
creates a cycle with weight ¢>0. If x1Nwuy, then replacing xy, —us, in C' with the

arc (z1,,us) creates a cycle with weight ¢—p(2s+1)<0. Thus, x; <us.

Relationships i(2)b and i(2)c: If uy>z;, then replacing us, — z; in C' with
the arc (ug, z;,) creates a cycle with weight ¢—p(2s+1—(j—1)) which is positive
for je{s+2,5+3,...,25+1}. If upNz;, then replacing z; —ug, in C' with the arc
(25, u2s) creates a cycle with weight ¢—p(j —1) which is positive for i€ {1,2,...,s4+1}
and replacing us, — z;, in C' with the arc (uy,,z;,) creates a cycle with weight
2¢—p(2s+1—4)>0. Thus, u.Nz; for €{1,2,...,s+1} and uy > z; for
je{s+2,s+3,...,2s5+1}.

The preceding relationships correspond to structure (i) of Definition 3.1.1.

Case 2. The two weight ¢ arcs are not adjacent on C.
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Here, C' can be written as
Rlps R105 22752245+ + -3y Rary Rals Xlpy W1g, Ulr, Y1gs Zat1py Ra+1pr Rat+2ps Rat2p5 " " JZBTVT[?@XZN

U2¢, U2y, Y20y %17+

Now, ae{1,2,...,2s}={1,2,...,5—1}. However, by symmetry, a=1 will produce
the same structure as a=/£—i. Thus, we only address a€{s+1,s+2,...,2s}.

Next, consider when 3=2s+42. Consider the relationship between z,_(,41) and
uy. Transitivity excludes z,—(s41)<u1. If 24— (s41)>=u1, then the cycle, C’ created by
replacing 2, (s41),— 1, in C with the arc (z,—(s41),,u1,) contains 2s+2—(s+1)=
s+1 arcs of weight -p and one weight g=ps+d arc. Thus, C’ has weight less
than (ps+d)(1) —p(s+1)=d—p<0 and is a shorter negative cycle than C. If
Za—(s41)Nu1, then the cycle, C”, created by replacing u1, — 24— (s41), in C with the
arc (Ui, ze—(s+1),) contains s+1 arcs of weight —p and one weight g=ps+d arc. Thus,
C" has weight less than (ps+d)(1)—p(s+1)=d—p<0 and is a shorter negative cycle
than C'. Since all relationships between z,,; and wu; yield shorter negative cycles, C'
is not minimal when f=2s+2.

For the rest of this case, we will assume that §=2s+1. See Figure 3.3 for
a digraph representation of C'. We can think of C' as a set of a weight -p arcs,
followed by a weight ¢ arc, followed by a set of 2s4+1—a weight —p arcs and finally

the remaining weight ¢ arc with weight —e and 0 arcs interspersed as needed.

[ J [ J
22 Za T1 Ul Y1 Za+1l 22541 uz2 Y2
Za+2 T2

Figure 3.3: Cycle in Di(P) with two nonadjacent weight ¢ arcs: Each arc directed verti-
cally downward has weight -3, the arc directed vertically upward has weight
q, arcs directed diagonally downward have weight 0, and arcs directed diag-

onally upward have weight —e.
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First, we need to confirm that each element is distinct. The only possible repeats
are ry, Y1, T2, and ys.

By Corollary 2.2.8, x; is distinct from y; and s, and x5 is distinct from y; and
yo. Thus, all of the elements represented in the cycle are distinct.

Cycle C gives yo =21 > 29>+ > 2a =21 NUL N Y1 > Zgi1 >+ > Tosgr1 = Mg N Yo
(relationships ii(1)g, ii(1)h, ii(2)f, ii(2)g, ii6, and ii7 of Definition 3.1.1).

The relationships between u; and us, o, Y2, and 21, 2o, ..., T2s11; between us and
1, Y1, and 2y, 29..., 29.11; and among the elements in the chains are not directly
determined by C. A diagram of the information given by C'is shown in Figure 3.4.
We must determine the relationships between each pair of elements not “connected”

(in the Hasse diagram sense) in the diagram.

-———
- -~

Figure 3.4: Modified Hasse diagram of the relationships defined by C': Here, solid lines
function as in a Hasse diagram but the thicker dashed lines indicate in-
comparability. No line indicates an unknown relationship. Also, note that
the thinner dotted lines within the chains indicate the possibility of more

elements not pictured within the chain.

Relationships in iil:

We start with u;. Let i€{1,2,...,a}. If u; <z, then replacing z;,—u;, in C
with arc (z;,u,) creates cycle with weight ¢—p(2s+1—a+1) which is positive for
i€{1,2,...,a—s—1}. If uyNz;, then replacing u;, — z; in C' with the arc (uy,, z)
creates a cycle with weight ¢ —p(a—1) which is positive for i€ {a—s,...a}, and
replacing z;, —uy, in C with the arc (z;,,u1,) creates a cycle with weight 2g—p(i— 1+

2s+1—a)>0. By transitivity, u; % z;, and uy ¥ yo. If u; <y, then replacing yo,—uy,
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in C' with the arc (yg,u1,) creates a cycle with weight ¢—p(2s+1—a)>qg—p(s)>0.
If w3 Ny, then replacing uy, —ys2, in C' with the arc (uy,,yq,) creates a cycle with
weight ¢—pa<0.

Let je{a+1,...,25+1}. If uy > 2;, then replacing ui,—2;, in C' with (u,,2;,)
creates cycle with weight ¢—p(2s+1—(j—1)+a)<0. If uyNz;, then replacing u;, —
z;, in C' with the arc (uy,,z;,) creates a cycle with weight 2¢—p(2s+1—j4a)>0,
and replacing z; —w;, in C' with the arc (z; ,u1,) creates a cycle with weight
q—p(j—1—a)>0. By transitivity, u; Az and uy Az; for i€ {a+1,...,2s+1}. If
uy > x2, then replacing uj,— xq, in C' with the arc (uj,,xs,) creates a cycle with
weight ¢—p(a)<0. If u;Nxy, then replacing s, —uq, in C' with the arc (xo,,u1,)
creates a cycle with weight ¢—p(2s+1—a)>0, and replacing uy, — 23, in C' with
the path wuy,.,xq,,xe, creates a cycle with weight 3¢—p(a)>0.

If w3 <wug, then replacing ugy—uy, in C' with the arc (ugg,uy,) creates a cycle
with weight -p(2s+1—a)<0. If uj>wus, then replacing u;,—>us, in C' with the arc
(u1g,ug,) creates a cycle with weight -p(a) <0. If w3 Nuy then replacing wuy, —ug,
in C' with the arc (us,,us,) creates a cycle with weight 2¢—p(a)>0 and replacing
U, —>u1p in C' with the arc (us,,u;,) creates a cycle with weight 2¢g—p(2s+1—a)>0.

Thus, u; <Yz, u; <z; for i€ {1,2,...,a—s—1}, u;Nz; for i€ {a—
S,...a}, uyNz; for je{a+1,...,2s+1}, usNxo, and u; Nu,.

Relationships in ii2:
Next, consider uy. Let 1€{1,2,...,a}. If uy>z;, then replacing us,— z;, in C
with the arc (ugy, 2;,) creates a cycle with weight ¢ —p(2s+1— (i —1)) which is
positive for i€ {s+2,...,a}. If upsNz;, then replacing uy, — z;, in C' with the arc
(ug,, zig) creates a cycle with weight 2¢—p(2s+1—1)>0, and replacing z;, —>ug, in
C' with the arc (z;,.,us,) creates a cycle with weight ¢—p(i—1) which is positive for
i€{1,2,...,s+1}. By transitivity, usAz2; for i€{1,2,...,a} and us Azy. If ug>x,
then replacing ug, — x1, in C' with the arc (ugy,x1,) creates a cycle with weight
q—p(2s+1—a)>0. If usNxy, then replacing 1, —ug, in C' with the arc (z1, —usgy)
creates a cycle with weight ¢—p(a)<O0.

Let je{a+1,...,2s+1}. If uy <z, then replacing z;, = uo, in C' with arc
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(25, u2,) creates cycle with weight ¢—p(j)<0. If usNz;, then replacing ug, —z;, in
C with the arc (us,, z;,) creates a cycle with weight g—p(2s+1—7)>0, and replacing
2;, —rug, in C' with the arc (z; ,uq) creates a cycle with weight 2¢—p(j—1)>0.
By transitivity, us z;, and ug ¥ yi. If up <y;, then replacing yi,— ug, in C with
the arc (yi,,us,) creates a cycle with weight ¢—p(a)<0. If usNyy, then replacing
ug, — Y1, in C' with the arc (ug,,y1,) creates a cycle with weight ¢—p(2s+1—a)>0,
and replacing y;,—ug, in C with the path yq,,y1,,u2, creates a cycle with weight
3q¢—p(a)>0.

Thus, uxNz; for i€{1,2,...,54+1}, us>2z; for i€ {s+2,...,a}, uz>x,
u2Ny;, and usNz; for je{a+1,...,2s+1}.

Now, consider pairs of elements with one element in each chain, starting with

Y1

Relationships in ii3:

If 11 <y, then replacing yo,—y1, in C' with the path ya,,41,,y1, creates a cycle with
weight ¢—p(2s+1—a+1) which is positive when a>s+1. If y; =ys, and replacing
Y1,— Yo, in C with the path y1,,9a,,y2, creates a cycle with weight ¢—p(a+1)<0.
If yy,Nys, then replacing yo,— 11, in C' with the path ys,,v2,,71, creates a cycle with
weight 2¢—p(2s+1—a)>0, and replacing y,,—yo, in C' with the path yi,,v1,., Y2,
creates a cycle with weight 2¢g—p(a)>0.

Let i€{1,2,...,a}. If y;>z;, then replacing y;,— z;, in C with the arc (yi,, 2;,.)
creates a cycle with weight ¢—p(a—(i—1)) which is positive for ie{a—s+1,...,a}.
If y; <z;, then replacing z;,— w1, in C with the path z;p,y1,,y1, creates a cycle
with weight ¢—p(i+142s+1—a) which is positive for i€{1,2,...,a—s—2}. If
y1Nz;, then replacing z;, —yp, in C' with the arc (z;,,41,) creates a cycle with weight
q—p(i—142s+1—a) which is positive for i€{1,2,...,a—s}, and replacing y;,— zi,
in C' with the path yy,,y1,, 2, creates a cycle with weight 2g—p(a—1)>0.

If y; >4, then replacing y;,—x1, in C' with the arc (yi,,21,) creates a cycle
with weight ¢>0. If y; <21, then replacing x1,—y1, in C with the path x1,,y1,,91,
creates a cycle with weight ¢—p(2s+1)<0. If y;Nzy, then replacing zy,—y;, in C
with the arc (xy,,y1,) creates a cycle with weight ¢—p(2s+1)<0.
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N a=s+1
Thus,{ yitly + , y1<Nz; forie{1,2,...,a—s—2}, y;Nz; for

Y1 <Ny a>s+1
i€{a—s—1,a—s}, y1 >=z; for ie{a—s+1,...,a}, and y; >x;.

Relationships in ii4:

Next, consider xg. If 29>y, then replacing 29,11, —y2, in C with the path 29511/, y2,,
Y2, creates a cycle with weight ¢—p(2s+2)<0. If 25<ys, and replacing y,,— 5, in
C' with the arc (yg,,72,) creates a cycle with weight ¢>0. If 25Nys, then replacing
T, —>Y2, in C' with the arc (x9,,y9,) creates a cycle with weight ¢—p(2s+1)<O0.

Let i€{1,2,...,a}. If x9> 2, then replacing x, — z;, in C' with the path
To,., Tayg, Zir Creates a cycle with weight ¢ —p(2s+2— (i —1)) which is positive for
i€{s+3,...,a}. If x9<z;, then replacing z;,—xs, in C with the arc (z;, 22, ) creates
a cycle with weight ¢—p(7) which is positive for i€ {1,2,...,s}. If x9N z;, then replac-
ing xe,— 2, in C with the arc (zs,,z;) creates a cycle with weight ¢—p(2s+1—1)
which is positive for i€{s+1,...,a}, and replacing z;, — xs, in C' with the path
Zirs Toy, T, creates a cycle with weight 2g—p(i—1)>0.

If x5 <zq, then replacing xy, — x5, in C with the path xy,, 2z, zo, creates a
cycle with weight ¢—p(a+1)<0. If z9>1z4, then replacing z3,—x1, in C with the
path s, xey, x1, creates a cycle with weight ¢—p(2s+1—a+1) which is positive
when a>s+1. If x9Nz, then replacing z1, — x5, in C' with the path z1,, 22, 2o,
creates a cycle with weight 2¢—p(a)>0, and replacing xq, — 1, in C' with the path
To,,T1p, %1, Creates a cycle with weight 2¢—p(2s+1—a)>0.

Thus, 3 <Yz, T3<z; for i€{1,2,...,8}, zoNz; for i€ {s+1,s+2},
2Ny a=s+1

x2N>z,; for i€{s+3,...,a}, and .
xoN=x7 a>s+1

Relationships in ii5:

Let je{a+1,...,2s+1}. If z; <yo, then replacing ys, — z; in C with the arc
(Y24, 2;,) creates a cycle with weight ¢ —p(2s+1—(j—1)) which is positive when
J>s+1 which is always true. If z;Nys,, then replacing z;, — sz, in C' with the arc
(25, 12¢) creates a cycle with weight ¢g—p(j—1) which is positive when j<s+2 but
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Jj=s+2.1If z; =y, then replacing z;,— 2, in C' with the path z;,,vs,,72, creates a
cycle with weight ¢—p(j+1) which is positive when j<s, but j>s+2.

If z;<x1, then replacing x1,—z;_ in C with the path x,,,214, z;, creates a cycle
with weight ¢—p(a+1+2s+1—(j—1)) which is positive when j>a+s+2>2s+3
which is not possible. If z;Nzy, then replacing 21, —z2;, in C' with the arc (x1,,2;,)
creates a cycle with weight ¢—p(a+2s+1—j) which is positive when j>a+s>2s+1
but j<2s+1. If z;~x;, then replacing z;,—z;, in C with the arc (z;,,21,) creates
a cycle with weight ¢—p(j —a) which is positive when j<s+14a which is always
true.

Let i€{1,2,...,a}. If z;<z;, then replacing z;,—z; in C' with the arc (2,z;,)
creates a cycle with weight ¢—p(i+2s+1—(j—1)) which is positive i€{1,2,...,j—
s—2}. If z; =2, then replacing z;, — z;, in C' with the arc (z;,,z;,) creates a
cycle with weight ¢—p(j—(i—1)) which is positive i€ {j—s+1,...,a}. If z;Nz,
then replacing z; — z;, in C' with the arc (z;, ,z;) creates a cycle with weight
q—p(j —1—1i) which is positive for i€ {j —s—1,...,a}, and replacing z; —z;, in
C with the arc (2, z;,) creates a cycle with weight ¢—p(i—1+2s+1—7) which is
positive for i€{1,2,...,j—s}.

Thus, for je{a+1,...,25+1}, z;<y2, z;<z; for i€{1,2,...,j—s—2},
zjNz; for i€{j—s—1,5—s}, and z; >z; for i€{j—s+1,...,a}, and
Zj—7.

The relationships in bold text above are listed below:

) <Y2

b) <z; forie{l,2,...,a—s—1},
) Nz;, for ie{a—s,...,a},
Nz;, for je{a+1,...,2s+1},
Nxa,

(f) ﬂUQ,
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) Nz; forie{l1,2,...,s+1},
) =z forie{s+2,...,a},
) =x,

) Ny,

)

Nz; for je{a+1,...,25+1},

Ny, a=s+1
< MNya a>s—|—1’

<Nz forie{l,2,...,a—s—2},
Nz; for ie{a—s—1,a—s},
=z for ie{a—s+1,...,a},

>‘3§'1,

(a) <o,

(b) <z forie{l,2,...,s},
) Nz; for ie{s+1,s+2},
)

N>z for 1€{s+3,...,a},

Ny a=s+1
(e) :
Nz a>s+1

5. zj, je{a+1,...,2s+1},

(a) <y,
(b) <z; forie{l,2,...,j—s—2},

(c) Nz forie{j—s—1,j—s},
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(d) >z forie{j—s+1,...,a},
(e) —xq.
These relationships along with the relationships defined by the cycle are exactly

the posets in (ii) of Definition 3.1.1 for each value of a€{s+1,...,2s}. Note that the

uncertainty of 3.(a) and 4.(a) are represented by the dashed lines in these diagrams.

]

Corollary 3.1.3. Let g=ps+d. If d>%, then a negative cycle with exactly two

weight ¢ arcs cannot be minimal.

. » 2s+1 d<?% .
Proof. As in the proof of Proposition 3.1.2, = and in both cases of
25+2 d>t
the proof, f=2s+2 allowed a shorter negative cycle to be found. ]

As an example of Corollary 3.1.3, consider p=4 and g=11. We have 11=4(2)+3,
so d=3. Now, §:%:2. Thus, d>£. By Corollary 3.1.3, F3i! does not contain any
structures corresponding to a minimal negative cycle with exactly two weight 11 arcs.
Such a cycle would require six weight -4 arcs, but this cycle could always be split
into two negative cycles each containing one weight 11 arc and three weight -4 arcs.
Thus, the forbidden structure corresponding to a negative cycle with two weight 11
arcs would contain a 541 which is the minimal structure which corresponds to a
minimal negative cycle with one weight 11 arc and three weight -4 arcs (Lemma

2.2.9).

3.2 Structural result for lengths in [2,¢|, ¢ odd

Definition 3.2.1. Let Fj be the collection of posets shown in Figure 3.5 where (a)
isa2+2, (b) is a 241, (c) is structure (i) of Definition 3.1.1 when p=2, and
(d) is family (ii) of Definition 3.1.1 when p=2. (Theorem 3.2.2 will show that this

notation is appropriate.)
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SR
(a) (b) (c)

Figure 3.5: Collection of minimal forbidden substructures, F3, which prevent a poset
from being representable as intervals with lengths between 2 and odd g¢:
Dashed lines indicate optional precedence. (a) is a 2+2. (b) is a
(c) is structure (i) of Definition 3.1.1 when p=2, and (d) is family (ii) of
Definition 3.1.1 when p=2. Posets in (c), and (d) contain ¢+4 and ¢+6

elements, respectively.

In Figure 3.5, posets (a), (b), and (c) are horizontally symmetric (i.e., replacing
each < with > results in the same poset): (a) is the forbidden sub-poset for interval
orders, (b) is a 92 +1, and (c) contains g+4 elements. Poset (b) will be generalized
to higher values of p in Lemma 5.2.1. In family (d), each poset contains ¢+ 6
elements, and when a= (%L there will be no dashed lines and y; =2,_[4/2) and
T1=2[¢/2141 in the diagram. Disregarding the dashed line precedences, posets in
(d) are also horizontally symetric. However, we note that certain selections for the
dashed line precedences will create posets that are no longer horizontally symmetric.
Section 3.3 illustrates ! for small values of g.

The following is the main structural theorem of this chapter.

Theorem 3.2.2. Let P=(X;<) be a partial order and let g=2s+1, with s€Z>;.

The following are equivalent:
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1. Poset, P, has an interval representation with lengths between 2 and ¢,
2. The weighted digraph DJ(P) contains no negative cycles.
3. Poset, P, contains no induced sub-poset from Fyj.

Proof. (1) < (2) This is a special case of Theorem 2.1.5.

(2) = (3) (by contrapositive) Recall that in D(P), an edge x;— 1z, has weight
q and the reverse edge has weight -2. All other edges have weight —e¢ or 0. If
P contains an induced 2+ 2 (poset 3.5a), say x <y and u<v with zNwu,zN
v,yNu, and yNwv, then y,, x,, ve, u.,y, is a cycle of weight -2¢. If P contains
an induced qT%le (poset 3.5b), say (x1> 29> > T(g45),2) Ny, then, the cycle
T1gy T2y T2g, T3p, 305 Taps 5 T(q45)/2, Y, Yr, T1¢ has weight —2 (%) +q—e¢ (‘1;—3) <0.
If P contains an induced poset isomorphic to poset 3.5¢ of Fy, say x1>x9>..., =

Tgr2Ny1Ny2 With Y1 =2 g41)/2 and Yo < (g43)/2. Then, the cycle

T10yX2r,X20,L3r, X30, Ldrs " s Lg+2,5 Y105 Y1rs Y205 Y245 L1

has weight —2(q)+¢(2) —€(¢+1)<0. Next, consider the posets in family 3.5d labeled

as in Figure 3.6.

Y2
!
'® 2]
Iy
/' ®Za~[q/2]-1
i,
Iy
Y U1
Za+1
Za+2
Zq
T2 Uz
I\
\\\\
\:\ Z[Q/?H‘Q

w

\IZa
\

T

Figure 3.6: Labeling for the family (d) of posets from Figure 3.5



Now, the cycle
Y1py21ry 2105 22r5 """ s Rary Rals Lip, Ulg, Ulp, Y1y Zat-1y)

Za+1ps Ra+2py Ra+20s """ qua qua Loy, U2p, U2y, Y1y

has weight -2(¢+2—a)—2(a—2)+2¢—¢e(q¢+2)=-¢(¢+6)<0. Thus, if a poset P
contains an induced poset in Fy, then D(P) contains a negative cycle.

(3) = (2) (By contrapositive) Assume DI(P) contains a negative cycle. We will
show that P contains an element of 73 as an induced suborder.

Let C be a minimal negative cycle in Di(P).

Case 1. All arcs of C' have weight —€ or 0.
By Lemma 2.2.1, P contains an induced 2+ 2.

Case 2. Cycle C contains an arc of weight -2 but no positive weight arcs.

Lemma 2.2.3 rules out this possibility.

Case 3. Cycle C' contains « arcs of weight q.

By Lemma 2.2.6, C' must contain = {%W arcs of weight -2.

Case 3.1. Cycle C contains one arc with weight ¢ (i.e., a=1).
By Lemma 2.2.9, C' corresponds to a [%-‘ +1 where p=2, so a (#W +1. Since
q is odd this is T2 +1 (structure 3.5b).

Case 3.2. Cycle C contains two arcs with weight ¢.
Thus, f=]2]=¢=2s+1.

By Proposition 3.1.2, the poset corresponding to C' is isomorphic to one of the
structures in Figure 3.1 where a€{s+1,...,2s}.

These are exactly the posets represented by the diagrams in Figure 3.5d.

Case 3.3. Cycle C contains three or more arcs of weight ¢ (i.e., «>3).

This case is excluded by Lemma 2.2.10.

Thus, all possible minimal negative cycles have been considered and the resulting
structures are in Fy. Since each structure corresponds to a minimal negative cycle

the structures are minimal forbidden substructures. To see minimality even more
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clearly, we reason that no structure in Figure 3.5 contains another. First, since each
structure in family (d) contains more elements than (a), (b), and (c), and the same
number of elements as every other structure in (d), no poset in family (d) can be
contained in any other structure in the list. Similarly, (c) is not contained in (a) or
(b), and (b) is not contained in (a). Now, (a) is obviously not contained in (b) or (c).
There is also no 2+2 in family (d) since the two chains are heavily connected. The
chain in (b) has length %, and the longest chain incomparable to another element

q+4—2+1
h 2

in (c) has lengt :‘1'5—3. In a structure in (d) the longest chain incomparable

. 3 3
to an element has length either ¢+2—a<q+2— (%W = (%1 —i—lz% or (%1 —1—1:%.
Thus, (b) is not contained in any of the other posets. Finally, the longest chain
in (c) has length ¢+2, and the longest chain in any structure of (d) has length
a+2<q+1. Therefore, the posets in Figure 3.5 are minimal and are appropriately

defined as Fj. O

How many posets are forbidden by FJ? Proposition 3.2.3 answers this question

for each q.

Proposition 3.2.3. The number of minimal forbidden subposets for interval lengths

between 2 and odd ¢ is |Fy|=3+ 21(&;1)2!)!_

Proof. In Figure 3.5, (a), (b), and (c) contribute 3 posets. For part (d), there

1

are &23 —2="%- structures without accounting for the dashed lines. Now, the first

structure contains ¢+6 elements, 9 of which are part of the center structure. Each of
the remaining ¢—3 elements have exactly one dashed line precedence. We can select
at most one precedence from the top set of dashed lines and at most one precedence
from the bottom set of dashed lines (recall: selecting a precedence close to the center
implies all precedences farther from the center by transitivity). These choices can be

made in (‘1;—34—1) (%4—1) = (%)2 ways. The next structure in (d) has 11 elements

in its center structure and so represents (‘15—3)2 distinct posets. The third structure

would have 13 elements in its center structure and so represents (q;25)2 posets.

Continuing to the last poset, the center structure contains all g+6 elements and so

1
represents only one poset. Thus, |]:§|:3+Z::Tl =3+ (qﬂ)(;i(q_l) =3+22;L_1)2!),. O
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We note that this sequence appears starting at the third term of sequence

A283195 on the Online Encyclopedia of Integer Sequences [16].

3.3 Small values of ¢

We provide the forbidden substructures for ¢=3,5, and 7 with some added discus-

sion.

3.3.1 Lengths [2,3]

Figure 3.7 shows how to translate a poset into the associated digraph for interval
orders with lengths between 2 and 3. Note: as mentioned in the introduction this is
equivalent to a poset having an interval representation with lengths between 1 and
3/2.

Ty Zr  Yr Ty Yr
0 € o
2| X
[ ]
Ty Ty Ye Ty Ye

Figure 3.7: P[2,3] digraph representations of (a) x, (b) zNy, and (c) x<y

Figure 3.8 shows the four forbidden suborders which prevent a poset from having
an interval representation with lengths between 2 and 3. Note that order (a) is for-
bidden even with no length restriction, order (b) is analogous to the added forbidden
suborder for [1,q] interval orders (see Figure 1.3), and family (d) only contains one

structure when ¢g=3.
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111 $ E@
(b) (c) (d)

(a)

Figure 3.8: Minimal induced suborders which prevent a poset from having an interval

representation with lengths in [2,3]

Now, since these are minimal forbidden substructures, there must be an interval
representation when any single vertex is removed from the structure. We note that
this is not how minimality was shown at the end of the proof of Theorem 3.2.2. It
is included here to provide another view of minimality.

We leave structures (a) and (b) to the reader. For structure (c), see Figure 3.9
and for structure (d) see Figure 3.10. We provide an interval representation for one
subposet of each type. For instance, since each structure is horizontally symmetric,
removing the maximal element of a chain is analogous to removing the minimal
element of that chain (the interval representations are vertical mirror images). These
interval representations can be extended to larger values of ¢ by adding length 2
intervals to the chains and adjusting the lengths of the other intervals. However,
q=3 does not include the possibility of elements above or below the center structure.

See figure 3.15 for an illustration of removing an element in this case.
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Figure 3.9: Interval representations with lengths in [2,3] for subposets of minimal for-
bidden poset (c): Dotted intervals have length 2 and solid intervals have

lengths between 2 and 3.

Figure 3.10: Interval representations with lengths in [2,3] for subposets of minimal for-

bidden poset (d): Dotted intervals have length 2 and solid intervals have
lengths between 2 and 3.

3.3.2 Lengths [2,5]

Figures 3.11 and 3.12 give the minimal forbidden induced subposets which prevent
a poset from having an interval representation with interval lengths between 2 and

5. Figure 3.11 uses our compact dashed line notation while Figure 3.12 gives the

standard Hasse diagrams.
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s

(a) (b) (C) (d1) (d,))

Figure 3.11: Minimal forbidden induced subposets for lengths [2, 5]

I

(a) (b) (C) (dm) (dm) (dm) (d1.4) (da)

Figure 3.12: Minimal forbidden induced subposets for lengths [2,5] with the all eight
posets given explicitly without the dashed lines

3.3.3 Lengths [2,7]

Figure 3.13 shows the forbidden induced subposets for lengths between 2 and 7 using
the dashed notation. Figure 3.14 gives the nine posets that part (d) of Figure 3.13

defines.
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(d2) (d3)

Figure 3.13: Minimal forbidden induced subposets for lengths [2,7]

Eika

Figure 3.14: Minimal forbidden induced subposets (d) for lengths [2,7] with the all nine
posets given explicitly without the dashed lines

As previously discussed, each poset in Figure 3.14 is minimal and so removing
any vertex will create a P[2,7]| representable interval order. In Figure 3.10, we
considered many cases of removing elements. Figure 3.15 illustrates the remaining

case of removing an element above or below the central structure.
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n

Ui
27

U2
T2

T
»yzuzl\»22\»23\»24\»25\»3:1\
. 1}27“ T2

Uu
U2%
P

Figure 3.15: Interval representation with lengths in [2,7] for a subposet of a minimal
forbidden poset in family (d): Dotted intervals have length 2 and solid

intervals have lengths between 2 and 7.

This example assumes that all dashed lines become the incomparable relation.
Selecting precedence instead would simply influence the lengths of intervals 1

and/or 5.
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Chapter 4

Interval orders with lengths in
3,ql: PI3,q]

In this chapter we focus on finding F for p=3 and integer ¢q. For ¢=3s, the interval
orders with interval representation with lengths in [3,¢] have representations with
lengths in [1,s]. Thus, the result for ¢ being a multiple of 3 is known. Therefore we
restrict our investigation to ¢g=3s+1 and g=3s+2. Theorem 4.2.2 gives the list of
minimal forbidden posets for P[3,q], but first we prove a result which applies for all

values of p.

4.1 Minimal negative cycles with three weight ¢

arcs

Proposition 4.1.2 characterizes structures in F;! which correspond to minimal neg-
ative cycles in the digraph which contain exactly three weight ¢ arcs. The smallest

p value for which this proposition is useful is p=3. We first define F(3).

Definition 4.1.1. Let FJ(3) be the posets (and their horizontal reflections) la-
beled as in Figure 4.1 with the following relationships where = [%—‘, §= L%J, and
g(mod p) <% or Z<g(mod p)<%:
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Subfigure (i) 1.

4.

Subfigure (ii) 1.

(a) <1,

(b) <z forie{l,2,...,s},
)

(

(c) Nz foriG{s%—l,...,[%-‘},
d) >z for ie{%"%ﬂ,...,ﬁ},
(e) =,

(£) Nus,

us,

(a) =1,

(b) Nz for ie{1,2,...s+1},

)
)
(c) =z forie{s+2,...,5},
(d) Ny,

Yr=R17=2or 28711,

(51 ﬂu2,
urNug a<

ur<us a>

S s

. up,

(a) <2,
(b) <z; for i€{1,2,...,a— L%—‘},



(c) Nz for ie{a— Lﬂ +1,..., a},
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) <
(¢) <Nz forze{ [%]H ..... a—m—1},
(d) N forze{ m ..... a—mﬂ},
)
)

(e) »=z; for ZE{ [%-‘ +2,..., a},
(f

Y

xy,
. zj for je{a+1,... 8},

(a
(b

)
) o] 1),
(¢) Nz for ZG{] [ﬂ ,j—[ﬂ+1},
(d) >z for ZG{] {ﬂ +2,..., a},

A

Y2,

=T j<a—|—[ -‘
() & Nz cH—[ -‘<]<a+[ -‘—1—1
<Nz ]>a+[ -‘—1—1

. X,

A

a Y2,

(a)
(b) <z for ze{l,2 ..... {2—]—1 ,
)
)

.....

(c) Nz; for 26{

- 1
S |8
-1
—_—
S |8
_
+
M =
——

(d) N>z for ZE{P_}’_Q ..... asg,

p



<Nz a< {%W—l
(e) Nz [%q-‘ —1<a< [%q-‘ ,
— T a> ’Vﬁ-‘
p
9. Yoz =29 =2 -1,

10. Y17 Rar17 Rat2/ " =237 T2,

Subfigures (iii), (iv), and (v)

1. ulﬂu2,
2. UQﬂUg,
usNuy a< %
3 "1,
Us>Up a> %
4. Uy,
(a) u1=ys,
(b) uy =<z for i€41,2, ,a—{ﬂ},

¢) uiNgz; for i€<a— FW +1,...,a},
1

) {
(c) {
(d) wiNz forz'e{a
(e) up >z for ie{a
upNey b<

U=y b>

U <Y2 b<
()

)

T ——

TR TR Wk WK

uiNyz b=
(h) wy <z for ie{a—l—b—l—l,...,a—i— L)
(i) upNz; for ie{a—l— Lﬂ ,...,ﬁ},

ur<Nrs a>

&S]
-
|
—_
W—/

(1)
uNes a<

(k) Ulﬂl‘l,

SRR



b) =2 forz'e{1,2,...,a+b—{ﬂ},

: 2
(c) ugNz; for ZE{a—i-b— [?q-‘—i-l,...,a—l—b— {%-‘le}?
(d) ug>z; for iE{oH—b— %_‘ +2,...,a},
Ug-x; b<

Uo M T bZ

au2my1 b<

Y

U<y b>

Sk [k Sk ik

(g) ug<z; for ie{a+1,...,a+b— {%-‘ },
(h) uyNz; for ie{a—i—b— [%-‘ —i—l,...,a—i—b},
(i) ugnz; for ie{a+b+1,...,5},

(]

)

) u2Nxs3,
(k) uaNy,

)

(1 u20y27
. U3’
(a) uzNzi forie{1,2,...,m}’
(b) uz>=z; for ie{{%-‘—i—l,...,a},
(C) U~ =T1,
usN>y1  a> 2;‘1
Ugﬂyl CLS 2q ’
(e) ugNz; for z’e{a—i—l,..., {%W }7

(f) ug>z; for z'e{ ’72?(1-‘ —i—l,...,a—l—b},

(g) U3>‘l‘2,
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(h) uzNys,
(i) ugnz; for ie{a+b+1,...,5},
()

(k) usNys,

Ugml’g,

7. Chains one and two,

(a) Y1,
yys =8
(D) §m=<Nys m<a< %1
Y1=<Ys3 a> {2’7‘1
() yi<z for ie{1,2,....a— | 2|},
(III) Y1 <Mg; for iG{a— ’V%-‘ +1,...,a— ’V%-‘ _1}7
(IV) y1Nz; for iE{a— Lﬂ ,a— Lﬂ _|_1}7
(V) y1=2 for z’e{a— {ﬂ +2,...,a},
(VD) y1>=a1,
(b) 2 for je{a+1,a+2,...,a+b},
(D) z=ys,

(II Zj <% for 1€

(IV) zj>z; for ie

) {
() 20z forie{j- 2] )
) {j—MH,...,a},
(V) zj=x1 fijE{a+1,...,a+LﬂJ_1},
(V) 0 for jefa+ [2],. o+ 4] +1},
(VIT) z; =N forje{a-k[
(c) @2,
(1) z2=ys,
(IT) 2=z forie{l,Q,...,aij—Lﬂ}’

(III) zoNz; for ie{a+b— [ﬂ +1,a4+b— {ﬂ _1_2}’
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(IV) x9Nz, for ie{a—l—b— {— +3,..., a},

q
p

1

ToN=1q b< ﬂ -1

(V) { zonas be{dq, M}
To=<Nxy b> L%-‘

2g
p
2_q )
p
(IT) yo=<Nz; forie{l 2,..., a+b— %q-‘—l ,

)
(III) yoNz; for le{a+b {—q-‘ ,a+b— [Q—q-‘ —I—l},
)

. Chains one and three,

(a) Y2,
. Yo<Nys a+b>
YoNy3 a+b=

p p
(IV) yo>=2z; for z€{a+b ﬁﬂ +2,..., a},
(V) yQ}xh
(b) z; for je{a+b+1,..., G},
(D) zj<ys,

(1) 2=z for e {1,2,....j—| %] -1},

() 20z for ie{j—[ 2] j—[2]+1},

(IV) z;>z; for ie{j—{%w 19, a}’

(V) zj=m1,

(c) s,
(I

(II) x3=<z; forie

)
)
(III) x3Nz; for ie
(IV) 3N >z for i
)

f—/h\m’_M/—’H

(V) 23>z for ie
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S

r3Nxy a= L%
(VI) ¢ z3N>=x; F-‘ <a< %-‘ ,
T3>1T1 a> [Z—q

9. Chains two and three,

() yo,
Y21y b< Lﬂ—l
(1) { wOy |2 -1<e<],
Y2 =My L%-‘ <b
(1 yz<ﬂ2-f0ri€{a+1 ..... a+b—H_1},

)
(III) yoNz; for ze{a+b %-‘ a+b— P-‘—H},
)

(IV) ya >z for ze{a—i-b [2-‘—1-2 ..... a—i—b},
(V) ya>-2o,

(b) z; for je{a+b+1,...,5},
(1) 2=y forjE{cH—b—l—l ..... a+m_2},
(I1) z;Ny; for ]e{a+[ W 1””[%“7
(1) zj<y for je{a+{ ]H ..... ﬁ},
(IV) 2=z for Z€{a+1 ..... j_{
) ;%
)
) 2

(VI) z;>z; for ZE{] L%W%—Z ..... a+b},
(VII >'.l’2

(c) @3

%)



(IV) z3N>z; for 2'6{ {%W +2,...,a+b},

r3MNTo a+b=
(V)

SRR

r3N>=1x9 a+b>

10. ys>=z1>-29> > 2, >T1,
11, y1>=2a41> 2a42>= "= Zaqp = T2,

12. Yo > Zagbr1 > Zatbr2 > > 23> T3

i

[ &)
I8 =]y =

+
AN

U3f\ /,92
’ z

|
—

a

Y1

-

Za+1
Za—+2
“at[g]

“at[g] 1

2
|
—_— — — —
"k Wik Tk Wk WSk
+ + +
N

w

“at[4]+28,
w26 Wus

o<z

ol i
Zlq/pl+1 2]+1
Uu q
Z(q/;:r}' a4 Zz

u
Z2q/p]-1 2 ) }i:
U
ZDZq/:le o> [2]
o ac{[§]

(i)

Figure 4.1: Minimal structures which correspond to a negative cycle with three weight

. B—1}
(ii)

q arcs that cannot appear in a [p,¢] representable interval order
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weight ¢ arcs that cannot appear in a [p,q] representable interval

o = — = N A — 4 O ™ — — — = &N M < 8 -
D W qip+ | I o2+ + + + I s+ + + + ¥y

N —r—r——e—rr——r—r— | — —le—r—r—r—r

e P Sla Sla | ola s sia s

[ R Ty T RN [ o L

S N

S | | N | | | I+ | | |

) 3 3 o 3 O o o o

S W W N W W + N + + + +

R E EERGCIRGIG

I N W NN

Figure 4.1 (cont): Minimal structures which correspond to a negative cycle with three

order: The left and right chains contain the same elements. Note:

ug>=u if a> [



u]-2
i
41

e
42
e

N

N
|
—_

ISTIRSNY
S 8 ————
| | ke sk sk sk
x

N W W W
7

IS
|
" Bhe Sk Bk

|
—

W N =

—
Ve Ve Ve B Bl Tl
B o B B
+ + + +

N

(iv)

ae{ {%} +1,...,q—2} (thus be{1,2,..., Lﬂ —3})

Figure 4.1 (cont): Minimal structures which correspond to a negative cycle with three

weight ¢ arcs that cannot appear in a [p,q] representable interval

order
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Figure 4.1 (cont):
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Minimal structures which correspond to a negative cycle with three
weight ¢ arcs that cannot appear in a [p,q] representable interval

order: The left and right chains contain the same elements.
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Proposition 4.1.2. Let P be a poset. Let C be a minimal negative cycle in DZ(P).
If C has exactly three weight ¢ arcs, then P contains an induced subposet isomorphic

to one of the posets in F(3).

Proof. Let C be a minimal negative cycle in D?(P) with exactly three weight ¢ arcs.
Let g=ps+d with de{1,2,...,p—1} and ged(p,d)=1. We have that = [%ﬂ =

3s5+1 d< g
35+ {%‘i-‘ =4 3s+2 £<d< % . There are three possible cycle structures to consider:
35+3  Z<d

(1) the three positive weight arcs are adjacent on the cycle, (2) two of the positive
weight arcs are adjacent on the cycle and the third is not, and (3) no pair of positive

weight arcs is adjacent on C'. By Lemma 2.2.4, we can draw C as in Figure 4.2.

Z1p [ ] [ ]

Z1e

) ) ()
z2 Za T1 U1 Y1 Za+2 Za+b u2 Y2 Za+b+42 Zp T3 U3 Y3
. PRI

2

e~

Figure 4.2: Cycle in D{(P) with three weight g arcs

To simplify the calculations, we will disregard the weight —e arcs when finding
cycle weights. Thus, if a cycle has weight 0 below, it will be considered a negative
cycle because all of the cycles considered have at least one weight - arc.

Without loss of generality assume a>b>3s+ ‘%ﬂ —a—0b>0. Thus,
a> H (33+ [%ﬂﬂ >s+1. Note: If b=0 and/or 3s+ F’?‘ﬂ —a—0b=0, eliminate their
corresponding = and y elements. Now, consider the relationship between z,_(s41)
and u; such that z,_(.41)=ys if a=s+1. By transitivity, ui # 24— (s41). If Za—(s41)>=
uy, then replacing 2, (s41),—u1, in C' with the arc (Za_(8+1)e,u1r) creates a cycle
with weight 2¢g —p(3s+[(3d)/p] —(s+1))=2(ps+d) —p(2s+ [(3d)/p] — 1) =2d —
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2d d<?
p[(3d)/pl+p=14 2d—p E<d<22 which is non-positive when d>% or L<d<l. If
2d—2p 2<d
Za—(s+1)Nu1, then replacing ui, — 24— (s11), in C with the arc (ulr,za_(sﬂ)z) creates
a cycle with weight ¢—p(s+1)<0. Thus, when d>% or £<d<% all relationships
between z,_(s41) and wu; yield shorter negative cycles. For the remainder of the
proof, we will assume that dgg or §<d§%p.
We also note that when §<d§2§p or dgg, [%‘1-‘ — P?q-‘ =35+ F’?d-‘ — 25— [%d-‘ =
s+1-1  d<f
s+2-2 §<d§%_[p P
in the following cases.

Q-‘ —1, and so [@-‘ — {%_‘ = [%‘1-‘ —1. We will use these facts

Case 1. All three positive weight arcs are adjacent on the cycle.

By Lemma 2.2.4, we can represent the cycle as

Rlry R18y 2215 2205 -+ -1 2B s ZBps Llpy Ulgy Uiy, U0, U2y, U0, U3y Y15 21

By Corollary 2.2.8, x; and y; are unique. Cycle C' contains both vertices corre-
sponding to each of the other elements. Thus, all elements labeled are distinct.
We have y; =21 =29+ - > zg =1 NuyNuaNuzNyy (relationships i(1)e, i(1)f, i(2)f,
i(3)d, and i4 of Definition 4.1.1). See Figure 4.3. The relationships between u; and
w1, Y1, and z; for i€{1,2,...,8}, between uy and z1, y;, and z; for i€ {1,2,...,5},

and between uz and x; and z; for t€{1,2,..., 5} must be determined.
21p [ J
21¢ [ ]
z2 z3 1 ul u2 us3 1

Figure 4.3: Cycle in DJ(P) with three weight ¢ arcs that are adjacent on C: Each
arc directed vertically downward has weight -p, each arc directed vertically
upward has weight ¢, arcs directed diagonally downward have weight 0, and

arcs directed diagonally upward have weight -e.
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We will start with u,. By transitivity, uq % y1. If u; <y1, then replacing yi,—uy,
in C' with the arc (yy,,uy,) creates a cycle with weight 2¢. If u;Ny;, then replacing
u1,—y1, in C' with the arc (uy,.,y1,) creates a cycle with weight ¢—p(/5)<0.

If uy > z;, then replacing uj,— z;, in C with the arc (uqy,2;,) yields a shorter
negative cycle for i€ {1,2,...,8}. If u;Nz;, then replacing uy, — z;, in C' with
the arc (uq,,z;) creates a cycle with weight ¢—p(8 —1) which is positive for i€

p
weight 3g—p(i—1)>0. If u; <z;, then replacing z;,—uy, in C' with the arc (z;,u1,)

{ {@W ,---3}, and replacing z;, —u1, in C with the arc (z;,,u;,) creates a cycle with

creates a cycle with weight 2¢g—p(i) which is positive for i€{1,2, . [%"-‘ —1}.

If uy >wug, then replacing u;,—us, in C' with the arc (uy,,us,) creates a shorter
negative cycle. If u; <wug, then replacing us, — up, in C' with the arc (us,,u1,)
creates a cycle with weight ¢>0. If u;Nug, then replacing uy, —us, in C' with the
arc (uq,,usy) creates a shorter negative cycle.

Thus, u; <y;, u; <z; for i€{1,2,. .. [%W —1}, u;Nz; for
ie{ {%-‘ yeoo ,ﬂ}, and u; <wug (relationships i(1)a, i(1)b, i(1)c, and i(1)d of Defi-
nition 4.1.1).

Similarly, for us, if us >z, then replacing us,— 1, in C' with the arc (ugg,x1,.)
creates a cycle with weight 2¢>0. By transitivity, usAz;. If usNxy, then replacing
x1,—uge in C with the arc (x1,,us,) creates a cycle with weight ¢—p(3) <0.

If uz > z;, then replacing us, — z;, in C' with the arc (ugy, 2;,) creates a cycle
with weight 2g—p(5—(i—1)) which is positive for i€ {s+2,...,5}. If ugNz;, then
replacing ug, — z;, in C' with the arc (us,,z;,) creates a cycle with weight 3¢—p(5—
i)>0, and replacing z;,—ug, in C' with the arc (z;,,us,) creates a cycle with weight
g—p(i—1) which is positive for i€{1,2,...,s+1}. By transitivity, u; £z;.

Thus, us>x1, ugsNz; for 1€{1,2,...s4+1}, and us > z; for
1€{s+2,...,0} (relationships i(3)a, i(3)b, and i(3)c of Definition 4.1.1).

For wuy, if ug>1vyy, then replacing ugy— 11, in C' with the path ugy, y1,,y1, creates a
shorter negative cycle. If uy <y, then replacing y;,—us, in C with the arc (yi,,us,)
creates a cycle with weight ¢>0. If usNyy, then replacing us, —y;, in C' with the
arc (uz,,y1,) creates a cycle with weight 2¢g—p(5)<0.
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If ug > z; then replacing ug,— z;, in C' with the arc (ugy, 2;,) creates a cycle with
weight ¢ —p(8—(i—1)) which is positive for i€ { ﬁﬂ +1,... ,ﬂ}. If uy < z;, then
replacing z;;—ug, in C' with the arc (z;y,us,) creates a cycle with weight ¢—p(i) for
i€{1,2,...,s}. If ugNz;, then replacing uy, —z;, in C' with the arc (usg,,z;,) creates
a cycle with weight 2¢g—p(8—1) which is positive for i€{s+1,...,5} and replacing
Zip—Ugy in C' with the arc (z;,.,us,) creates a cycle with weight 2¢—p(i—1) which
is positive for i€{1,2,..., {%W }

If ug>xq, then replacing ug,— 1, in C' with the arc (ugs,x1,) creates a cycle
with weight ¢>0. If uy <z, then replacing x1, —us, in C' with the path z1,,z1,,us,
creates shorter negative cycle. If usNxy, then replacing z1, —uq, in C' with the arc
(1,,usz,) creates a cycle with weight 2¢—p(8)<0.

Thus, uy <y, us<z; for i€{1,2,...,s}, usNz; for i€ {s—l—l, ceey {%W },
ug > z; for 1 € { {%W +1,... ,,8}, and wuy > x; (relationships i(2)a, i(2)b, i(2)c,
i(2)d, and i(2)e of Definition 4.1.1).

The preceding analysis gives the following relationships which give poset (i) of
Definition 4.1.1:

1. Uy,

(a) <1,

(b) <z forie{1,2,...(%]—1},
) Nz; for ie{[%w,...,ﬂ},
) <us,
e) Ny,
)

mula

(a) <w,
(b) <z forie{l,2,...,s},

(c) Nz for ie{s—i—l,..., {%‘1-‘ },
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(@) = for ie{ |2 ]+1,....8},
(e) =1,

(f) ﬂU3,

) =,

) Nz; for ie{1,2,...s+1},
(c) =z forie{s+2,...,5},
) Ny,

4.y =21 =29 =23>=17.

Case 2. Two of the positive weight arcs are adjacent on C' and the third is not.

Here, C' can be written as
Z1rsR16y 22032205+ -+ s Rary Raly Tlprs Wig, Ulry Y1y Rat1py Ra+1py Rat2ps Ra+2¢ """ 72,37-7 Zﬁga$2ra

U2p, U2y, U3g, U3y, Y20, 21y

This cycle is depicted in Figure 4.4. Each z,y, and z is distinct except possibly
21,Y1,Ypr2, and z1, but by Corollary 2.2.8 they are also distinct.

[ ] [ ]
2] Za T1 Ul Y1 Za+2 zZg T2 U2 U3 Y2
Za+1

Figure 4.4: Cycle in D{(P) with two adjacent weight q arcs and one not adjacent

Cycle C produces different structures based on the value of a. We have a €
{1,2,5—1}. Now, a=p—a’ gives the vertical reflection of a=d’, so we will only

consider a€{[3/2],...,6—1}. We will first consider relationships in terms of a
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and then analyze them based on the value of a. Let b:=f—a. Cycle C gives
Yo =21 = 2o > = 2 = X1 N UL N Y1 > Zag1 >+ > 25 > TaNug Nug Nys (relationships
ii(3)g, ii(3)h, ii(4)i, ii(4)j, ii(5)h, ii9, and ii10 of Definition 4.1.1).

If uy =g, then replacing u;p—us, in C' with the arc (uyy,us,) creates a cycle with
weight ¢—p(a)<0. If u; <uy, then replacing usy—>uq, in C' with the arc (ugy, us,)
creates a cycle with weight -p(5—a)<0. If u; Nuy then replacing u;, —ug, in C' with
the arc (uy,,uq,) creates a cycle with weight 3¢—p(a)>0, and replacing ug, —u1, in
C' with the arc (ug,,uq,) creates a cycle with weight 2¢—p(8—a)>0.

If uy > wug, then replacing ui,—ug, in C' with the arc (u1,,us,) creates a cycle
with weight -p(a)<0. If u; <ug, then replacing uz,—uy, in C' with the arc (us,,u,.)
creates a cycle with weight ¢—p(8—a) which is positive is a> {%W. If u;Nus then
replacing uy, —us, in C' with the arc (uy,,us,) creates a cycle with weight 2¢g—p(a)
which is positive when a< P?q-‘, and replacing uz, —up, in C' with the arc (ug,.,u1,)
creates a cycle with weight 3¢—p(5—a)>0.

Thus, u;Nus, and u; <ug if a> P;‘ﬂ and u;Nug if a< P;ﬂ (relationships
iil and ii2 of Definition 4.1.1).

Let i€{1,2,...,a}. If uy>z;, then replacing u;,— z;, in C' with the arc (uyy, 2;,.)
creates a cycle with weight -p(a—(i—1))<0. If u; >y, then replacing ui,—ys, in
C with the path uyy,ys,,y2, creates a cycle with weight -p(a+1)<0. If u; <z;, then
replacing z;,—uy, in C' with the arc (z;,,u1,) creates a cycle with weight 2¢—p(b+1)
which is positive for i€ {1,2, c.a— {%-‘ } If u; <ys9, then replacing yo,—uq, in C
with the arc (z9,,u1,) creates a cycle with weight 2¢—p(b) >0.

If u3 Nz, then replacing uy, — z;, in C' with the arc (uy,,z;) creates a cycle
with weight ¢ —p(a—1) which is positive for i€ {a— {ﬂ —|—1,...,a}, and replacing
zip—upe in C' with the arc (2;,,uy,) creates a cycle with weight 3¢—p(b+(i—1))>0.
If uy Ny, then replacing uy, — 1y, in C' with the arc (uy,,yq,) creates a cycle with
weight ¢—p(a)<0.

Thus, u; <vys, u; <z; for 2 € {1,2,...,0,— E—‘} and u; Nz; for 72 €
{a— [ﬂ +1,... ,a} (relationships ii3(a)-(c) of Definition 4.1.1).

If ug > z;, then replacing ugy— z;, in C with the arc (ugy,2;,) creates a cycle
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with weight ¢ —p(8— (i —1)) which positive for z‘eﬂ%}ul,..‘,a}. If 1y > 1,
then replacing uq,—y2, in C' with the path ug,, ya,,vy2, creates a cycle with weight
q—p(B+1)<0. If ug>x4, then replacing ugy— 1, in C' with the arc (ugy,z1,) creates
a cycle with weight ¢—p(b) which is positive when a> {%-‘.

If uy<z;, then replacing z;y—us, in C with the arc (z;,us,) creates a cycle with
weight ¢—p(i) which is positive for i€ {1,2, s Lﬂ —1}. If uy <y, then replacing
Yoy —> Ug, in C' with the arc (yg,,us,) creates a cycle with weight ¢>0. If uy <z,
then replacing x1, —us, in C' with the path zy,.,21,,us,, creates a cycle with weight
qg—p(a+1)<O0.

If usNz;, then replacing ug, — z;, in C' with the arc (us,., ;) creates a cycle with
weight 2¢—p(—1) which is positive for ie{ {%—‘ ,...,a}, and replacing z;, —ug, in
C' with the arc (z;,,us,) creates a cycle with than 2¢—p(i—1) which is positive for
i€ {1,2,3, . {%W } If usNys, then replacing ug, —y2, in C' with the arc (ua,.,yo,)
creates a cycle with weight 2¢—p(f3) <0. If usNxq, then replacing ug, — 1, in C
with the path us,,z1,,x1, creates a cycle with weight 3¢—p(b) >0, and replacing
T1, — Uy in C' with the arc (z1,,uq,) creates a cycle with than 2¢g—p(a) which is
positive if a< {%ﬂ.

Thus, us<ys, us<z; for iE{l,Z,..., {ﬂ —1}, ugNz; for

. 0 . 9 UMy a<
ze{{ﬂ-‘ yeuns [—q-‘}, uq > z; for ze{{—q-‘—kl,...,a} and
P P P Uy =T1 a>

SRR

(relationships ii4(a)-(e) of Definition 4.1.1).

If uz > z; then replacing us,— z;, in C' with the arc (ug, z;,) creates a cycle
with weight 2¢—p(8— (i—1)) which is positive for i€ {[q¢/p|+1,...,a}. If ug=1
then replacing ug,— 1, in C with the arc (ugy,z1,) creates a cycle with weight
2q—p(b)>0. By transitivity, uzAz; and uzAx;.

If ugNz;, then replacing z;, —ug, in C' with the arc (z;,,us,) creates a cycle with
weight ¢—p(i—1) which is positive for i€ {1,2,...,[q¢/p]}, and replacing us, — 2,
in C' with the arc (us,,z;,) creates a cycle with weight 3¢ —p(8—1i)>0. If ugNxy,

then replacing 1, —us, in C with the arc (xi,,us,) creates a cycle with weight

q—p(a)<0.
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Thus, uzNz; for i€ {1,2,..., {%—‘ }, ug > z; for 1€ { {%—‘ —|—1,...,a}, and
uz >, (relationships ii5(a)-(c) of Definition 4.1.1).

Let je{a+1,...,8}. If uy>z;, then replacing ui,— z;, in C' with the arc
(w14, 2;,) creates a cycle with weight 2¢ —p(8 — (j —1)+a) which is positive for
Jje {a—l— Lﬂ +1,... ,5}. If uy x5, then replacing u;,— xs, in C with the arc (uq,, 2, )
creates a cycle with weight 2¢—p(a) which is positive if a < [%W. By transitivity,
w1 Azj and uy Axs.

If u1Nz;, then replacing vy, —z;, in C' with the arc (u,,2;,) creates a cycle with
weight 3¢—p(B8—j+a)>0, and replacing z; —uy, in C with the arc (z;, ,u;,) creates
a cycle with weight ¢—p(j7—1—a) which is positive for j€& {a+1,a+2, o a+t {%—‘ }
If uyNxo, then replacing ui, — xo, in C' with the path uy,, 2y, xo, creates a cycle
with weight 4¢—p(a)>0, and replacing xs, —uy, in C' with the arc (xq,,u1,) creates

a cycle with weight ¢—p(b) which is positive for a> [2’7‘1-‘.
Thus, u;Nz; for j€ {a+1,a—|—2, cee,a+ {g-‘ }, uy > z; for

up>-x2 a< |
JE {a,—l— [ﬂ +1,... ,B}, and (relationships ii3(d)-(f) of Def-

uNey a>

S |E s

inition 4.1.1).

By transitivity us ¥ z; and ug # 1. If up <z;, then replacing z;, —uy, in C
with the arc (zj,,us,) creates a cycle with weight 2¢—p(j) which positive for je
{a+1,a+2,..., [%‘1-‘ —1}. If ug <41, then replacing yi, — ug, in C' with the arc

(y14,u2,) creates a cycle with weight 2¢g—p(a) which positive for a< P;q-‘.

If upNz;, then replacing uy, —z;, in C' with the arc (us,,2;,) creates a cycle with
weight ¢—p(8—7) which is positive for je{ %‘1—‘ ,...,B}, and replacing z; —ug, in
C with the arc (z;,_,uq) creates a cycle with weight 3¢—p(8—j+a)>0. If upNy,
then replacing us, — 11, in C' with the arc (ug,,y;,) creates a cycle with weight
q—p(b) which is positive for a> {%-‘, and replacing y1,—u9, in C' with the path
y—1,,y1,, Uz, creates a cycle with weight 4¢—p(a)>0.

Uz <Yy a<

Thus, , ug<z; for je{a+1,a+2,..., [2—"-‘ —1}, and
uzNy; a> P

g g
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uxNz; for jE{ [2’7"—‘ yeue ,,8} (relationships ii4(f)-(h) of Definition 4.1.1).

If ug> z;, then replacing us,— 2; in C with the arc (usy, z;,) creates a cycle
with weight ¢—p(5—(j—1)) which is positive for j€ { [%-‘ +1,... ,B}. If ug >y,
then replacing ug,—y1, in C' with the path wus,, y1,,71, creates a cycle with weight
q—p(b+1) which is positive for a> [2’7‘1—‘. If ug>xy then replacing ug,—xs, in C'
with the arc (usg, s, ) creates a cycle with weight ¢>0.

If u3<z;, then replacing z;,—us, in C with the arc (z;,,us,) creates a cycle with
weight ¢—p(j)<0. If uz<y;, then replacing y;,—us, in C' with the arc (yi,,us,)
creates a cycle with weight ¢—p(a)<0. If ug<xs, then replacing 5, —us, in C' with
the path xs,,xq,,us, creates a cycle with weight ¢—p(8+1)<O0.

If usNz;, then replacing us, —z;, in C' with the arc (us,,2;,) creates a cycle
with weight 2¢—p(8—j) which is positive for jE{ {%—‘ ,...,B}:{a—I—l,...,B}, and
replacing z; —ugz, in C with the arc (2;,,us,) creates a cycle with weight 2¢—p(j—1)
which is positive for j& {a—i—l,a—i—Q, o {%—‘ } If usNy, then replacing y;,—us, in
C' with the path y1,,y1,,us, creates a cycle with weight 3¢—p(a)>0, and replacing
us, — Y1, in C' with the arc (us,,y;,) creates a cycle with weight 2¢—p(b) >0. If
ugNaxe, then replacing x9, —us, in C' with the arc (xq,,us,) creates a cycle with
weight 2¢—p(3)<0.

uzNys a<

Thus, , ugMz; for je{a+1,a—|—2,..., [%‘ﬂ }, U3 > 2;

S s lE

usMN>y2 a>

for j€ { [%‘1-‘ +1,... ,ﬂ}, and ug > x2 (relationships ii5(d)-(g) of Definition 4.1.1).

Lastly, we must consider the relationships between elements of the two chains.
We start with the maximal element of the second chain.

Let i€{1,2,...,a}. If y; > 2;, then replacing y;,— z;, in C' with the arc (yi,, 2;,.)
creates a cycle with weight g—p(a—(i—1)) which is positive for
1€ {a— {%—‘ +2,...,a}. If y1 >y, then replacing yi, —y2, in C' with the path
Yips Yo, Y2, Creates a cycle with weight ¢ —p(a+1)<0. If y; =2, then replacing
y1,— 1, in C' with the arc (yi,,21,) creates a cycle with weight ¢>0.

If y; <z;, then replacing z;,—vy1, in C' with the path z;,,11,,71, creates a cycle
with weight 2¢—p(j+b+1) which is positive for i€ {1,2,..., — [%—‘ —1}. If y1 <y,
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then replacing y9,— 11, in C' with the path ya,,v1,,y1, creates a cycle with weight
2q—p(b+1)>0. If y; <xo, then replacing z,,—y;, with the path z,,,y1,,y1, creates
a cycle with weight 2¢—p(8+1)<O0.

If y1Nz;, then replacing z;,—y1, in C with the arc (z;,.,y1,) creates a cycle with
weight 2¢g—p(i—1+b) which is positive for i€ {1,2, e, a— L%-‘ —1—1}, and replacing
Y1, zip in C' with the path yy,,1,, 2, creates a cycle with weight 2¢—p(a—1) which
is positive for ie{a— ﬁﬂ —1—1,...,@}. If y1Nys, then replacing yo,—y1, in C' with
the path ya,,vy2,,y1, creates a cycle with weight 3g—p(b) >0, and replacing y1,— Y2,
in C' with the path yi,,y1,,y2, creates a cycle with weight 2¢—p(a) which is positive
when a< {%—‘ . If yyNxq, then replacing =1, —y1, in C' with the arc (x1,.,y1,) creates
a cycle with weight 2¢—p(3) <O0.

y1<Ny> a< |

Thus, S I; , Y1 < z; for i€{1,2,...,a—[%-‘}, Y1 <Nz;
Y1<Yy2 az|>

2
p

for iE{a— {%-‘ +1,...,a— {%-‘ —1}, y1Nz; for ie{a— {g-‘ ey A — [g_‘ —|—1},

y1>z; for i€ {a— Lﬂ]-‘ +2,..., a}, and y; > (relationships ii6(a)-(f) of Defi-

nition 4.1.1).

We will analyze the relationship of the remaining elements of the second chain
to each element of the first, starting with the minimal element of the second chain,
and then the middle elements.

If x> z;, then replacing x9, — z;, in C' with the path xs,, x5, 2;, creates a cycle
with weight ¢—p(5+1—(i—1)) which is positive for ie{ [%q-‘ +2,.. .,a}. If zo>1vys,
then replacing 5, —ys, in C' with the path ., 29/, vs,,y2, creates a cycle ¢—p(S+
2)<0. If z9>x4, then replacing 3, —x1, in C with the path xy,, 9,21, creates a
cycle with weight ¢—p(b+1) which is positive for a> [%‘1-‘ .

If x5 < z;, then replacing z;;—>xs, in C with the arc (2,22, ) creates a cycle with
weight 2g—p(i) which is positive for ie{l, 2,..., {%W —1}. If x5 <1ys, then replacing
Yoy —> T2, in C' with the arc (yo, 22,) creates a cycle with weight 2¢>0. If o<,
then replacing x1,— s, in C' with the path xy,,x1,, 29, creates a cycle with weight
2g—p(a+1) which is positive for a< {%-‘ —1.

If zoNz;, then replacing z;, — w9, in C' with the path z;,,z9,, 2, creates a cycle
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with weight 3¢—p(i—1)>0, and replacing xs, — z;, in C with the arc (x,, 2;,) creates
a cycle with weight ¢—p(5—1i) which is positive for ie{ {%—‘ ye .,a}. If x9Nys, then
replacing 9, — o, in C with the arc (xq,.,y9,) creates a cycle with weight ¢—p(3) <0.
If x9Nz, then replacing x5, — 1, in C' with the path zs,,x1,, 1, creates a cycle
with weight 2¢g —p(b) >0, and replacing x1, — 5, in C with the path xy,, 29, 22,
creates a cycle with weight 3¢—p(a)>0.

Thus, 3 <y, x2<2z; for i€{1,2,.. . [2’7‘1—‘ —1}, xoMNz; for
ie{ {%W ooy {%W —|—1}, TN >z; for ie{ P;ﬂ —i—2,...,a}, and

To=<Mxy a<{%-‘—1

ey [%] —1<a< {%W (velationships ii8(a)-(e) of Definition 4.1.1).

T2 a> [%—‘

Let je{a+1,...8}. If z;>-2;, then replacing z;,—z;, in C' with the arc (2;,,2;,)
creates a cycle with weight g—p(j—(i—1)) which is positive for
i€ {j— {%-‘—1—2,...@}. If z; > ys, then replacing zj, — 1, in C' with the path
Zjp Y2, Yo, Creates a cycle with weight ¢ —p(j+1)<0. If z;>~a, then replacing
2;,— 1, in C' with the arc (z;,,21,) creates a cycle with weight ¢—p(j—a) which is
positive for j<a+ L%—‘ .

If z; <z, then replacing 2z, — z;, in C' with the arc (zy,z;,) creates a cycle
with weight 2¢—p(i+ 8 — (j—1)) which is positive for i€ {1,2,...,j— m —1}. If
2; <2, then replacing o, —2; in C' with the arc (ys,,2;.) creates a cycle with
weight 2¢—p(5—(j—1)) which is positive for j> {ﬂ which is always true. If z; <z,
then replacing x1,—z2;,_ in C' with the path x,,,21,,2;, creates a cycle with weight
2¢—p(a+1+B—(j—1)) which is positive when j>a+ m 41

If z;Nz;, then replacing z;,, —z;, in C' with the arc (z;,,z2;,) creates a cycle
with weight 2¢—p(i — 145 —j) which is positive for i€ {1,2, e J— Lﬂ —1—1}, and
replacing z; — z;, in C with the arc (z;,, z) creates a cycle with weight ¢ —p(j—1—1)
which is positive for 1€ {j— [%-‘ Yoo ,a}. If z;Nya, then replacing z; — 2, in C' with
the arc (2;,,y2,) creates a cycle with weight ¢—p(j—1)<0. If z;Nzy, then replacing
zj,— 1, in C with the path z; , 1,71, creates a cycle with weight 2¢—p(j—1—a)>

0, and replacing x1, —2;, in C' with the arc (x,,2;,) creates a cycle with weight
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2q—p(a+pF—j) which is positive for j>a+ { W

q
p

Thus, for je{a+1,a+2,...8}, z;<y2, 2;<z; for
i€{1,2,...,j—[3-‘—1}, zjNz; for ie{j—{%-‘,j—{g-‘—kl}, zj > z; for

p

Zj 1 j<a+ {%-‘
ie{j—[ﬂ—l—%...,a}, and { z;Nz;y a+ Lﬂ <j<a+ [ﬂ—l—l (relationships
z; <Nz j>a—|—[%—‘—|—1

ii7(a)-(e) of Definition 4.1.1).
Finally we will analyze the bold relationships based on the value of a. We first
consider a> ﬁﬂ and then a< P]ﬂ.

Case 2.1. a> {%—‘
We have the following relationships, which are marked with a (*) if they are

impacted by the value of a:

1. ulﬂu2,
2. wy<ug (%),
3. Uy,

(a) <y2,

(b) <z; for iE{l,Q,...,a— [%-‘ },

(c) Nz for ie{a— L%-‘ —l—l,...,a},
(d) Nz; for je{a+1,a+2,...,5} (*),
(f) Ny (%),

(a) <y2,
(b) <z; for iE{l,Q,..., {%—‘ —1},

() Nz forie{[g],...,%ﬂ},
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a) Nz; for 7,6{1 2,..., {ﬂ},
b) =z; for ZE{’%-‘—i—l ..... a},

(c) =x,

(
(

6. y,
(a) <y2 (%)
(b) <z; for iE{l,Q ..... a— {%—‘},
(c) <Ngz; for ie{a— P—q—‘—i—l ..... a—
(d) Nz; for ze{a— L%-‘ ..... a— L%-“"
(e) =z for 1€{a— [%-‘ +2,..., a}
(f) =4

7. zj for je{a+1,...5},

(a) <2,



(d) >z for ie{j— Lﬂ +2,...,a},

(€) =1 (%),

8. 9,

(a) <y,
(b) <z; for ZE{

—
— "=
S |8
1
“SIQ
1

'_l
——

(c) Nz; forie

The relationships in the list above are the relationships of the left poset of Figure
4.1ii.

Case 2.2. (B—Z-‘ §> a< [%q-‘
Again, relationships that are impacted by the value of a are marked with a (*).

We have the following relationships:

1. ulﬂug,
2. ulﬂu;), (*),
3. Uy,

(a) <y,

(b) <z forz'e{1,2,...,a—m},

() Nz fom'e{a—MH,...,a},

(d) Nz; for je{a—i—l a+2,...,a+ H }
() =2 for je{at|2]+1, 5}

(£) =z (%),
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- us,

- Y1
(a) <Ny, ()
(c) <Nz forie{l ..... “_Lﬂ 1} (*)
(d) Nz forze{a—[z%-‘ ..... a—MH}
e) >z for zE{a—MJFQ ..... a}

. z; for je{a+1,a+2,...5},
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Az forje{a—{—l,(H—Q,...a—l— ]% —1},

D. 2 forje{a+M+2,...,ﬁ},
(a) <ya,
(b) <z forie{l,2,...,a} (%),
(e) <Ny (%),

8. T,
(a) <o,
(b) <z forie{l,2,...,a} (%),
<Nz a<|%|-1
(0 NG
Nz, a= > —1

The relationship listed above are the relationships in the right poset of Figure
4.1ii.

1)



Case 3. None of the three positive weight arcs are adjacent on C.

This cycle is depicted in Figure 4.5. We will again consider two cases based
on the value of b. We will assume that a>b> /3 —a—b. Thus, {%1 <a<p-2,
1<bH< L%J, and 1<f—a—b< L%J . The other combinations of a and b will produce
vertical reflections of the structures produced using this convention. The cycle gives
relationships ii(4)k, ii(4)1, ii(5)k, ii(5)], ii(6)j, ii(6)k, ii10, iill, and iill of Definition
4.1.1.

Z1r [ J [ J

Z1¢

[ J [ ] (]
22 Za T1 U1 Y1 Za+2 Za+b u2 Y2 Za+b+2 Zp T3 U3 Y3

~ o

Figure 4.5: Cycle in DJ(P) with three non-adjacent weight ¢ arcs

All elements labeled in C' are distinct except possibly 1,91, %2, y2, 23, and ys.
Since C' uses z;, for each x vertex and y;, for each y vertex, the z vertices are distinct
from each other and the y vertices are distinct from each other. By Corollary 2.2.8,
x1 is distinct from y3 and yy, o is distinct from y; and y,, and w3 is distinct from ys
and y3. That leaves x1 and ¥, x5 and y3, and x3 and y;. In the language of Lemma
227, ay=as=a3z=1, fi=a, B=>b, and f3=B—a—b. Now, 1+a+(8—a—b)=

14+ 51+ 05> L%—‘, so by Lemma 2.2.7(a)(ii), z; and y, are distinct. Also, 1+a+b=

14581+ B2> L%—‘ , 80 T9 and yo are distinct. Next, if 1+b+(8—a—b)=1+ s+ f5< [%-‘
and a=f; > [%‘1-‘ , then Lemma 2.2.7 does not exclude x3 and y; from being the same
element. Thus, if a=p;> P?q-‘, we must consider the case that x3=y; and the case
that they are not the same element.

In the following analysis we will again disregard the weight —e arcs when calcu-
lating cycle weights. Thus, a cycle with weight zero is actually a negative cycle once

the —e arcs are included. The following relationships are common to all minimal
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cycles with this structure.

First, we consider the relationships among the three u elements.

If u; <wus, then replacing usy—up, in C' with the arc (ug,uq,) creates a cycle
with no positive weight edges. If uy>us, then replacing ui,—us, in C' with the arc
(u1g,ug,) creates a cycle with weight ¢—p(a+5—a—b)=q—p(f—>b)<0. If u;Nus,
then replacing wuj, —>ug, in C with the arc (uy,,us,) creates a cycle with weight
3¢—p(B—0b)>0 and replacing us, —uy, in C' with the arc (ug,,u1,) creates a cycle
with weight 2¢—p(b)>0.

If uz <ug, then replacing usy—ug, in C' with the arc (ugy, us,) creates a cycle with
weight ¢—p(a+b)<0. If ug=us, then replacing ug,—us, in C with the arc (usz,,us,.)
creates a cycle with no positive weight edges. If ugNusg, then replacing us, —us, in
C' with the arc (ug,,us,) creates a cycle with weight 3¢—p(a+b)>0 and replacing
ug, —uge in C' with the arc (us,,us,) creates a cycle with weight 2¢—p(8—a—b)>0.

Thus, u; Nuy and usNug (relationships iil and ii2 of Definition 4.1.1).

If ug>wuq, then replacing us,—u, in C' with the arc (usy,uy,) creates a cycle
with weight ¢ —p(5 —a) which is positive if a> ﬁﬂ. If uz<wuy, then replacing
u1p—ug, in C' with the arc (uy,,us,) creates a cycle with no positive weight edges.
If ugNuy, then replacing uy, —ug, in C' with the arc (uy,,us,) creates a cycle with
weight 2g—p(a) which is positive if a< [%‘ﬂ, and replacing ug, —u1, in C' with the
arc (us,,u1y) creates a cycle with weight 3¢—p(5—a)>0.

Thus, usz>wu, if a> {%-‘, and uzNu, if a< {%-‘ (relationship ii3 of Defini-
tion 4.1.1).

Next, we consider the relationships between the u elements and the elements of
the chains.

If uy >y3, then there is a transitivity issue since y3>x; and xyNuy. If uyNys
then replacing uy, —ys, in C' with the arc (uy,,ys,) creates a cycle with weight
qg—pla)<qg—p Lﬂ <0. If uy <ys, then replacing ys,—uy, in C' with the arc (ys,,u1,.)
creates a cycle with weight 2¢—p(5—a)>2q—p L%J >0.

Let i€{1,2,...,a}. If uy>z;, then replacing u;,— z;, in C' with the arc (uyy, 2;,.)
creates a cycle with weight -p(a— (i —1)) <0. If u; <z;, then replacing z;, — uy,
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in C' with the arc (z;,uy,) creates a cycle with weight 2¢ —p(8 —a—+1i) which is
positive for i€ {1,2,...,a— [%—‘ } If uyNz;, then replacing uy, — 2; in C' with
the arc (us,,z;,) creates a cycle with weight ¢ —p(a—i) which is positive for i€
{a— {%1 —|—1,...,a}, and replacing z;, —uj, in C' with the arc (z;,,uq,) creates a
cycle with weight 3¢—p(f—a+i—1)>0.

Thus, u; <ys, u; <z; for 2 € {1,2,...,@— [ﬂ }, and u;Nz; for 2 €
{a— [g-‘ +1,... ,a} (relationships ii4(a)-(c) of Definition 4.1.1).

If ug>1ys, then replacing ugy—ys, in C' with the path sy, ys,,ys, creates a cycle
with weight ¢ —p(a+b+1)<0. If uyNys, then replacing us, —ys, in C' with the
arc (ug,,ys,) creates a cycle with weight 2¢—p(a+b)<0. If uy<ys, then replacing
Y3 —> Uz, in C' with the arc (ys,,us,) creates a cycle with weight ¢—p(8—a—b)>
q—p {%J >0.

Let i€{1,2,...,a}. If ug>z;, then replacing us,— z;, in C' with the arc (ugy, 2;,.)
creates a cycle with weight ¢—p(a+b—(i—1)) which is positive for
s {a—H)— [%-‘ +2,...,a}. If ugy < z;, then replacing z;y — ug, in C' with the arc
(zig, ug,) creates a cycle with weight ¢ —p(i+ 8 —a —0b) which is positive for i€
{1,2, e, at+b— [%’—‘ } If ugNz;, then replacing us, — z;, in C' with the arc (ug,., i)
creates a cycle with weight 2g—p(a+b—1) which is positive for
1€ {a—H)— [%q-‘ +1,.. .,a}, and replacing z;, —ug, in C' with the arc (z;,,uq,) creates
a cycle with weight 2g—p(i—1+5—a—b) which is positive for
ie{l,Q,...,a+b— m +1}.

If us > x4, then replacing usy— 1, in C' with the arc uqy,x1, creates a cycle with
weight ¢—p(b), which is positive if b< {%-‘. If uy<xq, then replacing 1, —us, in C'
with the path xy,,x1y,us, creates a cycle with weight g—p(5—b+1)<0. If usNxy,
then replacing us, —x1, in C' with the path us,,x1,, 21, creates a cycle with weight
3¢—p(b)>0, and replacing x1, —ug, in C' with the arc (xy,,us,) creates a cycle with
weight 2g—p(8—>b) which is positive when b> %-‘.

Thus, us; <ys, usz < z; for i€{1,2,...,a+b— [%‘1-‘}, us Nz; for 7€

{a—l—b— [%’—‘—I—l,...,aﬁ-b— [ﬂ—kl}, uq > z; for iE{a—l—b— [ﬂ—l—Z,...,a},
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U ™I b<
and
U2 My bZ

Let i€{1,2,...,a}. If ug>z;, then replacing us,— z;, in C' with the arc (usy, 2;,.)
creates a cycle with weight 2¢—p(8— (i—1)) which is positive for 2'6{ { W +1,... ,a}.

(relationships iib(a)-(e) of Definition 4.1.1).

B TR

q
If ug<z;, then replacing z;,—us, in C' with the arc (z;,,us,) createspa cycle with
weight -p(i) <0. If ugNz;, then replacing ug, — z;, in C' with the arc (us,, z;¢) creates
a cycle with weight 3¢—p(8—1) >0, and replacing z;, —us, in C' with the arc (z;,.,us,)
creates a cycle with weight ¢—p(i—1) which is positive for i€ {1,2, ce [%—‘ }

If uz>xq, then replacing us, — x1, in C' with the arc us,, x1, creates a cycle
with weight 2¢ —p(8—a)>0. If ug<z;, then replacing zy, — us, in C' with the
path z1,,21y,us, creates a cycle with weight -p(a+1)<0. If ugNxzy, then replacing
x1,—uz, in C' with the arc (x1,,us,) creates a cycle with weight ¢—p(a)<0.

Thus, uzNz; for i€ {1,2,..., E—‘ }, ug > z; for 1€ { {%-‘ —|—1,...,a}, and
uz > (relationships ii6(a)-(c) of Definition 4.1.1).

Let i€{a+1,...,a+b}. If u; <z or u; <xs, then there is a transitivity issue since
ur MYy = 2; = To. If uy >=z;, then replacing ui,— z;, in C' with the arc (uyy, 2;,.) creates a
cycle with weight 2¢g—p(8—(i—1)+a) which is positive for i€ {a—{— {ﬂ +1,... ,a+b}.
If uyNz;, then replacing uy,— z;, in C with the arc (us,,z;,) creates a cycle with
weight 3¢—p(f—i+a)>0, and replacing z;,—uq, in C with the arc (z;,,uq,) creates
a cycle with weight ¢—p(i—1—a)>0 which is positive for i€{1,2, ce a4 [%—‘ }

If uy >z, then replacing ui,— x5, in C with the arc (uiy,xs,) creates a cycle
with weight 2¢—p(8—b) which is positive when b> {ﬂ. If u; Ny, then replacing
U1, —>To, in C' with the path uy,,xe,, s, creates a cycle with weight 4q—p(5—b) >0,
and replacing x5, —uj, in C' with the arc (xs,,uq,) creates a cycle with weight

q—p(b) which is positive when b< Lﬂ )
Thus, u;Nz; for 1€ {a—l—l, cee,a+ [ﬂ }, uy > z; for

ulﬂwz b<

AS {a+ [%-‘ +1,... ,a—|—b}, and (relationships ii4(d)-(f) of

"R TR

uy >~y b>
Definition 4.1.1).

Let ie{a+1,...a+b}. If ug>=y; or ug>z;, then there is a transitivity issue since
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Y1 2i o Nug. If us<yy, then replacing y;,—us, in C with the arc (y1,,us,) creates

a cycle with weight 2¢g—p(5—b), which is positive if b> E—‘ . If usNyy, then replacing

U, —y1, in C' with the arc (us,,y1,) creates a cycle with weight ¢—p(b) which is

positive if b< Lﬂ, and replacing y1,—ug, in C' with the path yi,,v1,,us, creates a

cycle with weight 4g—p(5—b)>0.
If us < z;, then replacing z;,—us, in C with the arc (z;,,us,) creates a cycle with

weight 2¢—p(i+ 8 —a—>b) which is positive for ie{a—l—l,...,a—l—b— Lﬂ } If ugNz;,
then replacing wug, — z;, in C with the arc (us,,z;,) creates a cycle with weight
q—p(a+b—1i)>0 which is positive for i€ {a—i—b— L%-‘ —l—l,...,a—i—b}, and replacing
Zir—Uge in C' with the arc (z;,,uq,) creates a cycle with weight 3¢—p(i—1+—a—

b)>0.

uzNy; b< |2 )
Thus, Pl uy<z; for 'Le{a—l—l,...,a—l—b— {ﬂ-‘}, and
uz<yr b> % P
usNz; for i€ {a—l—b— Lﬂ)-‘ +1,...,a+b} (relationships ii5(f)-(h) of Definition
4.1.1).

If uz >y, then replacing us, —y;, in C with the path (us,,y1,,vy1,) creates a
cycle of weight ¢—p(f—a+1) which is positive if a> P]ﬂ . If u3<y;y, then replacing
y1p— uz, in C with the arc (yj,,us,) creates a cycle with weight ¢—p(a)<0. If
y1 Nug, then replacing ug, —y1, in C' with the arc (us,,y;,) creates a cycle with
weight 2¢ —p(6—a) >0, and replacing y,,— us, in C' with the path yi,,y1,., us,)
creates a cycle with weight 3¢—p(a)>0.

Let i€{a+1,...,a+b}. If uz<z; then replacing z;; —ug3, in C with the arc
(zi0,us,) creates a cycle with weight ¢—p(i) which is positive if i< [%-‘ , but a> {%-‘.
If ug > z;, then replacing us,— z;, in C' with the arc (usy,2;,) creates a cycle with
weight ¢ —p(8 — (i — 1)) which is positive for i€ { {%W +1,.. .,a—i—b}. If uzNz;,
then replacing z;, —ug, in C with the arc (z;,,us,) creates a cycle with weight

)
with the arc (us,, z;) creates a cycle with weight 2q—p(f—14) which is positive for

z‘e{ Lﬂ ,...,a+b}:{a+1,...,a+b}.
If ug<xs, then replacing xs, —us, in C' with the path x,,, 2/, us, creates a cycle

2q—p(i—1) which is positive for i€ {a—f—l,..., [Q—q-‘ }, and replacing usz, — z;, in C
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with weight ¢—p(a+b+1)<0. If uz>xs, then replacing uz,—xs, in C' with the arc

(uzg, xa,) creates a cycle with weight ¢—p(8—a—0)>0. If uzNz,y, then replacing

T, —>ug, in C' with the arc (zs,,us,) creates a cycle with weight ¢—p(a+0)<0.
usN>=1y; a> |24

Thus, P, ugNz; for ie{a—l—l,..., {E—‘}, ug > z; for

usNy; a< % i

iE{ {%-‘ +1,... ,a—l—b}, and ug > 2 (relationships ii6(d)-(g) of Definition 4.1.1).

If w3 >1y9, then replacing uq,—y9, in C' with the path wuq,,92,,792, creates a cycle
with weight ¢ —p(a) <0. If u; <yo, then replacing ys, — uy, in C' with the arc
(Y24, u1,) creates a cycle with weight ¢ —p(b) which is positive when b < L%—‘. If
w1 Nys, then replacing uy, —ys, in C' with the arc (uq,,ys,) creates a cycle with
weight 2¢—p(5—0b) which is positive when b> {%—‘ , and replacing yo,—uq, in C' with
the path ysy,ya,,u1, creates a cycle with weight 3¢—p(b)>0.

Let i€ {a+b+1,...,5}. If uy >z, then replacing uj,— z;, in C with the arc
(u1g, 2iy) creates a cycle with weight ¢ —p(8 — (i — 1) + a) which is positive for
ie{a—f— {%—‘ +1,...,B}:@. If uy < z;, then replacing z;, —uq, in C' with the arc
(zig,u1,) creates a cycle with weight ¢—p(i—a) which is positive for
1€ {a—l—b—l—l,...,a—i— {ﬂ —1}. If u; Nz;, then replacing uy, — z;, in C' with the
arc (ui,, zy) creates a cycle with weight 2q — p(8 — i+ a) which is positive for
s {CH— [%-‘ ,...,6}, and replacing z;, —uy, in C' with the arc (z;,,ui,) creates a
cycle with weight 2¢—p(i—1—a) which is positive for i€ {a—i—b—l—l, coa+ [%q-‘ }:
{a+b+1,...,5}.

If uy <x3, then replacing x3, —uq, in C' with the path x3,, 3., uq, creates a cycle
with weight ¢—p(8—a+1) which is positive for a> hﬂ. If uy x5, then replacing
u1,— 3, in C with the arc uy,, 3, creates a cycle with weight ¢—p(a)<0. If uy Nz,
then replacing uy, —z3, in C' with the path wu,,, 23/, 23, creates a cycle with weight
3g—p(a)>0, and replacing x3, —uy, in C' with the arc (z3,,u1,) creates a cycle with
weight 2¢—p(8—a)>0.

u1<y2 b<
uiNy2 b=

Thus, , Uy <2 forie{a—l—b—i—l,...,a—i— {ﬂ—l},ulﬁzi

B[R VIR
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ur <Nz a>

for 7 € {a—i— [ﬂ yeus ,,8}, and (relationships ii4(g)-(j) of

Definition 4.1.1).
Let ie{a+b+1,...,8}. If us<z; or us<xs, then there is a transitivity issue since

uiNey a<

1IN

Yo - zi-1x3 and yaNug. If ug>z;, then replacing ug,—z;, in C with the arc (ugy, 2;,)
creates a cycle with weight 2¢—p(8—(i—1)+a+b)<0 since a+b> P;q-‘. If ug Nz,
then replacing us, — z;, in C with the arc (us,,z;,) creates a cycle with weight 3¢—
p(f—i+a+b)>0, and replacing z;,—us, in C' with the arc (z;,,us,) creates a cycle
with weight g—p(i—1—a—>b) which is positive for i€ {a+b—|—1, o a+b+ Lﬂ +1}:
{a+b+1,...,5}.

If ug >3, then replacing ug,— x3, in C' with the arc (ug,xs,) creates a cycle
with weight 2¢—p(a+b)<0. If usNzs, then replacing uy, —z3, in C' with the path
Usg,., T34, T3, creates a cycle with weight 4¢—p(a+b)>0, and replacing x3,—ug, in C
with the arc (x3,,uq,) creates a cycle with weight ¢—p(6—a—b)>0.

Thus, usNz; for i€{a+b+1,...,8} and uxNax; (relationships ii5(i)-(j) of
Definition 4.1.1).

Let ie{a+b+1,...5}. If ug=ys or us>z;, then there is a transitivity issue since
Yo - z; - xg and x3Nug. If ug<ys, then replacing yo,—ug, in C' with the arc (yop, us,)
creates a cycle with weight 2¢—p(a+b)<0. If uzNys, then replacing ug, —y,, in C
with the arc (us,,ys,) creates a cycle with weight ¢—p(8—a—0)>0, and replacing
Yap—>ug, in C' with the path yoy, ya,, us, creates a cycle with weight 4¢—p(a+b)>0.

If ug<z;, then replacing z;,—us, in C' with the arc (z;,us,) creates a cycle with
weight 2¢g—p(i) <0 since a+b> {%-‘. If uzNz;, then replacing ug, —z;, in C' with
the arc (us,,z;,) creates a cycle with weight ¢—p(8—1)>0, and replacing z;, —us,
in C' with the arc (z;,,us,) creates a cycle with weight 3¢—p(i—1)>0.

Thus, usNy2 and uzNz; for i€ {a+b+1,...,3} (relationships ii6(h)-(i) of
Definition 4.1.1).

Finally, we consider the relationships between elements of the chains. We start
with the first and third chains.

If yo>vys, then replacing yo,—ys, in C' with the path ys,,vs,,ys, creates a path
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with weight 2¢—p(a+b+1)<0. If y<ys, then replacing ys,—ys, in C' with the
path ys,, ya,, Y2, creates a cycle with weight ¢—p(8—a—0b-+1) which is positive if
a+b> ﬁﬂ . If yoNys, then replacing yo,—ys, in C' with the path yo,,ys,,ys3, creates
a cycle with weight 3¢ —p(a+0)>0, and replacing ys, — 4o, in C' with the path
Y30, Y3, Y2, Creates a cycle with weight 2g—p(5—a—b)>0.

Let i€{1,2,...,a}. If yo>2;, then replacing ys,— z;, in C' with the arc (yay, 2;,.)
creates a cycle with weight 2g—p(a+b—(i—1)) which is positive for
1€ {a—l—b— ﬁﬂ —|—2,...,a}. If y,<z;, then replacing z;y— 19, in C' with the path
Zie, Y2,, Y2, creates a cycle with weight ¢ —p(i+ 8 —a—b+1) which is positive for
1€ {1,2,...,a+b— {%—‘ —1}. If yoNz;, then replacing z;. —y2, in C with the arc
(Zir,Yo,) creates a cycle with weight ¢—p(i—1+8—a—b) for
ie{l,Q,...,a—i—b— [%W —1—1}, and replacing yo, — 2;, in C' with the path yo,,ya,, 2is
creates a cycle with weight 3¢—p(a+b—1i)>0.

If yo =1, then replacing yo, — 1, in C' with the arc (yy,,x1,) creates a cycle
with weight 2g—p(b) >0. If yo <z, then replacing 1, —y9, in C' with the path
T, T1g, Yo2,, Y2, Creates a cycle with weight ¢ —p(5—b+2)<0. If yoNzy, then
replacing x1, —ys, in C' with the arc (z1,,y2,) creates a cycle with weight ¢—p(5—
b) <0.

y2<Nys a+b> |2
Thus, 2p , Y2 <Nz; for
Y2Nys a-+b= ?q
i6{1,2,...,a—|—b— [%‘7—‘—1}, y2 N z; for iE{a—i—b— {%W ,a+b— {%W—l—l},

Yy > z; for i€ {a—l—b— [2?‘1-‘ +2,... ,a}, y2 > x1 (relationships ii(8)a(I)-(V) of
Definition 4.1.1).

If 23~ys, then replacing z,,—ys, in C' with the path z,,,y3,,ys, creates a cycle
with weight 2¢—p(/5+1)<0. This uses transitivity since z,>x3>ys. If x3<ys, then
replacing ys, — 3, in C' with the arc (y3,,xs,) creates a cycle with weight ¢>0.
If 23Nys3, then replacing 3, —ys, in C' with the arc (x3,,ys,) creates a cycle with
weight 2¢g—p(3) <O0.

If 23> z;, then replacing x3,—z;, in C with the path x3,,x3,,2;, creates a cycle

with weight 2¢—p(6+1—(i—1)) <0 which is positive for i€ { Lﬂ +2,...,a}. If
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r3 < z;, then replacing z;; — x3, in C with the arc (z;,,x3,) creates a cycle with
weight ¢—p(7) which is positive for i€ {1,2, . L%—‘ —1}. If x3N2z;, then replacing
x3,— 2;p in C' with the arc (z3,,z;) creates a cycle with weight 2¢g—p(q) which is
positive for ie{ Lﬂ ,...,a}, and replacing z;, — w3, in C' with the path z;,, 3,23,
creates a cycles with weight 2g—p(i—1) which is positive for i€ {1,2, e ij‘ﬂ }

If x3<zq, then replacing xy, — x3, in C' with the path xy,,z1,, 3, creates a
cycle with weight ¢—p(a+1)<0. If zyNx3, then replacing x;, —x3, in C with the
path xi,,x3,,x3, creates a cycle with weight 2¢g—p(a) which is positive if a< {%—‘,
and replacing x3, —x, in C' with the path z3,,x1,, 21, creates a cycle with weight
3¢—p(Bf—a)>0. If x3>~x;, then replacing x3,—x;, in C with the path xs,,x3., 21,
creates a cycle with weight 2g—p(8—a+1)<0 which is positive when a> [%-‘ )

Thus, @3 <ys, ©3<2 for i€{1,2,..., 2| =1}, 23Nz for
ie{[2].[2]+1}, won -z for ie{[2]+2,..., [ 2]}, 22 for

Tr3Nxy a= %
ie{]|2|+1,...,a}, and @2 [2|<a<|2| (relationships ii(8)e(D-
T3~ G«Z{%q

(VI) of Definition 4.1.1).

Let je{a+b+1,...,5}. If z;Nys, then replacing z; —ys, in C' with the arc
(25,,y3,) creates a cycle with weight 2¢ —p(j —1) <0. If z; > ys, then replacing
zj,— Y3, in C with the path z;,,vs,,ys, creates a cycle with weight 2¢—p(j+1)<0.
If z;<ys, then replacing y3,—z; in C' with the arc (ys,,2;,) creates a cycle with
weight ¢—p(8—(i—1))>0.

If z;>z;, then replacing z;,— z;, in C' with the arc (z;,,z;,) creates a cycle with
weight 2¢g—p(j—(:—1)) which is positive for ie{j— ﬁﬂ +2,...,a}. If 2;<z;, then
replacing z;,—z;, in C' with the arc (z,z; ) creates a cycle with weight ¢—p(i+
f—(j—1)) which is positive for ie{l,Q,...,j— P;q-‘ —1}. If z;Nz;, then replacing
z;, — 2z in C with the arc (z;, ,z;,) creates a cycle with weight 2¢g —p(j —1—1)
which is positive for i€ {j— hﬂ ,...,a}, and replacing z;, — z;, in C' with the

arc (z,,z;j,) creates a cycle with weight ¢ —p(i —1+ 8 —j) which is positive for

84



ie{l,Q,...,j— {%1 +1}‘

If z; <1, then replacing x1,—z2;, in C with the path xy,,7,,,2;, creates a cycle
with weight ¢—p(a+1+p—(i—1))<0. If z;Nxy, then replacing 1, —z;, in C
with the arc (z1,,%2;,) creates a cycle with weight ¢ —p(a+/5—1)<0. If z;>x,
then replacing z;, =y, in C with the arc (z;,,1,) creates a cycle with weight
2q—p(i—a)>0.

Thus, for je{a+b+1,...,8}, z;<ys, z;<z; for
1€ {1,2,...,_7'— [%q-‘ —1}, zjNz; for ie{j— [%q-‘ yJ— {%—‘ —|—1}, zj > z; for
i€ {j — [%q-‘ +2,..., a}, and z; > x; (relationships ii(8)b(I)-(V) of Definition
4.1.1).

Next, we determine the relationships chains two and three starting with y, and
each element of the second chain.

If yo>11, then replacing yo,—y1, in C' with the path ys,,ys,.,ys, creates a path
with weight ¢—p(b+1) which is positive if b< L%—‘ —1. If yo <y1, then replacing
Y1p— Yo, in C' with the path yi,,99,., 12, creates a cycle with weight 2¢g—p(8—b+1)

%
Y20, Y2, Y14 Creates a cycle with weight 2¢—p(b) >0, and replacing y;,— 2, in C' with

which is positive if b> { -‘ If yoNyy, then replacing yo,—y1, in C' with the path

the path yi,,y1,,992, creates a cycle with weight 3g—p(5—5b)>0.

Let i€{a+1,...,a+b}. If yo=2;, then replacing yo, — z;, in C' with the arc
(Y24, zir) creates a cycle with weight ¢ —p(a+b— (i — 1)) which is positive for
i€ {a—i—b— L%-‘ +2,...,a—i—b}. If yo<2z;, then replacing z;;— vy, in C' with the path
Zie, Y2, Y2, Creates a cycle with weight 2¢—p(i+5—a—b+1) for
1€ {a+1,...,a+b— [%W—l}. If y,Nz;, then replacing z;, — y2, in C' with the
arc (z,.,Yya,) creates a cycle with weight 2¢ —p(i —1+ 5 —a —b) which is posi-
tive for i€ {a—l—l,...,a—i—b— L%—‘%—l} and replacing ys, — 2z, in C' with the path
Y2p, Y2, 2i¢ Creates a cycle with weight 2q — p(a+b—4) which is positive for i€
{a—l—b— ﬁﬂ +1,...,a+b}:{a—|—1,...,a—l—b}.

If yo > 29, then replacing yo,— o, in C with the arc (ya,,z2,) creates a cycle with
weight ¢>0. If y» <9, then replacing 2,44, —y2, in C with the path 2,14, Y2, Y2,
creates a cycle with weight 2¢—p(8+1)<0. If yoNxs, then replacing x5, —ys, in C
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with the arc (xq,,y2,) creates a cycle with weight 2¢—p(q) <0.
Y201 >y b< ’%-‘ -1
Thus, { YNy E—‘ —1<b< [ﬂ , Y2 <Nz; for
Y2 <Ny % <b
1€ {a—|—1,...,a—|—b— [%-‘ —1}, y2Nz; for 2 € {a—l—b— L%-‘ ,a+b— [%-‘ —|—1},
and y, > z; for iG{cH—b— %
(I)-(V) of Definition 4.1.1).

Next, we determine the relationships between x3 and the elements of chain two.

-‘ +2,..., a+b}, and y, > x5 (relationships ii(9)a

If x3>, then replacing x5, — vy, in C' with the path xs,,x3,,91,,y1, creates
a cycle with weight ¢ —p(8 —a+2) which is positive if a > {%-‘ +2. If 23Ny,
then replacing x3, — vy, in C with the arc (x3,,y1,) creates a cycle with weight
q—p(f —a) which is positive when a> [%W, and replacing v, — x3, in C' with
the path y1,,v1,, %3, T3, creates a cycle with weight 4¢g—p(a)>0. If z3<y;, then
replacing yi,—x3, in C with the arc (y1,,x3,) creates a cycle with weight 2¢g—p(a)
which is positive when a< [%-‘.

Let i€{a+1,...,a+b}. If 3> z;, then replacing x3, —z;, in C' with the path
T3, T3, Zip creates a cycle with weight ¢ —p(8+1—(i—1)) which is positive for
ie{ [%-‘ +2,... ,a—l—b}. If 23<z;, then replacing z;,— w3, in C' with the arc (z;,z3,)
creates a cycle with weight 2¢g —p(i) which is positive for i€ {a+1,..., P]ﬂ —1}.
If z3Nz;, then replacing 3, — z;, in C with the arc (z3,,z;,) creates a cycle with
weight ¢—p(g—1) which is positive for iG{ [%—‘ ,...,a+b}, and replacing —x3, in
C' with the path z;,,x3, 23, creates a cycle with weight 3¢g—p(i—1)>0.

If z3<xq, then replacing xy, —x3, in C' with the path x,,x1,,x3, creates a cycle
with weight 2¢—p(a+b+1)<0. If x3>x9, then replacing xs, — s, in C' with the
path z3,,3,, 29, creates a cycle with weight ¢ —p(8—a—b+1) which is positive
for a+b> hﬂ. If z3Nxs, then replacing x3, — x5, in C' with the path x3,, 22/, o,
creates a cycle with weight 2¢—p(5—a—b) >0, and replacing x5, —x3, in C' with
the path xo,, 23,23, creates a cycle with weight 3g—p(a+b)>0.
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r3<Y1 a<[2;
Thus, xr3MNYy; {%—‘Sag{z—:-‘—l—l, x3<z; for ie{a—l—l,...,{%-‘—l},
3N >y GZ[% +2
x3Nz; for ie{{%w ,{%W—I—l}, x3 N> z; for iE{{%W—i—%---,a—Fb}, and

x3Nze a+b=|2
P 1 (relationships ii(9)c(I)-(V) of Definition 4.1.1).
x3N>=xy; at+b> |2

Now, we determine the relationships between z elements of the second and third
chains.

Let je{a+b+1,...,5} and let i€ {a+1,...,a+b}. If z; >z, then replacing
2j,— 2, in C' with the arc (z;,, 2;,) creates a cycle of weight ¢—p(j—(i—1)) which
is positive for iE{j— {%—‘ +2,... ,a—i—b}. If z;<z;, then replacing z;,— z;, in C with
the arc (2,2;,) creates a cycle of weight 2g—p(i+3—(j—1)) which is positive for
s {a+1, ey j— Lﬂ;‘ —1}. If 2jNz;, then replacing z; — z;, in C with the arc (z;,, zi)
creates a cycle of weight ¢—p(j—1—1))) which is positive for i€ {j— {ﬂ ,...,a+b},
and replacing z;, —z;, in C' with the arc (z;,,2;,) creates a cycle of weight 2¢—p(i—
1+5—7) which is positive for iE{oH—l?...,j— %_‘ +1}.

Thus, for j € {a+b+1,...,8}, z; <z for i€ {a+1,...,j— [g—‘ —1},
zjNz; for i€ {j— [ﬂ ,J— [ﬂ—f—l}, zj > z; for i€ {j— E—‘ —|—2,...,a—|—b}
(relationships ii(9)b(IV)-(VI) of Definition 4.1.1).

Lastly, for chains two and three, we determine the relationships between y; and
the z elements of chain three and between x5 and the z elements of chain three.

Let i€{a+b+1,...,8}. If y; =z, then replacing y;, — 2;, in C' with the arc
(Y1, zip) creates a cycle with weight 2g —p(8 — (i — 1) +a) which is positive for
1€ {a+ L%—‘ +1,... ,6}. If y1 <z;, then replacing z;, — 1, in C' with the path
Zig, Y1,, Y1, Creates a cycle with weight ¢ — p(i —a+ 1) which is positive for i€
{a—l—b—l—l,...,a—i— [ﬂ —2}. If y1Nz;, then replacing z;, — vy, in C with the arc
(zir,y1,) creates a cycle with weight ¢—p(i—1—a) which is positive for
1€ {a—l—b+1,...,a+ L%—‘ }, and replacing y1, — 2;, in C' with the path yi,,y1,, i
creates a cycle with weight 3¢—p(5—i+a)>0.
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Thus, y; <Nz; for 1€ {a—i—b—l—l, ceesa+ Lﬂ)-‘ —2}, y1Nz; for
= {a—i— [ﬂ —1,a+ {ﬂ }, and y, > z; for i€ {a—l— ﬂ +1,... ,ﬁ} (relationships
ii(9)b(I)-(III) of Definition 4.1.1).

Let i€ {a+b+1,...,5}. If x9> z;, then replacing x5, — z;, in C' with the path
To,, Tog, Ziy creates a cycle with weight 2¢—p(f—i+a+b+1)<0. If z5<z;, then
replacing z;,— 5, in C' with the arc (z;,,x2,) creates a cycle with weight ¢—p(i—
a—0)>0. If x9Nz;, then replacing x9, — z;, in C with the arc (z3,,z2;,) creates a
cycles with weight 2g—p(a+b+5—1)<0.

Thus, x2<z; for i€ {a+b+1,...,8} (relationship ii(9)b(VII) of Definition
4.1.1).

We now analyze the relationships between the first and second chains. First,
consider the relationships between y; and the elements of chain one.

If y1 >ys, then replacing y1,—ys, in C' with the path vy,,ys,,ys, creates a path
with weight ¢—p(a+1)<0. If y; <ys, then replacing ys3,—y1, in C' with the path
Ysps Y1, Y1, Creates a cycle with weight 2¢—p(8—a+1) which is positive if a> {ﬂ.
If y1 Nys, then replacing ys,—y1, in C' with the path ys,,ys,,y1, creates a cycle with
weight 3¢—p(5—a)>0 and replacing y1,—ys, in C' with the path y1,,91,,ys, creates
a cycle with weight 2¢g—p(a) which is positive if a< {%—‘ .

Let i€{1,2,...,a}. If y; > 2;, then replacing y,,— z;, in C with the arc (yi,, 2;,.)
creates a cycle with weight ¢—p(a—(i—1)) which is positive for
i€ {a— {ﬁ-‘ +2,... ,a}. If y; <z, then replacing z;;, =y, in C' with the path
Zig, Y1,, Y1, Creates a cycle with weight 2¢ —p(i — 1+ 8 —a) which is positive for
1€ {1,2,...,@— Lﬂ)—‘ —1}. If y1 Nz, then replacing z;, —y1, in C' with the arc
(zir,y14) creates a cycle with weight 2¢ —p(i — 1+ —a) which is positive for i€
{a—l—l, ce,a— %-‘ +1} and replacing y;,—z;, in C' with the path y1,,v1,, 2 creates
a cycle with weight 2g—p(a—1) which is positive for ie{a— {%_‘ +1,. ..a}.

If y; <y, then replacing z,,—1y1, in C' with the path z,,,v1,,91, creates a cycle
with weight 2g—p(5+41)<0. This uses transitivity since z,>x1>y;. If y; =1, then
replacing y;,— 1, in C with the arc (y1,,x1,) creates a cycle with weight ¢>0.

If y3 Ny, then replacing z1,— 11, in C' with the arc (xy,,y1,) creates a cycle with
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weight 2q—p(3) <O0.

yinys  a=|2
Thus, ¢ y1<Nys E-‘ <a< %—‘ ,» Y1 <z; for i€{1,2,...,a— [%W},
Y1<Ys az[%q
Yy1<Nz; for ie{a— {%-‘ +1,...,a— Lﬂ)-‘ —1}, y1Nz; for

1€ {a— E-‘ ,a— %-‘ —|—1}, Yy, = z; for i € {a— [%-‘ +2,...,a}, and y; > o,
(relationships ii(7)a(I)-(VI) of Definition 4.1.1).

Next, we determine the relationships between x5 and the elements of chain one.

If x9>ys, then replacing x2, —ys3, in C with the path x3,,x3,v3,,y3, creates a
cycle with weight ¢—p(a+b+2)<0. If 25 <ys, then replacing y3,— x2, in C' with the
arc (ysy, Ta,) creates a cycle with weight 2¢g—p(5—a—>b)>0. If x9Nys, then replacing
To, — Y3, in C' with the arc (xs,,ys3,) creates a cycle with weight ¢—p(a+0b)<0.

Let i€{1,2,...,a}. If x9> z, then replacing x5, — z;, in C with the path
To,, Tag, 2, creates a cycle with weight ¢ —p(a+b+1—(i—1)) which is positive
for i e {a—i—b— [%-‘ —1—3,...,@}. If x5 < z;, then replacing z;; — x3, in C' with the
arc (zj, o,) creates a cycle with weight 2¢ — p(i + 3 —a —b) which is positive
for i € {1,2,...,a+b— {ﬂ} If x9Nz, then replacing xy, — z;, in C' with the
arc (xa,,z;,) creates a cycle with weight ¢ —p(a+b—14) which is positive for i€
{a—l—b— L%-‘ —|—1,...,a}, and replacing z;, —xs, in C with the path z;,,x9,, 1, cre-
ates a cycle with weight 3¢g—p(i—1+5—a—b)>0.

If x9>x1, then replacing x5, —x1, in C' with the path x,,,z4,, 21, creates a cycle
with weight ¢ —p(b+1) which is positive if b< {%-‘ —1. If x9<xq, then replacing
T1,— Ty, in C with the path xy,,x1,, 29, creates a cycle with weight 2g—p(8—b+1)
which is positive if b> [%—‘ +1. If xoNxyq, then replacing x5, — 21, in C' with the
path z,,214, 21, creates a cycle with weight 2¢—p(b) >0 and replacing z;,— x5, in
C with the path x1,,xs, xa, creates a cycle with weight 3¢—p(8—0)>0.

Thus, xs<vys3, x2<z; for i€{1,2,.. .,a+b— {%-‘ }, xoNz; for

ie{a—}—b— {%-‘ +1,a+b— Lﬂj-‘ —|—2}, oM z; for
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ToMN =12y b< ﬂ —1

1€ {a—l—b— [%—‘ +3,... ,a}, and ToNxy be{ {% -1, E-‘ } (relationships
T2 <Mxy b> L%-‘

ii(7)c(I)-(V) of Definition 4.1.1).

Lastly, we determine the relationships between the z elements of chain two and
the elements of chain one.

Let je{a+1,a+2,...,a+b}. If z;~ys, then replacing z;,—ys, in C' with the
path zj,,ys,,ys, creates a cycle of weight ¢—p(j+1)<0. If z;<ys, then replacing
Ysp— 25, in C with the arc (y3,, 2;,) creates a cycle of weight 2¢g—p(8—(j—1))>0. If
z;Nys, then replacing z; —ys, in C' with the arc (zjr,ygé) creates a cycle of weight
q—p(j—1)<0.

Let i€{1,2,...,a}. If z;>~z;, then replacing z;,—z;, in C' with the arc (z;,,z,)
creates a cycle of weight ¢—p(i—(i—1)) which is positive for
1€ {j— {%—‘ —|—2,...,a+b}. If z; <2;, then replacing z;; — z; in C with the arc
(2ig; 2;,) creates a cycle of length 2¢ —p(i+ 8 —(j — 1)) which is positive for i€
{1,2,...,j— Lﬂ —1}. If z;Nz;, then replacing z; — z;, in C with the arc (2;,, zi)

creates a cycle of length ¢—p(j—1—1) which is positive for i€ {j— Lﬂ ,...,a} and

replacing z;, —z;, in C' with the arc (2, z;,) creates a cycle of length 2¢—p(i—1+
q—j) which is positive for iE{l,Q,...,j— L%-‘ —1—1}.

If z; =2y, then replacing z;,—x;, in C' with the arc (2;,,7;,) creates a cycle
with weight ¢—p(j —a) which is positive for jE{(H—l,...,a—i— {ﬂ —1}. If z; <,
then replacing x1,—z;, in C' with the path xy,,21,2;, creates a cycle with weight
2¢—p(B—(i—1)+a+1) which is positive for je{cH— [%-‘ +2,...,a+b}. If z;Nay,
then replacing i, — z;, in C with the arc (zi,,%2;,) creates a cycle with weight
2q—p(f—i+a) which is positive for je{a—l— hﬂ ,...,a+b}, and replacing z; — 1,
in C with the path z; ,z,,2;, creates a cycle with weight 2¢—p(i—1—a)>0.

Thus, for je{a+1,a+2,...,a+b}, z;<ys, z;<z; for
1€ {1,2,...,_7'— [%-‘ —1}, zjNz; for i€ {j— {ﬁ—‘ yJ— {g—‘ —|—1}, zj > z; for
i€ {j— [%-‘ —|—2,...,a}, zj>=x1 for j€ {a—|—1,...,a—|— {%-‘ —1}, zjNx, for

je{a+ ’V%-‘,.--,a—}—"%—‘—i—l}, and z; <Nz, for je{a—l— E-‘ —|—2,...,a—|—b}
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(relationships ii(7)b(I)-(VII) of Definition 4.1.1).

In the following cases we will list the bold relationships based on the value of b.

Case 3.1. b< {ﬂ
In this case we must consider the possibility that x3=y;. This condition does
not affect the relationships of the chains with uq,us, or us.
q
p
where the relationships from the general analysis that are impacted by the value of

b are marked with a (*):

The following are the relationships from the preceding analysis when b< { —‘,

1. ulﬂu2,
2. ugﬁug,
29
usNup a< >
Y

U3=uU, G %q
4. Uy,

(a) u1<ys,

(b) uy<z; for ie{l,Q,...,a— L%-‘ },
(¢) uiNz; for ie{a— L%—‘ +1,...,a},

(d) uinz; for ie{a+1,...,a+b} (%),

(g) wi=y2 (%),
(h) u;=<z; forie{a—l—b%—l,...,cﬂ—PW—l},

(i) wiNz; for ie{a+ L%-‘ ,...,6},

)
)
(£) wiNaz (%),
)
)

ur<Nrs a>

urNers a<

SR s

D. Uz,
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(a‘) U2‘<y37
(b) uz<2i fori6{1,2,...,a+b—[%-‘}y

() wnz for i {a+b—[2]+1,. . a+b-[1]+1},

(d) ug>2z; for Z'G{a—l—b— L—ﬂ +2,...,a},
(€) ug>x1,
(f) u2ny,
(h) usNgz; for ie{a+1,...,a+0b} (*),
(1) uaNgz; for ie{a+b+1,...,6},
(i) uaNs,
6. us,

(a) uzNz; for i€

1,2,.... M}
HH,...,a},

{
(b) ug>z; for 2’6{

(c) ug>mxy,
usM>=1y; a> %q
uzNy;  a< |2 7

(e) usNz; for ie{a+1,..., [@-‘ },

p
(f) uz>z; for ’L'G{ {%—‘ +1,...,a+b},
(8) us>=mo,
(h) usNys,
(i) ugNz; for ie{a+b+1,...,8},

7. Chains one and two,

(a) Y1,
Y1 <Nys3 L%-‘ <a< @-‘ "
Y1=Y3 a> {% 7



(IT) y1 <z forz‘e{1,27...,a—[%q”,
(IT) 41 <Nz for ie{a— [%ﬂﬂ,...,a—m—@,
(IV) 41Nz for ze{a m a— mﬂ},
(V) yim2 forze{a [g]m,...,a},
(VD) yy =,
(b) z; for je{a+1,a+2,...,a+b},
(D)
(I1) 2<z fori€{1,2,...,j—[ﬂ—1},
() 2Nz forz'e{j—m j—MH},
)
) 2

Zj_<y37

(IV) 2>z for ZE{]— PW+2,...,CL},
(V) zj>x for je{a+1,...,a+b} (*),
(c) o,
() z2=<ys,
(1) 2oz forie{1,2,...,a+b—{g”,
(1) Nz for i€ {a+b—[4]+1,a+0— [2] +2},
)

(IV) zoN>=z; for iE{a+b— Lﬂ +3,...,a},

N1 b< % -1 "
roNxy b= % —1 7
8. Chains one and three,
(a) va,
Yo=<Ny3 a+b> %
YoNysz a+b= % ,

(1) y2<Nzi for i€ {12, a+b— 2] -1},

(III) yoNz; for z€{a+b { W a+b— Hﬂ+1},
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(IV) ya>2z; for iE{a+b— hﬂ +2,..., a},

(V) yo=1,
(b) z; for je{a+b+1,..., 5},

() zj<ys,

(II) z;=<z; for 26{1 2,..., j—P— —1},
) 20z for ie {j- [2] j—[2]+1},
(IV) zj>z; for ie{j— ﬁﬂ +2,..., a},
(V) 2

(111

>‘l’1,

(I) x3=<ys,

)

1) 1,
(I11) 23Nz forzeﬂ

)

)

{
(V) x3>2z; for ZE{[%—‘—{—I ..... a},
W 2

9. Chains two and three,

(a) Y2,
I Y211 b<|%|-1 (*)
vy b={%1-1
(IV) ya2>2; for ze{a—i—l ..... a+b} (%),
(V> y2>$2,

(b) z; for je{a+b+1,..., 5},
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(IIT j—<y1f0rj€{a PW 1,---,5}a

)
(IV) zj=<z; for ZE{CL
(V) z;Nz; for Z'E{
)
) =

(VI) zj>z fOIZE{j L%—‘ ,a+b},
(VII) z;>x4,
(c) s,
Tr3=<1UY1 a<< %W
(I) x3MY1 Hﬁq-‘ <a<{%-‘+1,
T3 >=1 a> B’Tq +2

T3MZo a+b=

SR s

T3 =2To a+b>

The relationships listed above match the poset family of Figure 4.1iii.

Note, if y; =3, some of the relationship possibilities between that element and
the elements of chain one are eliminated. For example, if y; <Nz; and x3<z;, then
yh=x3=<2;. After adjusting for the overlap, the listed relationships match the poset
family of Figure 4.1iv.

Case 3.2. b> {%_‘

Since b is large, a2 {%-‘, and so r3#vy;. Therefore, all element labels in C
represent unique elements of P.

The following are the relationships from the general analysis when b< Lﬂ , Where
the relationships from the general analysis that are impacted by the value of b are
marked with a (*):

1. UlﬂU27
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2. u2ﬂu3,

3. usNuy (%),

4. uy,
() u1=ys,
(b) uy<z; for 26{1,2, { H,
(0) winz foric{a—|2]+1,....a},
(d) winz forzE{a—I—l, [ H
(€) ur>z forze{aﬂ ] a—l—b}

)

(f) ur=zo (%),

(8) urNy2 (%),

(i) wNz for ic{a+b,...,5} (*),
)

(j) winzs (*),

5. Ua,

(a) u2<ys,

(b) uy=<z; for ie{l 2,...,a+b— [?‘ﬂ}
(c) ugNz; for zE{a+b [ﬂ —i—l,...,a} ),
(e) uzNwy (%),

(£) wa=wyr (%),

(g) ug=<z; for ze{a+1 a+b— {ﬂ },

(h) uyNz; for ie{a+b— Lﬂ —i—l,...,a—i—b},
(1) ugNz; for ie{a+b+1,...,8},

(j) u2Ns,
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(2) usNz foriE{l,Q ..... M}

(b) us> 2 fom'e{mﬂ ..... a}

(c) ug=x,

(d) usNyr (%),

() usnz foric{a+1,.... 2|},
(f) us>2 forz’eﬂ%}rl ..... a—H)},
(8) uz=m2

(h) uzNya,

(i) usNz; for ie{a+b+1,..., B},

7. Chains one and two,

(a) Y1,

y1Nys a=|1
v {ymyg [g1<ﬂ%1 o
(ITT) 1 <Nz forz'e{l ..... a—m—l} (%),
(IV) 41Nz for ie{a— m a— m +1},
(V) y1>-2 forz'e{ - W
(VD) y1 >,
(b) z; for je{a+1,a+2,..., a+b},
(1) zj=<ys,
(I1) 2=z forze{l 2. j—[%-‘—l},
(I) 2Nz forze{j m ,j—MH},
(IV) 2= 2 forze{j M
(V) zma for jefa+1,.. o+ [2] -1},
(VI) z;Nx; for ye{a+ M ..... a+ M +1},



(VII) 2 <Nz for je{a+ m 2. a+b},
(C) L2,
<I> T2 =<Ys,
(IT) z9<z; for ie{l,2,...,a} (*),

.’L’Qﬂl‘l b= %
(V) (*),
To<Mxy b> %
8. Chains one and three,

(a) Y2,
() y2=<nys (%),
(1) yo=<Nz fori€{1,2 ..... atb— %]—1 ,
(I11) yoNz for ie{a+b— (%1 ath— {%W +1},
(IV) yo> 2 for ie{a+b— ﬁﬂm ..... a},
(V) yar=a1,
(b) 2, for je{a+b+1,..., 0},
(1) zi=ys,
(IV) 2=z foriE{l,Q ..... j—P— —1},
(V) 2Nz fom'e{j—[%ﬂ i %‘1-‘+1},
(VI) 2> 2 fome{j—{ﬂw ..... a},
(VII) zj>xq,
(c) xs,
(1) z3=<ys,
(11) x3-<zifori€{1,2 ..... m—1},
(IT1) 5Nz for ie{ m , m +1},
(IV) sz for ie{[4]+2,....a} (¥),
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x3Nxy a= P

(VI) " ()
T3 =27 ’V%-‘ <a< ?q-‘
9. Chains two and three,
(a) y2,
YoMy b= F—‘
(n 2,
Yo <MYy ’71—7 <b

(1)
(III) yoNz; for ie
)

(IV) ya >z for ie

/—Mf_/‘\ m
_|_
T
_ =
SRS .
— .
e
_|_
T
—
<
1
_.I_

—_
—

(V) yo>-o,
(b) z; for for je{a+b+1,...,8},

(IT1) zj=<y; for je{a+b+1,....8} (*),

(IV) z;=<z; for ie{a—i-l,...,j—{ﬂ—l}?
) zine forie{j-[2],j-[¢]+1},
(V) 22 for i€ {j—[¢]+2,....a+b},
(VID) =

(v

Zj—T2,
(c) x5,
(I) z3=y1 (%),
(II :U3<zifori€{ 41, [} 1}

)
)
(IIT) x3Nz; for zG{Hﬂ [ W }
(IV) x3N>z; for ZG{[ —‘—1—2 a—i—b}
)

(V $3ﬂ>‘$2 (*)
The relationships listed above match the poset family of Figure 4.1v.

The preceding cases cover all possible minimal negative cycle structures. Thus,
if a poset contains a minimal negative cycle with three weight ¢ arcs, then the poset

contains a subposet from Figure 4.1. ]
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The preceding proof shows that not every p, ¢ pair will have a minimal forbidden
substructure produced by a cycle with exactly three weight ¢ arcs. This fact is

captured in the following corollary.

2 . .
Corollary 4.1.3. Let g=ps+d. If £<d<% or d>7, then a negative cycle with

exactly three weight ¢ arcs cannot be minimal.

S 25+1  d<?
Proof. We have = [3—-‘ =13s+2 L<d<Z, and {@-‘ " ~2 _ Asin
P ) P 25+2 E<d<p
3s+3  F<d
.. 2 .
the proof of Proposition 4.1.2, d>= and £ <d<?% allowed a shorter negative cycle
to be found. ]

— — _ 2p _ : : _ _3
For p=3, d=1 or d=2. Thus, d# 7=2 and there is not a d with 1=8<d<f=3.

4.2 Structural result for lengths in [3,q], ¢=2s+1
or =252

Definition 4.2.1. Let F3 be the set of posets shown in Figure 4.6 and their hori-

zontal reflections.

Theorem 4.2.2 will justify using the F3 notation for this collection of posets.
The posets in F§ get quite complicated. Following the proof of this chapter’s main
theorem, F4 is shown for ¢=4,5,7,8,10,11, and 13.

100



Y2
/Izl
/ﬁ', Za—[q/3]-1
Za—Tlq/3]
Y1
Zari Za—[q/3]+1
Za—[q/3]+2
) Za+2
Za—[q/3]+3
Z[2q/3]
q:r2 21q/3]
[q/31+1
° W Z"‘Z/:ﬂ‘FQ
\\\ Za
® I$1
43 [5]+4 [%]+6
b) | (o) (d) a€{[q/2]

- [2q/3] -1} |

ol

Zlq/3]+1
Z[q/31.+>~
2q/ 31
2q/3]+1
(1+5

e

Figure 4.6: Minimal structures that cannot appear in a [3, g representable interval order:

The numbers below the posets are the number of elements in the structure.

Structure (c) and family (d) are minimal for g=3s+1 only. They are not
minimal for ¢g=3s+2. For p=3, (c) is structure (i) of Definition 3.1.1, (d) is
family (ii) of Definition 3.1.1, and (e) is structure (i) of Definition 4.1.1.
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u3ﬂ oy2
7/
/

Za[§]-1

‘ N
b
+
Ju

wie  wk
0

Fa—[47+2
Za+2 2, 9743
il e
Fat[4]+1 /

%ot [4]

. ugN>=y1,u3>2q+1 if a>(
' U3>z[@1+1 ifag(
3

2. u3>z[%]+1
3. u1-<za_[%1
4. ug>=uq if a> {%ﬂ
5. u1>za+(%1+1 ifa<{23qu

6. u2-<Z|'%'|_1

]
]

UQ>'Z[2:T{;W+1 if a> ’V

wha  wia

U2‘<Z|’ -1 if a< (

g

Figure 4.6 (cont): Minimal structures that cannot appear in a [3,¢] representable in-
terval order: Family (f) corresponds to family (ii) of Definition 4.1.1
when p=3.
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(91)

Figure 4.6 (cont): Minimal structures that cannot appear in a [3, ¢] representable inter-

val order: Family (g1) corresponds to family (iii) of Definition 4.1.1

3. The left and right chains contain the same elements.

Note: ug=uy if a> {%—‘, yoNys if a+b

when p

4]-1.

—‘, z1Nxg if b=

2q
3
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¥
a1
¥]
Yo i}ﬂ
Za+b+1 3
3
34

ISTIRS

I

I
8 —

| whka wka wika wka

4]

Za+b b= (%w
X9 +o— (%W +1
[4]+2
4]+
[4]+4

(g2) a€{[%]|+1,...,q—2} (thus be{1,2,...,[¢]-3})

Figure 4.6 (cont): Minimal structures that cannot appear in a [3, g representable inter-
val order: Family (g2) corresponds to family (iv) of Definition 4.1.1
when p=3.
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Figure 4.6 (cont):

Minimal structures that cannot appear in a [3, g| representable inter-

val order: Family (g3) corresponds to family (v) of Definition 4.1.1

when p=3. The left and right chains contain the same elements.
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Figure 4.7 illustrates poset (e) of F3. It gives the forbidden posets of family (e)

for ¢<13.
q=4 q=5 q=7 q=8 q% q=11 q=1

Figure 4.7: Minimal structures that cannot appear in a [3, ¢] representable interval order

3

with 3 weight ¢ arcs and q weight -3 arcs where all q arcs are consecutive

We offer some notes on the structures in Figure 4.6.

For family (f), for the second case of relationship 1. and for relationship 4., if

a4 _ =
"%" +2< "%‘1" —b which is b< { %% ? 1 28—'—; = ’_%2-‘ —2, then the relation is
3|~ q= S+

already present due to transitivity.

For posets in family (g), the thick double headed arrow indicates that the two
chains it connects are actually the same chain. In diagrams (g;) and (g3) a chain
was duplicated to simplify the drawing. Also, for structure (g2), consider z 911
[2]+2: the elements related to x3=y,. We have a— (%W +2> (%ﬂ — (%W +2>
((ﬂ - 1) +2. This means that the elements precedent to/from z3=y, are at least 2

3
elements apart.

and z
a—

The following is the main theorem of this chapter.

Theorem 4.2.2. Let P=(X;<) be a partial order and let ¢g=3s+1 or ¢=3s+2,

with s€Zx;. The following are equivalent:
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1. Poset, P, has an interval representation with lengths between 3 and q.
2. The weighted digraph Di(P) contains no negative cycles.
3. Poset, P, contains no induced sub-poset from Fj.

Proof. (1) < (2) This is a special case of Theorem 2.1.5.

(2) = (3) (by contrapositive) Recall that in Di(P), an edge xy— z, has weight ¢
and the reverse edge has weight -3. All other edges have weight —e or 0. If P contains
an induced 242, say (x<y)N(u=<wv), then y,, x,,ve, u,ye is a cycle of weight -2e.

If P contains an induced (%ﬁw +1, say (x1>=22>-->T[(g+6)/31) Y, then, the cycle
L10yL2py L2405 L3p5 L3¢y Ldrs " L[ (q+6)/3], Y, Yrs L1 has Welght -3 (’7%—‘ ) +q—e¢ ((%W) <
0.

If P contains an induced subposet isomorphic to poset (c) of Fi from Figure
4.6 and g=3s+1, then z;=xy>..., =T 2g/3142 N Y1 NY2 With y1 =T ([24/3141),2 and
Y2 <T([2¢/3]+3)/2- Lhen, the cycle

L105X20yL20, T30, X3y Tdrs " 3T [2g/314+2,5 Y10 YLy Y205 Y24, T1g

has weight —3 [22]+¢(2)—e [2+1] <0.
Next, consider the posets in family (d) labeled as in Figure 3.6.

1
!
17
7
Y U1
Za+1
Za+2
22
’V 3 —| u2
o)
W\
W
\\I Za
\
I

Figure 4.8: Labeling for the family (d) of posets from Figure 3.5: The z.s label the

longer chain consecutively from top to bottom.
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Now, the cycle
Z1ryR165 22932205+ -+ 3 Zary Raly Tlpy W1g, Ulry Y1y Ra+1py Rat1gs Rat+2ys Ra+2¢) """ s Zﬁra xﬁga

Loy, U2p, U2ps Y20, 21y

has weight 2g—3(a)—3 ([%1 —a)—e¢( (%ﬂ +2) <0.
Next, if P contains an induced poset isomorphic to (e) of Figure 4.6, say x>

To > = Tgr2NYy1 MNY2M Y3 with y; < T2q/3]5 L[q/3] ™ Y2 ™ Tq+2—|q/3] = L[2¢/3]+2> and
Y3 Tqyo—|2q/3] =T[q/3]+2- Then, the cycle

X103 X2p3 X203 X33 L3py Ly *° 7Iq+2rayleaylray2£7y2r7y3£7y3raxlé

has weight —3(¢)+¢(3)—e(¢+1)<0.
Now, if P contains an induced subposet isomorphic to a poset in (f) labeled as

in Figure 4.6, then the cycle
Zlpy 14522792205 - - -y Rary Raly Llp, Wig, Wlp, Ylgs Rat-1ps Ra+1gs Ra+2ps Ra+2¢5" " " s qua qua L2y,

U2g, U2y, U3g, Uy, Y20, Z1r

has weight —3(¢)+¢(3)—e(¢+2)<0.
Finally, if P contains an induced subset isomorphic to a poset in family (g)

labeled as in Figure 4.6, then
Z1ry 21652213220y R31y """ 5 2aly Llpy ULgy Wlp, Ylpy Rat1ps Rat1py """ s Ratbey L2yp, U2g, U2y, Y20,

Za+b+1lpsRatb+lp " qua T3y, U3e, U3yrs Y3y

is a cycle with weight —3(q)+q(3) —€(g+3) <0.

Thus, if a poset P contains an induced poset in Fi, then Di(P) contains a
negative cycle.

(3) = (2) (By contrapositive) Assume Di(P) contains a negative cycle. We
will show that P contains an element of Fj as an induced suborder.

Let C' be a minimal negative cycle (shortest negative cycle with greatest (least
negative) weight) in Di(P).
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Case 1. All arcs of C' have weight —¢ or 0.
By Lemma 2.2.1, P contains an induced 242 (structure (a) of Figure 4.6).

Case 2. Cycle C contains an arc of weight -3 but no positive weight arcs.

Lemma 2.2.3 rules out this possibility.

Case 3. Cycle C' contains « arcs of weight ¢.

By Lemma 2.2.6, C' must contain = {%W arcs of weight -3.

Case 3.1. a=1
By Lemma 2.2.9, C' corresponds to a {%ﬁp—‘ +1 where p=3, so a (%ﬂ +1, which
is ([2]42)+1 (structure (b) of Figure 4.6).

Case 3.2. a=2

2s+1 d=1
If g=3s+d, then we have that = (%W =5+ (%ﬂ {7 . By Corollary
2s+2 d=2

3.1.3, C' is not minimal if d=2. By Proposition 3.1.2, C' corresponds to one of the
structures in F3(2) which are the posets of families (¢) and (d) of Figure 4.6.

Case 3.3. a=3

We have that g= {%ﬂ =¢q. By Proposition 4.1.2, C' corresponds to one of the
structures in F3(3) which correspond to the posets in families (e), (f), and (g) of
Figure 4.6.

Case 3.4. a>3

By Lemma 2.2.10, this does not occur.

This covers all possibilities for . Thus, if Di(P) contains a negative cycle, then
P contains an induced sub-poset from Fj. The proofs of Lemmas 2.2.1 and 2.2.9
and Propositions 3.1.2 and 4.1.2 also show that these structures are minimal since

they correspond to minimal negative cycles.

Thus, F7 is a minimal list of minimal forbidden substructures for P[3,q]. O

How many posets are forbidden by F3? Proposition 4.2.3 answers this question

for each ¢. This result is analogous to Proposition 3.2.3.
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Proposition 4.2.3. The number of minimal forbidden subposets for interval lengths

between 3 and ¢g=2s+1 is

([2q/31-1)/2

| Fi| =4+ Zl 2
SEREABI(EIR)

a=[q/2]
+(1+(g mod 2)) (%-‘ —1)

2 5 o([4) (a_[iﬂﬂ)}

a=[2q/3]+1

SR N(E (D)

l[¢/31-1 q—b—1

'y aqzm<(%1—1>2<m—b>z@w—%hlf

+ Z ([4]-)"+2 ; MZ%H(( [-0) (wro- | %] 41)

+:%;J( [ }+1) (Qb [?ﬂﬂ)
2 S () ([l (oo [3]0)

b=[q/3] a=b+1
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and for lengths between 3 and ¢g=3s+2 is

|f§r=3+{2[2q§_1 (=I5 (5] )]

a=[4/2]
+ (14 (g mod 2)) ng

2 5 o) (5]

a=[2q/3]+1

SR N(EIN(EE)

[q/3]-1 q—b—1

23S () () (- [])

S s S ([4]-9) (ene- [2] )
CE 08 ([

2SS o 2] a2 (0[] +1)2}
b=[q/3] a=b+1 3 3 3
Proof. In Figure 4.6, (a), (b), (c), and (e) contribute 4 posets unless ¢g=3s+2, then
(c) is not included. The structures in family (d) are only counted when g=3s+1.
There are Uziw =s horizontally symmetric structures without accounting for the
dashed lines, and each contains [@-‘ +6=25+7 elements. In the first structure,
9 elements are part of the center structure. Each of the remaining ( W 3=2s—
2 elements have exactly one dashed line precedence. We can select at most one
precedence from the top set of dashed lines and at most one precedence from the
bottom set of dashed lines (selecting a precedence close to the center implies all
precedences farther from the center by transitivity). These choices can be made
in (22+1) (272+1)=s? ways. The next structure in (d) has 11 elements in its
center structure and so represents (s—1)* distinct posets. The third structure would

have 13 elements in its center structure and so represents (3—2)2 posets. In the last
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poset, the center structure contains all 2s+7 elements and so represents only one

poset. Thus, (d) contributes
s (124/31-1)/2
Si?= Y i? posets.
i=1 i=1

Next, we count the elements of family (f). Each structure contains at most two
sets of dashed lines and if a> P—ﬂ, a single dashed line from u3. When a< (%W,
there are 1+a— ( W —1 dashed lines in the top set and ¢+1— (a+( W 1) dashed
lines in the bottom set. This creates (1—i—a—[ ] 1+1) (q+1—( (ﬂ —l—l)—i—l) =

( ( -‘+1) ({ W —a) posets. We find a similar count for a> { W

{Q(H 1) (a=[F]+1) ¢=3s+1
2([51) (a=[F1+1)  a=3s+2

29 q7 _
For a=[4], Weget{({ L D(a=[31+1) o= 35+1:{((3L 1) q=3s+1
([4]) (a=[5]+1)  ¢=3s+2 ([4])  g¢=3s+2
structures. Now, a structure, P is horizontally symmetric if its corresponding nega-

tive cycle in Di(P) is isomorphic to the cycle in reverse. Thus, a poset is horizontally
symmetric if a=b={ which only occurs when ¢ is even. Thus, the count for family
(f) is:

[2q/3]— 1{

2 )

a=[q/2]

- [4]+1) (Fﬂ )]+(1—|—(q mod 2)) ([4]-1)

when ¢g=3s+1, and

1) (2] ) s (1)

a=[q/2]
= q 2
2 > 2([5]) ()5 ]
+2 Y NG E
a=[2q/3]+1
when ¢g=3s+2.

The number of posets in family (g) can also be counted by determining the

number of dashed lines in each set using the subscripts, adding one to each set,
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and multiplying them together. Again, we must determine which structures are
horizontally symmetric and which are not and double the contribution of those that
are not. The structure will be symmetric if two of the chains have the same length,
meaning a=»b or a=q—2b, or all three chains have the same length. However, ¢ is
not divisible by three, so all three chains cannot have the same length.

For family (g;), b< (%W, and a> (%W, so a#b, but a=q—2b is possible. Family
(g1) contributes

[a/3]-1

N (VO]
25 S (2] (140 (oo [2] 1)

b=1 a=q—2b+1

1 g=3s+1

0 q:3$—1—2'
For family (g2), b< (%W —2, and a> (%W, so again a#b, but a=q—2b is possible.

posets where the first sum counts the case that a=¢—2b and /\:{

Thus, family (g2) contributes

l[q/3]1-3 [4/3]1-3 q—b—1 2%
3-0) +2 ([3]-2) (o= |3
> (/3] 22 2 ath—| 5| +1
b=1 b=1 a=q—2b+1
posets where the first sum counts the case that a=¢—2b.
For family (g3), b> ’—g-‘, and a> ’—g-‘, s0 a#q—2b, but a=b is a possibility. Thus,
family (gs) contributes

[(g—1)/2]

b:%g] (b—%}ﬂ)él(% {3%1)2
2SS ([0 1) (o [2)1)? (0= 2] )

b=[q/3] a=b+1

posets where the first sum counts the horizontally symmetric posets, and the double

sum counts the non-symmetric posets twice. O]
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We illustrate Proposition 4.2.3 for ¢g=4 and ¢=5. For ¢=4, we have
| FA=441424140+140+0+0+0=9.
For ¢=5, we have
| F51=3+2(2)+2(2)+0+4+0+0+0+1+0=16.

Notice that this result is more complicated than Proposition 3.2.3. It would be
possible to find closed forms of the summations but they would not add clarity to
the result. We also note that this sequence appears starting at the third term of
sequence A153057 on the Online Encyclopedia of Integer Sequences [17].

Next, we illustrate F5 for small values of ¢.

4.3 Small values of ¢

The following sections contain the minimal forbidden substructures for ¢=4,5,7,8,
10,11, and 13. In each set of structures a thick, double-headed arrow indicates
that the chains it connects are the same chain, and a dashed line indicates optional

precedence.

4.3.1 Lengths [3,4]

Figure 4.9 gives the minimal structures that are not representable by intervals with
lengths in [3,4]. These structures together with their horizontal reflections comprise
F3. Since all but one of the structures is horizontally symmetric (after possible
transformations that do not change the relationships of the Hasse diagram), P|[3,4]

has eight minimal forbidden substructures.
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b

Figure 4.9: Structures that cannot appear in a [3,4] representable interval order: These

and their horizontal reflections comprise ]::ﬁf.

There are eight structures in Figure 4.9. The sixth structure from the left is not

horizontally symmetric, so |F4|=9. This confirms our count in Proposition 4.2.3.

4.3.2 Lengths [3,5]

Figure 4.10 gives the minimal structures that are not representable by intervals with

lengths in [3,5]. These structures and their horizontal reflections make up F5.

Figure 4.10: F3

There are seven structures in Figure 4.10 only two of which are not horizontally
symmetric (in terms of the Hasse diagram relationships). The forth from the left has
one dashed line and so represents two posets, but it is not horizontally symmetric,
so it counts for four posets. Similarly, the fifth from the left adds four forbidden

posets. The sixth from the left has two dashed lines between different pairs of chains
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and so represents four posets. Thus, |F3| contains sixteen elements. This agrees

with our calculation after Proposition 4.2.3.

4.3.3 Lengths [3,7]

Figure 4.11 gives the minimal structures that are not representable by intervals with

lengths in [3,7]. These structures and their horizontal reflections make up Fu.

Figure 4.11: ]:g

4.3.4 Lengths [3,8§]

Figure 4.12 gives the minimal structures that are not representable by intervals with

lengths in [3,8]. These structures and their horizontal reflections make up F5.
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8
3

Figure 4.12:

4.3.5 Lengths [3,10]

Figure 4.13 gives the minimal structures that are not representable by intervals with

These structures and their horizontal reflections make up F3°.

3,10].

[

lengths in
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Figure 4.13: FJ°
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Figure 4.13 (cont): F3°

11]

4.3.6 Lengths [3,

Figure 4.14 gives the minimal structures that are not representable by intervals with

lengths in [3,11]. These structures and their horizontal reflections comprise F3'.
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Figure 4.14: Fj!
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Figure 4.14 (cont): Fi!

4.3.7 Lengths [3,13]

Figure 4.15 gives the minimal structures that are not representable by intervals with

lengths in [3,13]. These structures and their horizontal reflections comprise F3°.
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Figure 4.15 (cont): Fi3
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Chapter 5
Interval orders with lengths [p,q]

Chapter 2 introduced the methods used in the subsequent chapters, Chapters 2
and 3 used these methods to prove results for interval lengths in [2,¢] and [3,¢]
respectively. We conclude by providing incomplete results for larger values of p, and
discussing why enumerating F! becomes increasingly difficult as p increases. We
will provide a general characterization of minimal forbidden structures in F}, but

we are not yet able to count them.

5.1 Plp,kp+1],k€Z,

In this section, we state a result relating the minimal forbidden substructures for
Plp, kp+1] and P[p+1,k(p+1)+1]. First, consider the example with k=1 of P[2,3]
and P[3,4]. Figure 3.8 gives F3, and Figure 4.9 illustrates F3. Notice that Figure
4.9 contains all of the elements of Figure 3.8. Thus, F3 CFs. Proposition 5.1.1

generalizes this result to all values of p and k.
Proposition 5.1.1. J—"ﬁpﬂgfjf’f”“, keZ,.

Proof. Let Pe F}*™', and let C' be a minimal negative cycle in D?*!(P). Then,
by Lemma 2.2.10, C' contains a € [p] weight kp+1 arcs, and by Lemma 2.2.6, §:=
{%-‘ weight —p arcs. Since (ka+1)p>a(kp+1)>kap, we have f=ka+1. By

Lemma 2.2.4, (' is a sequence of adjacent sets of adjacent weight kp+1 arcs and
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adjacent weight —p arcs.

Now, in D];Sf)frl)H(P), C is still a negative cycle since it contains a weight k(p+1)+1

arcs, and ka+1 weight -(p+1) arcs for a total weight less than a(k(p+1)+1)—(ka+

1)(p+1)=a—p—1<-1. By Theorem 2.1.5, P is forbidden in P[p+1,k(p+1)+1].

Assume C is not a minimal negative cycle in D];Srpfr DH(p)

. Then, there exists a
pair x;,x; € P represented in C' such that an arc between two of their vertices in
Dgﬁ(P) creates a shorter negative cycle, C’ in C. C’ has o/ <a<p arcs of weight
k(p+1)4+1. For C’ to have negative weight, it must contain 5’ > {%

of weight —(p+1). Now, since o/ <p<p+1 and ko’ is an integer, we have

—‘ arcs

and

g {o/(k(p—l—l)—i—l)-‘ _ [o/(kp—i—l)-‘ '

p+l p
Thus, C” also has negative weight in DyP*!(P) which contradicts our assumption

that C' is minimal in D¥*'(P). Thus, C is minimal in D’;J(ffrl)H(P), and P e

E(p+1)+1
FHErDHL 0

Corollary 5.1.2 motivated the investigation into this area, and so we give it some

special attention.
+2
Corollary 5.1.2. FPHCFIT.

Returning to our small example, we have F3y C Fy. Thus, if we remove any
element from P& F3, it is not only representable with lengths in [2,3] it is also
representable with lengths in [3,4].

Recall Plp,q]="P][1,q/p] [8]. That means we can restate the conclusion of the
last paragraph as: if we remove any element from P€F3, it is not only representable
with lengths in [1,3/2] it is also representable with lengths in [1,4/3].

In general, if we remove any element from Pe]—“jp“, it is not only representable

E(p+1)+1
prl

Now, as p increases % approaches k. Interestingly, |FF|=2 and |F**!| in-

with lengths in [1, %} , but also representable with lengths in [1,

creases as p increases (see Corollary 5.2.6).
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5.2 Structures in F] for all p

The following result holds for p>1. Tt defines the element of F which corresponds

to a negative cycle in the digraph with exactly one weight ¢ arc.

Lemma 5.2.1. P= [%W +1eF] for all p.

Proof. By Theorem 2.1.5, we must show that [%-‘ +1 corresponds to a minimal
negative cycle in the digraph. Label the chain from top to bottom as x1,xo,...,

T(g+2p)/p) and the other element as y;. Then, DI(P) contains the cycle

L1, 220, X2¢, T35, X305 -+ T [(q+2p)/p]—1,5 L[(qg+2p)/P] =1 L [(q+2p) /] 7> YLe> Y1ps L0,

call it C'. Now, C contains one weight ¢ arc, {%ﬁpw — 2 arcs of weight -p, and
{%ﬁp-‘ —1 arcs of weight -¢; and has weight ¢—p([(¢+2p)/p]—2)—€([(g+2p)/p]—

1)=q—p[q/p] —€([(¢+2p)/p] —1). Clearly [qi#-‘ +1 does not contains a 2+ 2
as a subposet, so by Lemma 2.2.1, D{(P) does not contain a negative cycle with
only weight 0 and weight -¢ arcs. By Corollary 2.2.2 and Lemma 2.2.3, a minimal
negative cycle must contain a weight ¢ arc. If a minimal negative cycle contains one
weight ¢ arc, by Lemma 2.2.6, it must contain {%-‘ weight —p arcs. Cycle C' contains
these numbers of weight ¢ and -p arcs and the minimum number of weight 0 and

—€ arcs as given by Lemma 2.2.4. Thus, C' is minimal. O

Lemma 5.2.2 defines the elements of F! which correspond to negative cycles in
the digraph with exactly two weight ¢ arcs. Here, we must restrict the possible values
of ¢ as in Corollary 3.1.3 because their associated negative cycles are non-minimal
and thus correspond to nonminimal forbidden structures. See the disscussion after

Corollary 3.1.3 for an example with p=4 and ¢=11.

Lemma 5.2.2. Let P be one of the posets in F¢(2) (Definition 3.1.1). Then, P€F/
for all p,q such that g=ps+d with d<%.

Proof. Let P be as in the statement of the lemma. By Theorem 2.1.5, we must

show that P corresponds to a minimal negative cycle in the digraph. First, [2—‘1-‘ =

p
2| 941,
p
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For poset (i), label the chain from top to bottom as y1,21, 22, ..., 22:11, 1, label
the element on the right u;, and label the element on the left uy. Then, y; > 21 >~
Zy>= = Zggp1 =21 Nur NugNyy, and DI(P) contains the cycle

Y103 R1ry R105R2r5 2205 -4y R254+ 143 R25+1ps L1y ULy, ULy, U2p, U2y Y1p-

Call it C'. Now, C' contains two weight g arcs, 2s+1 arcs of weight —p, and 2542 arcs
of weight —¢; and has weight 2¢—p(2s+1) —€(25+2)=2(ps+d) —2ps—p—e(25+2)=
2d—p—e(2542) <0 since d<Z. Clearly P does not contain a 242 as a subposet, so
by Lemma 2.2.1, Dg(P) does not contain a negative cycle with only weight 0 and
weight —e arcs. Since {%W =s+1, P does not contain a [%—‘ +1 which by Lemma
2.2.9 is the minimal cycle which corresponds to one weight ¢ arc. If a minimal
negative cycle contains two weight ¢ arcs, by Lemma 2.2.6, it must contain {%-‘
weight -p arcs. Cycle C contains these numbers of weight ¢ and -p arcs and the

minimum number of weight 0 and -€ arcs as given by Lemma 2.2.4. Thus, C is

minimal.
For posets in (ii), label the right chain from top to bottom as ys, 21, 29, . . ., Za, T1,
label the left chain from top to bottom as y1,2441, 2442, -, 22511, %2, label the top

right element as u; and the bottom right element as us. Then, yo =21 > 20>+ >
Za = T1NUT Y1 = Zag1 = Zata = Z2s11 = T2NUzNYz and DI(P) contains the cycle

Y20, 21ry 210522052205 -y Rars Raly Llpy Ulg, Ulyy Ylps Zat1ps Rat1gr Rat+2ps Rat2ps +++9 225+1ps

Z2s+1¢5 L2, U2g; U2rs Y2u-
Call it C’. Cycle C' contains two arcs of weight ¢, 2s+1 arcs of weight -p, and
2543 arcs of weight —¢, and has weight 2¢g—p(2s+1) —¢€(25+3)=2d—p—e€(2s+3) <0.
Again P does not contain an induced 2+2 or an induced qﬂ +2> +1 so C’ cannot
be shortened to a negative cycle with no positive weight arcs or only one positive
weight arc. By Lemmas 2.2.6 and 2.2.4 C” is a minimal negative cycle which contains

exactly two weight ¢ arcs. Thus, P is a minimal forbidden substructure for P! and
so PEF]. ]

Lemma 5.2.3 defines the elements of F! which correspond to negative cycles in

the digraph with exactly three weight ¢ arcs. Again, we must restrict the possible
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values of ¢ as in Corollary 4.1.3 if their associated negative cycles are non-minimal

and thus correspond to nonminimal forbidden structures.

Lemma 5.2.3. Let P be one of the posets in F¢(3) (Definition 4.1.1). Then, P€F/
for all p,q such that g=ps—+d with d<£f or £<d< %.

Proof. Let P be as in the statement of the lemma. By Theorem 2.1.5, we must show
that P corresponds to a minimal negative cycle in the digraph.

If P contains an induced poset isomorphic to Figure 4.1i, say y1 =21 =29+ >
2[3q/p] = T1 N U Nug Nuz With w1 <2raq/p1—1, 21q/p]—1 > U2 = 22¢/p]+1, and Uz 2[q/p]+1-
Then, the cycle

Rlry 10y 2275 2205+ + 9 2By 2B ps L1y ULps Wiy U220, U2y, U0 U3y Y145 21y

has weight ¢(3)—p(8) —e(8+1)<0.
Now, if P contains an induced subposet isomorphic to a poset in 4.1ii, then the

CYCle

z z zZ zZ A V4 x Uu u zZ V4 V4 zZ e, 2 z i
r +1p + + +
1ry <18y <20y <24 y~ary ~aly L 1lry, W10, lraylb a+1ys<a+1py ~a+2rs ~a+2¢ 9 ,6’7«7 Bga 27y

U2p, U2y, U3g, U3y, Y20, 211

has weight ¢(3)—p(8)—e(8+2)<O0.

Finally, if P contains an induced subset isomorphic to a poset in family 4.1iii,

4.1iv, or 4.1v, then

Zlpy 14y 221522052315 """ 3 2aly L1rs ULg, ULy Ylps Zat1rs Ratlys " " s Ratbes L2p s U2¢, U2y, Yoy,

Za+b+1lps Ratbtlp: " 7qua T3p, U3¢, U3y, Y3¢
is a cycle with weight ¢(3)—p(8)—e(5+3)<0.
From the proof of Proposition 4.1.2, the relationships of the structures in Fig-
ure 4.1 do not allow for shorter negative cycles. Thus, P is a minimal forbidden
substructure for F! and so PE€F].

]
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The list of structures in .7-'5’ (Figure 4.6) is already quite long, and to draw them
clearly, we chose to repeat one of the chains. As Lemma 2.2.10 shows the number
of chains in the minimal structures of F? could be as large as p. Drawing these
structures would become cumbersome and potentially unhelpful. In what follows, we
consider the minimal negative cycle structure and the posets they produce without

attempting to draw the resulting posets.

5.2.1 Cycle structure

By Lemma 2.2.4, the minimal cycle structures and thus minimal cycles for larger
values of p would look similar to the cycles already considered for p=2 and p=3.
In proposition, we consider the relationships not directly defined by the cycle. We
also encounter a divisibility issue analogous to the one addressed in Corollary 4.1.3
in which there are no minimal negative cycles with a=2 when p=3 and d=¢ mod 3
such that £<d<% or d> %. When this happens, the negative cycle is not minimal
and thus corresponds to a forbidden structure that is not minimal. We will address

but not settle these divisibility issues in Section 5.2.2.

Proposition 5.2.4. Let P be a finite poset. Let C' be a minimal negative cycle
in DI(P). If C contains exactly a weight ¢ arcs and is labeled as in Figure 5.1,
then P contains an induced subposet with the following relationships where %, j €
{1,2,...,a}, i<j and subscript arithmetic is considered modulo o with « as the
additive identity:

;

U =<U;j ZB<’V§11-‘
k=i+1 '
1. uiﬂuj ’7(] =l)g —‘< Z B <’7j i+1)q —‘,
k=i+1
U = Uj Z Br >P ~+1)e -‘
\ k=i+1
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J o
u; <y Z 5k<[(];z)qw

J
wny [ k 5 o< [tsa]
2. 4 j ,
u; N>y, ’7(J —i+1)q W Z [] 7«;-2)‘]—‘
k=i+1
Ui =Y B Z[J —i+2)q —‘
\ k=i+1

Jj=1 J Jj=1
3. for TLE{Z Br+1,..., Z Bk} and j’:n— Z Bk,
k=1 k=1

.
Wi < 2 26+3<[“1)1
k=i+1
w;Nz,, ’7(] i— 1)qw< Z B+ 4’ <[(] i)g W’
k=i+1 P
w8 gy
\ k=i+1
.
Ui-<£Cj 26<’7]12-‘
k=i+1 4
u <Nz [(3 i=2)q —‘< Z Br <P] = l)qw -1
4' k=i+1 )
u; N ’V(J i— 1)(1-‘ 1< Z B <’VJ l)q-‘
k=i+1
Ui =T Z B >[(3 Z)‘ﬂ
\ k=i+1
4
Y-, Z B <’7(J i— 1)q-‘
k=i+1 ‘
yiN>=y; [(j_zpl 1< Z 6k<[ -‘ 1
k=i+1
5 o TG e S (=i)a
C R YNy, - 1< X7 A< —1,
k=it1 P
o [G=dd] ? (j—it+1)g
y1=Ny; | 1< X A<
k=i+1 P
Yi=Y; P] l+1)q-‘< Z Br
k=i+1

\
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j—1 j—1
6. for nG{Zﬁk—{_l? Zﬂk} and j/:n_ZBka
k=1 =1

;

\

;

\

Vi< zn ZB+3<[“2)W
k=i+1
Yi<Mzn [(j—i 2)q —‘< Z B, _’_j<’7(J i— I)q—‘ 1
P k= z+1
(j—i—1) (j—i—1)
YiNzn {%W 1< Z Brtj' <P ﬂ
k=i+1
Yi ™= Zn Z ﬁiﬁ-] >[J = 1)—‘
k=i+1
yi<a:j E ﬁ <’7 —‘
k=i+1 )
Yi =N, {(J i=3)g w< Z ﬁk<[3 = 1)—‘—2
k=i+1
i [Uo] o 3~ g s
k=i+1 ;
Yi=T; [(] i=L)g -‘< Z Br
k=i+1

j—1 j—1
8. for nE{Zﬁk—i—l, Zﬁk} and j/:n—Zﬁk,
k=1 k=1

;

\

Ti=Zn Z Br+7' <[ )W

k= z—i—l

k H—l

T2y, { )1+1< Z Br+7 <[—(j_i+1)qw
k=i+1

i 2n Pj g W< Z Br+J'
k=i+1
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(

T =T Z By <’7(J i l)q—‘

k=i+1

;<N [(“1W<Zﬁk<[ W 1
k= H—l
k i+1
;N [ 1< S B <P3 ”l)w
k=i+1
T P] ’+1)q—‘< Z B
\ k=i+1

i—1 i i—1
10. for me{z Br+1,...,> Bk} with i'=m—">_ 5 and
k=1 k=1 k=1
Jj—1 J Jj—1
ne { DI/ NN ﬁk} with j'=n— > B,
k=1 k=1 k=1

( j—1 o
2= 3 G i< [—(J;’)ﬂ -1
ZmN2n {(] l)q—‘ 1<Zﬁk+] {(] Z)q—‘
p
=g TR
\zm>zn { > W<,§ﬂk+‘7 i

Z/la—1
<Z Bi+1>
i=1
Z1e ® [ ] @
zZ2 Zpy T1 U1 Y1 28142 ZB1+B2 u2 Ya—1 2/0‘71 B Ta Ua Yo

Figure 5.1: Cycle in D{(P) with o weight q arcs and 3 weight —p arcs

Proof. Consider a minimal cycle, C', in DZ(P) with o weight ¢ arcs.

We will assume that {%—‘ — {%q—‘ = {W—‘ —1 for all &’ <. In Remark 1 we

will discuss why this is true when a cycle is minimal.
Let g=ps+d with de{1,2,...,p—1} and ged(p,d)=1.
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((as+1 d§§
as+2 B<d<Z
We have f=[ 2] <[220 ] —qs 4 [ad] = { a3 Z<d<i,

(as+a @ <d

By Lemma 2.2.4, we can draw C' as in Figure 5.1.

To simplify the calculations, we will disregard the weight - arcs when finding
cycle weights. Thus, if a cycle has weight 0 below, it will be considered a negative
cycle because all of the cycles considered have at least one weight —¢ arc.

In Figure 5.1, i B;=p. If 8;=0, eliminate its corresponding z and y elements.
Since f>as+1, EZI?’1 such that By >s+1. Now, consider the relationship between
23, —(s+1) and ug, such that 25, (o 1y=ys, -1 if By=s+1. By transitivity, ug,
Z3,—(s+1)- 1 zg,—(s+1) > ug,, then replacing zg, (s+1), = ug,, in C with the arc

(28, —(s+1),»Up,,) creates a cycle with weight

(@=1)g—p(as+[(ad)/p] = (s+1))=(a=1)(ps+d)—p((a—1)s+[(ad) /p] 1)

=(a—1)d—p[(ad)/p]+p

([ (a—1)d d<r
(a—1)d—p Ped<?
¢ (a—1)d—2p  Z<d<?

[(a—1)d—(a—1)p <y

«

which is non-positive when 2 <d<-*2 Vke[a—1]. (Note 22 SW Vke[a—1].)
If 25, (s41)Nug,, then replacing ug, — 23, (s11), in C with the arc (u,gi,r,za_(sﬂ)é)
creates a cycle with weight g—p(s+1)<0. Thus, when *2 <d<-*2 for any k€[a—1],
all relationships between zg, (s11) and ug, yield shorter negative cycles. For the
remainder of the proof, we will assume that %<d < @ for some kela—1].
The preceding paragraph is an incomplete analysis for minimality. This only
covers the case where C' can be divided into two cycles: one with one weight ¢ arc

and one with a—1 weight ¢ arcs. This type of cycle division can also happen with
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different numbers of positive weight arcs. See Remark 1.

All elements labeled in C' are distinct except we could have z; =y, for some 1, j
pair. By Corollary 2.2.8, x; is distinct from y;_; and y;. Lemma 2.2.7 gives the
conditions when an element can repeat. Thus, each z;,y; pair which can represent
the same element produces structures where they are different elements and ones
where they are the same.

In what follows, we will use subscripts i,7€{1,2,...,a}. In each case, assume
without loss of generality that :<j (rotate cycle if necessary). We consider subscript

calculations modulo a with « as the additive 1dent1ty For example ifi=7,1—j=«

i+1
and i—j—2=a—2. Also, if j<i+1, we have Z Br= Z Bk+25k—6 ZBJ
k=i+1 k=i+2 k=1 =j

First, we consider the relationships among the u elements.

Relationship 1:
If u; <wu;, then replacing u;, —u,, in C' with the arc (u;,,u;,) creates a cycle
J j -
with weight (j—l—i)q—p( > 5k) which is positive when >° 6k<—(]_zp_1)q, If

k=i+1 k=it1
u; = u;, then replacing w;;—u;, in C' with the arc (u;,,u;,) creates a cycle with

weight (i—1+a—j)g— p(Zﬁw > 6k>=(i—1+a—j)q—p (5— Zjl @g) which

1 k=j+1 k=i+1

is positive when Z Bk > [(]_2]%)(1" If u;Nuy, then replacing u;, —u;, in C' with
k=i+1

the arc (u;,,u;,) creates a cycle with weight (i+a—(j—1))g—p (Z B+ Z Bk)
k=j+1

(i+a—(j—1))g— p(ﬁ Z /Bk) which is positive when Z Bk >P] = l)q-‘, and

k=i+1 k=i+1
replacing us, —uq, in C with the arc (us,,u1,) creates a cycle with weight (j—(i—

J J ..
1))q—p< > ﬁk> which is positive when > 6k<(’71p%1))q.

k=i+1 k=i+1
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¢

ui < u; Z Br<| G=E01 |
=i+1 ;
Thus, { u;Nu; [(J L 1)q—‘< Z B <’7(‘7 ’l,+1)q-‘
k=i+1
N
=i+1

\
Next, we consider the relatlonshlps between the u elements and the elements of

the chains

Relationship 2:
If u; <y;, then replacing y;,—u;, in C' with the arc (y”,uir) creates a cycle with

J

weight (j—i)q—p( > ﬁk> which is positive when Z Br < { J— ’)q—‘. If u;>y;,
k=i+1 k=i+1

then replacing w;;—y;, in C' with the path w;,,y;, ,y;, creates a cycle with weight

(i—1+a—j)g— p<1+26k+ 5 m) (atimj—1)g— p(l—l—ﬁ 5 @k) which

k=1 k=j+1 k=i+1

is positive for Z B> {A-‘ If u;Ny; then replacing w;, —y;, in C' with the arc
k=i+1

(4, y;,) creates a cycle with weight (i+a—j)g—p <Z B+ Z /Bk> =(a+i—7j)q—
1 k=j+l

(6 Z 6k) which is positive for Z B> {(7 z)q-‘ and replacing y;,—u;, in C
k=i+1 k=i+1

J
with the path y;,,y;,,u;, creates a cycle with weight (j—(i—1)+1)g—p ( > ﬁk>
k=it+1

R ’ (j=i+2)q
which is positive when Y [fp< {—-‘ :

k=it1 P
4
wi 5 < [Uzin]
k=i+1
w;Ny; [(a Zﬂi;f <[(a z+1)qw
Thus, ¢
u; N>y, [(J z+1)q—‘< Z B <[(J z+2)q_‘
k=141
u; -y, Z By >{(a z+2)q1
\ k=141

Relationship 3:
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Jj—1 J Jj—1

Let nE{ZBH—l,..., Zﬁk}, and let j'=n— > By If u;<z,, then replac-
k=1

ing zng—>uw in C' with the arc (24, u;,) creates a cycle with weight (j—1—1)g—

( > Bk—l—j) which is positive when Z Br+i' < { Joie 1)[‘. If w; > z,, then
k=i+1 k=i+1

replacing wu;p— 2y, in C' with the arc (u;, z,,,.) creates a cycle with weight (i —1+a—

(j_l))q_p(i:lﬂkﬂLiﬂk—(jl—l)):(Oz—I—z'—j)q—p (6— jf ﬁk—j’+1) which is

k=i+1

positive for Z Br+j' > {( -‘ If u;Nz,, then replacing u;, — z,, in C' with the
k=i+1

arc (u;,, zng) creates a cycle with weight (i+a—(j—1))g— (Z Br+ Z Br—J )
1 k=

j—1

(a+i—j+1)g—p (B— > Bk—j’) which is positive for Z Br+7 >[] i=1)g -‘,
k=i+1 k=it1

and replacing z,, — u;, in C with the arc (z,,,u;,) creates a cycle with weight

Jj—1 j—1 .
(j—1—(i—1))g—p ( > 5k+j’—1> which is positive when > Sr+5'< [M-‘
k=it1 k=it+1 b
j—1

j—1 J
Thus, for ne{ > Br+1,..., Z ,Bk} and j'=n— ) B, we have
k=1

(

U;<2Zp Z Br+3’ <[(J i l)q-‘
k=i+1
. (—i=1)g G—=29a
u; N2y { W< Z Br+3’ <{ W
p k=141
Ui > Zn Z Br+3’ >[(J z)q-‘
\ k=i+1

Relationship 4:

If u;<x;, then replacing x; —u;, in C' with the path z; ,xjé,u” creates a cycle

J
with weight (j—1—17)g—p (H— > ﬁk) which is positive for Z B < {—(J : I)q-‘ 1.
k=i+1 k=i+1
If u; =z, then replacing u;,—x;  in C with the arc u;, z;, creates a cycle with weight

(i—-1+a—(—1))g— p(Zﬁlﬁ- > 5k>=(a+i—j)q—p(ﬁ— 2]3 Bk) which is

1 k=j+1 k=i+1

positive for Z B> [(3 ) -‘ If u;Nx;, then replacing u;, —x;_ in C' with the path
k=i+1
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Ui, Tj,,7;, creates a cycle with weight (i+a—(j—1)+1)g—p (Z16k+kz+1/6k)
k= j

J J o

(a+i—j+2)g—p (6— > Bk> which is positive for > £ > {@-‘, and re-
k=it1 k=i+1

placing z;, — Ui in C' with the arc (z;, ,'U/M) creates a cycle with weight (j—1—(i—

1))g— ( > ﬁk) which is positive for Z B < Pﬂ Z)qw

k=i+1 k=i+1
"
U; <T; Z Bk<’7‘7 i 2)q-‘
k=1+1 ;
wy <N {(J i— 2)<1W< Z ,Bk<{(3 i— l)qw 1
Thus, =i+l j
w;N; ’7(.7—1—1)11-‘ 1< Z 13k<((3 z)q-‘
p k=1i+1
Ui~ Z B >{(] z)q—‘
\ k=i+1

Next, we consider the relationships between elements of the chains. We start

with the maximal elements of each chain.

Relationship 5:
If y; >y;, then replacing Yj,—Yip in C' with the path yje,yir,yig creates a path

with weight (j—z')q—p( > ﬁk+1) which is positive when E B <[ )‘ﬂ —1.
k=i+1 k=i+1

If y;<yj;, then replacing yw—>y]£ in C' with the path vy, y;,., ¥, creates a cycle with
weight (i+a—j)qg—p (1—1—5 Z Bk) which is positive when z B> P” z)q-‘ 1.

k=i+1 k=i+1
If y;Ny;, then replacing y;, —y;, in C with the path y;,,y; ,v;, creates a cycle

J J o
with weight (j—i+1)g—p ( > ﬁk> which is positive when > By < [—(]_’;Uq’
k=i+1 k=i+1
and replacing y;, —y;, in C with the path y;, yi,.,y;, creates a cycle with weight

J J .
(i+14+a—j)g—p (B— > ﬁk) which is positive when Y~ (5> [w-‘

k=i+1 k=i+1 P
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Yi—Y; Z /Bk:<[(J = l)qw

=i+1
J
Y1 N>y, [(J 2p l)q—‘< 3 ng<[(.7 z)q-‘_l
k=141
J
Thus, YNy, {(J ’)q—‘ 1< Z Br < {(] z)qw 1.
1,—|—1
Y1 <Ny, ’V(J l)q—‘ 1< Z ﬂk<[a z+1)q-‘
k=i+1
Yi <Y [(] z+1)qw< Z Br
=i+1

Next, we con31der the maximal element of one chain a middle element of another.

Relationship 6:

i1 j i1
Let ne{Zﬁk—i—l,...,Zﬁk}, and let j'=n— Z Br. If y;<z,, then replacing
Zne— Yig 10 C' with the path z,.,vi,, Y, creates a cycle with weight (j—1—1i)g—

—1
p( > Bty +1) which is positive when Z Br+7 < [u—‘ —1. If y; > 2y,

k=i+1 k=it1
then replacing y;,— z,, in C with the arc (y;;, z,,) creates a cycle with weight (i+

a—(i-1)g—p (2 5k+iﬁk—<y"—1>) ~a+izittg-p (6= £ fih)

k=i+1

which is positive for Z Br+j' > P] = 1)‘11. If y;Nz,, then replacing ;) — zns
k=i+1
in C' with the path y;, vi,, 2n¢ creates a cycle with weight (i+1+a—(j—1))g—

i a 7j—1
D (Z 5k+25k—j’) =(a+i—j+2)g—p (ﬁ— > Bk—j’> which is positive for
1 k=j k=i+1

Z Br+7'> [ (=i=2)q —‘ and replacing z,, —y;, in C' with the arc (z,,,y;,) creates a
k=i+1

j—1 j—1
cycle with weight (j—l—i)q—p( > ﬂk—{—j’—l) which is positive when > Fr+

k=i+1 k=i+1
i—1
] ’V (- )q-‘ .

=1 i i1
Thus, for ne{ S Br+1,..0, > ,Bk} and j'=n— > B, we have
k=1
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(

Yi<2n Z Br+3’ <[(J = 2)‘1}
z—|—1
y; <MNzn ’7(‘7 i— 2)q-‘< Z Br+3’ <’7(‘7 i— 1)q-‘ 1
k= 'L—i—l
YiNzn {(J'—i—l)q—‘ 1< Z Br+3' <{(J i— 1)q—‘
p =i+1
Yi>2Zn 5 Bt s > U=t
\ k=i+1

Now, we consider the maximal element of one chain and the minimal element of

another.

Relationship 7:
If y; >, then replacing y;,—x;,_ in C' with the arc (y;,7;, ) creates a cycle with

J j -
weight (i+a—(j—1))g—p <6— > /Bk) which is positive for > x> [W—‘.
k=i+1 k=i+1
If y;<x;, then replacing x; —y;, in C' with the path z;_,z;,,v:,.,yi, creates a cycle

j j -
with weight (j—l—z')q—p( > 5k+2> which is positive for Y fr< [—(J_Zp_l)‘ﬂ —
k=i+1 k=it1
2. If y;Nz;, then replacing [l?j —1;, in C' with the arc (:Bj ,Yip) creates a cycle

with weight (j—l—i)q—p< > Bk) which is positive for Z B < {(3 i=1)g -‘ and
k=i+1 k=i+1

replacing y;,—x;, in C' with the path vi, yi,, j,,x;, creates a cycle with weight

(i+1+a—(j—1)+1)g—p (ﬁ— > ﬁk) which is positive for Z B> {]ZT?’)‘]—‘.

k=it+1 k=i+1
( J j—i—3)q
Y; <T; > Bk<’VUT-‘
k—=it1 ;
y; <Nx; {(3 i 3)ﬂ< Z Bk<[(a i 1)qw _9
Thus, k=i+1 p .
yiNa; {(a—@p—l)q-‘ —2< Z ﬁk<[(9—1p—1)q-‘
k—it1 ;
i - [(a i 1)ﬂ< Z B8,
\ k=i+1

Next, we consider the minimal element of one chain and a middle element of

another.

Relationship 8:
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i1 i i1

Let ne{z Br+1,...,> Bk}, and let j'=n—>" B. If x;>z,, then replacing
k=1 k=1 k=1

Xip—> Zn, in C with the path x;,, 2, 2,, creates a cycle With weight (i—1+a—(j—

1))g—p (5— Ji Bk_(j,—l)-i-l) which is positive for E Br+7'> P ol }1_1 If

k=it1 k=i+1
x; < zp, then replacing z,,— x;,. in C' with the arc (z,,,z;,) creates a cycle with

Jj—1 Jj—1

weight (j—l—(z'—l))q—p( > 5k+j’> which is positive for Y Fr+7j'< P 1)q W
k=i+1 k=i+1

If x;Nz,, then replacing x;, — 2., in C’ with the arc (x;,,z,,) creates a cycle with

—1
weight (i—1+a—(j—1))g— p(ﬁ z Br—17 )) which is positive for z Br+7'>
k=i+1 k=it1

U ;")qw , and replacing z,, —;, in C' with the path z,,,z;,, z;, creates a cycles with

j—1 j—1
weight (j—l—(z'—l)—l—l)q—p( > ﬁk—{—j’—1> which is positive for > fr+j'<

i k=i+1 k=it+1
(j—i+1)q-‘.
p
j—1 J j—1
Thus, for ne{ > Br+1,..., Z ,Bk} and j'=n— > B, we have
k=1
T;=<2zn Z Bet+i'< [(7 ’)ﬂ

—z+}
x;Nz, ’V(J %)q_‘< Z Br+3’ <’V(J z)q_‘_|_1

P k= z+1

mim>'z'n, ’7(.7 z)q—‘_|_1< Z /6k+.7/<’7(‘1 ’L+1)q—‘
k=141

>z, ’V(J z+1)q-‘ < Z B+’
\ k=i+1
Now, we consider the minimal elements of two chains.

Relationship 9:

If z;>x;, then replacing x;. —x;_ in C’ with the path x;,.,x;, x;, Creates a cy-

cle with weight (i+a—j)g—p (1+ﬁ— > ﬁk) which is positive when Z B >
k=i+1 k=i+1

{@] If z; <z;, then replacing z; — x; in C' with the path x; ,x;,, ;. cre-

J J
ates a cycle with weight (j—1)g—p (1+ > 5k) which is positive when > [p<
k=it1 k=it+1
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[ (G—i)q

- W —1. If x;Nx;, then replacing x;, —x;_ in C with the path x; ,x;,z;, cre-

J J
ates a cycle with weight (j—i+1)g—p ( > Bk) which is positive when > [ <
k=i+1 k=it1

W-‘ , and replacing x;, —x; in C with the path z;,,z;,,7; creates a cycle with
J J o
weight (i+a—j+1)g—p (ﬁ— > ﬁk> which is positive when Y ;> {—(”Z’l)q-‘,
k= i+1 k=it1 b
.
T;<T; Z ,8k<[(9 iz Dﬂ
k=i+1 ;
zi <Ny [U=ED 1)‘ﬂ< > < [Uzie] 1
_’L+1
Thus, T;Nx; [(j_i)qw 1< Z B <’7(J z)qr—‘
P =i+1
TN -, ’7(.7 2)q-‘< Z B <[J z+1)q-‘
k=1+1
113i>£l3j {(J z+1)q-‘< Z /Bk:
=i+1

Finally, We consider middle elements of two different chains.

Relationship 10:
i i—1
Let mE{Zﬁk—H Zﬁk}, and let #/=m—>_ (. Let
k=1

k=1
j—1
{Zﬁ;ﬁ—l Zﬁk} and let j’=n—>" Bk. Note, since i<j, m<n. If z,>z,,
k=1

then replacing z,,, — zn, 1n C with the arc (2, 2n,) creates a cycle Wlth Welght

(i—1+a—(j—1))g—p (ﬁ Zﬁk—i—z —j +1) which is positive when Zﬂk—i—j
k=i

{(J p’) -‘ If 2, <z,, then replacing z,,— 2z, in C' with the arc (2,4, 2n,) creates a
cycle with weight (j—1—(i—1))g—p (kz_: Bk+j’—(i’—1)> which is positive when
iiﬁk +j—i'< [@-‘ —1. If z,Nz,, then replacing z,,, — z,, in C with the arc
(Zmr, Zne) creates a cycle with weight (i—14+a—(j—1))g—p <6—§ﬁk+i’—1—j’>

which is positive when Z Br+7 — {(J pl) W 1, and replacing z,, — 2, in C with
k=i
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j—1
the arc (zy,,zm¢) creates a cycle with weight (j—1—(i—1))g—p (Z Bk—z"—l—j’—l)
k=i

J—1 .
which is positive when > fr+7 —1' < P];’l)qw _

k=i

i—1 i i—1
Thus, for mE{ D Br+1,..0, > ,Bk} with ¢/=m— > (; and
k=1 k=1 k=1
=1 j o i=1
E{Zﬁk‘Fl,,Zﬁk} Wlth] =n-— ZBk? we have
k=1 =1

Zm = Zn Z Br+3' — [ J z)qw
<

ZmMZn [(j_pz)qw 1<Z/6k:+.7

[(J Z)ﬂ

Zm > Zn [(J Z)qw< Z Be+j' —7'

The preceding analysis and the relationships in bold give minimal forbidden

\

substructures for P|p,q. ]

Given p,q, and «, the bold relationships would give the minimal forbidden struc-
tures associated with a minimal negative cycle in Dg(P) with a weight ¢ arcs. How-
ever, if the bold relationships do not provide a relationship for a pair of elements,
then there are no minimal forbidden structures which correspond to that set of p, ¢, «
values.

The proof of the Proposition 5.2.4 is much shorter than that of Propositions
3.1.2 and 4.1.2. However, the former results provide the specific structures for p=2
and p=3. To ascertain the specific structures for higher values of p, we would need
for analyze the relationships in following proposition for each pair of elements. A
structure in £ will have between 4 and ¢+ 3p elements, so there are as many as
<q+3p _ (a+3p)(a+3p—1)

9 2

The relationships found in the Proposition 5.2.4 are similar to those found in

pairs.

Chapters 3 and 4, but we are lacking the divisibility conditions to determine which

values of a will produce minimal structures for a given p,q pair.
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5.2.2 Divisibility

Let g=ps+d. Consider the values of 3 for small values of o and then for general a.

[q] _ [pstd] _ d|_

pwf{ » Wfs—ir{p—‘—ﬁl

o] _ [2s)] o,y [2] 2s+1 d<Z

p P P 25+2 £<d

- ]  [Bs+1 d<z

S| = | Mt | _35p | 3| =8 3542 Pad<®
3543 F<d
(4s+1  d<®

(MZP@SMWZZLH[EWZ 4542 §<d§;§

P p P 4s+3 B<d<=F
(4s+4  2<d
(as+1 dgg
as+2 §<d§2a—p

aq | _ a(ps+d) | ad | _ 2p 3p

{pw_[—p W_as+hﬂ— as+3 T<d<Z
(as+a @<d

To have a minimal negative cycle with exactly three weight ¢ arcs, we cannot
have §<d Sg or 2§p<ol because any relationship between z,_(s41) and u; would give
a shorter negative cycle (see the proof of Proposition 4.1.2).

To have a minimal cycle with exactly four weight q arcs, we cannot have §F<d<%,
P<d<?% (2 and 2), §<d§% (3 and 1), or d>22 (2 and 2 or 1 and 3). For F<d<%,
the cycle could be divided into either one side with three weight q arcs and the other
with one or one side with two ¢ arcs and the other side also with two, £<d<% could
just be two and two, §<d§% is just three and one, and d>% is three and one or
two and two. For the three and one splits, the shortcut could again be u; >z, (s41)
if the cycle is labeled as in the proof of Proposition 4.1.2. The two, two split is not

as straight forward. The sizes of the —p arc sets are important. Let 31, 82, 43, and
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B4 be the sizes of the —p weight sets. We have 81+ s+ 3+ ,>4s+1, so there will
be an adjacent pair with £;+ ;11> [2d/p] (otherwise 2(51+ o+ B3+ F4) <2[2d/p]).

If Biy1<[2d/p], then ;. and APt g rad/p)

regardless of their relationship. If 8;11>[2d/p]|, then u; 1o and z_s,,. S r2a/p] will
k=1 k—

will result in a shorter negative cycle

create the shortcut.

Proposition 5.2.5. F! contains the minimal structures described in Proposition
5.2.4 for a=p.

Proof. Let C be a negative cycle in D#(P) with p weight ¢ arcs and ¢ weight —p
arcs with the structure of Figure 5.1. For C' to contain a shorter negative cycle, we
must be able to divide the cycle into two parts such that one side has o/ weight ¢
arcs and the other has o’ >’ weight ¢ arcs, with ¢= {%q—‘ + {%—‘ . Since o/ +a” =p,

qzaT/q—i—%. Now, since ged(p,q)=1, and o/,a” <p, both {%q—‘ and {%—‘ will round
up. Thus, ¢# [O‘qu-‘ + {%-‘ for any values of o/ and . Therefore, C' is minimal. []

Corollary 5.2.6. .7-";,“1’“ contains minimal structures corresponding to negative cy-
cles in DiP*1(P), Vae{1,2,...,p}.

Proof. By Proposition 5.1.1, ffﬁ’?nﬂ CF*. By induction, F}P*! contains min-
imal structures corresponding to a€{1,2,...,p—1}. By Proposition 5.2.5, J—“g”“

contains minimal structures corresponding to a=p. O

This supports the statement after the proof of Proposition 5.1.1 that |}"§p+1]

increases as p increases.
Tp+1 k(p+1)+1
Corollary 5.2.7. F7™ CF, .

Although we do not see shortcut behavior when a=p, in the following remark,

we develop the conditions on d (¢g=ps+d) that could produce shortcut behavior.

Remark 1. Let C be a negative cycle in Di(P) with the structure of Lemma 2.2.4

which contains a<p weight ¢=ps+d arcs. In Proposition 5.2.5, we addressed a=p.
Question 1. In general, can we divide C' into two parts such that one side has o’

weight ¢ arcs and the other has o”>a’ weight ¢ arcs, so that [%-‘ = P‘T;ﬂ + {%1 ?
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ag | ad &g | o/d alq | _ a’d
Wehave[p]-as%—{pw,{ W—as+[pw,and[pw—as+[ W

p p

The question becomes:

Question 2. When is Pﬂ = P—ﬂ + {ﬂ—‘ ?

p P
Let ad=ps’'+d" and let o/d=ps"+d". Since gcd(p,d)=0 and a,a’<p, d’',d"#£0.
Then,
o"d=ad—d'd
=p(s'—s")+d —d"
p(s'=s")+d =d" d>d"
:{p(s’—s”—l)—l—d”—d’ d'<d"

p

Question 3. When is {d;ﬂ = [d—"_ + {M—‘ ?

Since 0<d’,d" <p, we have —p<d —d’ <p. If d'>d", then {d’;d”] —1 and

1£1+1. If ' <d", then [d';d”' =0 and 1=1+0. Thus, d'<d", i.e., ad(mod p)<
a/d(mod p).

Question 4. When is ad(mod p)<da/d(mod p)?

We have,
([ d<?
p+d Pl
ad=s'p+d =< 2p+d %§d<% ,
| (a—1)p+d (O‘;—l)pgakp
and )
d” d<Z
a/
p+d” §§d<%

Oé/d:S//p+d//:<

(@ =D)p+d" 2 <d<p

a/
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Thus, for 2 <d < ®2 e have ad=kp+d', and for ¥2 <d < ®E2 e have

o'd=Kp+d".
Next,
(1 d<z
2
iy p 1+1 Bcd<?®
[——‘:s’—i—[—-‘:s'—{—l: 2+1 Zog<®
p p .
(a—1)+1 gy
\ @
and )
1 d<Z
P/ﬂ . {dw 1+1 <d<Z
_— :S—I— e =
D D :
(/=141 o<

Thus, for %<d§ @, we have [%-‘ k+1, and for kap<d< k+,1) , we have

{%ﬂ:k%l.

If ad(mod p)<a’d(mod p), we have ad—s'p<a’d— s”p:>d<%.
Answer. {%-‘* -‘ { ”d-‘ when if kp<d< k“ and kp<d< ka , then d<
(4" _ (i=K)p

This ends Remark 1.

These conditions on d could be those needed to determine minimality, but more

work needs to be done.

5.3 Future work

Proposition 5.2.4 and Remark 1 from the previous section inspire Conjecture 5.3.1.

Conjecture 5.3.1. Let P be a finite poset. Let C' be a minimal negative cycle

in DI(P) which contains a weight ¢ arcs. Let ¢q=ps+d, o’ €{1,2,...,[a/2]},
ke{0,1,...,a—1}, K €{0,1,...,a’' =1}, <q< B2 apq ’“p<d<<’““>p. Then,
d> e,
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Proving this conjecture would require showing that when d< % there is a

pair of elements which create a shorter negative cycle regardless of their relationship.
(k—K")p

a—o

The goal of the previous sections and Conjecture 5.3.1 would be a complete result

We would also need to show that there is no such pair of elements when d>

for F1. Proposition 5.2.4 provides a complete description of the relationships in the
posets of FJ based on p,q, and a (the number of ¢ weight arcs in a corresponding
negative cycle) when the corresponding negative cycle is minimal. Resolving 5.3.1
would determine the values of p,q, and « for which such a minimal negative cycle
exists.

Beyond posets, there are also other relation sets as discussed in the introduction

to which it could be interesting to consider adding length constraints.
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