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Abstract

The Hamiltonian path problem is a well-known NP-complete graph theory prob-

lem which is to determine whether or not it is possible to find a spanning path in a

graph. Some variations on this problem include the 1HP and 2HP problems, which

are to determine whether or not it is possible to find a Hamiltonian path in a graph

if one or two endpoints of the path are fixed, respectively. Both problems are also

NP-complete for graphs in general, though like the Hamiltonian path problem, they

are polynomially solvable on certain types of graphs. 2-trees are a specific type of

graph for which the 1HP, 2HP, and traditional Hamiltonian path problems are poly-

nomially solvable. It is known that 2-trees have a Hamiltonian cycle if and only if

they are 1-tough. However, the analogous statement for Hamiltonian paths does not

hold. We will structurally characterize 2HP on 2-trees, and then use these results to

structurally characterize 1HP and HP on 2-trees. We will define a family of 2-trees

such that any 2-tree has a Hamiltonian path if and only if it does not contain any

graph from that family as an induced graph.
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Chapter 1

Introduction

In this chapter, we will review basic information regarding 2-trees and Hamiltonian

problems. In Section 1.1, we will review basic terminology and definitions and in

Section 1.2 we will provide basic results. In Chapter 2 we will introduce the new

definitions and techniques that will be used in this dissertation. Chapter 3 and 4

will have our main results regarding the Hamiltonian path problems on 2-trees, and

Chapter 5 will conclude the dissertation with future work.

1.1 Problem Description

The Hamiltonian path problem (HP) is to determine whether or not a given graph

has a Hamiltonian path, i.e., a spanning path in the graph. Two variations of this

problem, 1HP and 2HP, determine whether a given graph has a Hamiltonian path

fixing one or two given vertices, respectively, as endpoints.

The 1HP problem is known to be polynomially solvable on interval graphs, cographs,

and biconvex graphs. It is known to be NP-complete on chordal and comparability

graphs. The complexity of the 1HP problem is unknown on both permutation graphs

and convex graphs. The complexity of the 2HP problem is unknown on interval

graphs [2], though it is known to be polynomially solvable on cographs [3].

For k-trees, a subclass of chordal graphs, HP, 1HP, and 2HP problems are poly-

nomially solvable. They fall into the class of partial k-trees, graphs with treewidth

at most k. The Hamiltonian path problem is polynomially solvable on graphs with

2



bounded treewidth [11], using FPT algorithms, or algorithms which are fixed param-

eter tractable. Since adding a pendant edge to a k-tree keeps the graph in the class of

partial k-trees, we can solve the 1HP and 2HP problems by adding a pendant edge to

a given path endpoint and running the Hamiltonian path algorithm for partial k-trees

on the resulting graph.

In [23], Renjith and Sadagopan give a linear-time algorithm for Hamiltonian paths

in 2-trees. They also discuss some structural qualities of 2-trees having a Hamilto-

nian path. Most of their results involve multiple algorithms and structures of a graph,

which is not a 2-tree, formed from the algorithms. In Chapter 4, we will take a differ-

ent approach, by using toughness properties and results from the 2HP problem to give

a list of forbidden induced sub-2-trees for which a 2-tree will not have a Hamiltonian

path.

In this dissertation, we will give structural conditions of 2-trees and forbidden in-

duced subgraphs for Hamiltonian paths not to exist in 1HP, 2HP, and the traditional

Hamiltonian path problem.

1.2 Basic Definitions and Results

Definition 1.2.1. A graph, G, is Hamiltonian if G contains a Hamiltonian cycle.

We will use the following notations for the 1HP and 2HP problems.

Definition 1.2.2. Given a graph G and x1 ∈ V, an x1-Hamiltonian Path in G is

a Hamiltonian path which either begins or ends with x1.

Definition 1.2.3. Given a graph G and x1, x2 ∈ V, an (x1,x2)-Hamiltonian Path

in G is a Hamiltonian path between x1 and x2.

Our focus for these problems will be on 2-trees, which are k-trees for k = 2.

Definition 1.2.4. [24] Define a k-tree as follows:

• Kk, the complete graph on k vertices, is a k-tree, and

• If G is a k-tree, then the graph formed by adding a vertex adjacent to all vertices

in a k-clique in G is a k-tree.

3



Subgraphs of k-trees are called partial k-trees. A simplicial vertex is a vertex

whose neighbors form a clique. Simplicial vertices in a k-tree have degree k.

Notation 1.2.5. We will use the notation from [7] where S1(G) is the set of simplicial

vertices in G.

Definition 1.2.6. For any graph G = (V,E), and X ⊂ V , G[X], the graph induced

by X, has vertex set X, and edge set E ′ ⊂ E such that uv ∈ E ′ iff uv ∈ E and

u, v ∈ X.

Notation 1.2.7. For any graph G = (V,E) and v ∈ V , G − v denotes G[V − {v}].
Likewise, for S ⊂ V, G− S denotes G[V − S].

In [24], Rose also characterizes k-trees as connected graphs which contain a k-

clique but no k + 2-clique, and such that every minimal x, y separator of G is a k-

clique. An x, y separator is a set S ⊂ V such that x and y lie in different components

of G− S.

Stemming from Chvátal’s conjecture that there exists a t0 such that every t0-tough

graph is hamiltonian [10], many known results, including those from [7], regarding

Hamiltonian problems in k-trees involve toughness conditions.

Definition 1.2.8. For a graph G = (V,E) and S ⊂ V , let c(G − S) denote the

number of components in G − S. Then G is t-tough if |S| ≥ t(c(G − S)) for all

cut-sets, S, i.e., S ⊂ V such that c(G−S) > 1. A set, S such that |S| = t(c(G−S))

is called a tough set.

Definition 1.2.9. A graph G is 1-path-tough if |S| ≥ (c(G−S)−1) for all S ⊆ V .

The following theorem, originally stated by Chvátal in [10], is well known and can

be found in many graph theory textbooks.

Theorem 1.2.10. [10] If a graph G has a Hamiltonian cycle, then G is 1-tough.

Theorem 1.2.11. If G has a Hamiltonian path, then G is 1-path-tough.

Path tough has also been used in [12] to describe a graph, G, such that for any

nonempty S ⊂ V , G− S can be covered by at most |S| vertex disjoint paths.

Closely related to toughness, we will often use the scattering number of a graph

when proving that Hamiltonian paths do not exist in a graph.

4



Definition 1.2.12. [16] The scattering number of a graph G is

s(G) = max
S⊆V, c(G−S)6=1

{c(G− S)− |S|}.

Hence, if G is 1-tough, then s(G) ≤ 0 and if G is 1-path-tough, then s(G) ≤ 1.

Furthermore, if G is a graph for which s(G) ≥ 2, then G does not have a Hamiltonian

path.

Additionally, for graphs with scattering number at least one, the scattering number

of a graph gives a well known lower bound for the path partition number of a graph.

Notation 1.2.13. PP (G) denotes the path partition number of a graph, G, the min-

imum number of vertex disjoint paths required to cover the vertices of G.

The path partition number has also been referred to as the path cover number.

Lemma 1.2.14. For any graph G,

PP (G) ≥ max
U⊆V
{c(G− U)− |U |}.

The related k-fixed endpoint path partition problem is to determine the minimum

number of vertex disjoint paths required to cover the vertices of G given that each

vertex in a set T of k vertices are each endpoints of a path. In [4], Baker gives the

following lower bound for the k-fixed endpoint path partition number of a graph G

with respect to T ⊂ V (G). This will be helpful when we look at 2HP.

Notation 1.2.15. PP (G;T ) denotes the k-fixed endpoint path partition number of a

graph G with respect to T ⊂ V (G).

Lemma 1.2.16 (Baker, 2013). [4] For any graph G and a set T ⊂ V (G),

PP (G;T ) ≥ max
U⊆V
{c(G− U)− |S|},

for S = U − T.

We will begin looking at the Hamiltonian path problems on 2-trees by looking at

the toughness conditions regarding Hamiltonian cycles in k-trees from [7].

Theorem 1.2.17 (Broersma, Xiong, Yoshimoto, 2005). [7] If G 6= K2 is a k+1
3

-tough

k-tree (k ≥ 2), then G is Hamiltonian.

5



For k = 2, the above theorem proves that 1-toughness is also a sufficient condition

for 2-trees to have a Hamiltonian cycle. In their proof, the Broersma, Xiong, and

Yoshimoto also prove that there is a cycle which contains all of the edges, e = uv,

for which c(G − {u, v}) = 1. For 1-tough 2-trees, this is the only Hamiltonian cycle

in the graph. In Theorem 1.2.23, we will restate and prove Theorem 1.2.17 for the

special case when k = 2.

Knowing that 1-toughness is a sufficient condition for a 2-tree to have a Hamil-

tonian cycle, it seemed natural to check if there was a similar 1-path-toughness con-

dition for 2-trees having Hamiltonian paths. For a cocomparability graph, G, G has

a Hamiltonian cycle iff it is 1-tough, and likewise, G has a Hamiltonian path iff it is

1-path-tough [13]. However, while 1-path-toughness is a necessary condition, it is not

a sufficient condition for a 2-tree to have a Hamiltonian path. We build an infinite

class of 1-path-tough 2-trees which do not contain a Hamiltonian path, as demon-

strated in Figure 1.3. These 1-path-tough 2-trees will not be 1-tough, since clearly if

a 1-path-tough 2-tree is also a 1-tough 2-tree, then it will have a Hamiltonian path

by Theorem 1.2.17. So, first we will discuss a few structural conditions to identify

2-trees which are and are not 1-tough. In [19], Markenzon, Justel, and Paciornik refer

to a 1-tough 2-tree as a simple-clique 2-tree or SC 2-tree, but we will refer to these

2-trees by their toughness condition.

Definition 1.2.18. The open neighborhood, NG(v), of a vertex v, is the set of vertices

adjacent to v in G. We will drop the G, when the graph in question is clear. The

closed neighborhood of a vertex v is N [v] = N(v) ∪ {v}.

Definition 1.2.19. We will say a vertex, v, is adjacent to an edge, uw, if v is

adjacent to both u and w. Furthermore, for any edge, e = uw, the closed neighbor-

hood of e, N [e], will be defined as N [e] = N [u] ∩ N [w], and the open neighborhood

of e, N(e), will be defined as N(e) = N(u) ∩N(w).

Definition 1.2.20. A t-edge is an edge, e such that |N(e)| = t.

Remark 1.2.21. A t-edge will be shared by t distinct induced K3’s, or triangles.

The following lemma and its proof are similar to that found in [23] with new

notation. We provide an additional proof here for clarity and completeness.

Lemma 1.2.22. Suppose G 6= K2 is a 2-tree. If xy ∈ E(G) is a t-edge then c(G −
{x, y}) = t.

6



Proof. We proceed by induction on |V (G)| = n. If n = 3, then G = K3. Furthermore,

all edges are 1-edges, and the claim is true. Suppose the claim is true for graphs with

n − 1 vertices. Now, consider G a 2-tree with |V (G)| = n. Then there exists a

simplicial vertex v, such that G′ = G − v is a 2-tree with |V (G′)| = n − 1. Suppose

that v is adjacent to uw in G. If xy 6= uw, uv, vw, then xy ∈ E(G′), and by the

induction hypothesis, if xy is a t-edge then c(G′ − {x, y}) = t. Since v is adjacent to

u and w, then v is in the same component as u if x = w or y = w, and v is in the

same component as w if x = u or y = u. So, c(G−{x, y}) = c(G′−{x, y}) = t. If uw

is a t-edge in G′, then c(G′−{u,w}) = t, and so in G, since uw is also adjacent to v,

then uw is a (t + 1)-edge. Additionally, c(G − {u,w}) = t + 1 as v is only adjacent

to u and w. In G, both uv and vw are 1-edges. Furthermore, c(G−{u, v}) = 1 since

c(G− {u, v}) = c(G′ − {u}) = 1, as G′ is a 2-tree and minimal separators of 2-trees

are 2-cliques. Likewise, c(G− {v, w}) = 1.

Using our new terminology, we can restate Theorem 1.2.17 with a structural con-

dition, as Theorem 1.2.23 below.

Theorem 1.2.23. If G 6= K2 is a 2-tree, then the following are equivalent:

1. G is 1-tough,

2. G contains no t-edges for t ≥ 3, and

3. G is Hamiltonian.

Proof. (1) =⇒ (2)

We will prove the contrapositive. If G contains a t-edge, xy, for t ≥ 3, then c(G −
{x, y}) = t ≥ 3 > 2 = |{x, y}|, then G is not 1-tough.

(2) =⇒ (3)

We will prove, by induction on |V (G)| = n, that if G contains no t-edges for t ≥ 3,

then G contains a Hamiltonian cycle containing all of the 1-edges of G, and hence is

Hamiltonian. If n = 3, then G = K3. G only contains t-edges where t = 1 and G is

Hamiltonian with Hamiltonian cycle containing all 1-edges. Suppose that all 2-trees

with n−1 vertices and only t-edges for t ≤ 2 are Hamiltonian with Hamiltonian cycle

containing all 1-edges. Now consider G a 2-tree with |V (G)| = n such that G contains

only t-edges for t ≤ 2. Let v be a simplicial vertex of G, adjacent to uw ∈ E(G).

Then by the induction hypothesis, G′ = G − v is Hamiltonian and hence contains a

Hamiltonian cycle, C, containing all 1-edges. Furthermore, uw must be a 1-edge in
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G′, since G contains no 3-edges. Therefore, replacing, uw in C with (u, v, w) creates

a Hamiltonian cycle C ′ in G, containing all 1-edges.

(3) =⇒ (1) Theorem 1.2.10.

From Theorem 1.2.23, if G is 2-tree which is not 1-tough, then G contains at least

one t-edge, xy, for t ≥ 3. If G is 2-tree which is 1-path-tough, then by the lemma

below, G cannot contain a t-edge, xy, for t ≥ 4. However, there are 2-trees which

are not 1-path-tough which do not contain a t-edge, xy, for t ≥ 4. Furthermore,

there are 1-path-tough 2-trees which do not contain a Hamiltonian path. So, for

Hamiltonian paths in 2-trees, we will not have a necessary and sufficient condition

using t-edges as in Theorem 1.2.23. In Theorem 4.1.15, we will prove necessary and

sufficient conditions for a 2-tree to have a Hamiltonian path, using induced subgraphs.

We could also restate (2) in Theorem 1.2.23 using an induced subgraph condition

instead. If G is a 2-tree which contains a t-edge for t ≥ 3, then G contains an induced

K2 ∨ 3K1.

Figure 1.1: K2 ∨ 3K1

Lemma 1.2.24. If G is a 2-tree and contains a t-edge for t ≥ 4, then G does not

contain a Hamiltonian path.

Proof. Let xy ∈ E(G) be a t-edge for t ≥ 4. Then, c(G−{x, y})−|{x, y}| = t−2 ≥ 2,

and G is not 1-path-tough.

Lemma 1.2.25. Suppose G is a 2-tree and contains a 3-edge, ab, such that ab is

adjacent to two simplicial vertices, v1 and v2. Then G has a Hamiltonian path iff

G− v1 has a Hamiltonian path with either a or b as an endpoint of the path.

Proof. ⇐= Without loss of generality, assume G − v1 has a Hamiltonian path, P ,

which begins with a as an endpoint. Then (v1, P ) is a Hamiltonian path in G.

=⇒ Suppose G has a Hamiltonian path, P . Since c(G − {a, b}) = 3, then the

endpoints of the Hamiltonian path must lie in two of the three components. Hence
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at least one of the simplicial vertices must be an endpoint of the path. Without loss

of generality, let v1 be an endpoint of the path. Since v1 is only adjacent to a and b,

then either a or b follows v1 on the path. Since we cannot use v1 again on the path,

then the rest of the path must be in G− v1, and hence P − v1 is a Hamiltonian path

in G− v1 which has either a or b as an endpoint.

From the above lemma, we can see that when a 2-tree contains a 3-edge, if there is

a Hamiltonian path, there will be endpoint restrictions. Because of this, in Chapter

3, we begin our investigation looking at the 2HP problem on 2-trees, to extend these

results to the the Hamiltonian path problem on 2-trees.

Definition 1.2.26. A pair of vertices, u, v are called false twins if N(u) = N(v).

Vertices, u, v are called twins if N [u] = N [v], i.e., the vertices are also adjacent.

Definition 1.2.27. Let Pn be a path with n vertices. Then Pk
n, the kth power of Pn,

is a graph which has the same vertex set as Pn, but has edges between any vertices

whose distance in Pn is at most k.

Note that P 2
n is a 2-tree. In particular, it is a special case of a 2-path graph.

Originally introduced in [22] and further characterized in [19], a 2-tree with exactly

two simplicial vertices is a 2-path graph.

u v

Figure 1.2: A specific example of a 2-path: P 2
15, with simplicial vertices u and v

Now consider G = P 2
17. We will form H from G by first adding a false twin of each

of the simplicial vertices of G. Then we will add a pair of simplicial vertices adjacent

to a 1-edge, ab, such that (N [a]∪N [b])∩ (N [e]∪N [f ]) = ∅, for any 3-edge, ef , as in

Figure 1.3.
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b

a f e

c

d

Figure 1.3: Example of a 1-path tough graph with no Hamiltonian path: H was con-

structed by adding simplicial vertices to G = P 2
17, shown in bold, such that

(N [a] ∪N [b]) ∩ (N [e] ∪N [f ]) = ∅, for any 3-edges, ab, ef .

This is an example of a 1-path-tough graph which does not have a Hamiltonian

path. The main idea, which will be formally proved in Chapter 4, for why there is no

Hamiltonian path comes from Lemma 1.2.25 and that based on the construction of

H, a Hamiltonian path in H would have three distinct endpoints. Furthermore, if we

construct H from G = P 2
n with larger n and add more pairs of simplicial vertices with

the same properties as before, then we can create an infinite class of 1-path-tough

graphs which do not contain a Hamiltonian path.

Definition 1.2.28. A graph G is Hamilton-connected if there is a Hamiltonian

path between all pairs of vertices of G.

Theorem 1.2.29 (Kabela, preprint 2017). [17] Let k ≥ 3. Every k-tree of toughness

greater than k
3

is Hamilton-connected.

The above theorem does not hold for k = 2. While 1-tough 2-trees are Hamil-

tonian, and contain a Hamiltonian path, they are not Hamilton-connected. Further-

more, even for k = 3, equality does not hold in the above theorem. In [17], Kabela

gives examples of 1-tough planar 3-trees which do not contain a Hamiltonian path.

Since 1-tough 2-trees are not Hamilton-connected, in Chapter 3, we will discuss

the 2HP problem on 1-tough 2-trees and which pairs of vertices will not be ends of

a Hamiltonian path. We will then use these results to characterize the rest of the

2-trees with fixed endpoints which do not contain a Hamiltonian path. In Chapter 4

and 5 we will extend the results from 2HP on 2-trees to the traditional Hamiltonian

path problem, and 1HP, respectively. In order to describe our results on 2HP, HP,

and 1HP, we will begin the next chapter with a new toughness definition and special

induced subgraphs of 2-trees which will help us define induced subgraphs which will

not contain a Hamiltonian path. We will also discuss the types of induced subgraphs,
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which do not contain a Hamiltonian path, and which will prevent a general chordal

graph from having a Hamiltonian path.
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Chapter 2

New Approach

Since toughness and t-edges alone will not be enough to characterize 2HP, HP, and

1HP on 2-trees, we will take a new approach for a characterization by looking at

induced subgraphs of 2-trees and by defining a new property regarding toughness.

In the next chapters, we will introduce families of 2-trees for which there do not

exist Hamiltonian paths, or Hamiltonian paths with specified fixed endpoints. We will

prove in Theorems 3.1.24, 3.2.10, 4.1.15, and 4.2.12, that if a 2-tree contains a graph

from these families as an induced subgraph, the 2-tree will not have a Hamiltonian

path. In this chapter, we will define special types of 2-trees, which will be useful in

describing our families of graphs which do not contain Hamiltonian paths.

In general if a graph has an induced subgraph which is not Hamiltonian, we will not

know whether or not our graph is Hamiltonian. In Section 2.1 we will define a special

type of induced subgraph. If a graph has one of these induced subgraphs and is not

Hamiltonian, then our graph will not be Hamiltonian as well. In Section 2.2, we will

define specific 2-trees which will be the building blocks of our families of 2-trees in the

later chapters. In Section 2.3, we will we define our new toughness property which

will help us to prove graphs do not have Hamiltonian paths in later chapters.

2.1 Induced Subgraphs

In [15], Goodman and Hedetniemi prove that 2-connected graphs which do not contain

an induced K1,3 or N(1, 0, 0) are Hamiltonian. This is only a sufficient condition for

a 2-connected graph to be Hamiltonian, whereas we will prove both necessary and

sufficient conditions for Hamiltonian paths in 2-trees.
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(a) K1,3 (b) N(1, 0, 0)

Figure 2.1: A 2-connected graph not containing 2.1(a) and 2.1(b) as an induced subgraph

is Hamiltonian.

Since 2-trees are 2-connected, 2-trees which do not contain an induced K1,3 or

N(1, 0, 0) are Hamiltonian. Note that a 2-tree which contains a t-edge for t ≥ 3

will contain an induced K1,3, so if we are looking at 2-trees which do not contain an

induced K1,3, they will be 1-tough. However, we can also have 1-tough, and hence

Hamiltonian, 2-trees which contain an induced K1,3 and an induced N(1, 0, 0), as in

Figure 2.2.

(a) induced K1,3 (b) induced N(1, 0, 0)

Figure 2.2: Example of a Hamiltonian 2-tree containing an induced K1,3 and N(1, 0, 0)

where the induced K1,3 and N(1, 0, 0) are bolded

In general, a graph can be Hamiltonian even if it contains an induced subgraph

which is not Hamiltonian. For example, a cycle is Hamiltonian, but no induced sub-

graph of a cycle is Hamiltonian. Even for the class of 2-trees, a Hamiltonian 2-tree

can contain an induced subgraph which is not Hamiltonian, and so in this chapter

we will present sufficiency conditions for which an induced subgraph which is not

Hamiltonian will mean the chordal graph which contains it will not be Hamiltonian.

Consider the following 2-path, G, where all vertices are adjacent to a degree seven

vertex.
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v

Figure 2.3: A 2-path, G, for which all vertices are adjacent to a degree seven vertex

Then G[V (G) − v] below is an induced subgraph. Furthermore, G[V (G) − v] is

not Hamiltonian as it contains a cut-vertex, and hence is not 1-tough.

Figure 2.4: G[V (G)− v] corresponding to G in Figure 2.3

Definition 2.1.1. Let G be a k-tree. If H is an induced subgraph of G, which is also

a k-tree, then H will be called an induced sub-k-tree.

If we consider a 2-tree, G, which has an induced sub-2-tree, H, such that H does

not contain a Hamiltonian path, then G also does not contain a Hamiltonian path.

We will prove this below, though it is worthwhile to note that a parallel statement

will not hold for chordal graphs in general.

Consider the class of chordal partial 3-trees, C , which like 2-trees can be con-

structed recursively as follows:

1. K2 is in C , and

2. If G is in C , then the graph formed by adding a vertex adjacent to all vertices

in a 2-clique or a 3-clique in G is in C .

Now consider G in Figure 2.5 below. We can see that G ∈ C by considering the

edge labelled 87, the ‘start’ and adding vertices to the graph in decreasing consecutive

order follows (2) in the recursive definition. Then G is Hamiltonian, with Hamiltonian
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cycle (6, 5, 1, 8, 2, 7, 4, 3, 6). However, we can find an induced subgraph of G which

remains in the class of C , which is not Hamiltonian.

5

6

7

8
2

1

3

4

Figure 2.5: Hamiltonian G ∈ C

The graph G[V (G)− 4] is a well known 1-tough graph which is not Hamiltonian

and furthermore, G[V (G)− 4] is an induced subgraph of G which is also in C .

5

6

7

8
2

1

3

Figure 2.6: G[V (G)− 4] ∈ C corresponding to G in Figure 2.5 which is not Hamiltonian

A well known property of chordal graphs, which will help us distinguish between

types of induced subgraphs, is that the vertices of a chordal graph can be labelled

with a simplicial elimination ordering. A simplicial elimination ordering is also often

called a perfect elimination ordering.

Definition 2.1.2. A labelling (v1, ..., vn) is a simplicial elimination ordering of

a graph G, if vi is a simplicial vertex in Gi−1 where G = G0 and Gi = Gi−1 − vi.

Definition 2.1.3. Let H be an induced subgraph of G. H will be called an SEO-

induced subgraph if there exists a simplicial elimination ordering, (v1, ..., vn), of G,

such that H = G[{vi, vi+1, ..., vn}].
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Lemma 2.1.4. Let G be a chordal graph with simplicial vertex v.

1. If G−v does not have a Hamiltonian path, then G does not have a Hamiltonian

path.

2. If G−v does not have a Hamiltonian cycle, then G does not have a Hamiltonian

cycle.

3. If G − v does not have an (x1, x2)-Hamiltonian path, then G does not have an

(x1, x2)-Hamiltonian path.

Proof. (a) Suppose that G has a Hamiltonian path, P . If v is an endpoint of the P ,

then P − v is a Hamiltonian path in G− v. Now suppose that v is preceded by u and

followed by w on P . Since v is simplicial, then u and w must be part of a clique, and

hence are adjacent. Thus, replacing uv, vw on P with uw yields a Hamiltonian path

in G− v. The proofs of (b) and (c) are similar.

Corollary 2.1.5. Let G be a chordal graph. If G contains an SEO-induced subgraph

which does not contain a Hamiltonian path, then G does not contain a Hamiltonian

path.

Remark 2.1.6. Note that G[V (G)−4] in Figure 2.6 is not an SEO-induced subgraph

of G in Figure 2.5 for any simplicial elimination ordering since the vertex labelled 4

is not simplicial in G.

Proposition 2.1.7 (Proskurowski, 1980). [22] Given a k-tree Q and any k-clique B

of Q, Q can be constructed from B by the iterative method of Definition 1.2.4.

Remark 2.1.8. Labelling the base subgraph (n, ..., n − k + 1), in Proposition 2.1.7

and successive simplicial vertices in the construction in decreasing consecutive order

will yield a simplicial elimination ordering.

Lemma 2.1.9. Let G be a k-tree. If H is any induced sub-k-tree of G, then H is an

SEO-induced subgraph of G.

Proof. We will induct on |V (H)| = m ≤ |V (G)| = n. If m = k, then H is a k-

clique. Then from Proposition 2.1.7, the claim is true. Now suppose that for any

induced sub-k-tree with m − 1 vertices, that the claim is true. Now, suppose H is

an induced sub-k-tree of G such that |V (H)| = m. Let w be a simplicial vertex in

H. Then H − w is an induced sub-k-tree of G such that |V (H − w)| = m − 1. By
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the induction hypothesis, there exists a simplicial elimination ordering, (v1, ..., vn),

of G, such that H − w = G[{vn−m+2, vn−m+3, ..., vn}]. If w is labelled vn−m+1, then

H = G[{vn−m+1, vn−m+2, vn−m+3, ..., vn}] is an SEO-induced subgraph with the same

labelling. If w is labelled vj 6= vn−m+1, then reduce by one all labels from vj+1 to

vn−m+1 and relabel w as vn−m+1. Note that w cannot be adjacent to any vertices

with labels from vj+1 to vn−m+1 or w = vj would have degree more than k in Gj−1,

contradicting that w is simplicial. So, the new labelling will still be a simplicial

elimination ordering and H = G[{vn−m+1, vn−m+2, vn−m+3, ..., vn}] is an SEO-induced

subgraph under the new labelling.

Corollary 2.1.10. Let H be a k-tree which does not contain a Hamiltonian path. If

H is an induced sub-k-tree of G, then G also does not contain a Hamiltonian path.

Corollary 2.1.11. Let H be a k-tree, with x1, x2 ∈ V (G), which does not contain an

(x1, x2)-Hamiltonian path. If H is an induced sub-k-tree of G, then G also does not

contain an (x1, x2)-Hamiltonian path.

Corollary 2.1.12. If H is an induced sub-k-tree of G, then G can be constructed

from H by the iterative method of Definition 1.2.4.

2.2 Special Induced Sub-2-trees

In order to describe the sub-2-trees which we will later prove prevent 2-trees from

having a Hamiltonian path, we will use graph amalgamation on disjoint graphs to

create a connected graph as defined in the following definition.

Definition 2.2.1. Given two disjoint graphs G1 = (V1, E1) and G2 = (V2, E2), an

amalgamation, G, of G1 and G2, will be constructed by identifying x ∈ V1 and y ∈ V2

such that if G = (V,E),

then V = (V1 − x) ∪ (V2 − y) ∪ {z}
and E = {ab : a, b 6= x, y and ab ∈ E1∪E2}∪{az : a 6= x, y and ax ∈ E1 or ay ∈ E2}.
This will be called the the amalgamation of x and y, and z will be called

the (x, y)-amalgamated vertex.

Definition 2.2.2. A diamond graph is a K4 with one edge removed. The 2-edge

of the diamond will be called the central edge.
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c0 c1

t0

b0

Figure 2.7: D0, a diamond graph

Definition 2.2.3. Let D0 = D0(∅), the 0-split diamond, be a diamond graph with the

vertices on the central edge labelled c0 and c1, and the other two vertices with labels

t0 and b0.

Given an s ≥ 1 and R ⊆ {1, 2, ..., s}, such that |R| = r, the s-split diamond with

respect to R is denoted Ds(R) and is formed from Ds−1(R−s) by adding cs+1 adjacent

to

(a) ts−rcs and adding br adjacent to cscs+1 if s ∈ R, and

(b) brcs and adding ts−r adjacent to cscs+1 if s /∈ R

The vertices {c0, c1, ...., cs+1} will be called central vertices, c0 and cs+1 will be called

exterior central vertices, and the path the central vertices form will be called the

central path of the s-split diamond. The vertices {t0, t1, ..., ts−r} will be called

top vertices and {b0, b1, ..., br} will be called bottom vertices.

Remark 2.2.4. We could create isomorphic graphs using different sets for R. For

example, if R′ = {s + 1− i : i ∈ R}. Then Ds(R) is isomorphic to Ds(R
′).

Remark 2.2.5. The diamond graph is a 1-tough 2-tree, and since Ds(R) and is

formed from Ds−1(R− s) by adding two simplicial vertices to Ds−1(R− s), such that

there are no t-edges for t ≥ 3, then Ds(R) is a 1-tough 2-tree, ∀s, R.

We can see an example of this recursion as follows. Consider the 4-split diamond,

D4({1, 3, 4}) below.
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c0

b0

t0

c1

c2

b1

t1

c3 c4

b2

c5

b3

Figure 2.8: Example of an s-split diamond : D4({1, 3, 4})

From D4({1, 3, 4}) we can create two different 5-split diamonds, D5({1, 3, 4}), and

D5({1, 3, 4, 5}), pictured below. In either case, we are adding two simplicial vertices

to create an additional diamond which shares an edge with the 4-split diamond, and

whose central edge extends the central path of the 4-split diamond.

c0

b0

t0

c1

c2

b1

t1

c3 c4

b2

c5

b3

t2

c6

Figure 2.9: Example of an s-split diamond : D5({1, 3, 4}) constructed from D4({1, 3, 4})

c0

b0

t0

c1

c2

b1

t1

c3 c4

b2

c5

b3

c6

b4

Figure 2.10: Example of an s-split diamond : D5({1, 3, 4, 5}) constructed from

D4({1, 3, 4})
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Definition 2.2.6. Let D1
s1

(R1), ....D
m
sm(Rm) be disjoint s1, ..., sm-split diamonds re-

spectively with |Ri| = ri. Denote the central vertices of Di, {ci0, ci1, .., cisi+1}, the top

vertices of Di, {ti0, ti1, .., tisi−ri}, and the bottom vertices of Di, {bi0, bi1, .., biri} . Then

an `-string of diamonds, for ` = s1 + s2 + ... + sm + m will be formed as follows:

1. Amalgamate cisi+1 with ci+1
0 , to form zi and call zi

the (Di, Di+1)−amalgamated vertex..

2. Then add exactly one of the following:

(a) A path between biri and bi+1
0 such that each vertex of the path is also adjacent

to zi, or

(b) A path between tisi−ri and ti+1
0 such that each vertex of the path is also

adjacent to zi

An l-string of diamonds will be denoted

D1
s1

; (x1, `1);D
2
s2

; (x2, `2); ....;D
m−1
sm−1

; (xm−1, `m−1);D
m
sm

where xi = t if there is a path between tisi−ri and ti+1
0 , xi = b if there is a path between

biri and bi+1
0 , and `i is the length of that path.

The path formed from the central paths of the s1, ..., sm-split diamonds and the amal-

gamated vertices, (c10, ...., c
1
s1
, z1, ..., zm−1, c

m
1 , ..., c

m
sm+1) will be called the central path

of the `-string of diamonds.

Remark 2.2.7. The paths in (2a) and (2b) above are added so that an `-string of

diamonds is a 2-tree.

Figure 2.11: Example of an 8-string of diamonds, D0; (t, 1);D5({1, 3, 4}); (t, 3);D0, with

amalgamated vertices shown as larger vertices

In this dissertation, we will be introducing families of forbidden induced sub-2-

trees, with and without fixed endpoints, such that if G is a 2-tree, which contains
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an induced sub-2-tree in the family, then G will not have a Hamiltonian path. Note,

however, that these will be families of forbidden induced sub-2-trees, as was the case

in our example of a 1-path-tough graph which does not contain a Hamiltonian path

(See Figure 1.3). In that example, our base graph was P 2
n , where we could create

an infinite family of such graphs just by increasing n. Similarly in our lists, we will

be able create infinite families of forbidden sub-2-trees, by increasing the number of

vertices in a graph and the distance between an endpoint of a Hamiltonian path and a

forbidden substructure. So, in order to create a primitive list of forbidden sub-2-trees,

for which a 2-tree not having a Hamiltonian path must contain, then we will perform

the following graph amalgamation.

Definition 2.2.8. Suppose G is a 2-tree with ab ∈ E(G). Let H be a 2-path with

simplicial vertices x, y, such that x is adjacent to uv. Amalgamate G and H − x by

performing a vertex amalgamation of a and u and then b and v as in Definition 2.2.1.

This process will be called an amalgamation of a y-2-path with ab.

If, for a graph G, we have amalgamated a y-2-path with ab ∈ E(G), it will be

represented with a single curve between y and a and y and b, where G[{a, b, y}] is

some 2-path. An example of an amalgamation of a y-2-path with t20c
2
1 in D0; (t, 1);D0

is below.

c10
z1

t10

b10

t20

c21

b20

y

Figure 2.12: An amalgamation of a y–2-path with t20c
2
1 in D0; (t, 1);D0

Then Figures 2.13 and 2.14 below are both included in Figure 2.12. Also, if y is

an endpoint fixed for a Hamiltonian path, then neither graphs in Figures 2.13 and

2.14 are induced subgraphs of one another.
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c10
z1

t10

b10

t20

c21

b20

y

Figure 2.13: Specific example of a graph represented by Figure 2.12

c10
z1

t10

b10

t20

c21

b20

y

Figure 2.14: Specific example of a graph represented by Figure 2.12

2.3 A New Toughness Definition

We define a new toughness property which will be helpful in describing when there

will not be a Hamiltonian path between two vertices. This definition will also relate

to the `-strings of diamonds defined in the previous section.

Definition 2.3.1. A tough path from v1 to vn is a path P = (v1, v2, ...., vn)

such that for all i, j ∈ 1, ..., n, with i < j and Svi,vj = {vi, vi+1, ...vj−1, vj}, |Svi,vj | =

c(G− Svi,vj).

Remark 2.3.2. If G is a 1-tough graph then Svi,vj is a tough set.

22



c0 c1

c2

c3 c4 c5
c6

S

S

G− S

Figure 2.15: Example of a tough path: (c0, c1, c2, c3, c4, c5, c6)

The following Lemma and proof are similar to a Lemma and proof for a toughness

inequality in [7].

Lemma 2.3.3. If v is a simplicial vertex in H and G = H − v, then c(H − S) ≥
c(G− S).

Proof. If c(H−S) < c(G−S), then v is adjacent to at least two components of G−S.

But since v is simplicial, then N(v) is a clique, and hence all neighbors not in S lie

in the same component, a contradiction.

Corollary 2.3.4. Let H be a k-tree and S ⊂ V (H) such that c(H − S) = t. If H is

an induced sub-k-tree of a k-tree G, then c(G− S) ≥ t.

Proof. From Lemma 2.1.9, an induced sub-k-tree is an SEO-induced subgraph, so H

can be formed by iteratively removing simplicial vertices.

Lemma 2.3.5. Let G be a 1-tough k-tree and H be an induced sub-k-tree of G. If P

is a tough path in H, then P is a tough path in G.

Proof. Since P = (v1, v2, ...., vn) is a tough path, then for all i, j ∈ 1, ..., n, with

i < j, |Svi,vj | = c(H − Svi,vj). From Corollary 2.3.4, c(G − Svi,vj) ≥ |Svi,vj |. But if

c(G−Svi,vj) > |Svi,vj |, then G is not 1-tough, so we must have |Svi,vj | = c(G−Svi,vj),

and hence P is a tough path in G.

Lemma 2.3.6. Let G be a 1-tough 2-tree. If there exists a tough set, U , such that

x1, x2 ∈ U , then G does not have an (x1, x2)-Hamiltonian path.

Proof. Since U is a tough set, then |U | = c(G−U). Then c(G−U)−|U−{x1, x2}| =
c(G − U) − (|U | − 2) = c(G − U) − |U | + 2 = 2. Hence, from Lemma 1.2.16,

PP (G; {x1, x2}) ≥ 2, and there cannot be a Hamiltonian path between x1 and x2.
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Lemma 2.3.7. The central path of an s-split diamond is a tough path.

Proof. We will proceed by induction on s. If s = 0, then we have the diamond graph

D0 with central path, (c0, c1), and c(D0− c0) = c(D0− c1) = 1. Furthermore, since t0

and b0 are both simplicial vertices and adjacent to c0c1, then c(D0−{c0, c1} = 2, and

so the central path is a tough path. Suppose that the central path of an (s− 1)-split

diamond is a tough path. Now, consider Ds(R). If s ∈ R then br is simplicial, and

Ds(R)− {br, cs+1} = Ds−1(R − s) is an s− 1-split diamond, and hence (c0, c1, ..., cs)

is a tough path in Ds−1(R− s). From Lemma 2.3.5, (c0, c1, ..., cs) is also a tough path

in Ds(R). Furthermore, removing cs+1 from Ds(R)−{ci, ci+1, .., cs} for 0 ≤ i ≤ s will

increase the number of components of the graph by one, as br and ts−r will be in the

same component of Ds(R) − {ci, ci+1, .., cs}, as they are both adjacent to cs+1, but

different components of Ds(R)− {ci, ci+1, .., cs, cs+1}, since br is only adjacent cscs+1.

Hence the central path of Ds(R) is a tough path. The proof is similar if s /∈ R.

Lemma 2.3.8. The central path of an `-string of diamonds is a tough path.

Proof. We will proceed by induction on the number of amalgamated vertices, j. If

j = 0, then the `-string of diamonds is an (l+ 1)-split diamond, and by Lemma 2.3.7,

the claim is true. Now suppose that when there are j − 1 amalgamated vertices that

the central path of an `-string of diamonds is a tough path. Now, consider an `-

string of diamonds, G = D1
s1

; (x1, `1);D
2
s2

; (x2, `2); ....; (xj−1, `j−1);D
j
sj

; (xj, `j);D
j+1
sj+1

.

By the induction hypothesis, the central path, P = (c10, ..., c
j
sj+1), of

D1
s1

; (x1, `1);D
2
s2

; (x2, `2); ....; (xj−1, `j−1);D
j
sj

is a tough path in

D1
s1

; (x1, `1);D
2
s2

; (x2, `2); ....; (xj−1, `j−1);D
j
sj

. Also, by Lemma 2.3.7, the central path,

P ′ = (cj+1
0 , ..., cj+1

sj+1), of Dj+1
sj+1

, is a tough path in Dj+1
sj+1

. From Lemma 2.3.5,

(c10, ..., c
j
sj+1 = zj) and (zj = cj+1

0 , ..., cj+1
sj+1) are also tough paths in G. Let Sw,cjsj

be

any consecutive subset of vertices from the tough path, P which ends with cjsj . In

G − Sw,cjsj
, Dj+1

sj+1
is in one component, with some additional vertices. Hence, the

combined path, (P, P ′ − zj), will be a tough path in G.

Lemma 2.3.9. Let P = (v1, v2, ..., vn−1, vn) be a tough path in a 1-tough 2-tree, G.

If vi−1 is adjacent to vi+1 in G, for some 2 ≤ i ≤ n− 1, then replacing (vi−1, vi, vi+1)

with (vi−1, vi+1) forms a tough path P ′.

Proof. Let Cvi+1
be the component of G−{vi−1, vi} which contains vi+1. Since vi−1 is

adjacent to vi+1, then vi−1 ∈ N(vivi+1). If vi−1vi+1 is a 1-edge, then vi−1 is an isolated
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vertex in G[Cvi+1
∪ vi−1vi] − vi+1, and then c(G − {vi−1, vi, vi+1}) = 2, contradicting

that P is a tough path. So, vi−1vi+1 must be a 2-edge, and c(G − {vi−1, vi+1}) = 2.

Furthermore, since c(G − Svi+1,vj) = |Svi+1,vj | and c(G − Svk,vi−1
) = |Svk,vi−1

|, then

c(G− (Svk,vj − vi)) = |Svk,vj − vi|.

Definition 2.3.10. A short tough path is a tough path P = (v1, v2, ..., vn−1, vn),

in a 2-tree, G, for which vi−1vi+1 /∈ E(G) for any 2 ≤ i ≤ n− 1.

Lemma 2.3.11. If P is a short tough path in a 1-tough 2-tree, G, then P is the

central path of an induced `-string of diamonds in G.

Proof. We will proceed by induction on the length, L , of the tough path. If L =1,

then P = (v1, v2), and since G is a 1-tough 2-tree, then v1v2 is a 2-edge in G. Hence,

G[N [v1, v2]] is a diamond graph, and a 1-string of diamonds, with central path (v1, v2).

Suppose that the claim is true for tough paths of length L − 1. Now, suppose G′

is a 1-tough 2-tree with short tough path P ′ = (v1, v2, ..., vL , vL+1) of length L .

P ′′ = (v1, v2, ..., vL ) is a short tough path of length of L − 1, and by the induction

hypothesis, P ′′ is the central path of an induced `-string of diamonds in G′. Let

H = D1
s1

; (x1, `1);D
2
s2

; (x2, `2); ....;D
m−1
sm−1

; (xm−1, `m−1);D
m
sm be the induced `-string of

diamonds, and t′, b′ be the top and bottom vertices, respectively, adjacent to vL in

Dm
sm . Since H is an induced sub-2-tree, then H is an SEO-induced subgraph of G′,

and hence there is a labelling of the vertices of G′ such that G′ can be constructed

from H as in Definition 1.2.4 by iteratively adding vertices {y1, y2, ...., yk} in order

of the labelling. Since P ′ is a short tough path, then vL−1vL+1 /∈ E(G′) and so

vL+1 ∈ {y1, y2, ...., yk}. If vL+1 = yi such that i < j for any yj a neighbor of vL ,

then vL+1t
′ ∈ E(G′) or vL+1b

′ ∈ E(G′). Furthermore, vL , vL+1 must be a 2-edge in

G′ and so there is another vertex, x′ ∈ {y1, y2, ...., yk} adjacent to vL , vL+1, and this

forms an l + 1-string of diamonds. Now suppose vL+1 = yi such that i > j for at

least one yj a neighbor of vL . Let {yj1 , yj2 , ..., yjk′} be the vertices that are adjacent

to vL where ji < i. Adding the vertices in {yj1 , yj2 , ..., yjk′} followed by vL+1 as

in Definition 1.2.4 forms a path (t′, yj1 , yj2 , ..., yjk′ , vL+1) or (b′, yj1 , yj2 , ..., yjk′ , vL+1)

where all vertices on the path are adjacent to vL . Furthermore, vL , vL+1 must be a

2-edge in G′ and so there is another vertex, z′ ∈ {y1, y2, ...., yk} adjacent to vL , vL+1,

and this forms an l + 1-string of diamonds which is an induced subgraph of G′.

Lemma 2.3.12. Let

G = D1
0; (t, `1);D

2
s2

(R2); (x2, `2); ....; (xm−2, `m−2);D
m−1
sm−1

(Rm−1); (t, `m−1);D
m
0 .
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Then there is a tough path from t10 to tm0 , a tough path from c10 to tm0 , and a tough

path from t10 to cm1 .

Proof. G − {c10, t10, b10} is an (l − 1)-string of diamonds, and hence, by Lemma 2.3.8,

the central path, P , is a (z1, c
m
1 )-tough path. Furthermore, by Lemma 2.3.5, it is a

tough path in G. Let Sz1,w be any consecutive subset of vertices from the tough path

which begins with z1, the (D1, D2)-amalgamated vertex. Then, c10, t
1
0, b

1
0, and t20 are in

the same component of G− Sz1,w, but since c10 is only adjacent to t10, b
1
0, and z1, then

removing t10 from G − Sz1,w will add a component. Hence (t10, P ) is a (t10, c
m
1 )-tough

path. Similarly, there is a (c10, t
m
0 )-tough path which uses the central path from c10 to

zm−1, the (Dm−1, Dm)-amalgamated vertex. Hence, there is a (z1, t
m
0 )-tough path, P ′

which uses the central path from z1 to zm−1. Let S ′z1,w be any consecutive subset of

vertices from the tough path P ′ which begins with z1. Then, c10, t
1
0, b

1
0, and t20 are in

the same component of G− S ′z1,w, but since c10 is only adjacent to t10, b
1
0, and z1, then

removing t10 from G − S ′z1,w will add a component. Hence (t10, P
′) is a (t10, t

m
0 )-tough

path.

c10

t10

b10

t20

cm1

tm0

zm−1z1

t20

Figure 2.16: A general example of

G = D1
0; (t, `1);D

2
s2(R2); (x2, `2); ....;D

m−1
sm−1

(Rm−1); (b, `m−1);D
m
0 in Lemma

2.3.12

where D2
s2(R2); (x2, `2); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1) with z1 = c20

and zm−1 = cm−1sm−1+1, is shown in gray to preserve generality
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c10

t10

b10

z1

t20

zm−1
cm1

tm0

Figure 2.17: Specific example of G in Lemma 2.3.12: D0; (t, 1);D5({1, 3, 4}); (t, 1);D0

Corollary 2.3.13. Let

G = D1
0; (t, `1);D

2
s2

(R2); (x2, `2); ....; (xm−2, `m−2);D
m−1
sm−1

(Rm−1); (b, `m−1);D
m
0 . Then

there is a tough path from t10 to bm0 , a tough path from c10 to bm0 , and a tough path from

t10 to cm1 .

c10

t10

b10

t20

cm1

bm0

tm0

zm−1
z1

t20

Figure 2.18: A general example of

G = D1
0; (t, `1);D

2
s2(R2); (x2, `2); ....;D

m−1
sm−1

(Rm−1); (b, `m−1);D
m
0 in Corol-

lary 2.3.13

where D2
s2(R2); (x2, `2); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1) with z1 = c20

and zm−1 = cm−1sm−1+1, is shown in gray to preserve generality

Corollary 2.3.14. Let

G = D1
0; (t, `1);D

2
s2

(R2); (x2, `2); ....; (xm−2, `m−2);D
m−1
sm−1

(Rm−1); (t, `m−1);D
m
0 . Then

G does not have a (t10, t
m
0 ), (c10, t

m
0 ), or (t10, c

m
1 )-Hamiltonian path.

Corollary 2.3.15. Let

G = D1
0; (t, `1);D

2
s2

(R2); (x2, `2); ....; (xm−2, `m−2);D
m−1
sm−1

(Rm−1); (b, `m−1);D
m
0 . Then

G does not have a (t10, b
m
0 ), (c10, b

m
0 ), or (t10, c

m
1 )-Hamiltonian path.
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In addition to tough paths, some 2-trees will not have a Hamiltonian path because

there exists a t-edge, ab, t ≥ 2, and a component C of G−{a, b}, such that G[C∪{a, b}]
does not have a Hamiltonian path. The following lemmas describe these cases.

Lemma 2.3.16. Let G be a 2-tree, and x1, x2 ∈ V (G). If there exists ab ∈ E(G)

such that:

1. x1 and x2 lie in different components, Cx1, Cx2, respectively, of G− {a, b} and

2. In G[V (Cx1) ∪ {a, b}] there is no (x1, a)-Hamiltonian path and no

(x1, b)-Hamiltonian path,

then G does not have an (x1, x2)-Hamiltonian path.

b

a

x2x1

Figure 2.19: Graph G corresponding to Lemma 2.3.16 where the dotted section of the

graph represents any 2-tree to preserve generality

Proof. Suppose that G has an (x1, x2)-Hamiltonian path, P , but in G[V (Cx1)∪{a, b}]
there is no (x1, a)-Hamiltonian path and no (x1, b)-Hamiltonian path. Then, P must

alternate between vertices from V (Cx1) and V (Cx2) using {a, b}, beginning with x1

and ending with x2. However, P cannot switch from vertices in V (Cx1) to V (Cx2)

and then back to V (Cx1), as then a and b would be used in the path already, and

there would be no path back to Cx2 . So either:

(a) There is an x1-Hamiltonian path, P1, in Cx1 and an x2-Hamiltonian path, P2, in

Cx2 , and P = (P1, a, b, P2) or P = (P1, b, a, P2), or

(b) There is an x1-Hamiltonian path, P1, in Cx1 and two paths, P21 and P22 in Cx2 ,

and P = (P1, a, P21, b, P22) or P = (P1, b, P21, a, P22), or

(c) There are two paths, P11 and P12 in Cx1 , and an x2- Hamiltonian path, P2, in

Cx2 , and P = (P11, a, P12, b, P2) or P = (P11, b, P12, a, P2).
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In (a) and (c), P begins with an (x1, a) or (x1, b)-Hamiltonian path in G[V (Cx1) ∪
{a, b}], a contradiction. In (b), there is an x1-Hamiltonian path, P1 in Cx1 which

connects to either a or b. Since a is adjacent to b, then (P1, a, b) and (P1, b, a) are (x1, b)

and (x1, a)-Hamiltonian paths, respectively, in G[V (Cx1)∪{a, b}], a contradiction.

Corollary 2.3.17. Let G be a 2-tree, and x1, x2 ∈ V (G). If there exists ab ∈ E(G)

such that:

1. x1 and x2 lie in different components, Cx1, Cx2, respectively, of G−{a, b}, and

2. In G[V (Cx1) ∪ {a, b}] there is a tough path from x1 to a and a tough path from

x1 to b,

then G does not have an (x1, x2)-Hamiltonian path.

Lemma 2.3.18. Let G be a 2-tree, and x1, x2 ∈ V (G). If there exist ab, cd ∈ E(G)

such that:

1. x1 and x2 lie in different components of G− {a, b} and G− {c, d}, and

2. In G − {a, b, c, d}, x1, x2 lie in Cx1 , Cx2, respectively, such that in G[V (G) −
V (Cx1)− V (Cx2)] there are no (a, c), (a, d), (b, c), or (b, d)-Hamiltonian paths,

then G does not have an (x1, x2)-Hamiltonian path.

b

a

d

c

x2x1

Figure 2.20: Graph G corresponding to Lemma 2.3.18, where the dotted section of the

graph represents any 2-tree to preserve generality

Proof. From [24], G[V (G)−V (Cx1)] is a 2-tree. By Lemma 2.3.16, there is no Hamil-

tonian path between a and x2 in G[V (G)−V (Cx1)] and there is no Hamiltonian path

between b and x2 in G[V (G)−V (Cx1)]. Hence, Lemma 2.3.16, there is no Hamiltonian

path between x1 and x2.
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Corollary 2.3.19. Let G be a 2-tree, and x1, x2 ∈ V (G). If there exist ab, cd ∈ E(G)

such that:

1. x1 and x2 lie in different components of G− {a, b} and G− {c, d}, and

2. In G − {a, b, c, d}, x1, x2 lie in Cx1 , Cx2, respectively, such that in G[V (G) −
V (Cx1)− V (Cx2)] there are tough paths from a to c, a to d, b to c, and b to d,

then G does not have an (x1, x2)-Hamiltonian path.
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Chapter 3

2HP

Since the Hamiltonian path problem on 2-trees can be reduced to the 2HP problem on

2-trees, we will first prove results for 2HP on 2-trees to later extend to the Hamiltonian

path problem on 2-trees. Since we know that 1-tough 2-trees contain a Hamiltonian

path, we begin our investigation of 2HP with 1-tough 2-trees in Section 3.1. We

will begin this section by defining a family, F 1, of 1-tough 2-trees, with specified

vertices, x1 and x2, which we will later prove contain no (x1, x2)-Hamiltonian path.

In Theorem 3.1.24, we will also prove that a 1-tough 2-tree which does not contain,

as an induced sub-2-tree, one of the graphs, with specified vertices, x1 and x2, in F 1,

will have an (x1, x2)-Hamiltonian path.

We will then extend the results from Section 3.1 to the 2HP problem on 2-trees

with scattering number at most one, in Section 3.2. We will begin this section by

defining a family, F 2, of graphs, with specified vertices, x1 and x2, which contains F 1,

and for which we will later prove contain no (x1, x2)-Hamiltonian path. In Theorem

3.2.10, we will also prove that a 2-tree with scattering number at most one, which

does not contain, as an induced sub-2-tree, one of the graphs, with specified vertices,

x1 and x2, in F 2, will have an (x1, x2)-Hamiltonian path.

3.1 2HP on 1-tough 2-trees

Definition 3.1.1. Define F 1 = {F 1
a , F

1
b , F

1
c , F

1
d , F

1
e , F

1
f } where:

(a) F 1
a is constructed from D0 by:

(i) Adding a simplicial vertex adjacent to c0t0, and
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(ii) Amalgamating an x2-2-path with t0c1.

t0

x1 = c0 c1

x2

Figure 3.1: An example of F 1
a

(b) F 1
b is an `-string of diamonds,

D1
s1

; (x1, `1);D
2
s2

; (x2, `2); ....;D
m−1
sm−1

; (xm−1, `m−1);D
m
sm, with x1 = c10

and x2 = cmsm+1.

x1 x2

Figure 3.2: An example of F 1
b : D5({1, 3, 4, 5}) with x1 = c10 and x2 = c16

(c) F 1
c is constructed from

D1
s1

(R1); (x1, `1); ....; (xm−2, `m−2);D
m−1
sm−1

(Rm−1); (t, `m−1);D
m
0 , m ≥ 2, where

x1 = c10, by amalgamating an x2-2-path with tm0 c
m
1 .
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c10

tm0

cm1
x2

x1 = c10 zm−1

Figure 3.3: A general example of F 1
c :

D1
s1(R1); (x1, `1); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1); (t, `m−1);D
m
0

m ≥ 2, with an amalgamated x2-2-path and such that x1 = c10

where D1
s1(R1); (x1, `1); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1), with x1 = c10

and zm−1 = cm−1sm−1+1, is shown in gray to preserve generality

c10 z1

t20

c21
x2

Figure 3.4: An example of F 1
c : D5({1, 3, 4, 5}); (t, 1);D0 with an amalgamated x2-2-path

and such that x1 = c10

(d) F 1
d is constructed from

D1
0; (t, `1);D

2
s2

(R2); (x2, `2); ....; (xm−2, `m−2);D
m−1
sm−1

(Rm−1); (t, `m−1);D
m
0 , m ≥ 3,

by:

(i) Amalgamating an x1-2-path with t10c
1
0, and

(ii) Amalgamating an x2-2-path with tm0 c
m
1 .

OR

F 1
d is constructed from

D1
0; (t, `1);D

2
s2

(R2); (x2, `2); ....; (xm−2, `m−2);D
m−1
sm−1

(Rm−1); (b, `m−1);D
m
0 ,

m ≥ 3, by:
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(i) Amalgamating an x1-2-path with t10c
1
0, and

(ii) Amalgamating an x2-2-path with bm0 c
m
1 .

c10

t10

b10

t20

cm1

tm0

x2x1

zm−1z1

t20

Figure 3.5: A general example of F 1
d :

D1
0; (t, `1);D

2
s2(R2); (x2, `2); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1); (t, `m−1);D
m
0

m ≥ 3, with amalgamated x1 and x2-2-paths

where D2
s2(R2); (x2, `2); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1) with z1 = c20

and zm−1 = cm−1sm−1+1, is shown in gray to preserve generality

c10

t10

b10

z1

t20

z2

c31

t30

x2x1

Figure 3.6: An example of F 1
d : D0; (t, 1);D5({1, 3, 4, 5}); (t, 1);D0 with amalgamated x1

and x2-2-paths
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c10

t10

b10

t20

cm1

tm0

x2x1

zm−1
z1

t20

Figure 3.7: A general example of F 1
d :

D1
0; (t, `1);D

2
s2(R2); (x2, `2); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1); (b, `m−1);D
m
0

m ≥ 3, with amalgamated x1 and x2-2-paths

where D2
s2(R2); (x2, `2); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1) with z1 = c20

and zm−1 = cm−1sm−1+1, is shown in gray to preserve generality

c10

t10

b10

z1

t20

z2
c31

t30

x2x1

Figure 3.8: An example of F 1
d : D0; (t, 1);D5({1, 3, 4, 5}); (b, 1);D0 with amalgamated x1

and x2-2-paths

(e) F 1
e is constructed from G = D1

0; (t, 1);D2
0 by amalgamating an x1-2-path with t10c

1
0,

amalgamating an x2-2-path with t20c
2
1, and by adding a simplicial vertex adjacent

to t10, t
2
0.
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c10 z1

t10

b10

t20

v

c21

b20

x2x1

Figure 3.9: Example of F 1
e , D1

0; (t, 1);D2
0 with amalgamated x1 and x2-2-paths and a

simplicial vertex adjacent to t10, t
2
0

(f) F 1
f is constructed from G = D1

0; (t, `);D2
0, for l ≥ 2 by amalgamating an x1-2-path

with t10c
1
0 and amalgamating an x2-2-path with t20c

2
1.

c10 z1

t10

b10

t20

c21

b20

x2x1

Figure 3.10: An example of F 1
f , D1

0; (t, 2);D2
0 with amalgamated x1 and x2-2-paths

Lemma 3.1.2. The graph F 1
a does not have an (x1, x2)-Hamiltonian path.

Proof. The paths (x1 = c0, t0) and (x1 = c0, c1) are tough paths. Furthermore, x1 and

x2 are in different components of F 1
a −{t0, c1}, and hence, by Lemma 2.3.16, there is

no (x1, x2)-Hamiltonian path.

Lemma 3.1.3. The graph F 1
b does not have an (x1, x2)-Hamiltonian path.

Proof. From Lemma 2.3.8, there is a tough path from x1 = c10 to x2 = cmsm+1. Hence,

from Lemma 2.3.6, there is no (x1, x2)-Hamiltonian path.

Lemma 3.1.4. The graph F 1
c does not have an (x1, x2)-Hamiltonian path.
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Proof. From the proof of Lemma 2.3.12, there is a tough path from c10 to tm0 . From

Lemma 2.3.8, there is a tough path from c10 to cm1 . Furthermore, c10 and x2 are

in different components of F 1
c − {tm0 , cm1 } and hence, by Lemma 2.3.16, there is no

(x1 = c10, x2)-Hamiltonian path.

Lemma 3.1.5. The graph F 1
d does not have an (x1, x2)-Hamiltonian path.

Proof. If F 1
d is constructed from

D1
0; (t, `1);D

2
s1

(R1); (x1, `2); ....; (xm−1, `m−2);D
m−1
sm−2

(Rm−2); (t, `m−1);D
m
0 ,

then from Lemma 2.3.12, there are tough paths from t10 to tm0 , from t10 to cm1 , and

from tm0 to c10. Likewise, if F 1
d is constructed from

D1
0; (t, `1);D

2
s1

(R1); (x1, `2); ....; (xm−1, `m−2);D
m−1
sm−2

(Rm−2); (b, `m−1);D
m
0 ,

then from Corollary 2.3.13 there are tough paths from t10 to bm0 , from t10 to cm1 , and

from c10 to bm0 . From Lemma 2.3.8, there is a tough path from c10 to cm1 . Furthermore,

if F 1
d is constructed from

D1
0; (t, `1);D

2
s1

(R1); (x1, `2); ....; (xm−1, `m−2);D
m−1
sm−2

(Rm−2); (t, `m−1);D
m
0 ,

then x1 and x2 are in different components of F 1
d − {t10, c10} and F 1

d − {tm0 , cm1 }, and

hence, by Lemma 2.3.18, there is no (x1, x2)-Hamiltonian path. Likewise, if F 1
d is

constructed from

D1
0; (t, `1);D

2
s1

(R1); (x1, `2); ....; (xm−1, `m−2);D
m−1
sm−2

(Rm−2); (b, `m−1);D
m
0 ,

then x1 and x2 are in different components of F 1
d − {t10, c10} and F 1

d − {bm0 , cm1 }, and

hence, by Lemma 2.3.18, there is no (x1, x2)-Hamiltonian path.

Lemma 3.1.6. The graph F 1
e does not have an (x1, x2)-Hamiltonian path.

Proof. The paths (t10, z1, t
2
0), (c10, z1, c

2
1), (t10, z1, c

2
1), and (c10, z1, t

2
0) are tough paths.

Furthermore, x1 and x2 are in different components of F 1
e −{t10, c10} and F 1

e −{t20, c21},
and hence, by Lemma 2.3.18, there is no (x1, x2)-Hamiltonian path.

Lemma 3.1.7. The graph F 1
f does not have an (x1, x2)-Hamiltonian path.

Proof. The paths (t10, z1, t
2
0), (c10, z1, c

2
1), (t10, z1, c

2
1), and (c10, z1, t

2
0) are tough paths.

Furthermore, x1 and x2 are in different components of F 1
f −{t10, c10} and F 1

f −{t20, c21},
and hence, by Lemma 2.3.18, there is no (x1, x2)-Hamiltonian path.

3.1.1 Paths in `-strings of diamonds

Definition 3.1.8. A forced edge, e = uv, is an edge that must be used in the

Hamiltonian Path (if one exists). Incident forced edges form a forced path.
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Since G is a 2-tree, simplicial vertices have degree 2, and hence lie on a forced

path if they are not endpoints of the path. To simplify the graphs we are considering,

we use a reduction process on our graphs which contracts sections of the graph where

there is a forced path. This process is similar to that used when reducing a series-

parallel network of resistors. These series-parallel networks are partial 2-trees and

this reduction method has been used to find the resistance in the network. It has also

been used to find the probability that a communication network will work. In both

cases the edges are labelled with weights: resistance, and probabilities, respectively

[1].

Notation 3.1.9. Let (G, u, v) denote a 2-tree, G, with u, v ∈ V (G), and let S∗1(G, u, v)

denote the set of simplicial vertices in G− {u, v}.

Definition 3.1.10. Given a 1-tough 2-tree, G, such that G 6= K3, then the reduced

graph of (G, u, v), is formed using the following algorithm:

1. Let w ∈ S∗1(G, u, v), and x, y the neighbors of w. If G−w 6= K2, remove w and

turn the edge xy into a forced edge.

2. Repeat (1) for all w ∈ S∗1(G, u, v). Define the resulting graph to be G∗1.

3. For i ≥ 2, let S∗i = S∗1(G∗i−1, u, v) where G∗i−1 6= K3 is the graph formed by

repeating (1) for G = G∗i−1 and for all w ∈ S∗1(G∗i−1, u, v).

Repeat (3) for all i = 2, 3, ..., j for j such that S∗j = ∅ or G∗j = K3. This is the reduced

graph of (G, u, v).

For F the set of forced edges, let (H, u, v, F ) denote the reduced graph of (G, u, v), for

G a 1-tough 2-tree.

Since simplicial vertices in 2-trees are not adjacent [7], when we remove the ver-

tices in each S∗i , regardless of order, we will end up with the same graph, unless

removing all vertices in S∗i results in K2. In this case, if we change the order of

removal of vertices, we will end up with different, but isomorphic graphs.

Furthermore, the reduction process removes all simplicial vertices other than the

two given endpoints, and hence the resulting graph is a 2-path.
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In order to describe a Hamiltonian path in a 2-path graph, we will use a specific

simpliical elimination ordering to create a labelling for our vertices.

Definition 3.1.11. Algorithm for labelling a 2-path:

Let H be a 2-path with simplicial vertices, {u, v}, with |V (H)| = n.

1. Label {u, v} with 1 and n. Remove vertex labelled 1.

2. Label the new simplicial vertex (not the one labelled n), consecutively and re-

move.

3. Repeat (2) until all that remains is a K3.

4. Label the last K3 by starting with the original 2-path (labels intact) and removing

the vertex labelled n. Label the new simplicial vertex (which is not labelled) with

n− 1. Label the remaining vertex n− 2.

Remark 3.1.12. Since simplicial vertices in G − S1(G) are adjacent to vertices in

S1(G) [7], vertices that are consecutively labelled will be adjacent. Hence, following

the ordering in the labelling algorithm consecutively will yield a Hamiltonian path.

Definition 3.1.13. [22] A k−caterpillar, P , is a k-tree in which deletions of all

simplicial vertices results in a k-path.

Definition 3.1.14. Let (H, x1, x2, F ) be the reduced graph of (G, x1, x2). The cater-

pillar representation, (H ′, x1, x2), of a graph (G, x1, x2) is created by adding |F |
simplicial vertices to (H, x1, x2, F ), making each vertex adjacent to exactly one forced

edge, and changing all forced edges back to regular edges.

Remark 3.1.15. (H ′, x1, x2) could also have been constructed by removing one less

simplicial vertex from each of the forced edges in the reduced graph algorithm, though

it would be more difficult to define. Furthermore, since H is a 2-tree, then H ′ is also

a 2-tree and since the forced edges were changed back to regular edges, (H ′, x1, x2) is

an induced sub-2-tree of (G, x1, x2).

Remark 3.1.16. Since x1 and x2 are simplicial in (H, x1, x2, F ), then they are inci-

dent to at most two forced edges, and hence in (H ′, x1, x2), they have degree at most

four.
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Lemma 3.1.17. Let G be a 1-tough 2-tree with x1, x2 ∈ V (G). Let (H, x1, x2, F )

be the reduced graph of (G, x1, x2) and (H ′, x1, x2) the caterpillar representation of

(G, x1, x2). Then the following are equivalent:

1. G has an (x1, x2)-Hamiltonian path,

2. (H ′, x1, x2) has an (x1, x2)-Hamiltonian path, and

3. (H, x1, x2, F ) has an (x1, x2)-Hamiltonian path which uses all of the edges in F .

Proof. (1)=⇒ (2)

Suppose (H ′, x1, x2) does not have an (x1, x2)-Hamiltonian path. Since (H ′, x1, x2)

is an induced sub-2-tree of (G, x1, x2), then by Corollary 2.1.10, G does not have an

(x1, x2)-Hamiltonian path.

(2) =⇒ (3)

Suppose (H ′, x1, x2) has an (x1, x2)-Hamiltonian path, P . Let v 6= x1, x2 be a sim-

plicial vertex with neighbors u and w. Then P = (x1, ..., u, v, w, ..., x2) or P =

(x1, ..., w, v, u, ..., x2). Furthermore, because H ′ is a 2-tree, then uw ∈ E(H ′), and

from the reduction algorithm uw ∈ F . Replacing (u, v, w) or (w, v, u) by (u,w) in P ,

then P is a Hamiltonian path using exactly one forced edge. Repeating this process

for all S∗1(H ′, x1, x2), then P will be a Hamiltonian path in (H, x1, x2, F ).

(3) =⇒ (1) Suppose (H, x1, x2, F ) has an (x1, x2)-Hamiltonian path, P , which uses

all of the edges in F . Consider xy ∈ F . In (G, x1, x2), xy is incident to at least one

vertex, v, which is not in (H, x1, x2, F ) so that c(G − {x, y}) = 2. Let Cv be the

component of G − {x, y} which contains v. From [24], G[Cv ∪ xy] is a 2-tree, and

from Lemma 1.2.23, it is also 1-tough and so it contains a Hamiltonian cycle C. In

G[Cv ∪ xy], xy is a 1-edge and hence lies on C. Thus, there is a Hamiltonian path,

P ′, in G[Cv ∪ xy] from x to y, and we can replace xy in P with P ′. Repeating this

process for all f ∈ F will yield a Hamiltonian path in (G, x1, x2).

Lemma 3.1.18. Let (H ′, x1, x2) the caterpillar representation of (G, x1, x2), where

G is a 1-tough 2-tree. If (H ′, x1, x2) is a 2-path, then (H ′, x1, x2) has an (x1, x2)-

Hamiltonian path.

Proof. If (H ′, x1, x2) is a 2-path, then the caterpillar representation is the same as the

reduced graph, and hence the reduced graph does not have any forced edges. Thus,
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taking the specified simplicial ordering from Definition 3.1.11 in consecutive order

will yield a Hamiltonian path.

Lemma 3.1.19. Let (H ′, x1, x2) the caterpillar representation of (G, x1, x2), where

G is a 1-tough 2-tree. If (H ′, x1, x2) has an (x1, x2)-Hamiltonian path, and x1x2 is

not a 1-edge in (H ′, x1, x2), then x1, x2 have degree at most three in (H ′, x1, x2).

Proof. Suppose that in (H ′, x1, x2), x1 has degree four. If x1x2 is a 2-edge in (H ′, x1, x2),

then (x1, x2) is a trivial tough path, and hence (H ′, x1, x2) does not have an (x1, x2)-

Hamiltonian path by Lemma 2.3.6. So, suppose x1 is not adjacent to x2 in (H ′, x1, x2).

Then (H ′, x1, x2) contains F 1
a as an induced sub-2-tree, and hence does not have an

(x1, x2)-Hamiltonian path by Corollary 2.1.10. Similarly if x2 has degree four.

In Theorem 3.1.24, we will use the caterpillar representation of a 2-tree and the

paths through s-split diamonds and `-strings of diamonds in the lemmas below to

construct a path through any 2-tree which does not contain F 1
x ∈ F 1.

Lemma 3.1.20. Let Ds(R) be an s-split diamond. Then there is a unique (c0, br)-

Hamiltonian path and a unique (c0, ts−r)-Hamiltonian path.

c0

b0

t0

c1

c2

b1

c3 c4

b2

c5

b3

t2

c6

Figure 3.11: An example of a Hamiltonian path in an s-split diamond, D5({1, 3, 4})

Proof. If s = 0 then both b0 and t0 are adjacent to c0 on the unique Hamiltonian

cycle, C. So, using the edges in C, there are unique (c0, b0) and (c0, t0)-Hamiltonian

paths. Now, suppose that the claim is true for an (s − 1)-split diamond. Consider

Ds(R) an s-split diamond. Then c0 is adjacent to a simplicial vertex, either t0 or b0.

Without loss of generality, assume b0 is simplicial. Then (c0, b0, c1) is a forced path

and Ds(R)− {c0, b0} is an (s− 1)-split diamond. By the induction hypothesis, there
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is a (c1, br) and (c1, ts−r)-Hamiltonian path, P and P ′ respectively. Hence (c0, b0, P )

and (c0, b0, P
′) are unique (c0, br) and (c0, ts−r)−Hamiltonian paths, respectively.

Remark 3.1.21. The path created uses all of the edges, other than the central path,

except for ci−1tj if i ∈ R, cibk if i /∈ R and i + 1 /∈ R, in addition to avoiding csbr in

a (c0, br)-Hamiltonian path, and csts−r in a (c0, ts−r)-Hamiltonian path.

Lemma 3.1.22. Let

G = D1
s1

(R1); (x1, `1);D
2
s2

(R2); (x2, `2); ....; (xm, `m);Dm+1
sm+1

(Rm+1) be an `-string of

diamonds with zi the (Di, Di+1)-amalgamated vertex for all i. If y is the simplicial

vertex in {bm+1
rm+1

, tm+1
sm+1−rm+1

} and neither ti0 6= y nor bi0 6= y is simplicial for i > 1,

then there is a unique (c0, y)-Hamiltonian path.

c10 cm+1
sm+1

Figure 3.12: An example of a Hamiltonian path in an `-string of diamonds:

D0; (t, `1);D0; (b, 1);D0; (t, `3);D0

Proof. We proceed by induction on the number of amalgamated vertices, m. If m = 0,

then G is an s-split diamond, and by Lemma 3.1.20, the claim is true. Now, suppose

that for an `-string of diamonds with m− 1 amalgamated vertices, that the claim is

true. Now, let G′ be an `-string of diamonds with m amalgamated vertices. Without

loss of generality, let x1 = t. From Lemma 3.1.20, there is a (c10, t
1
s1−r1)-path, P ,

which covers all of the vertices in D1
s1

. Furthermore, in G′− (D1
s1
− t1s1−r1), the path,

P ′, from t1s1−r1 to t20 is forced since the only other vertex adjacent to vertices on this

path is z1, which is not in G′ − (D1
s1
− t1s1−r1). Also, G′ − (D1

s1
− z1) − (P ′ − t20) is

a string of diamonds with m− 1 amalgamated vertices where t20 is simplicial but no

other ti0 6= y nor bi0 6= y is simplicial for i ≥ 1. By the induction hypothesis, there

is a unique (z1 = c20, y)-Hamiltonian path, P ′′. Furthermore, since t20 is simplicial in

G′ − (D1
s1
− z1)− (P ′ − t20), the path must begin with (c20, t

2
0). Replacing (c20, t

2
0) with

(c20, P
′) in P ′′ and preceding this path with P , yields a unique (c10, y)-Hamiltonian

path.
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Remark 3.1.23. In addition to the unused edges from Lemma 3.1.20, this path will

also avoid the edges ci0b
i
0 and ci0t

i
0.

Theorem 3.1.24. If G is a 1-tough 2-tree with x1, x2 ∈ V (G), then the following are

equivalent:

1. G contains F 1 ∈ F 1 as an induced sub-2-tree,

2. One of the following tough conditions hold:

(a) There exists a tough path from x1 to x2,

(b) There exists ab ∈ E(G) such that x1 and x2 lie in different components,

Cx1, Cx2, respectively of G − {a, b} and such that in G[V (Cx1) ∪ {a, b}]
there is a tough path from x1 to a and a tough path from x1 to b, or

(c) There exists ab, cd ∈ E(G) such that x1 and x2 lie in different components

of G− {a, b} and G− {c, d} and such that if x1 and x2 lie in components,

Cx1, Cx2, respectively of G− {a, b, c, d} where in G[V − V (Cx1)− V (Cx2)]

there are tough paths from a to c, a to d, b to c, and b to d.

3. G does not have an (x1, x2) Hamiltonian path.

Proof. (1)=⇒(2)

(A) If G contains F 1
a , x1t0 and x1c1 are tough paths and x1 and x2 are in different

components of G− {t0c1}.

(B) If G contains F 1
b , the central path is a tough path from x1 = c10 to x2 = cmsm+1.

(C) If G contains F 1
c , there is a tough path from x1 = c10 to cm1 and to tm0 and x1 = c10

and x2 are in different components of G− {tm0 , cm1 }.

(D) If G contains F 1
d , there is a tough path from c10 to cm1 and to tm0 and a tough path

from t10 to cm1 and to tm0 and x1 and x2 are in different components of G−{t10, c10}
and of G − {tm0 , cm1 } OR there is a tough path from c10 to cm1 and to bm0 and a

tough path from t10 to cm1 and to bm0 and x1 and x2 are in different components

of G− {t10, c10} and of G− {bm0 , cm1 }.

(E) If G contains F 1
e , there is a tough path from c10 to c21 and to t20 and a tough path

from t10 to c21 and to t20 and x1 and x2 are in different components of G− {t10, c10}
and of G− {t20, c21}.
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(F) If G contains F 1
f , there is a tough path from c10 to c21 and to t20 and a tough path

from t10 to c21 and to t20 and x1 and x2 are in different components of G− {t10, c10}
and of G− {t20, c21}.

(2)=⇒(3)

(a) Lemma 2.3.6

(b) Corollary 2.3.17

(c) Corollary 2.3.19

(3)=⇒(1)

Suppose G does not contain any F 1
x ∈ F 1 as an induced sub-2-tree. Let (H ′, x1, x2)

be the caterpillar representation of (G, x1, x2). Then (H ′, x1, x2) does not contain

any of F 1
x ∈ F 1 as an induced sub-2-tree. If (H ′, x1, x2) is a 2-path, then (H ′, x1, x2)

will have an (x1, x2)-Hamiltonian path by Lemma 3.1.18, so we will assume that

(H ′, x1, x2) is not a 2-path. Also since (H ′, x1, x2) does not contain any F 1
x ∈ F 1 as

an induced sub-2-tree, then x1 and x2 have degree two or three in (H ′, x1, x2). In the

following cases we will construct paths in (H ′, x1, x2).

Case (A) Suppose x1 is a simplicial vertex in (H ′, x1, x2). Since (H ′, x1, x2) is not a

2-path, there is at least one simplicial vertex, other than x1 and x2. Let

v1 be the vertex with the smallest label from Definition 3.1.11, which is

adjacent to a simplicial vertex, s1 6= x1, x2. Using that same labelling, in

consecutive order, there is a path, P ′A, from x1 to y1, a vertex which is

labelled one less than v1. Since v1 is adjacent to a simplicial vertex, then

there is a tough path which starts at v1. Let PA be a maximal short tough

path beginning at x1. By Lemma 2.3.11, PA is the central path of an `-

string of diamonds,

D1
s1

(R1); (w1, `1);D
2
s2

(R2); (w2, `2); ....; (wm−1, `m−1);D
m
sm(Rm). Without

loss of generality, suppose w1 = t. Since (H ′, x1, x2) does not contain any

F 1
x ∈ F 1 as an induced sub-2-tree, then x2 6= cmsm+1 and neither ti0 6= x2

nor bi0 6= x2 is simplicial for i > 2.

(I) Suppose t10 is adjacent to a simplicial vertex as well. Then, t20 6= x2

and b20 6= x2 are not simplicial and continuing from P ′A, we can take

the path to v1 = c10 and continue the path as in Case B with x1 =

v1 = c10.
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(II) Suppose t10 is not adjacent to a simplicial vertex. Then, continuing

from P ′A, we can take the path (t10, v1 = c10, s1 = b10, c
1
1).

(a) If c11 = z1 is an amalgamated vertex, and `1 = 1, then removing

all of the visited vertices other than c11 = z1, we will have an

(l − 1)-string of diamonds. If `1 > 1, then b20 is not simplicial

and we will have an (l − 1)-string of diamonds with additional

vertices, left from the path of length `1 between t10 and t20. In

either case, we can then extend P ′A by using the path given in

Lemma 3.1.22 beginning at the amalgamated vertex, c11 = z1.

We can continue the construction of the path as in Case (B)(II).

(b) If c11 = z1 is not an amalgamated vertex, then R1 6= ∅, so let

R1 = {q1, q2, ..., qr1}. Let qi be the first value such that qi−1 6=
qi − 1.

(i) If no such value exists, then c1s1+1 = z1 is an amalgamated

vertex and b1j is simplicial for all j ∈ {1, ..., s1}. So there

is a forced path from c11 to c1s1+1 = z1 which uses all edges

ckbk and ck+1bk for 1 ≤ k ≤ s1 + 1. By assumption, t10

is not adjacent to a simplicial vertex, so this path uses all

possible edges which could have a simplicial vertex adja-

cent in (H ′, x1, x2). Hence, replacing any edges of the path

which are adjacent to simplicial vertices in (H ′, x1, x2), with

the path through the simplicial vertex, we have a path in

(H ′, x1, x2). Furthermore, removing the visited vertices,

other than c1s1+1 = z1, we will have an (l − (s1 + 1))-string

of diamonds if `1 = 1 and if `1 > 1, then we will have an

(l−(s1+1))-string of diamonds with additional vertices, left

from the path of length `1 between t10 and t20. In either case,

we can then extend P ′A by using the path given in Lemma

3.1.22 beginning at the amalgamated vertex, c1s1+1 = z1.

We can continue the construction of the path as in Case

(B)(II).

(ii) If a qi exists, then b1j is simplicial for 0 ≤ qi−1 − 1 = qi−2,

and hence there is a forced path from c11 to c1qi−1
, which uses

all edges ckbk and ck+1bk for 1 ≤ k ≤ qi−2. By assumption,
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t10 is not adjacent to a simplicial vertex, so this path uses

all possible edges which could have a simplicial vertex adja-

cent in (H ′, x1, x2). Hence, replacing any edges of the path

which are adjacent to simplicial vertices in (H ′, x1, x2), with

the path through the simplicial vertex, we have a path in

(H ′, x1, x2). Furthermore, removing the visited vertices,

other than c1qi−1
, and removing the visited vertices, other

than c1qi−1
, we will have a 1-tough 2-tree with c1qi−1

simpli-

cial, and we can continue this path by repeating Case (A)

with x1 = c1qi−1
.

Case (B) Suppose x1 is not a simplicial vertex in (H ′, x1, x2). Then x1 has degree

three and hence is adjacent to a simplicial vertex. Hence, x1 lies on a tough

path. Let PB be a maximal short tough path beginning at x1. By Lemma

2.3.11, PB is the central path of an `-string of diamonds,

D1
s1

(R1); (w1, `1);D
2
s2

(R2); (w2, `2); ....; (wm−1, `m−1);D
m
sm(Rm). Without

loss of generality, suppose w1 = t. Since (H ′, x1, x2), ad (H ′, x1, x2) does

not contain any F 1
x ∈ F 1 as an induced sub-2-tree, then x2 6= cmsm+1 and

neither ti0 6= x2 nor bi0 6= x2 is simplicial for i > 1.

(I) If the `-string of diamonds contains no amalgamated vertices, then

we have an (l − 1)-split diamond, Ds1(R1). From Lemma 3.1.20,

there are (x1, brm) and (x1, tsm−rm) paths, P ′B1 and P ′B2, respectively,

which cover all of the vertices in Ds1(R1). Note that since the (l−1)-

split diamond is an induced sub-2-tree, it is possible for 1-edges

of the (l − 1)-split diamond to be adjacent to simplicial vertices

in (H ′, x1, x2). Such edges would correspond to edges that would

need to be used in a path through the (l − 1)-split diamond. How-

ever, attaching simplicial vertices to any unused edges in the path

from Lemma 3.1.20 would form an induced sub-2-tree in F 1. And

so, for any edges of the (l − 1)-split diamond which are adjacent

to a simplicial vertex in (H ′, x1, x2) we can replace the edge on

P ′B1 or P ′B2 with the path through the simplicial vertex to form a

path, P ′′B1 and P ′′B2, respectively, in (H ′, x1, x2). If brm = x2, then

P ′′B1 is an (x1, x2)-Hamiltonian path in (H ′, x1, x2). If tsm−rm =

x2, then P ′′B2 is an (x1, x2)-Hamiltonian path in (H ′, x1, x2). So
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now suppose that brm , tsm−rm 6= x2. Let y = brm if (H ′, x1, x2) −
{brmcs1+1} leaves x1 and x2 in different components, and y = tsm−rm

if (H ′, x1, x2) − {tsm−rmcs1+1} leaves x1 and x2 in different compo-

nents. Let P ′′y = P ′′B1 if y = brm and P ′′y = P ′′B2 if y = tsm−rm . P ′′y − y

is an (x1, cs1+1)-path and furthermore (H ′, x1, x2)− (P ′′y −{y, cs1+1})
is a 1-tough 2-tree. Additionally, cs1+1 is simplicial since if it weren’t,

then PB would not be maximal. So we can finish constructing

the Hamiltonian path by finding an (cs1+1, x2)-Hamiltonian path in

(H ′, x1, x2)− (P ′′y − {y, cs1+1}) using Case (A).

(II) Suppose the `-string of diamonds contains at least one amalgamated

vertex. Using the path in Lemma 3.1.22, we have a path, P ′B from

x1 to y, where y = bmrm if ym−1 = t in

D1
s1

(R1); (w1, `1);D
2
s2

(R2); (w2, `2); ....; (wm−1, `m−1);D
m
sm(Rm), and

y = tmsm−rm if ym−1 = b in

D1
s1

(R1); (w1, `1);D
2
s2

(R2); (w2, `2); ....; (wm−1, `m−1);D
m
sm(Rm), such

that all vertices in the `-string of diamonds are covered. Note that

since the `-string of diamonds is an induced sub-2-tree, it is possible

for 1-edges of the `-string of diamonds to be adjacent to simplicial

vertices in (H ′, x1, x2), which would correspond to edges that would

need to be used in a path through the `-string of diamonds. How-

ever, attaching simplicial vertices to any unused edges in the path

from Lemmas 3.1.20 and 3.1.22 would form an induced sub-2-tree

in F 1. And so, for any edges of the `-string of diamonds which are

adjacent to a simplicial vertex in (H ′, x1, x2) we can replace the edge

on P ′B with the path through the simplicial vertex to form a path,

P ′′B in (H ′, x1, x2). If y = x2, then P ′′B is an (x1, x2)-Hamiltonian

path in (H ′, x1, x2). If y 6= x2, then P ′′B − y is an (x1, c
m
sm+1)-path.

Furthermore, (H ′, x1, x2)− (P ′′B −{y, cmsm+1}) is a 1-tough 2-tree and

cmsm+1 is simplicial since if it weren’t, then PB would not be maximal.

So we can finish constructing the Hamiltonian path by finding an

(cmsm+1, x2)-Hamiltonian path in (H ′, x1, x2)− (P ′′−{y, cmsm+1}) using

Case (A).

Remark 3.1.25. In the cases when G is a 1-tough 2-tree, which do not contain an

(x1, x2)-Hamiltonian path, we can partition G into two vertex disjoint paths with x1
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the end of one path and x2 the end of the other. We can do this by breaking the

Hamiltonian cycle in G into two paths.

3.2 2HP on 2-trees

Definition 3.2.1. Define F 2 = {F 1, F 2
a , F

2
b , F

2
c , F

2
d , F

2
e } where:

(a) F 2
a is a 2-tree with vertices x1, x2, and a 3-edge, ef , such that either:

(i) x1 and x2 are in the same component of G− {e, f}, or

(ii) e ∈ {x1, x2}.

x1 x2

e f

Figure 3.13: General example of F 2
a such that x1 and x2 are in the same component

of G − {e, f}, and to preserve generality, the dotted section of the graph

represents any 2-tree with scattering number at most one

x2

x1 f

Figure 3.14: General example of F 2
a such that e ∈ {x1, x2} and to preserve generality, the

dotted section of the graph represents any 2-tree with scattering number at

most one

(b) F 2
b is a 2-tree with vertices x1, x2, which contains a 3-edge, ab, such that:
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(i) x1 and x2 are in different components of F 2
b − {a, b},

(ii) N(a)− {x1, x2} contains two simplicial vertices,

(iii) N(b)− {x1, x2} contains two simplicial vertices, and

(iv) In F 2
b − {a, b} two of the simplicial vertices lie in the same component.

x1 x2

Figure 3.15: General example of F 2
b and to preserve generality, the dotted section of the

graph represents any 2-tree with scattering number at most one

(c) F 2
c is a 2-tree with vertices x1, x2, which contains a 3-edge, ab, such that x1 and

x2 are in different components of F 2
c − {a, b} and N(a)− {x1, x2} contains three

simplicial vertices.

x1 x2

Figure 3.16: General example of F 2
c and to preserve generality, the dotted section of the

graph represents any 2-tree with scattering number at most one

(d) F 2
d is constructed from D1

s1
(R1); (x1, `1); ....;D

m−1
sm−1

(Rm−1); (t, `m−1);D
m
0 ,

m ≥ 2, by:

(i) Amalgamating an x2-2-path with tm0 c
m
1 , and

(ii) Amalgamating an x1-2-path with c10c
1
1.
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x2
c10

zm−1

tm0

cm1
zm−1

c10

x1

Figure 3.17: A general example of F 2
d :

D1
s1(R1); (x1, `1);D

2
s2(R2); (x2, `2); ....;D

m−1
sm−1

(Rm−1); (t, `m−1);D
m
0

m ≥ 2, with an x2-2-path amalgamated with tm0 cm1 , and x1-2-path amalga-

mated with c10c
1
1

where D1
s1(R1); (x1, `1);D

2
s2(R2); (x2, `2); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1) is

shown in gray to preserve generality

c10
zm−1

tm0

cm1
x2

x1

Figure 3.18: Specific example of F 2
d : D5({1, 3, 4, 5}); (t, 1);D0 with x1-2-path amalga-

mated with c10c
1
1 and x2-2-path amalgamated with t20c

2
1

(e) F 2
e is constructed from an `-string of diamonds, with x1 = c10, by amalgamating

an x2-2-path with cmsmc
m
sm+1.
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c10

tm0

cmsm+1

x1 = c10

x2

Figure 3.19: A general example of F 2
e : D1

s1(R1); (x1, `1); ....; (xm−1, `m−1);D
m
sm(Rm)

with an amalgamated x2-2-path and such that x1 = c10

where D1
s1(R1); (x1, `1); ....; (xm−1, `m−1);D

m
sm(Rm) is shown in gray to pre-

serve generality

x1

x2

Figure 3.20: Specific example of F 2
e : D5({1, 3, 4, 5}) with x1 = c0 and x2-2-path amalga-

mated with c5c6

Lemma 3.2.2. The graph F 2
a does not have an (x1, x2)-Hamiltonian path.

Proof. Since ef is a 3-edge, then c(G−{e, f}) = 3 and hence if G has a Hamiltonian

path, then the ends of the path must lie in two of the three components of G−{e, f}.
So, if x1 and x2 are in the same component of G − {e, f}, then G does not have an

(x1, x2)-Hamiltonian path. Similarly, if e ∈ {x1, x2}, then x1 or x2 is not in one of

the components of G−{e, f} and G does not have an (x1, x2)-Hamiltonian path.

Lemma 3.2.3. The graph F 2
b does not have an (x1, x2)-Hamiltonian path.

Proof. Let u be the simplicial vertex in N(ab) − {x1, x2}, v the simplicial vertex in

N(a) − {x1, x2, u}, and w the simplicial vertex in N(b) − {x1, x2, u}. Suppose that

G contains an (x1, x2)-Hamiltonian path, P . Since u, v and w are simplicial and not

endpoints of P , then P must contain (v, a, u, b, w). But since v and w are in the

same component of G− {a, b}, then x1 and x2 need to be in the same component of

G− {a, b}, a contradiction.
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Lemma 3.2.4. The graph F 2
c does not have an (x1, x2)-Hamiltonian path.

Proof. Let u, v and w be the simplicial vertices in N(a) − {x1, x2}, and suppose G

has an (x1, x2)-Hamiltonian path. Since u, v and w are not endpoints to the path,

then u, v and w must all be either preceded or followed by a. But that means that a

must be used at least twice on the Hamiltonian path, a contradiction.

Lemma 3.2.5. The graph F 2
d does not have an (x1, x2)-Hamiltonian path.

Proof. Since c(H − c10c
1
1) = 3, then if H has a Hamiltonian path, there must be

a Hamiltonian path in each of the components, and c10 and c11 must connect the

paths. Furthermore, if H has an (x1, x2)-Hamiltonian path, then the path must start

in the component of H − c10c
1
1 which contains x1 and end in the component which

contains x2. But that would mean that H has a (c10, x2) or (c11, x2)-Hamiltonian path,

a contradiction to Lemma 3.1.4.

Lemma 3.2.6. The graph F 2
e does not have an (x1, x2)-Hamiltonian path.

Proof. Since c(H − cmsmc
m
sm+1) = 3, then if H has a Hamiltonian path, there must be

a Hamiltonian path in each of the components, and cmsm and cmsm+1 must connect the

paths. Furthermore, if H has an (c10, x2)-Hamiltonian path, then the path must start

in the component of H− cmsmc
m
sm+1 which contains c10 and end in the component which

contains x2. But that would mean that H has a (c10, c
m
sm) or (c10, c

m
sm+1)-Hamiltonian

path, a contradiction to Lemma 3.1.3.

Similar to the reduced graph of a 1-tough 2-tree with fixed endpoints, we will

create a reduced graph of a 2-tree with scattering number one and fixed points, in

order to more easily describe the paths in the 2-trees, as follows.

Definition 3.2.7. Given a 2-tree, G with s(G) = 1, then the reduced graph of

(G, u, v), is formed using the following algorithm:

1. For every 3-edge ab with components of G−{a, b}, C1
ab, C

2
ab, C

3
ab, if G[Ci

ab∪{a, b}]
is 1-tough and does not contain u or v, then replace Ci

ab with a simplicial vertex

adjacent to ab.

2. Let w ∈ S∗1(G, u, v), and x, y the neighbors of w. If xy is not a 3-edge, remove

w and turn the edge xy into a forced edge.

3. Repeat (2) for all w ∈ S∗1(G, u, v). Define the resulting graph to be G∗1.
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4. For i ≥ 2, let S∗i = S∗1(G∗i−1, u, v) where G∗i−1 is the graph formed by repeating

(2) for G = G∗i−1 and for all w ∈ S∗1(G∗i−1, u, v).

Repeat (4) for all i = 2, 3, ..., j for j such that S∗j = ∅ or for all s ∈ S∗j , N(s) is a

3-edge. This is the reduced graph of (G, u, v).

For F the set of forced edges, let (H, u, v, F ) denote the reduced graph of (G, u, v), for

G a 2-tree containing at least one 3-edge.

Since simplicial vertices in 2-trees are not adjacent [7], when we remove the vertices

in each Si, regardless of order, we will end up with the same graph.

Remark 3.2.8. When creating the reduced graph of a 2-tree with scattering number

one with no fixed endpoints, S∗1(G, u, v) will be replaced by S1(G).

We will form the corresponding caterpillar representation of (G, u, v) as in Chapter

2.

Lemma 3.2.9. Let G be a 2-tree with x1, x2 ∈ V (G) and s(G) = 1. Let (H, x1, x2, F )

be the reduced graph of (G, x1, x2), and (H ′, x1, x2) the caterpillar representation of

(G, x1, x2). Then the following are equivalent:

1. G has an (x1, x2)-Hamiltonian path,

2. (H ′, x1, x2) has an (x1, x2)-Hamiltonian path, and

3. (H, x1, x2, F ) has an (x1, x2)-Hamiltonian path which uses all of the edges in F .

Proof. (1)=⇒ (2)

Suppose (H ′, x1, x2) does not have an (x1, x2)-Hamiltonian path. Since (H ′, x1, x2)

is an induced sub-2-tree of (G, x1, x2), then by Corollary 2.1.10, G does not have an

(x1, x2)-Hamiltonian path.

(2) =⇒ (3)

Suppose (H ′, x1, x2) has an (x1, x2)-Hamiltonian path, P . Let v 6= x1, x2 be a sim-

plicial vertex with neighbors u and w. Then P = (x1, ..., u, v, w, ..., x2) or P =

(x1, ..., w, v, u, ..., x2). Furthermore, because H ′ is a 2-tree, then uw ∈ E(H ′), and

from the reduction algorithm uw ∈ F . Replacing (u, v, w) or (w, v, u) by (u,w) in P ,

then P is a Hamiltonian path using exactly one forced edge. Repeating this process

for all S∗1(H ′, x1, x2), then P will be a Hamiltonian path in (H, x1, x2, F ).
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(3) =⇒ (1) Suppose (H, x1, x2, F ) has an (x1, x2)-Hamiltonian path, P , which

uses all of the edges in F . Let ab be a 3-edge in G with components of G − {a, b},
C1

ab, C
2
ab, C

3
ab, where G[Ci

ab ∪ {a, b}] and is 1-tough and does not contain x1 or x2.

In (H, x1, x2, F ), Ci
ab has been replaced by the simplicial vertex, viab. Since G[Ci

ab ∪
{a, b}] is 1-tough, then G[Ci

ab ∪ {a, b}] has a Hamiltonian cycle, C using all 1-edges

in G[Ci
ab ∪ {a, b}]. Hence, since ab is a 1-edge in G[Ci

ab ∪ {a, b}], then there is an

(a, b)-Hamiltonian path P ′ in G[Ci
ab ∪ {a, b}]. Since viab is on the interior of P in

(H, x1, x2, F ), then we can replace (a, viab, b) on P with P ′. Now, consider xy ∈ F .

In G, xy is incident to at least one vertex, v, which is not in (H, x1, x2, F ) so that

c(G−{x, y}) = 2. Let Cv be the component of G−{x, y} which contains v. From [24],

G[Cv ∪xy] is a 2-tree, and from the reduction algorithm, G[Cv ∪xy] must be 1-tough

and so it contains a Hamiltonian cycle C. In G[Cv ∪ xy], xy is a 1-edge and hence

lies on C. Thus, there is a Hamiltonian path, P ′′, in G[Cv ∪ xy] from x to y, and we

can replace xy in P with P ′. Repeating these processes for all f ∈ F and all 3-edges,

cd and all Ci
cd such that G[Ci

cd ∪ {c, d}] is 1-tough, will yield an (x1, x2)-Hamiltonian

path in G.

Theorem 3.2.10. If G is a 2-tree with x, y ∈ V (G), then G has an (x, y)-Hamiltonian

path iff s(G) ≤ 1 and (G, x, y) does not contain any F 2 ∈ F 2.

Proof. =⇒ If s(G) ≥ 2, then G is not 1-path-tough, and G does not contain a

Hamiltonian path.

1. If (G, x, y) = F 2
a , then (G, x, y) does not have an (x, y)-Hamiltonian path by

Lemma 3.2.2. If (G, x, y) contains F 2
a as an induced sub-2-tree, then (G, x, y)

does not have an (x, y)-Hamiltonian path by Corollary 2.1.11.

2. If (G, x, y) = F 2
b , then (G, x, y) does not have an (x, y)-Hamiltonian path by

Lemma 3.2.3. If (G, x, y) contains F 2
b as an induced sub-2-tree, then (G, x, y)

does not have an (x, y)-Hamiltonian path by Corollary 2.1.11.

3. If (G, x, y) = F 2
c , then (G, x, y) does not have an (x, y)-Hamiltonian path by

Lemma 3.2.4. If (G, x, y) contains F 2
c as an induced sub-2-tree, then (G, x, y)

does not have an (x, y)-Hamiltonian path by Corollary 2.1.11.

4. If (G, x, y) contains an F 1
x ∈ F 1 ⊂ F 2, then G does not have an (x, y)-

Hamiltonian path by Theorem 3.1.24 and Corollary 2.1.11.
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⇐=

Suppose G does not have an (x, y)-Hamiltonian path, but that s(G) ≤ 1. Since

s(G) ≤ 1, then G contains no t-edges for t ≥ 4. We will proceed by induction on

the number of 3-edges, m. If m = 0, then by Theorem 3.1.24, (G, x, y) contains an

F 1
x ∈ F 1 ⊂ F 2. Suppose the claim is true for all graphs with (m− 1) 3-edges. Now

consider G a 2-tree with s(G) ≤ 1 such that G does not have an (x, y)-Hamiltonian

path with m 3-edges. Let (H ′, x, y) be the caterpillar representation of G. Then

s(H ′) ≤ 1 and H ′ does not have an (x, y)-Hamiltonian path. Suppose H ′ does not

contain F 2
a . Denote the 3-edges in H ′, Si = sis

′
i for all 1 ≤ i ≤ m. Then the 3-

edges in H ′ can be ordered S1, S2, ....Sm so that for all i, x and y are in different

components of H ′ − Si, in H ′ − S1, x is in a different component than si and s′i for

all i, in H ′ − Sm, y is in a different component than si and s′i for all i, and such

that for all i ∈ {1, 2, ...,m− 2}, si and si+2 are in different components of H ′ − Si+1.

Let C1 be the component of H ′ − S1 which contains x. Let C2 be the component

of H ′ − S1 which contains y. Let H ′1 be the graph constructed from G[C1 ∪ S1] by

adding a simplicial vertex, v1, adjacent to S1. Let H ′2 be the graph constructed from

G[C2∪S1] by adding a simplicial vertex, v2, adjacent to S1. Let S1 = ab. If H ′1 has an

(x, a)-Hamiltonian path, P , then because v1 is simplicial, then P ends with (b, v1, a).

Likewise, if H ′2 has a (b, y)-Hamiltonian path, P ′, then P ′ begins with (b, v2, a). So,

in H ′, (P −{a, v1, b}, P ′) is an (x, y)-Hamiltonian path. Similarly if H ′1 has an (x, b)-

Hamiltonian path and H ′2 has an (a, y)-Hamiltonian path. So, since H ′ does not have

an (x, y)-Hamiltonian path, either (1) H ′1 has neither an (x, a)-Hamiltonian path nor

an (x, b)-Hamiltonian path, or (2) H ′2 has neither an (a, y)-Hamiltonian path nor an

(b, y)-Hamiltonian path, or (3) H ′1 only has an (x, a)-Hamiltonian path while H ′2 only

has an (a, y)-Hamiltonian path, or (4) H ′1 only has an (x, b)-Hamiltonian path while

H ′2 only has an (b, y)-Hamiltonian path.

1. If H ′1 does not have an (x, a)-Hamiltonian path, then by Theorem 3.1.24, then

(H ′1, x, a) contains an F 1
x ∈ F 1 ⊂ F 2. Likewise, if H ′1 does not have an

(x, b)-Hamiltonian path, then by Theorem 3.1.24, then (H ′1, x, b) contains an

F 1
x ∈ F 1 ⊂ F 2. Note first that if there is an ef such that x and a lie in

different components of H ′1−{e, f}, then since a and b are adjacent, then either

b is in the same component as a in H ′1 − {e, f}, or b ∈ {e, f}. Also, if in

(H ′1, x, a), and similarly for (H ′1, x, b), there is an ef such that x and a lies

in different components, Cx, Ca, respectively of H ′1 − {e, f} and such that in
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G[V (Cx) ∪ {e, f}] there is a tough path from x to e and a tough path from

x to f , then we have F 1
a or F 1

c , with x = c10. In either case, y will be in the

same component as a, and hence (H ′, x, y) also contains F 1
a or F 1

c . Similarly, if

(H ′1, x, a) and/or (H ′1, x, b) contains F 1
d , F

1
e , or F 1

f , then (H ′, x, y) also contains

F 1
d , F

1
e , or F 1

f . Now, suppose that (H ′1, x, a) and (H ′1, x, b) contain F 1
b , so in H ′1

there is a tough path from x to a and a tough path from x to b. If the short tough

path from x to a contains the short tough path from x to b, then in (H ′, x, y)

we have F 2
e . Otherwise, we have x and y in different components of H ′−{a, b}

and so we have F 1
a or F 1

c in (H ′, x, y), with x = c10. If (H ′1, x, a) contains F 1
a

with x1 = a and (H ′1, x, b) contains F 1
a with x1 = b, then (H ′, x, y) contains F 2

b .

Now, suppose (H ′1, x, a) contains F 1
c or F 1

a with x1 = a and (H ′1, x, b) contains

F 1
c with x1 = b. The case when (H ′1, x, b) contains F 1

c or F 1
a with x1 = b and

(H ′1, x, a) contains F 1
c with x1 = a is similar. If the tough paths starting at a

and b do not intersect, then (H ′, x, y) contains F 2
b . If ab is an edge of one of

the tough paths, then (H ′, x, y) contains F 2
d . If the tough paths starting at a

and b intersect, but ab is not an edge of one of the tough paths, then (H ′, x, y)

contains F 1
f or F 1

d .

2. If H ′2 does not have an (a, y)-Hamiltonian path, then by the induction hy-

pothesis, (H ′2, y, a) contains an F 2
x ∈ F 2. Likewise, if H ′2 does not have an

(b, y)-Hamiltonian path, then by the induction hypothesis, (H ′2, y, b) contains

an F 2
x ∈ F 2. As above, if (H ′2, y, a) or (H ′2, y, b) contains an F 1

x ∈ F 1 ⊂ F 2,

then (H ′, x, y) contains an F 2
x ∈ F 2. If (H ′2, y, a) and/or (H ′2, y, b) contains

F 2
b or F 2

c , then since x will be in the same component as a and/or b, respec-

tively, then (H ′, x, y) will also contain F 2
b or F 2

c . Similarly, if (H ′2, y, a) and/or

(H ′2, y, b) contains F 2
d or F 2

e , (H ′, x, y) will also contain F 2
d or F 2

e , respectively.

3. Without loss of generality, assume H ′1 only has an (x, b)-Hamiltonian path while

H ′2 only has a (b, y)-Hamiltonian path. Then (H ′1, x, a) and (H ′2, y, a) contain

an F 2
x ∈ F 2. But since H ′1 has an (x, b)-Hamiltonian path while H ′2 has a (b, y)-

Hamiltonian path, then (H ′1, x, b) and (H ′2, y, b) cannot contain an F 2
x ∈ F 2.

Then, (H ′1, x, a) must contain F 1
a , F

1
b , F

1
c and (H ′2, y, a) must contain F 1

a , F
1
b , F

1
c ,

or F 2
e . If (H ′1, x, a) and (H ′2, y, a) both contain F 1

a , then (H ′, x, y) contains F 2
c .

If (H ′1, x, a) and (H ′2, y, a) both contain F 1
c , then (H ′, x, y) contains F 1

d . If

(H ′1, x, a) and (H ′2, y, a) both contain F 1
b , then there is a tough path from x

to y and hence (H ′, x, y) also contains F 1
b . If one contains F 1

b and the other
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contains F 1
a or F 1

c , then we have F 1
c in (H ′, x, y). If one contains F 1

a and the

other contains F 1
c , then we have F 1

d in (H ′, x, y). If (H ′2, y, a) contains F 2
e and

the other contains F 1
a or F 1

c , then we have F 2
d in (H ′, x, y). Lastly if (H ′2, y, a)

contains F 2
e and the other contains F 1

b , then we have F 2
e in (H ′, x, y).
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Chapter 4

Using 2HP to Characterize HP

and 1HP

As mentioned earlier in this dissertations, the Hamiltonian path problem on 2-trees

is closely related to 2HP on 2-trees, and will use the results from the previous chapter

on 2HP to prove necessary and sufficient conditions for which a 2-tree will not have a

Hamiltonian path in Theorem 4.1.15 in section 4.1. We will begin as in the previous

chapter by defining a family, H , of 2-trees which will not have a Hamiltonian path.

In Theorem 4.1.15, we will prove that any 2-tree with scattering number at most one,

which does not contain one of the graphs in H as an induced sub-2-tree, will have a

Hamiltonian path. In section 4.2, we will use the results from 2HP on 2-trees to prove

necessary and sufficient conditions for which a 2-tree with a specified vertex, x2, will

not have an x2-Hamiltonian path in Theorem 4.2.12. We will begin as in the previous

chapters by defining a family, I , of 2-trees, with a specified vertex, x2, which will

not have an x2-Hamiltonian path. In Theorem 4.2.12, we will prove that any 2-tree

with scattering number at most one, which does not contain one of the graphs in I

as an induced sub-2-tree, will have an x2-Hamiltonian path.

4.1 Hamiltonian Path Problem

Definition 4.1.1. Define H = {Ha, Hb, Hc, Hd, He, Hf , Hg} where:

(a) Ha is a 2-tree which contains three 3-edges, ab, cd, and ef , none of which are

incident, such that:

(i) cd and ef are in the same component of G− {a, b}
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(ii) ab and cd are in the same component of G− {e, f}

(iii) ab and ef are in the same component of G− {c, d}

b c

da

f e

Figure 4.1: A general example of Ha where the dotted section of the graph represents any

2-tree with scattering number at most one to preserve generality

b

a f e

c

d

Figure 4.2: A specific example of Ha: P 2
15 with three pairs of simplicial vertices added

b

a

c

d

ef

Figure 4.3: A specific example of Ha

(b) Hb is a 2-tree which contains exactly two 3-edges, ab and cd, such that:

(i) ab is not incident to cd,
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(ii) ab and cd are each adjacent to two simplicial vertices, and

(iii) N(ab) contains two simplicial vertices.

b c

da

Figure 4.4: A general example of Hb. To preserve generality, the dotted section of the

graph represents any 2-tree with scattering number at most one.

(c) Hc is a 2-tree which contains three 3-edges such that for one of the 3-edges, ef ,:

(i) Two of the three components of G− {e, f} contain a 3-edge, and

(ii) e is adjacent to three simplicial vertices which are all in different components

of G− {e, f}.

b c

da

f

e

Figure 4.5: A general example of Hc where the dotted section of the graph represents any

2-tree with scattering number at most one to preserve generality

(d) Hd is constructed from

G = D1
s1

(R1); (x1, `1); ....; (xm−2, `m−2);D
m−1
sm−1

(Rm−1); (t, `m−1);D
m
0 , m ≥ 2, by :

(i) Amalgamating an x2-2-path with tm0 c
m
1 ,

(ii) Adding a false twin, x′2, of x2, and
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(iii) Adding a simplicial vertex adjacent to c10c
1
1.

x′2

x2

c10
zm−1

tm0

cm1

x1

zm−1

c10

Figure 4.6: A general example of Hd:

D1
s1(R1); (x1, `1);D

2
s2(R2); (x2, `2); ....;D

m−1
sm−1

(Rm−1); (t, `m−1);D
m
0

m ≥ 2, with an x2-2-path amalgamated with t20c
2
1, and a simplicial vertex

added to c10c
1
1

where D2
s2(R2); (x2, `2); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1) is shown in gray to

preserve generality

x′2

x2

c10
zm−1

tm0

cm1

x1

Figure 4.7: Specific example of Hd: D5({1, 3, 4}); (t, 1);D0 with an x2-2-path amalga-

mated with t20c
2
1, and a simplicial vertex added to c10c

1
1

(e) He is constructed from G = D1
0; (t, `);D2

0, for l ≥ 2, by:

(i) Amalgamating an x1-2-path with t10c
1
0,

(ii) Amalgamating an x2-2-path with t20c
2
1,
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(iii) Adding a false twin, x′1, of x1, and

(iv) Adding a false twin, x′2, of x2.

x1

x′1 x′2

x2

c10 z1

t10

b10

t20

c21

b20

Figure 4.8: Specific example of He with ` = 2

(f) Hf is constructed from G = D1
0; (t, 1);D2

0, by:

(i) Amalgamating an x1-2-path with t10c
1
0,

(ii) Amalgamating an x2-2-path with t20c
2
1,

(iii) Adding a false twin, x′1, of x1,

(iv) Adding a false twin, x′2, of x2, and

(v) Adding a simplicial vertex adjacent to t10t
2
0.

x1

x′1 x′2

x2

c10 z1

t10

b10

t20

c21

v

b20

Figure 4.9: Example of Hf

(g) Hg is constructed from

D1
0; (t, `1);D

2
s2

(R2); (x2, `2); ....; (xm−2, `m−2);D
m−1
sm−1

(Rm−1); (t, `m−1);D
m
0 , m ≥ 3,

by:
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(i) Amalgamating an x1-2-path with t10c
1
0,

(ii) Amalgamating an x2-2-path with tm0 c
m
1 ,

(iii) Adding a false twin, x′1, of x1, and

(iv) Adding a false twin, x′2, of x2.

OR

Hg is constructed from

D1
0; (t, `1);D

2
s2

(R2); (x2, `2); ....; (xm−2, `m−2);D
m−1
sm−1

(Rm−1); (b, `m−1);D
m
0 , m ≥ 3,

by:

(i) Amalgamating an x1-2-path with t10c
1
0,

(ii) Amalgamating an x2-2-path with bm0 c
m
1 ,

(iii) Adding a false twin, x′1, of x1, and

(iv) Adding a false twin, x′2, of x2.

x′1

x1

x′2

x2

c10

t10

b10

t20

cm1

tm0

zm−1z1

t20

Figure 4.10: A general example of Hg:

D1
0; (t, `1);D

2
s2(R2); (x2, `2); ....;D

m−1
sm−1

(Rm−1); (t, `m−1);D
m
0

m ≥ 3, with amalgamated x1 and x2-2-paths

where D2
s2(R2); (x2, `2); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1) with z1 = c20

and zm−1 = cm−1sm−1+1, is shown in gray to preserve generality
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x′1

x1

x′2

x2

c10

t10 tm0

b10

z1

t20

zm−1

cm1

Figure 4.11: Specific example of Hg: D0; (t, 1);D5({1, 3, 4}); (t, 1);D0 by amalgamating

an x1-2-path with t10c
1
0, amalgamating an x2-2-path with tm0 cm1 , and adding

false twins, x′1, x
′
2 of x1, x2

x′1

x1

x′2

x2

c10

t10

b10

t20

cm1

tm0

zm−1
z1

t20

Figure 4.12: A general example of Hg:

D1
0; (t, `1);D

2
s2(R2); (x2, `2); ....;D

m−1
sm−1

(Rm−1); (b, `m−1);D
m
0

m ≥ 3, with amalgamated x1 and x2-2-paths.

where D2
s2(R2); (x2, `2); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1) with z1 = c20

and zm−1 = cm−1sm−1+1, is shown in gray to preserve generality
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x′1

x1

x′2

x2

c10

t10

b10

z1

t20

z2
c31

t30

Figure 4.13: An example of Hg: D0; (t, 1);D5({1, 3, 4, 5}); (b, 1);D0 with amalgamated x1

and x2-2-paths

Note that in H , all graphs have at least two 3-edges. In this section we will be

discussing 2-trees which contain at least two 3-edges, but no t-edge for t ≥ 4. From

Lemma 1.2.24, if G is a 2-tree which contains a t-edge for t ≥ 4, then G does not

contain a Hamiltonian path. Furthermore, from Lemma 1.2.23 if G is a 2-tree which

only contains t-edges for t ≤ 2, then G is 1-tough and hence contains a Hamiltonian

path. 2-trees with exactly one 3-edge and no t-edges for t ≥ 4 have a Hamiltonian

path, by Lemma 4.1.2 below.

Lemma 4.1.2. If G is a 2-tree which contains exactly one 3-edge and no t-edges for

t ≥ 4, then G has a Hamiltonian path.

Proof. Let ab be the 3-edge in G. Let C1, C2, C3 be the components of G−{a, b}. From

[24], G[C1 ∪ {a, b}] is a 2-tree, and since G contains no other 3-edges and no t-edges

for t ≥ 4, then it is also 1-tough. Hence, G[C1∪{a, b}] contains a Hamiltonian cycle C

which contains all 1-edges in G[C1∪{a, b}]. Since ab is a 1-edge in G[C1∪{a, b}], then

ab lies on C, so G[C1 ∪ {a, b}] has an (a, b)-Hamiltonian path, P . G[C1 ∪C2 ∪ {a, b}]
is also a 1-tough 2-tree, so there is a b-Hamiltonian path, P ′, in G[C1 ∪ C2 ∪ {a, b}].
Taking P − a followed by P ′ yields a Hamiltonian path in G.

Lemma 4.1.3. Let G be a 1-tough 2-tree with tough path P = (v1, v2, ..., vn−1, vn).

If H is constructed by adding a simplicial vertex adjacent to vivi+1 and a simplicial

vertex adjacent to vjvj+1, i < j, then H does not contain a Hamiltonian path.
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Proof. Let Svi,vj+1
= {vi, vi+1, ..., vj, vj+1. Since P is a tough path, G − Svi,vj+1

=

|Svi,vj+1
|. Then c(H −Svi,vj+1

) = |Svi,vj+1
|+ 2 and hence s(H) ≥ 2 and so H does not

have a Hamiltonian path.

Since in Theorem 4.1.15, we assume scattering number at most one, we do not

include in H , F 2, or I , graphs which have the properties of Lemma 4.1.3. However,

in the cases of Hd, He, Hf , and Hg, if the x2-2-path, and likewise x1-2-path, that is

amalgamated to our graphs is a diamond with simplicial vertex x2, then the graph

produced will have scattering number at least two. In the future, we would like to

characterize the 2-trees which have scattering number two or more, such that we

could prove characterization theorems for HP, 1HP, and 2HP on 2-trees which rely

only on a forbidden family and do not include scattering number conditions.

Corollary 4.1.4. If H is constructed from an `-string of diamonds, by adding two

simplicial vertices, each adjacent to a different edge on the central path, then H does

not contain a Hamiltonian path.

c10

t10 tm0

b10

z1

t20

cm1

Figure 4.14: An example of Lemma 4.1.3: D0; (t, 1);D5({1, 3, 4, 5}); (t, 1);D0 with a sim-

plicial vertex added to c10z1 and a simplicial vertex added to z2c
m
1

Lemma 4.1.5. The graph Ha does not have a Hamiltonian path.

Proof. Suppose G has a Hamiltonian path, P . By assumption, c(G−{a, b}) = 3, and

cd and ef are in the same component of G−{a, b}. Hence, at least one endpoint, x1,

of P must lie in a different component of G−{a, b} than cd and ef . Likewise at least

one endpoint, x2, of P must lie in a different component of G − {c, d} than ab and

ef , and at least one endpoint, x3 of P must lie in a different component of G−{e, f}
than ab and cd. But since x1 is in a different component of G − {a, b} than cd and
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ef , then x1 is in the same component as ab in G − {c, d} and in G − {e, f}, and so

x1 6= x2, x3. Similarly, x2 6= x3, and P must have three distinct endpoints. Hence G

does not have a Hamiltonian path.

Lemma 4.1.6. The graph Hb does not have a Hamiltonian path.

Proof. Let ab and cd be the only two 3-edges in G. Let s1ab be a simplicial vertex

adjacent to ab and s1cd be a simplicial vertex adjacent to cd. Then G− {s1ab, s1cd} is a

1-tough 2-tree. Furthermore, since ab was adjacent to four simplicial vertices and ab

is not incident to cd, then in G−{s1ab, s1cd}, a and b are each adjacent to two simplicial

vertices, none of which can be c or d. Hence, (G−{s1ab, s1cd}, a, c), (G−{s1ab, s1cd}, a, d),

(G− {s1ab, s1cd}, b, c), and (G− {s1ab, s1cd}, b, d) all contain an induced forbidden sub-2-

tree F 1
a ∈ F 1 from Chapter 2. Thus, G − {s1ab, s1cd} does not have an (a, c), (a, d),

(b, c), or (b, d)-Hamiltonian path. Hence, from Lemma 1.2.25, G does not contain a

Hamiltonian path.

Lemma 4.1.7. The graph Hc does not have a Hamiltonian path.

Proof. Let ab and cd be 3-edges which lie in different components of G− {e, f}, and

suppose that G contains a Hamiltonian path, P . Then c(G − {a, b}) = 3, and cd

and ef are in the same component of G − {a, b}. Hence, at least one endpoint of P

must lie in a different component of G−{a, b} than cd and ef . Likewise at least one

endpoint of P must lie in a different component of G − {c, d} than ab and ef . Let

u, v, w be the simplicial vertices adjacent to e. None of u, v, w can be an endpoint of

P as they will either be in the same component of G−{a, b} and G−{c, d} as ef or

they will be one of {a, b, c, d}. Thus, on P , u, v, w must all be preceded or followed

by e. But then e must appear on P at least twice, and hence G does not have a

Hamiltonian path.

Lemma 4.1.8. The graph Hd does not have a Hamiltonian path.

Proof. Suppose x2, x
′
2 are adjacent to cd and x′1 the simplicial vertex which was added

to G which was made adjacent c10c
1
1. Suppose cd = tm0 c

m
1 , and SG is the set of all

vertices on the central path of G. Then, c(H−SG) = |SG|+1 and since x2 and x′2 are

adjacent to tm0 c
m
0 , then, c(H − (SG ∪ {tm0 })) = |SG ∪ {tm0 }|+ 2, and H has scattering

number at least two and does not have a Hamiltonian path. Otherwise, by Lemma

1.2.25, H has a Hamiltonian path iff H−{x′1, x′2} has a (c10, c), (c10, d), (c11, c), or (c11, d)-

Hamiltonian path. But no such path exists in H −{x′1, x′2} by Theorem 3.1.24, since
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(H−{x′1, x′2}, c10, c), (H−{x′1, x′2}, c10, d), (H−{x′1, x′2}, c11, c), and (H−{x′1, x′2}, c10, d)

have induced subtrees from F 1
a ∈ F 1 or F 1

c ∈ F 1. So H does not have a Hamiltonian

path.

Lemma 4.1.9. The graph He does not have a Hamiltonian path.

Proof. Suppose x1, x
′
1 are adjacent to ab and x2, x

′
2 are adjacent to cd. If ab = t10c

1
0,

cd = t20c
2
1, and S = {t10, c10, t20, c21, z1}, then c(H − S) = 7 = |S| + 2 and hence H has

scattering number at least two and does not have a Hamiltonian path. Otherwise, by

Lemma 1.2.25, H has a Hamiltonian path iff H−{x′1, x′2} has a (a, c), (a, d), (b, c), or

(b, d)-Hamiltonian path. But no such path exists in H −{x′1, x′2} by Theorem 3.1.24,

since (H−{x′1, x′2}, a, c), (H−{x′1, x′2}, a, d), (H−{x′1, x′2}, b, c), and (H−{x′1, x′2}, b, d)

have induced subtrees from F 1
f ∈ F 1. So H does not have a Hamiltonian path.

Lemma 4.1.10. The graph Hf does not have a Hamiltonian path.

Proof. Suppose x1, x
′
1 are adjacent to ab and x2, x

′
2 are adjacent to cd. If ab = t10c

1
0,

cd = t20c
2
1, and S = {t10, c10, t20, c21, z1}, then c(H − S) = 7 = |S| + 2 and hence H has

scattering number at least two and does not have a Hamiltonian path. Otherwise, by

Lemma 1.2.25, H has a Hamiltonian path iff H−{x′1, x′2} has a (a, c), (a, d), (b, c), or

(b, d)-Hamiltonian path. But no such path exists in H −{x′1, x′2} by Theorem 3.1.24,

since (H−{x′1, x′2}, a, c), (H−{x′1, x′2}, a, d), (H−{x′1, x′2}, b, c), and (H−{x′1, x′2}, b, d)

have induced subtrees from F 1
e ∈ F 1. So H does not have a Hamiltonian path.

Lemma 4.1.11. The graph Hg does not have a Hamiltonian path.

Proof. Suppose x1, x
′
1 are adjacent to ab and x2, x

′
2 are adjacent to cd. Suppose

ab = t10c
1
0 and cd = tm0 c

m
1 , and SG is the set of all vertices on the central path of

G. Then, c(H − SG) = |SG| and since x1 and x′1 are adjacent to t10c
1
0, x2 and x′2

are adjacent to tm0 c
m
0 , then, c(H − (SG ∪ {t10, tm0 })) = |SG ∪ {t10, tm0 }| + 2, and H has

scattering number at least two and does not have a Hamiltonian path. Otherwise, by

Lemma 1.2.25, H has a Hamiltonian path iff H−{x′1, x′2} has a (a, c), (a, d), (b, c), or

(b, d)-Hamiltonian path. But no such path exists in H −{x′1, x′2} by Theorem 3.1.24,

since (H−{x′1, x′2}, a, c), (H−{x′1, x′2}, a, d), (H−{x′1, x′2}, b, c), and (H−{x′1, x′2}, b, d)

have induced subtrees from F 1
c ∈ F 1. So H does not have a Hamiltonian path.
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Similar to the reduced graph of a 2-tree with scattering number one with fixed

endpoints, we will create a reduced graph of a 2-tree with scattering number one,

without fixed endpoints, as follows.

Definition 4.1.12. Given a 2-tree, G with s(G) = 1, then the reduced graph of

G, is formed using the following algorithm:

1. For every 3-edge ab with components of G−{a, b}, C1
ab, C

2
ab, C

3
ab, if G[Ci

ab∪{a, b}]
is 1-tough then replace Ci

ab with a simplicial vertex adjacent to ab.

2. Let w ∈ S1(G), and x, y the neighbors of w. If xy is not a 3-edge, remove w

and turn the edge xy into a forced edge.

3. Repeat (2) for all w ∈ S1(G). Define the resulting graph to be G1.

4. For i ≥ 2, let Si = S1(Gi−1) where Gi−1 is the graph formed by repeating (2)

for G = Gi−1 and for all w ∈ S1(Gi−1).

Repeat (4) for all i = 2, 3, ..., j for j such that Sj = ∅ or for all s ∈ Sj, N(s) is a

3-edge. This is the reduced graph of G.

For F the set of forced edges, let (H,F ) denote the reduced graph of G, for G a 2-tree

containing at least one 3-edge.

Since simplicial vertices in 2-trees are not adjacent [7], when we remove the vertices

in each Si, regardless of order, we will end up with the same graph.

We will form the corresponding caterpillar representation of G as in Chapter 2.

Definition 4.1.13. Let G be a 2-tree with s(G) = 1 and (H,F ) be the reduced

graph of G. The caterpillar representation, H ′, of G is created by adding |F |
simplicial vertices to (H,F ), making each vertex adjacent to exactly one forced edge,

and changing all forced edges back to regular edges.

Lemma 4.1.14. Let G be a 2-tree with s(G) = 1, (H,F ) be the reduced graph of G,

and H ′ the caterpillar representation of G. Then the following are equivalent:

1. G has a Hamiltonian path,

2. H ′ has a Hamiltonian path, and

3. (H,F ) has a Hamiltonian path which uses all of the edges in F .
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Proof. (1)=⇒ (2)

Suppose H ′ does not have a Hamiltonian path. Since H ′ is an induced sub-2-tree of

G, then by Corollary 2.1.10, G does not have a Hamiltonian path.

(2) =⇒ (3)

Suppose H ′ has a Hamiltonian path, P . Let v be a simplicial vertex with neigh-

bors u and w, such that uw is not a 3-edge. Then P = (x1, ..., u, v, w, ..., x2) or

P = (x1, ..., w, v, u, ..., x2). Furthermore, because H ′ is a 2-tree, then uw ∈ E(H ′),

and from the reduction algorithm uw ∈ F . Replacing (u, v, w) or (w, v, u) by (u,w)

in P , then P is a Hamiltonian path using exactly one forced edge. Repeating this

process for all s ∈ S1`(H
′), such that s is not adjacent to a 3-edge, then P will be a

Hamiltonian path in (H,F ).

(3) =⇒ (1) Suppose (H,F ) has a Hamiltonian path, P , which uses all of the edges

in F . Let ab be a 3-edge in G with components of G − {a, b}, C1
ab, C

2
ab, C

3
ab, where

G[Ci
ab ∪ {a, b}] is 1-tough. In (H,F ), Ci

ab has been replaced by the simplicial vertex,

viab. Since G[Ci
ab ∪ {a, b}] is 1-tough, then G[Ci

ab ∪ {a, b}] has a Hamiltonian cycle, C

using all 1-edges in G[Ci
ab∪{a, b}]. Hence, since ab is a 1-edge in G[Ci

ab∪{a, b}], then

there is an (a, b)-Hamiltonian path P ′ in G[Ci
ab ∪ {a, b}]. So, if viab is on the interior

of P in (H,F ), then we can replace (a, viab, b) on P with P ′. If viab is an endpoint

of P in (H,F ), then we can replace (viab, b) or (viab, a) on P with P ′ − a or P ′ − b,

respectively. Now, consider xy ∈ F . In G, xy is incident to at least one vertex,

v, which is not in (H,F ) so that c(G − {x, y}) = 2. Let Cv be the component of

G−{x, y} which contains v. From [24], G[Cv∪xy] is a 2-tree, and from the reduction

algorithm, G[Cv ∪ xy] must be 1-tough and so it contains a Hamiltonian cycle C. In

G[Cv ∪ xy], xy is a 1-edge and hence lies on C. Thus, there is a Hamiltonian path,

P ′′, in G[Cv ∪ xy] from x to y, and we can replace xy in P with P ′. Repeating these

processes for all f ∈ F and all 3-edges, cd and all Ci
cd such that G[Ci

cd ∪ {c, d}] is

1-tough, will yield a Hamiltonian path in G.

Theorem 4.1.15. If G is a 2-tree, then G has a Hamiltonian path iff s(G) ≤ 1 and

G does not contain any H ∈H as an induced sub-2-tree.

Proof. =⇒
If s(G) ≥ 2, then G is not 1-path-tough, and G does not contain a Hamiltonian

path.
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1. If G = Ha, then G does not have a Hamiltonian path by Lemma 4.1.5. If G

contains Ha as an induced sub-2-tree, then G does not have a Hamiltonian path

by Corollary 2.1.10.

2. If G = Hb, then G does not have a Hamiltonian path by Lemma 4.1.6. If G

contains Hb as an induced sub-2-tree, then G does not have a Hamiltonian path

by Corollary 2.1.10.

3. If G = Hc, then G does not have a Hamiltonian path by Lemma 4.1.7. If G

contains Hc as an induced sub-2-tree, then G does not have a Hamiltonian path

by Corollary 2.1.10.

4. If G = Hd, then G does not have a Hamiltonian path by Lemma 4.1.8. If G

contains Hd as an induced sub-2-tree, then G does not have a Hamiltonian path

by Corollary 2.1.10.

5. If G = He, then G does not have a Hamiltonian path by Lemma 4.1.9. If G

contains He as an induced sub-2-tree, then G does not have a Hamiltonian path

by Corollary 2.1.10.

6. If G = Hf , then G does not have a Hamiltonian path by Lemma 4.1.10. If G

contains Hf as an induced sub-2-tree, then G does not have a Hamiltonian path

by Corollary 2.1.10.

7. If G = Hg, then G does not have a Hamiltonian path by Lemma 4.1.11. If G

contains Hg as an induced sub-2-tree, then G does not have a Hamiltonian path

by Corollary 2.1.10.

⇐=

Suppose G does not have a Hamiltonian path, but that s(G) ≤ 1. Since s(G) ≤ 1,

then G contains no t-edges for t ≥ 4. If G contains m 3-edges for m ≤ 1, then G

has a Hamiltonian path. So G has m 3-edges for m ≥ 2. Let H ′ be the caterpillar

representation of G. Then s(H ′) ≤ 1 and H ′ does not have a Hamiltonian path

by Lemma 4.1.14. Suppose that H ′ does not contain Ha. Denote the 3-edges in H ′,

Si = sis
′
i for all 1 ≤ i ≤ m. Then the 3-edges in H ′ can be ordered S1, S2, ....Sm so that

in H ′−S1, all si, s
′
i 6= s1, s

′
1 are in the same component, in H ′−Sm, all si, s

′
i 6= sm, s

′
m

are in the same component, and such that for all i ∈ {1, 2, ...,m−2}, si and si+2 are in

different components of H ′−Si+1. From the reduction algorithm, S1 and Sm are each
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adjacent to two simplicial vertices. Furthermore, since c(G− Si) = 3, then, if H ′ has

a Hamiltonian path, one of the simplicial vertices adjacent to S1 must be an endpoint

of the path, and likewise, one of the simplicial vertices adjacent to Sm must be an

endpoint of the path. Without loss of generality, label one of the simplicial vertices

adjacent to S1, x1, and one of the simplicial vertices adjacent to Sm, x2. So since H ′

does not have a Hamiltonian path, then H ′ does not have an (x1, x2)-Hamiltonian

path. So, by Theorem 3.2.10, (H ′, x1, x2) must contain an F 2 ∈ F 2 as an induced

sub-2-tree. Also, since x1 and x2 are simplicial, then (H ′, x1, x2) must contain F 2
a ,

F 2
b , F 2

c , F 2
d , F 1

f , F 1
e , or F 1

d . Adding a false twin of x1 and x2 and removing the labels,

we will get the forbidden induced sub-2-trees for H ′ without fixed endpoints. Using

this process on F 1
f forms He, on F 1

e forms Hf , on F 1
d forms Hg, on F 2

a forms Ha, and

on F 2
c forms H2

c . For F 2
d and F 2

b , we can leave x1 and just remove the label, as the

x1 is amalgamated with a 3-edge and hence already forcing x1 or the other simplicial

vertex as an end. Using this process on F 2
d forms H2

d , and on F 2
b forms Hb .

4.2 1HP

Definition 4.2.1. Define I = {Ia, Ib, Ic, Id, Ie, If , Ig, Ih, Ii, Ij} where:

(a) Ia is a 2-tree with vertex x2, which contains two 3-edges, ab and cd, which are

not incident, such that:

(i) cd and x2 are in the same component of G− {a, b}, and

(ii) ab and x2 are in the same component of G− {c, d}, or

(iii) x2 ∈ {a, b, c, d}.

a

b

d c

x2

Figure 4.15: A general example of Ia where the dotted section of the graph represents

any 2-tree with scattering number at most one to preserve generality
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(b) Ib is a 2-tree which contains exactly one 3-edge, ab, such that:

(i) N(ab)− x2 contains two simplicial vertices,

(ii) N(a)− x2 contains two simplicial vertices, and

(iii) N(b)− x2 contains two simplicial vertices.

b

x2

a

Figure 4.16: General example of Ib where the dotted section of the graph represents any

2-tree with scattering number at most one to preserve generality

(c) Ic is a 2-tree which contains at least two 3-edges such that for one of the 3-edges,

ef :

(i) One component of G − {e, f} contains a 3-edge, which is in a different

component of G− {e, f} than x2, and

(ii) e is adjacent to three simplicial vertices in G− x2.

b

a

x2

f

e

Figure 4.17: General example of Ic where the dotted section of the graph represents any

2-tree with scattering number at most one to preserve generality
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(d) Id is constructed from an ` string of diamonds by adding a simplicial vertex ad-

jacent to c10c
1
1 and where x2 = cmsm+1.

c10c
1
0

x2

Figure 4.18: A general example of Id:

D1
s1(R1); (x1, `1); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1); (xm−1, `m−1);D
m
sm(Rm)

with added simplicial vertex adjacent to c10c
1
1, where x2 = cmsm+1, and

where D1
s1(R1); (x1, `1); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1); (xm−1, `m−1);D
m
sm(Rm),

is shown in gray to preserve generality

x2

Figure 4.19: Specific example of Id: D5({1, 3, 4, 5}) with x2 = c16

(e) Ie is constructed from D1
s1

(R1); (x1, `1); ....; (xm−2, `m−2);D
m−1
sm−1

(Rm−1); (t, `m−1);D
m
0 ,

m ≥ 2, by amalgamating an x2-2-path with tm0 c
m
1 and adding a simplicial vertex

adjacent to c10c
1
1.
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c10c
1
0

tm0

cm1
x2

x1 = c10 zm−1

Figure 4.20: A general example of Ie:

D1
s1(R1); (x1, `1); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1); (t, `m−1);D
m
0

m ≥ 2, with an amalgamated x2-2-path and an added simplicial vertex

adjacent to c10c
1
1

where D1
s1(R1); (x1, `1); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1), with x1 = c10

and zm−1 = cm−1sm−1+1, is shown in gray to preserve generality

c10 z1

t20

c21
x2

Figure 4.21: Specific example of Ie: D5({1, 3, 4, 5}); (t, 1);D0 with an added simplicial

vertex adjacent to c10c
1
1 and an x2-2-path amalgamated with t20c

2
1

(f) If is constructed from

D1
s1

(R1); (x1, `1); ....; (xm−2, `m−2);D
m−1
sm−1

(Rm−1); (t, `m−1);D
m
0 , m ≥ 2, with x1 =

c10, by amalgamating an x2-2-path with tm0 c
m
1 and adding a false twin x′2 of x2.

75



c10

tm0

cm1x1 = c10 zm−1

x′2

x2

Figure 4.22: A general example of

If : D1
s1(R1); (x1, `1); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1); (t, `m−1);D
m
0

m ≥ 2, with an amalgamated x2-2-path, such that x1 = c10, and

where D1
s1(R1); (x1, `1); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1), with x1 = c10

and zm−1 = cm−1sm−1+1, is shown in gray to preserve generality

x1 = c10 z1

t20

c21

x′2

x2

Figure 4.23: Specific example of If : D5({1, 3, 4, 5}); (t, 1);D0 with x1 = c10 and an x2-2-

path amalgamated with t20c
2
1

(g) Ig is constructed from D1
0; (t, `);D2

0, for l ≥ 2 by:

(i) Amalgamating an x1-2-path with t10c
1
0,

(ii) Amalgamating an x2-2-path with t20c
2
1, and

(iii) Adding a false twin x′1 of x1.
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x1

x′1

x2

c10 z1

t10

b10

t20

c21

b20

Figure 4.24: Example of Ig

(h) Ih is constructed from D1
0; (t, 1);D2

0 by:

(i) Amalgamating an x1-2-path with t10c
1
0,

(ii) Amalgamating an x2-2-path with t20c
2
1,

(iii) Adding a false twin x′1 of x1, and

(iv) Adding a simplicial vertex adjacent to t10t
2
0.

x1

x′1

x2

c10 z1

t10

b10

t20

c21

v

b20

Figure 4.25: Example of Ih.

(i) Ii is constructed from

D1
0; (t, `1);D

2
s1

(R1); (x1, `2); ....; (xm−1, `m−2);D
m−1
sm−2

(Rm−2); (t, `m−1);D
m
0 , m ≥ 3,

by:

(i) Amalgamating an x1-2-path with t10c
1
0,

(ii) Amalgamating an x2-2-path with tm0 c
m
1 , and
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(iii) Adding a false twin x′1 of x1.

OR

Ii is constructed from

D1
0; (t, `1);D

2
s1

(R1); (x1, `2); ....; (xm−1, `m−2);D
m−1
sm−2

(Rm−2); (b, `m−1);D
m
0 , m ≥ 3,

by:

(i) Amalgamating an x1-2-path with t10c
1
0,

(ii) Amalgamating an x2-2-path with bm0 c
m
1 , and

(iii) Adding a false twin x′1 of x1.

x′1

x1

c10

t10

b10

t20

cm1

tm0

zm−1z1

t20

x2

Figure 4.26: A general example of Ii:

D1
0; (t, `1);D

2
s2(R2); (x2, `2); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1); (t, `m−1);D
m
0

m ≥ 3, with amalgamated x1 and x2-2-paths, and

where D2
s2(R2); (x2, `2); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1) with z1 = c20

and zm−1 = cm−1sm−1+1, is shown in gray to preserve generality
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x′1

x1

x2

x1 = c10

t10 t30

b10

z1

t20

z2

c31

Figure 4.27: Specific example of Ii: D0; (t, 1);D5({1, 3, 4, 5}); (t, 1);D0 with x1 = c10 and

an x2-2-path amalgamated with t20c
2
1

x′1

x1

c10

t10

b10

t20

cm1

tm0

zm−1
z1

t20

x2

Figure 4.28: A general example of Ii:

D1
0; (t, `1);D

2
s2(R2); (x2, `2); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1); (b, `m−1);D
m
0

m ≥ 3, with amalgamated x1 and x2-2-paths, and

where D2
s2(R2); (x2, `2); ....; (xm−2, `m−2);D

m−1
sm−1

(Rm−1) with z1 = c20

and zm−1 = cm−1sm−1+1, is shown in gray to preserve generality
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x′1

x1

c10

t10

b10

z1

t20

z2 c31

t30

x2

Figure 4.29: An example of Ii: D0; (t, 1);D5({1, 3, 4, 5}); (b, 1);D0 with amalgamated x1

and x2-2-paths

(j) Ij is constructed from D0 by:

(i) Adding a simplicial vertex adjacent to c0t0,

(ii) Amalgamating an x1-2-path with t0c1, and

(iii) Adding a false twin, x′1, or x1.

x2

x′1

x1

Figure 4.30: Example of Ij

Lemma 4.2.2. The graph Ia does not have an x2-Hamiltonian path.

Proof. Suppose G has an x2-Hamiltonian path, P . Since c(G− {a, b}) = 3, then the

one endpoint of P , x1, must be in one of the components of G− {a, b} that does not

contain cd and x2. Likewise, one endpoint of P , x3, must be in one of the components

of G − {c, d} that does not contain ab and x2. Clearly, x1, x3 6= x2. Additionally,

since x1 is in a different component of G − {a, b} than cd, then it will be in the

same component as ab in G− {c, d}, and hence x1 6= x3. Thus, P has three distinct

endpoints, a contradiction.
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Lemma 4.2.3. The graph Ib does not have an x2-Hamiltonian path.

Proof. Let v1, v2 be the simplicial vertices adjacent to ab. By Lemma 1.2.25, G has

an x2-Hamiltonian path iff G − v1 has an (a, x2)-Hamiltonian path or G − v1 has a

(b, x2)-Hamiltonian path. However, (G − v1, a, x2) and (G − v1, b, x2) both contain

F 1
a ∈ F 1 as an induced sub-2-tree, and hence by Theorem 3.1.24, G − v1 does not

have an (a, x2)-Hamiltonian path or a (b, x2)-Hamiltonian path. Hence G does not

have an x2-Hamiltonian path.

Lemma 4.2.4. The graph Ic does not have an x2-Hamiltonian path.

Proof. Let ab be the 3-edge which is in a different component of G− {e, f} than x2,

and suppose that G has an x2-Hamiltonian path, P . Since c(G − {a, b}) = 3, then

the one endpoint of P , x1, must be in one of the components of G− {a, b} that does

not contain ef and x2. Let u, v, w 6= x2 be the simplicial vertices adjacent to e. None

of u, v, w can be an endpoint of P as they will either be in the same component of

G−{a, b} as ef or they will be one of {a, b}. Thus, on P , u, v, w must all be preceded

or followed by e. But then e must appear on P at least twice, and hence G does not

have an x2-Hamiltonian path.

Lemma 4.2.5. The graph Id does not have an x2-Hamiltonian path.

Proof. Let v be the simplicial vertex made adjacent to c10c
1
1. Since c10, c

1
1, and cmsm+1

are all vertices on the central path, then in H−v, there are (c10, c
m
sm+1) and (c11, c

m
sm+1)-

tough paths. Hence in H − v, there does not exist a (c10, c
m
sm+1) or (c11, c

m
sm+1)-

Hamiltonian path. Thus, by Lemma 1.2.25, there is no x2 = cmsm+1-Hamiltonian

path in H.

Lemma 4.2.6. The graph Ie does not have an x2-Hamiltonian path.

Proof. Let v1, v
′
1 the simplicial vertices adjacent to c10c

1
1. (H − v′1, c

1
0, x2) and (H −

v′1, c
1
1, x2) have F 1

c ∈ F 1 as an induced sub-2-tree, and hence by Theorem 3.1.24,

H − v′1 does not have a (c10, x2)-Hamiltonian path or a (c11, x2)-Hamiltonian path.

Thus, by Lemma 1.2.25, H does not have a x2-Hamiltonian path.

Lemma 4.2.7. The graph If does not have an x2-Hamiltonian path.

Proof. Suppose x2, x
′
2 is adjacent to ab. (H−x′2, c10, a) and (H−x′2, c10, b) have F 1

b ∈ F 1

or F 1
c ∈ F 1 as an induced sub-2-tree, and hence by Theorem 3.1.24, H − x′2 does

not have a (c10, a)-Hamiltonian path or a (c10, b)-Hamiltonian path. Thus, by Lemma

1.2.25, H does not have an x2 = c10-Hamiltonian path.

81



Lemma 4.2.8. The graph Ig does not have an x2-Hamiltonian path.

Proof. Suppose x1, x
′
1 is adjacent to ab. (H − x′1, x2, a) and (H − x′1, x2, b) have

F 1
b ∈ F 1 or F 1

f ∈ F 1 as an induced sub-2-tree, and hence by Theorem 3.1.24, H−x′1

does not have an (x2, a)-Hamiltonian path or an (x2, b)-Hamiltonian path. Thus, by

Lemma 1.2.25, H does not have an x2-Hamiltonian path.

Lemma 4.2.9. The graph Ih does not have an x2-Hamiltonian path.

Proof. Suppose x1, x
′
1 is adjacent to ab. (H − x′1, x2, a) and (H − x′1, x2, b) have

F 1
b ∈ F 1 or F 1

e ∈ F 1 as an induced sub-2-tree, and hence by Theorem 3.1.24, H−x′1

does not have an (x2, a)-Hamiltonian path or an (x2, b)-Hamiltonian path. Thus, by

Lemma 1.2.25, H does not have an x2-Hamiltonian path.

Lemma 4.2.10. The graph Ii does not have an x2-Hamiltonian path.

Proof. Suppose x1, x
′
1 is adjacent to ab. (H − x′1, x2, a) and (H − x′1, x2, b) have

F 1
c ∈ F 1 or F 1

d ∈ F 1 as an induced sub-2-tree, and hence by Theorem 3.1.24, H−x′1

does not have an (x2, a)-Hamiltonian path or an (x2, b)-Hamiltonian path. Thus, by

Lemma 1.2.25, H does not have an x2-Hamiltonian path.

Lemma 4.2.11. The graph Ij does not have an x2-Hamiltonian path.

Proof. Suppose x1, x
′
1 is adjacent to ab. (H − x′1, x2, a) and (H − x′1, x2, b) have

F 1
a ∈ F 1 or F 1

b ∈ F 1 as an induced sub-2-tree, and hence by Theorem 3.1.24, H−x′1

does not have an (x2, a)-Hamiltonian path or an (x2, b)-Hamiltonian path. Thus, by

Lemma 1.2.25, H does not have an x2-Hamiltonian path.

Theorem 4.2.12. If G is a 2-tree with x2 ∈ V (G), then (G, x2) has an x2-Hamiltonian

path iff s(G) ≤ 1 and G does not contain any I ∈ I as an induced sub-2-tree.

Proof. =⇒ If s(G) ≥ 2, then G is not 1-path-tough, and G does not contain a

Hamiltonian path.

1. If (G, x2) = Ia, then (G, x2) does not have an x2-Hamiltonian path by Lemma

4.2.2. If (G, x2) contains Ia as an induced sub-2-tree, then (G, x2) does not have

an x2-Hamiltonian path by Corollary 2.1.11.

2. If (G, x2) = Ib, then (G, x2) does not have an x2-Hamiltonian path by Lemma

4.2.3. If (G, x2) contains Ib as an induced sub-2-tree, then (G, x2) does not have

an x2-Hamiltonian path by Corollary 2.1.11.
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3. If (G, x2) = Ic, then (G, x2) does not have an x2-Hamiltonian path by Lemma

4.2.4. If (G, x2) contains Ic as an induced sub-2-tree, then (G, x2) does not have

an x2-Hamiltonian path by Corollary 2.1.11.

4. If (G, x2) = Id, then (G, x2) does not have an x2-Hamiltonian path by Lemma

4.2.5. If (G, x2) contains Id as an induced sub-2-tree, then (G, x2) does not have

an x2-Hamiltonian path by Corollary 2.1.11.

5. If (G, x2) = Ie, then (G, x2) does not have an x2-Hamiltonian path by Lemma

4.2.6. If (G, x2) contains Ie as an induced sub-2-tree, then (G, x2) does not have

an x2-Hamiltonian path by Corollary 2.1.11.

6. If (G, x2) = If , then (G, x2) does not have an x2-Hamiltonian path by Lemma

4.2.7. If (G, x2) contains If as an induced sub-2-tree, then (G, x2) does not have

an x2-Hamiltonian path by Corollary 2.1.11.

7. If (G, x2) = Ig, then (G, x2) does not have an x2-Hamiltonian path by Lemma

4.2.8. If (G, x2) contains Ig as an induced sub-2-tree, then (G, x2) does not have

an x2-Hamiltonian path by Corollary 2.1.11.

8. If (G, x2) = Ih, then (G, x2) does not have an x2-Hamiltonian path by Lemma

4.2.9. If (G, x2) contains Ih as an induced sub-2-tree, then (G, x2) does not have

an x2-Hamiltonian path by Corollary 2.1.11.

9. If (G, x2) = Ii, then (G, x2) does not have an x2-Hamiltonian path by Lemma

4.2.10. If (G, x2) contains Ii as an induced sub-2-tree, then (G, x2) does not

have an x2-Hamiltonian path by Corollary 2.1.11.

10. If (G, x2) = Ij, then (G, x2) does not have an x2-Hamiltonian path by Lemma

4.2.11. If (G, x2) contains Ij as an induced sub-2-tree, then (G, x2) does not

have an x2-Hamiltonian path by Corollary 2.1.11.

⇐=

Suppose G does not have an x2-Hamiltonian path, but that s(G) ≤ 1. Since

s(G) ≤ 1, then G contains no t-edges for t ≥ 4. If G contains m 3-edges for m = 0,

then G has an x2-Hamiltonian path. So G has m 3-edges for m ≥ 1. Let H ′ be

the caterpillar representation of G. Then s(H ′) ≤ 1 and H ′ does not have a x2-

Hamiltonian path by Lemma 4.1.14. Suppose that (H ′, x2) does not contain Ia.
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Denote the 3-edges in H ′, Si = sis
′
i for all 1 ≤ i ≤ m. Then the 3-edges in H ′ can be

ordered S1, S2, ....Sm so that in H ′ − Sm, x2 is in a different component than si and

s′i for all i, in H ′ − S1, all si, s
′
i 6= s1, s

′
1 are in the same component, in H ′ − Sm, all

si, s
′
i 6= sm, s

′
m are in the same component, and such that for all i ∈ {1, 2, ...,m− 2},

si and si+2 are in different components of H ′ − Si+1. From the reduction algorithm,

S1 is adjacent to two simplicial vertices. Furthermore, since c(G − S1) = 3, then, if

H ′ has an (x2)-Hamiltonian path, one of the simplicial vertices adjacent to S1 must

be an endpoint of the path. Without loss of generality, label one of the simplicial

vertices adjacent to S1, x1. So since H ′ does not have an (x2)-Hamiltonian path, then

H ′ does not have an (x1, x2)-Hamiltonian path. So, by Theorem 3.2.10, (H ′, x1, x2)

must contain an F 2
x ∈ F 2 as an induced sub-2-tree. Also, since x2 is simplicial, then

(H ′, x1, x2) must contain F 2
a , F 2

b , F 2
c , F 2

d , F 2
e , F 1

f , F 1
e , F 1

d , F 1
c , or F 1

a . Adding a false

twin of x1 and removing the label, we will get the forbidden induced sub-2-trees for

H ′ with one fixed endpoint. Using this process on F 1
f forms If , on F 1

e forms Ig, on

F 1
d forms Ih, on F 1

c forms Ie, on F 1
a forms Ii, on F 2

a forms Ia, on F 2
c forms I2c , on

F 2
e forms I2e . For F 2

d and F 2
b , we can leave x1 and just remove the label, as the x1

is amalgamated with a 3-edge and hence already forcing x1 or the other simplicial

vertex as an end. Using this process on F 2
d forms Id, and on F 2

b forms Ib .
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Chapter 5

Conclusion

In Chapter 2, we introduced a new toughness condition and introduced a new ap-

proach for characterizing Hamiltonian problems on 2-trees by describing a forbidden

list of induced sub-2-trees for which 2-trees will not have Hamiltonian paths. While

the approach of defining a forbidden list of induced subgraphs will not work for graphs

in general, this approach will work for induced k-trees in a k-tree, as proved in Chap-

ter 2. In Chapter 3, we characterized 2HP on 1-tough 2-trees by giving necessary

and sufficient conditions for a 1-tough 2-tree with fixed vertices, x1, x2, to have an

(x1, x2)-Hamiltonian using both toughness conditions and defining a family, F 1 of

2-trees for which a 1-tough 2-tree containing a graph in F 1 as an induced subgraph

will not have a Hamiltonian path. Additionally, in Chapter 3, we used the results for

2HP on 1-tough 2-trees to similarly characterize the 2-trees which are not 1-tough

as containing a 2-tree in a family, F 2, as an induced subgraph. Furthermore, we

used the results in Chapters 2 and 3 to characterize the Hamilonian path problem on

2-trees in Chapter 4 and 1HP on 2-trees in Chapter 5, by defining forbidden families

of 2-trees, H and I , respectively.

In the future, it is possible that we could extend these methods on 2-trees to other

generalizations of the Hamiltonian path problem, like the Path Partition problem or

the k-Fixed Endpoint Path Partition problem. It is also possible that we could try

to extend these results to 3-trees or k-trees. Since adding a vertex adjacent to all

vertices in a 2-tree would form a 3-tree, our forbidden lists would be a starting point

for investigating these problems on 3-trees.
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