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Abstract

Algorithmic randomness is primarily concerned with quantifying the degree of ran-

domness of infinite binary strings, and is usually carried out in the setting of Cantor

space. One characterization of randomness involves prefixes “being as hard as pos-

sible to describe”. Also of interest are the infinite binary strings whose prefixes are

as easy as possible to describe i.e., the K-trivial strings. We will study these strings

in the setting of computable metric spaces, and investigate several definitions which

attempt to correctly generalize K-triviality. We describe some of the difficulties in-

herent in a natural-seeming approach, and offer partial results where new definitions

relate to a more established definition of K-triviality under the right conditions.
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Chapter 1

Introduction

This dissertation investigates topics in algorithmic randomness related to the notion

of K-triviality, in settings more general than the standard setting of Cantor space,

equipped with Lebesgue measure. Initially, the theory of algorithmic randomness

was developed in this standard setting. Starting in roughly 2005-6, the focus of

attention started to shift to the more general ones, and this has become the pre-

dominant line of development. We present a more detailed overview of the period

prior to 2005-6 in Section 1.2, and present its main results in Section 2.3. In Chapter

3, we do the same for the later period, concentrating on presenting those notions

and results most directly relevant for our work.

From its very inception, algorithmic randomness has featured (and attempted to elu-

cidate) the dichotomy between objects (mainly infinite binary strings) that should

be regarded as random and those that should be regarded as far from random. The

K-triviality notion (see Definition 2.3.26, for its formulation in the standard setting)

is a precise mathematical characterization of the latter half of that dichotomy. How-

ever, in order to provide context and intuition, we will also discuss the “randomness

side”, but more briefly, since none of our own work directly involves those notions.

The interplay between another pair of notions looms large in developments since

2005, though here the notions are not dichotomous. Instead, they represent two
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different ways of “coming to grips with the same underlying reality.” The first of

these notions is that of a computable metric space, viz. Definition 3.1.1. The sec-

ond is that of computable measure, viz. Definitions 3.2.5, 3.2.13. In full generality

(Definition 3.2.5), the notion of computable measure depends on a “background”

computable metric space, but for an important family of such “background” spaces,

the details of the metric structure are not critical, and only the metric topology

really matters: this is the context of Definition 3.2.13. More detailed discussion of

the issues involved is provided in Section 3.2 and to a lesser extent in the last three

paragraphs of Section 2.1, where we establish the needed notation and look ahead

to the fuller discussion.

The point of view of computable measures provided the natural approach to gen-

eralizing randomness notions, and indeed the ideas developed in Section 3.2 were

developed for this very purpose. Somewhat later, Melnikov and Nies, [15] and [14],

viz. Definition 3.1.4, put forward a generalization of K-triviality in terms of the

computable metric space notions. Later still, J. Rute, [21], viz. Definition 3.2.22,

proposed another generalization, framed in terms of computable measures.

In the initial stages of work towards this dissertation, we focused on understand-

ing the similarities and differences between these two proposed generalizations of

K-triviality notion. For reasons discussed in connection with Theorem 3.1.5, below,

below, a consensus developed that the Melnikov-Nies generalization of K-triviality

was successful. Nevertheless, one possible critique of their generalization is that

non-specialists in computability theory might be dissuaded from working directly

with computable metric spaces because of the technicalities of some its specialized

apparatus (special points, Cauchy names) and would therefore welcome a more fa-

miliar setting, such as that of computable measures, closer to a purely measure

theoretic one.

Rute posed but did not investigate the question of whether his proposed general-

ization of the K-triviality notion was equivalent to the one proposed by Melnikov
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and Nies. Rute was very likely motivated in part by the successful generalization

of the notion of Martin-Löf randomness for general computable measures, and in

particular, by the attractive simplicity of its characterization given by a result of

Hoyrup and Rojas, [9] (see Proposition 3.2.21, below). This is in full analogy with

the characterization of K-triviality in the standard setting provided by Schnorr’s

Theorem, Proposition 2.3.25, and involves the very natural looking move of replac-

ing the length of a finite bitstring by the negative (base 2) logarithm of the measure

of the corresponding basic open subset of Cantor space. Note that when the mea-

sure is Lebesgue measure, this negative logarithm is exactly the length. This is

exactly the approach taken by Rute in [21]. We do not know whether Rute was

also motivated by the possible critique of the Melnikov-Nies generalization noted at

the end of the previous paragraph, but that critique would certainly be mooted if

Definition 3.2.22 turned out to be equivalent to Definition 3.1.4. Unfortunately (or

perhaps fortunately, for the development of this dissertation) things did not turn

out that way.

One of our earliest results, Proposition 4.3.1, showed this not to be the case. Shortly

thereafter, we formulated two “improved” versions of Rute’s proposed definition,

Definitions 4.3.2, 4.3.3 and noted that they “block” the particular form of pathlogi-

cal behavior of Proposition 4.3.1. We considered the possibility that either or both

of these improvements might be equivalent to the Melnikov-Nies definition, but we

were unable to prove this; indeed this remains an open question. From that point

on, it became one of the main objectives of our work to formulate a generalization

of K-triviality in the language of computable measures which is (as close as possi-

ble to being) purely measure-theoretic and prove its equivalence to Definition 3.1.4.

Our pursuit of that objective has been only partially successful, and is embodied

in Definitions 5.2.1 and 5.2.4, in Proposition 5.2.5, and in Theorem 5.2.3. It only

became clear to us much later that it should not have come as a surprise that we

were only partially successful. As we shall discuss, in what follows, in the light of

some of our other results, and the understanding we have gained along the way, the

goal we set for ourselves was extremely difficult to achieve.
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Returning to the chronological development of our results, we took a step in the

direction of our main objective in proving Theorem 5.1.1; there, for a restricted

class of “tame” computable measures, we were able to show that any infinite bi-

nary string that satisfies Definition 3.1.4 must also satisfy Definition 3.2.22. The

“tameness” involved is formulated in terms of the notions of the granularity of a

computable measure (introduced in [8]), and the dual notion of its coarseness which

we introduce in Section 4.1.

Several other of our principal results also involve the notion of coarseness. In The-

orem 4.1.5 we construct (in analogy to a result of [8] dealing with granularity) a

computable measure whose coarseness function is not computable. Our remaining

result involving coarseness shifts the focus somewhat from the issue of generaliza-

tions of K-triviality itself to the issue of generalizations of the so-called Machine

Existence Theorem (MET in what follows) Theorem 2.2.19, [18].

The MET is one of the principal tools for proving results about K-triviality in the

standard setting, and is an “effective version” of an earlier result, Kraft’s Theorem

(KFT in what follows), Theorem 2.2.17, [18]. In Theorem 4.1.6, we show that for

computable measures which are “tame” in terms of their coarseness alone, without

reference to their granularity, the most direct (and strongest) generalization of the

MET holds (and therefore so does its consequence, the most direct (and strongest)

generalization of KFT). A counterpoint to this result is Theorem 4.2.1 in which we

construct a computable measure for which a weaker (but arguably more natural)

generalization of KFT fails.

Though we defer further discussion of these last two results until Chapter 4 and

Chapter 6, we do regard them as indications of just how rich and complex is the

setting of computable measures. This is especially true if, unlike the computable

measures discussed so far which are all continuous, viz. Definition 3.2.12, we also

consider computable measures which have atoms (or “point-masses”). The recent
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[19] undertakes a systematic study of such measures and their pathological prop-

erties. Reinforcing the picture that emerges from [19], in Proposition 4.3.4, we

construct a computable measure with atoms for which all infinite binary strings

which take on the value 0 only finitely many times satisfy Definition 3.2.22 (as they

“should”), while all those which take on the value 1 only finitely often are atoms

and “appear random” to this measure. In a suitable sense made precise in Section

4.3, all other infinite binary strings are “far from being random”.

Thus, the big picture that emerges from our results of Chapter 4 is that there is a

wide range of computable measures associated with any computable metric space.

The picture becomes even more complex if one takes into account an additional tech-

nical notion that figures in Section 3.2 and in Definitions 3.2.22, 5.2.1, and 5.2.4:

that of a generator for a computable measure.

Despite its importance, very little is known about the question of which computable

measures have generators with “nice properties” and this question appears to be

quite difficult and murky. On the other hand, if a generalization of K-triviality

framed in terms of computable measures (and generators) were to be fully equivalent

to Definition 3.1.4, then for each computable metric space, the definition in terms

of measures and generators would have to be invariant across the whole range of

computable measures (and generators) associated with the computable metric space.

This seems quite difficult to achieve even for specific, well-understood computable

metric spaces, let alone in full generality.

1.1 Organization and Summary

Chapter 2 is devoted to preliminaries: we establish our notation and other conven-

tions, recall the basic notions from computability theory to which we will appeal,

and develop some of the main results about algorithmic randomness in the stan-

dard setting. In Chapter 3, we give an overview of the frameworks of computable
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metric spaces (including the Melnikov-Nies generalization of K-triviality) and com-

putable measures (including Rute’s proposed generalizaion of K-triviality in this

framework).

Our results appear in Chapters 4 and 5, while Chapter 6 is devoted to concluding

remarks, including discussion of open problems and future directions. In particular:

1. in Section 4.1, we introduce our notion of coarseness and in Subsection 4.1.1

we prove Theorem 4.1.5,

2. in Subsection 4.1.2, we prove Theorems 4.1.6,

3. in Section 4.2, we prove Theorem 4.2.1,

4. in Section 4.3, we prove Propositions 4.3.1 and 4.3.4,

5. in Section 5.1, we prove Theorem 5.1.1

6. in Section 5.2, we prove Theorem 5.2.3 and Proposition 5.2.5.

Starting with Chapter 2, each Chapter begins with a Chapter overview, laying out

its organization as well as which other results are proved and where. Results from

the literature are given with attribution, but most often without proof, mainly in

Chapters 2 and 3. Occasionally, a proof is given for a result from the literature, when

the proof is accessible, and sheds light on issues to be dealt with later. Results given

without attribution are our results, and where our proof is modeled on the proof of

an analogous result from the literature this is noted.

1.2 Historical Development of Algorithmic Ran-

domness: Highlights

We give a short survey of impotant stages in the historical development of algorith-

mic randomness in the standard setting of Cantor space equipped with Lebesgue
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measure, focusing on the period of the early/mid 1960’s through 2005-6. The ap-

pearance of one pair of papers ushers in this period, while the appearance of a second

pair of papers marks its close, as well as a shift in the main focus of activity from

the standard setting to the other settings briefly mentioned above.

The first two papers are [11] and [13], by Kolmogorov and Martin-Löf, respectively,

and the second two papers are [17] and [5], by Nies and Gács, respectively. Martin-

Löf’s paper opened the way to a systematic mathematical approach to the notion

of randomness. This was also one of Kolmogorov’s objectives, but his paper also

introduced the notions of descriptive complexity of finite binary strings, and led

most directly to the notion of K-triviality, a property formulated to characterize

(via the descriptive complexity of their finite initial segments or prefixes) those el-

ements of Cantor space which are as far from random as possible. The interplay

between descriptive complexity and notions of randomness is one of the main threads

of development throughout the entire period, and Nies’ [17] is the culmination of

this thread. The nearly simultaneous appearance of Gács’ [5] was met with intense

interest and triggered a flurry of activity (that persists to the present) seeking to

extend the reach of the notions and methods developed to settings other than the

standard one.

The survey that follows is culled from the more detailed treatments found in [1], [27]

and especially in [4], [18]. The last two of these references are excellent “snapshots”

of the state of the art at the close of our period on which we draw heavily in our

account of some of the main notions and results in Section 2.3, below.

Algorithmic randomness approaches the problem of how to quantify and formalize

the concept of randomness in terms of computability theory. The main question is:

given an element of Cantor space, how do we determine if it exhibits the properties

one would expect of a random element of Cantor space? It should certainly satisfy,

for example, the strong law of large numbers, and other well known laws of proba-

bility. Thus, the strong law of large numbers can be viewed as a test - if an element

8



of Cantor space does not satisfy the strong law of large numbers, it should not be

considered to be random. However, there are certainly elements of Cantor space,

e.g., 010101 . . ., that should not be considered random even though they satisfy the

strong law of large numbers. A natural approach would be to require elements of

Cantor space to “pass” additional tests: in this example, a test that requires there

to be long runs of 0’s (and of 1’s). The question then arises: how many tests and

which ones should an element of Cantor space be required to “pass” in order to be

considered random. An appealing idea is to impose any test that can be expressed

in a sufficiently effective way (and is “failed” only on a null set). But how should

we make precise the notion of “sufficiently effective”? There are many reasonable

potential answers.

In 1966, Per Martin-Löf made the first successful published attempt at answering

this question in [13], but it should be noted that similar ideas underlie the notion

of random-real forcing used in Solovay’s celebrated paper [25]. Despite its publica-

tion date of 1970, it is well-known that its main theorems were proved considerably

earlier, possibly even before 1966. Martin-Löf formalized the idea of a test as a

computably enumerable (c.e., in what follows) sequence of nested (effectively) open

sets whose measures converge 0, with rate of convergence specified to be 2−n.

Elements of Cantor space lying in this intersection fail the test; those which fail no

such test are Martin-Löf random. A rich hierarchy of different notions of randomness

arose, mainly in reaction to Schnorr’s 1971 paper [22] which offered dual criticisms of

Martin-Löf’s definition. On one hand, Schnorr suggested that c.e. but not outright

computable tests were too powerful. This led him to his notion of Schnorr Random-

ness. On the other hand, he suggested that Martin-Löf random elements of Cantor

space could actually still have some properties which seemed not-so-random, e.g.,

for some, the corresponding real number will have a property known as being left

c.e. (see Definition 2.2.9). Many of the more prominent proposed definitions of ran-

domness are surveyed in [26]. It is worth noting that every notion considered there

(other than Martin-Löf randomness itself, of course) is either strictly stronger or

9



strictly weaker than Martin-Löf randomness. A notable exception to this pattern is

the centrally important notion of Kolmogorov-Loveland randomness. An element,

x, of Cantor space is said to be partially computably random if no computable

betting strategy succeeds when bidding sequentially on the values of x. Then x is

said to be Kolmogorov-Loveland random if no computable betting strategy succeeds

even if the order in which the values are bid on is not fixed. Kolmogorov-Loveland

randomness is known to be no stronger than Martin-Löf randomness, but whether

it is the same is unknown, and this is in fact one of the main open questions in

algorithmic randomness today.

As noted in [4], most approaches to randomness can be put into one of three cate-

gories:

1. Computability-Theoretic - using computability notions, such as complexity of

initial segments of an element of Cantor space, to determine whether or not

it is random.

2. Measure Theoretic - as in Martin-Löf’s approach, wherein he attempts to

capture nonrandom strings in “effective” sets of small measure

3. Based on Unpredictability - as Kolmogorov-Loveland randomness, where ran-

domness is characterized in terms of the failure of “effective” betting strategies,

such as martingales.

In addition to studying concepts of randomness, much attention has also been de-

voted to attempts to characterize those elements of Cantor space that should be

considered to be highly non-random. The approaches to such questions mostly fall

under the heading of Computability-Theoretic, and Kolmogorov appealed to com-

putability theoretic notions in his development of descriptive complexity, in [11], as

a way of measuring how much information is inherent in a finite binary string.

In his 1972 paper [23], Schnorr provided a characterization of Martin-Löf random-

ness in terms of Kolmogorov complexity, showing that an element of Cantor space

10



is Martin-Löf random iff the Kolmogorov complexity of its prefixes grows asymptot-

ically as fast as possible. Of course, having such a nice characterization for elements

of Cantor space whose prefix-complexity function grows as quickly as possible, it was

natural to also investigate the class of those whose prefix-complexity function grows

as slowly as possible, a property which would eventually be called K-triviality. The

K-trivial elements of Cantor space are at the opposite end of the spectrum from the

Martin-Löf random strings - they exhibit patterns and are “easy to describe”.

One of the first important results about this class of strings was due to Solovay

in 1975 (unpublished notes, see [4]), who showed that there are non-computable

K-trivial elements of Cantor space, thereby significantly increasing the degree of

interest in studying the the class of K-trivials. Results showing that the K-trivials

are not so far from being computable followed quickly. In 1977, Chaitin showed that

all K-trivials were also ∆0
2 [3]. In 1990, Zambella [28] would adapt Solovay’s proof

to give a requirement free solution to Post’s problem.

At the same time, Zambella began studying the notion of an element, x of Cantor

space being low for randomness, meaning that if x is allowed as an oracle in all

definitions of effectiveness (cf. the final paragraph of Subsection 2.2.1, all random

elements of Cantor space remain random relative to x. Muchnik (unpublished, see

[4]) proposed a similar idea for Kolmogorov complexity. In 1999, Kucera and Ter-

wijn showed in [12] that each string low for Kolmogorov Complexity was also low for

Martin-Löf randomness. In 2006, Nies showed, [17], that being low for Kolmogorov

complexity was equivalent to being K-trivial and also equivalent to being low for

a different notion of randomness, known as 1-randomness, as well as showing that

being low for Kolmogorov complexity was equivalent to being K-trivial.

Thus, the notion of K-triviality has emerged as being closely linked to various no-

tions of randomness and its investigation has given rise to useful techniques such

as Solovay functions/cost functions, and the so-called “decanter method”. In our
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work towards a suitable generalization of K-triviality in the framework of com-

putable measures, we were naturally led to supplement the “classical” computability-

theoretic methods with more measure-theoretic ones.
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Chapter 2

Preliminaries

Chapter Overview

In Section 2.1, we set out our notation and establish other conventions and termi-

nology that will be used in the rest of the disseration. In Section 2.2, we survey

some basic and standard material from computability as well as some more special-

ized topics, e.g. KFT and the MET in subsection 2.2.2. Finally, in Section 2.3,

we present the key notions and results about algorithmic randomness in the “stan-

dard setting” of Cantor space equipped with Lebesgue measure, including plain and

prefix-free complexity (Definitions 2.3.4 and 2.3.14), Martin-Löf randomness (Defi-

nition 2.3.2), and K-triviality (Definition 2.3.26).

All results are from the literature and most are given without proof. We mainly

follow the references [4] and [18], which, as mentioned in the discussion at the end

of Section 1.2, constitute an excellent “snapshot”, circa 2009-2010, of the state of

the art in the standard setting, just as the main focus of development was starting

to shift to generalizations to other frameworks.
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2.1 Notation, Conventions, and Terminology

For the most part, our notation and terminology are standard or intended to be so.

What follows is designed to cover all possible exceptions. The next table summarizes

some of our most important notation. The paragraphs that follow complete the

table.

Σ∗ The set of all finite binary strings

2N The set of all infinite binary strings

στ concatenation of σ and τ

σn σ concatenated with itself n times

XY {στ |σ ∈ X, τ ∈ Y }
σ � τ σ is a prefix of τ

[σ] {x ∈ 2N|σ � x}
|σ| The length of σ

σ � n The first n bits of the string σ

σ(n) The nth bit of σ

ε The empty string

#X The cardinality of the set X

x.f(x) notation for the function f

[n] {0, · · · , n− 1}
φ The empty set

δA The boundary of A

B(a, r) {x|d(a, x) < r}
B(a, r) {x|d(a, x) ≤ r}

Figure 2.1: Basic Notation

When carrying out recursive definitions/constructions, we adopt the standard prac-

tice of referring to the stages of the definition/construction and prior to carrying out
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the recursion step (say at stage i), we will often explicitly list as “recursion hypothe-

ses” the properties assumed for the objects defined/constructed at previous stages.

Then, in defining/constructing the needed object or objects at stage i, we will do

so in such a way that these recursion hypotheses are preserved. The argument for

this then completes the recursive construction.

Lower case letters from the middle of the Latin alphabet (i, j, . . . , n) will typically

denote natural numbers, i.e. elements of N. As usual, a function, f , is said to be

1 : 1 if and only if f is an injection, and said to be m : 1 if and only if whenever

f(x0) = . . . = f(xm), there are natural numbers i < j ≤ m such that xi 6= xj. If

each of f, g is a total function from N to R, we will write f ≤+ g to mean that

there is b such that for all n, f(n) ≤ g(n) + b, while writing f =+ g will mean that

both f ≤+ g and g ≤+ f are true. For sets, A,B, we write A ⊂ B to mean that A

is a proper subset of B, whereas, as usual, A ⊆ B allows A = B.

We fix a standard (computable) pairing function, i.e., a computable bijection from

N × N to N, which we denote by <,>. One such computable bijection is given by

< m,n >= (m+n)(m+n+1)+n
2

. The corresponding coordinate inverses, or projection

functions, π1, π2, are those (computable) functions satisfying π1(< m,n >) = m

and π2(< m,n >) = n. By nesting a pairing function, for each k > 2 we obtain a

(computable) bijection from Nk to N. We will abuse notation by using <> to denote

all such bijections. Most often we mean the 2 place pairing function, and when we

do not, it is clear from context.

We will let Q denote the rational numbers as usual, and log will always mean log-

arithm in base 2. We fix a standard enumeration without repetitions (where the

denominators are non-decreasing and relatively prime to the numerators), {qi}i∈N
of the positive rationals and then encode a positive rational as a natural number via

its index. Much of the rest of our notational conventions will involve finite binary

strings (i.e., elements of Σ∗) or infinite ones (i.e. elements of 2N). We lay out these

conventions in the next few paragraphs.
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Typically, we will use: σ, τ and ω to denote finite binary strings, while x and y will

be used to denote infinite binary strings. For finite strings, σ ∈ Σ∗, [σ] is often called

the σ-cell, or the cylinder of or about σ; it is a basic open subset of Cantor space,

but under a dif and only iferent topology on 2N, its status might be problematical.

However, when considering measures on Cantor space, or some other other separable

metric space with ambient set 2N , we will often blur the distinction between σ and

[σ], writing µ(σ) or occasionally even µσ when µ([σ]) is intended.

All measures considered will be probability measures on the σ-algebra of Borel sets

(for the metric topology of the separable metric space under consideration), unless

otherwise noted.

We fix a : N → Σ∗ to be the bijection with the property that if i < j, then a(i)

precedes a(j) in lexicographic order. This allows us to identify finite binary strings

with natural numbers. We may also conflate sets, A, of natural numbers with infi-

nite binary strings by identifying A with its characteristic (or indicator) function.

Note that this gives us two different views of A ⊆ N: either as a set of finite binary

strings, or as an infinite binary string. We shall attempt to make it clear from con-

text which one is intended, any time the issue might arise.

In a similar vein, when discussing descriptive complexity (in Section 2.3) we will

sometimes use a natural number, n, in place of the formally correct a(n). Thus,

for example, in discussing prefix-free (or Kolmogorov) complexity (viz. Definition

2.3.17), we will sometimes write K(n) rather than K(a(n)), and similarly for plain

descriptive complexity and C.

On a number of occasions in Chapter 1 we have spoken (somewhat loosely, but

always accurately) of Cantor space. Our usage, so far, has been accurate either

because we were really only referring to its ambient set, 2N, or because we carefully
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specified something like ‘equipped with Lebesgue measure’, or because this was im-

plicit in the fact that we were speaking about developments in the standard setting

of Cantor space equipped with Lebesgue measure. Going forward, we will have to be

more careful, and the following notation and terminology is designed to allow us to

do so without being too cumbersome. As we have just mentioned and set out in our

table, 2N is the set of infinite binary strings, and is the ambient set of Cantor space.

Going forward, in what will become the formalism of Definition 3.1.1, when we get

there, when we refer to Cantor space, we will mean the following metric space with

ambient set 2N, together with the enumeration, in lexicographic order, of the ele-

ments of 2N which take on the value 1 only finitely often. For distinct x, y ∈ 2N, we

take the distance between x and y to be 2−i(x,y), where i(x, y) is their least difference

coordinate, i.e., the least i such that x(i) (the ith bit of x) differs from y(i). But we

do not necessarily equip this metric space with Lebesgue measure. We will use C to

denote Cantor space.

In fact, we could replace this metric by any equivalent one, where the equivalence

resides in the fact that the metric topologies coincide. This leads us to the notion

of topological Cantor space, for which we shall use the notation CT . By this we will

usually mean any computable metric space (in the sense of Definition 3.1.1 whose

metric is equivalent to the metric we have just specified for C, with any reasonable

enumeration of any reasonable choice of a countable dense subset (the precise sense

of both instances of ‘reasonable’ being supplied by Definition 3.1.1. Sometimes,

however, we mean the family of all such computable metric spaces. Finally, looking

ahead to Section 5.2, it will be important to note that (in the second sense of our

usage) CT is a much more restrictive family of computable metric spaces than the

family of all computable metric spaces whose ambient set happens to be 2N.
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2.2 Computability

2.2.1 Basic Concepts

We survey the basic notions and results from computability theory needed in what

follows. For the most part, we follow the treatments of [18] and [4].

Any of the various equivalent well-known formal models of computation would pro-

vide an adequate setting for what follows, and for the most part we will not be

explicit about the technicalities inherent in any such model except to say that the

models best adapted to our purposes all involve some idealized computing device

(e.g. one of the many developments of the Turing Machine model or the Register

Machine model) and programs for this device. The idealized computing device has a

countably infinite memory/workspace. Programs consist of a finite sequence of in-

structions in a simple effectively presented countable language. On any initial input

(or inputs), instructions are executed sequentially, most often resulting in a simple

(deterministic) update to memory, but possibly, in the case of a “control instruc-

tion”, changing the internal state of the computing device (Turing Machine model)

or specifying the label of the next instruction to be executed (Register Machine

model). We shall follow [18] and [4] in blurring the hardware/software distinction

by referring to each combination of computing device and program as its own “ma-

chine”.

One important instruction (Turing Machine model) is the HALT instruction. In

the Register Machine model this is “simulated” by a control instruction specifying

a value for the label of the next instruction to be executed that is larger than the

label of any program instruction. If the HALT instruction is reached, the computa-

tion terminates, and an output value is specified according to the current state of

memory and the I/O conventions of the model. Of course, there are combinations

of programs and inputs which lead to non-terminating computations: the HALT

instruction is never reached.
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For each positive integer n, each program, P , determines an n-place partial function,

ϕ
(n)
P , whose domain consists of those ordered n-tuples of inputs, (i1, . . . in) for which

the HALT instruction is reached; for such (i1, . . . in) , ϕ
(n)
P (i1, . . . in) is defined to be

output value of the terminating computation.

The usual models typically take inputs and outputs to be natural numbers, but via

the effective bijection a of Section 2.1, they can be taken to be finite bitstrings.

Accordingly, we shall often view the ϕ
(n)
P as partial functions from Nn to Σ∗, or from

(Σ∗)n to Σ∗, etc..

Definition 2.2.1. A partial function ϕ : Nn → N (or (Σ∗)n → Σ∗) is called com-

putable if there is some program P such that ϕ = ϕ
(n)
P . A set A ⊆ Nn (or (Σ∗)n is

called computable (aka decidable, computably decidable, effective) if its character-

istic function χA is computable and it is called computably enumerable or c.e. (aka

semi-decidable, computably semi-decidable, etc) if it is the domain of some n-place

computable function.

There are various ways of extending the notions of computability to other domains,

and some of these will be discussed in Chapter 3, but for now we note that the

encoding provided by our standard enumeration of Q gives us a natural and easy

extension of computability notions to the setting of (partial) functions from N× N
to Q. We omit the standard (and easy) details, but note that this will enable us

to introduce, here, a literature notion that figures in Definition 3.2.5, below. In the

literature, the definition is typically given for partial functions, but we shall only

need it in the case of total functions. Further, in the literature, typically the domain

of the function is (a subset of) Q rather than (a subset of) N.

Definition 2.2.2. A (total) function f : N→ R is said to be lower semicomputable

if there is a (total) computable function f̃ : N×N→ N such that for all n ∈ N, the
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sequence {f̃(k, n)}k∈N is monotone non-decreasing and :

lim
k→∞

f̃(k, n) = f(n).

Similar notions are implicit in Definition 3.2.13 and Propositions 2.3.18, 3.2.15 and

4.1.3. In the case of Propositions 2.3.18, and 3.2.15, the similarity is really to the

dual notion of upper semicomputable.

It is well known and easy to see that finite sets are computable, that computable

sets are c.e., that a set is computable if and only if both it and its complement are

c.e., and that every non-empty c.e. subset of N (or Σ∗) is also the range of some to-

tal computable function (which was the initial definition and the motivation for the

terminology). There is, however, an important difference between computable sets

and c.e. but non-computable sets in this regard. An infinite subset of N (or Σ∗) is

computable if and only if it is the range of a monotone increasing total computable

function, i.e., if and only if it can be computably enumerated in increasing order (in

the case of subsets of Σ∗, this means in increasing order for lexicographic order).

The idea is that in an enumeration in increasing order, once a potential member of

the set has “been skipped”, we know that it is not in the set. It is worth noting that

(necessarily infinite) c.e. but not computable sets can nevertheless be computably

enumerated without repetitions.

Since there are only countably many programs, these can be enumerated as (Pe|e ∈ N).

Indeed there are effective such enumerations, but even more will be true, as we shall

soon see. Each such enumeration induces, for each positive integer n, an enumer-

ation of the n-place computable functions,
(
ϕ
(n)
e |e ∈ N

)
by taking ϕ

(n)
e to be ϕ

(n)
Pe

.

In such an enumeration, e is called an index of ϕ
(n)
e . Each computable function

has infinitely many indices. This is easily seen in an device/program model, since

any program can be “padded” by adding useless (but harmlesss) instructions, but in

fact, this is an essential feature of any effective enumeration of computable functions
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in any model of computation, and not merely a quirk of the device/program models.

When no positive integer n is specified, it is understood that n = 1: we are working

with one-place functions.

Each such enumeration also gives rise to a family of functions that are universal

for computable functions: for each positive integer n, we have the n + 1-place

partial function U (n) whose domain consists of those (e,m1, . . . ,mn) for which

(m1, . . . ,mn) is in the domain of ϕ
(n)
Pe

, and when this occurs, U (n) (e,m1, . . . ,mn) =

ϕ
(n)
Pe

(m1, . . . ,mn). Of course, these universal functions depend strongly on the enu-

meration. In one of the cornerstone results of the early development of the subject,

Turing showed that Gödel’s approach to producing an enumeration of programs

yields computable universal functions. This is the content of the next Proposition

and Definition.

Proposition 2.2.3. There is an enumeration of programs which is strongly effective

in the sense that each of its universal functions is computable.

In device/program models, universal functions are computed by universal programs:

the universal program first decodes Pe from e and then simulates its operation on the

remaining inputs. This strongly exploits the fact that the enumeration of programs

is achieved in some standard (and informally effective) fashion. But similar results

(the existence of a uniformly computable family of universal functions) hold for

all models of computation, not only for the device/program ones. In the standard

developments of computability theory, a comprehensive and precise treatment of

these issues culminates in the construction of the Kleene Normal Form predicates.

On the way to this construction, typically the so-called s−m−n Theorem (sometimes

called the Parametrization Theorem) is proved. This Theorem is mentioned, with

details left to any of the standard treatments, in the proof of Theorem 4.1.6.

Definition 2.2.4. We fix an enumeration of programs, (Pe|e ∈ N), with the property

of Proposition 2.2.3, and for each positive integer, n, we denote its n + 1-place

computable universal function by U (n). We also denote its induced enumeration of

n-place computable function by
(
ϕ
(n)
e |e ∈ N

)
.
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A consequence of the preceding Proposition and Definition is given in [4] and [18],

and in what follows we shall actually use this variant. It illustrates a useful feature

of taking our functions as having finite bitstrings as inputs and outputs: we can

“fuse” index and input in a way that allows us to know where one ends and the

other begins.

Definition 2.2.5. The one-place partial function U : Σ∗ → Σ∗ is defined by taking

its domain to consist of those members of Σ∗ of the form 0i1σ such that σ is in the

domain of ϕi, and when this occurs, U (0i1σ) = ϕi(σ).

Of course, by construction, U is universal for one-place computable functions.

Proposition 2.2.6. [4], [18] The one place partial function U is computable.

Definition 2.2.7. If the program Pe halts on input n in at most s steps, we write

Pe,s(n) ↓. Otherwise, we write Pe,s(n) ↑. Of course, if Pe,s(n) ↓, then also Pe,s+1(n) ↓,
while if Pe,s(n) ↑, both Pe,s+1(n) ↑ and Pe,s+1(n) ↓ are possible. If there is some s

such that Pe,s(n) ↓, we have a terminating computation on input n and we write

Pe(n) ↓; if there is no such s, we have a non-terminating computation on input n

and we write Pe(n) ↑. One of the reasons why this is such an important notion is

that:

{(s, e, n)|Pe,s(n) ↓} is decidable (2.1)

and not merely semi-decidable; here too, the underlying issues are addressed in the

construction of the Kleene Normal Form predicates.

We use (e.g.) ϕe,s(n) ↓ to mean the same thing as Pe,s(n) ↓, and similarly for

the other notions in the previous paragraph. We will abuse notation by writing

Us(n) ↓ (resp. Us(n) ↑) to mean that fixing in advance some particular index e∗ for

U, Pe∗,s(n) ↓ (resp. Pe∗,s(n) ↑). This is an abuse of notation since, of course, which

of these actually occurs depends on the choice of the index e∗.

For any (one-place) computable function ϕ (and in particular when ϕ is U), we will

write ϕ(n) ↓ to mean that ϕ(n) is defined and ϕ(n) ↑ to mean that ϕ(n) is undefined.
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There is no abuse of notation here, since this independent of the choice of index for ϕ.

Finally, as usual, we define the (diagonal) Halting Problem, 0′, to be {n|ϕn(n) ↓}.

We then have the following classical ground-breaking result, also due to Turing As

usual, proofs can be found in [4], [18].

Proposition 2.2.8. The set 0′ is c.e. but not computable.

One property which is weaker than outright computability, but still allows for some

effective applications is the following:

Definition 2.2.9. A real number γ is called left c.e. if the left cut of γ, L(γ) =

{q ∈ Q|q < γ} is c.e..

Definition 2.2.10. A function f with domain included in Σ∗ is called prefix-free if

for any σ, τ ∈ Dom(f), σ � τ ⇒ σ = τ .

We now have the analogue of Proposition 2.2.6 for prefix-free computable functions.

Proposition 2.2.11. [4], [18] There is a single one-place prefix-free (and so nec-

essarily partial) computable function V : Σ∗ → Σ∗ which is universal for one-place

prefix-free computable functions, in that the following enumeration is an enumer-

ation of all one-place prefix-free computable functions: given i, take ψi to be the

function σ.V(0i1σ).

It is worth giving a brief indication of how V is obtained from U. This is by

modifying, in the following way, each Us to get what will turn out to be Vs. When

computing Vs(0
i1σ), we first check to see whether or not:

for some τ ≺ σ, Us

(
0i1τ

)
. (2.2)

As noted above, this is a decidable condition, and there are only finitely many

τ to check. If this condition holds, then Vs (0i1τ) will be undefined; otherwise,

Vs (0i1τ) := Us (0i1τ). Of course, if τ ≺ σ and Us (0i1τ) then for any t ≥ s it is also

true that Ut (0i1τ).
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Definition 2.2.12. We fix a function, V, with the properties of Proposition 2.2.11.

The enumeration it provides will be called the standard prefix-free enumeration, and

it will be denoted by (ψi|i ∈ N).

Oracle Computations

Another important contribution of Turing was to consider (idealized) computations

which have access to an element, x, of 2N which acts as an “oracle”. In a register

machine or similar model, we add to our list of program instructions an “oracle

instruction”, O(n), which, when executed with x “in the oracle”, returns the nth bit

of x, storing it in a specified location in memory so that it is then available for use in

subsequent stages of the computation. All of the notions (and notations) developed

above can be relativized to x, providing the notion of computability relative to x.

Non-computable sets may become computable relative to some choices of x: e.g. 0′

is trivially computable relative to its characteristic function (and similarly for any

other set).

We do not enter into the details of their development, but we have the suitably

reformulated analogues of all of the numbered items above, starting with Definition

2.2.1. As usual, a complete development is given in [4] and [18]. We do note that, in

particular (with a different but equally standard (and still informally outright effec-

tive) enumeration of “oracle programs”) we have, uniformly in x, the x-analogues

of Propositions 2.2.3, 2.2.6, and 2.2.11 and their companion Definitions 2.2.4, 2.2.5,

and 2.2.12. We adopt the following related notational conventions:

NOTATIONAL CONVENTIONS: For any x ∈ 2N:

1. ϕxe denotes the x-computable one-place partial function with standard oracle

index e,

2. ψxe denotes the x-computable prefix-free one-place partial function with stan-

dard prefix-free oracle index e,
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3. Ux denotes the x− computable one-place partial function analogous to U:

Ux(0i1σ) is defined if and only if ϕxi (σ) is and Ux(0i1σ) = ϕxi (σ).

4. Vx denotes the x−computable one-place prefix-free partial function analogous

to V:

Vx
(
0i1σ

)
is defined if and only if ψxi (σ) is and Vx

(
0i1σ

)
= ψxi (σ).

Notions related to relative computability dominated the development of computabil-

ity theory from the early 1940’s, when Post formulated the celebrated problem that

bears his name, through the 1990’s when the remarkable collection of results on

the structure of the Turing degrees was completed. It may also be worth pointing

out that the idea of using random noise from outside systems to augment random

number generation is actually quite similar in spirit to the ideas behind relative

computability.

2.2.2 KFT and the MET

Definition 2.2.13. If I ⊆ N is an initial segment of N (i.e., either I = N or for

some n ∈ N, I = [n]), by a request set on I we mean a (finite or infinite) sequence

{< ri, ζi >}i∈I of (codes of) pairs < ri, ζi >, where each ri is a positive integer and

each ζi ∈ Σ∗.

The motivation for the terminology “request set” will only become clear when we

arrive at the statement of the Machine Existence Theorem, Theorem 2.2.19, below,

at which point the role of the ζi will also become clear. For now, we’ll say just that

the “request set asks us” to associate to each i, an element σi of Σ∗ with |σi| = ri.

Typically, the set of σi’s is also required to be prefix-free, in which case a sequence

{σi}i∈I that results from “meeting each request” will also be called a prefix-free code.

Definition 2.2.14. If A ⊆ Σ∗, define the weight of A by wgtA =
∑

σ∈A 2−|σ|. If g is

a function to N with domain I ⊆ N, we define the weight of g by wgtg =
∑

n∈I 2−g(n).
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If f is a function to Σ∗ with domain I (with I as above) we define the weight of f

by wgtf =
∑

n∈I 2−|f(n)|.

Then we say that A (resp. g, resp. f satisfies the weight condition if and only

if weight of A (resp. weight of g, resp. weight of f) is at most 1. A request set

{< ri, ζi >}i∈I satisfies the weight condition if and only if i.ri satisfies the weight

condition.

Definition 2.2.15. In the event that the W = {< ri, ζi >}i∈I is c.e., and satisfies

the weight condition, we call W a bounded request set.

Lemma 2.2.16. If a set A is prefix-free, wgtA ≤ 1.

Many standard arguments dealing with the notion of K-triviality (viz. Definition

2.3.26 in the next Section) involve constructing a request set and showing this set has

certain properties. We are now in a position to present the MET, and its precursor,

KFT. The latter says that given a request set with small enough total weight, we can

find a prefix-free code that satisfies its requests. The MET says that for a bounded

request set, this can be done effectively, uniformly in an index of the request set.

Though both are proved in [4] and [18], we next present a proof of KFT, and in

subsection 4.1.2, Theorem 4.1.6, we present a proof of a generalization of the MET.

Both proofs are modelled on the ones given in the second of the preceding references.

The proof of the generalization of the MET subsumes a proof of the MET itself,

with an additional argument. In the oposite direction, in subsection 4.2.1, Theorem

4.2.1, we show that if, in Theorem 4.1.6, a key hypothesis there is dropped, then

not only can the generalization of the MET fail, but even a related generalization

of KFT can fail.

Theorem 2.2.17. Kraft’s Theorem [18] A request set W = {< ri, ζi >}i∈N sat-

isfies the weight condition if and only if there is a prefix-free code {σi}i∈N such that

for all i, |σi| = ri.

Proof. Necessity of the weight condition is clear - any prefix-free code has weight

at most 1. For sufficiency, we will assume, WLOG, that the sequence {ri}i∈N is
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nondecreasing; if it were not, just reindex it to make it so. Note that this reordering

cannot be carried out effectively, unless the request set is outright computable. In

the case of the MET, where the effectiveness matters, we will not be able to make

this assumption, and this will require a somewhat different approach. On the other

hand, in that setting, we will have that the request set is at least c.e.

We will construct the σi by recursion on i. The basis of the recursion is to simply

take σ0 to be 0r0 . For the recursion step, we let i > 0, and we assume that the σj

defined at stages j < i satisfy the following properties.

1. The set {σj|j < i} is prefix-free and for all j < i, |σj| = rj,

2. We let Ui be the set of strings τ such that |τ | = ri and such that for some

j < i, either τ = σj or σj is a prefix of τ . We then assume that Ui is an initial

segment, for lexicographic order, of the set of all strings whose length is ri.

Let k := #Ui. Note that:

k

2ri
=
∑
j<i

2−rj and by the weight condition
∑
j<i

2−rj < 1. (2.3)

Thus, the weight condition guarantees that there is some string τ such that |τ | = ri

and τ 6∈ Ui. We simply take σi to be the lexicographically least such τ .

It follows (by construction of σi and the definition of Ui) that we have preserved

Property (1). The choice of σi as lexicographically least (together with the definition

of Ui) guarantees that we have also preserved Property (2). This completes the

recursion and the proof.

Remark 2.2.18. Note that the ζi’s do not have any role in the proof. They are

only used in refinements of KFT (such as the MET).

In order to shed some light on the purpose of the preliminary re-ordering, consider

the situation that arises if we had r1 = 2, r2 = 2, r3 = 1 and had taken σ1 = 00
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and σ2 = 10. Then the requirement that the set of σi’s be prefix-free means that

we have no possible choice for σ3. While any finite number of such conflicts can be

anticipated and avoided, we cannot “look ahead infinitely often” in this way. But if

the ri are reordered so as to appear in non-decreasing order, this sort of difficulty is

avoided. We next state the extremely important MET.

Theorem 2.2.19. Machine Existence Theorem [18] Let W = {< ri, ζi >}i∈N
be a bounded request set, and let e be an index of W (i.e., let e be such that ϕe is

the function i. < ri, ζi >). Effectively (and uniformly) in e, we can find a c.e. prefix-

free code, {σi}i∈N, such that for all i, |σi| = ri, and a prefix-free index, d(e), of the

prefix-free machine M = σi.ζi (meaning, among other things, that M is computable,

the domain of M is precisely the set of σi’s, ψd(e) = M , and the function e.d(e) is

computable).

The MET is an extremely powerful and useful tool in the standard setting and it

figures prominently in many important results, such as Nies’ Theorem, [17], that the

K-trivial strings are low for K. As noted prior to the statement, above, of KFT, the

status of KFT and the MET becomes rather complicated once we leave the standard

setting. In the computable metric space setting, this difficulty is dodged since there,

in virtue of the result of Melnikov and Nies, [15], given below as Theorem 3.1.5, the

K-triviality notion can be viewed in terms of the (standard) K-triviality notion for

a K-trivial Cauchy name.

2.3 Algorithmic Randomness In Cantor Space

In this Section, we flesh out our historical account, in Section 1.2, by giving precise

definitions of and results for many of the basic notions of algorithmic randomness

in the standard setting of Cantor Space equipped with Lebesgue (aka fair coin)

measure that were disscussed there. First, we will give Martin-Löf’s original defi-

nition of the notion of randomness that he introduced and that has come to bear

his name. This is done in Definitions 2.3.1 and 2.3.2, after which we state, without
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proof Proposition 2.3.3 which establishes that there is a single ML-test (viz. Defini-

tion 2.3.1) which alone suffices to detect every failure of Martin-Löf randomness.

We then turn our attention to presenting the basic theory of the two notions of the

descriptive complexity of elements of Σ∗. These seek to measure the amount of in-

formation inherent in a finite binary string. The first notion is the plain descriptive

complexity of such a string, σ, and it is denoted by C(σ). The second notion is

the prefix free descriptive complexity, or Kolmogorov complexity, denoted by K(σ).

There is a strong parallelism in the development of the two notions; compare, e.g.,

the numbered items 2.3.4 through 2.3.8 and 2.3.10 for C with the numbered items

2.3.14 through 2.3.17 and 2.3.20, 2.3.24 for K.

Nevertheless, the development must be sequential, first for C and then for K, ex-

cept for Proposition 2.3.18. This is because all of the above-referenced numbered

items for C are needed for the proofs of Propositions 2.3.11 and 2.3.12 and their

consequence, Corollary 2.3.13, and it is these results, in turn, which provide the

explanation for why (in virtue of the unpleasant property of C which they estab-

lish) the somewhat more delicate notion of prefix-free complexity has supplanted in

importance the apparently simpler one of plain complexity. In other words, in order

to “make the case for ” K, we need to first establish much of the theory of C (and

only then re-establish much of it for K itself).

The development of the theory of K has some items not mirrored in the theory

of C (e.g. Proposition 2.3.21 and Lemma 2.3.23) and culminates with Schnorr’s

Theorem, Proposition 2.3.25, discussed in Section 1.2. This Section then concludes

with the definition of K-triviality, Definition 2.3.26, completing the development in

the standard setting.

Definition 2.3.1. Martin-Löf Tests We say {Gm}m∈N is an ML-test if it is a

uniformly c.e. sequence of open sets such that for all m, λ(Gm) < 2−m.

Definition 2.3.2. We say that x ∈ 2N is Martin-Löf Random if there is no ML-test
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{Gm}m∈N such that for all m, x ∈ Gm. If there exists {Gm}m∈N such that for all

m, x ∈ Gm, we say x fails the ML-test {Gm}m∈N.

Proposition 2.3.3. There is a universal ML-test, {Um}m∈N, in the sense that every

x ∈ 2N which fails some ML-test also fails {Um}m∈N.

We now turn to the development of the theory of descriptive complexity. Recall

that, as foreshadowed in Section 2.1, when we write things like C(n) or K(n), what

we really mean is C(a(n)) or K(a(n)).

Definition 2.3.4. If τ ∈ Σ∗ and M is a universal computable function, we define

CM(τ) to be he smallest ` such that for some σ, |σ| = ` and M(σ) = τ . We call σ

an M -description of τ .

Definition 2.3.5. A universal computable function R is called optimal if and only

if for all M, CR ≤+ CM .

Proposition 2.3.6. [4], [18] U, as defined above, is optimal.

Definition 2.3.7. We define C := CU.

Since neither C nor K (defined below in Definition 2.3.17) is computable, they are

difficult to work with. However, we do have some basic bounds and properties which

will be useful in what follows. For the reasons indicated above, we first develop most

of the theory of C before turning to K.

Proposition 2.3.8. [18], [24] If f is total and computable, then C(f(n)) ≤+ C(n)

Remark 2.3.9. This essentially says that from n, and an index for f , it is no harder

to describe f(n) than n.

We also have some useful general bounds:

Proposition 2.3.10. [4], [18] If x ∈ 2N then C(n) ≤+ C(x � n) ≤+ n
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As motivation for the first inequality, assume, to the contrary that C(x � n) < C(n).

The function σ.|σ| is certainly computable, so we would essentially be obtaining less-

than-minimal descriptions for n. The second inequality can be thought of intuitively

as the idea that each string provides a description for itself. For a fixed optimal ma-

chine (one which gives the copying machine σ.σ a small index), we may improve this

bound to C(σ � n) ≤ n+ 1. We will assume that our standard optimal machine has

this property.

We are now in a position to prove some results that pinpoint an undesirable property

of C: the failure of subadditivity, viz. Corollary 2.3.13, below. This is a consequence

of the next two Propositions that preceed the Corollary. These Propositions involve

growth rates and “dips in complexity”.

Proposition 2.3.11. [4] For all n ∈ N there exists ω such that |ω| = n and

C(ω) > |ω|.

Proposition 2.3.12. [18] There exists c such that for all d ∈ N and all τ such that

|τ | ≥ 2d+1 + d, there exists σ � τ such that C(σ) ≤ |σ| − d+ c.

Corollary 2.3.13. [18] There exist σ, τ such that C(< σ, τ >) > C(σ) + C(τ)

Proof. Note that C(στ) < C(< σ, τ >) (since we don’t know where σ ends and τ

starts), so we prove something even stronger:

Let ω be as in 2.3.11, and σ � ω be as in 2.3.12. Let τ be such that ω = στ . Then

C(σ) < |σ|+ c− d, and as for all τ , C(τ) ≤ |τ |+ 1, hence

C(ω) = C(στ) > |ω| > |σ|+ |τ |+ 1 + c− d ≥ C(σ) + C(τ)

as long as d is large enough.

Because of this undesirable property of C, the prefix-free version, K, to which we

now turn, has emerged as the “correct” notion of the descriptive complexity of a

finite binary string.
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Definition 2.3.14. If τ ∈ Σ∗ and M is a universal prefix-free computable function,

define KM(τ) to be the smallest ` such that for some σ, |σ| = ` and M(σ) = τ . As

before, we call σ an M -description of τ .

Definition 2.3.15. A universal prefix-free computable function R is called optimal

if and only if for all M,KR ≤+ KM .

Proposition 2.3.16. [4], [18] V, as defined above, is optimal.

Definition 2.3.17. We define K := KV.

K has properties very similar to those of C, but without the failure of subadditivity:

Proposition 2.3.18. [4], [18] The functions C and K are computably approx-

imable from above, i.e., there are computable functions Cs, Ks such that Cs(σ) ≤
Cs−1(σ), Ks(σ) ≤ Ks−1(σ), and Cs(σ)→ C(σ), Ks(σ)→ K(σ) as s→∞.

Remark 2.3.19. The key point is that we cannot computably determine, given s,

whether Cs(σ) = C(σ) (resp. whether Ks(σ) = K(σ)), even though this will be true

for sufficiently large s.

In the next few items we continue to develop the theory of K, paralleling the devel-

opment for C.

Proposition 2.3.20. [18], [24] If f is total and computable, then K(f(n)) ≤+ K(n)

Proposition 2.3.21. [18], [24] If f is total, computable and 1 : 1, then K(f(n)) =+

K(n)

Remark 2.3.22. In virtue of this Proposition, it is not unreasonable to make the

notation K(n) mentioned above in Section 2.1 do double duty by taking it to also

denote K(0n). This is justified because the function a(n).0n is computable and 1:1,

so K(a(n)) =+ K(0n).
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Lemma 2.3.23. Let f be total, computable, and m : 1. Further, suppose #{x :

x ∈ f−1(n)} is computable in n (or equivalently that there is a computable bound

on the largest element of f−1[n]). Then K(f(n)) =+ K(n).

Proof. K(f(n)) ≤+ K(n) is immediate. For the other inequality, let gi(n) denote

the ith element of f−1[f(n)], or some default value if there are fewer than i elements.

Then for all n, K(gi(f(n))) ≤ K(f(n)) + bi is true for some bi, for all n and all i less

than m+1. Also, n = gi(f(n)) for some i ≤ m. Hence, K(n) ≤ K(f(n))+max{bi},
so K(f(n)) =+ K(n).

Proposition 2.3.24. [4], [18] If x ∈ 2N then K(n) ≤+ K(x � n) ≤+ n+K(n).

The intuition here is the same as for C, but the restriction to prefix-free functions

adds extra overhead for the second inequality.

Proposition 2.3.25. Schnorr’s Theorem,[18]: For x ∈ 2N, x is Martin-Löf Random

if and only if its complexity grows asymptotically as quickly as possible, i.e., if

K(x � n) ≥+ n.

A major factor in the emergence of Martin-Löf Randomness as the “preferred”

notion of randomness is its characterization in terms of Kolmogorov complexity

provided by Schnorr’s Theorem. Martin-Löf Randomness also has many other char-

acterizations, attesting to the robustness of the notion. Another major contribu-

tion of Schnorr’s Theorem was to suggest an approach to characterizing the highly

non-random strings in terms of the opposite behavior of K (leading to the next

Definition).

Definition 2.3.26. If x ∈ 2N, x is K-trivial if and only if its complexity grows

asymptotically as slowly as possible, i.e., if K(x � n) ≤+ K(n).

We shall also want a somewhat weaker notion: x is infinitely often K-trivial if there

is b such that for infinitely many n, K(x � n) ≤ K(n) + b.
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The definition of K-triviality extends naturally to functions from N to N, for exam-

ple. If f is such a function, we identify f , first with its coded graph, i.e. with the

set {< n, f(n) >n∈N}. We can then idenitfy the coded graph with a single member

of 2N, via the characteristic function, and then apply the preceding definition to the

characteristic function of the coded graph.

Definition 2.3.27. Forx ∈ 2N, x is called low for K if and only if

for all y, Kx(y � n) ≥+ K(y � n).

The set of such x is denoted Low(K).

It is clear that having the extra computational power of x can never hurt, so we

always have that for all y, Kx(y � n) ≤+ K(y � n). Computing complexity using x

as an oracle can provide insight into the computational power of x. For some strings

σ, the information contained in x will help us compute shorter descriptions of σ.

For example, if x � n had relatively high complexity, having access to the bits of x

in the oracle reduces the problem of describing x � n to the problem of describing n.

Some strings may not get shorter descriptions in this way. A string x in Low(K) is

considered to be computationally weak, since the bits of x do not offer any utility in

computing more efficient descriptions for any string. The following proposition says

that being computationally weak in this way is the same as being easy to describe,

in terms of K.

Theorem 2.3.28. [17] For x ∈ 2N, x ∈ Low(K) if and only if x is K-trivial.

In Chapter 3 we will lay out how these notions were generalized to the related

frameworks of computable metric spaces and computable measures which emerged

in the wake of Gács’ groundbreaking paper, [5]. This, in turn, sets the stage for the

presentation of the results of this dissertation in Chapters 4 and 5.
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Chapter 3

Beyond the Standard Setting

Chapter Overview

Each of the two Sections of this Chapter is devoted to one of the two points of

view that grew out of Gács’ [5]. In Section 3.1, we will introduce the idea of a

computable metric space. In Definition 3.1.4, we give Melnikov and Nies’ successful

generalization of the notion of K-triviality to this setting. Section 3.2 focuses on

that of computable measures, where our development is considerably more in-depth.

In the next few paragraphs, but also to some extent, at the start of each Section,

we will discuss the reasons for this asymmetry in parallel with a discussion of the

important relationships between these two points of view. For the most part, at

least early on, the main goal was to provide generalizations of the notion of Martin-

Löf randomness. In view of the inherently measure-theoretic flavor of many of the

notions (the ML-tests, mainly), the point of view of the computable measures pro-

vided the most natural setting.

Nevertheless, in order to achieve full generality, one needs a background computable

metric space in which to work. Oddly, this has proven to be the more fruitful point

of view for generalizing the K-triviality notion: it was in the language of com-

putable metric spaces that Melnikov and Nies framed their Definition 3.1.4, which
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has come to be regarded as the correct generalization for reasons already discussed.

So the computable metric space point of view is already sufficient for generalizing

the K-triviality notion and it provides the needed background for developing the

computable measure notions, in terms of which the randomness notion is most nat-

urally generalized.

Before turning to a quasi-historical account, a few more observations are in order.

If one is content to consider computable measures on CT , a more direct approach is

possible, and indeed was taken even earlier by Zvonkin and Levin, [29]. It turns out

that this already allows for full generality, but this could only be seen a posteriori,

thanks to the results of Gács, Hoyrup, and Rojas, [6], and in particular, their notion

of cellularization which provides a natural map to CT : the map wC whose properties

are developed starting with Definition 3.2.3. The Zvonkin-Levin approach proceeds

by direct construction of what we call a cell-measure, viz. Definition 3.2.13. The

particular computable measures we construct in Chapter 4 are all constructed as

cell-measures.

Finally, while the setting of CT provides full generality, there is a question that

we regard as important that has not been investigated: given a computable metric

space, X , and a computable measure, ν, on CT , is there a computable measure,

µ, on X and a cellularization, C of X for which ν is the pushforward measure for

µ, obtained via wC? In Definition 3.2.10, we construct a cellularization for any

computable metric space which, we conjecture, allows us to “hit” any computable

measure on CT .

Soon after Martin-Löf’s seminal definition of randomness, Zvonkin and Levin [29]

began pushing the concept into the realm of general computable measures on CT .

For the most part, they were able to replicate the results from the standard setting;

in particular, an analogue to Schnorr’s Theorem was found, reinforcing the convic-

tion that the theory was robust.

36



The general approach to computable measures really “took off” after Gács, Hoyrup,

and Rojas [6] (to whom we will refer to jointly as GHR) developed their method of

“cellularizing” a computable metric space. The cellularizations, in effect, allowed

techniques typically applied to binary strings in Cantor space to be applied more

broadly. Section 3.2 is somewhat ahistorical in that we start with the later general

approach and only after discussion of the cellularizations and related questions in-

dicated above do we turn to the historically earlier Zvonkin-Levin approach. The

Section commences with a more detailed discussion of its organization and subsec-

tions.

3.1 Computable Metric Spaces

In 1937, Banach and Mazur gave a definition for computable real functions (unpub-

lished, see [7]), but it was not considered widely successful. In 1955, Grzegorczyk [7],

extending some of Kleene’s work on computable functionals, introduced the concept

of “type II effectiveness” - a slight modification of effectiveness in the traditional

sense, which allows a machine to continually accept input bits, and produce output

bits. In the 1960’s, Kleene’s work [10] on computable functionals, and Moschavakis’

work [16] on effectivizing metric spaces pushed computable analysis forwards for

some time, but it was not until 2005 the framework was suitably advanced to be

able to study randomness by Gács in [5]. In 2007 ([9]) Hoyrup and Rojas use their

cellularization technique to associate metrics with measures and prove some of the

standard randomness results for general computable metric spaces: e.g., the exis-

tence of a universal test, and a characterization of randomness in terms of prefix

complexity. In [14] and [15], Melnikov and Nies turn this metric space approach

towards K-triviality. We present the background of this approach here.

The first step from a general separable metric space to the notion of a computable

metric involves fixing an enumeration, without repetitions, of a countable dense

subset.
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Definition 3.1.1. Let (X, d) be a separable metric space, and fix an enumeration

without repetitions, {αp}p∈N, of a countable dense subset of X. The αp will be called

special points. Let X = (X, d, {αp}p∈N). Then, X is a computable metric space if

and only if the function <i, j>.d(αi, αj) is computable (this means, in particular

that for all i, j ∈ N, d (αi, αj) is a computable real number, but it also requires that

it is obtained uniformly and effectively from i and j).

When X is a computable metric space, for q ∈ Q+ and p ∈ N, we call the open balls

of the form B (αp, q) computable balls, and we enumerate the family of computable

balls of X as {Bi}, where we take Bi to be the open ball with center απ1(i) and

radius qπ2(i).

Throughout the rest of this dissertation, X will denote a fixed but arbitrary

computable metric space, as in the previous Definition. Additional hypothe-

ses on X will be introduced as needed.

Definition 3.1.2. If x ∈ X and c : N→ N, c is a Cauchy name for x if αc(n) → x

and d(αc(s), αc(t)) ≤ 2−s, for all t > s.

Definition 3.1.3. If x ∈ X, x is called computable if and only if (for our fixed

effective enumeration of Q), there is a computable function n.p(n) such that for all

n, d(αp(n), x) < qn.

3.1.1 Randomness in Computable Metric Spaces

In [9], Hoyrup and Rojas define randomness for computable metric spaces. However,

the notions of randomness are not given in terms of a metric structure. Instead, they

can apply their cellularization technique given in Section 3.2. Thus, randomness in

metric spaces is really dealt with in subsection 3.2.3, when we talk about randomness

for computable measures.
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3.1.2 K-triviality in Computable Metric Spaces

Melnikov and Nies, [15] propose the following generalization of K-triviality to com-

putable metric spaces. We will refer to this generalization as KMN-triviality. This

definition agrees with the standard definition in Cantor Space. Most of the impor-

tant properties of K-trivial strings carry over to the KMN ones.

Definition 3.1.4. Let x ∈ X. Then we define x to be KMN(X )-trivial if and only

if there exists b such that for all n ∈ N there exists p such that d(x, αp) < qn, and

K(< p, n >) ≤ K(n) + b. By analogy with Definition 2.3.26, we have the notion of

infinitely often KMN(X )-trivial; we omit the obvious details.

When X is clear from context, as it often will be, we may omit mention of X .

We will also use the following notation: KTMN(X ) := the set of x ∈ X such that x

is KMN(X )-trivial.

The next result is quite important, and was a major factor in cementing the convic-

tion that KMN-triviality is the correct generalization of K-triviality: since K-trivial

Cauchy names are available, most of the (most) important results from the standard

setting carry over, via these K-trivial Cauchy names.

Theorem 3.1.5. [15] For x ∈ X, x ∈ KTMN(X ) if and only if x has a K-trivial (in

the standard sense) Cauchy name.

Remark 3.1.6. The left-to-right implication is the significant one and was much

more difficult to prove. Of course, KMN(X )-trivial elements of X can also have

non-K-trivial Cauchy names, and there may not be a canonical way of choosing a

K-trivial Cauchy name.

3.2 Computable Measures: The GHR framework

We begin this Section by presenting the general approach to computable measures

on a computable metric space, developed, jointly, by Gács, Hoyrup, and Rojas [6].
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We will refer to this approach to computable measures as the GHR framework. This

is carried out in Definitions 3.2.1 through 3.2.5 and Proposition 3.2.4.

In particular, the cellularization notion is introduced in Definition 3.2.2. The ulti-

mate goal is to define the map, wC, introduced in Definition 3.2.3. This is a map

from a subset of X (the ambient set of the background computable metric space),

the set of points represented in the cellularization, to their representations by ele-

ments of 2N. The rough idea is to break down the ambient set, X, into a sequence

of pairs of disjoint subsets. For each represented point, x, and each n, the nth bit

of wC(x) tells us in which subset in the nth pair x lies.

Additional properties of a cellularization are introduced in Definition 3.2.6. These

are designed to guarantee that, among other things, almost all points of X are

represented. A cellularization satisfying these additional properties (one of which

refers to a computable measure, µ) is called a generator (for µ) with a correspond-

ing change in notation from the more general C (for arbitrary cellularizations) to A,

for generators (of some computable measure µ). A specific generator, Ad, (for any

computable measure µ) was constructed by Hoyrup and Rojas, [9]. Their construc-

tion is presented in Definition 3.2.9. In Definition 3.2.10 we give a more intricate

construction of a generator, A′d, which we conjecture (based on a detailed proof

strategy) has significantly better properties, but which is also “always available”.

Additional properties of an arbitrary generator are developed in Proposition 3.2.8

and the properties we conjecture hold forA′d are presented following its construction.

Starting with Definition 3.2.13, we specialize to CT and cell-measures, rejoining the

earlier Zvonkin-Levin approach. This leads naturally to subsections 3.2.1 and 3.2.2

which deal with this more special situation. The first of these subsections presents

the notion of granularity, due to Hölzl and Porter, [8]. In subsection 3.2.2, we discuss

how KFT and the MET may be generalized to the setting of computable measures

on CT . Finally, in subsection 3.2.3, we return to the a more general setting to discuss

40



various approaches to generalizing the notion of Martin-Löf randomness. The dis-

cussion is very brief because, as we’ve already noted, the main focus of our work is

on the “far from random side”, and the discussions of randomness are mainly for the

purposes of motivation, perspective and analogy. A notable exception, in this sub-

section, is that, at its close, we introduce J. Rute’s suggestion, in [21], presented as

our Definition 3.2.22, for an approach to a generalization of K-triviality in measure-

theoretic terms. The point is that the motivation came from one of the approaches

to generalizing the randomness notion. Rute also asked whether his notion might be

equivalent to the approach of Melnikov and Nies, but he did not pursue this question.

Definition 3.2.1. If A ⊆ X, A is called Σ0
1 if A can be expressed as A =

⋃
i∈I Bi,

where the Bi are the computable balls of X , as in Definition 3.1.1 and I is c.e.. An

index of any such I will be called an index of A.

Definition 3.2.2. By a cellularization for X , we mean a sequence C = {(A0
i , A

1
i )}i∈N,

where for each i, A0
i , A

1
i are disjoint Σ0

1 sets.

We can then represent certain elements of X by infinite binary strings, using a

cellularization as follows.

Definition 3.2.3. [21] Let C be a cellularization for X . For a finite bitstring σ of

length n, define [σ]C = A
σ(0)
0 ∩ Aσ(1)1 ∩ · · · ∩ Aσ(|σ|−1)|σ|−1 . This will be referred to as a

cell. Define x �C n to be the unique σ of length n such that x ∈ [σ]C if there is

such a σ; otherwise x �C n is undefined. We say x is a represented point under C or

x ∈ repC if and only if x �C n is defined for all n. When x ∈ repC, let w = wC(x) in

2N be such that for all n, [w � n] = x �C n.

The next Proposition gives an important property of wC. The proof is both standard

and straighforward, and it is omitted.

Proposition 3.2.4. Let T1 be the topological space repC, equipped with the relative

topology induced by the metric topology of X , and let T2 be 2N equipped with the

metric topology of C. Then, wC is 1:1 and continuous with continuous inverse,

viewed as a map from T1 to T2.
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Hoyrup and Rojas [9] (their Definition 4.1.2) call a measure on X computable for

X if and only if it is a constructive point of the space, M(X ), of all (probability)

measures on X , equipped with the Prokhorov metric. However, they proceed to

show this to be equivalent to a more useful condition (their Theorem 4.2.1). We

take this condition to be our definition of a computable measure.

Definition 3.2.5. [9] A measure µ on the Borel sets of (X, d, {αi}i∈N) is a com-

putable measure on X if and only if the function <i1, · · · , ik>.µ(Bi1 ∪ · · · ∪ Bik) is

lower semicomputable, where Bi is the open ball around απ1(i) of radius qπ2(i). If µ

is a computable measure on X , we say that µ is X -orderly if and only if for all open

balls, B of X , µ(δ B) = 0.

Suppose µ is a computable measure on X . It is natural and desirable to seek

cellularizations C for which µ-almost all points of X are represented. This leads us

to impose two additional conditions on C. The first is directly designed to achieve

this goal. For the second condition, let L be the lattice of sets generated by {A0
i }i∈N∪

{A1
i }i∈N, i.e. the closure of {A0

i }i∈N ∪ {A1
i }i∈N under finite unions and intersections,

and let {Li}i∈N be an enumeration of L (obtained in some effective fashion from C).
The second condition will guarantee that L is a basis for the metric topology, and

(in the sense made precise by the condition) effectively so. In particular, the second

condition will guarantee that the cells (or cylinders), σC, of the previous Definition

can be uniformly and effectively expressed as effective unions of computable open

balls.

Definition 3.2.6. Let µ be a computable measure on X , and C = {(A0
i , A

1
i )}i∈N

be a cellularization for X . We call C a generator for (X , µ) if the following two

conditions are met:

1. for all i, µ(A0
i ∪ A1

i ) = 1, and

2. if U ⊆ X is a Σ0
1 set, then there is a c.e. set, J , of indices such that, µ-a.e.,

U =
⋃
j∈J Lj; further, we can find an index for J , uniformly and effectively,

from an index for U .
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When condition 1. of the previous Definition is satisfied, the pairs (A0
i , A

1
i ) are

commonly referred to a.e. decidable pairs. Though being orderly may not, strictly

speaking, be a necessary condition for condition 1. to hold, it is nevertheless a nat-

ural condition to impose. Henceforth we adopt the following convention:

Going forward, all computable measures are assumed to be orderly.

Note that condition 2. of the previous Definition makes no reference to µ. In the

case that C is a generator, it is more common to denote it by A. We adopt this

convention in what follows. Even for generators, A, we may have x 6∈ repA. Such

unrepresented points x have special computability properties which suggest they are

far from being random. As such, they do not present any problems in generalizing

randomness notions, but may be problematic in trying to generalize notions like

K-triviality.

Definition 3.2.7. If A is a generator for (X , µ) we define µ∗ to be the “push-

forward” measure on 2N obtained from µ via wA in the standard way: S ⊆ 2N is

µ∗-measurable if and only if w−1A [S] is, and when this is true, µ∗(S) := µ
(
w−1A [S]

)
.

We then have a correspondingly stronger form of Proposition 3.2.4. The proof is,

once again, routine, standard and omitted.

Proposition 3.2.8. If A is a generator for (X , µ) then µ∗ (as in the previous

Definition) is a computable measure on CT . Further, the continuity of wA′d and w−1A′d
is effective in that inverse and forward images of Σ0

1 sets are Σ0
1.

In fact, the compact statement of the previous Proposition exploits the convention

established in the final paragraph of Section 2.1: more formally, the conclusion is

properly stated as: µ∗ is a computable measure on X ∗ =
(
2N, d∗, {α∗i }i∈N

)
, whenever

X is a computable metric space for which the metric topology of d∗ coincides with
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the usual metric topology of C.

Hoyrup and Rojas, [9], give a standard way to get a cellularization from the open

balls which will be a generator for (X , µ) whenever µ is a computable measure on

X .

Definition 3.2.9. Let
(
X, d, {αi}i∈N

)
be a computable metric space. Define Ad by

A1
<i,j> = B(αi, qj), A

0
<i,j> = X −B(αi, qj),

Certainly we can writeA1
<i,j> effectively as a union of computable balls (justB(αi, qj)).

We can also effectively enumerate A0
<i,j>, by searching through all computable balls

and enumerating those computable balls B(αm, qn) such that d(αi, αm) > qj + qn.

However, this enumeration also has an unpleasant property - namely that there will

always be σ for which [σ]Ad = ∅. To see this, simply take disjoint balls B(αi1 , qj1)

and B(αi2 , qj2), and let σ (< i1, j1 >) = σ (< i2, j2 >) = 1. Nothing in the relevant

definitions rules this out, but it severely restricts what the push-forward measures,

µ∗, obtained via wAd , can be like: they must assign measure 0 to any σ for which

(as in the previous paragraph) [σ]Ad = ∅.

We now undertake the construction of a cellularization, A′d of X which, like Ad,
will be a generator for (X , µ) whenever µ is a computable measure on X , but with-

out the unpleasant property just noted for Ad. Indeed, rather than any unpleasant

properties, A′d will have some extremely useful properties.

Definition 3.2.10. We will denote by A′d the cellularization of X constructed in

what follows.

CONSTRUCTION OF A′d:
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Let
(
X, d, {αi}i∈N

)
be a computable metric space. We will construct a generator

A′d in stages. We fix an enumeration {Bi}i∈N of computable balls to aid in the con-

struction (for concreteness, we fix B<i,j> = B(αi, q
′
j), where {q′j} is an enumeration

of all dyadic rational numbers such that for no i, j does B<i,j> cover all of X). We

will also maintain an array, B(i,j,k), of balls, defined for all i, for all j ≥ i, and for

all k < 2j−i−1. In determining A1
i and A0

i , we will first construct auxiliary Σ0
1 sets,

A′1i,X and A′0i,X . It will be helpful to note that the following operations are effective:

1. determining whether Bm1 and Bm2 are disjoint is computable. This can be

done by checking that

d(απ1(m1), απ1(m2)) > qπ2(m1) + qπ2(m2).

2. determining whether Bm2 ⊆ Bm1 is computable. This can be done by checking

that

d(απ1(m1), απ1(m2)) + qπ2(m2) < qπ2(m1).

3. determining whether Bm2 ⊂ Bm1 , i.e., Bm2 is a proper subset of Bm1 . This is

not fully computable, but enumerable. First determine if Bm2 ⊂ Bm1 , and then

enumerate special points, αm, until one is found such that d(αm, απ1(m1)) <

qπ2(m1), but d(αm, απ1(m2)) > qπ2(m2). This technically fails to detect the possi-

bility that Bm2 ∪{x} = Bm1 , where x has no Cauchy name, but such x cannot

be referenced by the computable framework of special points at all, and so will

be disregarded.

Construction of A′1i,X and A′0i,X :

Stage n = 0: Pick B(0,0,0) = B0, and set A′10,X = B(0,0,0). Then A′00,X is enumerated

by enumerating balls Bm, and placing them into A0
0 if they are disjoint from A′10,X .

We will thus always have that A′00,X (and, in fact, A′0n,X , for all n) is an infinite

union of balls, but we can also give an index for the enumeration effectively.
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Stage n > 0: For all i ∈ [0, n), all j ∈ [i, n), and k ∈ [0, 2j−i−1), B(i,j,k) is defined.

For all i < n, We define B(i,n,k) as follows:

Given k ∈ [0, 2n−i), define

j′k = the least s such that k ≤
s∑
r=0

2r,

and

k′ = k −
j′k∑
r=0

2r.

Now, to define B(i,n,k), enumerate all computable balls, Bm, until one is found

such that Bm ⊂ B(i,j′k,k
′) (we will actually require that Bm ⊂ B(απ1(m′),

qπ2(m′)
4

),

whereBm′ = B(i,j′k,k
′), but the reason why won’t become apparent until later), and

also Bm is disjoint from all
n−1⋃

r=j′k+1

2r−1⋃
s=0

B(i,r,s).

Since this still a finite union of balls, detecting disjointness is still effective. Now,

define Bn,n,0 by enumerating balls until one is found to be disjoint from all other

Bi,i,0 for all i < n. Finally, define

A′
1
n,X =

n⋃
i=0

2r−1⋃
0

B(i,n,s),

and, as before, A′0n,X is the enumeration of open computable balls which are disjoint

from A′1n,X , which we can effectively give an index for.

We note that if A′1i,X , and A′0i,X , were taken to be the a.e. decidable pairs of a gen-

erator, it would guarantee that all cells are nonempty, but, it is possible that there

is an open set U such that for all x ∈ U , wA(x) = 0∞. This is clearly an undesirable

property for a representation to have. We also define A′1n,Bm and A′0n,Bm exactly as

we defined A′1n,X and A′0n,X above, except that all balls used must be proper subsets

of Bm. This will allow us to preserve the property of our generator producing no
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null cells.

Now, to remedy the fact that many points may not be represented, we will incor-

porate all Bm into our generator. At stage n, if Bn does not cover any of the balls

B(i,j,k) which have been defined up to stage n, then we let A1
n = Bn ∪ A′1n,X , and

define A0
n to be an enumeration of the balls in the complement of A1

n. On the other

hand, if for some i, j, k, B(i,j,k) ⊂ Bn, we let {ms}s∈I be an enumeration of indices

of balls such that Bms ∈ Bn, and then define {Ct}t∈N be an enumeration of the balls

which are contained within Bn, but are disjoint from B(απ1(ms),
qπ2(ms)

2
). Now, we

define

A1
n =

(⋃
t∈N

Ct

)
∪ A′1n,X .

A0
n to be an enumeration of the balls in the complement of A1

n, as before.

This completes the construction of A′d.

Conjecture 3.2.11. The cellularization A′d just constructed has the following prop-

erties.

1. For any (orderly) computable measure µ on X , A′d is a generator for (X , µ).

2. For all finite binary strings σ, [σ]A′d is nonempty.

3. If ν is a continuous computable measure on CT , and µ is the push-forward

measure for ν obtained from w−1A′d
, then ν = µ∗.

The idea of the proof is as follows: property (1) is routine. Property (2) is essentially

seen in Figure 3.1, except the case of overlap from Bn at stage n. For property (3),

we need to be clear about exactly how the balls and cells relate via w (which cells

are in the pushforward of a ball, which balls are in the pullback of a cell). Once this

is done, the proof should be routine.
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Figure 3.1: A′d emulates Cantor space via A′0i,X , A′1i,X in a general metric space

The previous Proposition provides a complete connection between the GHR ap-

proach to computable measures embodied in Definitions 3.2.1 through 3.2.7, and

Propositions 3.2.4 and 3.2.8 on the one hand, and M (CT ), on the other. This is

because, in view of property 3. of the Proposition, and unlike the situation for

Ad, above, every continuous computable measure on CT arises as the push-forward

measure of some computable measure on X .

We proceed, now, to give the more direct and historically earlier approach to com-

putable measures on CT used by Zvonkin and Levin, [29]. This approach will be

used in our work in Chapter 4.

Definition 3.2.12. A function ρ : Σ∗ → [0, 1] is called a cell-semi-measure on 2N if
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it satisfies:

ρ(ε) = 1, and ρ(σ0) + ρ(σ1) ≤ ρ(σ).

If ρ is a cell-semi-measure where equality holds, i.e., ρ(σ0) + ρ(σ1) = ρ(σ), then ρ

is called a cell-measure on 2N. Such a cell-measure is called continuous if and only

if for all x ∈ 2N, limn→∞ ρ(x � n) = 0. Otherwise, it is called a cell-measure with

atoms.

Definition 3.2.13. A cell-measure, ρ, on 2N is called computable if and only if there

exists total, computable ρ̃ : N× Σ∗ → Q2 such that

|ρ(σ)− ρ̃(i, σ)| ≤ 2−i.

Where Q2 denotes the dyadic rationals. Such a cell-measure is called exactly com-

putable if ρ̃ is constant in its first argument, i.e., the approximation is exact.

We can obtain, canonically from a cell-measure, ρ, a measure, µρ, on 2N, in the usual

sense, by setting µρ([σ]) := ρ(σ), and extending this definition to Borel subsets (for

the usual topology) of 2N in the usual way. Further, any measure on the Borel sets

of 2N arises as µρ, for the obvious ρ, since the measure is completely determined by

its restriction to the cells [σ].

Further, it is easily seen that a cell-measure ρ satisfies Definition 3.2.13 if and only

if its µρ is a computable measure on CT . These observations fully justify the typical

abuse of notation/terminology involved in identifying a cell-measure, ρ with its µρ,

and via that identification, taking Definition 3.2.13 as defining the notion of com-

putable measure on CT . We shall proceed in exactly this fashion in Chapter 4, by

constructing computable cell-measures, and taking them to have constructed the

associated computable measures. In fact, with the exception of the construction

in Theorem 4.1.5, the computable measures constructed in Chapter 4 will all be

exactly computable.

It will be useful to be able to visually represent some of the measures we construct

as depicted in Figure 3.2 which follows. The size of each cell corresponds to its

49



measure, and cells are stacked on top of each other so that extensions are above

their prefixes.

µ(0) µ(1)

µ(00) µ(01) µ(10) µ(11)

µ(000)
↓

Figure 3.2: A visual representation of µ

For example, if we have µ(0) = .7, µ(00) = .1, we may visualize this in Figure 3.3

as follows.

.7 .3

.1 .6

Figure 3.3: An example visualization

3.2.1 Granularity

In [8], Hölzl and Porter define a useful notion related to randomness.
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Definition 3.2.14. If µ is a computable measure (on CT ) define gµ for all n > 0 by

gµ(n) = the smallest m such that all strings of length m have µ-measure less than

2−n.

It is obvious that gµ(n) is always larger than n. Lebesgue measure has the slowest

possible granularity function, gλ(n) = n+1. More irregular measures generally have

faster growing granularity, for example, gµ† as defined below in 4.3.1 has at least

exponential growth. The following is a useful fact about gµ.

Proposition 3.2.15. [8] For any computable measure µ, its granularity function,

gµ, has a computable upper bound g∗µ.

Proof. Let µ̃ be as guaranteed for µ by Definition 3.2.13, and for finite bitstrings,

σ, and natural numbers, j, we use µj(σ) in place of µ̃(j, σ). Let m,n be positive

integers n. We let {σi}i<2n be any enumeration without repetitions of the set of all

strings of length n. Note that Definition 3.2.13 guarantees that for sufficiently large

j,
∑

i µj(σi) > 1−2−m, and let s(m,n) be the least j for which this holds. Note that

s is computable and defined for all m,n > 0. We define the computable predicate

P (m,n) by letting this hold if and only if m,n > 0 and for all i < 2n, µs(m,n)(σi) <

2−m. Note that if P (m+ 1, n) holds, then gµ(m) ≤ n, so finally, taking

g∗(m) := the least n such that P (m+ 1, n) holds,

we have that g∗ is the required computable upper bound.

If µ is exactly computable, then gµ is always computable. If µ is computable, but

not exactly computable, it is possible that gµ is not computable. In Proposition 5.2

of [8], Hölzl and Porter construct a computable measure for which

gµ(n) =

2n if φn(n) ↓
2n+ 1 if φn(n) ↑

so that gµ is not computable.
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We will also consider a localized version of granularity, gx,µ, which we will use in

Proposition 5.2.5.

Definition 3.2.16. We define the local granularity of a measure µ, gx,µ, by gx,µ(n) =

the least m such that µ(x � m) < 2−n.

It is the local version of granularity since we clearly have that for all n:

gµ(n) = max {gx,µ(n)|x is a string with |x| = n} .

3.2.2 KFT and MET for computable measures on CT

Here we enumerate notation for potential generalizations of KFT and the MET.

Definition 3.2.17. Let µ be a computable measure. If ~W = (ri, ζi)i∈N is a bounded

request set we will use KFT(µ, ~W ) to denote the assertion:

there exists a prefix-free sequence {σi}i∈N such that for all i, − log µσi = ri.

We will use KFT(µ) to denote the statement:

for all bounded request sets, ~W, KFT(µ, ~W ).

There is a reasonable argument that this is not an appropriate attempt at a gener-

alization: applications of KFT in the standard setting go through when the descrip-

tions, σi, are allowed to be longer than ri by a fixed constant b. Indeed the entire

concept of complexity is about growth rates, and not specific values. This suggests

an attempt at a somewhat weaker generalization.

Definition 3.2.18. Let µ be a computable measure and b a non-negative integer.

If ~W = (ri, ζi)i∈N is a bounded request set we will use KFT∗(µ, ~W, b) to denote the

assertion:

there exists a prefix-free sequence {σi}i∈N such that for all i, −dlog µσie ≤ ri + b.
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We will use KFT∗(µ) to denote the statement:

for all bounded request sets, ~W for some b, KFT∗(µ, ~W, b).

Similarly, we will give two potential versions of a generaliztion of the MET. The

effectiveness and uniformity in the index, e of the bounded request set is as in the

statement of Theorem 2.2.19, so we omit the parenthetical explanations given there.

Definition 3.2.19. Let µ be a computable measure, let ~W = {< ri, ζi >}i∈N be a

bounded request set, and let e be an index of ~W . We use MET(µ, ~W ) to denote the

following assertion:

effectively and uniformly in e, we can find a c.e. prefix-free code, {σi}i∈N and a

prefix-free index, d(e) of the prefix-free machine M = σi.ζi such that

for all i, − log µσi = ri.

By MET (µ), we mean the assertion that for all ~W : MET (µ, ~W ) holds.

Definition 3.2.20. Similarly, let µ be a computable measure, let ~W = {< ri, ζi >}i∈N
be a bounded request set, let b ∈ N, and let e be an index of ~W . We use

MET∗(µ, ~W, b) to denote the assertion which differs from MET(µ, ~W ) only in that

the final displayed formula is changed to what follows:

for all i, −dlog µσie ≤ ri + b.

By MET∗(µ), we mean the assertion that for all ~W there exists b ∈ N such that

MET∗(µ, ~W, b) holds.

3.2.3 Randomness in computable measure spaces and KR-

triviality

Various generalizations of Martin-Löf randomness were proposed, all in the natural

setting of computable measures, since they all involved, in one form or another, some
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sort of generalization of ML-test, with its underlying measure-theoretic character.

Attesting to the robustness of the notion, they all turned out to be equivalent in

that, for each computable measure, the different approaches yielded the same set of

Martin-Löf random elements of the ambient space. We briefly mention a few of the

more prominent approaches, but omit the details, here, since, except as explicitly

noted below, they do not directly impact our work.

One approach was taken, variously, in [1], [4], and [19] and in Chapter 6 we will

discuss some questions related to this approach. Another approach was taken by

Gács [5] and Hoyrup and Rojas [9], and their approach led to the following general-

ization of Schnorr’s Theorem. We omit the detailed development of their notion of

computable measure space which dif and only ifers in some details from the above

account of their approach to computable measures on computable metric spaces.

Proposition 3.2.21. [9] If (X,µ) is a computable measure space and x ∈ X, then

x is µ-Martin-Löf random if and only if

K(ρ(x) � n) ≥+ − log µ(ρ(x) � n).

Essentially, this replaces n, in Proposition 2.3.25, by − log µ(ρ(x) � n). It is then

reasonable to wonder if the same type of replacement is sensible for K-triviality.

Later still, Rute, [21], developed a approach to generalizing the notion of Martin-Löf

randomness that was even closer to the spirit of the GHR development, sketched

above, of the theory of computable measures on computable metric spaces, and

proved the equivalence of his approach to the others. What will be important for us

in what follows is that the previous Proposition made it natural for him to consider

formulating a generalization of the K-triviality notion in the language of computable

measures. This led him to suggest the notion of KR-triviality which we now present.
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Definition 3.2.22. Let X be a computable metric space, let µ be a computable

measure on X , and let A be a generator for (X , µ). We say x ∈ X is KR(X,µ,A)-

trivial if

K(x �A n) ≤+ K(−dlog µ(x �A n)e)

We let KTR denote the set of x ∈ X such that x is KR-trivial.

By analogy with Definition 2.3.26, we have the notion of infinitely often KR(X,µ,A)-

trivial; we omit the obvious details. As before, we will omit sometimes omit µ and

even more frequently omit A when they are clear from context.

In the case of Cantor space, this new definition agrees with the standard formulation

K(x � n) ≤+ K(n) since − log µ(x � n) = − log 2−n = n. The idea is that, in the

general setting the negative logarithm of the measure is the analogue of length in

Cantor space, and it seems quite natural, especially given its aptness in the previous

Proposition. As already noted in Chapter 1, looking more deeply into the notion of

KR-triviality and comparing it with Definition 3.1.4 was the initial motivation for

the work of this dissertation. This sets the stage for the next two Chapters, where

we will carry this out.
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Chapter 4

Computable Measures: The Good,

The Bad, and the Atomic

Chapter Overview

In this Chapter, we present our results on computable measures on CT . In Section

4.1, we introduce the notion of coarseness, a notion dual to granularity, present

some basic facts, and prove two basic results (Proposition 4.1.3 and Theorem 4.1.5)

about coarseness for computable measures. In subsection 4.1.2, we invoke a “tame-

ness” hypothesis on the coarseness to prove, Theorem 4.1.6, that the generalization

of the MET introduced in Defintion 3.2.20 holds for computable measures satisfy-

ing this hypothesis. A counterpoint is provided in Section 4.2, where we explore

the difficulties in establishing generalizations of the MET, and even of KFT itself

in the absence of additional hypotheses on the computable measure. In Section

4.3, we explore some additional pathologies that arise for computable measures on

CT , especially regarding Rute’s suggested generalization of K-triviality, Definition

3.2.22.
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4.1 Coarseness

In 3.2.14, we defined the notion of granularity . Here, we define the dual notion

of coarseness. In order to see that this notion is well defined, note that if m > 0,

then all strings of length at most n have µ-measure greater than 2−m and that some

string of length m must have µ-measure no greater than 2−m.

Definition 4.1.1. If µ is a computable measure (on CT ), we define cµ, the coarseness

of µ, by setting cµ(0) = 0, and for m > 0, taking cµ(m) to be the largest n such

that all strings of length at most n have µ-measure greater than 2−m (and 0 if no

such m exists).

The next remark records a few obvious, but nevertheless helpful facts about coarse-

ness.

Remark 4.1.2. For all measures, µ:

1. for all n > 0, cµ(n) < n,

2. for all n > 0, cµ(n) is the least m < n such that some string of length m + 1

has µ-measure at most 2−n.

In analogy to the situation for granularity, Lebesgue measure has the largest possible

coarseness function: cλ(0) = 0 and for n > 0, cλ(n) = n−1. More irregular measures

generally have slower growing coarseness. For example, the measure, ν, constructed

in Proposition 4.2.1 has logarithmic coarseness.

4.1.1 Basic Results About Coarseness

The notion of coarseness will figure in several of our results about computable mea-

sures. In analogy with Proposition 3.2.15 (and building on its proof), the next

Proposition shows that if µ has no null cells then there is always a (nontrivial)

computable lower bound on cµ (and as a corollary to the proof, that if µ is ex-

actly computable, then cµ itself is computable). In Theorem 4.1.5, we obtain an
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analogue of another result from [8]: there is a computable (but necessarily not ex-

actly computable) µ such that cµ is not computable. In subsection 4.1.2, we show,

Theorem 4.1.6, that if cµ has the asymptotically fastest possible growth rate, then

MET∗(µ) holds in a strong way: there is a single b such that for bounded request

sets, ~W, MET∗(µ, ~W, b) holds.

Proposition 4.1.3. If µ is a continuous computable measure with no null cells,

then cµ has a computable lower bound such that

lim
m→∞

cµ(m) =∞.

Proof. We proceed much as in the proof of Proposition 3.2.15; in particular, we

adopt the same notation µj as there and we take m,n, {σi}, the total computable

function s, the computable predicate P and g∗µ to be as in that proof. We de-

fine the computable predicate Q(m,n) by taking it to hold if and only if for all

i, µs(m,n)(σi) > 2−m.

If m = 0, we simply take c∗µ(m) := 0, so assume that m > 0. Note that this clearly

implies that Q(m, 0) holds. Also note that Q(m, g∗µ(m)) fails and that if n1 < n2

and Q (m,n2) holds, then so does Q (m,n1). Further, appealing to the definition of

s, it follows that n2 ≤ cµ(m). So, we take

c∗µ(m) := the largest n such that Q(m,n) holds,

and then c∗µ is a computable lower bound for cµ, as required. It follows easily from

the continuity of µ that limm→∞ cµ(m) =∞.

If µ is exactly computable, then for all s, µs = µ, and then the construction of c∗µ

simply yields cµ, which is, therefore, computable.

Remark 4.1.4. The limit condition is included because i.0 is a trivial lower bound.
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We now construct a computable (but necessarily not exactly computable) measure

(necessarily without null cells) whose coarseness function is not computable. Our

construction is similar to that of [8], where the analogous result for granularity was

proved.

Theorem 4.1.5. There exists a computable measure µ (on CT ) such that cµ is not

computable.

Proof. The idea is to construct a measure so that at level k + 2, only one string

can possibly have measure as small as 2−(2k+3). This string will also be able to have

measure larger than 2−(2k+3). In this way, the coarseness will depend solely on what

we do with this string. We will use this to force

cµ(2k + 3) =

k + 2, if U(k) ↓
k + 1, if U(k) ↑ .

(4.1)

This will complete the proof, since then we will have shown that cµ encodes the

Halting Problem. We will define the computable function µ̃ required by Definition

3.2.13. As in the proof of Proposition 3.2.15, for natural numbers, s and strings, ω,

we use µs(ω) in place of µ̃(s, ω). We will define the µs by recursion on s. Though

this is not required by our Definition 3.2.13 (it is required in some equivalent defi-

nitions), we will construct the µs so that for each string ω, the sequence {µs(ω)}s∈N
will be monotone non-decreasing; thus, our µ will, in fact, be lower semicomputable.

We begin by defining the “backbone” of our measure. On the backbone, µ̃ will be

constant in s, so what follows constitutes the basis of our recursive definition of the

µs as well. For all s and for ? = 0 or ? = 1:

µs(ε) = µ(ε) := 1 and for k ≥ 0, µs
(
1k?
)

= µ
(
1k?
)

:= 2−(k+1).

For the one-bit extensions, 1k0?, of the 1k0, this will no longer be true. The defi-

nition of µs for these strings will involve a genuine recursion on s. In view of their

important role in what follows, we introduce special notation for these strings: we

will use τk to denote the string 1k0, and refer to such strings as backbone strings.
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We will refer to the one-bit extensions of backbone strings, the τk?, as special strings.

We will define the µs (τk?) according to whether or not Us(k) ↓, and we will do this

in such a way that cµ (τk0) will encode whether or not U(k) ↓. If this is achieved,

then cµ will encode the Halting Problem and so will not be computable.

Before carrying out the recursion on s that will define the µs (τk?), we mention that

the situation above the special strings will be very simple: for all s and for any

string, η, of positive length, we will define:

µs (τk ? η) := µs (τk?) · 2−|η|, (4.2)

i.e, above the special strings, each µs “distributes the measure evenly.” Since, for

every string ω we will have that µ(ω) = sups µs(ω), the previous equation also holds

for µ in place of µs: for any string η, of positive length, we will have that:

µ (τk ? η) := µ (τk?) · 2−|η|, (4.3)

Thus, while there is formally a recursion on s involved in the definition of µs for (non-

trivial) extensions of special strings, the role of the recursion is limited to its role

in determining the value of µs for its special prefix. It is an immediate consequence

of the previous equation that if τ is a special string and τ � ω then, for ? = 0 or

? = 1:

µ(ω?) =
1

2
µ(ω), (4.4)

so that it is also true that above special strings, µ “distributes the measure evenly.”

The last two equations will play a key role in verifying an important property of the

construction. We will have that for all k:

for all σ with |σ| = k + 2, µ(σ) ≥ 2−(2k+3), (4.5)

with equality only possibly holding if σ = τk0.

60



Once we have given the details of the recursive definition of the µs, we will prove,

by induction on k, that this equation holds. Once we do this, we will satisfy 4.1 as

desired.

With all of this in place, we proceed to the actual definition by recursion on s of µs

for the special strings. For s = 0, we define:

µ0 (τk0) = 2−(2k+4), µ0 (τk1) = 2−(k+1) − 2−(2k+2) + 2−(2k+4). (4.6)

If s > 0, we define:

µs(τk1) =

2−(k+1) − 2−(2k+2) +
∑s+1

i=1 2−(2k+3+i), if Us(k) ↑
µs−1(τk1), if Us(k) ↓

(4.7)

Finally, when s > 0, in the “? = 0 case”, we define:

µs (τk0) =


∑s+1

i=1 2−(2k+3+i), if Us(k) ↑
µs−1 (τk0) , if Us−1(k) ↓
2−(k+1) − µs (τk1) , if Us(k) ↓ but Us−1(k) ↑ .

(4.8)

This completes the recursive definition. As already pointed out, in Equation 4.2,

we have “predefined” all of the µs on all of the extensions of the special strings, so

this also completes the definition of the µs. We now begin the inductive proof of

Equation 4.5.

Assume that Equation 4.5 holds for all strings of length k + 2. Let σ be such that

|σ| = k + 3.

1. Case σ = τk+11: It is clear by construction that µ(σ) > 2−(k+2) − 2−(2k+4) >

2−(2k+5).

2. Case σ = τk+10: If U(k + 1) ever halts, we know that µ(σ) = 2−(2k+4) −∑s′+1
i=1 2−(2k+5+i), where s′ is the least s such that Us(k) ↓. This is greater
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2−(2k+1)

2−(2k+3)

µs(τk0) µs(τk1)U(k) ↑

2−(2k+1)

2−(2k+3)

µs(τk0) µs(τk1)U(k) ↓

Figure 4.1: µs on the special points τk0 and τk1

than 2−(2k+5) as desired. In the case that U(k + 1) never halts, we instead see

lims→∞ µs(σ) = 2−(2k+5) = µ(σ) - this is the only way that equality in 4.5 can

hold.

3. Case σ is not a special string: By the induction hypothesis, µ(σ � (k + 2)) ≥
2−(2k+3), and µ(σ) = 1

2
µ(σ � (k + 2)), so it follows that µ(σ) > 2−(2k+5).

Hence, 4.5 holds, and we can see that

cµ(2k + 3) =

k + 2 if U(k) ↓
k + 1 if U(k) ↑

and so, it is not computable.

4.1.2 MET for Tame Measures

The MET plays such an important role in the standard setting that it is natural to

investigate to what it extent it holds for computable measures (on CT ). While the
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results of the next Section place important limitations on the range of measures for

which it can hold, our next result gives a characterization, in terms of coarseness, of

a family of computable measures µ, for which MET∗(µ) will hold in a strong fashion.

Theorem 4.1.6. If µ is a computable measure (on CT ) and b is a positive integer

for which cµ(n) > n − b, then for all bounded request sets, ~W, MET∗
(
µ, ~W, b

)
holds.

Proof. We follow the proof given in [18] and there are strong analogies to the proof

of Theorem 2.2.17, above. Once again, we work by recursion on i, but we can no

longer asssume that ri ≥ rj whenever j < i. This leads us to consider a more com-

plicated set, Ri−1 of “candidates” to be σi or a prefix of σi. In the proof of Theorem

2.2.17, the analogue of Ri−1 was implicitly just the set of strings of length ri which

were not in Ui.

We begin by conventionally taking R−1 to be {ε}. The recursion then proceeds

as follows. At stage i ≥ 0, we will assume we have defined Ri−1 and the σj for

0 ≤ j < i, with the properties we shall give shortly, and we define σi and Ri in such

a way as to preserve the properties assumed for the construction prior to stage i.

We let r∗i := maxj≤i rj, and note, once again, that possibly ri < r∗. We also let

Ai := Ri−1 ∪ {σj|0 ≤ j < i} and R′i−1 := {τ ∈ Ri−1| |τ | ≤ ri}.

1. Ai is a prefix-free set of strings, all of length at most r∗i ,

2. distinct elements of Ri−1 have different lengths,

3. R′i−1 is non-empty,

4. Every string of length r∗i is either an element of Ai or has an element of Ai as

prefix.
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Note that by properties (1) and (4) we easily have that:∑
0≤j<i

2−rj +
∑

τ∈Ri−1

2−|τ | = 1. (4.9)

To define σi, let zi be that element of R′i−1 of the largest length (of elements of R′i−1).

Clearly zi is well-defined by properties (2) and (3). Let mi := ri−|zi|. We take σi :=

zi0
m (so that if m = 0, σi = zi). Finally, we set Ri := Ri−1\{zi}∪

{
zi0

`1|0 ≤ ` < m
}

.

Note that if σi = zi, then there are no new strings in Ri; we have just removed zi.

We next argue that we have preserved properties (1) - (4). Of course r∗i+1 =

max (r∗i , ri+1), and properties (1), (4) for Ai+1 are clear by construction and the

fact that these properties hold Ai. It is also clear by construction (especially the

choice of zi) that property (2) holds for Ai+1. Thus, it remains to verify that we

have property (3) for Ai+1. As above, it follows from properties (1), (4) for Ai+1

that:

1 =
∑
0≤j≤i

2−rj +
∑
τ∈Ri

2−|τ | =
∑
0≤j≤i

2−rj +
∑
τ∈R′i

2−|τ | +
∑

τ∈Ri\R′i

2−|τ |. (4.10)

It also follows from construction and property (2) for Ai+1 that
∑

τ∈Ri\R′i
2−|τ | <

2−ri+1 , and therefore, it is impossible for R′i to be empty, so we have also preserved

property (3).

This completes the construction of the prefix-free code {σi}i∈N, which, we note was

carried out effectively in the sequence of lengths {ri}i∈N. The index e provides us

“effective access” to this sequence and so to the construction of {σi}i∈N. Thus,

we have outlined an effective procedure to obtain σi from i and e. Since the set

{σi}i∈I is prefix-free, it can also be effectively inverted to find i from σi. We can

then appeal to e again, to obtain ζi effectively from σi, which gives us our desired

prefix-free“machine” M . Since this was done uniformly and effectively in e, by the

s −m − n Theorem, starting from e we effectively obtain d, a prefix-free index for

this “machine” M with M(σi) = ζi.
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It remains to verify that for all i, −dlog µσie ≤ ri + b, as required for the defini-

tion of MET∗(µ, ~W, b), cf. the second displayed formula of Definition 3.2.20. By

hypothesis, cµ(ri + b) > ri. Since |σi| = ri, it follows that µ (σi) > 2−(ri+b), and

hence −dlog µσie ≤ ri + b, as required.

If we sought to weaken the coarseness hypothesis to be only that cµ(n) > an−b where

a < 1, the proof given above would only guarantee µσi > 2−
ri+b

a , so the descriptions

could be smaller than desired by up to a factor of 1
a
, which is not good enough for

our purposes. However, if we tighten the weight condition from
∑∞

n=1 2−ri ≤ 1 to∑∞
n=1 2−darie ≤ 1, and this would allow us to adapt the proof so that it still works

- we define a new request sequence r∗i = darie, and choose σi for this new request

sequence as above. Now, cµ(n) > an − b gives us µσi > 2−
darie+b

a > 2−(ri+1+ b
a
), so

−dlog µσie ≤ ri + b∗, where b∗ = 1 + b
a
.

4.2 Negative Results for Computable Measures

on CT

4.2.1 KFT may fail

In Chapter 2, we introduced KFT as a partial result on the path to the proof of

the MET, which is an important tool in many proofs related to K-Triviality in the

standard setting. We will consider several attempts to generalize this theorem.

For a computable measure µ, KFT(µ) as given in 3.2.17 is the simplest and most

direct attempt at a generalization, since KFT in the standard setting is the assertion

that KFT(λ) holds. Unfortunately, it is not difficult to find computable measures,

µ, for which KFT(µ) fails, e.g., the following. Let µ be any computable measure

such that:

µ(0) = .75, µ(1) = .25, µ(00) = .5
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and let ~W be any bounded request set such that r0 = r1 = 1. Clearly there is no

way to find a prefix free code {σi}i∈N with the desired measures.

It is reasonable to take the ease with which counterexamples to KFT(µ) can be

found as further evidence that, as argued following Definition 3.2.17, despite its

simplicity, KFT(µ) is not an appropriate attempt at a generalization.

Theorem 4.2.1. There exists a computable measure ν and bounded request set ~W

such that for all b KFT∗(ν, ~W, b) fails.

Proof. We explicitly construct such a measure, ν and bounded request set ~W , work-

ing by recursion on stages, i. We will define ν specifically so that after satisfying a

certain number of requests, the only cells that remain will have measure too small to

satisfy the remaining requests. We will let ν(i) denote the partial sub-measure of ν

consisting of those strings whose measure has been defined by or before stage i, and

we will let Ai denote the set of strings whose measure has been defined at stage i,

but not earlier. Thus, the domain of ν(i) is
⋃
i′≤iAi′ . We will have that the domain

of ν(i) is prefix-closed, i.e. if ν(i)(τ) is defined and σ is a prefix of τ , then ν(i)(σ) is

also defined. We will have that Ai is finite, and we let A∗i be the set of terminal

strings of Ai, i.e., σ ∈ A∗i if and only if σ ∈ Ai and for no proper extension, τ , of σ

do we have τ ∈ Ai. Thus, for any string τ, ν(i)(τ) is undefined if and only if there

is a proper prefix of τ which is in A∗i . We will construct ν so as to be monotonic,

i.e. for any strings σ, τ , if σ is a proper prefix of τ , then ν(τ) < ν(σ).

In defining ~W , we will simply take ri = i, and for simplicity and concreteness we

will take ζi = ε for all i, though any reasonable choice of the ζi would also work.

For σ ∈ Ai, we define ν(i)(σ) so as to guarantee that KFT∗(ν, ~W, i) will fail, or, as

we will say, “to defeat b = i”.

Before undertaking the construction of the ν(i), we introduce some auxiliary notions.

The first is a pair of integer sequences, {ji} and {ki} defined by
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j0 = k0 = 0, j1 = 1, and for i > 0, ki = ji + i+ 2, ji+1 = 2ki .

The ki will figure in the definition of ν(i)(σ) for σ ∈ Ai, telling us how many/how

small the divisions in ν(i) will need to be in order to defeat b = i.

For positive integers, k, let let Ck be the “k-comb”: Ck = Ck.0 ∪ Ck,1, where

Ck,0 =
{

0`|` = 0, 1, . . . , 2k − 1
}

and Ck,1 =
{
τ1|τ ∈ Ck,0, τ 6= 02k−1

}
. We also let

Ti := Cki,1 ∪
{

02k−1
}

, and C ′k := Ck \ {ε}.

We also have the partial measure, Mk defined on Ck by:

Mk

(
0`
)

= 1− `

2k
and for ` < 2k − 1, Mk

(
0`1
)

= Mk

(
0`
)
−Mk

(
0`+1

)
.

Note that:

for σ ∈ Ti, Mki(σ) = 2−ki . (4.11)

Recall that for sets, X, Y of strings, we use XY to denote {στ |σ ∈ X, τ ∈ Y }.
Everything is now in place for the definition of the Ai and ν(i):

we set A0 := {ε} and ν(0)(ε) := 1. (4.12)

and having defined Ai, ν
(i) we set:

Ai+1 := A∗iC
′
ki+1

; for σ ∈ A∗i , τ ∈ C ′ki+1
, ν(i+1)(στ) := ν(i)(σ)Mki+1

(τ). (4.13)

This completes the construction of ν. It is clear from this construction that, as

promised, ν is monotonic.

Let k∗i denote
∑i

i′=0 ki′ . Note that it follows easily from 4.11 (and a small inductive

argument) that:

for η ∈ A∗i , ν(η) = 2−k
∗
i =

(
i+1∏
i′=1

ji′

)−1
. (4.14)

67



2−k

2−k

2−k

2−k 2−k

Figure 4.2: The partial measure Mk

As an easy consequence of Equation 4.14 and the monotonicity of ν, we have:

for η ∈ Ai+1, ν(η) < 2−k
∗
i =

(
i+1∏
i′=1

ji′

)−1
, (4.15)

and

for η 6∈ AiCki+1−1,0, ν(η) ≤ 2−k
∗
i =

(
i+2∏
i′=1

ji′

)−1
. (4.16)

A few more simply observations will make it straightforward to verify that our

construction of ν(i) has indeed defeated “b = ki”.

For all i, ∣∣A∗i+1

∣∣ = 2ki+1 |A∗i | , |Ai+1| = 2
∣∣A∗i+1

∣∣− 1, therefore:

For all i, ∣∣A∗i+1

∣∣ = 2
∑i
i′=0 ki′ = 2k

∗
i ,

Suppose that X is a prefix-free subset of (A0 ∪ · · · ∪ Ai)Ci−1,0. Then |X| ≤ 2k
∗
i .

Now suppose b = i. At this point in our construction, there are k∗i cells with measure

at least 2−k
∗
i . Suppose we are able to find valid assignments for σ1, · · · , σk∗i . For

all i ≤ k∗i , we must have σi ∈ AiCki+1−1,0, since any other cells have insufficient
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measure - less than 2−(k
∗
i+b+2). However, after assigning σ1, · · · , σk∗i , necessarily all

cells with measure greater than 2−(k
∗
i+b+2) were used, leaving no compatible choice

for σk∗i+1.

4.2.2 KFT can hold when MET fails

Next we will show that there exists a computable measure, ν, on CT , and a bounded

request set, ~W , for which KFT(ν, ~W ) holds but MET(ν, ~W ), the strongest possible

generalization of the Machine Existence Theorem, in which requests must be hit

exactly, fails. First, however, we define an auxiliary computable measure µ.

Definition 4.2.2. We define the computable measure µ which will be helpful in

proving Proposition.

µ(0) = .5 µ(1) = .5

µ(00) = .25 µ(01) = .25

µ(10) = .125 µ(11) = .375

µ(110) = .1875 µ(111) = .1875

The following figure and discussion will illustrate the role that µ will play in the

proof of Proposition .

1
2

1
2

1
4

1
4

1
8

3
8

3
16

3
16

Figure 4.3: The basis for conflicts in choosing σi
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The idea here is that we are forced to make a choice up front that will cut off

either our ability to give one large measure description, or two medium measure

descriptions - and we cannot know at the time which is correct. Suppose we are

given a request B set with r1=1. There are potential values for σ1 to realize the

request set: 0 or 1. However, if we choose σ1 = 0, and later on see ri = 2 for some

value of i, we cannot satisfy that request Likewise if we choose σ1 = 1, and later

on see ri = − log(.375). We cannot look ahead to see which choice is correct, as it

is possible neither value actually occurs, so any time we make such an assignment

(and we must eventually), we must acknowledge the possibility of conflict with

future values (possibly infinitely often), and so give up on effectively being able

to find an index. This does not rule out the possibility of finding such an index

semi-computably.

Proposition 4.2.3. There exist a computable measure, ν, on CT , and bounded

request set, ~W , such that KFT(ν, ~W ) holds, but MET(ν, ~W ) does not.

Proof. Let the measure µ be defined as above, with the measure of extensions of

these strings being split evenly, i.e. µ(τ0) = µ(τ1) for all τ 6= 0, 1, or 11 . Now,

using µ to assist us, we define the desired ν and request set ~W . Let pi denote the

ith prime number, and p denote
∑∞

i=0
1
p2i

. We use pi to make sure requests can only

be satisfied in specific ways.

For i ≥ 0, define:

ν(1i0τ) = µ(τ) ∗ p
−2
i

p
.

Let (~σj|j ∈ N) be an enumeration without repetitions of all finite prefix-free codes,

~σ, and let ~σj =
{
σjk
}
k∈[`j ]

. Remember that σjk will be the kth string in the prefix-free

code ~σj, not the kth bit of the string σi. We will enumerate our request set while also

simulating the standard universal machine U, and whenever we see a computation

halt, we will enter extra requests. At stage i, enter request (− log 1
2p2i

,0) into ~W at

the first unused index. At the same time, if for any j ≤ i, we see that Ui(j) ↓, let j′
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be the index such that rj′ = (− log 1
2p2j
, 0). We consider cases, depending on whether

or not j′ < `j, and if so, depending on the value of σjj′ .

First, if j′ ≥ `j, we enter no additional requests, so assume that j′ < `j. Then, if

σjj′ 6= 1j01, 1j00, we also enter no additional requests. If σjj′ = 1j01, add a request of

the form ( 3
8p2j
, 0) to ~W . Finally, if σjj′ = 1j00, add a request of the form ( 1

4p2j
, 0) to ~W .

We argue that no computable prefix free code satisfies the request set ~W , but KFT

still holds. Note that:

σs =



1j00 if rs = ( 1
2p2j
, 0) s.t φej(j

′) = 1j01

1j01 if rs = ( 1
2p2j
, 0) s.t φej(j

′) 6= 1j01

1j011 if rs = ( 3
8p2j
, 0)

1j001 if rs = ( 1
4p2j
, 0)

realizes ~W . However, it is not computable, since it computes the halting problem,

as for all j, either 1j00 or 1j01 is in {σs}s∈N. If 1j00 ∈ {σs}s∈N, then U(j) ↓, and if

1j01 ∈ {σs}s∈N, then U(j) ↑.

Even with the weaker condition embodied in the displayed formula of Definition

3.2.20, there is still the potential for difficulties. While we do not show, here, that

there exist (ν, ~W ) and b for which KFT∗(ν, ~W ) holds but MET∗(µ, ~W, b) fails, we

will give an argument to show that at least one conflict, as above, can occur. This

issue is discussed in more detail in Chapter 6.

Let b be given. Now, let γ be such that 2−(b+1) = 1
2
− γ · 2−(b+5), δ be such that

2−(b+2) + 2−(b+4) = 1
2
− δ · 2−(b+5), and let ε be such that 2−(b+2) = 1

2
− ε · 2−(b+5).

Note γ, δ, ε are integers. Define:

mk(0) =
1

2
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mk(1) =
1

2

mk(00i) =
1

2
− i · 2−(b+5) for i ≤ δ

mk(00δ0) = 2−(b+2)

mk(00δ1) = 2−(b+4)

mk(10i) =
1

2
− i · 2−(b+5) for i ≤ ε

mk(10δ0) = 2−(b+3)

mk(10δ1) = 2−(b+3)

Then, make the request r1 = 1. We must choose either σ1 = 00δ or σ1 = 10δ (choos-

ing prefixes of these also satisfies ri ≥ −dlogmkσie−b, but exacerbates the problems

that follow). In the latter case, if we later see two requests ri = 3, ri+j = 3, we

will not be able to realize them. In the former case, if we later see two requests

ri = 2, ri+j = 4, we will not be able to realize them.

4.3 Pathological Behavior of KTR on CT

4.3.1 Continuous Measures

The previous examples showcase the ways in which some important tools from the

standard setting fail to generalize.
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1
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2−(k+2) 2−(k+4) 2−(k+3) 2−(k+3)

Figure 4.4: The partial measure mk

In what follows we will see some ways in which the definition of KTR violates

our intuition from the standard setting. In Cantor Space, the complexity function

on prefixes of computable strings grows as slowly as possible, as the are easily en-

coded by a fixed constant index and length. Now, when we look at the standard

definition of K-Trivial, we note that, naturally, we expect longer strings to have

naturally higher complexity than shorter strings. When we stop thinking about

string length, and start thinking about cell measure, this breaks down. Our defini-

tion of KR-triviality is based on the intuition that strings with small measure should

have higher complexity, while those with larger measure should have relatively lower

complexity. The problem arises when the measure stays large on prefixes of a string

for quite some time - we eventually run out of small descriptions for strings with

large measure. In this way, even computable strings ... such as 0∞, for exammple,

may turn out to fail to be KR-trivial.

Proposition 4.3.1. There is a computable measure µ† such that 0∞ 6∈ KTR.

Proof. Using a combinatorial argument, we will satisfy requirements Pe which say

there exists n such that K(0n) > K(− log µ†(0n))+e. We will let le denote the place
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Pe is satisfied. The marker le will not move once assigned. For each e, simulate the

universal machine until we find σe such that V(σe) = e (this will provide a bound

for K(−dlog µ†(0n))e). Since there are only 2e+|σe|−1 possible descriptions of length

less than e+ |σe|, we set le = le−1 + 2e+|σe|, l0 = 0.

Now we define µ† in terms of the position of the markers: if li−1 < k ≤ li, then

µ†(0k) = 2−(i−1)− k2−i

li
, µ†(0k−11) = µ†(0k−1)−µ†(0k). and µ†(0k1σ) = 2−|σ|µ†(0k1).

Clearly each Pe will be satisfied, so 0∞ 6∈ KTR.

Note that since the largest measure cell along each level is always the one of all 0’s.

µ(0li) = 2−i, so gµ(n) = ln, which has exponential growth. On the other hand, cµ

grows essentially linearly.

Note that since at the first level, µ†(1) = 1
2l1

, so for all n < dlog 2l1e, cµ† = 0. Since

µ†(1) = 1
2l1

, we can safely say cµ†(dlog 2l1e) = 1. Since the measure is distributed

evenly on extensions of 1, coarseness will continue to increase linearly until we get

to the marker l1, we have cµ†(dlog 2l1e + n) = n + 1 for n ≤ l1. Once we reach

dlog 2l1e + l1, the coarseness will stay constant for a time, since at level l1 + 1, we

have a cell with measure 1
22l2

. In general,

cµ†(n) =


0 : 0 ≤ n < dlog 2l2e
li + n− dlog 2i+1li+1e+ 1 : dlog 2i+1li+1e ≤ n < dlog 2i+1li+1e+ li+1

li : dlog 2ilie+ li ≤ n < dlog 2i+1li+1e

However, the intervals [dlog 2ilie+ li, dlog 2i+1li+1e) eventually become empty, after

which, cµ is linear with slope 1 forever. To see that the intervals become empty:

log(2ili) + li = log(li) + li + i >+ log(li)− 1 + i+ |σi|

This is true since |σi| is bounded above by log(a(i)) + d, where d is an index for the

copy machine. Now,
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log(2ili) + li >
+ log(li)− 1 + i+ |σi| =

log(li) + log(2i+1+|σi|)

2
> log(2i+1li+1)

holds by concavity of the logarithm.

We suggest two ways to remedy this particular pathology:

Definition 4.3.2. We say x ∈ 2N is KR1(µ)-trivial if

K(x � n) ≤+ K(max{n, d− log µ(x � n)e})

Definition 4.3.3. We say x ∈ 2N is KR2(µ)-trivial if

K(x � n) ≤+ K(< n, d− log µ(x � n)e >)

These alternative definitions are different approaches to prevent the pathological

behavior of repeated requests seen in µ†. Note that 4.3.2, contains all strings which

are K-trivial in Cantor space by definition.

4.3.2 Measures with Atoms

With µ†, we showed that a pathological measure can make a string which one would

expect to be trivial look non-trivial. Now we will show the opposite is also possi-

ble: elements which one would expect to be random (for example, noncomputable

strings) can be made to look non-random (in fact infinitely often KR trivial) under

this definition. For this, we relax the assumption that our measure be continuous.

It is worth noting that for any computable measure, strings which are atoms are

trivially random (eventually −dlog µ(σ � n)e becomes constant).

Proposition 4.3.4. There is a computable measure with atoms, µ, such that all

strings with infinitely many 1’s will appear non-random to µ.
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Proof. We define µ(ε) = 1, µ(σ1) = 2−a
−1(σ1), and µ(σ0) = µ(σ) − µ(σ1). This

clearly defines a measure (on CT ), since a was chosen to be order-preserving between

the natural ordering of N and the lexicographic ordering on Σ∗, and so if ω � τ ,

then a−1(ω) < a−1(τ). Thus, for all n such that σ � n ends in 1, we have K(σ �

n) = K(−dlog µ(σ � n)e), hence all strings with infinitely many 1’s appear to be

non-random. In fact, they are infinitely often KR-trivial.

By the note above, we also see that all strings with only finitely many 1’s are atoms,

and, in fact, random according to µ. Also, all strings with finitely many 0’s will be

KR(µ)-trivial, and strings with both infinitely many 0’s and 1’s could possibly be

trivial, or just trivial infinitely often. Of course the fact that strings with finitely

many 1’s are random is a direct consequence of the fact that the measure has atoms,

but as highlighted in [19], measures with atoms also have unique properties in places

other than the actual atoms.
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Chapter 5

Generalizations to Metric and

Measure Spaces

Chapter Overview

Here we will examine a natural way to compare the random/trivial elements of met-

ric spaces with those of measure spaces where the ambient set is 2N (though this

is merely a convenience). We use it to compare KMN-triviality with KR-triviality,

note where differences occur, and finally propose alternative definitions to triviality

in a computable measure space, in Definition 5.2.1 and Definition 5.2.4.

5.1 KTMN ⊆ KTR for Tame Measures

Throughout this Chapter, the following notational conventions will apply.

1. X =
(
X, d, {αi}i∈N

)
is a computable metric space, µ is a computable measure

on X , and A := A′d is a generator for (X , µ),

2. Let µ∗ be the push-forward measure on CT , given for µ by Definition 3.2.7.

Theorem 5.1.1. With X , A, µ, µ∗ as above, suppose that M is a positive integer
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(necessarily at least 3) such that gµ∗(n) − cµ∗(n) < d where g is granularity, and c

is coarseness. If x ∈ repA and x ∈ KTMN(X ) then x ∈ KTR (µ,A).

Proof. Let x ∈ repA, x ∈ KTMN, and γ be a K-trivial Cauchy name for x. Since γ

is K-trivial, we have that K(wA(x) � n) ≤+ Kγ(wA(x) � n). We will determine the

first n bits of wA(x) from γ as follows:

To determine the ith bit of wA(x), enumerate the computable balls B(bk, rk) which

are either included in A0
i or included in A1

i . Search for a pair (j, k) such that

j > − log(rk − d(bk, γj)) + 1

so that we have

d(bk, x) ≤ d(bk, γj) + d(x, γj) < rk

and so x ∈ B(bk, rk). Since γ is a Cauchy name for x, we will eventually find such

a pair; further, this procedure is clearly effective in γ. Taking (j, k) to be such a

pair for which < j, k > is smallest possible, either B(bk, rk) ⊆ A0
i (and so is disjoint

from A1
i ), or vice-versa. And, of course, in the first case, x ∈ A0

i , and in the second

x ∈ A1
i , which determines the ith bit of wA(x).

Now let h(n) be the max of h(n− 1) + 1 and the max (over i < n) of the j’s found,

as above, for determining the first ith bit of wA(x) (we include h(n − 1) + 1, to

ensure that h is monotone increasing. Then knowing γ � h(n), we can effectively

carry out the above procedure for determining wA(x) � n. Thus, since n.γ � h(n) is

γ computable, we see that:

Kγ(x �A n) ≤+ Kγ(γ � h(n)) ≤+ Kγ(n).

Notice that in this way, any number of bits of x can be used in a γ computation,

and so knowing d− log µ(x �A n)e, since µ is computable and we have access to bits

of x, we can determine n is one of M possible values. Hence by 2.3.23

Kγ(n) ≤+ Kγ(d− log µ(x �A n)Ae)

and x ∈ KTRA.
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5.2 When KTMN(X ) = KTm(µ,A)
.

Definition 5.2.1. Let µ be a computable measure on CT . An element x of 2N is

Km(µ)-trivial if and only if there exists b such that for all n there exists m such

that 0 < µ(x � m) ≤ 2−n and K(< a−1(x � m,n >) < K(n) + b. As usual, we write

x ∈ KTm(µ) to mean that x is Km(µ)-trivial.

Now, let X be a computable metric space, µ be a computable measure for X , A be

a generator of (X , µ), and µ∗ be, as usual, the pushforward measure for µ, obtained

via wA. For x ∈ X:

x is Km(µ,A)-trivial if and only if wA(x) is Km (µ∗) -trivial.

As usual, we write x ∈ KTm(µ,A) to mean that x is Km (µ,A)-trivial.

Definition 5.2.2. If X = (X, d, {αi}i∈N) is a computable metric space, µ is a

computable measure on X , and A is a generator for (X , µ), (on X), we say that

(µ,A) meshes with X if and only if there exist total, computable 1:1 functions h1, h2

such that

for all x ∈ X and for all n, µ(B(x, 2−h1(n))) < 2−n

and, as usual, letting µ∗ be the push-forward measure for µ obtained via wA:

for all n, if x, y ∈ σ, and µ∗(σ) < 2−h2(n), then d(x, y) < 2−n

Theorem 5.2.3. Let X = (X, d, {αi}i∈N) be a computable metric space, let µ be

a computable measure on X which meshes with X , and let A be a generator for

(X , µ) with the property that if x ∈ repA then wA(x) takes on value 1 infinitely

often. Then, for x ∈ repA:

x ∈ KTMN(X ) if and only if x ∈ KTm (µ,A) .

79



Proof. Suppose x ∈ repA and x ∈ KTm(µ,A), and let n ∈ N. By our hypothesis on

wA, there exists σ such that x ∈ [σ1]A, and µ(σ1) < 2−h2(n).

Thus, by assumption,

K(< σ1, h2(n) >) ≤+ K(h2(n))

Since h2 is 1:1 and computable, K(h2(n)) =+ K(n). Further, from < σ1, h2(n) >,

we can effectively determine < π1(|σ1|), n >, so

K(< π1(|σ1)|, n >) ≤+ K(< σ1, h2(n) >) ≤+ K(h2(n)) =+ K(n)

Since the |σ1|th bit of x �A n = 1, x ∈ B(απ1(|σ1|), n), and so x ∈ KTMN(X ).

Now, let x ∈ KTMN(X ). Thus, x has a K-trivial Cauchy name γ. Now, we can

use the method of the proof of Theorem 5.1.1 to obtain a cylinder of small measure

containing x.

Let h(n) be the max of the number of bits of γ in determining the first n bits of x,

h1(n), and also h(n− 1) + 1 (to ensure h is 1 : 1). Thus, by assumption,

K(< αγ(h(n)), h(n) >) ≤+ K(h(n)) =+ K(n)

From < αγ(h(n)), h(n) >, we can determine < x �A n, n >, and since d(αγ(h(n)), x) <

2−h1(n), µ(x �A n) < 2−n as desired, so x ∈ KTm(µ,A).

We now give a variant of Definition 5.2.1 that highlights the role of the local version

the granularity function from Definition 3.2.16. It will turn out the variant is equiv-

alent to the original. That will be the content of the next and final proposition,

Proposition 5.2.5.

Definition 5.2.4. For x ∈ 2N, x ∈ KT ′m if and only if

K(< n, σ � gx,µ(n) >) ≤+ K(n)

.
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Proposition 5.2.5. Definition 5.2.1 and Definition 5.2.4 are equivalent.

Proof. If x ∈ 2N satisfies Definition 5.2.4, then given n, x � gx,µ(n) is the required

witness with K(< n, x � gx,µ(n) >) ≤+ K(n). If x satisfies Definition 5.2.1, then

given n, there is a witness K(< n, x � mn >) ≤+ K(n). Since x � gx,µ(n) ≺ x � mn,

we have K(x � gx,µ(n)) ≤ K(x � mn). Note that the function x. < |x|, x > is

computable and 1 : 1. Applying it to both sides of the previous inequality we get

K(< n, x � gx,µ(n) >) ≤+ K(< n, x � mn >)

and thus Definition 5.2.4 is satisfied.

Using the same function f as above, we see that in the standard setting of Cantor

space with Lebesgue measure, gx,µ(n) = n and K(< n, σ � gx,µ(n) >) =+ K(f(σ �

h(n)) =+ K(σ � n), so that Definition 5.2.4 agrees with the standard definition of

K-triviality. This definition also parallels Definition 4.3.3 very strongly, essentially

inverting the argument of the right hand side. The main difference is that in Defi-

nition 5.2.4, we don’t care about every prefix of σ satisfying an inequality - we care

about the complexity of prefixes dipping low enough at about the same rate as that

of the measure shrinking.
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Chapter 6

Concluding Remarks, Open

Problems, and Future Directions

Here we discuss possible future directions to pursue.

6.1 Machine Existence Theorem

In Chapter 3, we saw both a partial positive and a partial negative result about the

Machine Existence Theorem, in that it holds for tame measures, and fails for the

strictest possible generalization to computable measure spaces. The exact standing

of this theorem in a generalized setting is still unknown. It would be interesting

to expand both sides of this question: is there a wider class of measures for which

the Machine Existence Theorem holds? If so, does this class have a natural char-

acterization? Can it be shown that the Machine Existence Theorem fails in a more

general way (i.e. MET (µ, ~R, b))? One possibility is that the theorem may hold,

not in a computable way, but in a semi-computable way. That is, instead of having

i.σi being a computable function, we may instead have that σi,s is a computable

function of s and i that that σi,s → σi as s → ∞. We conjecture that this is the

case.
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6.2 Computable measures and Generators

We showed that for the right measure / generator, we have KTMN ⊆ KR. Is there

a natural class of measures / generators for which the reverse inclusion holds?

One fundamental idea about generators which is currently unknown is whether for

a fixed measure, different generators preserve various properties, such as KR

6.3 Measures and Their K-Trivials

In [20], the following question is investigated: given a real number (or element of

Cantor space), which measures can it appear random with respect to? The answer

to which is that any non-computable real can be random with respect to some prob-

ability measure. However, some reals x can only be random with respect to atomic

measures. At first this is not surprising, since atoms are always random for trivial

reasons, but it turns out such x’s can be random with respect to an atomic measure

within which they are not atoms, and not withing any continuous measure.

This question would be interesting to investigate with the dual notion of triviality:

Given a real number, which measures does it appear trivial with respect to? Pre-

sumably, all x ∈ 2N look trivial with respect to some measure, provided the measure

is allowed to be highly incomputable, to the point that it contains lots of information

about x. Other variants seem less obvious: Which reals can be trivial with respect

to a computable measure? An exactly computable measure?

6.4 Noncomputable measures

In [1], an approach of using representations of noncomputable measures as oracles

leads to a definition of randomness. This has not been investigated for K-triviality.

As mentioned in 6.3, if done successfully, this would likely lead to instances where

computationally powerful measures give a large class of K-trivials.
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6.5 Other Possible Settings

In [1], a topological approach is used to define Martin-Lof tests on spaces of closed

sets. He proves that this approach is equivalent (at least under Lebesgue measure

on 3ω) to an approach used in [2], which encodes closed sets by trees, which are in

turn encoded by ternary strings. The tree approach is of particular interest, because

the use of ternary strings opens up the possibility of a prefix definition of triviality

in the same spaces.
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