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Abstract

A partially ordered set (poset), P=(X,≺), is a set X together with a relation, ≺,

that is irreflexive and transitive. An interval order is a poset which has an interval

representation: an assignment of a closed interval, Ix, in the real number line to

each x∈X so that x≺y if and only if Ix is completely to the left of Iy. Wiener

and Fishburn characterized interval orders as posets which do not contain a 2+2

as an induced suborder [5, 22]. Define P [p, q] to be posets for which there exists

an interval representation with interval lengths in [p, q]. We will consider p and q

to be positive integers. Scott and Suppes characterize P [1,1] as posets which do

not contain a 2+2 or a 3+1 as induced suborders, and Fishburn generalizes this

result to characterize P [1, q] as posets which do not contain a 2+2 or a (q+2)+1 as

induced suborders [20, 8]. We use the weighted digraph techniques of [2] to develop

complete lists of minimal forbidden substructures for P [2, q] and P [3, q] and partial

lists for P [p,q]. We also relate P [p,kp+1] and P [p+1,k(p+1)+1] and give a list of

relationships for structures in P [p,q].

1



Chapter 1

Introduction

1.1 Problem Description

Suppose a hospital needs to schedule a set of surgeries on a given day. Some surgeries

must occur before others: surgeries on the same patient or surgeries performed

by the same surgical team. There could also be surgeries that must overlap: a

patient that requires multiple surgeries but cannot be sedated more than once. The

hospital administrators must decide which surgeries to schedule on which days to

maximize healthy outcomes and minimize cost. How can a hospital know which sets

of surgeries can be scheduled in the desired way? Mathematics and computer science

of course! This is an applied example of what mathematicians call the Interval Order

Problem. We will focus on a variation of the Interval Order Problem, but before we

discuss the variation, we must first understand its origins.

Wiener was first interested in interval orders in 1914 [22]. However, the term

interval order was introduced by Fishburn in 1970 [5]. Our work in the following

chapters was inspired by Fishburn’s book Interval Orders and Interval Graphs, and

so we will often use his definitions. With the goal of defining an interval order, we

first define a partially ordered set (poset).

Definition 1.1.1. A partially ordered set (poset), P=(X,R), is a set X together

with a relation, R, that is irreflexive (not(xRx)) and transitive (if xRy and yRz then

2



xRz).

Many authors define the poset relation to be reflexive (xRx), antisymmetric (if

xRy, then not(yRx)), and transitive. Note that the relation in Definition 1.1.1 is an-

tisymmetric since if xRy and yRx, transitivity says xRx, which breaks irreflexivity.

Thus, the only difference is whether or not xRx.

We will denote our relation, ≺, and we read x≺y as x precedes y or y succeeds x.

We write x∩y to indicate that x 6≺y and y 6≺x. If x∩y, we will say that x and y are

incomparable. We note that ∩ is not the standard notation. Often ‖ or ∼ is used

in place of ∩. However, since we are working with intervals, using set intersection is

natural when discussing elements whose intervals overlap. Our definition of interval

order will be based on the following definition of interval representation.

Definition 1.1.2. An interval representation of a poset, P =(X,≺), is an as-

signment of a closed interval, Ix, in the real number line, R, to each x∈X so that

x≺y if and only if Ix is completely to the left of Iy.

We can now present our definition on interval order.

Definition 1.1.3. An interval order, P=(X,R), is a poset which has an interval

representation.

If we can decide if a poset is an interval order, then we could decide if a hospital

can schedule a given set of surgeries since surgery time slots are just intervals in time.

The following characterization (credited to Fishburn, but inspired by Wiener [10])

for interval orders provides a way to decide if a poset has an interval representation

or not.

Theorem 1.1.4 ([5, 22]). A poset, P , has an interval representation if and only if

it does not contain a 2+2 (see Figure 1.1) as an induced sub-poset.

Figure 1.1: Structure that cannot appear in an interval order

3



Figure 1.3 shows the Hasse diagram of the minimal order that does not have an

interval representation. In Hasse diagrams, if a variable, x, is not connected to a

variable, y, then x∩y and if x is connected to y and below y, then x≺y [21]. We

call x1�x2�·· ·�xn a chain of length n. The notation m+n refers to a poset

consisting of a chain of length m and a chain of length n such that each pair of

elements from different chains is incomparable.

In an interval representation, we do not restrict the length of the intervals. How-

ever, this might not be practical. For example, a surgeon cannot preform surgery

for 10 hours without adding complications. Thus, we might want to add further

restrictions to the interval order problem in the form of interval length restrictions.

Fishburn calls adding the restriction that the length of each interval must be between

p and q, inclusive,

P [p,q]=

{
(X,≺): (X,≺) is a finite interval order some

representation of which has ρ(X)⊆[p,q]

}
,

where p,q∈R+, p≤q, and ρ(X) is the set of lengths of intervals in a representation

[8].

The first investigation into P [p, q] was P [1,1]- meaning that all intervals have

length one. By scaling, this is equivalent to all intervals having the same length.

These posets are called unit interval orders or semiorders. Semiorders were intro-

duced by Luce in 1956 in the context of utility theory [15]. In 1958, Scott and Suppes

mathematically defined a semiorder to be a poset, P=(X,≺), for which there is a

function, f :X→R, such that x≺y if and only if f(y)>f(x)+1 [20]. This definition

makes it clear that semiorders and unit interval orders are equivalent. Theorem 1.1.5

of Scott and Suppes gives a complete list of minimal forbidden induced suborders

(i.e., subposets) which prevent a poset from having a unit interval representation.

Theorem 1.1.5 ([20]). A poset, P , has a unit interval representation if and only if

it does not contain a 2+2 or a 3+1 (see Figure 1.2) as an induced suborder.

4



Figure 1.2: Structures that cannot appear in a unit interval order

We will refer to 2+2 and 3+1 as the minimal forbidden substructures for unit

interval orders. We offer the following definition.

Definition 1.1.6. A minimal forbidden substructure for a certain criteria is a

poset, P , which does not satisfy the desired criteria, but when a single element is

removed from P , the resulting poset satisfies the criteria.

For example, 4+1 does not have a unit interval representation, but removing

one element in the chain of four elements does not create a poset with a unit interval

representation. Thus, 4+1 is a forbidden substructure but not a minimal forbidden

substructure.

Definition 1.1.6 implies that if a poset, P , contains a minimal forbidden sub-

structure, P ′, as an induced subposet, then P also does not satisfy the criteria. We

will often interchange substructure and suborder with substructure used mostly in

reference to the Hasse diagram of an order. In our context, the criteria will always

be that the poset can be represented on the real line by closed intervals with lengths

between positive integers, p and q. Beyond unit interval orders, Fishburn also con-

sidered posets with interval representations with lengths between 1 and positive

integer, q. Theorem 1.1.7 gives the list of minimal forbidden substructures for these

length restrictions. Note that the notation (∩2)(≺2)⊆≺ means that if a∩b∩c≺d≺e,
then a≺e.

Theorem 1.1.7 ([8]). Suppose (X,≺) is a poset and q∈Z+. Then, (X,≺)∈P [1, q]

if and only if (∩)(≺q+1)⊆≺.

5



q+2

Figure 1.3: Structures that cannot appear in a [1, q] representable interval order

Figure 1.3 shows the Hasse diagram of the minimal interval order such that

(∩)(≺q+1) 6⊆≺. It is a (q+2)+1. There are only two minimal forbidden suborders

for P [1, q]. When the lower bound on length is greater than one, the minimal forbid-

den substructures list is longer. We will develop similar lists of minimal forbidden

substructures for other values of p and q. We will use the following notation for

these minimal lists.

Definition 1.1.8. Let F qp be the set of minimal forbidden substructures for P [p,q].

Our lists will be minimal in two senses. First, each structure is minimal as in

Definition 1.1.6. This implies the second sense of minimality stated as Fact 1.1.9.

Fact 1.1.9. If any structure is removed from F qp , then the list no longer characterizes

the posets with interval representations with the desired lengths.

Thus, both the list and its structures are minimal.

Fishburn’s work will be used as a basis for our inquiry. First, by scaling,

P [1, q/p] =P [p, q]. For example P [1, 2] =P [2, 4]. Also, if q/p is irrational, then

there is not a finite list of minimal forbidden suborders, and the infinite list is

not efficiently enumerable [8]. Thus, we will only consider relatively prime p,q with

p,q∈Z+ [8]. The following theorem of Fishburn will also help to focus our approach.

This result implies that F qp is finite when q/p is rational.

Theorem 1.1.10 ([8]). Suppose p and q are positive integers with p≤q that are

relatively prime. Suppose also that (X,≺) is an interval order. Then, (X,≺)∈P [p,q]

6



if and only if (X,≺) satisfies A[p,q]n for n=1, . . . ,p where A[p,q]n says:

For all (α1,β1, . . . ,αn,βn)≥(2,2, . . . ,2,1) with
∑n

i=1αi=q+n and
∑n

i=1βi=p+n−1,

we have ≺α1∩β1 · · ·≺αn∩βn⊆≺ and ∩βn≺αn · · ·∩β1≺α1⊆≺.

Theorem 1.1.10 is very useful in that it gives necessary and sufficient conditions

for an interval order to have a representation with interval lengths in [p,q], but the

conditions do not directly yield minimal forbidden substructures. Fishburn only

gives the complete structures for P [1, q] as in Theorem 1.1.7. The conditions could

be used to narrow the search for minimal forbidden substructures, but the notation

can be challenging to follow. Instead we will use different, more accessible methods

to first recreate these conditions (Chapter 2) and then find minimal forbidden sub-

structures in some cases (Chapters 3, 4, and 5). Fishburn notes that we technically

only need to consider one of ≺α1∩β1 · · ·≺αn∩βn⊆≺ and ∩βn≺αn · · ·∩β1≺α1⊆≺. Our

approach will also only require one analogous condition.

Any introduction to interval orders should mention their relationship to interval

graphs. A graph, G=(V,E), is an interval graph if and only if there is an assignment

of a closed interval, Iv, in the real number line to each v∈V so that uv∈E if

and only if Iu and Iv intersect. This definition is similar to interval orders except

that when two vertices are comparable, there is no precedence between the two.

This means that the interval representation of an interval graph can correspond to

the interval representation of many different interval orders which Fishburn calls

agreeing interval orders. Fishburn refers to a graph with an interval representation

with interval lengths in [p,q] as I[p,q] [8]. He states the following theorem:

Theorem 1.1.11 ([8]). An interval graph, G, is in I[p,q] if and only if every interval

order that agrees with G is in P [p,q].

Theorem 1.1.11 implies that any results stated for P [p,q] have implications for

I[p, q]. Since edges in the graph correspond to incomparability, and edges in a

Hasse diagram correspond to comparability, we look at structures in F qp to get the

complements (xy∈E if and only if x 6≺y and y 6≺x in P ) of their agreeing graphs.

For example, a (q+2)+1 becomes a graph with one vertex of degree q+2 and q+2

7



vertices of degree one adjacent to it (i.e., a K1,q+2). This correspondence between

the graph and interval versions of a problem does not always exist. For example, if

the lower bound on length can be different for each element of the set, the interval

problem is polynomial solvable while the graph problem is NP-hard [18].

The field of reasoning about time is rich with areas of study. One could investi-

gate adding length constraints specific to each element of a poset [13], providing a

set of values into which the interval lengths must fit [1, 7], or using other relation

sets (subalgebras of Allen’s algebra) [14]. These areas could also be analyzed for

minimal forbidden substructures. There are similar areas of study for length con-

strained interval graphs, but the results are not always as related to interval orders

as they are in the case of I[p,q] and P [p,q] [9, 18, 12]. In fact Reasoning about time

can be particularly interesting because of its applications to scheduling. Knowing

that a set of events is an interval order is wonderful, but the interval representation

could require that one event or task be ten times as long as another which might not

be practical. Being able to set restrictions on the lengths of the intervals improves

the usefulness of scheduling algorithms.

1.2 Organization

Chapter 2 presents the model and methods we will use. Chapter 3 defines F q2
giving the minimal forbidden substructures of P [2, q]: partial orders which have

interval representations with lengths between 2 and an odd integer q, and Chapter 4

defines F q3 for P [3, q]: partial orders which have interval representations with lengths

between 3 and an integer q not divisible by 3. Lastly, Chapter 5 presents partial

results that apply for all values of p and discusses the challenges of large p values.

Some of the results of Chapters 3 and 4 are implied by Proposition 5.2.4. However,

the earlier chapters provide the details of the specific structures and their Hasse

Diagram representations necessitating their inclusion.

8



Chapter 2

Digraph model for P [p,q]

2.1 Preliminaries

For a poset, P , we add additional constraints to the interval order problem statement

in the form of minimum and maximum interval lengths. We seek to create a list of

minimal forbidden suborders which prevent P from having an interval representation

with lengths in [p, q]. Our method involves translating the partial order into a

weighted, directed graph and then searching for negative cycles in this associated

digraph. We will first consider the translation of our problem into a system of linear

inequalities. The flows in the associated digraph will then correspond to these

inequalities. This technique of using potentials in a digraph to model an interval

representation was used first by Doignon in [3, 4], Isaak in [11], and more recently

to give a simple proof of Theorem 1.1.7 in [2]. We seek to extend the work of [2]

to larger minimum interval lengths. We note that Fishburn’s work with picycles for

P [p.q] also uses inequalities but not in the context of digraphs [6].

Let P=(X,≺) be a partial order. If P has an interval representation,

I={Ix}x∈X={[L(x),R(x)]}x∈X , the endpoints must satisfy the following inequalities

for some ε>0:

1. R(x)≤L(y)−ε for all x,y∈X with x≺y,

2. L(y)≤R(x) for all x,y∈X with x∩y or x=y.

9



Adding the restriction that the length of each interval must be between p and q

adds the following inequalities for all x∈X:

3. L(x)≤R(x)−p,

4. R(x)≤L(x)+q.

We now explain how to translate an instance of the problem into a weighted

digraph generalizing the model in [2]. We provide an upper bound for ε to assure

that when we are later calculating cycle weights, the number of weight ε arcs will

not impact whether or not the cycle is negative.

Definition 2.1.1. Let P = (X,≺). Let 0<ε< 1
2|X| . Let Dq

p(P ) be the digraph

defined as follows: For each variable, x∈X, add two vertices: x` and xr, and add

arc, x`→xr, with weight q and arc, xr→x`, with weight −p.
Additionally, for x≺y add the arc, y`→xr, with weight −ε, where ε is an arbitrarily

small positive constant, and for x∩y add xr→y` and yr→x` each with weight −ε.
See Figure 2.1.

−pq

x`

xr

(a)

0
0

x`

xr yr

y`

(b)

−ε

x`

xr yr

y`

(c)

Figure 2.1: Digraph representations of (a) x, (b) x∩y, and (c) x≺y

Fact 2.1.2. Since Dq
p(P ) contains 2|X| vertices, a negative cycle in Dq

p(P ) contains

at most 2|X| arcs. Since at least one of these arcs does not have weight −ε the total

weight contributed by the −ε weight arcs is less than −1.

Once we translate the problem to a digraph, we use a well known result from

graph theory on potentials in digraphs defined as follows.
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Definition 2.1.3. A potential function on a weighted digraph, D=(V,A), is a

function, f :V→R, satisfying f(v)−f(u)≤wuv for all (u,v)∈A.

Potential functions will be useful in the proof of Theorem 3.2.2 due to the fol-

lowing theorem relating potential functions and the negative cycles which we seek

to characterize. A cycle in a digraph is a sequence of arcs,

C=(u1u2), (u2u3), (u3u4), . . . , (un−1,un), such that each ui is unique except u1=un.

We will often denote C as u1, u2, . . . , un−1, u1. Cycle C has length n−1, and the

weight of C is the sum of its arc weights. Later we will use shortest cycle to refer

to a cycle with the shortest length.

Theorem 2.1.4 (see Chapter 8 of [19]). A weighted digraph has a potential function

if and only if it contains no negative cycles.

The following result holds for all positive integer values of p and q and provides

the basis for the use of the digraph model. We will always assume that our posets

are finite and that p and q are positive integers. We note that all results in Chapter

2 except for Lemma 2.2.10 hold for all positive values of p and q, but we will only

use them in the context of integer p and q.

Theorem 2.1.5. Let P=(X;≺) be a partial order. The following are equivalent:

1. Poset, P , has an interval representation with lengths between integer p and q

(inclusive).

2. The weighted digraph Dq
p(P ) contains no negative cycles.

Proof. (1) ⇒ (2) Suppose P has an interval representation I={Ix}x∈X , where

Ix=[L(x),R(x)], with lengths between p and q. Then, the endpoints satisfy the

following inequalities:

1. R(x)−L(y)≤−ε for all x,y∈X with x≺y,

2. L(y)−R(x)≤0 for all x,y∈X with x∩y,

3. L(x)−R(x)≤−p for all x∈X,
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4. R(x)−L(x)≤q for all x∈X.

Define f :V
(
Dq
p(P )

)
→R by f(y)=

L(x) if y=x` for some x∈X

R(x) if y=xr for some x∈X
. Then, f satis-

fies

1. f(xr)−f(y`)≤−ε for all x,y∈X with x≺y,

2. f(y`)−f(xr)≤0 for all x,y∈X with x∩y,

3. f(x`)−f(xr)≤−p for all x∈X,

4. f(xr)−f(x`)≤q for all x∈X.

Thus, for all u,v∈V
(
Dq
p(P )

)
, we have f(v)−f(u)≤wuv, so by Definition 2.1.3, f is

a potential function on Dq
p(P ). Then, by Theorem 2.1.4, Dq

p(P ) contains no negative

cycles.

(2) ⇒ (1) If Dq
p(P ) contains no negative cycles, then by Theorem 2.1.4, there

exists a potential function f on Dq
p(P ). For each x∈X, let L(x)=f(x`),R(x)=f(xr),

and Ix=[L(x),R(x)]. As above, we can show that the inequalities f needs to satisfy

as a potential function on Dq
p(P ) can be rewritten in terms of L(x) and R(x), which

then guarantees that {Ix}x∈X forms a valid interval representation of P with lengths

between p and q.

We will use the second equivalence to determine lists of minimal forbidden sub-

orders. Thus, we will be considering negative cycles in the digraph model. The

following fact will be useful in later the proofs.

Fact 2.1.6. Since each arc of Dq
p(P ) connects an ` vertex to an r vertex, Dq

p(P ) is

bipartite, and thus all cycles have even length.

To simply our language, we offer the following definition.

Definition 2.1.7. We call a shortest negative cycle in Dq
p(P ) with the least negative

weight a minimal negative cycle.
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In the following sections we develop a set of lemmas on the structure of a minimal

negative cycle in Dp
q(P ). Our negative cycles are analogous to Fishburn’s picycles

[6], but we use common graph theoretical language.

2.2 Minimal negative cycle structure

The first lemma simply shows that the digraph model confirms that P cannot contain

an induced 2+2 and have an interval representation.

Lemma 2.2.1. Let P be a poset. Let C be a minimal negative cycle in Dq
p(P ). All

the arcs of C have weight −ε or 0 if and only if P contains an induced 2+2.

Proof. If P contains an induced 2+2, say x1�x2, x3�x4, x1∩x3, x1∩x4, x2∩x3
and x2∩x4, then Dq

p(P ) contains the cycle x1`,x2r,x3`,x4r,x1`. Call it C ′. Cycle C ′

has weight −2ε. We claim that C ′ is a minimal cycle. By Fact 2.1.6, the length of

any cycle in Dq
p(P ) is even. Thus, a cycle cannot be shorter than length two. Now,

a length two cycle would have the form y1`, y2r, y1`. If y1=y2, then the cycle has

weight p−q>0. If y1 6=y2, then y1�y2 and y1∩y2 which is a contradiction. Thus, C ′

is a shortest negative cycle. Since −ε is the least negative weight of a left right arc,

any other negative cycle of length four would have weight at most −2ε. Therefore

C ′ is a minimal negative cycle and it contains only arcs of weight −ε or 0.

Now, assume C is a minimal negative cycle that contains only arcs of weight

−ε or 0. Cycle C can be written in the form x1`,x2r,x3`,x4r, . . . ,xmr,x1`. We have

x1�x2∩x3�x4, so x1 6=x2, x3. Now, If x1 =x4, then x3�x4 =x1�x2, and by

transitivity, x3�x2 which is a contradiction. Also, x2 6=x3, x4 and x3 6=x4, so our

four elements are distinct.

Now consider x1 and x4. If x1≺x4, then x2≺x1≺x4≺x3∩x2 which contradicts

transitivity. If x1�x4, removing x2r and x3` from C creates a shorter negative cycle

which contradicts our assumption of minimality. Thus, x1∩x4.
Next, consider the relationship between x1 and x3. If x1≺x3, then x2≺x1≺x3∩x2

which contradicts transitivity. If x1�x3, then x1�x3�x4∩x1, which contradicts

transitivity. Thus, x1∩x3.
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Finally, if x2≺x4, then x3�x4�x2∩x3 contradicting transitivity. If x2�x4, then

x1�x2�x4∩x1 again contradicting transitivity. Thus, x2∩x4. Therefore, x1,x2,x3,

and x4 form an induced 2+2 in Dq
p(P ).

Corollary 2.2.2. If the digraph of an interval order, P , contains a negative cycle,

C, then C contains at least one arc of weight −p.

Proof. By Fact 2.1.2, if all negative arcs in C have weight −ε, then C cannot contain

any arcs of weight q or the cycle would not have negative weight. Thus, C contains

only arcs of weight −ε or 0. By Lemma 2.2.1, P is not an interval order because it

contains an induced 2+2.

The next lemma uses transitivity to show that negative cycles in the digraph of

an interval order must contain at least one positive weight arc.

Lemma 2.2.3. Let P be a poset. Let C be a minimal negative cycle in Dq
p(P ). If

C contains an arc of weight −p, then C contains an arc of weight q.

Proof. (By contradiction)

Assume C contains an arc of weight −p but no positive weight arcs.

Then, C contains a sequence of vertices of the form x`,yr,y`, zr. Now, w(yry`)=−p
and x�y�z. By transitivity, x�z and so (x`, z`) is an arc of Dq

p(P ). Thus, replacing

x`,yr,y`, zr with x`zr in C yields a shorter negative weight cycle.

The following lemma further restricts the structure of a minimal negative cycle

in the digraph.

Lemma 2.2.4. Let P be a poset. Let C be a minimal negative cycle in Dq
p(P ).

(a) If C contains a weight −p arc and a weight q arc with only weight ε and weight 0

arcs in between them, then they are separated by exactly one weight −ε/weight

0 pair.

(b) If C contains two weight q arcs with only weight ε and weight 0 arcs in between

them, then they are separated by a single weight 0 arc.
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(c) If C contains two weight −p arcs with only weight ε and weight 0 arcs in between

them, then they are separated by a single weight −ε arc.

Proof. (by contradiction) If we assume that (a), (b), or (c) is not true, then we have

a minimal negative cycle, C, which contains the path Q=x1`,x2r,x3`,x4r or the path

Q′=y1r, y2`, y3r, y4`. If x1≺x4, then x2≺x1≺x4≺x3∩x2 contradicting transitivity.

If x1�x4 then replacing Q in C with x1`→x4r creates a shorter negative cycle.

If x1∩x4, then {x1, x2, x3, x4} is a 2+2 contradicting minimality. Thus, there is

no relationship between x1 and x4 which preserves minimality, and our minimality

assumption was false. Similarly, y1∩y4 creates a shorter negative cycle (using the

arc y1r→y4`) and y1≺y4 creates a 2+2. If y1�y4, then consider the vertex before

y1r in C. If it is y1`, then replacing Q with y1`→y4r→y4` creates a shorter negative

cycle. If it is z`, then z`,y1r,y2`,y3r is a path like Q in C, so there is no relationship

between z and y4 which preserves minimality. Thus, the conclusions of (a), (b), and

(c) hold.

Definition 2.2.5. The term adjacent will refer to pairs of weight −p and/or weight

q arcs separated only by the minimum number of weight −ε/weight 0 arcs as dictated

by Lemma 2.2.4.

Thus, Lemma 2.2.4 says that our minimal cycles are sequences of adjacent sets

of adjacent weight q arcs and adjacent weight −p arcs. We will always consider our

cycles to start with a set of weight −p arcs and thus end with a set of weight q arcs.

The next lemma determines the number of weight −p arcs based on the number

of weight q arcs in a minimal cycle in the digraph.

Lemma 2.2.6. Let P be a poset. Let C be a minimal negative cycle in Dq
p(P ). If

C has contains α weight q arcs, then C contains
⌈
αq
p

⌉
arcs of weight −p.

Proof. Let C be a minimal negative cycle in Dq
p(P ), and let α be the number of

weight q arcs in C. Let β be the number of weight −p arcs in C. Since C has

negative weight, β≥
⌈
αq
p

⌉
. Assume β>

⌈
αq
p

⌉
. Since q>p, β>α and in C there are
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at least two adjacent weight −p arcs giving us the path x1`,x2r,x2`,x3r in C (after

relabeling). This gives x1�x2�x3. Now, by transitivity, x1�x3, but then replacing

x1`→x3r in C gives a cycles with α weight q arcs and β−1 weight −p arc. Now,

β−1≥
⌈
αq
p

⌉
so this is a shorter negative cycle which is a contradiction.

In Lemma 2.2.7, we consider the possibility of there existing elements of P whose

right and left vertices are both on a minimal negative cycle, but are not adjacent

on the cycle. The only possible elements in this category are those not represented

by a weight q edge or a weight −p edge. In Fishburn’s terminology, a cycle with all

distinct elements is called pure [6].

Lemma 2.2.7. Let P be a poset. Let C be a minimal negative cycle in Dq
p(P ). Let

αi be the number of weight −p arcs in the ith set of adjacent weight −p arcs and let

βi be the number of weight q arcs in the ith set of adjacent weight −p arcs. Let N

be the number of such sets. Let xir be the vertex immediately following the ith set

of adjacent weight −p arcs and let yi` be the vertex immediately following the ith set

of adjacent weight q arcs. We have the following:

(a) If

(i)
∑i+k−1

j=i+1 βj≥
⌈

(1+
∑i+k
j=i αj)q
p

⌉
, or

(ii) 1+
∑i

j=1βj+
∑N

j=i+k+1βj≥
⌈

(
∑i−1
j=1αj+

∑N
j=i+k+1αj)q
p

⌉
,

then xi and yi+k are distinct elements in P .

(b) If

(i) 1+
∑i+k

j=i+1βj≥
⌈

(
∑i+k−1
j=i+1 αj)q

p

⌉
, or

(ii)
∑i

j=1βj+
∑N

j=i+k+1βj≥
⌈

(1+
∑i
j=1αj+

∑N
j=i+kαj)q

p

⌉
,

then yi and xi+k, k≥1 are distinct elements in P .
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Proof. If xi=yi+k, then the cycle, C ′ created by following C from xir→yi+k`=xi`

and then taking the arc (xi`,xir) has 1+
∑i+k

j=i αj arcs of weight q and
∑i+k−1

j=i+1 βj arcs

of weight −p. If
∑i+k−1

j=i+1 βj≥
⌈

(1+
∑i+k
j=i αj)q
p

⌉
, then C ′ is shorter negative cycle than

C.

x1 xi yi xi+k yi+k yN

Figure 2.2: Generic minimal negative cycle in Dq
p(P ): Each arc directed vertically down-

ward has weight −p, the arc directed vertically upward has weight q, arcs

directed diagonally downward have weight 0, and arcs directed diagonally

upward have weight −ε.

Also, if xi = yi+k, the cycle C ′′ that is C with xir→ yi+k` = xi` replaced by

the arc (xir, xi`). Cycle C ′′ has 1+
∑i

j=1 βj +
∑N

j=i+k+1 βj arcs of weight −p and(∑i−1
j=1αj+

∑N
j=i+k+1αj

)
arcs of weight q. If

1+
∑i

j=1 βj +
∑N

j=i+k+1 βj≥
⌈

(
∑i−1
j=1αj+

∑N
j=i+k+1αj)q
p

⌉
, C ′′ is a negative cycle that is

shorter than C.

Next, if yi=xi+k, then the cycle C ′ which follows C from yi`→xi+kr=yir and

then takes arc (yir, yi`) contains 1+
∑i+k

j=i+1 βj arcs of weight −p and
(∑i+k−1

j=i+1 αj

)
arcs of weight q, so if 1+

∑i+k
j=i+1 βj≥

⌈
(
∑i+k−1
j=i+1 αj)q

p

⌉
, then C ′ is a shorter negative

cycle than C.

Also, if yi=xi+k, then the cycle C ′′ which is C with yi`→xi+kr=yir replaced

with the arc (yi`,yir) contains
∑i

j=1βj+
∑N

j=i+k+1βj arcs of weight −p and(
1+
∑i

j=1αj+
∑N

j=i+kαj

)
arcs of weight q. If∑i

j=1βj+
∑N

j=i+k+1βj≥
⌈

(1+
∑i
j=1αj+

∑N
j=i+kαj)q

p

⌉
, then C ′′ is a shorter negative cycle

than C.
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Our main use of Lemma 2.2.7 will be in the form of the following corollary which

states that elements on opposite sides of a set of either weight q or weight −p arcs

must be distinct. This is particularly useful when a minimal negative cycle contains

at most two sets of each type because it implies that all elements of the cycle are

distinct.

Corollary 2.2.8. Using the notation of Lemma 2.2.7, yi and xi/xi+1 are distinct.

Proof. Let α and β be the numbers of weight q and weight −p arcs, respectively, in

a minimal negative cycle.

First, consider xi and yi. Using Lemma 2.2.6, we have

1+
∑i

j=1βj+
∑N

j=i+1βj=1+β>
⌈
αq
p

⌉
>

⌈
(
∑i−1
j=1αj+

∑N
j=i+1αj)q

p

⌉
, so by Lemma 2.2.7.a,

xi and yi are distinct.

Next, consider yi and xi+1. We have 1+
∑i+1

j=i+1βj>0=

⌈
(
∑i
j=i+1αj)q

p

⌉
, so by Lemma

2.2.7.b, yi and xi+1 are distinct.

Lemma 2.2.9 determines the minimal forbidden substructure which corresponds

to a poset whose minimal negative cycle contains only one positive weight arc. This

result holds for p≥1.

Lemma 2.2.9. Let P be a poset. Let C be a minimal negative cycle in Dq
p(P ). If

C has exactly one weight q arc, then P contains an induced
⌈
q+2p

p

⌉
+1.

Proof. By Lemma 2.2.4, C can be written with k−3 arcs of weight −p at the beginning

of the cycle as

x1r,x1`,x2r,x2`,x3r,x3`, ...,xk−3r,xk−3`,xk−2r,xk−1`,xk−1r,xk`,x1r.

Since C is a cycle, all of the xi’s are distinct except possibly xk−2 and xk, but by

Corollary 2.2.8, they are distinct. Thus, all elements represented in C are distinct.

See Figure 2.3 for a diagram of C.
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x1`

x1r

x2 x3 xk−3 xk−1 xk
xk−2

Figure 2.3: Cycle in Dq
p(P ) with one weight q arc: Each arc directed vertically downward

has weight −p, the arc directed vertically upward has weight q, arcs directed

diagonally downward have weight 0, and arcs directed diagonally upward

have weight −ε.

Now, by Lemma 2.2.6, k−3=
⌈
q
p

⌉
. Thus, we have xd qpe+3�x1�x2�·· ·�xd qpe�

xd qpe+1∩xd qpe+2∩xd qpe+3, and there are
⌈
q
p

⌉
+3 elements in this forbidden structure.

Next, consider the relationship between xd qpe+2 and xi for i 6=
⌈
q
p

⌉
+3 or

⌈
q
p

⌉
+1.

By transitivity xd qpe+2 6≺xi and xd qpe+2 6�xi. Thus, xd qpe+2∩xi for each i, and Dq
p(P )

corresponds to a
(⌈

q
p

⌉
+2
)

+1.

Our final lemma determines the largest number of positive weight arcs that a

minimal negative cycle can contain based on the value of p. This is also a conse-

quence of Fishburn’s work on picycles as Theorem 1.1.10 only considers A[p,q]n for

n=1, . . . ,p [8].

Lemma 2.2.10. Let P be a poset, and let C be a minimal negative cycle in Dq
p(P ).

If α is the number of weight q arcs in C, then α≤p.

Proof. (by contradiction)

Let C and α be as in the statement of the lemma. Assume that α>p. By Lemma

2.2.6, C contains β :=
⌈
αq
p

⌉
arcs of weight −p.

We wish to show that somewhere in C there is a path, Q, containing p weight q

arcs and q weight p arcs. Toward a contradiction assume that no such Q occurs in

C.

Let βi be the number of −p weight arcs in the set immediately following the ith

weight q arc in C. Then, 0≤βi≤β, ∀i∈[α], and β=
∑α

i=1βi. We will consider the

subscripts to be cyclic, so when we reach α, we return to 1.
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Case 1. We have ∃i∈[α] such that
∑p−2

j=0 βi+j=q.

Then, we have a path in C that contains exactly p weight q arcs and q weight −p
arcs. In fact, the path starts and ends with a weight q arc.

Case 2. We have 6∃i∈[α] such that
∑p−2

j=0 βi+j=q, but ∃i∈[α] such that
∑p−2

j=0 βi+j<q.

Then, there are two possibilities. If
∑p−1

j=−1 βi+j≥q, then we have a Q path in C.

However, if
∑p−1

j=−1 βi+j<q, then moving around the cycle, either we find a path

with our desired arc weights, or ∀i, we have
∑p−1

j=−1 βi+j<q. Then, summing over

the positive weight arcs, we have (p+1)β=
∑α

i=1

(∑p−1
j=−1βi+j

)
<αq.

Dividing by p+1, this gives β< αq
p+1

< αq
p
≤
⌈
αq
p

⌉
. This contradicts Lemma 2.2.6.

Case 3. We have
∑p−2

j=0 βi+j>q, ∀i∈[α].

Since each βi is an integer,
∑p−2

j=0 βi+j≥q+1 for each i. Summing over each i, we

have (p−1)β=
∑α

i=1

(∑p−2
j=0 βi+j

)
≥α(q+1). Dividing by p−1, this gives β≥ α(q+1)

p−1 >

α(q+1)
p

= αq
p

+ α
p
> αq

p
+1>

⌈
αq
p

⌉
, a contradiction.

Thus, we can always find a path, Q, in C that contains exactly p weight q arcs

and q weight −p arcs. If the first arc in Q has weight −p, then extend Q back one edge

along C. If the last arc in Q has weight −p, then extend Q forward one edge along

C. Call this (possibly) extended path Q′. This extension forces Q′ to start at a left

vertex and end at a right vertex. See Figure 2.4 for the possible starting and ending

configurations of Q′. Path Q′ still contains exactly p weight q arcs and q weight

−p arcs and C−Q′ contains (α−p) weight q arcs and
⌈
αq
p

⌉
−q=

⌈
αq
p
− pq

p

⌉
=
⌈
(α−p)q

p

⌉
weight −p arcs.

x1 x2 xk−1 xk

(a)

x1 x2 xk−1 xk

(b)

x1 x2 xk−1 xk

(c)

x1 x2 xk−1 xk

(d)

Figure 2.4: Portion of C in Dq
p(P ) with p weight q arcs and q weight −p arcs: The four

possible ending configurations of Q′ are shown.

Let x1 and xk be the elements in P represented by the first and last vertices
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of Q′ respectively. If x1�xk, then replacing the path x1`→xkr in C with the arc

(x1`,xkr), creates a cycle with (α−p) weight q arcs and
⌈
(α−p)q

p

⌉
weight −p arcs and

some −ε weight arcs for an overall negative weight cycle.

Similarly, if x1∩xk, then replacing the path xkr→x1` in C with the arc (xkr,x1`),

creates a cycle with p weight q arcs and q weight −p arcs and some −ε weight arcs

for an overall negative weight cycle.

Next, if x1≺xk, then we encounter a few cases. If x1r and xk` are on Q′ ((a)

of Figure 2.4), then replacing xk`→x1r on C with the arc (xk`,x1r) creates a cycle

with p−2 weight q arcs and q weight −p arcs which gives a negative cycle. If x1r

and xk` are not on Q′ ((b) of Figure 2.4), then the cycle Q′xk`x1rx1` is a cycle with

p weight q edges and q+2 weight −p edges, yielding a shorter negative cycle than C.

The other two combinations of x1r and xk` on/not on C produce similar negative

cycles.

Lastly, in case (b) of Figure 2.4, if x1=xk, then Q′,x1 is a cycle with p weight q

arcs and q+1 weight −p arcs: a shorter negative cycle.

Thus, any relationship between x1 and xk yields a shorter negative cycle than C

contradicting minimality.

Lemma 2.2.10 creates a manageable list of negative cycle possibilities for p=2

and p=3. Lemmas 2.2.4, 2.2.6, and 2.2.10 are analogous to Theorem 1.1.10.

In the remaining chapters, we will present lists of minimal forbidden substruc-

tures for interval lengths in [p, q] where p and q are positive integers. We present

the following notation for these lists. Recall that we refer to these lists as F qp .

2.3 Algorithm

We conclude with a proposition demonstrating how we could use Dq
p(P ) to algo-

rithmically construct an interval representation of a poset P with lengths between

p and q or determine that no such representation exists.

Proposition 2.3.1. Let P=(X,≺) be a poset, and let p and q be relatively prime

numbers. In polynomial time, we can either construct an interval representation
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of P in which all interval lengths are between p and q or determine that no such

representation exists.

Proof. Given a partial order P=(X,≺), p and q, construct the associated weighted

digraph Dq
p(P ) using Definition 2.1. Use a standard shortest-paths algorithm that

can handle negative arc weights and which finds minimal negative cycles, such as

the Bellman-Ford algorithm, on Dq
p(P ) to compute the minimum weight of a path

between each pair of vertices or detect a negative cycle. If a negative cycle is

detected, then by Theorem 2.1.5, there is no interval representation of P in which

all interval lengths are between p and q. Also, a minimal negative cycle will be

detected, so a minimal forbidden substructure can be determined by the structure

of the negative cycle. If the digraph contains no negative cycles, then the function

f :V
(
Dq
p(P )

)
→R, where f(y) is the minimum weight of a path in Dq

p(P ) ending at

y, is a potential function on Dq
p(P ). Then, as we showed in the proof of (2) ⇒ (1)

of Theorem 2.1.5, we can construct an interval for each element of the poset such

that this collection of intervals forms an interval representation of P with lengths

between p and q. Note that each step in this process takes at most polynomial time,

so the entire construction can be carried out in polynomial time. Thus, we have a

polynomial-time certifying algorithm.
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Chapter 3

Interval orders with lengths in

[2, q]: P [2, q]

In this chapter, we will focus on determining F qp for p=2 and integer q (Theorem

3.2.2). We will then illustrate the result for small values of q. Completely determin-

ing the minimal forbidden substructures goes beyond the work of Fishburn. First,

we prove another new result which applies for all values of p.

3.1 Minimal negative cycles with two weight q

arcs

Proposition 3.1.2 characterizes structures in F qp which correspond to minimal nega-

tive cycles in the digraph which contain exactly two weight q arcs. The smallest p

value for which this proposition is useful is p=2. Figure 3.1 contains modified Hasse

diagrams. They are Hasse diagrams except that the dashed lines indicate optional

precedence. For example, in structure (ii) either y1≺z1 or y1∩z1. If y1≺z1, y1∩y2 is

no longer an option due to transitivity. If a diagram contains one dashed precedence

at the top and one at the bottom, then it represents four different posets: one where

no precedences are chosen, one where both are chosen, one where the top is a prece-

dence but the bottom is incomparable, and one where the bottom is a precedence
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but the top is incomparable. If a diagram contains two dashed precedences at the

top and two at the bottom, then it represents nine different posets as in Figures

3.13 and 3.14.

u2

x1

z2s+1

zs+2

zs

z1

y1

u1

(i)

x2

z2s+1

za+2

za+1

y1

x1

za

zs+3

zs+2

zs+1

za−s+2

za−s+1

za−s

za−s−1

za−s−2

z1

y2

u2

u1

(ii) a∈{s+1, . . . ,2s}

Figure 3.1: Labeling for posets in Fqp (2) with s=
⌊
q
p

⌋

We use Figure 3.1 to make the following definition.

Definition 3.1.1. Let F qp (2) be the posets labeled as in Figure 3.1 with the following

relationships where s=
⌊
q
p

⌋
and q(mod p)≤ p

2
:

Subfigure (i) 1. u1,

(a) ≺y1 ,

(b) ≺zi for i∈{1,2, . . . , s},

(c) ∩zi for i∈{s+1, s+2, . . . ,2s+1},

(d) ∩x1,

2. u2,

(a) ∩y1,

(b) ∩zi for i∈{1,2, . . . , s+1},
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(c) �zi for i∈{s+2, s+3, . . . ,2s+1},

(d) �x1,

3. y1�z1�z2�·· ·�zd2q/pe�x1,

Subfigure (ii) 1. u1,

(a) ≺y2,

(b) ≺zi for i∈{1,2, . . . ,a−s−1},

(c) ∩zi for i∈{a−s, . . . ,a},

(d) ∩zj for j∈{a+1, . . . ,2s+1},

(e) ∩x2,

(f) ∩u2,

(g) ∩x1,

(h) ∩y1,

2. u2,

(a) ∩zi for i∈{1,2, . . . , s+1},

(b) �zi for i∈{s+2, . . . ,a},

(c) �x1,

(d) ∩y1,

(e) ∩zj for j∈{a+1, . . . ,2s+1},

(f) ∩x2,

(g) ∩y2,

3. y1,

(a)

{
∩y2 a=s+1

≺∩y2 a>s+1
,

(b) ≺∩zi for i∈{1,2, . . . ,a−s−2},

(c) ∩zi for i∈{a−s−1,a−s},

(d) �zi for i∈{a−s+1, . . . ,a},

(e) �x1,
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4. x2,

(a) ≺y2,

(b) ≺zi for i∈{1,2, . . . , s},

(c) ∩zi for i∈{s+1, s+2},

(d) ∩�zi for i∈{s+3, . . . ,a},

(e)

{
∩x1 a=s+1

∩�x1 a>s+1
,

5. zj for j∈{a+1, . . . ,2s+1},

(a) ≺y2,

(b) ≺zi for i∈{1,2, . . . , j−s−2},

(c) ∩zi for i∈{j−s−1, j−s},

(d) �zi for i∈{j−s+1, . . . ,a},

(e) �x1,

6. y2�z1�z2�·· ·�za�x1,

7. y1�za+1�za+2�·· ·�z2s+1�x2.

Posets in family (ii) of Definition 3.1.1 will contain 2s+1+6=
⌈
2q
p

⌉
+6 elements.

Since a∈{s+1, . . . ,2s}, there are s structures in this family when we disregard the

dashed lines. Now, taking the dashed lines into consideration, the family contains
s∑
i=1

i2 posets. We explain this calculation for p=2 in Proposition 3.2.3. Next, we

use Definition 3.1.1 to state Proposition 3.1.2.

Proposition 3.1.2. Let P be a poset. Let C be a minimal negative cycle in Dq
p(P ).

If C has exactly two weight q arcs, then P contains an induced subposet isomorphic

to one of the posets in F qp (2).

Proof. In what follows, when calculating cycle weight, we will disregard the con-

tribution of the weight −ε arcs. Thus, a cycle with weight zero below is actually a

negative cycle since each cycle we consider will contain at least one −ε weight arc.
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By Lemma 2.2.6, we have that β=
⌈
2q
p

⌉
. Now, q=ps+d where d∈{1,2, . . . ,p−1}

with gcd(p,d)=1. Then, β=
⌈
2q
p

⌉
=
⌈
2(ps+d)

p

⌉
=2s+

⌈
2d
p

⌉
. Now, β=

{
2s+1 d≤ p

2

2s+2 d> p
2

We will consider two cases: when the weight q arcs are adjacent on the cycle and

when they are not.

Case 1. The two weight q arcs are adjacent on C.

Cycle C can be written as

z1r, z1`, z2r, z2`, . . . , zβr, zβ`,x1r,u1`,u1r,u2`,u2r,y1`,x1r.

Here, since we have a cycle, all vertices must be distinct and so all elements must

be distinct except possibly z1 and y1, but by Corollary 2.2.8 they are distinct.

If β=2s+2, consider the relationship between zs+1 and u2. Transitivity elimi-

nates u1�zs+1. If u1≺zs+1, then replacing zs+1`→u1r in C with the arc (zs+1`,u1r)

creates a cycle, C ′ with s+1 weight −p arcs and one weight q arc for a total weight

less than q−p(s+1)=ps+d−ps−p=d−p<0. Thus, C ′ is a shorter negative cycle

than C. If u1∩zs+1, then replacing u1r→xs+1` in C with the arc (u1r, zs+1`) creates

a cycle C ′′ with 2s+2−(s+1)=s+1 weight −p arcs and one weight q arc. As above,

C ′′ is a shorter negative cycle than C. Since all relationships between zs+1 and u1

yield shorter negative cycles, C is not minimal when d> p
2
.

For the remainder of this case we will assume d≤ p
2
. Thus, β=2s+1.

Cycle C can be drawn as in Figure 3.2.

z1`

z1r

z2 z2s+1 x1 u1 u2 y1

Figure 3.2: Cycle in Dq
p(P ) with two weight q arcs that are adjacent on C: Each arc

directed vertically downward has weight −p, each arc directed vertically up-

ward has weight q, arcs directed diagonally downward have weight 0, and

arcs directed diagonally upward have weight −ε.
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This cycle gives y1�z1�·· ·�z2s+1�x1∩u1∩u2∩y1 (relationships i(1)d, i(2)a,

and i3 of Definition 3.1.1). The relationships between u1 and y1 or zi for i∈
{1, 2, . . . , 2s+ 1} and between u2 and zj for j= 1, 2, . . . , 2s+ 1 or x1 need to be

determined. The possibilities to consider for the zi’s are u1≺∩zi and u2∩�zj for

the zj’s due to transitivity.

Relationship i(1)a: If y1�u1, then replacing y1`→u1r in C with the arc (y1`,u1r)

creates a cycle with weight q>0. If y1∩u1, then replacing u1r→y1` in C with the

arc (u1r,y1`) creates a cycle with weight q−p(2s+1)<0. Thus, y1�u1.

Relationships i(1)b and i(1)c: If u1≺zi, then replacing zi`→u1r in C with the arc

(zi`,u1r) creates a cycle with weight q−p(i) which is positive for i∈{1,2, . . .
⌈
q
p

⌉
−1}=

{1,2, . . . , s}. If u1∩zi, then replacing zir→u1` in C with the arc (zir,u1`) creates a cy-

cle with weight 2q−p(i−1)>0 and replacing u1r→zi` in C with the arc (u1r, zi`) cre-

ates a cycle with weight q−p(2s+1−i) which is positive for i∈{s+1, s+2, . . . ,2s+1}.
Thus, u1≺zi for i∈{1,2, . . . , s} and u1∩zi for i∈{s+1, s+2, . . . ,2s+1}.

Relationship i(2)d: If x1≺u2, then replacing u2`→x1r in C with the arc (u2`,x1r)

creates a cycle with weight q>0. If x1∩u2, then replacing x1r→u2` in C with the

arc (x1r,u2`) creates a cycle with weight q−p(2s+1)<0. Thus, x1≺u2.

Relationships i(2)b and i(2)c: If u2� zj, then replacing u2`→ zjr in C with

the arc (u2`, zjr) creates a cycle with weight q−p(2s+1−(j−1)) which is positive

for j∈{s+2, s+3, . . . ,2s+1}. If u2∩zj, then replacing zjr→u2` in C with the arc

(zjr,u2`) creates a cycle with weight q−p(j−1) which is positive for i∈{1,2, . . . , s+1}
and replacing u2r→ zj` in C with the arc (u2r, zj`) creates a cycle with weight

2q−p(2s+1− j)>0. Thus, u2∩zj for j∈{1, 2, . . . , s+1} and u2�zj for

j∈{s+2, s+3, . . . ,2s+1}.
The preceding relationships correspond to structure (i) of Definition 3.1.1.

Case 2. The two weight q arcs are not adjacent on C.
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Here, C can be written as

z1r, z1`, z2r, z2`, . . . , zar, za`,x1r,u1`,u1r,y1`, za+1r, za+1`, za+2r, za+2`, · · · , zβr,xβ`,x2r,

u2`,u2r,y2`, z1r.

Now, a∈{1,2, . . . ,2s}={1,2, . . . ,β−1}. However, by symmetry, a=i will produce

the same structure as a=β−i. Thus, we only address a∈{s+1, s+2, . . . ,2s}.
Next, consider when β=2s+2. Consider the relationship between za−(s+1) and

u1. Transitivity excludes za−(s+1)≺u1. If za−(s+1)�u1, then the cycle, C ′ created by

replacing za−(s+1)`
→u1r in C with the arc (za−(s+1)`

,u1r) contains 2s+2−(s+1)=

s+ 1 arcs of weight −p and one weight q=ps+d arc. Thus, C ′ has weight less

than (ps+d)(1)− p(s+ 1) =d− p< 0 and is a shorter negative cycle than C. If

za−(s+1)∩u1, then the cycle, C ′′, created by replacing u1r→za−(s+1)`
in C with the

arc (u1r, za−(s+1)`
) contains s+1 arcs of weight −p and one weight q=ps+d arc. Thus,

C ′ has weight less than (ps+d)(1)−p(s+1)=d−p<0 and is a shorter negative cycle

than C. Since all relationships between zs+1 and u1 yield shorter negative cycles, C

is not minimal when β=2s+2.

For the rest of this case, we will assume that β= 2s+ 1. See Figure 3.3 for

a digraph representation of C. We can think of C as a set of a weight −p arcs,

followed by a weight q arc, followed by a set of 2s+1−a weight −p arcs and finally

the remaining weight q arc with weight −ε and 0 arcs interspersed as needed.

z1`

z1r

z2 za x1 u1 y1 za+1 z2s+1 u2 y2
za+2 x2

Figure 3.3: Cycle in Dq
3(P ) with two nonadjacent weight q arcs: Each arc directed verti-

cally downward has weight −3, the arc directed vertically upward has weight

q, arcs directed diagonally downward have weight 0, and arcs directed diag-

onally upward have weight −ε.
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First, we need to confirm that each element is distinct. The only possible repeats

are x1, y1, x2, and y2.

By Corollary 2.2.8, x1 is distinct from y1 and y2, and x2 is distinct from y1 and

y2. Thus, all of the elements represented in the cycle are distinct.

Cycle C gives y2� z1� z2�·· ·� za�x1∩u1∩ y1� za+1�·· ·�x2s+1�∩u2∩ y2
(relationships ii(1)g, ii(1)h, ii(2)f, ii(2)g, ii6, and ii7 of Definition 3.1.1).

The relationships between u1 and u2, x2, y2, and z1, z2, . . . ,x2s+1; between u2 and

x1, y1, and z1, z2 . . . , z2s+1; and among the elements in the chains are not directly

determined by C. A diagram of the information given by C is shown in Figure 3.4.

We must determine the relationships between each pair of elements not “connected”

(in the Hasse diagram sense) in the diagram.

x2

z2s+1

za+2

y1

x1

za

z1

y2

u1 u2

Figure 3.4: Modified Hasse diagram of the relationships defined by C: Here, solid lines

function as in a Hasse diagram but the thicker dashed lines indicate in-

comparability. No line indicates an unknown relationship. Also, note that

the thinner dotted lines within the chains indicate the possibility of more

elements not pictured within the chain.

Relationships in ii1:

We start with u1. Let i∈{1, 2, . . . , a}. If u1≺ zi, then replacing zi`→u1r in C

with arc (zi`,u1r) creates cycle with weight q−p(2s+1−a+i) which is positive for

i∈{1,2, . . . , a−s−1}. If u1∩zi, then replacing u1r→zi` in C with the arc (u1r, zi`)

creates a cycle with weight q−p(a− i) which is positive for i∈{a−s, . . . a}, and

replacing zir→u1` in C with the arc (zir,u1`) creates a cycle with weight 2q−p(i−1+

2s+1−a)>0. By transitivity, u1 6�zi, and u1 6�y2. If u1≺y2, then replacing y2`→u1r
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in C with the arc (y2`,u1r) creates a cycle with weight q−p(2s+1−a)>q−p(s)>0.

If u1∩y2, then replacing u1r→y2` in C with the arc (u1r, y2`) creates a cycle with

weight q−pa<0.

Let j∈{a+1, . . . ,2s+1}. If u1�zj, then replacing u1`→zjr in C with (u1`, zjr)

creates cycle with weight q−p(2s+1−(j−1)+a)<0. If u1∩zj, then replacing u1r→
zj` in C with the arc (u1r, zj`) creates a cycle with weight 2q−p(2s+1−j+a)>0,

and replacing zjr→u1` in C with the arc (zjr, u1`) creates a cycle with weight

q−p(j−1−a)>0. By transitivity, u1 6≺x2 and u1 6≺zi for i∈{a+1, . . . ,2s+1}. If

u1�x2, then replacing u1`→x2r in C with the arc (u1`, x2r) creates a cycle with

weight q−p(a)<0. If u1∩x2, then replacing x2r→u1` in C with the arc (x2r, u1`)

creates a cycle with weight q−p(2s+1−a)>0, and replacing u1r→x2r in C with

the path u1r,x2`,x2r creates a cycle with weight 3q−p(a)>0.

If u1≺u2, then replacing u2`→u1r in C with the arc (u2`, u1r) creates a cycle

with weight −p(2s+1−a)<0. If u1�u2, then replacing u1`→u2r in C with the arc

(u1`, u2r) creates a cycle with weight −p(a)<0. If u1∩u2 then replacing u1r→u2`

in C with the arc (u1r, u2`) creates a cycle with weight 2q−p(a)>0 and replacing

u2r→u1` in C with the arc (u2r,u1`) creates a cycle with weight 2q−p(2s+1−a)>0.

Thus, u1≺y2, u1≺zi for i∈{1, 2, . . . , a−s−1}, u1∩zi for i∈{a−
s, . . .a}, u1∩zj for j∈{a+1, . . . ,2s+1}, u1∩x2, and u1∩u2.

Relationships in ii2:

Next, consider u2. Let i∈{1, 2, . . . , a}. If u2� zi, then replacing u2`→ zir in C

with the arc (u2`, zir) creates a cycle with weight q−p(2s+ 1− (i−1)) which is

positive for i∈{s+2, . . . , a}. If u2∩zi, then replacing u2r→zi` in C with the arc

(u2r, zi`) creates a cycle with weight 2q−p(2s+1−i)>0, and replacing zir→u2` in

C with the arc (zir,u2`) creates a cycle with weight q−p(i−1) which is positive for

i∈{1,2, . . . , s+1}. By transitivity, u2 6≺zi for i∈{1,2, . . . , a} and u2 6≺x1. If u2�x1,
then replacing u2`→x1r in C with the arc (u2`, x1r) creates a cycle with weight

q−p(2s+1−a)>0. If u2∩x1, then replacing x1r→u2` in C with the arc (x1r→u2`)

creates a cycle with weight q−p(a)<0.

Let j ∈{a+ 1, . . . , 2s+ 1}. If u2≺ zj, then replacing zj`→u2r in C with arc

31



(zj`,u2r) creates cycle with weight q−p(j)<0. If u2∩zj, then replacing u2r→zj` in

C with the arc (u2r, zj`) creates a cycle with weight q−p(2s+1−j)>0, and replacing

zjr→u2` in C with the arc (zjr, u2`) creates a cycle with weight 2q−p(j−1)>0.

By transitivity, u2 6�zj, and u2 6�y1. If u2≺y1, then replacing y1`→u2r in C with

the arc (y1`, u2r) creates a cycle with weight q−p(a)<0. If u2∩y1, then replacing

u2r→y1` in C with the arc (u2r,y1`) creates a cycle with weight q−p(2s+1−a)>0,

and replacing y1`→u2` in C with the path y1`, y1r, u2` creates a cycle with weight

3q−p(a)>0.

Thus, u2∩zi for i∈{1,2, . . . , s+1}, u2�zi for i∈{s+2, . . . ,a}, u2�x1,

u2∩y1, and u2∩zj for j∈{a+1, . . . ,2s+1}.
Now, consider pairs of elements with one element in each chain, starting with

y1.

Relationships in ii3:

If y1≺y2, then replacing y2`→y1` in C with the path y2`,y1r,y1` creates a cycle with

weight q−p(2s+1−a+1) which is positive when a>s+1. If y1�y2, and replacing

y1`→y2` in C with the path y1`, y2r, y2` creates a cycle with weight q−p(a+1)<0.

If y1∩y2, then replacing y2`→y1` in C with the path y2`,y2r,y1` creates a cycle with

weight 2q−p(2s+1−a)>0, and replacing y1`→y2` in C with the path y1`, y1r, y2`

creates a cycle with weight 2q−p(a)>0.

Let i∈{1,2, . . . ,a}. If y1�zi, then replacing y1`→zir in C with the arc (y1`, zir)

creates a cycle with weight q−p(a−(i−1)) which is positive for i∈{a−s+1, . . . ,a}.
If y1≺ zi, then replacing zi`→y1` in C with the path zi`, y1r, y1` creates a cycle

with weight q−p(i+1+2s+1−a) which is positive for i∈{1,2, . . . , a−s−2}. If

y1∩zi, then replacing zir→y1` in C with the arc (zir,y1`) creates a cycle with weight

q−p(i−1+2s+1−a) which is positive for i∈{1,2, . . . ,a−s}, and replacing y1`→zi`

in C with the path y1`,y1r, zi` creates a cycle with weight 2q−p(a−i)>0.

If y1�x1, then replacing y1`→x1r in C with the arc (y1`, x1r) creates a cycle

with weight q>0. If y1≺x1, then replacing x1`→y1` in C with the path x1`,y1r,y1`

creates a cycle with weight q−p(2s+1)<0. If y1∩x1, then replacing x1r→y1` in C

with the arc (x1r,y1`) creates a cycle with weight q−p(2s+1)<0.
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Thus,

{
y1∩y2 a=s+1

y1≺∩y2 a>s+1
, y1≺∩zi for i∈{1,2, . . . ,a−s−2}, y1∩zi for

i∈{a−s−1,a−s}, y1�zi for i∈{a−s+1, . . . ,a}, and y1�x1.

Relationships in ii4:

Next, consider x2. If x2�y2, then replacing z2s+1`→y2` in C with the path z2s+1`,y2r,

y2` creates a cycle with weight q−p(2s+2)<0. If x2≺y2, and replacing y2`→x2r in

C with the arc (y2`,x2r) creates a cycle with weight q>0. If x2∩y2, then replacing

x2r→y2` in C with the arc (x2r,y2`) creates a cycle with weight q−p(2s+1)<0.

Let i∈{1, 2, . . . , a}. If x2� zi, then replacing x2r→ zir in C with the path

x2r, x2`, zir creates a cycle with weight q−p(2s+2− (i−1)) which is positive for

i∈{s+3, . . . ,a}. If x2≺zi, then replacing zi`→x2r in C with the arc (zi`,x2r) creates

a cycle with weight q−p(i) which is positive for i∈{1,2, . . . , s}. If x2∩zi, then replac-

ing x2r→zi` in C with the arc (x2r, zi`) creates a cycle with weight q−p(2s+1−i)
which is positive for i∈{s+1, . . . , a}, and replacing zir→x2r in C with the path

zir,x2`,x2r creates a cycle with weight 2q−p(i−1)>0.

If x2≺x1, then replacing x1r→x2r in C with the path x1r, x1`, x2r creates a

cycle with weight q−p(a+1)<0. If x2�x1, then replacing x2r→x1r in C with the

path x2r, x2`, x1r creates a cycle with weight q−p(2s+1−a+1) which is positive

when a>s+1. If x2∩x1, then replacing x1r→x2r in C with the path x1r, x2`, x2r

creates a cycle with weight 2q−p(a)>0, and replacing x2r→x1r in C with the path

x2r,x1`,x1r creates a cycle with weight 2q−p(2s+1−a)>0.

Thus, x2≺y2, x2≺zi for i∈{1,2, . . . , s}, x2∩zi for i∈{s+1, s+2},

x2∩�zi for i∈{s+3, . . . ,a}, and

{
x2∩x1 a=s+1

x2∩�x1 a>s+1
.

Relationships in ii5:

Let j ∈{a+ 1, . . . , 2s+ 1}. If zj≺ y2, then replacing y2`→ zjr in C with the arc

(y2`, zjr) creates a cycle with weight q−p(2s+1− (j−1)) which is positive when

j>s+1 which is always true. If zj∩y2, then replacing zjr→y2` in C with the arc

(zjr, y2`) creates a cycle with weight q−p(j−1) which is positive when j<s+2 but
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j≥s+2.If zj�y2, then replacing zj`→y2` in C with the path zj`, y2r, y2` creates a

cycle with weight q−p(j+1) which is positive when j<s, but j≥s+2.

If zj≺x1, then replacing x1r→zjr in C with the path x1r,x1`, zjr creates a cycle

with weight q−p(a+1+2s+1−(j−1)) which is positive when j>a+s+2≥2s+3

which is not possible. If zj∩x1, then replacing x1r→zj` in C with the arc (x1r, zj`)

creates a cycle with weight q−p(a+2s+1−j) which is positive when j>a+s≥2s+1

but j≤2s+1. If zj�x1, then replacing zj`→x1r in C with the arc (zj`,x1r) creates

a cycle with weight q−p(j−a) which is positive when j<s+1+a which is always

true.

Let i∈{1,2, . . . ,a}. If zj≺zi, then replacing zi`→zjr in C with the arc (zi`, zjr)

creates a cycle with weight q−p(i+2s+1−(j−1)) which is positive i∈{1,2, . . . , j−
s− 2}. If zj � zi, then replacing zj`→ zir in C with the arc (zj`, zir) creates a

cycle with weight q−p(j−(i−1)) which is positive i∈{j−s+1, . . . , a}. If zj∩zi,
then replacing zjr→ zi` in C with the arc (zjr, zi`) creates a cycle with weight

q−p(j−1− i) which is positive for i∈{j−s−1, . . . , a}, and replacing zir→zj` in

C with the arc (zir, zj`) creates a cycle with weight q−p(i−1+2s+1−j) which is

positive for i∈{1,2, . . . , j−s}.
Thus, for j∈{a+1, . . . ,2s+1}, zj≺y2, zj≺zi for i∈{1,2, . . . , j−s−2},

zj ∩zi for i∈{j−s−1, j−s}, and zj�zi for i∈{j−s+1, . . . , a}, and

zj�x1.

The relationships in bold text above are listed below:

1. u1,

(a) ≺y2

(b) ≺zi for i∈{1,2, . . . ,a−s−1},

(c) ∩zi, for i∈{a−s, . . . ,a},

(d) ∩zj, for j∈{a+1, . . . ,2s+1},

(e) ∩x2,

(f) ∩u2,
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2. u2,

(a) ∩zi for i∈{1,2, . . . , s+1},

(b) �zi for i∈{s+2, . . . ,a},

(c) �x1,

(d) ∩y1,

(e) ∩zj for j∈{a+1, . . . ,2s+1},

3. y1,

(a)

{
∩y2 a=s+1

≺∩y2 a>s+1
,

(b) ≺∩zi for i∈{1,2, . . . ,a−s−2},

(c) ∩zi for i∈{a−s−1,a−s},

(d) �zi for i∈{a−s+1, . . . ,a},

(e) �x1,

4. x2,

(a) ≺y2,

(b) ≺zi for i∈{1,2, . . . , s},

(c) ∩zi for i∈{s+1, s+2},

(d) ∩�zi for i∈{s+3, . . . ,a},

(e)

{
∩x1 a=s+1

∩�x1 a>s+1
,

5. zj, j∈{a+1, . . . ,2s+1},

(a) ≺y2,

(b) ≺zi for i∈{1,2, . . . , j−s−2},

(c) ∩zi for i∈{j−s−1, j−s},
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(d) �zi for i∈{j−s+1, . . . ,a},

(e) �x1.

These relationships along with the relationships defined by the cycle are exactly

the posets in (ii) of Definition 3.1.1 for each value of a∈{s+1, . . . ,2s}. Note that the

uncertainty of 3.(a) and 4.(a) are represented by the dashed lines in these diagrams.

Corollary 3.1.3. Let q=ps+d. If d> p
2
, then a negative cycle with exactly two

weight q arcs cannot be minimal.

Proof. As in the proof of Proposition 3.1.2, β=

{
2s+1 d≤ p

2

2s+2 d> p
2

and in both cases of

the proof, β=2s+2 allowed a shorter negative cycle to be found.

As an example of Corollary 3.1.3, consider p=4 and q=11. We have 11=4(2)+3,

so d=3. Now, p
2
= 4

2
=2. Thus, d> p

2
. By Corollary 3.1.3, F11

4 does not contain any

structures corresponding to a minimal negative cycle with exactly two weight 11 arcs.

Such a cycle would require six weight −4 arcs, but this cycle could always be split

into two negative cycles each containing one weight 11 arc and three weight −4 arcs.

Thus, the forbidden structure corresponding to a negative cycle with two weight 11

arcs would contain a 5+1 which is the minimal structure which corresponds to a

minimal negative cycle with one weight 11 arc and three weight −4 arcs (Lemma

2.2.9).

3.2 Structural result for lengths in [2, q], q odd

Definition 3.2.1. Let F q2 be the collection of posets shown in Figure 3.5 where (a)

is a 2+2, (b) is a q+5
2

+1, (c) is structure (i) of Definition 3.1.1 when p=2, and

(d) is family (ii) of Definition 3.1.1 when p=2. (Theorem 3.2.2 will show that this

notation is appropriate.)
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(a) (b) (c)

x2

zq

za+2

za+1

y1

x1

za

zdq/2e+2

zdq/2e+1

zdq/2e

za−dq/2e+3

za−dq/2e+2

za−dq/2e+1

za−dq/2e

za−dq/2e−1

z1

y2

(d) a∈{
⌈ q
2

⌉
, . . . , q−1}

Figure 3.5: Collection of minimal forbidden substructures, Fq2 , which prevent a poset

from being representable as intervals with lengths between 2 and odd q:

Dashed lines indicate optional precedence. (a) is a 2+2. (b) is a q+5
2 +1,

(c) is structure (i) of Definition 3.1.1 when p=2, and (d) is family (ii) of

Definition 3.1.1 when p=2. Posets in (c), and (d) contain q+4 and q+6

elements, respectively.

In Figure 3.5, posets (a), (b), and (c) are horizontally symmetric (i.e., replacing

each ≺ with � results in the same poset): (a) is the forbidden sub-poset for interval

orders, (b) is a q+5
2

+1, and (c) contains q+4 elements. Poset (b) will be generalized

to higher values of p in Lemma 5.2.1. In family (d), each poset contains q+ 6

elements, and when a=
⌈
q
2

⌉
, there will be no dashed lines and y1 = za−dq/2e and

x1 =zdq/2e+1 in the diagram. Disregarding the dashed line precedences, posets in

(d) are also horizontally symetric. However, we note that certain selections for the

dashed line precedences will create posets that are no longer horizontally symmetric.

Section 3.3 illustrates F qp for small values of q.

The following is the main structural theorem of this chapter.

Theorem 3.2.2. Let P=(X;≺) be a partial order and let q=2s+1, with s∈Z≥1.
The following are equivalent:
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1. Poset, P , has an interval representation with lengths between 2 and q,

2. The weighted digraph Dq
2(P ) contains no negative cycles.

3. Poset, P , contains no induced sub-poset from F q2 .

Proof. (1) ⇔ (2) This is a special case of Theorem 2.1.5.

(2) ⇒ (3) (by contrapositive) Recall that in Dq
2(P ), an edge x`→xr has weight

q and the reverse edge has weight −2. All other edges have weight −ε or 0. If

P contains an induced 2 + 2 (poset 3.5a), say x≺ y and u≺ v with x∩ u, x∩
v, y ∩ u, and y ∩ v, then y`, xr, v`, ur, y` is a cycle of weight −2ε. If P contains

an induced q+5
2

+1 (poset 3.5b), say (x1�x2�·· ·�x(q+5)/2)∩y, then, the cycle

x1`, x2r, x2`, x3r, x3`, x4r, · · · , x(q+5)/2r
, y`, yr, x1` has weight −2

(
q+1
2

)
+q−ε

(
q+3
2

)
<0.

If P contains an induced poset isomorphic to poset 3.5c of F q2 , say x1�x2� . . . ,�
xq+2∩y1∩y2 with y1�x(q+1)/2 and y2≺x(q+3)/2. Then, the cycle

x1`,x2r,x2`,x3r,x3`,x4r, · · · ,xq+2r,y1`,y1r,y2`,y2r,x1`

has weight −2(q)+q(2)−ε(q+1)<0. Next, consider the posets in family 3.5d labeled

as in Figure 3.6.

x2

zq

za+2

za+1

y1

x1

za

zdq/2e+2

za−dq/2e−1

z1

y2

u2

u1

Figure 3.6: Labeling for the family (d) of posets from Figure 3.5
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Now, the cycle

y1`, z1r, z1`, z2r, · · · , zar, za`,x1r,u1`,u1r,y1`, za+1r,

za+1`, za+2r, za+2`, · · · , zqr, zq`,x2r,u2`,u2r,y1`

has weight −2(q+2−a)−2(a−2)+2q−ε(q+2)=−ε(q+6)<0. Thus, if a poset P

contains an induced poset in F q2 , then Dq
2(P ) contains a negative cycle.

(3) ⇒ (2) (By contrapositive) Assume Dq
2(P ) contains a negative cycle. We will

show that P contains an element of F q2 as an induced suborder.

Let C be a minimal negative cycle in Dq
2(P ).

Case 1. All arcs of C have weight −ε or 0.

By Lemma 2.2.1, P contains an induced 2+2.

Case 2. Cycle C contains an arc of weight −2 but no positive weight arcs.

Lemma 2.2.3 rules out this possibility.

Case 3. Cycle C contains α arcs of weight q.

By Lemma 2.2.6, C must contain β=
⌈
qα
2

⌉
arcs of weight −2.

Case 3.1. Cycle C contains one arc with weight q (i.e., α=1).

By Lemma 2.2.9, C corresponds to a
⌈
q+2p

p

⌉
+1 where p=2, so a

⌈
q+4
2

⌉
+1. Since

q is odd this is q+5
2

+1 (structure 3.5b).

Case 3.2. Cycle C contains two arcs with weight q.

Thus, β=
⌈
2q
2

⌉
=q=2s+1.

By Proposition 3.1.2, the poset corresponding to C is isomorphic to one of the

structures in Figure 3.1 where a∈{s+1, . . . ,2s}.
These are exactly the posets represented by the diagrams in Figure 3.5d.

Case 3.3. Cycle C contains three or more arcs of weight q (i.e., α≥3).

This case is excluded by Lemma 2.2.10.

Thus, all possible minimal negative cycles have been considered and the resulting

structures are in F q2 . Since each structure corresponds to a minimal negative cycle

the structures are minimal forbidden substructures. To see minimality even more
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clearly, we reason that no structure in Figure 3.5 contains another. First, since each

structure in family (d) contains more elements than (a), (b), and (c), and the same

number of elements as every other structure in (d), no poset in family (d) can be

contained in any other structure in the list. Similarly, (c) is not contained in (a) or

(b), and (b) is not contained in (a). Now, (a) is obviously not contained in (b) or (c).

There is also no 2+2 in family (d) since the two chains are heavily connected. The

chain in (b) has length q+5
2

, and the longest chain incomparable to another element

in (c) has length q+4−2+1
2

= q+3
2

. In a structure in (d) the longest chain incomparable

to an element has length either q+2−a≤q+2−
⌈
q
2

⌉
=
⌈
q
2

⌉
+1= q+3

2
or
⌈
q
2

⌉
+1= q+3

2
.

Thus, (b) is not contained in any of the other posets. Finally, the longest chain

in (c) has length q+2, and the longest chain in any structure of (d) has length

a+2≤q+1. Therefore, the posets in Figure 3.5 are minimal and are appropriately

defined as F q2 .

How many posets are forbidden by F q2? Proposition 3.2.3 answers this question

for each q.

Proposition 3.2.3. The number of minimal forbidden subposets for interval lengths

between 2 and odd q is |F q2 |=3+ (q+1)!
24(q−2)! .

Proof. In Figure 3.5, (a), (b), and (c) contribute 3 posets. For part (d), there

are q+3
2
−2= q−1

2
structures without accounting for the dashed lines. Now, the first

structure contains q+6 elements, 9 of which are part of the center structure. Each of

the remaining q−3 elements have exactly one dashed line precedence. We can select

at most one precedence from the top set of dashed lines and at most one precedence

from the bottom set of dashed lines (recall: selecting a precedence close to the center

implies all precedences farther from the center by transitivity). These choices can be

made in
(
q−3
2

+1
)(

q−3
2

+1
)
=
(
q−1
2

)2
ways. The next structure in (d) has 11 elements

in its center structure and so represents
(
q−3
2

)2
distinct posets. The third structure

would have 13 elements in its center structure and so represents
(
q−5
2

)2
posets.

Continuing to the last poset, the center structure contains all q+6 elements and so

represents only one poset. Thus, |F q2 |=3+
∑ q−1

2
i=1 i

2=3+ (q+1)(q)(q−1)
24

=3+ (q+1)!
24(q−2)! .
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We note that this sequence appears starting at the third term of sequence

A283195 on the Online Encyclopedia of Integer Sequences [16].

3.3 Small values of q

We provide the forbidden substructures for q=3,5, and 7 with some added discus-

sion.

3.3.1 Lengths [2,3]

Figure 3.7 shows how to translate a poset into the associated digraph for interval

orders with lengths between 2 and 3. Note: as mentioned in the introduction this is

equivalent to a poset having an interval representation with lengths between 1 and

3/2.

−23

x`

xr

(a)

0
0

x`

xr yr

y`

(b)

−ε

x`

xr yr

y`

(c)

Figure 3.7: P[2,3] digraph representations of (a) x, (b) x∩y, and (c) x≺y

Figure 3.8 shows the four forbidden suborders which prevent a poset from having

an interval representation with lengths between 2 and 3. Note that order (a) is for-

bidden even with no length restriction, order (b) is analogous to the added forbidden

suborder for [1,q] interval orders (see Figure 1.3), and family (d) only contains one

structure when q=3.
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(a) (b) (c) (d)

Figure 3.8: Minimal induced suborders which prevent a poset from having an interval

representation with lengths in [2,3]

Now, since these are minimal forbidden substructures, there must be an interval

representation when any single vertex is removed from the structure. We note that

this is not how minimality was shown at the end of the proof of Theorem 3.2.2. It

is included here to provide another view of minimality.

We leave structures (a) and (b) to the reader. For structure (c), see Figure 3.9

and for structure (d) see Figure 3.10. We provide an interval representation for one

subposet of each type. For instance, since each structure is horizontally symmetric,

removing the maximal element of a chain is analogous to removing the minimal

element of that chain (the interval representations are vertical mirror images). These

interval representations can be extended to larger values of q by adding length 2

intervals to the chains and adjusting the lengths of the other intervals. However,

q=3 does not include the possibility of elements above or below the center structure.

See figure 3.15 for an illustration of removing an element in this case.

42



Figure 3.9: Interval representations with lengths in [2,3] for subposets of minimal for-

bidden poset (c): Dotted intervals have length 2 and solid intervals have

lengths between 2 and 3.

Figure 3.10: Interval representations with lengths in [2,3] for subposets of minimal for-

bidden poset (d): Dotted intervals have length 2 and solid intervals have

lengths between 2 and 3.

3.3.2 Lengths [2,5]

Figures 3.11 and 3.12 give the minimal forbidden induced subposets which prevent

a poset from having an interval representation with interval lengths between 2 and

5. Figure 3.11 uses our compact dashed line notation while Figure 3.12 gives the

standard Hasse diagrams.
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(a) (b) (c) (d1) (d2)

Figure 3.11: Minimal forbidden induced subposets for lengths [2,5]

(a) (b) (c) (d1,1) (d1,2) (d1,3) (d1,4) (d2)

Figure 3.12: Minimal forbidden induced subposets for lengths [2,5] with the all eight

posets given explicitly without the dashed lines

3.3.3 Lengths [2,7]

Figure 3.13 shows the forbidden induced subposets for lengths between 2 and 7 using

the dashed notation. Figure 3.14 gives the nine posets that part (d) of Figure 3.13

defines.
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(a) (b) (c) (d1) (d2) (d3)

Figure 3.13: Minimal forbidden induced subposets for lengths [2,7]

Figure 3.14: Minimal forbidden induced subposets (d1) for lengths [2,7] with the all nine

posets given explicitly without the dashed lines

As previously discussed, each poset in Figure 3.14 is minimal and so removing

any vertex will create a P [2, 7] representable interval order. In Figure 3.10, we

considered many cases of removing elements. Figure 3.15 illustrates the remaining

case of removing an element above or below the central structure.
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x2

z7

y1

x1

z5

z4

z3

z2

z1

y2

u2

u1

y2 z1 z2 z3 z4 z5 x1
y1 z7 x2

u1u2

Figure 3.15: Interval representation with lengths in [2,7] for a subposet of a minimal

forbidden poset in family (d): Dotted intervals have length 2 and solid

intervals have lengths between 2 and 7.

This example assumes that all dashed lines become the incomparable relation.

Selecting precedence instead would simply influence the lengths of intervals y1

and/or x2.
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Chapter 4

Interval orders with lengths in

[3, q]: P [3, q]

In this chapter we focus on finding F qp for p=3 and integer q. For q=3s, the interval

orders with interval representation with lengths in [3, q] have representations with

lengths in [1, s]. Thus, the result for q being a multiple of 3 is known. Therefore we

restrict our investigation to q=3s+1 and q=3s+2. Theorem 4.2.2 gives the list of

minimal forbidden posets for P [3, q], but first we prove a result which applies for all

values of p.

4.1 Minimal negative cycles with three weight q

arcs

Proposition 4.1.2 characterizes structures in F qp which correspond to minimal neg-

ative cycles in the digraph which contain exactly three weight q arcs. The smallest

p value for which this proposition is useful is p=3. We first define F qp (3).

Definition 4.1.1. Let F qp (3) be the posets (and their horizontal reflections) la-

beled as in Figure 4.1 with the following relationships where β=
⌈
3q
p

⌉
, s=

⌊
q
p

⌋
, and

q(mod p)≤ p
3

or p
2
<q(mod p)≤ 2p

3
:
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Subfigure (i) 1. u1,

(a) ≺y1,

(b) ≺zi for i∈
{

1,2, . . .
⌈
2q
p

⌉
−1
}

,

(c) ∩zi for i∈
{⌈

2q
p

⌉
, . . . ,β

}
,

(d) ≺u3,

(e) ∩x1,

(f) ∩u2,

2. u2,

(a) ≺y1,

(b) ≺zi for i∈{1,2, . . . , s},

(c) ∩zi for i∈
{
s+1, . . . ,

⌈
2q
p

⌉}
,

(d) �zi for i∈
{⌈

2q
p

⌉
+1, . . . ,β

}
,

(e) �x1,

(f) ∩u3,

3. u3,

(a) �x1,

(b) ∩zi for i∈{1,2, . . . s+1},

(c) �zi for i∈{s+2, . . . ,β},

(d) ∩y1,

4. y1�z1�z2�·· ·�zβ�x1,

Subfigure (ii) 1. u1∩u2,

2.

u1∩u3 a<
⌈
2q
p

⌉
u1≺u3 a≥

⌈
2q
p

⌉ ,

3. u1,

(a) ≺y2,

(b) ≺zi for i∈
{

1,2, . . . ,a−
⌈
q
p

⌉}
,
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(c) ∩zi for i∈
{
a−
⌈
q
p

⌉
+1, . . . ,a

}
,

(d) ∩zj for j∈
{
a+1,a+2, . . . ,a+

⌈
q
p

⌉}
,

(e) �zj for j∈
{
a+
⌈
q
p

⌉
+1, . . . ,β

}
,

(f)

�x2 a<
⌈
2q
p

⌉
∩x2 a≥

⌈
2q
p

⌉ ,

(g) ∩x1,

(h) ∩y1,

4. u2,

(a) ≺y2,

(b) ≺zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉
−1
}

,

(c) ∩zi for i∈
{⌈

q
p

⌉
, . . . ,

⌈
2q
p

⌉}
,

(d) �zi for i∈
{⌈

2q
p

⌉
+1, . . . ,a

}
,

(e)

∩x1 a<
⌈
2q
p

⌉
�x1 a≥

⌈
2q
p

⌉ ,

(f)

≺y1 a<
⌈
2q
p

⌉
∩y1 a≥

⌈
2q
p

⌉ ,

(g) ≺zj for j∈
{
a+1,a+2, . . . ,

⌈
2q
p

⌉
−1
}

,

(h) ∩zj for j∈
{⌈

2q
p

⌉
, . . . ,β

}
,

(i) ∩x2,

(j) ∩u3,

5. u3,

(a) ∩zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉}
,

(b) �zi for i∈
{⌈

q
p

⌉
+1, . . . ,a

}
,

(c) �x1,

(d)

 ∩y2 a≤
⌈
2q
p

⌉
∩�y2 a>

⌈
2q
p

⌉ ,
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(e) ∩zj for j∈
{
a+1,a+2, . . . ,

⌈
2q
p

⌉}
,

(f) �zj for j∈
{⌈

2q
p

⌉
+1, . . . ,β

}
,

(g) �x1,

(h) ∩y2,

6. y1,

(a)

≺∩y2 a<
⌈
2q
p

⌉
≺y2 a≥

⌈
2q
p

⌉ ,

(b) ≺zi for i∈
{

1,2, . . . ,a−
⌈
2q
p

⌉}
,

(c) ≺∩zi for i∈
{
a−
⌈
2q
p

⌉
+1, . . . ,a−

⌈
q
p

⌉
−1
}

,

(d) ∩zi for i∈
{
a−
⌈
q
p

⌉
, . . . ,a−

⌈
q
p

⌉
+1
}

,

(e) �zi for i∈
{
a−
⌈
q
p

⌉
+2, . . . ,a

}
,

(f) �x1,

7. zj for j∈{a+1, . . .β},

(a) ≺y2,

(b) ≺zi for i∈
{

1,2, . . . , j−
⌈
q
p

⌉
−1
}

,

(c) ∩zi for i∈
{
j−
⌈
q
p

⌉
, j−

⌈
q
p

⌉
+1
}

,

(d) �zi for i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a

}
,

(e)


�x1 j<a+

⌈
q
p

⌉
∩x1 a+

⌈
q
p

⌉
≤j≤a+

⌈
q
p

⌉
+1

≺∩x1 j>a+
⌈
q
p

⌉
+1

,

8. x2,

(a) ≺y2,

(b) ≺zi for i∈
{

1,2, . . . ,
⌈
2q
p

⌉
−1
}

,

(c) ∩zi for i∈
{⌈

2q
p

⌉
, . . . ,

⌈
2q
p

⌉
+1
}

,

(d) ∩�zi for i∈
{⌈

2q
p

⌉
+2, . . . ,a

}
,
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(e)


≺∩x1 a<

⌈
2q
p

⌉
−1

∩x1
⌈
2q
p

⌉
−1≤a≤

⌈
2q
p

⌉
�x1 a>

⌈
2q
p

⌉ ,

9. y2�z1�z2�·· ·�za�x1,

10. y1�za+1�za+2�·· ·�zβ�x2,

Subfigures (iii), (iv), and (v)

1. u1∩u2,

2. u2∩u3,

3.

u3∩u1 a<
⌈
2q
p

⌉
u3�u1 a≥

⌈
2q
p

⌉ ,

4. u1,

(a) u1≺y3,

(b) u1≺zi for i∈
{

1,2, . . . ,a−
⌈
q
p

⌉}
,

(c) u1∩zi for i∈
{
a−
⌈
q
p

⌉
+1, . . . ,a

}
,

(d) u1∩zi for i∈
{
a+1, . . . ,a+

⌈
q
p

⌉}
,

(e) u1�zi for i∈
{
a+
⌈
q
p

⌉
+1, . . . ,a+b

}
,

(f)

u1∩x2 b<
⌈
q
p

⌉
u1�x2 b≥

⌈
q
p

⌉ ,

(g)

u1≺y2 b<
⌈
q
p

⌉
u1∩y2 b≥

⌈
q
p

⌉ ,

(h) u1≺zi for i∈
{
a+b+1, . . . ,a+

⌈
q
p

⌉
−1
}

,

(i) u1∩zi for i∈
{
a+
⌈
q
p

⌉
, . . . ,β

}
,

(j)

u1≺∩x3 a>
⌈
2q
p

⌉
u1∩x3 a≤

⌈
2q
p

⌉ ,

(k) u1∩x1,
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(l) u1∩y1,

5. u2,

(a) u2≺y3,

(b) u2≺zi for i∈
{

1,2, . . . ,a+b−
⌈
2q
p

⌉}
,

(c) u2∩zi for i∈
{
a+b−

⌈
2q
p

⌉
+1, . . . ,a+b−

⌈
q
p

⌉
+1
}

,

(d) u2�zi for i∈
{
a+b−

⌈
q
p

⌉
+2, . . . ,a

}
,

(e)

u2�x1 b<
⌈
q
p

⌉
u2∩x1 b≥

⌈
q
p

⌉
(f)

,u2∩y1 b<
⌈
q
p

⌉
u2≺y1 b≥

⌈
q
p

⌉ ,

(g) u2≺zi for i∈
{
a+1, . . . ,a+b−

⌈
q
p

⌉}
,

(h) u2∩zi for i∈
{
a+b−

⌈
q
p

⌉
+1, . . . ,a+b

}
,

(i) u2∩zi for i∈{a+b+1, . . . ,β},

(j) u2∩x3,

(k) u2∩x2,

(l) u2∩y2,

6. u3,

(a) u3∩zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉}
,

(b) u3�zi for i∈
{⌈

q
p

⌉
+1, . . . ,a

}
,

(c) u3�x1,

(d)

u3∩�y1 a>
⌈
2q
p

⌉
u3∩y1 a≤

⌈
2q
p

⌉ ,

(e) u3∩zi for i∈
{
a+1, . . . ,

⌈
2q
p

⌉}
,

(f) u3�zi for i∈
{⌈

2q
p

⌉
+1, . . . ,a+b

}
,

(g) u3�x2,
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(h) u3∩y2,

(i) u3∩zi for i∈{a+b+1, . . . ,β},

(j) u3∩x3,

(k) u3∩y3,

7. Chains one and two,

(a) y1,

(I)


y1∩y3 a=

⌈
q
p

⌉
y1≺∩y3

⌈
q
p

⌉
<a<

⌈
2q
p

⌉
y1≺y3 a≥

⌈
2q
p

⌉ ,

(II) y1≺zi for i∈
{

1,2, . . . ,a−
⌈
2q
p

⌉}
,

(III) y1≺∩zi for i∈
{
a−
⌈
2q
p

⌉
+1, . . . ,a−

⌈
q
p

⌉
−1
}

,

(IV) y1∩zi for i∈
{
a−
⌈
q
p

⌉
,a−

⌈
q
p

⌉
+1
}

,

(V) y1�zi for i∈
{
a−
⌈
q
p

⌉
+2, . . . ,a

}
,

(VI) y1�x1,

(b) zj for j∈{a+1,a+2, . . . ,a+b},

(I) zj≺y3,

(II) zj≺zi for i∈
{

1,2, . . . , j−
⌈
q
p

⌉
−1
}

,

(III) zj∩zi for i∈
{
j−
⌈
q
p

⌉
, j−

⌈
q
p

⌉
+1
}

,

(IV) zj�zi for i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a

}
,

(V) zj�x1 for j∈
{
a+1, . . . ,a+

⌈
q
p

⌉
−1
}

,

(VI) zj∩x1 for j∈
{
a+
⌈
q
p

⌉
, . . . ,a+

⌈
q
p

⌉
+1
}

,

(VII) zj≺∩x1 for j∈
{
a+
⌈
q
p

⌉
+2, . . . ,a+b

}
,

(c) x2,

(I) x2≺y3,

(II) x2≺zi for i∈
{

1,2, . . . ,a+b−
⌈
q
p

⌉}
,

(III) x2∩zi for i∈
{
a+b−

⌈
q
p

⌉
+1,a+b−

⌈
q
p

⌉
+2
}

,
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(IV) x2∩�zi for i∈
{
a+b−

⌈
q
p

⌉
+3, . . . ,a

}
,

(V)


x2∩�x1 b<

⌈
q
p

⌉
−1

x2∩x1 b∈
{⌈

q
p

⌉
−1,

⌈
q
p

⌉}
x2≺∩x1 b>

⌈
q
p

⌉ ,

8. Chains one and three,

(a) y2,

(I)

y2≺∩y3 a+b>
⌈
2q
p

⌉
y2∩y3 a+b=

⌈
2q
p

⌉ ,

(II) y2≺∩zi for i∈
{

1,2, . . . ,a+b−
⌈
2q
p

⌉
−1
}

,

(III) y2∩zi for i∈
{
a+b−

⌈
2q
p

⌉
,a+b−

⌈
2q
p

⌉
+1
}

,

(IV) y2�zi for i∈
{
a+b−

⌈
2q
p

⌉
+2, . . . ,a

}
,

(V) y2�x1,

(b) zj for j∈{a+b+1, . . . ,β},

(I) zj≺y3,

(II) zj≺zi for i∈
{

1,2, . . . , j−
⌈
2q
p

⌉
−1
}

,

(III) zj∩zi for i∈
{
j−
⌈
2q
p

⌉
, j−

⌈
2q
p

⌉
+1
}

,

(IV) zj�zi for i∈
{
j−
⌈
2q
p

⌉
+2, . . . ,a

}
,

(V) zj�x1,

(c) x3,

(I) x3≺y3,

(II) x3≺zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉
−1
}

,

(III) x3∩zi for i∈
{⌈

q
p

⌉
,
⌈
q
p

⌉
+1
}

,

(IV) x3∩�zi for i∈
{⌈

q
p

⌉
+2, . . . ,

⌈
2q
p

⌉}
,

(V) x3�zi for i∈
{⌈

2q
p

⌉
+1, . . . ,a

}
,
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(VI)


x3∩x1 a=

⌈
q
p

⌉
x3∩�x1

⌈
q
p

⌉
<a<

⌈
2q
p

⌉
x3�x1 a≥

⌈
2q
p

⌉ ,

9. Chains two and three,

(a) y2,

(I)


y2∩�y1 b<

⌈
q
p

⌉
−1

y2∩y1
⌈
q
p

⌉
−1≤b≤

⌈
q
p

⌉
y2≺∩y1

⌈
q
p

⌉
<b

,

(II) y2≺∩zi for i∈
{
a+1, . . . ,a+b−

⌈
q
p

⌉
−1
}

,

(III) y2∩zi for i∈
{
a+b−

⌈
q
p

⌉
,a+b−

⌈
q
p

⌉
+1
}

,

(IV) y2�zi for i∈
{
a+b−

⌈
q
p

⌉
+2, . . . ,a+b

}
,

(V) y2�x2,

(b) zj for j∈{a+b+1, . . . ,β},

(I) zj∩�y1 for j∈
{
a+b+1, . . . ,a+

⌈
q
p

⌉
−2
}

,

(II) zj∩y1 for j∈
{
a+
⌈
q
p

⌉
−1,a+

⌈
q
p

⌉}
,

(III) zj≺y1 for j∈
{
a+
⌈
q
p

⌉
+1, . . . ,β

}
,

(IV) zj≺zi for i∈
{
a+1, . . . , j−

⌈
q
p

⌉
−1
}

,

(V) zj∩zi for i∈
{
j−
⌈
q
p

⌉
, j−

⌈
q
p

⌉
+1
}

,

(VI) zj�zi for i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a+b

}
,

(VII) zj�x2,

(c) x3

(I)


x3≺y1 a<

⌈
2q
p

⌉
x3∩y1

⌈
2q
p

⌉
≤a≤

⌈
2q
p

⌉
+1

x3∩�y1 a≥
⌈
2q
p

⌉
+2

,

(II) x3≺zi for i∈
{
a+1, . . . ,

⌈
2q
p

⌉
−1
}

,

(III) x3∩zi for i∈
{⌈

2q
p

⌉
,
⌈
2q
p

⌉
+1
}

,
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(IV) x3∩�zi for i∈
{⌈

2q
p

⌉
+2, . . . ,a+b

}
,

(V)

 x3∩x2 a+b=
⌈
2q
p

⌉
x3∩�x2 a+b>

⌈
2q
p

⌉ ,

10. y3�z1�z2�·· ·�za�x1,

11. y1�za+1�za+2�·· ·�za+b�x2,

12. y2�za+b+1�za+b+2�·· ·�zβ�x3.

u1

u3

x1

zd3q/pe

zd2q/pe+1

zd2q/pe−1

zdq/pe+2

zdq/pe+1

z1

y1

u2

(i)

x2

za+2

za+1

y1

x1

z⌈ 2q
p

⌉
+2

z⌈ 2q
p

⌉
+1

z
a−
⌈
q
p

⌉
+3

z
a−
⌈
q
p

⌉
+2

z
a−
⌈
q
p

⌉
+1

z
a−
⌈
q
p

⌉
z
a−
⌈
q
p

⌉
−1

z
a−
⌈
2q
p

⌉
+1

z
a−
⌈
2q
p

⌉
z
a−
⌈
2q
p

⌉
−1

y1

u3

u1

u2

a≥
⌈
2q
p

⌉ x2

z
a+
⌈
q
p

⌉
+2

z
a+
⌈
q
p

⌉
+1

z
a+
⌈
q
p

⌉za+2

za+1

y1

x1

z
a−
⌈
q
p

⌉
+3

z
a−
⌈
q
p

⌉
+2

z
a−
⌈
q
p

⌉
+1

z
a−
⌈
q
p

⌉
z
a−
⌈
q
p

⌉
−1

y2u3

u1

u2

a<
⌈
2q
p

⌉
a∈
{⌈

β
2

⌉
, . . . ,β−1

}
(ii)

Figure 4.1: Minimal structures which correspond to a negative cycle with three weight

q arcs that cannot appear in a [p,q] representable interval order
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x1

za

za+b−d qpe+4

za+b−d qpe+3

za+b−d qpe+2

za+b−d qpe+1

za+b−d qpe
za+b−d qpe−1

zd qpe+1

za−d qpe+3

za−d qpe+2

za−d qpe+1

za−d qpe
za−d qpe−1
za−d qpe−2
za−d 2qp e+1

za−d 2qp e

z1

y3

x2

za+b

zd 2qp e+3

zd 2qp e+2

zd 2qp e+1

zd 2qp e
zd 2qp e−1
zd 2qp e−2

za+1

y1

x3

zd 3qp e
za+d qpe+2

za+d qpe+1

za+d qpe
za+d qpe−1
za+d qpe−2
za+d qpe−3

za+b+1

y2

x1

za

za+b−d qpe+2

zd 2qp e+1

zd 2qp e
zd qpe+3

zd qpe+2

zd qpe+1

zd qpe
zd qpe−1
zd qpe−2

za−d qpe

za+b−d 2qp e+3

za+b−d 2qp e+2

za+b−d 2qp e+1

za+b−d 2qp e
za+b−d 2qp e−1
za+b−d 2qp e−2
z1

y3

u1

u2

u3

(iii)

b∈
{

1,2, . . . ,
⌈
q
p

⌉
−1
}

Figure 4.1 (cont): Minimal structures which correspond to a negative cycle with three

weight q arcs that cannot appear in a [p, q] representable interval

order: The left and right chains contain the same elements. Note:

u3�u1 if a≥
⌈
2q
p

⌉
, y2∩y3 if a+b=

⌈
2q
p

⌉
, x1∩x2 if b=

⌈
q
p

⌉
−1.
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x2

za+b

zd 2qp e+1

za+1

x3=y1

zd 3qp e

za+d qpe−1

za+b+1

y2

x1

za

za+b−d qpe+4

za+b−d qpe+3

za+b−d qpe+2

za+b−d qpe+1

za+b−d qpe
za+b−d qpe−1

za−d qpe+3

za−d qpe+2

za−d qpe+1

za−d qpe
zd qpe+1

zd qpe
zd qpe−1
zd qpe−2

za+b−d 2qp e+3

za+b−d 2qp e+2

za+b−d 2qp e+1

za+b−d 2qp e
za+b−d 2qp e−1
za+b−d 2qp e−2

z1

y3

u1

u2

u3

(iv)

a∈
{⌈

2q
p

⌉
+1, . . . , q−2

} (
thus b∈

{
1,2, . . . ,

⌈
q
p

⌉
−3
})

Figure 4.1 (cont): Minimal structures which correspond to a negative cycle with three

weight q arcs that cannot appear in a [p, q] representable interval

order
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x3

zd 3qp e

za+b+1

y2

x2

za+b

za+d qpe+3

za+d qpe+2

za+d qpe+1

za+d qpe
za+d qpe−1
za+d qpe−2

zd 2qp e+3

zd 2qp e+2

zd 2qp e+1

zd 2qp e
zd 2qp e−1
zd 2qp e−2

za+b−d qpe+3

za+b−d qpe+2

za+b−d qpe+1

za+b−d qpe
za+b−d qpe−1
za+b−d qpe−2

za+1

y1

x1

za

zd qpe+3

zd qpe+2

zd qpe+1

zd qpe
zd qpe−1
zd qpe−2

za+b−d 2qp e+3

za+b−d 2qp e+2

za+b−d 2qp e+1

za+b−d 2qp e
za+b−d 2qp e−1
za+b−d 2qp e−2

za−d qpe+3

za−d qpe+2

za−d qpe+1

za−d qpe
za−d qpe−1
za−d qpe−2

z1

y3

x3

zd 3qp e

za+b+1

y2

u1

u2

u3

(v)

b∈
{⌈

q
p

⌉
, . . .
⌊
β−1
2

⌋}

Figure 4.1 (cont): Minimal structures which correspond to a negative cycle with three

weight q arcs that cannot appear in a [p, q] representable interval

order: The left and right chains contain the same elements.
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Proposition 4.1.2. Let P be a poset. Let C be a minimal negative cycle in Dq
p(P ).

If C has exactly three weight q arcs, then P contains an induced subposet isomorphic

to one of the posets in F qp (3).

Proof. Let C be a minimal negative cycle in Dq
p(P ) with exactly three weight q arcs.

Let q=ps+d with d∈{1,2, . . . ,p−1} and gcd(p,d)=1. We have that β=
⌈
3q
p

⌉
=

3s+
⌈
3d
p

⌉
=


3s+1 d≤ p

3

3s+2 p
3
<d≤ 2p

3

3s+3 2p
3
<d

. There are three possible cycle structures to consider:

(1) the three positive weight arcs are adjacent on the cycle, (2) two of the positive

weight arcs are adjacent on the cycle and the third is not, and (3) no pair of positive

weight arcs is adjacent on C. By Lemma 2.2.4, we can draw C as in Figure 4.2.

z1`

z1r

z2 za x1 u1 y1
za+1

za+2 za+b
x2

u2 y2
za+b+1

za+b+2 zβ x3 u3 y3

Figure 4.2: Cycle in Dq
p(P ) with three weight q arcs

To simplify the calculations, we will disregard the weight −ε arcs when finding

cycle weights. Thus, if a cycle has weight 0 below, it will be considered a negative

cycle because all of the cycles considered have at least one weight −ε arc.

Without loss of generality assume a≥b≥3s+
⌈
3d
p

⌉
−a−b≥0. Thus,

a≥
⌈
1
3

(
3s+

⌈
3d
p

⌉)⌉
≥s+1. Note: If b=0 and/or 3s+

⌈
3d
p

⌉
−a−b=0, eliminate their

corresponding x and y elements. Now, consider the relationship between za−(s+1)

and u1 such that za−(s+1)=y3 if a=s+1. By transitivity, u1 6�za−(s+1). If za−(s+1)�
u1, then replacing za−(s+1)`

→u1r in C with the arc (za−(s+1)`
, u1r) creates a cycle

with weight 2q−p(3s+ d(3d)/pe− (s+ 1)) = 2(ps+d)−p(2s+ d(3d)/pe−1) = 2d−
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pd(3d)/pe+p=


2d d≤ p

3

2d−p p
3
<d≤ 2p

3

2d−2p 2p
3
<d

which is non-positive when d> 2p
3

or p
3
<d≤ p

2
. If

za−(s+1)∩u1, then replacing u1r→za−(s+1)`
in C with the arc (u1r, za−(s+1)`

) creates

a cycle with weight q−p(s+1)<0. Thus, when d> 2p
3

or p
3
<d≤ p

2
all relationships

between za−(s+1) and u1 yield shorter negative cycles. For the remainder of the

proof, we will assume that d≤ p
3

or p
2
<d≤ 2p

3
.

We also note that when p
2
<d≤ 2p

3
or d≤ p

3
,
⌈
3q
p

⌉
−
⌈
2q
p

⌉
=3s+

⌈
3d
p

⌉
−2s−

⌈
2d
p

⌉
={

s+1−1 d≤ p
3

s+2−2 p
2
<d≤ 2p

3

=
⌈
q
p

⌉
−1, and so

⌈
3q
p

⌉
−
⌈
q
p

⌉
=
⌈
2q
p

⌉
−1. We will use these facts

in the following cases.

Case 1. All three positive weight arcs are adjacent on the cycle.

By Lemma 2.2.4, we can represent the cycle as

z1r, z1`, z2r, z2`, . . . , zβr, zβ`,x1r,u1`,u1r,u2`,u2r,u3`,u3r,y1`, z1r.

By Corollary 2.2.8, x1 and y1 are unique. Cycle C contains both vertices corre-

sponding to each of the other elements. Thus, all elements labeled are distinct.

We have y1�z1�z2�·· ·�zβ�x1∩u1∩u2∩u3∩y1 (relationships i(1)e, i(1)f, i(2)f,

i(3)d, and i4 of Definition 4.1.1). See Figure 4.3. The relationships between u1 and

u1, y1, and zi for i∈{1,2, . . . ,β}, between u2 and x1, y1, and zi for i∈{1,2, . . . ,β},
and between u3 and x1 and zi for i∈{1,2, . . . ,β} must be determined.

z1`

z1r

z2 zβ x1 u1 u2 u3 y1

Figure 4.3: Cycle in Dq
p(P ) with three weight q arcs that are adjacent on C: Each

arc directed vertically downward has weight −p, each arc directed vertically

upward has weight q, arcs directed diagonally downward have weight 0, and

arcs directed diagonally upward have weight −ε.
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We will start with u1. By transitivity, u1 6�y1. If u1≺y1, then replacing y1`→u1r

in C with the arc (y1`,u1r) creates a cycle with weight 2q. If u1∩y1, then replacing

u1r→y1` in C with the arc (u1r,y1`) creates a cycle with weight q−p(β)<0.

If u1�zi, then replacing u1`→zir in C with the arc (u1`, zir) yields a shorter

negative cycle for i∈{1,2, . . . ,β}. If u1∩ zi, then replacing u1r→ zi` in C with

the arc (u1r, zi`) creates a cycle with weight q−p(β− i) which is positive for i∈{⌈
2q
p

⌉
, . . .β

}
, and replacing zir→u1` in C with the arc (zir,u1`) creates a cycle with

weight 3q−p(i−1)>0. If u1≺zi, then replacing zi`→u1r in C with the arc (zi`,u1r)

creates a cycle with weight 2q−p(i) which is positive for i∈
{

1,2, . . . ,
⌈
2q
p

⌉
−1
}

.

If u1�u3, then replacing u1`→u3r in C with the arc (u1`,u3r) creates a shorter

negative cycle. If u1≺u3, then replacing u3`→u1r in C with the arc (u3`, u1r)

creates a cycle with weight q>0. If u1∩u3, then replacing u1r→u3` in C with the

arc (u1r,u3`) creates a shorter negative cycle.

Thus, u1≺y1, u1≺zi for i∈
{

1,2, . . .
⌈
2q
p

⌉
−1
}

, u1∩zi for

i∈
{⌈

2q
p

⌉
, . . . ,β

}
, and u1≺u3 (relationships i(1)a, i(1)b, i(1)c, and i(1)d of Defi-

nition 4.1.1).

Similarly, for u3, if u3�x1, then replacing u3`→x1r in C with the arc (u3`,x1r)

creates a cycle with weight 2q>0. By transitivity, u3 6≺x1. If u3∩x1, then replacing

x1r→u3` in C with the arc (x1r,u3`) creates a cycle with weight q−p(β)<0.

If u3�zi, then replacing u3`→zir in C with the arc (u3`, zir) creates a cycle

with weight 2q−p(β−(i−1)) which is positive for i∈{s+2, . . . ,β}. If u3∩zi, then

replacing u3r→zi` in C with the arc (u3r, zi`) creates a cycle with weight 3q−p(β−
i)>0, and replacing zir→u3` in C with the arc (zir,u3`) creates a cycle with weight

q−p(i−1) which is positive for i∈{1,2, . . . , s+1}. By transitivity, u1 6≺zi.
Thus, u3�x1, u3∩zi for i∈{1,2, . . . s+1}, and u3�zi for

i∈{s+2, . . . ,β} (relationships i(3)a, i(3)b, and i(3)c of Definition 4.1.1).

For u2, if u2�y1, then replacing u2`→y1` in C with the path u2`,y1r,y1` creates a

shorter negative cycle. If u2≺y1, then replacing y1`→u2r in C with the arc (y1`,u2r)

creates a cycle with weight q>0. If u2∩y1, then replacing u2r→y1` in C with the

arc (u2r,y1`) creates a cycle with weight 2q−p(β)<0.
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If u2�zi then replacing u2`→zir in C with the arc (u2`, zir) creates a cycle with

weight q−p(β− (i−1)) which is positive for i∈
{⌈

2q
p

⌉
+1, . . . ,β

}
. If u2≺zi, then

replacing zi`→u2r in C with the arc (zi`,u2r) creates a cycle with weight q−p(i) for

i∈{1,2, . . . , s}. If u2∩zi, then replacing u2r→zi` in C with the arc (u2r, zi`) creates

a cycle with weight 2q−p(β−i) which is positive for i∈{s+1, . . . ,β} and replacing

zir→u2` in C with the arc (zir,u2`) creates a cycle with weight 2q−p(i−1) which

is positive for i∈
{

1,2, . . . ,
⌈
2q
p

⌉}
.

If u2�x1, then replacing u2`→x1r in C with the arc (u2`, x1r) creates a cycle

with weight q>0. If u2≺x1, then replacing x1r→u2r in C with the path x1r,x1`,u2r

creates shorter negative cycle. If u2∩x1, then replacing x1r→u2` in C with the arc

(x1r,u2`) creates a cycle with weight 2q−p(β)<0.

Thus, u2≺y1, u2≺zi for i∈{1,2, . . . , s}, u2∩zi for i∈
{
s+1, . . . ,

⌈
2q
p

⌉}
,

u2�zi for i∈
{⌈

2q
p

⌉
+1, . . . ,β

}
, and u2�x1 (relationships i(2)a, i(2)b, i(2)c,

i(2)d, and i(2)e of Definition 4.1.1).

The preceding analysis gives the following relationships which give poset (i) of

Definition 4.1.1:

1. u1,

(a) ≺y1,

(b) ≺zi for i∈
{

1,2, . . .
⌈
2q
p

⌉
−1
}

,

(c) ∩zi for i∈
{⌈

2q
p

⌉
, . . . ,β

}
,

(d) ≺u3,

(e) ∩x1,

(f) ∩u1,

2. u2

(a) ≺y1,

(b) ≺zi for i∈{1,2, . . . , s},

(c) ∩zi for i∈
{
s+1, . . . ,

⌈
2q
p

⌉}
,
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(d) �zi for i∈
{⌈

2q
p

⌉
+1, . . . ,β

}
,

(e) �x1,

(f) ∩u3,

3. u3,

(a) �x1,

(b) ∩zi for i∈{1,2, . . . s+1},

(c) �zi for i∈{s+2, . . . ,β},

(d) ∩y1,

4. y1�z1�z2�·· ·�zβ�x1.

Case 2. Two of the positive weight arcs are adjacent on C and the third is not.

Here, C can be written as

z1r, z1`, z2r, z2`, . . . , zar, za`,x1r,u1`,u1r,y1`, za+1r, za+1`, za+2r, za+2`, · · · , zβr, zβ`,x2r,

u2`,u2r,u3`,u3r,y2`, z1r.

This cycle is depicted in Figure 4.4. Each x,y, and z is distinct except possibly

x1,y1,yb+2, and x1, but by Corollary 2.2.8 they are also distinct.

z1`

z1r

z2 za x1 u1 y1
za+1

za+2 zβ x2 u2 u3 y2

Figure 4.4: Cycle in Dq
p(P ) with two adjacent weight q arcs and one not adjacent

Cycle C produces different structures based on the value of a. We have a∈
{1,2,β−1}. Now, a=β−a′ gives the vertical reflection of a=a′, so we will only

consider a∈{dβ/2e, . . . ,β−1}. We will first consider relationships in terms of a
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and then analyze them based on the value of a. Let b :=β−a. Cycle C gives

y2� z1� z2�·· ·� za�x1∩u1∩ y1� za+1�·· ·� zβ�x2∩u2∩u3∩ y2 (relationships

ii(3)g, ii(3)h, ii(4)i, ii(4)j, ii(5)h, ii9, and ii10 of Definition 4.1.1).

If u1�u2, then replacing u1`→u2r in C with the arc (u1`,u2r) creates a cycle with

weight q−p(a)<0. If u1≺u2, then replacing u2`→u1r in C with the arc (u2`, u1r)

creates a cycle with weight −p(β−a)<0. If u1∩u2 then replacing u1r→u2` in C with

the arc (u1r,u2`) creates a cycle with weight 3q−p(a)>0, and replacing u2r→u1` in

C with the arc (u2r,u1`) creates a cycle with weight 2q−p(β−a)>0.

If u1�u3, then replacing u1`→u3r in C with the arc (u1`, u3r) creates a cycle

with weight −p(a)<0. If u1≺u3, then replacing u3`→u1r in C with the arc (u3`,u1r)

creates a cycle with weight q−p(β−a) which is positive is a≥
⌈
2q
p

⌉
. If u1∩u3 then

replacing u1r→u3` in C with the arc (u1r,u3`) creates a cycle with weight 2q−p(a)

which is positive when a<
⌈
2q
p

⌉
, and replacing u3r→u1` in C with the arc (u3r,u1`)

creates a cycle with weight 3q−p(β−a)>0.

Thus, u1∩u2, and u1≺u3 if a≥
⌈
2q
p

⌉
and u1∩u3 if a<

⌈
2q
p

⌉
(relationships

ii1 and ii2 of Definition 4.1.1).

Let i∈{1,2, . . . ,a}. If u1�zi, then replacing u1`→zir in C with the arc (u1`, zir)

creates a cycle with weight −p(a−(i−1))<0. If u1�y2, then replacing u1`→y2` in

C with the path u1`,y2r,y2` creates a cycle with weight −p(a+1)<0. If u1≺zi, then

replacing zi`→u1r in C with the arc (zi`,u1r) creates a cycle with weight 2q−p(b+i)
which is positive for i∈

{
1,2, . . .a−

⌈
q
p

⌉}
. If u1≺y2, then replacing y2`→u1r in C

with the arc (z2`,u1r) creates a cycle with weight 2q−p(b)>0.

If u1∩zi, then replacing u1r→zi` in C with the arc (u1r, zi`) creates a cycle

with weight q−p(a− i) which is positive for i∈
{
a−
⌈
q
p

⌉
+1, . . . ,a

}
, and replacing

zir→u1` in C with the arc (zir,u1`) creates a cycle with weight 3q−p(b+(i−1))>0.

If u1∩y2, then replacing u1r→y2` in C with the arc (u1r, y2`) creates a cycle with

weight q−p(a)<0.

Thus, u1≺ y2, u1≺ zi for i∈
{

1,2, . . . ,a−
⌈
q
p

⌉}
and u1 ∩ zi for i∈{

a−
⌈
q
p

⌉
+1, . . . ,a

}
(relationships ii3(a)-(c) of Definition 4.1.1).

If u2�zi, then replacing u2`→zir in C with the arc (u2`, zir) creates a cycle
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with weight q− p(β− (i− 1)) which positive for i∈
{⌈

2q
p

⌉
+1, . . . ,a

}
. If u2� y2,

then replacing u2`→y2` in C with the path u2`, y2r, y2` creates a cycle with weight

q−p(β+1)<0. If u2�x1, then replacing u2`→x1r in C with the arc (u2`,x1r) creates

a cycle with weight q−p(b) which is positive when a≥
⌈
2q
p

⌉
.

If u2≺zi, then replacing zi`→u2r in C with the arc (zi`,u2r) creates a cycle with

weight q−p(i) which is positive for i∈
{

1,2, . . .
⌈
q
p

⌉
−1
}

. If u2≺y2, then replacing

y2`→u2r in C with the arc (y2`, u2r) creates a cycle with weight q>0. If u2≺x1,
then replacing x1r→u2r in C with the path x1r,x1`,u2r, creates a cycle with weight

q−p(a+1)<0.

If u2∩zi, then replacing u2r→zi` in C with the arc (u2r, zi`) creates a cycle with

weight 2q−p(β−i) which is positive for i∈
{⌈

q
p

⌉
, . . . ,a

}
, and replacing zir→u2` in

C with the arc (zir,u2`) creates a cycle with than 2q−p(i−1) which is positive for

i∈
{

1,2,3, . . . ,
⌈
2q
p

⌉}
. If u2∩y2, then replacing u2r→y2` in C with the arc (u2r, y2`)

creates a cycle with weight 2q−p(β)<0. If u2∩x1, then replacing u2r→x1r in C

with the path u2r, x1`, x1r creates a cycle with weight 3q−p(b)>0, and replacing

x1r→u2` in C with the arc (x1r, u2`) creates a cycle with than 2q−p(a) which is

positive if a<
⌈
2q
p

⌉
.

Thus, u2≺y2, u2≺zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉
−1
}

, u2∩zi for

i∈
{⌈

q
p

⌉
, . . . ,

⌈
2q
p

⌉}
, u2�zi for i∈

{⌈
2q
p

⌉
+1, . . . ,a

}
and

u2∩x1 a<
⌈
2q
p

⌉
u2�x1 a≥

⌈
2q
p

⌉
(relationships ii4(a)-(e) of Definition 4.1.1).

If u3� zi then replacing u3`→ zir in C with the arc (u3`, zir) creates a cycle

with weight 2q−p(β−(i−1)) which is positive for i∈{dq/pe+1, . . . ,a}. If u3�x1
then replacing u3`→x1r in C with the arc (u3`, x1r) creates a cycle with weight

2q−p(b)>0. By transitivity, u3 6≺zi and u3 6≺x1.
If u3∩zi, then replacing zir→u3` in C with the arc (zir,u3`) creates a cycle with

weight q−p(i−1) which is positive for i∈{1,2, . . . ,dq/pe}, and replacing u3r→zi`

in C with the arc (u3r, zi`) creates a cycle with weight 3q−p(β−i)>0. If u3∩x1,
then replacing x1r→u3` in C with the arc (x1r, u3`) creates a cycle with weight

q−p(a)<0.
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Thus, u3∩zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉}
, u3�zi for i∈

{⌈
q
p

⌉
+1, . . . ,a

}
, and

u3�x1 (relationships ii5(a)-(c) of Definition 4.1.1).

Let j ∈{a+1, . . . ,β}. If u1� zj, then replacing u1`→ zjr in C with the arc

(u1`, zjr) creates a cycle with weight 2q− p(β− (j− 1) +a) which is positive for

j∈
{
a+
⌈
q
p

⌉
+1, . . . ,β

}
. If u1�x2, then replacing u1`→x2r in C with the arc (u1`,x2r)

creates a cycle with weight 2q−p(a) which is positive if a<
⌈
2q
p

⌉
. By transitivity,

u1 6≺zj and u1 6≺x2.
If u1∩zj, then replacing u1r→zj` in C with the arc (u1r, zj`) creates a cycle with

weight 3q−p(β−j+a)>0, and replacing zjr→u1` in C with the arc (zjr,u1`) creates

a cycle with weight q−p(j−1−a) which is positive for j∈
{
a+1,a+2, . . . ,a+

⌈
q
p

⌉}
.

If u1∩x2, then replacing u1r→x2r in C with the path u1r, x2`, x2r creates a cycle

with weight 4q−p(a)>0, and replacing x2r→u1` in C with the arc (x2r,u1`) creates

a cycle with weight q−p(b) which is positive for a≥
⌈
2q
p

⌉
.

Thus, u1∩zj for j∈
{
a+1,a+2, . . . ,a+

⌈
q
p

⌉}
, u1�zj for

j∈
{
a+

⌈
q
p

⌉
+1, . . . ,β

}
, and

u1�x2 a<
⌈
2q
p

⌉
u1∩x2 a≥

⌈
2q
p

⌉ (relationships ii3(d)-(f) of Def-

inition 4.1.1).

By transitivity u2 6� zj and u2 6� y1. If u2≺ zj, then replacing zj`→u2r in C

with the arc (zj`, u2r) creates a cycle with weight 2q−p(j) which positive for j∈{
a+1,a+2, . . . ,

⌈
2q
p

⌉
−1
}

. If u2≺ y1, then replacing y1`→u2r in C with the arc

(y1`,u2r) creates a cycle with weight 2q−p(a) which positive for a<
⌈
2q
p

⌉
.

If u2∩zj, then replacing u2r→zj` in C with the arc (u2r, zj`) creates a cycle with

weight q−p(β−j) which is positive for j∈
{⌈

2q
p

⌉
, . . . ,β

}
, and replacing zjr→u2` in

C with the arc (zjr,u2`) creates a cycle with weight 3q−p(β−j+a)>0. If u2∩y1,
then replacing u2r→y1` in C with the arc (u2r, y1`) creates a cycle with weight

q−p(b) which is positive for a≥
⌈
2q
p

⌉
, and replacing y1`→u2` in C with the path

y−1`,y1r,u2` creates a cycle with weight 4q−p(a)>0.

Thus,

u2≺y1 a<
⌈
2q
p

⌉
u2∩y1 a≥

⌈
2q
p

⌉ , u2≺zj for j∈
{
a+1,a+2, . . . ,

⌈
2q
p

⌉
−1
}

, and
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u2∩zj for j∈
{⌈

2q
p

⌉
, . . . ,β

}
(relationships ii4(f)-(h) of Definition 4.1.1).

If u3�zj, then replacing u3`→zjr in C with the arc (u3`, zjr) creates a cycle

with weight q−p(β−(j−1)) which is positive for j∈
{⌈

2q
p

⌉
+1, . . . ,β

}
. If u3�y1,

then replacing u3`→y1` in C with the path u3`, y1r, y1` creates a cycle with weight

q−p(b+1) which is positive for a>
⌈
2q
p

⌉
. If u3�x2 then replacing u3`→x2r in C

with the arc (u3`,x2r) creates a cycle with weight q>0.

If u3≺zj, then replacing zj`→u3r in C with the arc (zj`,u3r) creates a cycle with

weight q−p(j)<0. If u3≺y1, then replacing y1`→u3r in C with the arc (y1`, u3r)

creates a cycle with weight q−p(a)<0. If u3≺x2, then replacing x2r→u3r in C with

the path x2r,x2`,u3r creates a cycle with weight q−p(β+1)<0.

If u3∩zj, then replacing u3r→zj` in C with the arc (u3r, zj`) creates a cycle

with weight 2q−p(β−j) which is positive for j∈
{⌈

q
p

⌉
, . . . ,β

}
={a+1, . . . ,β}, and

replacing zjr→u3` in C with the arc (zjr,u3`) creates a cycle with weight 2q−p(j−1)

which is positive for j∈
{
a+1,a+2, . . .

⌈
2q
p

⌉}
. If u3∩y1, then replacing y1`→u3` in

C with the path y1`, y1r,u3` creates a cycle with weight 3q−p(a)>0, and replacing

u3r→y1` in C with the arc (u3r, y1`) creates a cycle with weight 2q−p(b)>0. If

u3∩x2, then replacing x2r→u3` in C with the arc (x2r, u3`) creates a cycle with

weight 2q−p(β)≤0.

Thus,

 u3∩y2 a≤
⌈
2q
p

⌉
u3∩�y2 a>

⌈
2q
p

⌉ , u3∩zj for j∈
{
a+1,a+2, . . . ,

⌈
2q
p

⌉}
, u3�zj

for j∈
{⌈

2q
p

⌉
+1, . . . ,β

}
, and u3�x2 (relationships ii5(d)-(g) of Definition 4.1.1).

Lastly, we must consider the relationships between elements of the two chains.

We start with the maximal element of the second chain.

Let i∈{1,2, . . . ,a}. If y1�zi, then replacing y1`→zir in C with the arc (y1`, zir)

creates a cycle with weight q−p(a−(i−1)) which is positive for

i∈
{
a−
⌈
q
p

⌉
+2, . . . ,a

}
. If y1� y2, then replacing y1`→ y2` in C with the path

y1`, y2r, y2` creates a cycle with weight q−p(a+1)<0. If y1�x1, then replacing

y1`→x1r in C with the arc (y1`,x1r) creates a cycle with weight q>0.

If y1≺zi, then replacing zi`→y1` in C with the path zi`, y1r, y1` creates a cycle

with weight 2q−p(j+b+1) which is positive for i∈
{

1,2, . . . ,a−
⌈
q
p

⌉
−1
}

. If y1≺y2
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then replacing y2`→y1` in C with the path y2`, y1r, y1` creates a cycle with weight

2q−p(b+1)>0. If y1≺x2, then replacing za`→y1` with the path za`, y1r, y1` creates

a cycle with weight 2q−p(β+1)<0.

If y1∩zi, then replacing zir→y1` in C with the arc (zir,y1`) creates a cycle with

weight 2q−p(i−1+b) which is positive for i∈
{

1,2, . . . ,a−
⌈
q
p

⌉
+1
}

, and replacing

y1`→zi` in C with the path y1`,y1r, zi` creates a cycle with weight 2q−p(a−i) which

is positive for i∈
{
a−
⌈
2q
p

⌉
+1, . . . ,a

}
. If y1∩y2, then replacing y2`→y1` in C with

the path y2`,y2r,y1` creates a cycle with weight 3q−p(b)>0, and replacing y1`→y2`

in C with the path y1`,y1r,y2` creates a cycle with weight 2q−p(a) which is positive

when a<
⌈
2q
p

⌉
. If y1∩x1, then replacing x1r→y1` in C with the arc (x1r,y1`) creates

a cycle with weight 2q−p(β)<0.

Thus,

y1≺∩y2 a<
⌈
2q
p

⌉
y1≺y2 a≥

⌈
2q
p

⌉ , y1≺zi for i∈
{

1,2, . . . ,a−
⌈
2q
p

⌉}
, y1≺∩zi

for i∈
{
a−

⌈
2q
p

⌉
+1, . . . ,a−

⌈
q
p

⌉
−1
}

, y1∩zi for i∈
{
a−

⌈
q
p

⌉
, . . . ,a−

⌈
q
p

⌉
+1
}

,

y1�zi for i∈
{
a−

⌈
q
p

⌉
+2, . . . ,a

}
, and y1�x1 (relationships ii6(a)-(f) of Defi-

nition 4.1.1).

We will analyze the relationship of the remaining elements of the second chain

to each element of the first, starting with the minimal element of the second chain,

and then the middle elements.

If x2�zi, then replacing x2r→zir in C with the path x2r,x2`, zir creates a cycle

with weight q−p(β+1−(i−1)) which is positive for i∈
{⌈

2q
p

⌉
+2, . . . ,a

}
. If x2�y2,

then replacing x2r→y2` in C with the path x2r,x2`,y2r,y2` creates a cycle q−p(β+

2)<0. If x2�x1, then replacing x2r→x1r in C with the path x2r,x2`,x1r creates a

cycle with weight q−p(b+1) which is positive for a>
⌈
2q
p

⌉
.

If x2≺zi, then replacing zi`→x2r in C with the arc (zi`,x2r) creates a cycle with

weight 2q−p(i) which is positive for i∈
{

1,2, . . . ,
⌈
2q
p

⌉
−1
}

. If x2≺y2, then replacing

y2`→x2r in C with the arc (y2`, x2r) creates a cycle with weight 2q>0. If x2≺x1,
then replacing x1r→x2r in C with the path x1r,x1`,x2r creates a cycle with weight

2q−p(a+1) which is positive for a<
⌈
2q
p

⌉
−1.

If x2∩zi, then replacing zir→x2r in C with the path zir,x2`,x2r creates a cycle
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with weight 3q−p(i−1)>0, and replacing x2r→zi` in C with the arc (x2r, zi`) creates

a cycle with weight q−p(β−i) which is positive for i∈
{⌈

2q
p

⌉
, . . . ,a

}
. If x2∩y2, then

replacing x2r→y2` in C with the arc (x2r,y2`) creates a cycle with weight q−p(β)<0.

If x2∩x1, then replacing x2r→x1r in C with the path x2r, x1`, x1r creates a cycle

with weight 2q−p(b)>0, and replacing x1r→x2r in C with the path x1r, x2`, x2r

creates a cycle with weight 3q−p(a)>0.

Thus, x2≺y2, x2≺zi for i∈
{

1,2, . . . ,
⌈
2q
p

⌉
−1
}

, x2∩zi for

i∈
{⌈

2q
p

⌉
, . . . ,

⌈
2q
p

⌉
+1
}

, x2∩�zi for i∈
{⌈

2q
p

⌉
+2, . . . ,a

}
, and

x2≺∩x1 a<
⌈
2q
p

⌉
−1

x2∩x1

⌈
2q
p

⌉
−1≤a≤

⌈
2q
p

⌉
x2�x1 a>

⌈
2q
p

⌉ (relationships ii8(a)-(e) of Definition 4.1.1).

Let j∈{a+1, . . .β}. If zj�zi, then replacing zj`→zir in C with the arc (zj`, zir)

creates a cycle with weight q−p(j−(i−1)) which is positive for

i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a

}
. If zj � y2, then replacing zj`→ y2` in C with the path

zj`, y2r, y2` creates a cycle with weight q−p(j+1)<0. If zj�x1, then replacing

zj`→x1r in C with the arc (zj`,x1r) creates a cycle with weight q−p(j−a) which is

positive for j<a+
⌈
q
p

⌉
.

If zj≺ zi, then replacing zi`→ zjr in C with the arc (zi`, zjr) creates a cycle

with weight 2q−p(i+β−(j−1)) which is positive for i∈
{

1,2, . . . , j−
⌈
q
p

⌉
−1
}

. If

zj≺y2, then replacing y2`→ zjr in C with the arc (y2`, zjr) creates a cycle with

weight 2q−p(β−(j−1)) which is positive for j>
⌈
q
p

⌉
which is always true. If zj≺x1,

then replacing x1r→zjr in C with the path x1r,x1`, zjr creates a cycle with weight

2q−p(a+1+β−(j−1)) which is positive when j>a+
⌈
q
p

⌉
+1.

If zj ∩ zi, then replacing zir→ zj` in C with the arc (zir, zj`) creates a cycle

with weight 2q−p(i−1+β−j) which is positive for i∈
{

1,2, . . . , j−
⌈
q
p

⌉
+1
}

, and

replacing zjr→zi` in C with the arc (zjr, zi`) creates a cycle with weight q−p(j−1−i)
which is positive for i∈

{
j−
⌈
q
p

⌉
, . . . ,a

}
. If zj∩y2, then replacing zjr→y2` in C with

the arc (zjr,y2`) creates a cycle with weight q−p(j−1)<0. If zj∩x1, then replacing

zjr→x1r in C with the path zjr,x1`,x1r creates a cycle with weight 2q−p(j−1−a)>

0, and replacing x1r→zj` in C with the arc (x1r, zj`) creates a cycle with weight
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2q−p(a+β−j) which is positive for j≥a+
⌈
q
p

⌉
.

Thus, for j∈{a+1,a+2, . . .β}, zj≺y2, zj≺zi for

i∈
{

1,2, . . . , j−
⌈
q
p

⌉
−1
}

, zj ∩ zi for i∈
{
j−
⌈
q
p

⌉
, j−

⌈
q
p

⌉
+1
}

, zj � zi for

i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a

}
, and


zj�x1 j<a+

⌈
q
p

⌉
zj∩x1 a+

⌈
q
p

⌉
≤j≤a+

⌈
q
p

⌉
+1

zj≺∩x1 j>a+
⌈
q
p

⌉
+1

(relationships

ii7(a)-(e) of Definition 4.1.1).

Finally we will analyze the bold relationships based on the value of a. We first

consider a≥
⌈
2q
p

⌉
and then a<

⌈
2q
p

⌉
.

Case 2.1. a≥
⌈
2q
p

⌉
We have the following relationships, which are marked with a (*) if they are

impacted by the value of a:

1. u1∩u2,

2. u1≺u3 (*),

3. u1,

(a) ≺y2,

(b) ≺zi for i∈
{

1,2, . . . ,a−
⌈
q
p

⌉}
,

(c) ∩zi for i∈
{
a−
⌈
q
p

⌉
+1, . . . ,a

}
,

(d) ∩zj for j∈{a+1,a+2, . . . ,β} (*),

(f) ∩x2 (*),

4. u2,

(a) ≺y2,

(b) ≺zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉
−1
}

,

(c) ∩zi for i∈
{⌈

q
p

⌉
, . . . ,

⌈
2q
p

⌉}
,
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(d) �zi for i∈
{⌈

2q
p

⌉
+1, . . . ,a

}
,

(e) �x1 (*),

(f) ∩y1 (*),

(h) ∩zj for j∈{a+1,a+2, . . . ,β} (*),

5. u3,

(a) ∩zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉}
,

(b) �zi for i∈
{⌈

q
p

⌉
+1, . . . ,a

}
,

(c) �x1,

(d)

 ∩y2 a=
⌈
2q
p

⌉
∩�y2 a>

⌈
2q
p

⌉ , (*)

(f) �zj for j∈{a+1, . . . ,β} (*),

(g) �x2,

6. y1,

(a) ≺y2 (*),

(b) ≺zi for i∈
{

1,2, . . . ,a−
⌈
2q
p

⌉}
,

(c) ≺∩zi for i∈
{
a−
⌈
2q
p

⌉
+1, . . . ,a−

⌈
q
p

⌉
−1
}

,

(d) ∩zi for i∈
{
a−
⌈
q
p

⌉
, . . . ,a−

⌈
q
p

⌉
+1
}

,

(e) �zi for i∈
{
a−
⌈
q
p

⌉
+2, . . . ,a

}
,

(f) �x1,

7. zj for j∈{a+1, . . .β},

(a) ≺y2,

(b) ≺zi for i∈
{

1,2, . . . , j−
⌈
q
p

⌉
−1
}

,

(c) ∩zi for i∈
{
j−
⌈
q
p

⌉
, j−

⌈
q
p

⌉
+1
}

,
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(d) �zi for i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a

}
,

(e) �x1 (*),

8. x2,

(a) ≺y2,

(b) ≺zi for i∈
{

1,2, . . . ,
⌈
2q
p

⌉
−1
}

,

(c) ∩zi for i∈
{⌈

2q
p

⌉
, . . . ,

⌈
2q
p

⌉
+1
}

,

(d) ∩�zi for i∈
{⌈

2q
p

⌉
+2, . . . ,a

}
,

(e)

 ∩x1 a=
⌈
2q
p

⌉
x2�x1 a>

⌈
2q
p

⌉(*).

The relationships in the list above are the relationships of the left poset of Figure

4.1ii.

Case 2.2.
(⌈

3q
2p

⌉
≤
)
a<
⌈
2q
p

⌉
Again, relationships that are impacted by the value of a are marked with a (*).

We have the following relationships:

1. u1∩u2,

2. u1∩u3 (*),

3. u1,

(a) ≺y2,

(b) ≺zi for i∈
{

1,2, . . . ,a−
⌈
q
p

⌉}
,

(c) ∩zi for i∈
{
a−
⌈
q
p

⌉
+1, . . . ,a

}
,

(d) ∩zj for j∈
{
a+1,a+2, . . . ,a+

⌈
q
p

⌉}
,

(e) �zj for j∈
{
a+
⌈
q
p

⌉
+1, . . . ,β

}
(f) �x2 (*),
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4. u2,

(a) ≺y2,

(b) ≺zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉
−1
}

,

(c) ∩zi for i∈
{⌈

q
p

⌉
, . . . ,a

}
(*),

(e) ∩x1 (*),

(f) ≺y1 (*),

(g) ≺zj for j∈
{
a+1,a+2, . . . ,

⌈
2q
p

⌉
−1
}

,

(h) ∩zj for j∈
{⌈

2q
p

⌉
, . . . ,β

}
,

5. u3,

(a) ∩zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉}
,

(b) �zi for i∈
{⌈

q
p

⌉
+1, . . . ,a

}
,

(c) �x1,

(d) ∩y2 (*),

(e) ∩zj for j∈
{
a+1,a+2, . . . ,

⌈
2q
p

⌉}
,

(f) �zj for j∈
{⌈

2q
p

⌉
+1, . . . ,β

}
,

(g) �x2,

6. y1,

(a) ≺∩y2 (*),

(c) ≺∩zi for i∈
{

1, . . . ,a−
⌈
q
p

⌉
−1
}

(*),

(d) ∩zi for i∈
{
a−
⌈
q
p

⌉
, . . . ,a−

⌈
q
p

⌉
+1
}

,

(e) �zi for i∈
{
a−
⌈
q
p

⌉
+2, . . . ,a

}
,

(f) �x1,

7. zj for j∈{a+1,a+2, . . .β},
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A. zj for j∈
{
a+1,a+2, . . .a+

⌈
q
p

⌉
−1
}

,

(a) ≺y2,

(b) ≺zi for i∈
{

1,2, . . . , j−
⌈
q
p

⌉
−1
}

,

(c) ∩zi for i∈
{
j−
⌈
q
p

⌉
, j−

⌈
q
p

⌉
+1
}

,

(d) �zi for i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a

}
,

(e) �x1 (*),

B. za+d qpe,

(a) ≺y2,

(b) ≺zi for i∈{1,2, . . . ,a−1} (*),

(c) ∩za (*),

(e) ∩x1 (*),

C. za+d qpe+1,

(a) ≺y2,

(b) ≺zi for i∈{1,2, . . . ,a}, (*)

(e) ∩x1 (*),

D. zj for j∈
{
a+
⌈
q
p

⌉
+2, . . . ,β

}
,

(a) ≺y2,

(b) ≺zi for i∈{1,2, . . . ,a} (*),

(e) ≺∩x1 (*),

8. x2,

(a) ≺y2,

(b) ≺zi for i∈{1,2, . . . ,a} (*),

(e)

≺∩x1 a<
⌈
2q
p

⌉
−1

∩x1 a=
⌈
2q
p

⌉
−1

(*).

The relationship listed above are the relationships in the right poset of Figure

4.1ii.
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Case 3. None of the three positive weight arcs are adjacent on C.

This cycle is depicted in Figure 4.5. We will again consider two cases based

on the value of b. We will assume that a≥ b≥β−a− b. Thus,
⌈
q
p

⌉
≤a≤β−2,

1≤b≤
⌊
β−1
2

⌋
, and 1≤β−a−b≤

⌊
q
3

⌋
. The other combinations of a and b will produce

vertical reflections of the structures produced using this convention. The cycle gives

relationships ii(4)k, ii(4)l, ii(5)k, ii(5)l, ii(6)j, ii(6)k, ii10, ii11, and ii11 of Definition

4.1.1.

z1`

z1r

z2 za x1 u1 y1
za+1

za+2 za+b
x2

u2 y2
za+b+1

za+b+2 zβ x3 u3 y3

Figure 4.5: Cycle in Dq
p(P ) with three non-adjacent weight q arcs

All elements labeled in C are distinct except possibly x1, y1, x2, y2, x3, and y3.

Since C uses xir for each x vertex and yj` for each y vertex, the x vertices are distinct

from each other and the y vertices are distinct from each other. By Corollary 2.2.8,

x1 is distinct from y3 and y1, x2 is distinct from y1 and y2, and x3 is distinct from y2

and y3. That leaves x1 and y2, x2 and y3, and x3 and y1. In the language of Lemma

2.2.7, α1 =α2 =α3 =1, β1 =a, β2 =b, and β3 =β−a−b. Now, 1+a+(β−a−b)=

1+β1+β3≥
⌈
q
p

⌉
, so by Lemma 2.2.7(a)(ii), x1 and y2 are distinct. Also, 1+a+b=

1+β1+β2≥
⌈
q
p

⌉
, so x2 and y2 are distinct. Next, if 1+b+(β−a−b)=1+β2+β3<

⌈
q
p

⌉
and a=β1≥

⌈
2q
p

⌉
, then Lemma 2.2.7 does not exclude x3 and y1 from being the same

element. Thus, if a=β1≥
⌈
2q
p

⌉
, we must consider the case that x3=y1 and the case

that they are not the same element.

In the following analysis we will again disregard the weight −ε arcs when calcu-

lating cycle weights. Thus, a cycle with weight zero is actually a negative cycle once

the −ε arcs are included. The following relationships are common to all minimal
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cycles with this structure.

First, we consider the relationships among the three u elements.

If u1≺u2, then replacing u2`→u1r in C with the arc (u2`, u1r) creates a cycle

with no positive weight edges. If u1�u2, then replacing u1`→u2r in C with the arc

(u1`, u2r) creates a cycle with weight q−p(a+β−a−b)=q−p(β−b)<0. If u1∩u2,
then replacing u1r→u2` in C with the arc (u1r, u2`) creates a cycle with weight

3q−p(β−b)>0 and replacing u2r→u1` in C with the arc (u2r,u1`) creates a cycle

with weight 2q−p(b)>0.

If u3≺u2, then replacing u2`→u3r in C with the arc (u2`,u3r) creates a cycle with

weight q−p(a+b)<0. If u3�u2, then replacing u3`→u2r in C with the arc (u3`,u2r)

creates a cycle with no positive weight edges. If u3∩u2, then replacing u2r→u3` in

C with the arc (u2r,u3`) creates a cycle with weight 3q−p(a+b)>0 and replacing

u3r→u2` in C with the arc (u3r,u2`) creates a cycle with weight 2q−p(β−a−b)>0.

Thus, u1∩u2 and u2∩u3 (relationships ii1 and ii2 of Definition 4.1.1).

If u3�u1, then replacing u3`→u1r in C with the arc (u3`, u1r) creates a cycle

with weight q−p(β−a) which is positive if a≥
⌈
2q
p

⌉
. If u3≺u1, then replacing

u1`→u3r in C with the arc (u1`,u3r) creates a cycle with no positive weight edges.

If u3∩u1, then replacing u1r→u3` in C with the arc (u1r,u3`) creates a cycle with

weight 2q−p(a) which is positive if a<
⌈
2q
p

⌉
, and replacing u3r→u1` in C with the

arc (u3r,u1`) creates a cycle with weight 3q−p(β−a)>0.

Thus, u3�u1 if a≥
⌈
2q
p

⌉
, and u3∩u1 if a<

⌈
2q
p

⌉
(relationship ii3 of Defini-

tion 4.1.1).

Next, we consider the relationships between the u elements and the elements of

the chains.

If u1�y3, then there is a transitivity issue since y3�x1 and x1∩u1. If u1∩y3
then replacing u1r→y3` in C with the arc (u1r, y3`) creates a cycle with weight

q−p(a)≤q−p
⌈
q
p

⌉
<0. If u1≺y3, then replacing y3`→u1r in C with the arc (y3`,u1r)

creates a cycle with weight 2q−p(β−a)>2q−p
⌊
2q
p

⌋
>0.

Let i∈{1,2, . . . ,a}. If u1�zi, then replacing u1`→zir in C with the arc (u1`, zir)

creates a cycle with weight −p(a− (i−1))<0. If u1≺zi, then replacing zi`→u1r

77



in C with the arc (zi`, u1r) creates a cycle with weight 2q−p(β−a+ i) which is

positive for i∈
{

1,2, . . . ,a−
⌈
q
p

⌉}
. If u1 ∩ zi, then replacing u1r→ zi` in C with

the arc (u1r, zi`) creates a cycle with weight q−p(a− i) which is positive for i∈{
a−
⌈
q
p

⌉
+1, . . . ,a

}
, and replacing zir→u1` in C with the arc (zir, u1`) creates a

cycle with weight 3q−p(β−a+i−1)>0.

Thus, u1≺ y3, u1≺ zi for i∈
{

1,2, . . . ,a−
⌈
q
p

⌉}
, and u1 ∩ zi for i∈{

a−
⌈
q
p

⌉
+1, . . . ,a

}
(relationships ii4(a)-(c) of Definition 4.1.1).

If u2�y3, then replacing u2`→y3` in C with the path u2`,y3r,y3` creates a cycle

with weight q−p(a+b+1)<0. If u2∩y3, then replacing u2r→y3` in C with the

arc (u2r, y3`) creates a cycle with weight 2q−p(a+b)<0. If u2≺y3, then replacing

y3`→u2r in C with the arc (y3`, u2r) creates a cycle with weight q−p(β−a−b)>
q−p

⌊
q
p

⌋
>0.

Let i∈{1,2, . . . ,a}. If u2�zi, then replacing u2`→zir in C with the arc (u2`, zir)

creates a cycle with weight q−p(a+b−(i−1)) which is positive for

i∈
{
a+b−

⌈
q
p

⌉
+2, . . . ,a

}
. If u2≺ zi, then replacing zi`→u2r in C with the arc

(zi`, u2r) creates a cycle with weight q− p(i+β−a− b) which is positive for i∈{
1,2, . . . ,a+b−

⌈
2q
p

⌉}
. If u2∩zi, then replacing u2r→zi` in C with the arc (u2r, zi`)

creates a cycle with weight 2q−p(a+b−i) which is positive for

i∈
{
a+b−

⌈
2q
p

⌉
+1, . . . ,a

}
, and replacing zir→u2` in C with the arc (zir,u2`) creates

a cycle with weight 2q−p(i−1+β−a−b) which is positive for

i∈
{

1,2, . . . ,a+b−
⌈
q
p

⌉
+1
}

.

If u2�x1, then replacing u2`→x1r in C with the arc u2`,x1r creates a cycle with

weight q−p(b), which is positive if b<
⌈
q
p

⌉
. If u2≺x1, then replacing x1r→u2r in C

with the path x1r,x1`,u2r creates a cycle with weight q−p(β−b+1)<0. If u2∩x1,
then replacing u2r→x1r in C with the path u2r,x1`,x1r creates a cycle with weight

3q−p(b)>0, and replacing x1r→u2` in C with the arc (x1r,u2`) creates a cycle with

weight 2q−p(β−b) which is positive when b≥
⌈
q
p

⌉
.

Thus, u2≺ y3, u2≺ zi for i∈
{

1,2, . . . ,a+b−
⌈
2q
p

⌉}
, u2 ∩ zi for i∈{

a+b−
⌈
2q
p

⌉
+1, . . . ,a+b−

⌈
q
p

⌉
+1
}

, u2�zi for i∈
{
a+b−

⌈
q
p

⌉
+2, . . . ,a

}
,
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and

u2�x1 b<
⌈
q
p

⌉
u2∩x1 b≥

⌈
q
p

⌉ (relationships ii5(a)-(e) of Definition 4.1.1).

Let i∈{1,2, . . . ,a}. If u3�zi, then replacing u3`→zir in C with the arc (u3`, zir)

creates a cycle with weight 2q−p(β−(i−1)) which is positive for i∈
{⌈

q
p

⌉
+1, . . . ,a

}
.

If u3≺zi, then replacing zi`→u3r in C with the arc (zi`, u3r) creates a cycle with

weight −p(i)<0. If u3∩zi, then replacing u3r→zi` in C with the arc (u3r, zi`) creates

a cycle with weight 3q−p(β−i)>0, and replacing zir→u3` in C with the arc (zir,u3`)

creates a cycle with weight q−p(i−1) which is positive for i∈
{

1,2, . . . ,
⌈
q
p

⌉}
.

If u3�x1, then replacing u3`→x1r in C with the arc u3`, x1r creates a cycle

with weight 2q−p(β−a)>0. If u3≺x1, then replacing x1r→u3r in C with the

path x1r,x1`,u3r creates a cycle with weight −p(a+1)<0. If u3∩x1, then replacing

x1r→u3` in C with the arc (x1r,u3`) creates a cycle with weight q−p(a)<0.

Thus, u3∩zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉}
, u3�zi for i∈

{⌈
q
p

⌉
+1, . . . ,a

}
, and

u3�x1 (relationships ii6(a)-(c) of Definition 4.1.1).

Let i∈{a+1, . . . ,a+b}. If u1≺zi or u1≺x2, then there is a transitivity issue since

u1∩y1�zi�x2. If u1�zi, then replacing u1`→zir in C with the arc (u1`, zir) creates a

cycle with weight 2q−p(β−(i−1)+a) which is positive for i∈
{
a+
⌈
q
p

⌉
+1, . . . ,a+b

}
.

If u1∩zi, then replacing u1r→zi` in C with the arc (u1r, zi`) creates a cycle with

weight 3q−p(β−i+a)>0, and replacing zir→u1` in C with the arc (zir,u1`) creates

a cycle with weight q−p(i−1−a)>0 which is positive for i∈
{

1,2, . . . ,a+
⌈
q
p

⌉}
.

If u1�x2, then replacing u1`→x2r in C with the arc (u1`, x2r) creates a cycle

with weight 2q−p(β−b) which is positive when b≥
⌈
q
p

⌉
. If u1∩x2, then replacing

u1r→x2r in C with the path u1r,x2`,x2r creates a cycle with weight 4q−p(β−b)>0,

and replacing x2r→u1` in C with the arc (x2r, u1`) creates a cycle with weight

q−p(b) which is positive when b<
⌈
q
p

⌉
.

Thus, u1∩zi for i∈
{
a+1, . . . ,a+

⌈
q
p

⌉}
, u1�zi for

i∈
{
a+

⌈
q
p

⌉
+1, . . . ,a+b

}
, and

u1∩x2 b<
⌈
q
p

⌉
u1�x2 b≥

⌈
q
p

⌉ (relationships ii4(d)-(f) of

Definition 4.1.1).

Let i∈{a+1, . . .a+b}. If u2�y1 or u2�zi, then there is a transitivity issue since
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y1�zi�x2∩u2. If u2≺y1, then replacing y1`→u2r in C with the arc (y1`,u2r) creates

a cycle with weight 2q−p(β−b), which is positive if b≥
⌈
q
p

⌉
. If u2∩y1, then replacing

u2r→y1` in C with the arc (u2r, y1`) creates a cycle with weight q−p(b) which is

positive if b<
⌈
q
p

⌉
, and replacing y1`→u2` in C with the path y1`, y1r,u2` creates a

cycle with weight 4q−p(β−b)>0.

If u2≺zi, then replacing zi`→u2r in C with the arc (zi`,u2r) creates a cycle with

weight 2q−p(i+β−a−b) which is positive for i∈
{
a+1, . . . ,a+b−

⌈
q
p

⌉}
. If u2∩zi,

then replacing u2r→ zi` in C with the arc (u2r, zi`) creates a cycle with weight

q−p(a+b− i)>0 which is positive for i∈
{
a+b−

⌈
q
p

⌉
+1, . . . ,a+b

}
, and replacing

zir→u2` in C with the arc (zir,u2`) creates a cycle with weight 3q−p(i−1+β−a−
b)>0.

Thus,

u2∩y1 b<
⌈
q
p

⌉
u2≺y1 b≥

⌈
q
p

⌉ , u2≺zi for i∈
{
a+1, . . . ,a+b−

⌈
q
p

⌉}
, and

u2∩zi for i∈
{
a+b−

⌈
q
p

⌉
+1, . . . ,a+b

}
(relationships ii5(f)-(h) of Definition

4.1.1).

If u3�y1, then replacing u3`→y1` in C with the path (u3`, y1`, y1r) creates a

cycle of weight q−p(β−a+1) which is positive if a>
⌈
2q
p

⌉
. If u3≺y1, then replacing

y1`→u3r in C with the arc (y1`, u3r) creates a cycle with weight q−p(a)<0. If

y1∩u3, then replacing u3r→y1` in C with the arc (u3r, y1`) creates a cycle with

weight 2q−p(β−a)>0, and replacing y1`→u3` in C with the path y1`, y1r, u3`)

creates a cycle with weight 3q−p(a)>0.

Let i∈{a+1, . . . ,a+b}. If u3≺zi, then replacing zi`→u3r in C with the arc

(zi`,u3r) creates a cycle with weight q−p(i) which is positive if i<
⌈
q
p

⌉
, but a≥

⌈
q
p

⌉
.

If u3�zi, then replacing u3`→zir in C with the arc (u3`, zir) creates a cycle with

weight q− p(β− (i− 1)) which is positive for i∈
{⌈

2q
p

⌉
+1, . . . ,a+b

}
. If u3 ∩ zi,

then replacing zir→u3` in C with the arc (zir, u3`) creates a cycle with weight

2q−p(i−1) which is positive for i∈
{
a+1, . . . ,

⌈
2q
p

⌉}
, and replacing u3r→zi` in C

with the arc (u3r, zi`) creates a cycle with weight 2q−p(β−i) which is positive for

i∈
{⌈

q
p

⌉
, . . . ,a+b

}
={a+1, . . . ,a+b}.

If u3≺x2, then replacing x2r→u3r in C with the path x2r,x2`,u3r creates a cycle
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with weight q−p(a+b+1)<0. If u3�x2, then replacing u3`→x2r in C with the arc

(u3`, x2r) creates a cycle with weight q−p(β−a−b)>0. If u3∩x2, then replacing

x2r→u3r in C with the arc (x2r,u3r) creates a cycle with weight q−p(a+b)<0.

Thus,

u3∩�y1 a>
⌈
2q
p

⌉
u3∩y1 a≤

⌈
2q
p

⌉ , u3∩zi for i∈
{
a+1, . . . ,

⌈
2q
p

⌉}
, u3�zi for

i∈
{⌈

2q
p

⌉
+1, . . . ,a+b

}
, and u3�x2 (relationships ii6(d)-(g) of Definition 4.1.1).

If u1�y2, then replacing u1`→y2` in C with the path u1`,y2r,y2` creates a cycle

with weight q− p(a)< 0. If u1≺ y2, then replacing y2`→u1r in C with the arc

(y2`, u1r) creates a cycle with weight q−p(b) which is positive when b<
⌈
q
p

⌉
. If

u1∩y2, then replacing u1r→y2` in C with the arc (u1r, y2`) creates a cycle with

weight 2q−p(β−b) which is positive when b≥
⌈
q
p

⌉
, and replacing y2`→u1` in C with

the path y2`,y2r,u1` creates a cycle with weight 3q−p(b)>0.

Let i∈{a+b+1, . . . ,β}. If u1�zi, then replacing u1`→zir in C with the arc

(u1`, zir) creates a cycle with weight q− p(β − (i− 1) + a) which is positive for

i∈
{
a+
⌈
2q
p

⌉
+1, . . . ,β

}
=∅. If u1≺zi, then replacing zi`→u1r in C with the arc

(zi`,u1r) creates a cycle with weight q−p(i−a) which is positive for

i∈
{
a+b+1, . . . ,a+

⌈
q
p

⌉
−1
}

. If u1 ∩ zi, then replacing u1r→ zi` in C with the

arc (u1r, zi`) creates a cycle with weight 2q− p(β − i+ a) which is positive for

i∈
{
a+
⌈
q
p

⌉
, . . . ,β

}
, and replacing zir→u1` in C with the arc (zir, u1`) creates a

cycle with weight 2q−p(i−1−a) which is positive for i∈
{
a+b+1, . . . ,a+

⌈
2q
p

⌉}
=

{a+b+1, . . . ,β}.
If u1≺x3, then replacing x3r→u1r in C with the path x3r,x3`,u1r creates a cycle

with weight q−p(β−a+1) which is positive for a>
⌈
2q
p

⌉
. If u1�x3, then replacing

u1`→x3r in C with the arc u1`,x3r creates a cycle with weight q−p(a)<0. If u1∩x3,
then replacing u1r→x3r in C with the path u1r,x3`,x3r creates a cycle with weight

3q−p(a)>0, and replacing x3r→u1` in C with the arc (x3r,u1`) creates a cycle with

weight 2q−p(β−a)>0.

Thus,

u1≺y2 b<
⌈
q
p

⌉
u1∩y2 b≥

⌈
q
p

⌉ , u1≺zi for i∈
{
a+b+1, . . . ,a+

⌈
q
p

⌉
−1
}

, u1∩zi
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for i∈
{
a+

⌈
q
p

⌉
, . . . ,β

}
, and

u1≺∩x3 a>
⌈
2q
p

⌉
u1∩x3 a≤

⌈
2q
p

⌉ (relationships ii4(g)-(j) of

Definition 4.1.1).

Let i∈{a+b+1, . . . ,β}. If u2≺zi or u2≺x3, then there is a transitivity issue since

y2�zi�x3 and y2∩u2. If u2�zi, then replacing u2`→zir in C with the arc (u2`, zir)

creates a cycle with weight 2q−p(β−(i−1)+a+b)<0 since a+b≥
⌈
2q
p

⌉
. If u2∩zi,

then replacing u2r→zi` in C with the arc (u2r, zi`) creates a cycle with weight 3q−
p(β−i+a+b)>0, and replacing zir→u2` in C with the arc (zir,u2`) creates a cycle

with weight q−p(i−1−a−b) which is positive for i∈
{
a+b+1, . . . ,a+b+

⌈
q
p

⌉
+1
}

=

{a+b+1, . . . ,β}.
If u2�x3, then replacing u2`→x3r in C with the arc (u2`, x3r) creates a cycle

with weight 2q−p(a+b)<0. If u2∩x3, then replacing u2r→x3r in C with the path

u2r,x3`,x3r creates a cycle with weight 4q−p(a+b)>0, and replacing x3r→u2` in C

with the arc (x3r,u2`) creates a cycle with weight q−p(β−a−b)>0.

Thus, u2∩zi for i∈{a+b+1, . . . ,β} and u2∩x3 (relationships ii5(i)-(j) of

Definition 4.1.1).

Let i∈{a+b+1, . . .β}. If u3�y2 or u3�zi, then there is a transitivity issue since

y2�zi�x3 and x3∩u3. If u3≺y2, then replacing y2`→u3r in C with the arc (y2`,u3r)

creates a cycle with weight 2q−p(a+b)<0. If u3∩y2, then replacing u3r→y2` in C

with the arc (u3r, y2`) creates a cycle with weight q−p(β−a−b)>0, and replacing

y2`→u3` in C with the path y2`,y2r,u3` creates a cycle with weight 4q−p(a+b)>0.

If u3≺zi, then replacing zi`→u3r in C with the arc (zi`,u3r) creates a cycle with

weight 2q−p(i)<0 since a+b≥
⌈
2q
p

⌉
. If u3∩zi, then replacing u3r→zi` in C with

the arc (u3r, zi`) creates a cycle with weight q−p(β−i)>0, and replacing zir→u3`

in C with the arc (zir,u3`) creates a cycle with weight 3q−p(i−1)>0.

Thus, u3∩y2 and u3∩zi for i∈{a+b+1, . . . ,β} (relationships ii6(h)-(i) of

Definition 4.1.1).

Finally, we consider the relationships between elements of the chains. We start

with the first and third chains.

If y2�y3, then replacing y2`→y3` in C with the path y2`, y3r, y3` creates a path
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with weight 2q−p(a+b+1)<0. If y2≺y3, then replacing y3`→y2` in C with the

path y3`, y2r, y2` creates a cycle with weight q−p(β−a−b+1) which is positive if

a+b>
⌈
2q
p

⌉
. If y2∩y3, then replacing y2`→y3` in C with the path y2`,y2r,y3` creates

a cycle with weight 3q−p(a+ b)>0, and replacing y3`→y2` in C with the path

y3`,y3r,y2` creates a cycle with weight 2q−p(β−a−b)>0.

Let i∈{1,2, . . . ,a}. If y2�zi, then replacing y2`→zir in C with the arc (y2`, zir)

creates a cycle with weight 2q−p(a+b−(i−1)) which is positive for

i∈
{
a+b−

⌈
2q
p

⌉
+2, . . . ,a

}
. If y2≺zi, then replacing zi`→y2` in C with the path

zi`, y2r, y2` creates a cycle with weight q−p(i+β−a−b+1) which is positive for

i∈
{

1,2, . . . ,a+b−
⌈
2q
p

⌉
−1
}

. If y2∩zi, then replacing zir→y2` in C with the arc

(zir,y2`) creates a cycle with weight q−p(i−1+β−a−b) for

i∈
{

1,2, . . . ,a+b−
⌈
2q
p

⌉
+1
}

, and replacing y2`→zi` in C with the path y2`, y2r, zi`

creates a cycle with weight 3q−p(a+b−i)>0.

If y2�x1, then replacing y2`→x1r in C with the arc (y2`, x1r) creates a cycle

with weight 2q−p(b)>0. If y2≺x1, then replacing x1r→y2` in C with the path

x1r, x1`, y2r, y2` creates a cycle with weight q− p(β− b+ 2)< 0. If y2 ∩x1, then

replacing x1r→y2` in C with the arc (x1r,y2`) creates a cycle with weight q−p(β−
b)<0.

Thus,

y2≺∩y3 a+b>
⌈
2q
p

⌉
y2∩y3 a+b=

⌈
2q
p

⌉ , y2≺∩zi for

i∈
{

1,2, . . . ,a+b−
⌈
2q
p

⌉
−1
}

, y2∩zi for i∈
{
a+b−

⌈
2q
p

⌉
,a+b−

⌈
2q
p

⌉
+1
}

,

y2� zi for i∈
{
a+b−

⌈
2q
p

⌉
+2, . . . ,a

}
, y2�x1 (relationships ii(8)a(I)-(V) of

Definition 4.1.1).

If x3�y3, then replacing zq`→y3` in C with the path zq`, y3r, y3` creates a cycle

with weight 2q−p(β+1)<0. This uses transitivity since zq�x3�y3. If x3≺y3, then

replacing y3`→x3r in C with the arc (y3`, x3r) creates a cycle with weight q>0.

If x3∩y3, then replacing x3r→y3` in C with the arc (x3r, y3`) creates a cycle with

weight 2q−p(β)<0.

If x3�zi, then replacing x3r→zir in C with the path x3r,x3`, zir creates a cycle

with weight 2q−p(β+1− (i−1))<0 which is positive for i∈
{⌈

q
p

⌉
+2, . . . ,a

}
. If
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x3≺ zi, then replacing zi`→x3r in C with the arc (zi`, x3r) creates a cycle with

weight q−p(i) which is positive for i∈
{

1,2, . . . ,
⌈
q
p

⌉
−1
}

. If x3∩zi, then replacing

x3r→zi` in C with the arc (x3r, zi`) creates a cycle with weight 2q−p(q) which is

positive for i∈
{⌈

q
p

⌉
, . . . ,a

}
, and replacing zir→x3r in C with the path zir,x3`,x3r

creates a cycles with weight 2q−p(i−1) which is positive for i∈
{

1,2, . . . ,
⌈
2q
p

⌉}
.

If x3≺x1, then replacing x1r→x3r in C with the path x1r, x1`, x3r creates a

cycle with weight q−p(a+1)<0. If x1∩x3, then replacing x1r→x3r in C with the

path x1r,x3`,x3r creates a cycle with weight 2q−p(a) which is positive if a<
⌈
2q
p

⌉
,

and replacing x3r→x1r in C with the path x3r,x1`,x1r creates a cycle with weight

3q−p(β−a)>0. If x3�x1, then replacing x3r→x1r in C with the path x3r,x3`,x1r

creates a cycle with weight 2q−p(β−a+1)<0 which is positive when a>
⌈
q
p

⌉
.

Thus, x3≺y3, x3≺zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉
−1
}

, x3∩zi for

i∈
{⌈

q
p

⌉
,
⌈
q
p

⌉
+1
}

, x3∩�zi for i∈
{⌈

q
p

⌉
+2, . . . ,

⌈
2q
p

⌉}
, x3�zi for

i∈
{⌈

2q
p

⌉
+1, . . . ,a

}
, and


x3∩x1 a=

⌈
q
p

⌉
x3∩�x1

⌈
q
p

⌉
<a<

⌈
2q
p

⌉
x3�x1 a≥

⌈
2q
p

⌉ (relationships ii(8)c(I)-

(VI) of Definition 4.1.1).

Let j∈{a+b+1, . . . ,β}. If zj ∩y3, then replacing zjr→y3` in C with the arc

(zjr, y3`) creates a cycle with weight 2q− p(j− 1)< 0. If zj� y3, then replacing

zj`→y3` in C with the path zj`, y3r, y3` creates a cycle with weight 2q−p(j+1)<0.

If zj≺y3, then replacing y3`→zjr in C with the arc (y3`, zjr) creates a cycle with

weight q−p(β−(i−1))>0.

If zj�zi, then replacing zj`→zir in C with the arc (zj`, zir) creates a cycle with

weight 2q−p(j−(i−1)) which is positive for i∈
{
j−
⌈
2q
p

⌉
+2, . . . ,a

}
. If zj≺zi, then

replacing zi`→zjr in C with the arc (zi`, zjr) creates a cycle with weight q−p(i+
β−(j−1)) which is positive for i∈

{
1,2, . . . , j−

⌈
2q
p

⌉
−1
}

. If zj∩zi, then replacing

zjr→ zi` in C with the arc (zjr, zi`) creates a cycle with weight 2q−p(j−1− i)
which is positive for i∈

{
j−
⌈
2q
p

⌉
, . . . ,a

}
, and replacing zir→ zj` in C with the

arc (zir, zj`) creates a cycle with weight q−p(i− 1 +β− j) which is positive for
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i∈
{

1,2, . . . , j−
⌈
2q
p

⌉
+1
}

.

If zj≺x1, then replacing x1r→zjr in C with the path x1r,x1`, zjr creates a cycle

with weight q−p(a+1+β− (i−1))<0. If zj ∩x1, then replacing x1r→zj` in C

with the arc (x1r, zj`) creates a cycle with weight q−p(a+β− i)<0. If zj�x1,
then replacing zj`→x1r in C with the arc (zj`, x1r) creates a cycle with weight

2q−p(i−a)>0.

Thus, for j∈{a+b+1, . . . ,β}, zj≺y3, zj≺zi for

i∈
{

1,2, . . . , j−
⌈
2q
p

⌉
−1
}

, zj∩zi for i∈
{
j−
⌈
2q
p

⌉
, j−

⌈
2q
p

⌉
+1
}

, zj�zi for

i∈
{
j−
⌈
2q
p

⌉
+2, . . . ,a

}
, and zj �x1 (relationships ii(8)b(I)-(V) of Definition

4.1.1).

Next, we determine the relationships chains two and three starting with y2 and

each element of the second chain.

If y2�y1, then replacing y2`→y1` in C with the path y2`, y3r, y3` creates a path

with weight q−p(b+1) which is positive if b<
⌈
q
p

⌉
−1. If y2≺y1, then replacing

y1`→y2` in C with the path y1`, y2r, y2` creates a cycle with weight 2q−p(β−b+1)

which is positive if b>
⌈
q
p

⌉
. If y2∩y1, then replacing y2`→y1` in C with the path

y2`,y2r,y1` creates a cycle with weight 2q−p(b)>0, and replacing y1`→y2` in C with

the path y1`,y1r,y2` creates a cycle with weight 3q−p(β−b)>0.

Let i∈{a+1, . . . ,a+b}. If y2� zi, then replacing y2`→ zir in C with the arc

(y2`, zir) creates a cycle with weight q− p(a+ b− (i− 1)) which is positive for

i∈
{
a+b−

⌈
q
p

⌉
+2, . . . ,a+b

}
. If y2≺zi, then replacing zi`→y2` in C with the path

zi`,y2r,y2` creates a cycle with weight 2q−p(i+β−a−b+1) for

i∈
{
a+1, . . . ,a+b−

⌈
q
p

⌉
−1
}

. If y2 ∩ zi, then replacing zir→ y2` in C with the

arc (zir, y2`) creates a cycle with weight 2q− p(i− 1 + β − a− b) which is posi-

tive for i∈
{
a+1, . . . ,a+b−

⌈
q
p

⌉
+1
}

and replacing y2`→ zi` in C with the path

y2`, y2r, zi` creates a cycle with weight 2q− p(a+ b− i) which is positive for i∈{
a+b−

⌈
2q
p

⌉
+1, . . . ,a+b

}
={a+1, . . . ,a+b}.

If y2�x2, then replacing y2`→x2r in C with the arc (y2`,x2r) creates a cycle with

weight q>0. If y2≺x2, then replacing za+b`→y2` in C with the path za+b`, y2r, y2`

creates a cycle with weight 2q−p(β+1)<0. If y2∩x2, then replacing x2r→y2` in C
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with the arc (x2r,y2`) creates a cycle with weight 2q−p(q)<0.

Thus,


y2∩�y1 b<

⌈
q
p

⌉
−1

y2∩y1
⌈
q
p

⌉
−1≤b≤

⌈
q
p

⌉
y2≺∩y1

⌈
q
p

⌉
<b

, y2≺∩zi for

i∈
{
a+1, . . . ,a+b−

⌈
q
p

⌉
−1
}

, y2 ∩ zi for i∈
{
a+b−

⌈
q
p

⌉
,a+b−

⌈
q
p

⌉
+1
}

,

and y2�zi for i∈
{
a+b−

⌈
q
p

⌉
+2, . . . ,a+b

}
, and y2�x2 (relationships ii(9)a

(I)-(V) of Definition 4.1.1).

Next, we determine the relationships between x3 and the elements of chain two.

If x3�y1, then replacing x3r→y1` in C with the path x3r, x3`, y1r, y1` creates

a cycle with weight q− p(β− a+ 2) which is positive if a≥
⌈
2q
p

⌉
+ 2. If x3∩ y1,

then replacing x3r→y1` in C with the arc (x3r, y1`) creates a cycle with weight

q− p(β− a) which is positive when a≥
⌈
2q
p

⌉
, and replacing y1`→x3r in C with

the path y1`, y1r, x3`, x3r creates a cycle with weight 4q−p(a)>0. If x3≺y1, then

replacing y1`→x3r in C with the arc (y1`,x3r) creates a cycle with weight 2q−p(a)

which is positive when a<
⌈
2q
p

⌉
.

Let i∈{a+1, . . . ,a+b}. If x3�zi, then replacing x3r→zir in C with the path

x3r, x3`, zir creates a cycle with weight q−p(β+ 1− (i−1)) which is positive for

i∈
{⌈

2q
p

⌉
+2, . . . ,a+b

}
. If x3≺zi, then replacing zi`→x3r in C with the arc (zi`,x3r)

creates a cycle with weight 2q−p(i) which is positive for i∈
{
a+1, . . . ,

⌈
2q
p

⌉
−1
}

.

If x3∩zi, then replacing x3r→zi` in C with the arc (x3r, zi`) creates a cycle with

weight q−p(q−i) which is positive for i∈
{⌈

2q
p

⌉
, . . . ,a+b

}
, and replacing →x3r in

C with the path zir,x3`,x3r creates a cycle with weight 3q−p(i−1)>0.

If x3≺x2, then replacing x2r→x3r in C with the path x1r,x1`,x3r creates a cycle

with weight 2q−p(a+b+1)<0. If x3�x2, then replacing x3r→x2r in C with the

path x3r, x3`, x2r creates a cycle with weight q−p(β−a− b+1) which is positive

for a+b>
⌈
2q
p

⌉
. If x3∩x2, then replacing x3r→x2r in C with the path x3r,x2`,x2r

creates a cycle with weight 2q−p(β−a−b)>0, and replacing x2r→x3r in C with

the path x2r,x3`,x3r creates a cycle with weight 3q−p(a+b)>0.
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Thus,


x3≺y1 a<

⌈
2q
p

⌉
x3∩y1

⌈
2q
p

⌉
≤a≤

⌈
2q
p

⌉
+1

x3∩�y1 a≥
⌈
2q
p

⌉
+2

, x3≺zi for i∈
{
a+1, . . . ,

⌈
2q
p

⌉
−1
}

,

x3∩zi for i∈
{⌈

2q
p

⌉
,
⌈
2q
p

⌉
+1
}

, x3∩�zi for i∈
{⌈

2q
p

⌉
+2, . . . ,a+b

}
, and x3∩x2 a+b=

⌈
2q
p

⌉
x3∩�x2 a+b>

⌈
2q
p

⌉ (relationships ii(9)c(I)-(V) of Definition 4.1.1).

Now, we determine the relationships between z elements of the second and third

chains.

Let j ∈{a+b+1, . . . ,β} and let i∈{a+1, . . . ,a+b}. If zj � zi, then replacing

zj`→zir in C with the arc (zj`, zir) creates a cycle of weight q−p(j−(i−1)) which

is positive for i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a+b

}
. If zj≺zi, then replacing zi`→zjr in C with

the arc (zi`, zjr) creates a cycle of weight 2q−p(i+β−(j−1)) which is positive for

i∈
{
a+1, . . . , j−

⌈
q
p

⌉
−1
}

. If zj∩zi, then replacing zjr→zi` in C with the arc (zjr, zi`)

creates a cycle of weight q−p(j−1−i))) which is positive for i∈
{
j−
⌈
q
p

⌉
, . . . ,a+b

}
,

and replacing zir→zj` in C with the arc (zir, zj`) creates a cycle of weight 2q−p(i−
1+β−j) which is positive for i∈

{
a+1, . . . , j−

⌈
q
p

⌉
+1
}

.

Thus, for j ∈ {a+b+1, . . . ,β}, zj ≺ zi for i∈
{
a+1, . . . , j−

⌈
q
p

⌉
−1
}

,

zj ∩ zi for i∈
{
j−
⌈
q
p

⌉
, j−

⌈
q
p

⌉
+1
}

, zj � zi for i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a+b

}
(relationships ii(9)b(IV)-(VI) of Definition 4.1.1).

Lastly, for chains two and three, we determine the relationships between y1 and

the z elements of chain three and between x2 and the z elements of chain three.

Let i∈{a+b+1, . . . ,β}. If y1� zi, then replacing y1`→ zir in C with the arc

(y1`, zir) creates a cycle with weight 2q− p(β− (i− 1) + a) which is positive for

i∈
{
a+
⌈
q
p

⌉
+1, . . . ,β

}
. If y1≺ zi, then replacing zi`→ y1` in C with the path

zi`, y1r, y1` creates a cycle with weight q− p(i− a+ 1) which is positive for i∈{
a+b+1, . . . ,a+

⌈
q
p

⌉
−2
}

. If y1 ∩ zi, then replacing zir→ y1` in C with the arc

(zir,y1`) creates a cycle with weight q−p(i−1−a) which is positive for

i∈
{
a+b+1, . . . ,a+

⌈
q
p

⌉}
, and replacing y1`→ zi` in C with the path y1`, y1r, zi`

creates a cycle with weight 3q−p(β−i+a)>0.
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Thus, y1≺∩zi for i∈
{
a+b+1, . . . ,a+

⌈
q
p

⌉
−2
}

, y1∩zi for

i∈
{
a+

⌈
q
p

⌉
−1,a+

⌈
q
p

⌉}
, and y1�zi for i∈

{
a+

⌈
q
p

⌉
+1, . . . ,β

}
(relationships

ii(9)b(I)-(III) of Definition 4.1.1).

Let i∈{a+b+1, . . . ,β}. If x2�zi, then replacing x2r→zir in C with the path

x2r, x2`, zir creates a cycle with weight 2q−p(β− i+a+b+1)<0. If x2≺zi, then

replacing zi`→x2r in C with the arc (zi`,x2r) creates a cycle with weight q−p(i−
a−b)>0. If x2∩zi, then replacing x2r→zi` in C with the arc (x2r, zi`) creates a

cycles with weight 2q−p(a+b+β−i)<0.

Thus, x2≺zi for i∈{a+b+1, . . . ,β} (relationship ii(9)b(VII) of Definition

4.1.1).

We now analyze the relationships between the first and second chains. First,

consider the relationships between y1 and the elements of chain one.

If y1�y3, then replacing y1`→y3` in C with the path y1`, y3r, y3` creates a path

with weight q−p(a+1)<0. If y1≺y3, then replacing y3`→y1` in C with the path

y3`, y1r, y1` creates a cycle with weight 2q−p(β−a+1) which is positive if a>
⌈
q
p

⌉
.

If y1∩y3, then replacing y3`→y1` in C with the path y3`,y3r,y1` creates a cycle with

weight 3q−p(β−a)>0 and replacing y1`→y3` in C with the path y1`,y1r,y3` creates

a cycle with weight 2q−p(a) which is positive if a<
⌈
2q
p

⌉
.

Let i∈{1,2, . . . ,a}. If y1�zi, then replacing y1`→zir in C with the arc (y1`, zir)

creates a cycle with weight q−p(a−(i−1)) which is positive for

i∈
{
a−
⌈
q
p

⌉
+2, . . . ,a

}
. If y1≺ zi, then replacing zi`→ y1` in C with the path

zi`, y1r, y1` creates a cycle with weight 2q− p(i− 1 +β− a) which is positive for

i∈
{

1,2, . . . ,a−
⌈
q
p

⌉
−1
}

. If y1 ∩ zi, then replacing zir→ y1` in C with the arc

(zir, y1`) creates a cycle with weight 2q−p(i−1+β−a) which is positive for i∈{
a+1, . . . ,a−

⌈
q
p

⌉
+1
}

and replacing y1`→zi` in C with the path y1`,y1r, zi` creates

a cycle with weight 2q−p(a−i) which is positive for i∈
{
a−
⌈
2q
p

⌉
+1, . . .a

}
.

If y1≺x1, then replacing za`→y1` in C with the path za`, y1r, y1` creates a cycle

with weight 2q−p(β+1)<0. This uses transitivity since za�x1�y1. If y1�x1, then

replacing y1`→x1r in C with the arc (y1`, x1r) creates a cycle with weight q>0.

If y1∩x1, then replacing x1r→y1` in C with the arc (x1r, y1`) creates a cycle with
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weight 2q−p(β)<0.

Thus,


y1∩y3 a=

⌈
q
p

⌉
y1≺∩y3

⌈
q
p

⌉
<a<

⌈
2q
p

⌉
y1≺y3 a≥

⌈
2q
p

⌉ , y1≺zi for i∈
{

1,2, . . . ,a−
⌈
2q
p

⌉}
,

y1≺∩zi for i∈
{
a−

⌈
2q
p

⌉
+1, . . . ,a−

⌈
q
p

⌉
−1
}

, y1∩zi for

i∈
{
a−

⌈
q
p

⌉
,a−

⌈
q
p

⌉
+1
}

, y1� zi for i∈
{
a−

⌈
q
p

⌉
+2, . . . ,a

}
, and y1�x1

(relationships ii(7)a(I)-(VI) of Definition 4.1.1).

Next, we determine the relationships between x2 and the elements of chain one.

If x2�y3, then replacing x2r→y3` in C with the path x3r,x3`, y3r, y3` creates a

cycle with weight q−p(a+b+2)<0. If x2≺y3, then replacing y3`→x2r in C with the

arc (y3`,x2r) creates a cycle with weight 2q−p(β−a−b)>0. If x2∩y3, then replacing

x2r→y3` in C with the arc (x2r,y3`) creates a cycle with weight q−p(a+b)<0.

Let i∈ {1,2, . . . ,a}. If x2� zi, then replacing x2r→ zir in C with the path

x2r, x2`, zir creates a cycle with weight q− p(a+ b+ 1− (i− 1)) which is positive

for i∈
{
a+b−

⌈
q
p

⌉
+3, . . . ,a

}
. If x2≺ zi, then replacing zi`→x3r in C with the

arc (zi`, x2r) creates a cycle with weight 2q− p(i+ β − a− b) which is positive

for i∈
{

1,2, . . . ,a+b−
⌈
q
p

⌉}
. If x2 ∩ zi, then replacing x2r→ zi` in C with the

arc (x2r, zi`) creates a cycle with weight q−p(a+ b− i) which is positive for i∈{
a+b−

⌈
q
p

⌉
+1, . . . ,a

}
, and replacing zir→x2r in C with the path zir, x2`, x2r cre-

ates a cycle with weight 3q−p(i−1+β−a−b)>0.

If x2�x1, then replacing x2r→x1r in C with the path x2r,x2`,x1r creates a cycle

with weight q−p(b+1) which is positive if b<
⌈
q
p

⌉
−1. If x2≺x1, then replacing

x1r→x2r in C with the path x1r,x1`,x2r creates a cycle with weight 2q−p(β−b+1)

which is positive if b≥
⌈
q
p

⌉
+1. If x2∩x1, then replacing x2r→x1r in C with the

path x2r,x1`,x1r creates a cycle with weight 2q−p(b)>0 and replacing x1r→x2r in

C with the path x1r,x2`,x2r creates a cycle with weight 3q−p(β−b)>0.

Thus, x2≺y3, x2≺zi for i∈
{

1,2, . . . ,a+b−
⌈
q
p

⌉}
, x2∩zi for

i∈
{
a+b−

⌈
q
p

⌉
+1,a+b−

⌈
q
p

⌉
+2
}

, x2∩�zi for
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i∈
{
a+b−

⌈
q
p

⌉
+3, . . . ,a

}
, and


x2∩�x1 b<

⌈
q
p

⌉
−1

x2∩x1 b∈
{⌈

q
p

⌉
−1,

⌈
q
p

⌉}
x2≺∩x1 b>

⌈
q
p

⌉ (relationships

ii(7)c(I)-(V) of Definition 4.1.1).

Lastly, we determine the relationships between the z elements of chain two and

the elements of chain one.

Let j∈{a+1,a+2, . . . ,a+b}. If zj�y3, then replacing zj`→y3` in C with the

path zj`, y3r, y3` creates a cycle of weight q−p(j+1)<0. If zj≺y3, then replacing

y3`→zjr in C with the arc (y3`, zjr) creates a cycle of weight 2q−p(β−(j−1))>0. If

zj∩y3, then replacing zjr→y3` in C with the arc (zjr, y3`) creates a cycle of weight

q−p(j−1)<0.

Let i∈{1,2, . . . ,a}. If zj�zi, then replacing zj`→zir in C with the arc (zj`, zir)

creates a cycle of weight q−p(i−(i−1)) which is positive for

i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a+b

}
. If zj ≺ zi, then replacing zi`→ zjr in C with the arc

(zi`, zjr) creates a cycle of length 2q− p(i+β− (j− 1)) which is positive for i∈{
1,2, . . . , j−

⌈
q
p

⌉
−1
}

. If zj∩zi, then replacing zjr→zi` in C with the arc (zjr, zi`)

creates a cycle of length q−p(j−1−i) which is positive for i∈
{
j−
⌈
q
p

⌉
, . . . ,a

}
and

replacing zir→zj` in C with the arc (zir, zj`) creates a cycle of length 2q−p(i−1+

q−j) which is positive for i∈
{

1,2, . . . , j−
⌈
q
p

⌉
+1
}

.

If zj�x1, then replacing zj`→x1r in C with the arc (zj`, x1r) creates a cycle

with weight q−p(j−a) which is positive for j∈
{
a+1, . . . ,a+

⌈
q
p

⌉
−1
}

. If zj≺x1,
then replacing x1r→zjr in C with the path x1r,x1`, zjr creates a cycle with weight

2q−p(β−(i−1)+a+1) which is positive for j∈
{
a+
⌈
q
p

⌉
+2, . . . ,a+b

}
. If zj∩x1,

then replacing x1r→ zj` in C with the arc (x1r, zj`) creates a cycle with weight

2q−p(β−i+a) which is positive for j∈
{
a+
⌈
q
p

⌉
, . . . ,a+b

}
, and replacing zjr→x1r

in C with the path zjr,x1`,x1r creates a cycle with weight 2q−p(i−1−a)>0.

Thus, for j∈{a+1,a+2, . . . ,a+b}, zj≺y3, zj≺zi for

i∈
{

1,2, . . . , j−
⌈
q
p

⌉
−1
}

, zj ∩ zi for i∈
{
j−
⌈
q
p

⌉
, j−

⌈
q
p

⌉
+1
}

, zj � zi for

i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a

}
, zj�x1 for j ∈

{
a+1, . . . ,a+

⌈
q
p

⌉
−1
}

, zj ∩x1 for

j∈
{
a+

⌈
q
p

⌉
, . . . ,a+

⌈
q
p

⌉
+1
}

, and zj≺∩x1 for j∈
{
a+

⌈
q
p

⌉
+2, . . . ,a+b

}
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(relationships ii(7)b(I)-(VII) of Definition 4.1.1).

In the following cases we will list the bold relationships based on the value of b.

Case 3.1. b<
⌈
q
p

⌉
In this case we must consider the possibility that x3=y1. This condition does

not affect the relationships of the chains with u1,u2, or u3.

The following are the relationships from the preceding analysis when b<
⌈
q
p

⌉
,

where the relationships from the general analysis that are impacted by the value of

b are marked with a (*):

1. u1∩u2,

2. u2∩u3,

3.

u3∩u1 a<
⌈
2q
p

⌉
u3�u1 a≥

⌈
2q
p

⌉ ,

4. u1,

(a) u1≺y3,

(b) u1≺zi for i∈
{

1,2, . . . ,a−
⌈
q
p

⌉}
,

(c) u1∩zi for i∈
{
a−
⌈
q
p

⌉
+1, . . . ,a

}
,

(d) u1∩zi for i∈{a+1, . . . ,a+b} (*),

(f) u1∩x2 (*),

(g) u1≺y2 (*),

(h) u1≺zi for i∈
{
a+b+1, . . . ,a+

⌈
q
p

⌉
−1
}

,

(i) u1∩zi for i∈
{
a+
⌈
q
p

⌉
, . . . ,β

}
,

(j)

u1≺∩x3 a>
⌈
2q
p

⌉
u1∩x3 a≤

⌈
2q
p

⌉ ,

5. u2,
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(a) u2≺y3,

(b) u2≺zi for i∈
{

1,2, . . . ,a+b−
⌈
2q
p

⌉}
,

(c) u2∩zi for i∈
{
a+b−

⌈
2q
p

⌉
+1, . . . ,a+b−

⌈
q
p

⌉
+1
}

,

(d) u2�zi for i∈
{
a+b−

⌈
q
p

⌉
+2, . . . ,a

}
,

(e) u2�x1,

(f) u2∩y1,

(h) u2∩zi for i∈{a+1, . . . ,a+b} (*),

(i) u2∩zi for i∈{a+b+1, . . . ,β},

(j) u2∩x3,

6. u3,

(a) u3∩zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉}
,

(b) u3�zi for i∈
{⌈

q
p

⌉
+1, . . . ,a

}
,

(c) u3�x1,

(d)

u3∩�y1 a>
⌈
2q
p

⌉
u3∩y1 a≤

⌈
2q
p

⌉ ,

(e) u3∩zi for i∈
{
a+1, . . . ,

⌈
2q
p

⌉}
,

(f) u3�zi for i∈
{⌈

2q
p

⌉
+1, . . . ,a+b

}
,

(g) u3�x2,

(h) u3∩y2,

(i) u3∩zi for i∈{a+b+1, . . . ,β},

7. Chains one and two,

(a) y1,

(I)

y1≺∩y3
⌈
q
p

⌉
<a<

⌈
2q
p

⌉
y1≺y3 a≥

⌈
2q
p

⌉ (*),
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(II) y1≺zi for i∈
{

1,2, . . . ,a−
⌈
2q
p

⌉}
,

(III) y1≺∩zi for i∈
{
a−
⌈
2q
p

⌉
+1, . . . ,a−

⌈
q
p

⌉
−1
}

,

(IV) y1∩zi for i∈
{
a−
⌈
q
p

⌉
,a−

⌈
q
p

⌉
+1
}

,

(V) y1�zi for i∈
{
a−
⌈
q
p

⌉
+2, . . . ,a

}
,

(VI) y1�x1,

(b) zj for j∈{a+1,a+2, . . . ,a+b},

(I) zj≺y3,

(II) zj≺zi for i∈
{

1,2, . . . , j−
⌈
q
p

⌉
−1
}

,

(III) zj∩zi for i∈
{
j−
⌈
q
p

⌉
, j−

⌈
q
p

⌉
+1
}

,

(IV) zj�zi for i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a

}
,

(V) zj�x1 for j∈{a+1, . . . ,a+b} (*),

(c) x2,

(I) x2≺y3,

(II) x2≺zi for i∈
{

1,2, . . . ,a+b−
⌈
q
p

⌉}
,

(III) x2∩zi for i∈
{
a+b−

⌈
q
p

⌉
+1,a+b−

⌈
q
p

⌉
+2
}

,

(IV) x2∩�zi for i∈
{
a+b−

⌈
q
p

⌉
+3, . . . ,a

}
,

(V)

x2∩�x1 b<
⌈
q
p

⌉
−1

x2∩x1 b=
⌈
q
p

⌉
−1

(*),

8. Chains one and three,

(a) y2,

(I)

y2≺∩y3 a+b>
⌈
2q
p

⌉
y2∩y3 a+b=

⌈
2q
p

⌉ ,

(II) y2≺∩zi for i∈
{

1,2, . . . ,a+b−
⌈
2q
p

⌉
−1
}

,

(III) y2∩zi for i∈
{
a+b−

⌈
2q
p

⌉
,a+b−

⌈
2q
p

⌉
+1
}

,
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(IV) y2�zi for i∈
{
a+b−

⌈
2q
p

⌉
+2, . . . ,a

}
,

(V) y2�x1,

(b) zj for j∈{a+b+1, . . . ,β},

(I) zj≺y3,

(II) zj≺zi for i∈
{

1,2, . . . , j−
⌈
2q
p

⌉
−1
}

,

(III) zj∩zi for i∈
{
j−
⌈
2q
p

⌉
, j−

⌈
2q
p

⌉
+1
}

,

(IV) zj�zi for i∈
{
j−
⌈
2q
p

⌉
+2, . . . ,a

}
,

(V) zj�x1,

(c) x3,

(I) x3≺y3,

(II) x3≺zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉
−1
}

,

(III) x3∩zi for i∈
{⌈

q
p

⌉
,
⌈
q
p

⌉
+1
}

,

(IV) x3∩�zi for i∈
{⌈

q
p

⌉
+2, . . . ,

⌈
2q
p

⌉}
,

(V) x3�zi for i∈
{⌈

2q
p

⌉
+1, . . . ,a

}
,

(VI)

x3∩�x1
⌈
q
p

⌉
<a<

⌈
2q
p

⌉
x3�x1 a≥

⌈
2q
p

⌉ (*),

9. Chains two and three,

(a) y2,

(I)

y2∩�y1 b<
⌈
q
p

⌉
−1

y2∩y1 b=
⌈
q
p

⌉
−1

(*),

(IV) y2�zi for i∈{a+1, . . . ,a+b} (*),

(V) y2�x2,

(b) zj for j∈{a+b+1, . . . ,β},

(I) zj∩�y1 for j∈
{
a+b+1, . . . ,a+

⌈
q
p

⌉
−2
}

,

(II) zj∩y1 for j∈
{
a+
⌈
q
p

⌉
−1,a+

⌈
q
p

⌉}
,
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(III) zj≺y1 for j∈
{
a+
⌈
q
p

⌉
+1, . . . ,β

}
,

(IV) zj≺zi for i∈
{
a+1, . . . , j−

⌈
q
p

⌉
−1
}

,

(V) zj∩zi for i∈
{
j−
⌈
q
p

⌉
, j−

⌈
q
p

⌉
+1
}

,

(VI) zj�zi for i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a+b

}
,

(VII) zj�x2,

(c) x3,

(I)


x3≺y1 a<

⌈
2q
p

⌉
x3∩y1

⌈
2q
p

⌉
≤a≤

⌈
2q
p

⌉
+1

x3∩�y1 a≥
⌈
2q
p

⌉
+2

,

(II) x3≺zi for i∈
{
a+1, . . . ,

⌈
2q
p

⌉
−1
}

,

(III) x3∩zi for i∈
{⌈

2q
p

⌉
,
⌈
2q
p

⌉
+1
}

,

(IV) x3∩�zi for i∈
{⌈

2q
p

⌉
+2, . . . ,a+b

}
,

(V)

 x3∩x2 a+b=
⌈
2q
p

⌉
x3∩�x2 a+b>

⌈
2q
p

⌉ .

The relationships listed above match the poset family of Figure 4.1iii.

Note, if y1=x3, some of the relationship possibilities between that element and

the elements of chain one are eliminated. For example, if y1≺∩zi and x3≺zi, then

y1=x3≺zi. After adjusting for the overlap, the listed relationships match the poset

family of Figure 4.1iv.

Case 3.2. b≥
⌈
q
p

⌉
Since b is large, a 6≥

⌈
2q
p

⌉
, and so x3 6=y1. Therefore, all element labels in C

represent unique elements of P .

The following are the relationships from the general analysis when b<
⌈
q
p

⌉
, where

the relationships from the general analysis that are impacted by the value of b are

marked with a (*):

1. u1∩u2,
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2. u2∩u3,

3. u3∩u1 (*),

4. u1,

(a) u1≺y3,

(b) u1≺zi for i∈
{

1,2, . . . ,a−
⌈
q
p

⌉}
,

(c) u1∩zi for i∈
{
a−
⌈
q
p

⌉
+1, . . . ,a

}
,

(d) u1∩zi for i∈
{
a+1, . . . ,a+

⌈
q
p

⌉}
,

(e) u1�zi for i∈
{
a+
⌈
q
p

⌉
+1, . . . ,a+b

}
,

(f) u1�x2 (*),

(g) u1∩y2 (*),

(i) u1∩zi for i∈{a+b, . . . ,β} (*),

(j) u1∩x3 (*),

5. u2,

(a) u2≺y3,

(b) u2≺zi for i∈
{

1,2, . . . ,a+b−
⌈
2q
p

⌉}
,

(c) u2∩zi for i∈
{
a+b−

⌈
2q
p

⌉
+1, . . . ,a

}
(*),

(e) u2∩x1 (*),

(f) u2≺y1 (*),

(g) u2≺zi for i∈
{
a+1, . . . ,a+b−

⌈
q
p

⌉}
,

(h) u2∩zi for i∈
{
a+b−

⌈
q
p

⌉
+1, . . . ,a+b

}
,

(i) u2∩zi for i∈{a+b+1, . . . ,β},

(j) u2∩x3,

6. u3,
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(a) u3∩zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉}
,

(b) u3�zi for i∈
{⌈

q
p

⌉
+1, . . . ,a

}
,

(c) u3�x1,

(d) u3∩y1 (*),

(e) u3∩zi for i∈
{
a+1, . . . ,

⌈
2q
p

⌉}
,

(f) u3�zi for i∈
{⌈

2q
p

⌉
+1, . . . ,a+b

}
,

(g) u3�x2,

(h) u3∩y2,

(i) u3∩zi for i∈{a+b+1, . . . ,β},

7. Chains one and two,

(a) y1,

(I)

 y1∩y3 a=
⌈
q
p

⌉
y1≺∩y3

⌈
q
p

⌉
<a<

⌈
2q
p

⌉ (*),

(III) y1≺∩zi for i∈
{

1, . . . ,a−
⌈
q
p

⌉
−1
}

(*),

(IV) y1∩zi for i∈
{
a−
⌈
q
p

⌉
,a−

⌈
q
p

⌉
+1
}

,

(V) y1�zi for i∈
{
a−
⌈
q
p

⌉
+2, . . . ,a

}
,

(VI) y1�x1,

(b) zj for j∈{a+1,a+2, . . . ,a+b},

(I) zj≺y3,

(II) zj≺zi for i∈
{

1,2, . . . , j−
⌈
q
p

⌉
−1
}

,

(III) zj∩zi for i∈
{
j−
⌈
q
p

⌉
, j−

⌈
q
p

⌉
+1
}

,

(IV) zj�zi for i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a

}
,

(V) zj�x1 for j∈
{
a+1, . . . ,a+

⌈
q
p

⌉
−1
}

,

(VI) zj∩x1 for j∈
{
a+
⌈
q
p

⌉
, . . . ,a+

⌈
q
p

⌉
+1
}

,
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(VII) zj≺∩x1 for j∈
{
a+
⌈
q
p

⌉
+2, . . . ,a+b

}
,

(c) x2,

(I) x2≺y3,

(II) x2≺zi for i∈{1,2, . . . ,a} (*),

(V)

 x2∩x1 b=
⌈
q
p

⌉
x2≺∩x1 b>

⌈
q
p

⌉ (*),

8. Chains one and three,

(a) y2,

(I) y2≺∩y3 (*),

(II) y2≺∩zi for i∈
{

1,2, . . . ,a+b−
⌈
2q
p

⌉
−1
}

,

(III) y2∩zi for i∈
{
a+b−

⌈
2q
p

⌉
,a+b−

⌈
2q
p

⌉
+1
}

,

(IV) y2�zi for i∈
{
a+b−

⌈
2q
p

⌉
+2, . . . ,a

}
,

(V) y2�x1,

(b) zj for j∈{a+b+1, . . . ,β},

(I) zj≺y3,

(IV) zj≺zi for i∈
{

1,2, . . . , j−
⌈
2q
p

⌉
−1
}

,

(V) zj∩zi for i∈
{
j−
⌈
2q
p

⌉
, j−

⌈
2q
p

⌉
+1
}

,

(VI) zj�zi for i∈
{
j−
⌈
2q
p

⌉
+2, . . . ,a

}
,

(VII) zj�x1,

(c) x3,

(I) x3≺y3,

(II) x3≺zi for i∈
{

1,2, . . . ,
⌈
q
p

⌉
−1
}

,

(III) x3∩zi for i∈
{⌈

q
p

⌉
,
⌈
q
p

⌉
+1
}

,

(IV) x3∩�zi for i∈
{⌈

q
p

⌉
+2, . . . ,a

}
(*),
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(VI)

 x3∩x1 a=
⌈
q
p

⌉
x3∩�x1

⌈
q
p

⌉
<a<

⌈
2q
p

⌉ (*),

9. Chains two and three,

(a) y2,

(I)

 y2∩y1 b=
⌈
q
p

⌉
y2≺∩y1

⌈
q
p

⌉
<b

(*),

(II) y2≺∩zi for i∈
{
a+1, . . . ,a+b−

⌈
q
p

⌉
−1
}

,

(III) y2∩zi for i∈
{
a+b−

⌈
q
p

⌉
,a+b−

⌈
q
p

⌉
+1
}

,

(IV) y2�zi for i∈
{
a+b−

⌈
q
p

⌉
+2, . . . ,a+b

}
,

(V) y2�x2,

(b) zj for for j∈{a+b+1, . . . ,β},

(III) zj≺y1 for j∈{a+b+1, . . . ,β} (*),

(IV) zj≺zi for i∈
{
a+1, . . . , j−

⌈
q
p

⌉
−1
}

,

(V) zj∩zi for i∈
{
j−
⌈
q
p

⌉
, j−

⌈
q
p

⌉
+1
}

,

(VI) zj�zi for i∈
{
j−
⌈
q
p

⌉
+2, . . . ,a+b

}
,

(VII) zj�x2,

(c) x3,

(I) x3≺y1 (*),

(II) x3≺zi for i∈
{
a+1, . . . ,

⌈
2q
p

⌉
−1
}

,

(III) x3∩zi for i∈
{⌈

2q
p

⌉
,
⌈
2q
p

⌉
+1
}

,

(IV) x3∩�zi for i∈
{⌈

2q
p

⌉
+2, . . . ,a+b

}
,

(V) x3∩�x2 (*).

The relationships listed above match the poset family of Figure 4.1v.

The preceding cases cover all possible minimal negative cycle structures. Thus,

if a poset contains a minimal negative cycle with three weight q arcs, then the poset

contains a subposet from Figure 4.1.
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The preceding proof shows that not every p,q pair will have a minimal forbidden

substructure produced by a cycle with exactly three weight q arcs. This fact is

captured in the following corollary.

Corollary 4.1.3. Let q=ps+d. If p
3
<d≤ p

2
or d> 2p

3
, then a negative cycle with

exactly three weight q arcs cannot be minimal.

Proof. We have β=
⌈
3q
p

⌉
=


3s+1 d≤ p

3

3s+2 p
3
<d≤ 2p

3

3s+3 2p
3
<d

, and
⌈
2q
p

⌉
=

{
2s+1 d≤ p

2

2s+2 p
2
<d<p

. As in

the proof of Proposition 4.1.2, d> 2p
3

and p
3
<d≤ p

2
allowed a shorter negative cycle

to be found.

For p=3, d=1 or d=2. Thus, d 6> 2p
3

=2 and there is not a d with 1= p
3
<d≤ p

2
= 3

2
.

4.2 Structural result for lengths in [3,q], q=2s+1

or q=2s+2

Definition 4.2.1. Let F q3 be the set of posets shown in Figure 4.6 and their hori-

zontal reflections.

Theorem 4.2.2 will justify using the F q3 notation for this collection of posets.

The posets in F q3 get quite complicated. Following the proof of this chapter’s main

theorem, F q3 is shown for q=4,5,7,8,10,11, and 13.
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(a) (b)

⌈
q
3

⌉
+3

(c)

⌈
2q
3

⌉
+4

x2

zd2q/3e

za+2

za+1

y1

x1

za

zdq/3e+2

zdq/3e+1

zdq/3e

za−dq/3e+3

za−dq/3e+2

za−dq/3e+1

za−dq/3e

za−dq/3e−1

z1

y2

⌈
2q
3

⌉
+6

(d) a∈{dq/2e, . . . ,d2q/3e−1}

u1

u3

x1

zq

zd2q/3e+1

zd2q/3e−1

zdq/3e+2

zdq/3e+1

z1

y1

u2

q+5

(e)

Figure 4.6: Minimal structures that cannot appear in a [3, q] representable interval order:

The numbers below the posets are the number of elements in the structure.

Structure (c) and family (d) are minimal for q=3s+1 only. They are not

minimal for q=3s+2. For p=3, (c) is structure (i) of Definition 3.1.1, (d) is

family (ii) of Definition 3.1.1, and (e) is structure (i) of Definition 4.1.1.
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x2

za+2

za+1

y1

x1

z⌈ 2q
3

⌉
+2

z⌈ 2q
3

⌉
+1

za−d q3 e+3

za−d q3 e+2

za−d q3 e+1

za−d q3 e

za−d q3 e−1

z
a−
⌈
2q
3

⌉
+1

z
a−
⌈
2q
3

⌉
z
a−
⌈
2q
3

⌉
−1

y1

u3

u1

u2

a≥
⌈
2q
3

⌉ x2

za+d q3 e+2

za+d q3 e+1

za+d q3 e

za+2

za+1

y1

x1

za−d q3 e+3

za−d q3 e+2

za−d q3 e+1

za−d q3 e

za−d q3 e−1

y2u3

u1

u2

a<
⌈
2q
3

⌉
(f) a∈

{⌈
q
2

⌉
, . . . , q−1

}
1.

{
u3∩�y1,u3�za+1 if a>

⌈
2q
3

⌉
u3�zd 2q

3 e+1 if a≤
⌈
2q
3

⌉
2. u3�zd q3e+1

3. u1≺za−d q3e

4. u3�u1 if a≥
⌈
2q
3

⌉
5. u1�za+d q3e+1 if a<

⌈
2q
3

⌉
6. u2≺zd q3e−1

7.

u2�zd 2q
3 e+1 if a≥

⌈
q
3

⌉
u2≺zd 2q

3 e−1 if a<
⌈
q
3

⌉

Figure 4.6 (cont): Minimal structures that cannot appear in a [3, q] representable in-

terval order: Family (f) corresponds to family (ii) of Definition 4.1.1

when p=3.
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x1

za

za+b−d q3e+4

za+b−d q3e+3

za+b−d q3e+2

za+b−d q3e+1

za+b−d q3e
za+b−d q3e−1

zd q3e+1

za−d q3e+3

za−d q3e+2

za−d q3e+1

za−d q3e
za−d q3e−1
za−d q3e−2
za−d 2q3 e+1

za−d 2q3 e

z1

y3

x2

za+b

zd 2q3 e+3

zd 2q3 e+2

zd 2q3 e+1

zd 2q3 e
zd 2q3 e−1
zd 2q3 e−2

za+1

y1

x3

zq

za+d q3e+2

za+d q3e+1

za+d q3e
za+d q3e−1
za+d q3e−2
za+d q3e−3

za+b+1

y2

x1

za

za+b−d q3e+2

zd 2q3 e+1

zd 2q3 e
zd q3e+3

zd q3e+2

zd q3e+1

zd q3e
zd q3e−1
zd q3e−2

za−d q3e

za+b−d 2q3 e+3

za+b−d 2q3 e+2

za+b−d 2q3 e+1

za+b−d 2q3 e
za+b−d 2q3 e−1
za+b−d 2q3 e−2
z1

y3

u1

u2

u3

(g1) b∈
{

1,2, . . . ,
⌈
q
3

⌉
−1
}

Figure 4.6 (cont): Minimal structures that cannot appear in a [3, q] representable inter-

val order: Family (g1) corresponds to family (iii) of Definition 4.1.1

when p=3. The left and right chains contain the same elements.

Note: u3�u1 if a≥
⌈
2q
3

⌉
, y2∩y3 if a+b=

⌈
2q
3

⌉
, x1∩x2 if b=

⌈ q
3

⌉
−1.
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x2

za+b

zd 2q3 e+1

za+1

x3=y1

zq

za+d q3e−1

za+b+1

y2

x1

za

za+b−d q3e+4

za+b−d q3e+3

za+b−d q3e+2

za+b−d q3e+1

za+b−d q3e
za+b−d q3e−1

za−d q3e+3

za−d q3e+2

za−d q3e+1

za−d q3e
zd q3e+1

zd q3e
zd q3e−1
zd q3e−2

za+b−d 2q3 e+3

za+b−d 2q3 e+2

za+b−d 2q3 e+1

za+b−d 2q3 e
za+b−d 2q3 e−1
za+b−d 2q3 e−2

z1

y3

u1

u2

u3

(g2) a∈
{⌈

2q
3

⌉
+1, . . . , q−2

}
(thus b∈

{
1,2, . . . ,

⌈
q
3

⌉
−3
}

)

Figure 4.6 (cont): Minimal structures that cannot appear in a [3, q] representable inter-

val order: Family (g2) corresponds to family (iv) of Definition 4.1.1

when p=3.
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x3

zq

za+b+1

y2

x2

za+b

za+d q3e+3

za+d q3e+2

za+d q3e+1

za+d q3e
za+d q3e−1
za+d q3e−2

zd 2q3 e+3

zd 2q3 e+2

zd 2q3 e+1

zd 2q3 e
zd 2q3 e−1
zd 2q3 e−2

za+b−d q3e+3

za+b−d q3e+2

za+b−d q3e+1

za+b−d q3e
za+b−d q3e−1
za+b−d q3e−2

za+1

y1

x1

za

zd q3e+3

zd q3e+2

zd q3e+1

zd q3e
zd q3e−1
zd q3e−2

za+b−d 2q3 e+3

za+b−d 2q3 e+2

za+b−d 2q3 e+1

za+b−d 2q3 e
za+b−d 2q3 e−1
za+b−d 2q3 e−2

za−d q3e+3

za−d q3e+2

za−d q3e+1

za−d q3e
za−d q3e−1
za−d q3e−2

z1

y3

x3

zq

za+b+1

y2

u1

u2

u3

(g3) b∈
{⌈

q
3

⌉
, . . .
⌊
q−1
2

⌋}
Figure 4.6 (cont): Minimal structures that cannot appear in a [3, q] representable inter-

val order: Family (g3) corresponds to family (v) of Definition 4.1.1

when p=3. The left and right chains contain the same elements.
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Figure 4.7 illustrates poset (e) of F q3 . It gives the forbidden posets of family (e)

for q≤13.

q=4 q=5 q=7 q=8 q=10 q=11 q=13

Figure 4.7: Minimal structures that cannot appear in a [3, q] representable interval order

with 3 weight q arcs and q weight −3 arcs where all q arcs are consecutive

We offer some notes on the structures in Figure 4.6.

For family (f), for the second case of relationship 1. and for relationship 4., if⌈
q
3

⌉
+2≤

⌈
2q
3

⌉
−b which is b≤

{⌈
q
3

⌉
−2 q=3s+1⌈

q
3

⌉
−1 q=3s+2

=
⌈
q+2
3

⌉
−2, then the relation is

already present due to transitivity.

For posets in family (g), the thick double headed arrow indicates that the two

chains it connects are actually the same chain. In diagrams (g1) and (g3) a chain

was duplicated to simplify the drawing. Also, for structure (g2), consider zd q3e−1
and za−d q3e+2, the elements related to x3=y1. We have a−

⌈
q
3

⌉
+2>

⌈
2q
3

⌉
−
⌈
q
3

⌉
+2≥(⌈

q
3

⌉
−1
)
+2. This means that the elements precedent to/from x3=y2 are at least 2

elements apart.

The following is the main theorem of this chapter.

Theorem 4.2.2. Let P=(X;≺) be a partial order and let q=3s+1 or q=3s+2,

with s∈Z≥1. The following are equivalent:
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1. Poset, P , has an interval representation with lengths between 3 and q.

2. The weighted digraph Dq
3(P ) contains no negative cycles.

3. Poset, P , contains no induced sub-poset from F q3 .

Proof. (1) ⇔ (2) This is a special case of Theorem 2.1.5.

(2)⇒ (3) (by contrapositive) Recall that in Dq
3(P ), an edge x`→xr has weight q

and the reverse edge has weight −3. All other edges have weight −ε or 0. If P contains

an induced 2+2, say (x≺y)∩(u≺v), then y`, xr, v`, ur, y` is a cycle of weight −2ε.

If P contains an induced
⌈
q+6
3

⌉
+1, say (x1�x2�·· ·�xd(q+6)/3e)∩y, then, the cycle

x1`,x2r,x2`,x3r,x3`,x4r, · · · ,xd(q+6)/3er,y`,yr,x1` has weight−3
(⌈

q
3

⌉)
+q−ε

(⌈
q+3
3

⌉)
<

0.

If P contains an induced subposet isomorphic to poset (c) of F q3 from Figure

4.6 and q=3s+1, then x1�x2� . . . ,�xd2q/3e+2∩y1∩y2 with y1�x(d2q/3e+1)/2 and

y2≺x(d2q/3e+3)/2. Then, the cycle

x1`,x2r,x2`,x3r,x3`,x4r, · · · ,xd2q/3e+2r
,y1`,y1r,y2`,y2r,x1`

has weight −3
⌈
2q
3

⌉
+q(2)−ε

⌈
2q
3

+1
⌉
<0.

Next, consider the posets in family (d) labeled as in Figure 3.6.

x2

zd 2q3 e

za+2

za+1

y1

x1

za

z1

y2

u2

u1

Figure 4.8: Labeling for the family (d) of posets from Figure 3.5: The z′is label the

longer chain consecutively from top to bottom.
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Now, the cycle

z1r, z1`, z2r, z2`, . . . , zar, za`,x1r,u1`,u1r,y1`, za+1r, za+1`, za+2r, za+2`, · · · , zβr,xβ`,

x2r,u2`,u2r,y2`, z1r

has weight 2q−3(a)−3
(⌈

2q
3

⌉
−a
)
−ε
(⌈

2q
3

⌉
+2
)
<0.

Next, if P contains an induced poset isomorphic to (e) of Figure 4.6, say x1�
x2�·· ·�xq+2∩y1∩y2∩y3 with y1≺xd2q/3e, xdq/3e�y2�xq+2−bq/3c=xd2q/3e+2, and

y3�xq+2−b2q/3c=xdq/3e+2. Then, the cycle

x1`,x2r,x2`,x3r,x3`,x4r, · · · ,xq+2r,y1`,y1r,y2`,y2r,y3`,y3r,x1`

has weight −3(q)+q(3)−ε(q+1)<0.

Now, if P contains an induced subposet isomorphic to a poset in (f) labeled as

in Figure 4.6, then the cycle

z1r, z1`, z2r, z2`, . . . , zar, za`,x1r,u1`,u1r,y1`, za+1r, za+1`, za+2r, za+2`, · · · , zqr, zq`,x2r,

u2`,u2r,u3`,u3r,y2`, z1r

has weight −3(q)+q(3)−ε(q+2)<0.

Finally, if P contains an induced subset isomorphic to a poset in family (g)

labeled as in Figure 4.6, then

z1r, z1`, z2r, z2`, z3r, · · · , za`,x1r,u1`,u1r,y1`, za+1r, za+1`, · · · , za+b`,x2r,u2`,u2r,y2`,

za+b+1r, za+b+1` · · · , zq`,x3r,u3`,u3r,y3`

is a cycle with weight −3(q)+q(3)−ε(q+3)<0.

Thus, if a poset P contains an induced poset in F q3 , then Dq
3(P ) contains a

negative cycle.

(3) ⇒ (2) (By contrapositive) Assume Dq
3(P ) contains a negative cycle. We

will show that P contains an element of F q3 as an induced suborder.

Let C be a minimal negative cycle (shortest negative cycle with greatest (least

negative) weight) in Dq
3(P ).
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Case 1. All arcs of C have weight −ε or 0.

By Lemma 2.2.1, P contains an induced 2+2 (structure (a) of Figure 4.6).

Case 2. Cycle C contains an arc of weight −3 but no positive weight arcs.

Lemma 2.2.3 rules out this possibility.

Case 3. Cycle C contains α arcs of weight q.

By Lemma 2.2.6, C must contain β=
⌈
qα
3

⌉
arcs of weight −3.

Case 3.1. α=1

By Lemma 2.2.9, C corresponds to a
⌈
q+2p

p

⌉
+1 where p=3, so a

⌈
q+6
3

⌉
+1, which

is
(⌈

q
3

⌉
+2
)
+1 (structure (b) of Figure 4.6).

Case 3.2. α=2

If q=3s+d, then we have that β=
⌈
2q
3

⌉
=s+

⌈
2d
3

⌉
=

{
2s+1 d=1

2s+2 d=2
. By Corollary

3.1.3, C is not minimal if d=2. By Proposition 3.1.2, C corresponds to one of the

structures in F q3 (2) which are the posets of families (c) and (d) of Figure 4.6.

Case 3.3. α=3

We have that β=
⌈
3q
3

⌉
= q. By Proposition 4.1.2, C corresponds to one of the

structures in F q3 (3) which correspond to the posets in families (e), (f), and (g) of

Figure 4.6.

Case 3.4. α>3

By Lemma 2.2.10, this does not occur.

This covers all possibilities for α. Thus, if Dq
3(P ) contains a negative cycle, then

P contains an induced sub-poset from F q3 . The proofs of Lemmas 2.2.1 and 2.2.9

and Propositions 3.1.2 and 4.1.2 also show that these structures are minimal since

they correspond to minimal negative cycles.

Thus, F q3 is a minimal list of minimal forbidden substructures for P [3, q].

How many posets are forbidden by F q3? Proposition 4.2.3 answers this question

for each q. This result is analogous to Proposition 3.2.3.
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Proposition 4.2.3. The number of minimal forbidden subposets for interval lengths

between 3 and q=2s+1 is

|F q3 |=4+

(d2q/3e−1)/2∑
i=1

i2

+

{
2

d2q/3e−1∑
a=dq/2e

[(
a−
⌈q

3

⌉
+1
)(⌈2q

3

⌉
−a
)]

+(1+(q mod 2))
(⌈q

3

⌉
−1
)

+2

q−1∑
a=d2q/3e+1

2
(⌈q

3

⌉
−1
)(

a−
⌈

2q

3

⌉
+1

)}

+

{ dq/3e−1∑
b=1

(⌈q
3

⌉
−1
)2(⌈q

3

⌉
−b
)4

+2

dq/3e−1∑
b=1

q−b−1∑
a=q−2b+1

(⌈q
3

⌉
−1
)2(⌈q

3

⌉
−b
)2(

a+b−
⌈

2q

3

⌉
+1

)2

+

dq/3e−3∑
b=1

(⌈q
3

⌉
−b
)2

+2

dq/3e−3∑
b=1

q−b−1∑
a=q−2b+1

(⌈q
3

⌉
−b
)(

a+b−
⌈

2q

3

⌉
+1

)

+

b(q−1)/2c∑
b=dq/3e

(
b−
⌈q

3

⌉
+1
)4(

2b−
⌈

2q

3

⌉
+1

)2

+2

b(q−1)/2c∑
b=dq/3e

q−b−1∑
a=b+1

(
b−
⌈q

3

⌉
+1
)2(

a−
⌈q

3

⌉
+1
)2(

a+b−
⌈

2q

3

⌉
+1

)2
}
,
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and for lengths between 3 and q=3s+2 is

|F q3 |=3+

{
2

d2q/3e−1∑
a=dq/2e

[(
a−
⌈q

3

⌉
+1
)(⌈2q

3

⌉
−a
)]

+(1+(q mod 2))
(⌈q

3

⌉)
+2

q−1∑
a=d2q/3e+1

2
(⌈q

3

⌉)(
a−
⌈

2q

3

⌉
+1

)}

+

{ dq/3e−1∑
b=1

(⌈q
3

⌉)2(⌈q
3

⌉
−b
)4

+2

dq/3e−1∑
b=1

q−b−1∑
a=q−2b+1

(⌈q
3

⌉)2(⌈q
3

⌉
−b
)2(

a+b−
⌈

2q

3

⌉
+1

)2

+

dq/3e−3∑
b=1

(⌈q
3

⌉
−b
)2

+2

dq/3e−3∑
b=1

q−b−1∑
a=q−2b+1

(⌈q
3

⌉
−b
)(

a+b−
⌈

2q

3

⌉
+1

)

+

b(q−1)/2c∑
b=dq/3e

(
b−
⌈q

3

⌉
+1
)4(

2b−
⌈

2q

3

⌉
+1

)2

+2

b(q−1)/2c∑
b=dq/3e

q−b−1∑
a=b+1

(
b−
⌈q

3

⌉
+1
)2(

a−
⌈q

3

⌉
+1
)2(

a+b−
⌈

2q

3

⌉
+1

)2
}
.

Proof. In Figure 4.6, (a), (b), (c), and (e) contribute 4 posets unless q=3s+2, then

(c) is not included. The structures in family (d) are only counted when q=3s+1.

There are
⌊d 2q3 e

2

⌋
=s horizontally symmetric structures without accounting for the

dashed lines, and each contains
⌈
2q
3

⌉
+6=2s+7 elements. In the first structure,

9 elements are part of the center structure. Each of the remaining
⌈
2q
3

⌉
−3=2s−

2 elements have exactly one dashed line precedence. We can select at most one

precedence from the top set of dashed lines and at most one precedence from the

bottom set of dashed lines (selecting a precedence close to the center implies all

precedences farther from the center by transitivity). These choices can be made

in
(
2s−2
2

+1
)(

2s−2
2

+1
)

=s2 ways. The next structure in (d) has 11 elements in its

center structure and so represents (s−1)2 distinct posets. The third structure would

have 13 elements in its center structure and so represents (s−2)2 posets. In the last
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poset, the center structure contains all 2s+7 elements and so represents only one

poset. Thus, (d) contributes
s∑
i=1

i2=
(d2q/3e−1)/2∑

i=1

i2 posets.

Next, we count the elements of family (f). Each structure contains at most two

sets of dashed lines and if a>
⌈
2q
3

⌉
, a single dashed line from u3. When a<

⌈
2q
3

⌉
,

there are 1+a−
⌈
q
3

⌉
−1 dashed lines in the top set and q+1−

(
a+
⌈
q
3

⌉
+1
)

dashed

lines in the bottom set. This creates
(
1+a−

⌈
q
3

⌉
−1+1

)(
q+1−

(
a+
⌈
q
3

⌉
+1
)
+1
)

=(
a−
⌈
q
3

⌉
+1
)(⌈

2q
3

⌉
−a
)

posets. We find a similar count for a>
⌈
2q
3

⌉
:{

2
(⌈

q
3

⌉
−1
)(
a−
⌈
2q
3

⌉
+1
)

q=3s+1

2
(⌈

q
3

⌉)(
a−
⌈
2q
3

⌉
+1
)

q=3s+2
.

For a=
⌈
2q
3

⌉
, we get

{(⌈
q
3

⌉
−1
)(
a−
⌈
2q
3

⌉
+1
)

q=3s+1(⌈
q
3

⌉)(
a−
⌈
2q
3

⌉
+1
)

q=3s+2
=

{(⌈
q
3

⌉
−1
)

q=3s+1(⌈
q
3

⌉)
q=3s+2

structures. Now, a structure, P is horizontally symmetric if its corresponding nega-

tive cycle in Dq
3(P ) is isomorphic to the cycle in reverse. Thus, a poset is horizontally

symmetric if a=b= q
2

which only occurs when q is even. Thus, the count for family

(f) is:

2

d2q/3e−1∑
a=dq/2e

[(
a−
⌈q

3

⌉
+1
)(⌈2q

3

⌉
−a
)]

+(1+(q mod 2))
(⌈q

3

⌉
−1
)

+2

q−1∑
a=d2q/3e+1

2
(⌈q

3

⌉
−1
)(

a−
⌈

2q

3

⌉
+1

)
when q=3s+1, and

2

d2q/3e−1∑
a=dq/2e

[(
a−
⌈q

3

⌉
+1
)(⌈2q

3

⌉
−a
)]

+(1+(q mod 2))
(⌈q

3

⌉)

+2

q−1∑
a=d2q/3e+1

2
(⌈q

3

⌉)(
a−
⌈

2q

3

⌉
+1

)
when q=3s+2.

The number of posets in family (g) can also be counted by determining the

number of dashed lines in each set using the subscripts, adding one to each set,
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and multiplying them together. Again, we must determine which structures are

horizontally symmetric and which are not and double the contribution of those that

are not. The structure will be symmetric if two of the chains have the same length,

meaning a=b or a=q−2b, or all three chains have the same length. However, q is

not divisible by three, so all three chains cannot have the same length.

For family (g1), b<
⌈
q
3

⌉
, and a≥

⌈
q
3

⌉
, so a 6=b, but a=q−2b is possible. Family

(g1) contributes

dq/3e−1∑
b=1

(⌈q
3

⌉
−λ
)2(⌈q

3

⌉
−b
)4

+2

dq/3e−1∑
b=1

q−b−1∑
a=q−2b+1

(⌈q
3

⌉
−λ
)2(⌈q

3

⌉
−b
)2(

a+b−
⌈

2q

3

⌉
+1

)2

posets where the first sum counts the case that a=q−2b and λ=

{
1 q=3s+1

0 q=3s+2
.

For family (g2), b<
⌈
q
3

⌉
−2, and a≥

⌈
q
3

⌉
, so again a 6=b, but a=q−2b is possible.

Thus, family (g2) contributes

dq/3e−3∑
b=1

(⌈q
3

⌉
−b
)2

+2

dq/3e−3∑
b=1

q−b−1∑
a=q−2b+1

(⌈q
3

⌉
−b
)(

a+b−
⌈

2q

3

⌉
+1

)
posets where the first sum counts the case that a=q−2b.

For family (g3), b≥
⌈
q
3

⌉
, and a≥

⌈
q
3

⌉
, so a 6=q−2b, but a=b is a possibility. Thus,

family (g3) contributes

b(q−1)/2c∑
b=dq/3e

(
b−
⌈q

3

⌉
+1
)4(

2b−
⌈

2q

3

⌉
+1

)2

+2

b(q−1)/2c∑
b=dq/3e

q−b−1∑
a=b+1

(
b−
⌈q

3

⌉
+1
)2(

a−
⌈q

3

⌉
+1
)2(

a+b−
⌈

2q

3

⌉
+1

)2

posets where the first sum counts the horizontally symmetric posets, and the double

sum counts the non-symmetric posets twice.
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We illustrate Proposition 4.2.3 for q=4 and q=5. For q=4, we have

|F4
3 |=4+1+2+1+0+1+0+0+0+0=9.

For q=5, we have

|F5
3 |=3+2(2)+2(2)+0+4+0+0+0+1+0=16.

Notice that this result is more complicated than Proposition 3.2.3. It would be

possible to find closed forms of the summations but they would not add clarity to

the result. We also note that this sequence appears starting at the third term of

sequence A153057 on the Online Encyclopedia of Integer Sequences [17].

Next, we illustrate F q3 for small values of q.

4.3 Small values of q

The following sections contain the minimal forbidden substructures for q=4,5,7,8,

10, 11, and 13. In each set of structures a thick, double-headed arrow indicates

that the chains it connects are the same chain, and a dashed line indicates optional

precedence.

4.3.1 Lengths [3,4]

Figure 4.9 gives the minimal structures that are not representable by intervals with

lengths in [3,4]. These structures together with their horizontal reflections comprise

F4
3 . Since all but one of the structures is horizontally symmetric (after possible

transformations that do not change the relationships of the Hasse diagram), P [3,4]

has eight minimal forbidden substructures.
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Figure 4.9: Structures that cannot appear in a [3,4] representable interval order: These

and their horizontal reflections comprise F4
3 .

There are eight structures in Figure 4.9. The sixth structure from the left is not

horizontally symmetric, so |F4
3 |=9. This confirms our count in Proposition 4.2.3.

4.3.2 Lengths [3,5]

Figure 4.10 gives the minimal structures that are not representable by intervals with

lengths in [3,5]. These structures and their horizontal reflections make up F5
3 .

Figure 4.10: F5
3

There are seven structures in Figure 4.10 only two of which are not horizontally

symmetric (in terms of the Hasse diagram relationships). The forth from the left has

one dashed line and so represents two posets, but it is not horizontally symmetric,

so it counts for four posets. Similarly, the fifth from the left adds four forbidden

posets. The sixth from the left has two dashed lines between different pairs of chains
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and so represents four posets. Thus, |F5
3 | contains sixteen elements. This agrees

with our calculation after Proposition 4.2.3.

4.3.3 Lengths [3,7]

Figure 4.11 gives the minimal structures that are not representable by intervals with

lengths in [3,7]. These structures and their horizontal reflections make up F7
3 .

Figure 4.11: F7
3

4.3.4 Lengths [3,8]

Figure 4.12 gives the minimal structures that are not representable by intervals with

lengths in [3,8]. These structures and their horizontal reflections make up F8
3 .
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Figure 4.12: F8
3

4.3.5 Lengths [3,10]

Figure 4.13 gives the minimal structures that are not representable by intervals with

lengths in [3,10]. These structures and their horizontal reflections make up F10
3 .
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Figure 4.13: F10
3
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Figure 4.13 (cont): F10
3

4.3.6 Lengths [3,11]

Figure 4.14 gives the minimal structures that are not representable by intervals with

lengths in [3,11]. These structures and their horizontal reflections comprise F11
3 .
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Figure 4.14: F11
3
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Figure 4.14 (cont): F11
3

4.3.7 Lengths [3,13]

Figure 4.15 gives the minimal structures that are not representable by intervals with

lengths in [3,13]. These structures and their horizontal reflections comprise F13
3 .
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Figure 4.15: F13
3
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Figure 4.15 (cont): F13
3
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Figure 4.15 (cont): F13
3
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Chapter 5

Interval orders with lengths [p,q]

Chapter 2 introduced the methods used in the subsequent chapters, Chapters 2

and 3 used these methods to prove results for interval lengths in [2, q] and [3, q]

respectively. We conclude by providing incomplete results for larger values of p, and

discussing why enumerating F qp becomes increasingly difficult as p increases. We

will provide a general characterization of minimal forbidden structures in F qp , but

we are not yet able to count them.

5.1 P [p,kp+1],k∈Z+

In this section, we state a result relating the minimal forbidden substructures for

P [p,kp+1] and P [p+1,k(p+1)+1]. First, consider the example with k=1 of P [2,3]

and P [3,4]. Figure 3.8 gives F3
2 , and Figure 4.9 illustrates F4

3 . Notice that Figure

4.9 contains all of the elements of Figure 3.8. Thus, F3
2 ⊂F4

3 . Proposition 5.1.1

generalizes this result to all values of p and k.

Proposition 5.1.1. Fkp+1
p ⊆Fk(p+1)+1

p+1 , k∈Z+.

Proof. Let P ∈Fkp+1
p , and let C be a minimal negative cycle in Dkp+1

p (P ). Then,

by Lemma 2.2.10, C contains α∈ [p] weight kp+1 arcs, and by Lemma 2.2.6, β :=⌈
α(kp+1)

p

⌉
weight −p arcs. Since (kα+1)p≥α(kp+1)>kαp, we have β=kα+1. By

Lemma 2.2.4, C is a sequence of adjacent sets of adjacent weight kp+1 arcs and
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adjacent weight −p arcs.

Now, in D
k(p+1)+1
p+1 (P ), C is still a negative cycle since it contains α weight k(p+1)+1

arcs, and kα+1 weight −(p+1) arcs for a total weight less than α(k(p+1)+1)−(kα+

1)(p+1)=α−p−1≤−1. By Theorem 2.1.5, P is forbidden in P [p+1,k(p+1)+1].

Assume C is not a minimal negative cycle in D
k(p+1)+1
p+1 (P ). Then, there exists a

pair xi, xj∈P represented in C such that an arc between two of their vertices in

Dp+2
p+1(P ) creates a shorter negative cycle, C ′ in C. C ′ has α′≤α≤p arcs of weight

k(p+1)+1. For C ′ to have negative weight, it must contain β′≥
⌈
α′(k(p+1)+1)

p+1

⌉
arcs

of weight −(p+1). Now, since α′≤p<p+1 and kα′ is an integer, we have⌈
kα′+

α′

p+1

⌉
=

⌈
kα′+

α′

p

⌉
and

β′≥
⌈
α′(k(p+1)+1)

p+1

⌉
=

⌈
α′(kp+1)

p

⌉
.

Thus, C ′ also has negative weight in Dkp+1
p (P ) which contradicts our assumption

that C is minimal in Dkp+1
p (P ). Thus, C is minimal in D

k(p+1)+1
p+1 (P ), and P ∈

Fk(p+1)+1
p+1 .

Corollary 5.1.2 motivated the investigation into this area, and so we give it some

special attention.

Corollary 5.1.2. Fp+1
p ⊆Fp+2

p+1 .

Returning to our small example, we have F3
2 ⊂F4

3 . Thus, if we remove any

element from P ∈F3
2 , it is not only representable with lengths in [2, 3] it is also

representable with lengths in [3,4].

Recall P [p, q]=P [1, q/p] [8]. That means we can restate the conclusion of the

last paragraph as: if we remove any element from P∈F3
2 , it is not only representable

with lengths in [1,3/2] it is also representable with lengths in [1,4/3].

In general, if we remove any element from P∈Fkp+1
p , it is not only representable

with lengths in
[
1, kp+1

p

]
, but also representable with lengths in

[
1, k(p+1)+1

p+1

]
.

Now, as p increases kp+1
p

approaches k. Interestingly, |Fk1 |=2 and |Fkp+1
p | in-

creases as p increases (see Corollary 5.2.6).
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5.2 Structures in F q
p for all p

The following result holds for p≥1. It defines the element of F qp which corresponds

to a negative cycle in the digraph with exactly one weight q arc.

Lemma 5.2.1. P=
⌈
q+2p

p

⌉
+1∈F qp for all p.

Proof. By Theorem 2.1.5, we must show that
⌈
q+2p

p

⌉
+1 corresponds to a minimal

negative cycle in the digraph. Label the chain from top to bottom as x1,x2, . . . ,

xd(q+2p)/pe and the other element as y1. Then, Dq
p(P ) contains the cycle

x1`,x2r,x2`,x3r,x3`, ...,xd(q+2p)/pe−1r,xd(q+2p)/pe−1`,xd(q+2p)/per,y1`,y1r,x1`,

call it C. Now, C contains one weight q arc,
⌈
q+2p
p

⌉
−2 arcs of weight −p, and⌈

q+2p
p

⌉
−1 arcs of weight −ε; and has weight q−p(d(q+2p)/pe−2)−ε(d(q+2p)/pe−

1)=q−pdq/pe−ε(d(q+2p)/pe−1). Clearly
⌈
q+2p

p

⌉
+1 does not contains a 2+2

as a subposet, so by Lemma 2.2.1, Dq
p(P ) does not contain a negative cycle with

only weight 0 and weight −ε arcs. By Corollary 2.2.2 and Lemma 2.2.3, a minimal

negative cycle must contain a weight q arc. If a minimal negative cycle contains one

weight q arc, by Lemma 2.2.6, it must contain
⌈
q
p

⌉
weight −p arcs. Cycle C contains

these numbers of weight q and −p arcs and the minimum number of weight 0 and

−ε arcs as given by Lemma 2.2.4. Thus, C is minimal.

Lemma 5.2.2 defines the elements of F qp which correspond to negative cycles in

the digraph with exactly two weight q arcs. Here, we must restrict the possible values

of q as in Corollary 3.1.3 because their associated negative cycles are non-minimal

and thus correspond to nonminimal forbidden structures. See the disscussion after

Corollary 3.1.3 for an example with p=4 and q=11.

Lemma 5.2.2. Let P be one of the posets in F qp (2) (Definition 3.1.1). Then, P∈F qp
for all p,q such that q=ps+d with d≤ p

2
.

Proof. Let P be as in the statement of the lemma. By Theorem 2.1.5, we must

show that P corresponds to a minimal negative cycle in the digraph. First,
⌈
2q
p

⌉
=⌈

2(ps+d)
p

⌉
=2s+1.
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For poset (i), label the chain from top to bottom as y1, z1, z2, . . . , z2s+1,x1, label

the element on the right u1, and label the element on the left u2. Then, y1�z1�
z2�·· ·�z2s+1�x1∩u1∩u2∩y1, and Dq

p(P ) contains the cycle

y1`, z1r, z1`, z2r, z2`, ..., z2s+1r, z2s+1`,x1r,u1`,u1r,u2`,u2r,y1`.

Call it C. Now, C contains two weight q arcs, 2s+1 arcs of weight −p, and 2s+2 arcs

of weight −ε; and has weight 2q−p(2s+1)−ε(2s+2)=2(ps+d)−2ps−p−ε(2s+2)=

2d−p−ε(2s+2)<0 since d≤ p
2
. Clearly P does not contain a 2+2 as a subposet, so

by Lemma 2.2.1, Dq
p(P ) does not contain a negative cycle with only weight 0 and

weight −ε arcs. Since
⌈
q
p

⌉
=s+1, P does not contain a

⌈
q+2p

p

⌉
+1 which by Lemma

2.2.9 is the minimal cycle which corresponds to one weight q arc. If a minimal

negative cycle contains two weight q arcs, by Lemma 2.2.6, it must contain
⌈
2q
p

⌉
weight −p arcs. Cycle C contains these numbers of weight q and −p arcs and the

minimum number of weight 0 and −ε arcs as given by Lemma 2.2.4. Thus, C is

minimal.

For posets in (ii), label the right chain from top to bottom as y2, z1, z2, . . . , za,x1,

label the left chain from top to bottom as y1, za+1, za+2, . . . , z2s+1, x2, label the top

right element as u1 and the bottom right element as u2. Then, y2�z1�z2�·· ·�
za�x1∩u1∩y1�za+1�za+2�z2s+1�x2∩u2∩y2 and Dq

p(P ) contains the cycle

y2`, z1r, z1`, z2r, z2`, ..., zar, za`,x1r,u1`,u1r,y1`, za+1r, za+1`, za+2r, za+2`, ..., z2s+1r,

z2s+1`,x2r,u2`,u2r,y2`.

Call it C ′. Cycle C ′ contains two arcs of weight q, 2s+1 arcs of weight −p, and

2s+3 arcs of weight −ε, and has weight 2q−p(2s+1)−ε(2s+3)=2d−p−ε(2s+3)<0.

Again P does not contain an induced 2+2 or an induced
(⌈

q
p

⌉
+2
)

+1 so C ′ cannot

be shortened to a negative cycle with no positive weight arcs or only one positive

weight arc. By Lemmas 2.2.6 and 2.2.4 C ′ is a minimal negative cycle which contains

exactly two weight q arcs. Thus, P is a minimal forbidden substructure for Pqp and

so P∈F qp .

Lemma 5.2.3 defines the elements of F qp which correspond to negative cycles in

the digraph with exactly three weight q arcs. Again, we must restrict the possible
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values of q as in Corollary 4.1.3 if their associated negative cycles are non-minimal

and thus correspond to nonminimal forbidden structures.

Lemma 5.2.3. Let P be one of the posets in F qp (3) (Definition 4.1.1). Then, P∈F qp
for all p,q such that q=ps+d with d≤ p

3
or p

2
<d≤ 2p

3
.

Proof. Let P be as in the statement of the lemma. By Theorem 2.1.5, we must show

that P corresponds to a minimal negative cycle in the digraph.

If P contains an induced poset isomorphic to Figure 4.1i, say y1�z1�z2�·· ·�
zd3q/pe�x1∩u1∩u2∩u3 with u1≺zd2q/pe−1, zdq/pe−1�u2�zd2q/pe+1, and u3�zdq/pe+1.

Then, the cycle

z1r, z1`, z2r, z2`, . . . , zβr, zβ`,x1r,u1`,u1r,u2`,u2r,u3`,u3r,y1`, z1r

has weight q(3)−p(β)−ε(β+1)<0.

Now, if P contains an induced subposet isomorphic to a poset in 4.1ii, then the

cycle

z1r, z1`, z2r, z2`, . . . , zar, za`,x1r,u1`,u1r,y1`, za+1r, za+1`, za+2r, za+2`, · · · , zβr, zβ`,x2r,

u2`,u2r,u3`,u3r,y2`, z1r

has weight q(3)−p(β)−ε(β+2)<0.

Finally, if P contains an induced subset isomorphic to a poset in family 4.1iii,

4.1iv, or 4.1v, then

z1r, z1`, z2r, z2`, z3r, · · · , za`,x1r,u1`,u1r,y1`, za+1r, za+1`, · · · , za+b`,x2r,u2`,u2r,y2`,

za+b+1r, za+b+1` · · · , zq`,x3r,u3`,u3r,y3`

is a cycle with weight q(3)−p(β)−ε(β+3)<0.

From the proof of Proposition 4.1.2, the relationships of the structures in Fig-

ure 4.1 do not allow for shorter negative cycles. Thus, P is a minimal forbidden

substructure for F qp and so P∈F qp .
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The list of structures in F3
p (Figure 4.6) is already quite long, and to draw them

clearly, we chose to repeat one of the chains. As Lemma 2.2.10 shows the number

of chains in the minimal structures of F qp could be as large as p. Drawing these

structures would become cumbersome and potentially unhelpful. In what follows, we

consider the minimal negative cycle structure and the posets they produce without

attempting to draw the resulting posets.

5.2.1 Cycle structure

By Lemma 2.2.4, the minimal cycle structures and thus minimal cycles for larger

values of p would look similar to the cycles already considered for p=2 and p=3.

In proposition, we consider the relationships not directly defined by the cycle. We

also encounter a divisibility issue analogous to the one addressed in Corollary 4.1.3

in which there are no minimal negative cycles with α=2 when p=3 and d=q mod 3

such that p
3
<d≤ p

2
or d> 2p

3
. When this happens, the negative cycle is not minimal

and thus corresponds to a forbidden structure that is not minimal. We will address

but not settle these divisibility issues in Section 5.2.2.

Proposition 5.2.4. Let P be a finite poset. Let C be a minimal negative cycle

in Dq
p(P ). If C contains exactly α weight q arcs and is labeled as in Figure 5.1,

then P contains an induced subposet with the following relationships where i, j∈
{1,2, . . . , α}, i≤j and subscript arithmetic is considered modulo α with α as the

additive identity:

1.



ui≺uj
j∑

k=i+1

βk<
⌈
(j−i−1)q

p

⌉
ui∩uj

⌈
(j−i−1)q

p

⌉
≤

j∑
k=i+1

βk<
⌈
(j−i+1)q

p

⌉
ui�uj

j∑
k=i+1

βk≥
⌈
(j−i+1)q

p

⌉ ,
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2.



ui≺yj
j∑

k=i+1

βk<
⌈
(j−i)q
p

⌉
ui∩yj

⌈
(j−i)q
p

⌉
≤

j∑
k=i+1

βk≤
⌈
(j−i+1)q

p

⌉
ui∩�yj

⌈
(j−i+1)q

p

⌉
<

j∑
k=i+1

βk<
⌈
(j−i+2)q

p

⌉
ui�yj

j∑
k=i+1

βk≥
⌈
(j−i+2)q

p

⌉
,

3. for n∈
{
j−1∑
k=1

βk+1, . . . ,
j∑

k=1

βk

}
and j′=n−

j−1∑
k=1

βk,

ui≺zn
j−1∑
k=i+1

βk+j′<
⌈
(j−i−1)q

p

⌉
ui∩zn

⌈
(j−i−1)q

p

⌉
≤

j−1∑
k=i+1

βk+j′≤
⌈
(j−i)q
p

⌉
ui�zn

j−1∑
k=i+1

βk+j′>
⌈
(j−i)q
p

⌉ ,

4.



ui≺xj
j∑

k=i+1

βk<
⌈
(j−i−2)q

p

⌉
u1≺∩xj

⌈
(j−i−2)q

p

⌉
≤

j∑
k=i+1

βk<
⌈
(j−i−1)q

p

⌉
−1

ui∩xj
⌈
(j−i−1)q

p

⌉
−1≤

j∑
k=i+1

βk<
⌈
(j−i)q
p

⌉
ui�xj

j∑
k=i+1

βk≥
⌈
(j−i)q
p

⌉
,

5.



yi�yj
j∑

k=i+1

βk<
⌈
(j−i−1)q

p

⌉
y1∩�yj

⌈
(j−i−1)q

p

⌉
≤

j∑
k=i+1

βk<
⌈
(j−i)q
p

⌉
−1

yi∩yj
⌈
(j−i)q
p

⌉
−1≤

j∑
k=i+1

βk≤
⌈
(j−i)q
p

⌉
−1

y1≺∩yj
⌈
(j−i)q
p

⌉
−1<

j∑
k=i+1

βk<
⌈
(j−i+1)q

p

⌉
yi≺yj

⌈
(j−i+1)q

p

⌉
≤

j∑
k=i+1

βk

,
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6. for n∈
{
j−1∑
k=1

βk+1, . . . ,
j∑

k=1

βk

}
and j′=n−

j−1∑
k=1

βk,

yi≺zn
j−1∑
k=i+1

βk+j′<
⌈
(j−i−2)q

p

⌉
yi≺∩zn

⌈
(j−i−2)q

p

⌉
≤

j−1∑
k=i+1

βk+j′<
⌈
(j−i−1)q

p

⌉
−1

yi∩zn
⌈
(j−i−1)q

p

⌉
−1≤

j−1∑
k=i+1

βk+j′≤
⌈
(j−i−1)q

p

⌉
yi�zn

j−1∑
k=i+1

βk+j′>
⌈
(j−i−1)q

p

⌉
,

7.



yi≺xj
j∑

k=i+1

βk<
⌈
(j−i−3)q

p

⌉
yi≺∩xj

⌈
(j−i−3)q

p

⌉
≤

j∑
k=i+1

βk<
⌈
(j−i−1)q

p

⌉
−2

yi∩xj
⌈
(j−i−1)q

p

⌉
−2≤

j∑
k=i+1

βk<
⌈
(j−i−1)q

p

⌉
yi�xj

⌈
(j−i−1)q

p

⌉
≤

j∑
k=i+1

βk

,

8. for n∈
{
j−1∑
k=1

βk+1, . . . ,
j∑

k=1

βk

}
and j′=n−

j−1∑
k=1

βk,

xi≺zn
j−1∑
k=i+1

βk+j′<
⌈
(j−i)q
p

⌉
xi∩zn

⌈
(j−i)q
p

⌉
≤

j−1∑
k=i+1

βk+j′≤
⌈
(j−i)q
p

⌉
+1

xi∩�zn
⌈
(j−i)q
p

⌉
+1<

j−1∑
k=i+1

βk+j′≤
⌈
(j−i+1)q

p

⌉
xi�zn

⌈
(j−i+1)q

p

⌉
<

j−1∑
k=i+1

βk+j′

,
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9.



xi≺xj
j∑

k=i+1

βk<
⌈
(j−i−1)q

p

⌉
xi≺∩xj

⌈
(j−i−1)q

p

⌉
≤

j∑
k=i+1

βk<
⌈
(j−i)q
p

⌉
−1

xi∩xj
⌈
(j−i)q
p

⌉
−1≤

j∑
k=i+1

βk≤
⌈
(j−i)q
p

⌉
xi∩�xj

⌈
(j−i)q
p

⌉
<

j∑
k=i+1

βk<
⌈
(j−i+1)q

p

⌉
xi�xj

⌈
(j−i+1)q

p

⌉
≤

j∑
k=i+1

βk

,

10. for m∈
{
i−1∑
k=1

βk+1, . . . ,
i∑

k=1

βk

}
with i′=m−

i−1∑
k=1

βk and

n∈
{
j−1∑
k=1

βk+1, . . . ,
j∑

k=1

βk

}
with j′=n−

j−1∑
k=1

βk,

zm≺zn
j−1∑
k=i

βk+j′−i′<
⌈
(j−i)q
p

⌉
−1

zm∩zn
⌈
(j−i)q
p

⌉
−1≤

j−1∑
k=i

βk+j′−i′≤
⌈
(j−i)q
p

⌉
zm�zn

⌈
(j−i)q
p

⌉
<
j−1∑
k=i

βk+j′−i′

.

z1`

z1r

z2 zβ1 x1 u1 y1
zβ1+1

zβ1+2 zβ1+β2
x2

u2 yα−1

z(α−1∑
i=1

βi+1

)

z(α−1∑
i=1

βi+2

)zβ xα uα yα

Figure 5.1: Cycle in Dq
p(P ) with α weight q arcs and β weight −p arcs

Proof. Consider a minimal cycle, C, in Dq
p(P ) with α weight q arcs.

We will assume that
⌈
αq
p

⌉
−
⌈
α′q
p

⌉
=
⌈
(α−α′)q

p

⌉
−1 for all α′<α. In Remark 1 we

will discuss why this is true when a cycle is minimal.

Let q=ps+d with d∈{1,2, . . . ,p−1} and gcd(p,d)=1.
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We have β=
⌈
αq
p

⌉
=
⌈
α(ps+d)

p

⌉
=αs+

⌈
αd
p

⌉
=



αs+1 d≤ p
α

αs+2 p
α
<d≤ 2p

α

αs+3 2p
α
<d≤ 3p

α
...

αs+α (α−1)p
α

<d

.

By Lemma 2.2.4, we can draw C as in Figure 5.1.

To simplify the calculations, we will disregard the weight −ε arcs when finding

cycle weights. Thus, if a cycle has weight 0 below, it will be considered a negative

cycle because all of the cycles considered have at least one weight −ε arc.

In Figure 5.1,
α∑
i=1

βi=β. If βi=0, eliminate its corresponding x and y elements.

Since β≥αs+1, ∃i′ such that βi′≥s+1. Now, consider the relationship between

zβi′−(s+1) and uβi′ such that zβi′−(s+1) =yβi′−1 if βi′=s+1. By transitivity, uβi′ 6�
zβi′−(s+1). If zβi′−(s+1)�uβi′ , then replacing zβi′−(s+1)`

→uβi′ r in C with the arc

(zβi′−(s+1)`
,uβi′ r) creates a cycle with weight

(α−1)q−p(αs+d(αd)/pe−(s+1))=(α−1)(ps+d)−p((α−1)s+d(αd)/pe−1)

=(α−1)d−pd(αd)/pe+p

=



(α−1)d d≤ p
α

(α−1)d−p p
α
<d≤ 2p

α

(α−1)d−2p 2p
α
<d≤ 3p

α
...

(α−1)d−(α−1)p (α−1)p
α

<d

which is non-positive when kp
α
<d≤ kp

α−1 ∀k∈[α−1]. (Note kp
α−1≤

(k+1)p
α
∀k∈[α−1].)

If zβi′−(s+1)∩uβi′ , then replacing uβi′ r→zβi′−(s+1)`
in C with the arc (uβi′ r, za−(s+1)`

)

creates a cycle with weight q−p(s+1)<0. Thus, when kp
α
<d≤ kp

α−1 for any k∈[α−1],

all relationships between zβi′−(s+1) and uβi′ yield shorter negative cycles. For the

remainder of the proof, we will assume that kp
α−1<d≤

(k+1)p
α

for some k∈[α−1].

The preceding paragraph is an incomplete analysis for minimality. This only

covers the case where C can be divided into two cycles: one with one weight q arc

and one with α−1 weight q arcs. This type of cycle division can also happen with
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different numbers of positive weight arcs. See Remark 1.

All elements labeled in C are distinct except we could have xi=yj for some i, j

pair. By Corollary 2.2.8, xi is distinct from yi−1 and yi. Lemma 2.2.7 gives the

conditions when an element can repeat. Thus, each xi, yj pair which can represent

the same element produces structures where they are different elements and ones

where they are the same.

In what follows, we will use subscripts i, j∈{1,2, . . . ,α}. In each case, assume

without loss of generality that i≤j (rotate cycle if necessary). We consider subscript

calculations modulo α with α as the additive identity. For example if i=j, i−j=α

and i−j−2=α−2. Also, if j<i+1, we have
j∑

k=i+1

βk=
α∑

k=i+2

βk+
j−1∑
k=1

βk=β−
i+1∑
k=j

βj.

First, we consider the relationships among the u elements.

Relationship 1:

If ui≺uj, then replacing uj`→uir in C with the arc (uj`, uir) creates a cycle

with weight (j−1−i)q−p
(

j∑
k=i+1

βk

)
which is positive when

j∑
k=i+1

βk<
(j−i−1)q

p
. If

ui�uj, then replacing ui`→ujr in C with the arc (ui`, ujr) creates a cycle with

weight (i−1+α−j)q−p

(
i∑

k=1

βk+
α∑

k=j+1

βk

)
=(i−1+α−j)q−p

(
β−

j∑
k=i+1

βk

)
which

is positive when
j∑

k=i+1

βk≥
⌈
(j−i+1)q

p

⌉
. If ui∩uj, then replacing uir→uj` in C with

the arc (uir,uj`) creates a cycle with weight (i+α−(j−1))q−p

(
i∑

k=1

βk+
α∑

k=j+1

βk

)
=

(i+α−(j−1))q−p
(
β−

j∑
k=i+1

βk

)
which is positive when

j∑
k=i+1

βk≥
⌈
(j−i−1)q

p

⌉
, and

replacing u2r→u1` in C with the arc (u2r,u1`) creates a cycle with weight (j−(i−

1))q−p
(

j∑
k=i+1

βk

)
which is positive when

j∑
k=i+1

βk<
(j−i+1))q

p
.
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Thus,



ui≺uj

j∑
k=i+1

βk<
⌈
(j−i−1)q

p

⌉
ui∩uj

⌈
(j−i−1)q

p

⌉
≤

j∑
k=i+1

βk<
⌈
(j−i+1)q

p

⌉
ui�uj

j∑
k=i+1

βk≥
⌈
(j−i+1)q

p

⌉ .

Next, we consider the relationships between the u elements and the elements of

the chains

Relationship 2:

If ui≺yj, then replacing yj`→uir in C with the arc (yj`,uir) creates a cycle with

weight (j− i)q−p
(

j∑
k=i+1

βk

)
which is positive when

j∑
k=i+1

βk<
⌈
(j−i)q
p

⌉
. If ui�yj,

then replacing ui`→yj` in C with the path ui`, yjr, yj` creates a cycle with weight

(i−1+α−j)q−p

(
1+

i∑
k=1

βk+
α∑

k=j+1

βk

)
=(α+i−j−1)q−p

(
1+β−

j∑
k=i+1

βk

)
which

is positive for
j∑

k=i+1

βk>
⌈
(j−i+1)q

p

⌉
. If ui∩yj then replacing uir→yj` in C with the arc

(uir,yj`) creates a cycle with weight (i+α−j)q−p

(
i∑

k=1

βk+
α∑

k=j+1

βk

)
=(α+i−j)q−

p

(
β−

j∑
k=i+1

βk

)
which is positive for

j∑
k=i+1

βk≥
⌈
(j−i)q
p

⌉
, and replacing yj`→ui` in C

with the path yj`, yjr,ui` creates a cycle with weight (j−(i−1)+1)q−p
(

j∑
k=i+1

βk

)
which is positive when

j∑
k=i+1

βk<
⌈
(j−i+2)q

p

⌉
.

Thus,



ui≺yj
j∑

k=i+1

βk<
⌈
(j−i)q

p

⌉
ui∩yj

⌈
(j−i)q

p

⌉
≤

j∑
k=i+1

βk≤
⌈
(j−i+1)q

p

⌉
ui∩�yj

⌈
(j−i+1)q

p

⌉
<

j∑
k=i+1

βk<
⌈
(j−i+2)q

p

⌉
ui�yj

j∑
k=i+1

βk≥
⌈
(j−i+2)q

p

⌉
.

Relationship 3:
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Let n∈
{
j−1∑
k=1

βk+1, . . . ,
j∑

k=1

βk

}
, and let j′=n−

j−1∑
k=1

βk. If ui≺ zn, then replac-

ing zn`→uir in C with the arc (zn`, uir) creates a cycle with weight (j−1− i)q−

p

(
j−1∑
k=i+1

βk+j′
)

which is positive when
j−1∑
k=i+1

βk + j′<
⌈
(j−i−1)q

p

⌉
. If ui� zn, then

replacing ui`→znr in C with the arc (ui`, znr) creates a cycle with weight (i−1+α−

(j−1))q−p

(
i∑

k=1

βk+
α∑
k=j

βk−(j′−1)

)
=(α+i−j)q−p

(
β−

j−1∑
k=i+1

βk−j′+1

)
which is

positive for
j−1∑
k=i+1

βk+j′>
⌈
(j−i)q
p

⌉
. If ui∩zn, then replacing uir→zn` in C with the

arc (uir, zn`) creates a cycle with weight (i+α−(j−1))q−p

(
i∑

k=1

βk+
α∑
k=j

βk−j′
)

=

(α+ i−j+1)q−p
(
β−

j−1∑
k=i+1

βk−j′
)

which is positive for
j−1∑
k=i+1

βk+j′≥
⌈
(j−i−1)q

p

⌉
,

and replacing znr→ui` in C with the arc (znr, ui`) creates a cycle with weight

(j−1−(i−1))q−p
(

j−1∑
k=i+1

βk+j′−1

)
which is positive when

j−1∑
k=i+1

βk+j′≤
⌈
(j−i)q
p

⌉
.

Thus, for n∈
{

j−1∑
k=1

βk+1, . . . ,
j∑

k=1

βk

}
and j′=n−

j−1∑
k=1

βk, we have

ui≺zn
j−1∑

k=i+1

βk+j′<
⌈
(j−i−1)q

p

⌉
ui∩zn

⌈
(j−i−1)q

p

⌉
≤

j−1∑
k=i+1

βk+j′≤
⌈
(j−i)q

p

⌉
ui�zn

j−1∑
k=i+1

βk+j′>
⌈
(j−i)q

p

⌉ .

Relationship 4:

If ui≺xj, then replacing xjr→uir in C with the path xjr,xj`,uir creates a cycle

with weight (j−1−i)q−p
(

1+
j∑

k=i+1

βk

)
which is positive for

j∑
k=i+1

βk<
⌈
(j−i−1)q

p

⌉
−1.

If ui�xj, then replacing ui`→xjr in C with the arc ui`,xjr creates a cycle with weight

(i−1+α− (j−1))q−p

(
i∑

k=1

βk+
α∑

k=j+1

βk

)
=(α+ i−j)q−p

(
β−

j∑
k=i+1

βk

)
which is

positive for
j∑

k=i+1

βk≥
⌈
(j−i)q
p

⌉
. If ui∩xj, then replacing uir→xjr in C with the path
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uir,xj`,xjr creates a cycle with weight (i+α−(j−1)+1)q−p

(
i∑

k=1

βk+
α∑

k=j+1

βk

)
=

(α+ i−j+2)q−p
(
β−

j∑
k=i+1

βk

)
which is positive for

j∑
k=i+1

βk≥
⌈
(j−i−2)q

p

⌉
, and re-

placing xjr→ui` in C with the arc (xjr,ui`) creates a cycle with weight (j−1−(i−

1))q−p
(

j∑
k=i+1

βk

)
which is positive for

j∑
k=i+1

βk<
⌈
(j−i)q
p

⌉
.

Thus,



ui≺xj

j∑
k=i+1

βk<
⌈
(j−i−2)q

p

⌉
u1≺∩xj

⌈
(j−i−2)q

p

⌉
≤

j∑
k=i+1

βk<
⌈
(j−i−1)q

p

⌉
−1

ui∩xj

⌈
(j−i−1)q

p

⌉
−1≤

j∑
k=i+1

βk<
⌈
(j−i)q

p

⌉
ui�xj

j∑
k=i+1

βk≥
⌈
(j−i)q

p

⌉
.

Next, we consider the relationships between elements of the chains. We start

with the maximal elements of each chain.

Relationship 5:

If yi�yj, then replacing yj`→yi` in C with the path yj`, yir, yi` creates a path

with weight (j−i)q−p
(

j∑
k=i+1

βk+1

)
which is positive when

j∑
k=i+1

βk<
⌈
(j−i)q
p

⌉
−1.

If yi≺yj, then replacing yi`→yj` in C with the path yi`,yjr,yj` creates a cycle with

weight (i+α−j)q−p
(

1+β−
j∑

k=i+1

βk

)
which is positive when

j∑
k=i+1

βk>
⌈
(j−i)q
p

⌉
−1.

If yi∩ yj, then replacing yj`→ yi` in C with the path yj`, yjr, yi` creates a cycle

with weight (j− i+1)q−p
(

j∑
k=i+1

βk

)
which is positive when

j∑
k=i+1

βk<
⌈
(j−i+1)q

p

⌉
,

and replacing yi`→yj` in C with the path yi`, yir, yj` creates a cycle with weight

(i+1+α−j)q−p
(
β−

j∑
k=i+1

βk

)
which is positive when

j∑
k=i+1

βk≥
⌈
(j−i−1)q

p

⌉
.
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Thus,



yi�yj
j∑

k=i+1

βk<
⌈
(j−i−1)q

p

⌉
y1∩�yj

⌈
(j−i−1)q

p

⌉
≤

j∑
k=i+1

βk<
⌈
(j−i)q

p

⌉
−1

yi∩yj
⌈
(j−i)q

p

⌉
−1≤

j∑
k=i+1

βk≤
⌈
(j−i)q

p

⌉
−1

y1≺∩yj
⌈
(j−i)q

p

⌉
−1<

j∑
k=i+1

βk<
⌈
(j−i+1)q

p

⌉
yi≺yj

⌈
(j−i+1)q

p

⌉
≤

j∑
k=i+1

βk

.

Next, we consider the maximal element of one chain a middle element of another.

Relationship 6:

Let n∈
{
j−1∑
k=1

βk+1, . . . ,
j∑

k=1

βk

}
, and let j′=n−

j−1∑
k=1

βk. If yi≺zn, then replacing

zn`→yi` in C with the path zn`, yir, yi` creates a cycle with weight (j−1− i)q−

p

(
j−1∑
k=i+1

βk+j′+1

)
which is positive when

j−1∑
k=i+1

βk+j′<
⌈
(j−i−1)q

p

⌉
−1. If yi�zn,

then replacing yi`→znr in C with the arc (yi`, znr) creates a cycle with weight (i+

α−(j−1))q−p

(
i∑

k=1

βk+
α∑
k=j

βk−(j′−1)

)
=(α+ i−j+1)q−p

(
β−

j−1∑
k=i+1

βk−j′+1

)
which is positive for

j−1∑
k=i+1

βk + j′>
⌈
(j−i−1)q

p

⌉
. If yi∩ zn, then replacing yi`→ zn`

in C with the path yi`, yir, zn` creates a cycle with weight (i+1+α− (j−1))q−

p

(
i∑

k=1

βk+
α∑
k=j

βk−j′
)

= (α+ i− j+ 2)q−p
(
β−

j−1∑
k=i+1

βk−j′
)

which is positive for

j−1∑
k=i+1

βk+j′≥
⌈
(j−i−2)q

p

⌉
, and replacing znr→yi` in C with the arc (znr,yi`) creates a

cycle with weight (j−1−i)q−p
(

j−1∑
k=i+1

βk+j′−1

)
which is positive when

j−1∑
k=i+1

βk+

j′≤
⌈
(j−i−1)q

p

⌉
.

Thus, for n∈
{

j−1∑
k=1

βk+1, . . . ,
j∑

k=1

βk

}
and j′=n−

j−1∑
k=1

βk, we have

139





yi≺zn
j−1∑

k=i+1

βk+j′<
⌈
(j−i−2)q

p

⌉
yi≺∩zn

⌈
(j−i−2)q

p

⌉
≤

j−1∑
k=i+1

βk+j′<
⌈
(j−i−1)q

p

⌉
−1

yi∩zn
⌈
(j−i−1)q

p

⌉
−1≤

j−1∑
k=i+1

βk+j′≤
⌈
(j−i−1)q

p

⌉
yi�zn

j−1∑
k=i+1

βk+j′>
⌈
(j−i−1)q

p

⌉
.

Now, we consider the maximal element of one chain and the minimal element of

another.

Relationship 7:

If yi�xj, then replacing yi`→xjr in C with the arc (yi`,xjr) creates a cycle with

weight (i+α−(j−1))q−p
(
β−

j∑
k=i+1

βk

)
which is positive for

j∑
k=i+1

βk≥
⌈
(j−i−1)q

p

⌉
.

If yi≺xj, then replacing xjr→yi` in C with the path xjr,xj`, yir, yi` creates a cycle

with weight (j−1−i)q−p
(

j∑
k=i+1

βk+2

)
which is positive for

j∑
k=i+1

βk<
⌈
(j−i−1)q

p

⌉
−

2. If yi∩xj, then replacing xjr→yi` in C with the arc (xjr, yi`) creates a cycle

with weight (j−1−i)q−p
(

j∑
k=i+1

βk

)
which is positive for

j∑
k=i+1

βk<
⌈
(j−i−1)q

p

⌉
, and

replacing yi`→xjr in C with the path yi`, yir, xj`, xjr creates a cycle with weight

(i+1+α−(j−1)+1)q−p
(
β−

j∑
k=i+1

βk

)
which is positive for

j∑
k=i+1

βk≥
⌈
(j−i−3)q

p

⌉
.

Thus,



yi≺xj

j∑
k=i+1

βk<
⌈
(j−i−3)q

p

⌉
yi≺∩xj

⌈
(j−i−3)q

p

⌉
≤

j∑
k=i+1

βk<
⌈
(j−i−1)q

p

⌉
−2

yi∩xj

⌈
(j−i−1)q

p

⌉
−2≤

j∑
k=i+1

βk<
⌈
(j−i−1)q

p

⌉
yi�xj

⌈
(j−i−1)q

p

⌉
≤

j∑
k=i+1

βk

.

Next, we consider the minimal element of one chain and a middle element of

another.

Relationship 8:
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Let n∈
{
j−1∑
k=1

βk+1, . . . ,
j∑

k=1

βk

}
, and let j′=n−

j−1∑
k=1

βk. If xi�zn, then replacing

xir→znr in C with the path xir,xi`, znr creates a cycle with weight (i−1+α−(j−

1))q−p
(
β−

j−1∑
k=i+1

βk−(j′−1)+1

)
which is positive for

j−1∑
k=i+1

βk+j′>
⌈
(j−i)q
p

⌉
+1. If

xi≺zn, then replacing zn`→xir in C with the arc (zn`, xir) creates a cycle with

weight (j−1−(i−1))q−p
(

j−1∑
k=i+1

βk+j′
)

which is positive for
j−1∑
k=i+1

βk+j′<
⌈
(j−i)q
p

⌉
.

If xi∩zn, then replacing xir→zn` in C with the arc (xir, zn`) creates a cycle with

weight (i−1+α−(j−1))q−p
(
β−

j−1∑
k=i+1

βk−j′)
)

which is positive for
j−1∑
k=i+1

βk+j′≥⌈
(j−i)q
p

⌉
, and replacing znr→xir in C with the path znr,xi`,xir creates a cycles with

weight (j−1−(i−1)+1)q−p
(

j−1∑
k=i+1

βk+j′−1

)
which is positive for

j−1∑
k=i+1

βk+j′≤⌈
(j−i+1)q

p

⌉
.

Thus, for n∈
{

j−1∑
k=1

βk+1, . . . ,
j∑

k=1

βk

}
and j′=n−

j−1∑
k=1

βk, we have

xi≺zn
j−1∑

k=i+1

βk+j′<
⌈
(j−i)q

p

⌉
xi∩zn

⌈
(j−i)q

p

⌉
≤

j−1∑
k=i+1

βk+j′≤
⌈
(j−i)q

p

⌉
+1

xi∩�zn
⌈
(j−i)q

p

⌉
+1<

j−1∑
k=i+1

βk+j′≤
⌈
(j−i+1)q

p

⌉
xi�zn

⌈
(j−i+1)q

p

⌉
<

j−1∑
k=i+1

βk+j′

.

Now, we consider the minimal elements of two chains.

Relationship 9:

If xi�xj, then replacing xir→xjr in C with the path xir, xi`, xir creates a cy-

cle with weight (i+α−j)q−p
(

1+β−
j∑

k=i+1

βk

)
which is positive when

j∑
k=i+1

βk>⌈
(j−i)q
p

⌉
. If xi≺xj, then replacing xjr→xir in C with the path xjr, xj`, xir cre-

ates a cycle with weight (j−i)q−p
(

1+
j∑

k=i+1

βk

)
which is positive when

j∑
k=i+1

βk<
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⌈
(j−i)q
p

⌉
−1. If xi∩xj, then replacing xir→xjr in C with the path xjr, xi`, xir cre-

ates a cycle with weight (j−i+1)q−p
(

j∑
k=i+1

βk

)
which is positive when

j∑
k=i+1

βk<⌈
(j−i+1)q

p

⌉
, and replacing xir→xjr in C with the path xir,xj`,xjr creates a cycle with

weight (i+α−j+1)q−p
(
β−

j∑
k=i+1

βk

)
which is positive when

j∑
k=i+1

βk≥
⌈
(j−i−1)q

p

⌉
.

Thus,



xi≺xj

j∑
k=i+1

βk<
⌈
(j−i−1)q

p

⌉
xi≺∩xj

⌈
(j−i−1)q

p

⌉
≤

j∑
k=i+1

βk<
⌈
(j−i)q

p

⌉
−1

xi∩xj

⌈
(j−i)q

p

⌉
−1≤

j∑
k=i+1

βk≤
⌈
(j−i)q

p

⌉
xi∩�xj

⌈
(j−i)q

p

⌉
<

j∑
k=i+1

βk<
⌈
(j−i+1)q

p

⌉
xi�xj

⌈
(j−i+1)q

p

⌉
≤

j∑
k=i+1

βk

.

Finally, we consider middle elements of two different chains.

Relationship 10:

Let m∈
{
i−1∑
k=1

βk+1, . . . ,
i∑

k=1

βk

}
, and let i′=m−

i−1∑
k=1

βk. Let

n∈
{
j−1∑
k=1

βk+1, . . . ,
j∑

k=1

βk

}
, and let j′=n−

j−1∑
k=1

βk. Note, since i<j, m<n. If zm�zn,

then replacing zm`→znr in C with the arc (zm`, znr) creates a cycle with weight

(i−1+α−(j−1))q−p
(
β−

j−1∑
k=i

βk+i′−j′+1

)
which is positive when

j−1∑
k=i

βk+j′−i′>⌈
(j−i)q
p

⌉
. If zm≺zn, then replacing zn`→zmr in C with the arc (zn`, zmr) creates a

cycle with weight (j−1−(i−1))q−p
(
j−1∑
k=i

βk+j′−(i′−1)

)
which is positive when

j−1∑
k=i

βk+j′− i′<
⌈
(j−i)q
p

⌉
−1. If zm∩zn, then replacing zmr→zn` in C with the arc

(zmr, zn`) creates a cycle with weight (i−1+α−(j−1))q−p
(
β−

j−1∑
k=i

βk+i′−1−j′
)

which is positive when
j−1∑
k=i

βk+j′−i′≥
⌈
(j−i)q
p

⌉
−1, and replacing znr→zm` in C with
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the arc (znr, zm`) creates a cycle with weight (j−1−(i−1))q−p
(
j−1∑
k=i

βk−i′+j′−1

)
which is positive when

j−1∑
k=i

βk+j′−i′≤
⌈
(j−i)q
p

⌉
.

Thus, for m∈
{

i−1∑
k=1

βk+1, . . . ,
i∑

k=1

βk

}
with i′=m−

i−1∑
k=1

βk and

n∈
{

j−1∑
k=1

βk+1, . . . ,
j∑

k=1

βk

}
with j′=n−

j−1∑
k=1

βk, we have

zm≺zn
j−1∑
k=i

βk+j′−i′<
⌈
(j−i)q

p

⌉
−1

zm∩zn
⌈
(j−i)q

p

⌉
−1≤

j−1∑
k=i

βk+j′−i′≤
⌈
(j−i)q

p

⌉
zm�zn

⌈
(j−i)q

p

⌉
<

j−1∑
k=i

βk+j′−i′

.

The preceding analysis and the relationships in bold give minimal forbidden

substructures for P [p,q].

Given p,q, and α, the bold relationships would give the minimal forbidden struc-

tures associated with a minimal negative cycle in Dq
p(P ) with α weight q arcs. How-

ever, if the bold relationships do not provide a relationship for a pair of elements,

then there are no minimal forbidden structures which correspond to that set of p,q,α

values.

The proof of the Proposition 5.2.4 is much shorter than that of Propositions

3.1.2 and 4.1.2. However, the former results provide the specific structures for p=2

and p=3. To ascertain the specific structures for higher values of p, we would need

for analyze the relationships in following proposition for each pair of elements. A

structure in F qp will have between 4 and q+3p elements, so there are as many as(
q+3p

2

)
= (q+3p)(q+3p−1)

2
pairs.

The relationships found in the Proposition 5.2.4 are similar to those found in

Chapters 3 and 4, but we are lacking the divisibility conditions to determine which

values of α will produce minimal structures for a given p,q pair.
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5.2.2 Divisibility

Let q=ps+d. Consider the values of β for small values of α and then for general α.⌈
q
p

⌉
=
⌈
ps+d
p

⌉
=s+

⌈
d
p

⌉
=s+1

⌈
2q
p

⌉
=
⌈
2(ps+d)

p

⌉
=2s+

⌈
2d
p

⌉
=

{
2s+1 d≤ p

2

2s+2 p
2
<d

⌈
3q
p

⌉
=
⌈
3(ps+d)

p

⌉
=3s+

⌈
3d
p

⌉
=


3s+1 d≤ p

3

3s+2 p
3
<d≤ 2p

3

3s+3 2p
3
<d

⌈
4q
p

⌉
=
⌈
4(ps+d)

p

⌉
=4s+

⌈
4d
p

⌉
=


4s+1 d≤ p

4

4s+2 p
4
<d≤ p

2

4s+3 p
2
<d≤ 3p

4

4s+4 3p
4
<d

...

⌈
αq
p

⌉
=
⌈
α(ps+d)

p

⌉
=αs+

⌈
αd
p

⌉
=



αs+1 d≤ p
α

αs+2 p
α
<d≤ 2p

α

αs+3 2p
α
<d≤ 3p

α
...

αs+α (α−1)p
α

<d
To have a minimal negative cycle with exactly three weight q arcs, we cannot

have p
3
<d≤ p

2
or 2p

3
<d because any relationship between za−(s+1) and u1 would give

a shorter negative cycle (see the proof of Proposition 4.1.2).

To have a minimal cycle with exactly four weight q arcs, we cannot have p
4
<d≤ p

3
,

p
3
<d≤ p

2
(2 and 2), p

2
<d≤ 2p

3
(3 and 1), or d> 3p

4
(2 and 2 or 1 and 3). For p

4
<d≤ p

3
,

the cycle could be divided into either one side with three weight q arcs and the other

with one or one side with two q arcs and the other side also with two, p
3
<d≤ p

2
could

just be two and two, p
2
<d≤ 2p

3
is just three and one, and d> 3p

4
is three and one or

two and two. For the three and one splits, the shortcut could again be u1�za−(s+1)

if the cycle is labeled as in the proof of Proposition 4.1.2. The two, two split is not

as straight forward. The sizes of the −p arc sets are important. Let β1,β2,β3, and
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β4 be the sizes of the −p weight sets. We have β1+β2+β3+β4≥4s+1, so there will

be an adjacent pair with βi+βi+1≥d2d/pe (otherwise 2(β1+β2+β3+β4)<2d2d/pe).
If βi+1<d2d/pe, then ui+1 and z∑βi+1

k=1 βk−d2d/pe
will result in a shorter negative cycle

regardless of their relationship. If βi+1≥d2d/pe, then ui+2 and z∑βi+2
k=1 βk−d2d/pe

will

create the shortcut.

Proposition 5.2.5. F qp contains the minimal structures described in Proposition

5.2.4 for α=p.

Proof. Let C be a negative cycle in Dq
p(P ) with p weight q arcs and q weight −p

arcs with the structure of Figure 5.1. For C to contain a shorter negative cycle, we

must be able to divide the cycle into two parts such that one side has α′ weight q

arcs and the other has α′′≥α′ weight q arcs, with q=
⌈
α′q
p

⌉
+
⌈
α′′q
p

⌉
. Since α′+α′′=p,

q= α′q
p

+ α′′q
p

. Now, since gcd(p,q)=1, and α′,α′′<p, both
⌈
α′q
p

⌉
and

⌈
α′′q
p

⌉
will round

up. Thus, q 6=
⌈
α′q
p

⌉
+
⌈
α′′q
p

⌉
for any values of α′ and α′′. Therefore, C is minimal.

Corollary 5.2.6. Fkp+1
p contains minimal structures corresponding to negative cy-

cles in Dkp+1
p (P ), ∀α∈{1,2, . . . ,p}.

Proof. By Proposition 5.1.1, Fk(p−1)+1
p−1 ⊆Fkp+1

p . By induction, Fkp+1
p contains min-

imal structures corresponding to α∈{1,2, . . . , p−1}. By Proposition 5.2.5, Fkp+1
p

contains minimal structures corresponding to α=p.

This supports the statement after the proof of Proposition 5.1.1 that |Fkp+1
p |

increases as p increases.

Corollary 5.2.7. Fkp+1
p ⊂Fk(p+1)+1

p+1 .

Although we do not see shortcut behavior when α=p, in the following remark,

we develop the conditions on d (q=ps+d) that could produce shortcut behavior.

Remark 1. Let C be a negative cycle in Dq
p(P ) with the structure of Lemma 2.2.4

which contains α<p weight q=ps+d arcs. In Proposition 5.2.5, we addressed α=p.

Question 1. In general, can we divide C into two parts such that one side has α′

weight q arcs and the other has α′′≥α′ weight q arcs, so that
⌈
αq
p

⌉
=
⌈
α′q
p

⌉
+
⌈
α′′q
p

⌉
?
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We have
⌈
αq
p

⌉
=αs+

⌈
αd
p

⌉
,
⌈
α′q
p

⌉
=α′s+

⌈
α′d
p

⌉
, and

⌈
α′′q
p

⌉
=α′′s+

⌈
α′′d
p

⌉
.

The question becomes:

Question 2. When is
⌈
αd
p

⌉
=
⌈
α′d
p

⌉
+
⌈
α′′d
p

⌉
?

Let αd=ps′+d′ and let α′d=ps′′+d′′. Since gcd(p,d)=0 and α,α′<p, d′, d′′ 6=0.

Then,

α′′d=αd−α′d

=p(s′−s′′)+d′−d′′

=

{
p(s′−s′′)+d′−d′′ d′≥d′′

p(s′−s′′−1)+d′′−d′ d′<d′′

.

Question 3. When is
⌈
d′

p

⌉
=
⌈
d′′

p

⌉
+
⌈
d′−d′′
p

⌉
?

Since 0≤d′, d′′<p, we have −p<d′−d′′<p. If d′>d′′, then
⌈
d′−d′′
p

⌉
= 1 and

1 6=1+1. If d′≤d′′, then
⌈
d′−d′′
p

⌉
=0 and 1=1+0. Thus, d′≤d′′, i.e., αd(mod p)≤

α′d(mod p).

Question 4. When is αd(mod p)≤α′d(mod p)?

We have,

αd=s′p+d′=



d′ d< p
α

p+d′ p
α
≤d< 2p

α

2p+d′ 2p
α
≤d< 3p

α
...

(α−1)p+d′ (α−1)p
α
≤d<p

,

and

α′d=s′′p+d′′=


d′′ d< p

α′

p+d′′ p
α′
≤d< 2p

α′

...

(α′−1)p+d′′ (α′−1)p
α′
≤d<p

.
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Thus, for kp
α
≤d< (k+1)p

α
, we have αd=kp+d′, and for k′p

α′
≤d< (k′+1)p

α′
, we have

α′d=k′p+d′′.

Next,

⌈
αd

p

⌉
=s′+

⌈
d′

p

⌉
=s′+1=



1 d≤ p
α

1+1 p
α
<d≤ 2p

α

2+1 2p
α
<d≤ 3p

α
...

(α−1)+1 (α−1)p
α

<d<p

,

and

⌈
α′d

p

⌉
=s′′+

⌈
d′′

p

⌉
=


1 d≤ p

α′

1+1 p
α′
<d≤ 2p

α′

...

(α′−1)+1 (α′−1)p
α′

<d<p

.

Thus, for kp
α
<d≤ (k+1)p

α
, we have

⌈
αd
p

⌉
=k+ 1, and for k′p

α′
<d≤ (k′+1)p

α′
, we have⌈

α′d
p

⌉
=k′+1.

If αd(mod p)≤α′d(mod p), we have αd−s′p≤α′d−s′′p=⇒d≤ (s′−s′′)p
α−α′ .

Answer.
⌈
αq
p

⌉
=
⌈
α′q
p

⌉
+
⌈
α′′d
p

⌉
when if kp

α
<d≤ (k+1)p

α
and k′p

α′
<d≤ (k′+1)p

α′
, then d≤

(s′−s′′)p
α−α′ = (k−k′)p

α−α′ .

This ends Remark 1.

These conditions on d could be those needed to determine minimality, but more

work needs to be done.

5.3 Future work

Proposition 5.2.4 and Remark 1 from the previous section inspire Conjecture 5.3.1.

Conjecture 5.3.1. Let P be a finite poset. Let C be a minimal negative cycle

in Dq
p(P ) which contains α weight q arcs. Let q= ps+ d, α′ ∈{1, 2, . . . , dα/2e},

k∈{0,1, . . . ,α−1}, k′∈{0,1, . . . ,α′−1}, kp
α
≤d< (k+1)p

α
, and k′p

α′
≤d< (k′+1)p

α′
. Then,

d> (k−k′)p
α−α′ .
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Proving this conjecture would require showing that when d≤ (k−k′)p
α−α′ there is a

pair of elements which create a shorter negative cycle regardless of their relationship.

We would also need to show that there is no such pair of elements when d> (k−k′)p
α−α′ .

The goal of the previous sections and Conjecture 5.3.1 would be a complete result

for F qp . Proposition 5.2.4 provides a complete description of the relationships in the

posets of F qp based on p,q, and α (the number of q weight arcs in a corresponding

negative cycle) when the corresponding negative cycle is minimal. Resolving 5.3.1

would determine the values of p, q, and α for which such a minimal negative cycle

exists.

Beyond posets, there are also other relation sets as discussed in the introduction

to which it could be interesting to consider adding length constraints.
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