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Abstract

In this thesis, the model being considered is a left Type-II censoring scheme with

the underlying density being of the form

f (x) =
1

µ
exp

(
− 1

µ
(x− θ)

)
, x ≥ θ.

This is what is known as an exponential distribution with scale parameter µ and

location parameter θ. Our main focus is on the advantage of knowing one of the

parameters in point estimation. For example, we ask to what advantage does an

observer have in knowing θ when estimating µ to one who does not know either of

the parameters. Our criteria between comparisons is Mean Square Error. (MSE)

One of the most interesting results is that the relative advantage in knowing θ when

estimating µ is the same as the relative advantage in knowing µ when estimating θ.

Essentially all of our work revolves around considering a given proportion of the data

that is left censored and determining the asymptotic MSE of our estimators. In the

work particularly done by Balakrishnan and Cohen, (See [4].) they derive formulas

for the MSEs of the estimators with a much more general doubly Type-II censoring

scheme, but they do not fix the proportion being censored and ask questions relating

to the asymptotic nature of the MSEs for the estimators. The beauty of the ratio

identity is that the limiting ratio turns out to be very close to the function y = p,

where 1− p is the proportion of the data that is censored. This is a consequence of

two of our estimators nearly attaining the Cramer-Rao Lower Bound (CRLB) based

on all the data for fairly small values of p. Another interesting result is how close

the MSEs of these two estimators are as a function of p asymptotically.
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Chapter 1

Introduction

1.1 The Model

Suppose we have a store which n customers all arrive at the same opening time

θ. Not taking in to account the time each customer takes to pick out an item or

items, or how many items the customer chooses, we simply assume that all n of

them are in a line for check out at time θ. The time for each one to be checked out

is an exponential random variable with mean µ > 0. Let’s call the service times

W1,W2, ...,Wn and accordingly, assume that they are iid exp (µ) random variables.

Denote the actual times that the customers check out as X1, X2, ..., Xn, and note

that therefore the X ′s are iid exp (µ, θ) random variables. We can think of each as

Xi = Wi + θ for i = 1, 2, ..., n. Also denote the order statistics for the times of check

out as Y1, Y2, ..., Yn, where Y1 > Y2 > .... > Yn−1 > Yn. As a result of some of the

check out times being lost, we only have knowledge of the last k check out times

Y1, Y2, ..., Yk, where 2 ≤ k ≤ n − 1. We then have a Type-II left-censored model

with underlying distribution function F (x) = 1− exp
(
−x−θ

µ

)
, x ≥ θ.

2



1.2 History of Point Estimation of Scale Param-

eter µ (mean µ in exponential case)

In the literature of two-parameter exponential distributions, the point estimation

inference has always been focused on the parameter µ only. Balakrishnan among

several other authors (See [1].) have done point estimation of µ with doubly Type-II

censored models (a generalization to the model described in Section 0.1) for several

two-parameter continuous distributions (including the two-parameter exponential

distributions) such as normal, logistic, Gamma, Cauchy and Weibull as well as

exponential, and the point estimation has either been the method of finding the Best

Linear Unbiased Estimator (BLUE) or finding the Maximum Likelihood Estimator.

(MLE) (See [1] and [2].) The meaning of µ and θ for these distributions varies. For

instance in the case of normal, θ would be the mean, and µ would be the standard

deviation. In all of the cases however, µ is the scale parameter, and θ is the location

parameter. Of course in the case of the normal distribution, it is very common for

the point estimation to be more focused on θ than µ. However as we stated in the

opening sentence, point estimation in the two-parameter exponential distributions

has always been stressed on the scale parameter (mean in this case) µ because it

represents the mean failure time.

1.3 The Primary Theme and Objectives

Suppose we are estimating the mean service time for each customer, which is the

parameter µ based on the uncensored data Y1, Y2, ..., Yk. Define Tj = j (Yj − Yj+1)

for j = 1, 2, ..., k − 1. Then T1, T2, ..., Tk−1 are iid exp (µ) random variables, and we

can refer to them as the standardized intervals between ordered times of service.

(i.e., order statistics, alternatively) A natural unbiased estimator for µ is then

T =

k−1∑
j=1

Tj

k − 1
. (1.1)

3



Its variance is equal to

V ar
(
T
)

=
µ2

k − 1
>
µ2

n
= V ar

(
X
)

,

and µ2/n is the Cramer-Rao Lower Bound (CRLB) based on the entire sample.

Notice 1.1 does not include the value of Yk, so all the data is not being used. However

if the store opening time θ is unknown to the one reviewing the times of transaction,

Yk has no meaning as far as the estimation of µ is concerned. It turns out that when

θ is unknown, (and therefore we are dealing with the two-parameter exponential

distributions.) 1.1 is the BLUE based on the data Y1, Y2, ..., Yk. If θ is known, then

Yk−θ does help in estimating µ, and therefore of course, so does Yk. This is actually

a consequence of the independence of the spacings for the exponential distribution.

This then reduces to a one-parameter exponential distribution involving only the

parameter µ, and in that case, the BLUE does take in to account Yk as well as

Y1, Y2, ..., Yk−1. The BLUE for µ turns out to be a weighted linear combination

(depending on k) of T and Yk. So it has a lower variance than the case when θ is

unknown simply because all of the data is being used. The MLEs have very similar

expressions to the BLUEs as well as the same asymptotic variances as we will see in

the latter chapters. The first question then is by how much does knowing θ reduce

the variance of the estimator for µ. Now if we were upper management for the retail

store, we would not only be concerned about the mean service time, but we would

also want to ensure the store was opening precisely on time. This would be only

of course if θ were unknown, and we were also interested in estimating it based on

Y1, Y2, ..., Yk. Not knowing µ would put us at a disadvantage in estimating θ in this

case. If we did not know µ, we would be back to the case where neither of the

parameters is known, so therefore the BLUE for µ would be T once again. Yk is

not used in the estimation of µ when both parameters are unknown, but since we

can estimate µ, Yk does come in to good use for estimating θ in conjunction with T .

It turns out that the BLUE for the two-parameter model of θ does depend on all

of the data given, and this is intuitive, but only follows since the spacings between

order statistics are independent. Otherwise, the use of the mean service time µ will

not help. This can be seen merely by telescoping Yk − θ as a sum of independent

4



exponential random variables as follows.

Yk = Yk − θ + θ

=
n−1∑
j=k

(Yj − Yj+1) + Yn − θ + θ (1.2)

Taking the expectation on both sides of 1.2 and solving for θ, we have that

θ = E (Yk)− µ
n∑
j=k

1

j
.

Substituting Yk for E (Yk) and T for µ, we arrive at a logical guess of

Yk − T
n∑
j=k

1

j
(1.3)

as the BLUE for θ, which in fact it is. For distributions other than exponential

however, it would not follow because of the nonzero covariance terms between the

n− k+ 1 random variables Yk − Yk+1, Yk+1− Yk+2, ..., Yn−1− Yn and Yn− θ. By the

logic of 1.2, we would be looking at an expression such as

E (Yk)−
n−1∑
j=k

E (Yj − Yj+1)− E (Yn − θ) ,

and while the calculation of the expectations can be done rather tediously, the

substitution would not be immediate since the variance of the sum

Yk −
n−1∑
j=k

(Yj − Yj+1)− Yn − θ

may not be minimized due to the nonzero covariances of the spacings. With the

normal distribution for example, 1.3 is not the BLUE for the location parameter

θ in the two-parameter normal case. When µ is known, 1.3 obviously should be

replaced by

Yk − µ
n∑
j=k

1

j
, (1.4)

5



and just at a glance, we can see that the variance of 1.4 is lower than the variance

of 1.3. Again, the question is to how much of a benefit does knowing µ have in

estimating θ, which can be seen by comparing the variance of 1.4 to the variance of

1.3. Both 1.3 and 1.4 can be understood as using the lowest of the order statistics

Yk and projecting down based on the expected times between failures leading up to

the kth to last failure Yk. Just as with the two estimators for µ, the MLE for θ in

each case appears similar to 1.3 and 1.4, respectively. In summary, when estimating

the mean µ, the variance of the BLUE and AMLE for µ are lower when knowing θ

than when not knowing θ. Similarly, the variance of the BLUE and MLE for θ are

lower when knowing µ than when not knowing µ.

1.4 The Unexpected Results

Below are all the results which after careful analysis were discovered, and we will

mention them again in the chapters to come. All of these results came on an unex-

pected notice, but we stress on all of them quite a bit throughout the thesis.

Primary Results

i. If we are estimating µ and θ is known, the variance of the BLUE comes fairly

close to the Cramer Rao Lower Bound of µ2/n (when all of the data is observed)

when only 20% or more of the upper order statistics are observed. We illustrate this

by an example at the conclusion of this section in the case of n = 4 and k = 2. This

appears in Chapter 2, and we give an explanation for the reason for this in Section

4.6.

ii. The ratio of the variance of the BLUE of µ when θ is known to when θ

unknown has an identical formula to the ratio of the variance of the BLUEs of θ

when µ is known to when µ is unknown. (Known divided by unknown in both cases)

This appears in Chapter 3. There is an important interpretation of symmetry for

this result which we illustrate in Chapter 3.

iii. We use two methods of point estimation in this thesis. They are the methods

of Maximum Likelihood Estimation and Best Linear Unbiased Estimation. (MLE

6



and BLUE, respectively) In Chapter 4, we question how our simpler BLUEs compare

to their respective MLEs with respect to Mean Square Error. (MSE) As it turns

out, the BLUEs have asymptotically the same MSEs as their corresponding MLEs

at the order of 1/n and at the order of 1/n2, two out of four cases, the MLE is

superior, one out of the four, we conjecture that the BLUE is superior, and the

fourth case which one has the lower MSE depends on the value of p.

1.5 Example of Point Estimation

Suppose there are n = 4 customers in the store, and we would like to estimate µ

based on Y1 and Y2 using the method of finding the BLUE based on Y1 and Y2.

In one scenario, we are given the opening time, which we can assume without loss

of generality to be θ = 0, while in the other case, θ is unknown. We ask how

much is the variance reduced if we knew that θ = 0 as in the former case. In

this example, we introduce some notation. Let µ̂B and µ̃B be the BLUEs when

θ is known (as zero) and θ is unknown, respectively. We first want to calculate

µ̂B = a1Y1 + a2Y2, where a1 and a2 are constants which minimize the variance of

µ̂B with the constraint that E (µ̂B) = µ. We can take advantage of the fact that

(Y1 − Y2, Y2) span the same subspace (or have exactly the same information) as

(Y1, Y2) and the fact that Y1 − Y2 and Y2 are independent random variables. First

note that clearly V ar (Y1 − Y2) = µ2, and

V ar (Y2) = V ar (Y2 − Y3) + V ar (Y3 − Y4) + V ar (Y4)

= µ2

(
1

4
+

1

9
+

1

16

)
= µ2

(
36 + 16 + 9

144

)
=

61

144
µ2.

As we will see in Chapter 3, we can apply a theorem (which we state in Chapter

3) to calculate the BLUE for µ. The two conditions required in the theorem is

7



for Y1 − Y2 and Y ∗2 = Y2
1
2
+ 1

3
+ 1

4

to be independent and both unbiased for µ, and in

fact with these two random variables, those two conditions are satisfied. Note that

Y ∗2 = Y2
12+8+6

24

= 12
13
Y2, and so

V ar (Y ∗2 ) =
144

169

61

144
µ2 =

61

169
µ2.

Since Y1 − Y2 and Y ∗2 are unbiased for µ, µ̂B = c (Y1 − Y2) + (1− c)Y ∗2 for some

c ∈ R. To minimize the variance of µ̂B, we simply differentiate with respect to c

and solve for c when the derivative is set to zero. First note that

V ar (µ̂B) = c2µ2 + (1− c)2 61

169
µ2,

and then differentiating with respect to c and setting the resulting expression

equal to zero, we have that

µ2

(
2c− 122

169
(1− c)

)
= 0, or

460

169
c =

122

169
,

c =
61

230
.

So therefore,

µ̂B =
61

230
(Y1 − Y2) +

169

230
Y ∗2

=
61

230
Y1 +

169

230

156

169
Y2

=
61

230
Y1 +

78

115
Y2,

8



and

V ar (µ̂B) =

(
61

230

)2

µ2 +

(
169

230

)2
61

169
µ2

=
612 + (169) (61)

(230)2
µ2

=
61 (230)

(230)2
µ2

=
61

230
µ2.

It can be shown that µ̃B = Y1 − Y2, and this is intuitive because we have no

idea what Y2− θ is, since in this case, θ is unknown. Therefore, the ratio of the two

BLUEs is equal to r = 61
230

, which is much less than expected, which we will later

see to be around 0.5. This is only because n is so small. That is an implication of i.

in Section 1.3, so we would expect the variance of µ̂B to not be anywhere near the

CRLB based on all the data. However,

µ2

4

V ar (µ̂B)
=

230
920
244
920

=
230

244

≈ 0.942 62,

which relatively speaking is fairly close to the CRLB based on all the data, but

not close enough to make the ratio V ar (µ̂B) /V ar (µ̃B) near 0.5 because n is small.

(k/n = 0.5 in that example) Although, this does exemplify what is claimed in i. of

Section 1.3.

1.6 Notation

We will use the following notation for each of the three scenarios for the BLUEs

and/or MLEs of µ and θ. The subscript ’M’ similarly stands for MLE, and the

subscript ”AM” stands for Approximate Maximum Likelihood Estimator. (AMLE)

The BLUE and AMLE for µ when θ is known we denote as µ̂B and µ̂AM , respectively.

9



The BLUE and MLE for µ when θ is unknown we denote as µ̃B and µ̃M , respectively.

When both parameters are unknown, the BLUE and MLE for θ we denote as θ̃B

and θ̃M , respectively. Finally when θ is unknown and µ is known, we denote the

BLUE and MLE for θ as θ̂B and θ̂M , respectively.

10



Chapter 2

The Advantage of Knowing θ

When Estimating µ

2.1 Introduction:

Recall the store opening model described in Chapter 1. In probabalistic terminology,

we have n iid random variables X1, X2, ..., Xn which are of the form Xi = Wi + θ

for 1 ≤ i ≤ n, where θ ∈ R, and W1,W2, ...,Wn are iid exp (µ) random variables.

As stated in Chapter 1 if θ is known, then the last k times of service since the store

opened can be determined by simply subtracting θ from each of the order statistics

Yj, 1 ≤ j ≤ k. Even though θ may not be zero, we may assume it to be zero in

the case of θ being known without loss of generality as we discussed in Chapter

1. On the contrary if θ is unknown, then the last k failure times Y1, Y2, ..., Yk do

not necessarily represent the last k failure times unless θ = 0. We would like to

estimate µ in both situations of θ being known and unknown, and thus the question

of how much the variance is reduced if we are given the value of θ immediately

arises. We would expect the variance of the estimator for µ to be reduced since if

θ is unknown, it would only makes sense to use the standardized k − 1 spacings

defined as Tj = j (Yj − Yj+1) for 1 ≤ j ≤ k − 1. This is not equivalent to the

complete data set we have, and by intuition, what should be excluded is Yk, since

11



it does not represent the kth to last failure time-it only represents the kth to last

time on the clock from the point of view of someone who does not know θ. On the

contrary if θ is known, the entire recorded data set should be taken in to account

since then Yk − θ does represent the kth to last failure time (or just Yk if we assume

θ = 0). In Section 2.2, we derive formulas for the BLUEs and their variances under

the assumption of θ being known and unknown. In Section 2.3 we give asymptotic

formulas for these variances in the case of k = [np]. The reason we choose k = [np] is

to acquire insight of how the variances behave as a function of the sample percentiles

for finite n. For moderately large values of n, these variances are fairly close to their

respective limits for each value of p. The purpose of Section 2.3 is to compare the

asymptotic normalized variances of the two BLUEs graphically and numerically, and

as expected the BLUE of µ when θ is known has a much lower variance.

The surprising result (which we mentioned in Section 1.4, part i.) is how small

a percentage of the upper order statistics we can observe and still come relatively

close to the CRLB based on all the X
′
s. This is suggested in Section 2.3, and thus

Section 2.3 is really a preview of what is to come in Section 2.4. Roughly speaking,

if the upper 20% of the data is all we have recorded, the variance of the BLUE when

θ is known is less than 18% above the CRLB based on X1, X2, X3, ..., Xn. This is

the loosely stated version to the result given in Corollary 4. The glitch to this of

course is that we are observing the upper 20% or more of the upper order statistics.

We could not come nearly as close to the CRLB if we chose to censor out a specific

80% of the X
′
s. (thus observing only 20%) For example if n = 5, and we choose

to leave out four out of five (80%) of the data by selecting X1, X2, X3, X4, then the

variance of the BLUE based on that one observation X5 would be µ2, which is five

times greater than the CRLB based on all the X ′s. Practically speaking, a random

collection of the X
′
s would be lost. It is not as if we would be choosing which ones

to be lost as in times of transactions in a retail store. So in the real world, the

lower 80% of the data would be lost, which was what we really had in mind when

introducing the model in Chapter 1. If the upper 80% of the observations would

have been lost, (which is Type-II right censoring) then we would be left with just

12



Y5, (Assuming θ = 0) and since the failure times are exponential, the BLUE would

be Y5 and so there again, the variance of the BLUE would be five times greater.

Type-II left censoring yields a much less trivial result than Type-II right censoring

does. Another reason why this result that becomes apparent in Section 2.3 is so

intriguing is in one case, we would have lost a certain percentage of the data, whereas

in the latter one explained, we would have been intentionally neglecting a certain

percentage of the data. Yet for some counterintuitive reason if we pre-determined

which of the X ′s were to be left out, the variance of the BLUE is much higher-in the

case of 80% neglected, five times higher as we exemplified. The contribution of the

knowledge of the kth to last order statistic Yk has much to do with why it would be

advantagous to have accidentally misplaced/lost records as opposed to just simply

ignoring records on purpose. In Section 2.4, we come to the main result which is the

limiting ratio of the variances with the variance when θ is known in the numerator

and the other variance being in the denominator. This turns out to be a function

of the proportion p of the upper order statistics recorded. It also turns out to be an

increasing function which becomes very close to the function p for fairly low values of

p = 0.3, and the function becomes closer to the line p as p increases. This actually

is a consequence of Corollary 4. One would expect an increasing ratio function,

since the higher percentage of order statistics we have available, the less important

it should be to know θ when estimating the mean server time µ. For example, the

BLUE for µ when θ is unknown as we will see does not account for the value of Yk,

but if the upper 90% of the order statistics is observed, the BLUE’s variance would

be approximately µ2/0.9n, which is only 11% higher than the variance of the sample

mean for all the transaction times X1, X2, ..., Xn. (V ar
(
X
)

= µ2

n
.) Of course, the

variance of all the data is not the variance of the BLUE when θ is known, but it

becomes quickly close to it as we see. One would think that the variance of the

BLUE when θ is known should come close to the variance of the sample mean based

on all the data if p ≈ 1, but not nearly for such small values of p as it does, which

as we will also see in Section 2.4 will explain that not only is the ratio function an

increasing function in p, but also one that quickly becomes close to the function p as

we mentioned before. We refer back to Corollary 4 in Section 2.4 to justify why the

13



ratio function has its properties of being close to the function p. So also in Section

2.4, we give some probabilistic reasoning as to why the variance of the BLUE when

θ is known approaches one as quickly as it does. In Section 2.3, we see numerically

and graphically how the asymptotic normalized variance of the BLUE for µ when

θ is known behaves as a function of p, and in Section 2.4 we give some explanation

for why it behaves the way it does.

2.2 Derivation of BLUEs and Variances

In this section, we will derive the following formulas for the BLUEs and their cor-

responding variances which are given in Table 2.1.

Table 2.1: Formulas for BLUEs of µ and their variances

Formulas θ Known θ Unknown

BLUE µ̂B =

k−1∑
j=1

Tj+SkYk

Rk+k−1
− θ (See 2.3.) µ̃B = T (See 2.6.)

Variance V ar (µ̂B) = µ2

Rk+k−1
(See 2.4.) V ar (µ̃B) = µ2

k−1 (See 2.7.)

where Rk =

(
n∑

j=k

1
j

)2

n∑
j=k

1
j2

and Sk =

n∑
j=k

1
j

n∑
j=k

1
j2

.

Theorem 1. Let X1, X2, ..., Xn be independent random variables with E (Xj) = µ

for all j, 1 ≤ j ≤ n and with V ar (Xj) = σ2
j for 1 ≤ j ≤ n. Let cj = σ−2j . Then,

the BLUE µ̂B for µ and its variance are given by the following formulas.

i.

µ̂B =

n∑
j=1

cjXj

n∑
j=1

cj

ii.

V ar (µ̂B) =
1
n∑
j=1

cj

.
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θ known:

Assume θ = 0 without loss of generality. The problem of finding the BLUE

based on Y1, Y2, ..., Yk means finding the coefficients a1, a2, ..., ak such that the linear

combination
k∑
j=1

ajYj (2.1)

has minimal variance subject to the condition

E

(
k∑
j=1

ajYj

)
= µ.

This is just the same as finding the coefficients b1, b2, ..., bk such that the variance of

k−1∑
j=1

bjTj + bkY
∗
k (2.2)

is minimized subject to being an unbiased estimator of µ, where

Y ∗k =
Yk
n∑
j=k

1
j

.

We can apply Theorem 1 to derive the formulas for the BLUE and its variance

as they are given in Table 2.1. This is because T1, T2, ..., Tk−1 and Y ∗k are unbiased

estimators for µ, and they are independent random variables. Let T1, T2, ..., Tk−1 and

Y ∗k correspond to X1, X2, ..., Xk respectiely as in Theorem 1. Then the respective

coefficients are cj = µ−2 for 1 ≤ j ≤ k − 1, and

ck = µ−2Rk. (as Rk is defined in Table 2.1)

Therefore by Theorem 1,

µ̂k =

k−1∑
j=1

µ−2Tj + µ−2Rk
Yk
n∑

j=k

1
j

µ−2 (k − 1 +Rk)

=

k−1∑
j=1

Tj + SkYk

Rk + k − 1
, (2.3, as Sk is defined in Table 2.1)

15



as claimed in Table 2.1. Also by Theorem 1,

V ar (µ̂k) =
1

(k − 1)µ−2 + µ−2Rk

=
µ2

Rk + k − 1
, (2.4)

also as claimed in Table 2.1.

θ Unknown:

Note that in this case

E (Yk) = µ
n∑
j=k

1

j
+ θ,

so if we used Y ∗k as defined in the previous case, its expectation would depend

on an unknown parameter θ, so it would not be unbiased unless θ = 0, which we

cannot assume like we did in the previous case because θ is unknown. Since the

BLUE for µ must be of the form

k−1∑
j=1

bjTj + bkYk, (2.5)

we must have that bk = 0, since the expectation of Yk as we saw depends on θ.

So we can apply Theorem 1 to T1, T2, ..., Tk−1. In doing so, we immediately arrive

at

µ̃B =

k−1∑
j=1

µ−2Tj

(k − 1)µ−2

= T . (2.6)

Clearly without even using Theorem 1,

V ar (µ̃B) =
µ2

k − 1
. (2.7)

We have now verified all four formulas as given in Table 2.1.
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2.3 Asymptotic Limits of the Variances

We have derived in Section 2.2 two estimators for two different situations. One

would be when the opening store time θ is known, while the other would be when

the opening store time θ is unknown. The primary objectives in this section are as

follows.

Objectives:

1. Gain insight on how V ar (µ̂B) and V ar (µ̃B) behave for sufficiently large n

when k = [np] as a function of p.

2. Demonstrate numerically and graphically just how superior µ̂B an estimator

is compared to µ̃B, or in other words in the sense of how much more the variance is

reduced if we knew θ than opposed to the contrary case of not knowing θ.

We will be able to achieve Objectives 1 and 2 with the help of an important

theorem involving the asymptotic variances of µ̂B and µ̃B. In order to prove the

theorem, we first prove the following lemma.

Lemma 2. Let Rk be defined as in Table 2.1. Then for all p ∈ (0, 1),

R[np]

np
→ log2 p

1− p
as n→∞.

Proof. By definition given in Table 2.1 and the fact that (See A1 for a proof on the

following two limits.)
n∑

j=[np]

1
j

n∫
np

1
x
dx

→ 1,

and
n∑

j=[np]

1
j2

n∫
np

1
x2
dx

→ 1
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as n→∞, we have that

lim
n→∞

R[np]

np
= lim

n→∞

(
n∑

j=[np]

1
j

)2

n∑
j=[np]

1
j2

np

= lim
n→∞

(
n∫
np

1
x
dx

)2

np
n∫
np

1
x2
dx

= lim
n→∞

log2 p

np
(

1
np
− 1

n

)
=

log2 p

1− p

Theorem 3. Let Y1, Y2, ..., Yk be the highest k = [np] order statistics for the iid X ′s,

where Xi = Wi + θ, and Wi
d
= exp (µ). Then we have the following limiting results

valid for all p ∈ (0, 1).

i.

lim
n→∞

n

µ2
V ar (µ̂B) =

1

p
(

1 + log2 p
1−p

)
ii.

lim
n→∞

n

µ2
V ar (µ̃B) =

1

p

Proof. We refer the reader to Table 2.1 for the two formulas of the variances. To

prove i., we use the results for variances given in that table and Lemma 3 to obtain

lim
n→∞

n

µ2
V ar (µ̂B) = lim

n→∞

n

R[np] + [np]− 1

= lim
n→∞

1

p
(
R[np]

np
+ [np]−1

np

)
=

1

p
(

1 + log2 p
1−p

) .
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Proving ii. is very straight forward. It’s very clear that by Table 2.1,

lim
n→∞

n

µ2
V ar (µ̃B) = lim

n→∞

n

[np]− 1

=
1

p
.

As a consequence of Theorem 3, we have the following aforementioned corollary.

This gives an indication of how quickly V ar (µ̂B) approaches the CRLB based on

all the X ′s.

Corollary 4. Let Y1, Y2, ..., Yk be the highest k = [np] order statistics for the iid

X ′s, where Xi = Wi + θ, and Wi
d
= exp (µ). Then for p ≥ 0.2,

lim
n→∞

n

µ2
V ar (µ̂B) ≤ 1.18.

Proof. When p = 0.2, we have by Theorem 3 that

lim
n→∞

n

µ2
V ar (µ̂B) =

1

0.2
(

1 + log2 0.2
1−0.2

)
= 1. 179 8

Since it can be readily verified that

1

p
(

1 + log2 p
1−p

)
is a decreasing function, the result follows.

Note that by Corollary 4

lim
n→∞

V ar (µ̂B)
µ2

n

≤ 1.18 for p ≥ 0.2,

which essentially means that for large n when 20% or more of the upper order

statistics are observed, the variance of µ̂B is within 18% of the CRLB based on all
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the X ′s. We discuss this in greater detail in Section 2.4 and even more so in Section

4.6. So the use of Corollary 5 does not come in to our analysis until Section 2.4.

Figure 2.1 and Table 2.2 show the comparison between the functions

1

p
(

1 + log2 p
1−p

)
and (Later in this chapter, we will define s (p) = p−1

(
1 + log2 p

1−p

)−1
.)

1

p
.

Figure 2.1: 1

p
(
1+ log2 p

1−p

) , 1
p 0 < p < 1

We can see from Figure 2.1 that it is very clear that knowing θ has an advantage,

although as p increases, the two plots come closer together, meaning knowing θ has

less of an advantage as p increases. In other words, the higher the percentage of

upper order statistics we have available, the less difference it makes if we know θ.
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Table 2.2: Approximate Variances: µ = 1, n = 1000

p V ar (µ̂B) 1

1000p
(
1+ log2 p

1−p

) V ar (µ̃B) 1
p

0.1 1. 454 3× 10−3 1. 451 2× 10−3 1. 010 1× 10−2 10
0.2 1. 180 8× 10−3 1. 179 8× 10−3 5. 025 1× 10−3 5
0.5 1. 020 1× 10−3 1. 019 9× 10−3 2. 004× 10−3 2
0.75 1. 001 7× 10−3 1. 001 7× 10−3 1. 335 1× 10−3 1.3333

We can see from Table 2.2 that numerically V ar (µ̂B) both by the exact formula

and approximate formula that the CRLB based on X1, X2, ..., Xn is nearly achieved

even for p = 0.2 in accordance with Corollary 5 (relatively speaking, of course).

V ar (µ̃B) tends to 1/1000 much slower than V ar (µ̂B), but it is essentially only the

CRLB based on T1, T2, ..., T[np]−1 for each p ∈ (0, 1), so that is the reason. Since

there is not much difference between V ar (µ̃B) and 1/np for moderately large val-

ues of n and for any value of p, it is very obvious that the rate of convergence for

nV ar (µ̃B) /µ2 to the function 1/p is so fast that there is no need to discuss that

issue. However, the rate at which the function (of p) nV ar (µ̂B) /µ2 converges to

1/p
(

1 + log2 p
1−p

)
is questionable, so we conclude this section to numerically demon-

strate that rate of convergence. Note that nV ar (µ̂B) /µ2 for finite n and fixed p

is a function of n and p, so we can write nV ar (µ̂B) /µ2 = s (n, p) and the limiting

function we can denote as s (p). We will see this function s (p) in the next section

as it has some probabilistic motivation, and Corollary 5 will come in to good use.

From Table 2.3, we can see that as p increases, the rate of convergence increases.

For instance when p = 0.9, even when n is as small as 100, the limit is practically

attained. At the other extreme when p = 0.05, s (100, 0.05) (i.e., n = 100 and

p = 0.05) is roughly greater than s (0.05) by as much as 5%. As we stated in the

next section that s (p) has probabilistic meaning, the same is true for s (n, p) for

finite n. s (n, p) since it represents finite n, is more practical than the limit s (p) as

we will briefly discuss in Section 2.4. Table 2.3 we refer back to in Section 2.4 for

a specific reason involving the CRLB based on all the X
′
s, so that table actually

serves more than one purpose other than giving us an idea of the rate of convergence
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Table 2.3: s (n, p), s (p)

p s (10, p) s (20, p) s (100, p) s (1000, p) s (p)
0.05 N/A 2. 466 3 2. 016 8 1. 924 3 1. 914 5
0.1 1. 806 5 1. 623 4 1. 483 3 1. 454 3 1. 451 2
0.2 1. 287 3 1. 231 2 1. 189 6 1. 180 8 1. 179 8
0.3 1. 134 8 1. 1090 1. 090 0 1. 085 9 1. 085 5
0.4 1. 0680 1. 054 3 1. 044 3 1. 042 2 1. 042 0
0.5 1. 034 3 1. 026 7 1. 021 2 1. 020 1 1. 019 9
0.6 1. 016 4 1. 012 3 1. 009 3 1. 008 7 1. 008 7
0.7 1. 007 1 1. 005 0 1. 003 5 1. 003 2 1. 003 2
0.8 1. 002 5 1. 001 6 1. 001 0 1. 000 8 1. 000 8
0.9 1. 000 6 1. 000 3 1. 000 1 1. 000 1 1. 000 1

of s (n, p) to s (p). Corollary 5 which we stated and proved in Section 2.3 is stressed

in Section 2.4 and much later on in Section 4.6 as we mentioned before.

2.4 The Finite and Asymptotic Ratio of the Vari-

ances

Let rn (p) be defined as the ratio of the variance of the BLUE for µ when θ is known

to the variance of the BLUE for µ when θ is unknown for finite n. In other words,

rn (p) =
V ar (µ̂B)

V ar (µ̃B)
. (2.8)

One of the main results of discussion for this section is the following.

lim
n→∞

rn (p) =
1

1 + log2 p
1−p

= r (p) . (2.9)

We will see that the limiting ratio function in 2.9 is very close to the function p

for values of p ≥ 0.5 and even fairly close for p ≥ 0.2. r (p) becomes closer to the

function p as p increases, and r (p) > p for all p ∈ (0, 1). For n ≥ 10, all the same

is essentially true for the functions rn (p) defined in 2.8 as we will numerically see
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in this section. One would expect r (p) to be an increasing function between zero

and one, and according to 2.9, that is in fact the case. This is because we would

think that knowing θ would reduce the variance for the BLUE of µ, and the higher

proportion p of order statistics we have, the less important it would be to know

θ. (therefore a higher ratio) To prove that the ratio functions defined in 2.8 and

2.9 are close to p and lie above p on the interval (0, 1) is not so clear from a pure

mathematical perspective. We will discuss this later in the section and will find the

s (n, p) = nV ar (µ̂B) /µ2 (which when not tabulating its values we will denote as

sn (p) from this point forward) and s (p) = lim
n→∞

sn (p) functions to be quite useful

in intuitively justifying the two assertions of closeness to p and r (p) > p. Because

of some minor discrepancy between the definitions of rn (p) and sn (p), it is quite

rigorous to show that rn (p) > p for all n, so we negate that in this section. If sn (p)

is defined a certain way, it is possible. We will find that using the s (p) function,

we can justify that r (p) > p much more easily. First we prove 2.9 in the following

theorem.

Theorem 5. Let Y1, Y2, ..., Yk be the highest k = [np] order statistics for the iid X ′s,

where X1 = W1 + θ, and W1
d
= exp (µ). Then we have the following limiting result

valid for all p ∈ (0, 1).

lim
n→∞

rn (p) =
1

1 + log2 p
1−p

= r (p)

Proof. Based on Theorem 3, it is immediate that as n→∞,

rn (p) =
nV ar (µ̂B)

nV ar (µ̃B)

→

µ2

p
(
1+ log2 p

1−p

)
µ2

p

=
1

1 + log2 p
1−p

= r (p) for 0 < p < 1.
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The following table gives values for rn (p) for the same values of n as in Table

2.3 and the limit function r (p). To be consistent with Table 2.3, we denote in the

table rn (p) as r (n, p). By definition 2.8, 2.4 and 2.7,

rn (p) =
[np]− 1

R[np] + [np]− 1
(2.10)

to justify the calculations that were done in Table 2.4.

Table 2.4: Values for r (p)

p r (10, p) r (20, p) r (100, p) r (1000, p) r (p)
0.05 N/A 0.123 32 0.100 84 0.09622 0.09572
0.10 0.180 65 0.162 34 0.148 33 0.145 43 0.145 12
0.20 0.257 46 0.246 24 0.237 92 0.236 16 0.235 97
0.30 0.340 44 0.332 70 0.32700 0.325 77 0.325 65
0.40 0.427 20 0.421 72 0.417 72 0.416 88 0.416 79
0.50 0.517 15 0.513 35 0.510 60 0.510 05 0.509 97
0.60 0.609 84 0.607 38 0.605 58 0.605 22 0.605 20
0.70 0.704 97 0.703 50 0.702 45 0.702 24 0.702 22
0.80 0.80200 0.801 28 0.800 80 0.800 64 0.800 66
0.90 0.900 54 0.900 27 0.900 09 0.900 09 0.900 08

The values in Table 2.4 for finite n and in the limit are close to p for roughly

p ≥ 0.2. Also much like sn (p) in Table 2.3, the rate of convergence to r (p) increases

with p. Also, it is suggested in Table 2.4 that the functions rn (p) and r (p) are

increasing and also lie above the function p. There is a relationship between the

values in Tables 2.3 and 2.4 as well. One will notice that for each n and p in the

tables, rn (p) ≈ psn (p), (Even for small n, there is hardly no difference though.) and

r (p) = ps (p). The approximation is very close, and the exact equality r (p) = ps (p)

directly follows by how we defined sn (p) as nV ar (µ̂B) /µ2, since by Theorem 3 and
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Theorem 5,

s (p) = lim
n→∞

sn (p)

=
1

p
(

1 + log2 p
1−p

)
=
r (p)

p
. (2.11)

Recognize the statistical meaning of sn (p), which we were alluding to before. By

its definition,

sn (p) =
V ar (µ̂B)

V ar
(
X
) . (2.12)

Intuitively from 2.12, it seems clear that sn (p) > 1, and by Theorem 3, we know

that s (p) > 1, implying from 2.11 that r (p) > p. We give an even more meaningful,

statistical argument which shows r (p) > p in Section 4.6. That argument will also

show how close r (p) is to p for high enough values of p. For now, we informally

address these questions by referring back to Table 2.3 in the previous section. Essen-

tially, sn (p) = nV ar (µ̂B) /µ2 tends to a function s (p) given in Theorem 3 that as

we have seen graphically and numerically approaches from above one for fairly low

values of p and greater. The function s (p) is less than or equal to 1.18 for p ≥ 0.2

by Corollary 4. This means the CRLB based on all the X ′s is nearly reached (See

Table 2.3.) with 80% of the earlier times of the transactions in the store lost. At

p = 0.3, the variance of the BLUE when θ is known is only about 8.55% above the

CRLB as seen in Table 2.3, and it just gets closer as p increases. This fact as we

stated in Chapter 1 is one of the secondary results that we mistakenly discovered

along the way in our analysis. Our real objective in this chapter was to study the

advantage of knowing θ when estimating µ. Since the limiting ratio function r (p)

is increasing, the higher percentage of order statistics we have available, the less of

an advantage there is by knowing θ. If we have only lost the lower 10% of the data,

(p = 0.9) the ratio is roughly 0.9, which means that the variance when knowing θ

is 90% of the variance without knowing θ. If we have lost 90% of the data, then

knowing θ according to Table 2.4 means that the variance of the BLUE for µ is
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significantly lower-only 14.5% of the variance in the scenario when we do not know

θ. We conclude this chapter with a plot of r (p) versus p to demonstrate how r (p)

increases and its closeness to p on the interval (0.4, 1). We also include a plot on the

interval (0, 0.5) to show how much of a difference there is between the two functions

for smaller values of p.

Figure 2.2: r (p) , p, 0.4 < p < 1
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Figure 2.3: r (p) , p, 0 < p < 0.5
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Chapter 3

The Advantage of Knowing µ

when Estimating θ and the Ratio

Identity

3.1 Introduction:

Having access to only the last k transaction times Y1 > Y2 > Y3 > .... > Yk, one

might also question at what time the store opened, which we call θ. Suppose we have

all the transaction times so that k = n. If the mean server time µ is known, it seems

natural that the only transaction time that is relevant in estimating θ among all n

transaction times would be the first one Yn, since the mean server time in that case

would not have to be estimated. For the sake of argument, we are suppressing the

notation of ’B’ for BLUE and replacing the subscript of the estimators (including

the one for µ) with the number of order statistics available. We are only doing

that in this introductory section. Authors that we have cited have not considered

the case where µ is known and θ is unknown perhaps because θ is quite often just

a nuisance parameter. Thus, we have to make the following adjustment in order

to construct a linear estimator that is a function of T1, T2, T3, ..., Tn−1, Yn. Unlike

all the other cases, (with µ being known) there is no unbiased estimator for θ of
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the form
n−1∑
j=1

ajTj + anYn, so we have to consider the BLUE to be of the form

n−1∑
j=1

ajTj + an (Yn + c), where c is some known constant possibly depending on µ.

Since E (Ti) = µ,
n−1∑
i=1

ai = 0, and because the variance of this estimator would be of

the form

µ2

n−1∑
j=1

a2j + a2n
µ2

n2
,

a1 = a2 = ..... = an−1 = 0, since otherwise it would not minimize the variance. The

reason why we cannot have the BLUE to be of the form aYn is because E (Yn) =

E (Yn − θ + θ) = θ+µ/n 6= θ. So the BLUE must be of the form a (Yn + c). Taking

the expectation of this estimator and equating it to θ, we have

a
(
θ +

µ

n
+ c
)

= θ,

so in order for this to hold for all θ, we must have a = 1 and c = −µ/n which gives

the BLUE as

θ̂n = Yn −
µ

n
.

For general k < n, the BLUE must be of the form
k−1∑
j=1

ajTj + ak (Yk + c), and we

remind the reader of this in a derivation which is analogous to the derivation we just

did for the case of k = n. We point this out now for complete clarification, since in

all the references cited, the BLUE has not been derived (In fact, not even the MLE

has either.). If µ is unknown, we have to estimate µ. Since θ is also unknown, we

cannot use Yn to arrive at an estimator of µ. We saw this in Chapter 2. Yn by itself

gives no indication of the mean server time µ unless θ is known. So it is intuitive

that we should exclude Yn in estimating µ to arrive at

θ̃n = Yn −
µ̃n
n

,

where µ̃n = T n−1 with

T n−1 =

n−1∑
j=1

Tj

n− 1
.
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Obviously, V ar
(
θ̃n

)
> V ar

(
θ̂n

)
by the two formulas we derived and when µ is

unknown, we are faced with the problem of estimating µ first before we estimate

θ. Now suppose that one of the transaction times is missing so that we only have

Y1, Y2, ...., Yn−1. In this situation, we are missing the time interval between the first

customer’s transaction time and the opening of the store and the time between the

second transaction and the first transaction. In arriving at an estimator for θ in

both cases of µ being known and unknown, it seems most logical to analogously

take the least recorded time Yn−1 and note the following.

Yn−1 − θ = Yn−1 − Yn + Yn − θ

So we have written the difference between the second transaction time and the

opening time as a sum of two time intervals, which consist of the time between the

second and first transaction times and the first transaction time and the opening

store time. So therefore when µ is known, we would expect our estimator to be

θ̂n−1 = Yn−1 − µ
(

1

n− 1
+

1

n

)
.

If µ is unknown, then in order to estimate θ, we have to first estimate µ using

Y1, Y2, ...., Yn−1, but here again, Yn−1 only represents a time on the clock, so it should

be excluded in our estimation of µ. Clearly then we should have as our BLUE

θ̃n−1 = Yn−1 − µ̃n−1
(

1

n− 1
+

1

n

)
,

where

µ̃n−1 =

n−2∑
j=1

Tj

n− 2
.

One question in this chapter is the difference in knowing µ when estimating θ

with a certain proportion of upper order statistics p being available. The derivations

can be carried out for any k in exactly the same manner as we just did with k = n

and k = n − 1. It is intuitively clear that the ratio of the variances as in Chapter

2 for the two estimators is less than one because if both parameters are unknown,

we have to estimate µ before we arrive at an estimate of θ. That can easily be
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verified by glancing at the formulas for the BLUEs and taking their variances. In

Section 3.2, we will derive the BLUEs and their variances. Also in Section 3.2, we

will establish that
V ar

(
θ̂B

)
V ar

(
θ̃B

) =
V ar (µ̂B)

V ar (µ̃B)
.

This is an identity which we focus on for the bulk of this chapter, and we call

it the ratio identity. (Sections 3.3 and 3.4) In Section 3.3, we give one obvious

interpretation, which is the percentage of the variance in the estimator reduced in

knowing each respective parameter is the same in both cases. For estimation of µ,

we would like to know θ so that we can have the luxury of being able to use T and

Yk in our estimation of µ. We do not want to be forced to leave out Yk and then

be reduced to estimating µ with only T . Similarly as shown earlier in this section,

we do not want to be forced to estimate µ when trying to estimate θ. Clearly, the

variance is lower if we only have to use Yk to estimate θ in which case µ is known. In

both estimation scenarios, how much it matters when having to resort to only using

T or having to estimate µ with T depends on the ratio given in 3.1, or otherwise

known in 2.8 as rn (p). The higher the value of rn (p), the greater the reliability of

T for both estimating of µ and θ, and that is because of 3.1. In Section 3.4, we

look at it from the estimation of µ perspective. We encourage the reader to imitate

our methods in Section 3.4 for the estimation of θ. It seems far from trivial, so

we avoid taking on that task. In Section 3.5, we demonstrate a trial run study of

n = 500 demonstrating how T is weighted, and finally in Section 3.6, we derive the

asymptotic normalized variance for θ̂B and θ̃B.

3.2 Derivation of BLUEs and Their Variances

We will derive the following formulas for the BLUEs given in Table 3.1 in this

section.

Case 1 : µ Known

As we explained in Section 3.1, the BLUE for θ in this case must be of the form
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µ known unknown

BLUE θ̂B = Yk − µ
n∑
j=k

1
j

(See 3.5.) θ̃B = Yk − µ̃B
n∑
j=k

1
j

(See 3.8.)

Variance V ar
(
θ̂B

)
= µ2

n∑
j=k

1
j2

(See 3.6.) V ar
(
θ̃B

)
= µ2

 n∑
j=k

1
j2

+ 1
k−1

(
n∑
j=k

1
j

)2
 (See 3.9.)

Table 3.1: Blues of θ and Their Variances

θ̂B =
k−1∑
j=1

bjTj + bk (Yk + c) (3.1)

for constants b1, b2, ..., bk. Now, E (Tj) = µ for 1 ≤ j ≤ k − 1, and

E (Yk) = µ
n∑
j=k

1

j
+ θ.

Also observe by 3.1,

V ar
(
θ̂B

)
=

k−1∑
j=1

b2jµ
2 + b2kµ

2

n∑
j=k

1

j2
. (3.2)

If bk = 0, it is impossible for the estimator in 3.1 to be unbiased. The estimator’s

expectation would then just be a constant
k−1∑
j=1

bjµ independent of θ. So bk 6= 0.

Further by taking expectations of both sides of 3.1, it is clear that
k−1∑
j=1

bj = 0. So

to minimize 3.2, we would have to set b1 = b2 = .... = bk−1 = 0. Therefore in

accordance with 3.1, we are now left with bk (Yk + c) as the possible estimator for

some constant bk. Taking the expected value of that function of Yk and setting it

equal to θ, we have that

bk

(
n∑
j=k

µ

j
+ θ + c

)
= θ. (3.3)
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For 3.3 to follow for all θ, we must have that bk = 1 and c = −µ
n∑
j=k

1
j
. So

θ̂B = Yk − µ
n∑
j=k

1

j
, (3.5)

and clearly it follows from this that

V ar
(
θ̂B

)
= µ2

n∑
j=k

1

j2
. (3.6)

Case 2 : µ Unknown

The BLUE for θ here must be of the form

θ̃B = a1µ̃B + a2Yk.

For the unbiased condition to be satisfied, we must have

a1µ+ a2

(
µ

n∑
j=k

1

j
+ θ

)
= θ, or

µ

(
a1 + a2

n∑
j=k

1

j

)
+ a2θ = θ. (3.7)

3.7 must hold for all µ and θ, so we immediately have that a2 = 1, and a1 =

−
n∑
j=k

1
j
. So in agreement with Table 3.1,

θ̃B = Yk − µ̃B
n∑
j=k

1

j
, (3.8)

and by independence,

V ar
(
θ̃B

)
= µ2

n∑
j=k

1

j2
+

µ2

k − 1

(
n∑
j=k

1

j

)2

. (3.9)

The following theorem establishes the ratio identity result we mentioned in Sec-

tion 3.1.
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Theorem 6. Let Xi = Wi + θ, where W1,W2, ...,Wn are iid exp (µ) random vari-

ables. Let Y1 > Y2 > .... > Yk be the upper k order statistics. Then the following

identity holds.

V ar (µ̂B)

V ar (µ̃B)
=
V ar

(
θ̂B

)
V ar

(
θ̃B

)
Proof. By Table 2.1, we know that

V ar (µ̂B)

V ar (µ̃B)
=

k − 1

k − 1 +Rk

.

Now observe that by Table 3.1,

V ar
(
θ̂B

)
V ar

(
θ̃B

) =

n∑
j=k

1
j2

n∑
j=k

1
j2

+ 1
k−1

(
n∑
j=k

1
j

)2

=
k − 1

k − 1 +Rk

=
V ar (µ̂B)

V ar (µ̃B)

We now try to give some intuition behind the identity derived in Theorem 6.

3.3 The Interpretation and Concept of the Ratio

Variance Identity

Theorem 6 simply validates the ratio identity, which from now on we refer to as

3.10.

V ar
(
θ̂B

)
V ar

(
θ̃B

) =
V ar (µ̂B)

V ar (µ̃B)
(3.10)
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In Chapter 2, we desired to estimate the mean µ, while in this chapter we desire

to estimate θ, but because of the identity in 3.10, we are compelled to consistently

remind the reader of some of our results in Chapter 2. This we suggested in Section

3.1. What the result in 3.10 means is simply this. There’s either one or two parame-

ters unknown. If we were in the situation of θ being unknown, the relative reduction

of the variance for the BLUE of θ in having the advantage when knowing µ is equal

to the relative reduction of the variance of the BLUE for µ when knowing θ. For

example, if V ar (µ̃B) = 100, and V ar (µ̂B) = 20 and if V ar
(
θ̃B

)
= 5, then that

would all mean V ar
(
θ̂B

)
= 1. They both would reduce by 80%, and always by the

same percentage in any case. There are three possible situations as we explained in

Chapter 1. They can be interpreted as three different perceptions to the observer.

We list them here along with their (possible) objective(s).

Cases for Estimation:

1. µ known, θ unknown; Objective: Estimate µ

2. µ unknown, θ unknown; Objective: Estimate µ and/or θ (In this thesis,

exactly one of the two though.)

3. θ unknown, µ known; Objective: Estimate θ

We summarize the formulas for the BLUEs in the following comprehensive table

of Chapters 2 and 3.

Table 3.2: BLUEs in three different situations

Parameter known? µ known µ unknown

θ known N/A µ̂B =

k−1∑
j=1

Tj+SkYk

Rk+k−1
− θ

θ unknown θ̂B = Yk − µ
n∑
j=k

1
j

µ̃B = T , θ̃B = Yk − µ̃B
n∑
j=k

1
j

Consider the following two cases of these last two chapters. In Chapter 2, µ

was assumed to be unknown, while in Sections 3.1 and 3.2, θ was assumed to be
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unknown. µ̂B uses all the order statistics Y1, Y2, ..., Yk, while µ̃B in its formula does

not take in to account the value of Yk. So in Chapter 2 when estimating µ, what

is excluded in the θ unknown case is Yk. As a visual aid for Chapter 2, one can

compare the two BLUEs for µ by glancing down the second column of Table 3.2

to see the difference. On the contrary when looking at the difference between the

two estimators of θ, we can look across the second row of Table 3.2. In a sense, the

exact opposite happens for the estimation of θ as compared to the estimation of µ.

Looking at the second row and first column, only Yk is used in the formula for θ̂B,

and all the upper k− 1 spacings are ignored. Looking at the second row and second

column, θ̃B uses all the information in its formula. In other words, µ̂B and θ̃B both

use all the order statistics, while θ̂B only uses Yk, and µ̃B uses everything except Yk.

The natural logic in all four estimators we have discussed, so all four formulas are

consistent with our intuition. In essence, the explanation for the equality in 3.10

is that to estimate µ, all the k upper order statistics are desired, but to estimate

θ, we only want Yk. When estimating µ, one does not want to be in the situation

where θ is unknown because then we cannot use all the data-we then have to leave

out Yk. When estimating θ, of course we need Yk, but we do not want to be forced

in to having to come up with an estimator of µ. This is essentially the meaning of

3.10. We depict this concept in Figure 3.1.

Figure 3.1: Venn Diagram for Estimation Scenarios
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Figure 3.1 not only captures the three aforementioned situations above, but in

the two non-intersection regions, in one region, it shows that we want all the data to

estimate µ, while in the other for the estimation of θ, we are saying we only want one

piece of the data which is Yk. Whichever parameter is unknown, we do not want to

be caught up in the intersection region where both parameters are unknown whether

our goal is to estimate µ or θ. The intersection region goes against the will of both of

the non-intersection regions. For the estimation of µ, we are forced to leave out Yk in

that region, while for the estimation of θ, we have to use all of the data as opposed

just having to use Yk. That we have just reiterated for the purpose of emphasis. We

will find in Section 3.4 that (as defined in 2.8) rn (p) = V ar (µ̂B) /V ar (µ̃B) and (as

defined in 2.9) r (p) = lim
n→∞

rn (p) give an indication of how much it matters to be

in the danger zone shown in Figure 3.1, which is the intersection region of the two

circles. This is due to the ratio identity equality given in 3.10. For estimating µ, the

greater the value of V ar (µ̂B) /V ar (µ̃B), the more accurate an estimator µ̃B is, so

we can more freely go against the recommendation to use all the last k transaction

times and exclude Yk. At the same time by the identity in 3.10, the greater

rn (p) = V ar
(
θ̂B

)
/V ar

(
θ̃B

)
is, the more accurate an estimator µ̃B is, so we can

more comfortably go against our will and use µ̃B in addition to Yk in the estimation

of θ. The greater the value of rn (p), the less advantage there is in knowing µ and θ,

and once again by 3.10, the relative advantage in knowing either of the parameters

is exactly the same. (percentage reduction from not knowing either of the two

parameters) Section 3.4 demonstrates the µ unknown situation shown in Figure 3.1.

3.4 The Reliance on Yk on the Estimation of µ

When θ is Known

In this section, we show how important it is to include Yk in the estimation of µ when

θ is known. This would be how important it is to be out of the intersection region

given in Figure 3.1, and that depends on the proportion p of upper order statistics

we have observed. Setting k = [np], Y[np] is in high demand for small values of p
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to estimate µ. As p increases, µ̃B = T becomes a more improved estimator, (i.e.,

variance decreases) and we do not have to rely on Y[np] as much. When p is near

one, µ̃B nearly attains the CRLB for all the X
′
s, and thus it is intuitive that the

weighting we place on Y[np] approaches zero as p → 1 and n → ∞. Referring back

to Table 3.2 in the case where µ is unknown and θ is known we can rewrite µ̂B as a

linear combination of two unbiased estimators of µ given by

µ̂B = c1 (p)T + c2 (p)Y ∗[np] (3.11)

for some constants c1, c2 which depend on p, and where (assuming without loss

of generality θ = 0)

Y ∗[np] =
Y[np]
n∑

j=[np]

1
j

.

Now since both estimators in the linear combination of 3.11 are unbiased, c2 (p) =

1− c1 (p). The question is what is this function c1 (p)? Interestingly enough it turns

out that (See 2.8.)

c1 (p) = rn (p) =
V ar (µ̂B)

V ar (µ̃B)
. (3.12)

From the numerical results given in Table 2.4, rn (p) ≈ p for moderately large n and

p ≥ 0.2, which further suggests that

µ̂B ≈ pT + (1− p)Y ∗[np] for large n and p ≥ 0.2. (3.13)

The approximation in 3.13 from our observations in Table 2.4 becomes more

accurate as p increases. rn (0.5) ≈ 0.5, and that approximation is extremely accurate

for values of n as low as 20. So with the last 10 of 20 transaction times available, T

and Y ∗10 are just about equally weighted. If we had more than the last 10 transaction

times, then T would be the more heavily weighted and dominant estimator. When

we only have the last two transaction times, the accuracy of the approximation in

3.13 is poor, (upper 10%) but Y ∗2 dominates in the estimation of µ. Consider once

again Figure 3.1 of the last section. If we have the last 18 out of 20 transaction

times, then p = 0.9, and the advantage of being in the non-overlapping portion of
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the µ unknown circle (i.e., not θ) is not nearly as high as it would be if p = 0.4 and

only eight of the last transaction times were available. That is why in the former

case, the weighting on T would be 0.9, while in the latter aforementioned case, the

weighting on T would only be p = 0.4. rn (p) also actually represents the proportion

of the variance of Y ∗[np] out of the variance of T + Y ∗[np], so with p = 0.3, Y ∗[0.3n] only

accounts for about 30% of the variance of T +Y ∗[0.3n]. When p = 0.9, Y ∗[0.9n] accounts

for 90% of the variance of T + Y ∗[0.9n]. All this is a consequence of the following

identity given in 3.14, which we now prove using Theorem 1.

µ̂B = rn (p)T + (1− rn (p))Y ∗[np]. (3.14)

Theorem 7. Let µ̂B be the BLUE based on Y1 > Y2 > .... > Y[np] where the Y ′s are

the order statistics from X1, X2, ..., Xn that are iid exp (µ). Then µ̂B can be written

as the expression given in 3.14.

Proof. We apply Theorem 1 to the estimator T in order to compute its coefficient

c1 (p) given in 3.12.

c1 (p) =

µ2
n∑

j=[np]

1
j2(

n∑
j=[np]

1
j

)2

µ2
n∑

j=[np]

1
j2(

n∑
j=[np]

1
j

)2 + µ2

[np]−1

=
[np]− 1

[np]− 1 +R[np]

= rn (p) .

This establishes the validity of 3.14.
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By 2.9,

lim
n→∞

c1 (p) =
1

1 + log2 p
1−p

= r (p) . (3.15)

and therefore

lim
n→∞

c2 (p) = 1− r (p) .

Recall in 2.9 we defined the limiting ratio function as

r (p) = lim
n→∞

V ar (µ̂B)

V ar (µ̃B)
.

Now we would like to compare the variances of the BLUE for µ and its two

weighted unbiased estimators of µ, T and Y ∗[np]. The most convenient way to do

this is to study them asymptotically just as we did in Chapter 2 using Theorem 3.

This way we can have all three continuous functions on the same graph and see it

visually. Then we can confirm the graphical results numerically in a table as we did

throughout Chapter 2. By Theorem 3, we already know the asymptotic normalized

variances of µ̂B and T . Recall from that theorem,

lim
n→∞

n

µ2
V ar (µ̂B) =

1

p
(

1 + log2 p
1−p

) , (3.16)

and

lim
n→∞

n

µ2
V ar

(
T
)

=
1

p
. (3.17)

Now we show that

lim
n→∞

n

µ2
V ar

(
Y ∗[np]

)
=

1− p
p log2 p

(3.18)

in the following theorem.

Theorem 8. Let Y1 > Y2 > .... > Y[np] be the upper [np] order statistics from an iid

sequence of exp (µ) random variables X1, X2, ..., Xn. Then,

lim
n→∞

n

µ2
V ar

(
Y ∗[np]

)
=

1− p
p log2 p

.
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Proof.

V ar
(
Y ∗[np]

)
=

µ2
n∑

j=[np]

1
j2(

n∑
j=[np]

1
j

)2 ,

so

lim
n→∞

n

µ2
V ar

(
Y ∗[np]

)
= lim

n→∞

n

µ2

µ2
(

1
np
− 1

n

)
log2 p

=
1− p
p log2 p

Figure 3.2 shows the plots of the three functions given in 3.16, 3.17 and 3.18.

Figure 3.2: lim
n→∞

n
µ2
V ar (µ̂B), (lowest) lim

n→∞
n
µ2
V ar

(
Y ∗[np]

)
, (middle until p = 0.5) 1

p
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Based on Figure 3.2, (which also includes the plots of the other two functions

from Figure 2.1) we can see that Y ∗[np] is never a decent estimator for µ. Its variance

seems to minimize at around p = 0.2, (See [1] for the CRLB function of Y ∗[np].) and

even there it appears to be about 60% (since the asymptotic normalized variance

seems to be around 1.6) above the CRLB based on all the X
′
s, and for p > 0.2,

that asymptotic normalized variance for Y ∗[np] tends to infinity as p → 1. When

p ≈ 0, Y ∗[np] is about as good an estimator as µ̂B itself, although that is not saying

very much because both asymptotic normalized variances tend to infinity as p→ 0,

meaning they are both significantly higher than µ2/n, practically speaking for finite

n. When p ≈ 0.5, the weighting on T and Y ∗[np] is about equal as suggested by

Theorem 7 and the fact that

r (0.5) =
1

1 + log2(0.5)
0.5

= 0.509 97.

Actually as alluded to earlier in this section, that means that

lim
n→∞

V ar
(
Y ∗[0.5n]

)
V ar

(
Y ∗[0.5n]

)
+ V ar

(
T
) = 0.50997,

so for finite n, roughly 51% of the variance of V ar
(
Y ∗[0.5n]

)
+V ar

(
T
)

is accounted

for by V ar
(
Y ∗[0.5n]

)
. As shown in Figure 3.2, the variances of the two unbiased

estimators are roughly equal near 0.5. (where the two plots intersect) If θ is known

to be zero, we note that by 3.16 and 3.17 with p = 0.5

lim
n→∞

V ar
(
T
)

V ar (µ̂B)
=

1
p

1

p
(
1+ log2 p

1−p

)
= 1 +

log2 0.5

0.5

= 1. 960 9,

which means from the perception of the observer who does not know θ, the variance
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of his BLUE is about 96% greater than the one who does know θ = 0. If p = 0.95,

lim
n→∞

V ar
(
Y ∗[0.95n]

)
V ar

(
Y ∗[0.95n]

)
+ V ar

(
T
)

=
1

1 + log2 0.95
0.05

= 0.950 01,

and

lim
n→∞

V ar
(
T
)

V ar (µ̂B)

= 1 +
log2 0.95

0.05

= 1.0526,

and so for the observer not knowing θ, the variance of his estimator of T when

95% of the upper order statistics are observed is only about 5.26% greater than the

observer who knows θ. For p > 0.5, T is the better estimator, and it finally hits the

CRLB based on all the X ′s when p = 1. As p→ 1, we know that r (p)→ 1 so using

the fact that

lim
n→∞

V ar
(
Y ∗[np]

)
V ar

(
Y ∗[np]

)
+ V ar

(
T
) = r (p) ,

V ar
(
Y ∗[np]

)
accounts for nearly 100% of V ar

(
Y ∗[np]

)
+ V ar

(
T
)

when p ≈ 1.

The most critical question is this. If in Figure 3.1, we are in the non-overlapping

µ unknown region for estimating µ, how much better off are we using the BLUE

µ̂B than just using T as our estimator of µ? That depends on the value of p. The

greater the value of p, the greater the weighting on T which is rn (p), and the less

of an advantage there is to the observer who knows θ. We should point out that as

poor as an estimator Y ∗[np] becomes as p → 1, it always lowers the variance of the

BLUE. Going back to the identity 3.10

rn (p) =
V ar

(
θ̂B

)
V ar

(
θ̃B

) =
V ar (µ̂B)

V ar (µ̃B)
,
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a similar idea applies to the estimation of θ. Based on 3.10 and Table 3.2, we

have that

rn (p) =
V ar

(
Y[np]

)
V ar

(
Y[np]

)
+ V ar

(
T
)( n∑

j=[np]

1
j

)2 ,

so here again the existence of T in θ̃B and lack thereof in θ̂B is what increases

the variance for the estimator of θ when not knowing µ. If we did not know µ with

θ being unknown, the only possible estimator to use would be T . If we knew µ and

were estimating θ, the relative advantage (in terms of percentage) would depend on

the variance of T just like it would if we knew θ and were estimating µ, and the point

is that those relative advantages are equal. (i.e., ratio identity exemplified from a

different perspective) So there is a sense of symmetry which can be seen from Figure

3.1. The ratio rn (p) can be looked at as a reliability measure of T from estimation

scenarios of µ and θ and relatively speaking, an equal reliability measure in from

both directions from the non-overlapping regions in Figure 3.1 to the intersection

region. Now, it is important to understand that even though

µ̂B = rn (p)T + (1− rn (p))Y ∗[np],

if you take the limit of both sides, you have almost sure convergence of both

sides to µ. (and thus also in distribution to a point mass µ) To obtain something

nontrivial such as convergence to a standard normal random variable, you would

have to rewrite 3.11 as

µ̂B − µ
µ√
n

= rn (p)

(
T − µ

)
µ√
n

+ (1− rn (p))

(
Y ∗[np] − µ

)
µ√
n

. (3.19)

It can be shown that 3.17 converges to (See [6].)

Z (p) = r (p)Z1 (p) + (1− r (p))Z2 (p) ,

where for each p, Z1 (p)
d
= N

(
0, 1

p

)
, Z2 (p)

d
= N

(
0, 1−p

p log2 p

)
and Z1 (p) and Z2 (p)

are independent. However µ is unknown in this problem, so 3.19 would only be

applicable for hypothesis testing or for confidence intervals for µ. This is well outside
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the scope of this thesis and open for discussion. We conclude this section with

numerical values for the normalized variances of µ̂B, T and Y ∗[np] for n = 100 and

asymptotically. We also give values for r100 (p) and r (p) to show the weighting on

T .

Table 3.3: Normalized Variances for Estimators of µ; n = 100

p 100
µ2
V ar (µ̂B) 100

µ2
V ar

(
T
)

100
µ2
V ar

(
Y ∗[100p]

)
r100 (p)

0.1 1. 483 3 11. 111 1. 711 9 0.133 5
0.25 1. 129 3 4. 166 7 1. 549 1 0.271 03
0.5 1. 021 2 2. 040 8 2. 044 1 0.500 40
0.75 1. 001 9 1. 351 4 3. 874 9 0.741 43

Table 3.4: Asymptotic Normalized Variances for Estimators of µ

p lim
n→∞

n
µ2
V ar (µ̂B) lim

n→∞
n
µ2
V ar

(
T
)

lim
n→∞

n
µ2
V ar

(
Y ∗[100p]

)
r (p)

0.1 1. 451 2 10 1. 697 5 0.145 12
0.25 1. 122 8 4 1. 561 0.280 71
0.5 1. 019 9 2 2. 081 4 0.509 97
0.75 1. 001 7 1. 333 3 4. 027 7 0.751 29

3.5 A Simulation Study for Estimation of µ and θ

As we saw in the last section, the coefficient rn (p) is a measure of the accuracy of T

for the estimation of µ and for the estimation of θ in the case when both parameters

are unknown. (in the intersection region of Figure 3.1) That follows by the ratio

identity given in 3.10. When estimating µ, one observer knows θ while the other

does not know θ. The lower the variance of T , or equivalently the higher percentage

of order statistics we have available, the less important it is to know θ. Similarly,

the lower the variance of T , the less of an advantage there is in knowing µ when
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estimating θ. The critical point is that the marginal advantages are equal because

both observers who are at a disadvantage in not knowing θ or not knowing µ in their

respective estimation scenarios both rely on T . We simulated one random sample of

n = 500 exponential random variables with µ = 1 and θ = −5. We selected certain

values of p and calculated the statistics shown below in the following table.

Table 3.5: Simulation, n = 500, µ = 1, θ = −5

p T Y ∗[np] µ̂B θ̃B θ̂B
0.1 0.9143 0.9388 0.935 3 −4.943 −5.141
0.4 0.8948 1.022 0.969 23 −4.882 −4.979
0.5 0.9242 1.016 0.969 36 −4.935 −4.988
0.7 0.9415 1.040 0.971 02 −4.964 −4.985
0.9 0.9328 1.358 0.976 13 −4.954 −4.961
0.98 0.9628 1.534 0.974 22 −4.987 −4.988

We should keep in mind that this is only one simulation run and referring to

Figure 3.2, both the variances of T and Y ∗[np] are high for small values of p, and

not to mention the variance of Y ∗[np] is also very high near p = 1. The values as

p increases for µ̂B are far more consistent from p = 0.4 and greater quite possibly

because the variance for the BLUE of µ is essentially a constant of 1/500 for values

of p ≥ 0.2. Generally the same is true for the θ estimators, and as we will see in

Section 3.6, they are better estimators than those of µ for moderately large enough

values of p.

3.6 On the Variances of Estimators for θ

Although the ratio identity holds, the BLUE estimators of µ and θ have very different

variance formulas. In particular, take the case where k = n. Then by Table 3.1,

V ar
(
θ̂B

)
=
µ2

n2
, (3.20)
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and

V ar
(
θ̃B

)
=
µ2

n2
+

µ2

(n− 1)

1

n2

=
µ2

n2

(
1 +

1

n− 1

)
=
µ2

n2

n

n− 1

=
µ2

n (n− 1)
. (3.21)

The variances in 3.20 and 3.21 tend to zero at the rate of 1/n2, while the variances

for both µ BLUE estimators which are when k = n

V ar (µ̂B) = V ar
(
X
)

=
µ2

n
, (3.22)

and

V ar (µ̃B) =
µ2

n− 1
. (3.23)

One can easily verify that the identity ratio holds here as it should because we

proved it in Theorem 6 for general k. The µ estimators are bounded in variance

below by the CRLB of µ2/n, while the θ estimators, the Fisher Information does

not exist, and no such bound exists other than the MLE variance bounds which we

will see in Chapter 4.

Remark 9. When both parameters are unknown, the CRLB based on all n observa-

tions still makes sense when estimating µ, since after all the random variables are

still shifted by a constant even though it is unknown. That is, whether θ is known or

unknown, V ar
(
X
)

= µ2/n, and that is the CRLB. Now for the other unknown pa-

rameter θ, the CRLB does not exist because we cannot define its Fisher Information.

The same is true when θ is unknown and µ is known.

In light of 3.20 and 3.21, we have the following theorem on the asymptotic

normalized variances for the two BLUE θ estimators. This is for general percentiles

with k = [np].
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Theorem 10. Let Y1 > Y2 > .... > Y[np] be the upper [np] order statistics from an

iid sequence of exp (µ) random variables X1, X2, ..., Xn. Then,

i.

lim
n→∞

n

µ2
V ar

(
θ̂B

)
=

1− p
p

ii.

lim
n→∞

n

µ2
V ar

(
θ̃B

)
=

1− p
p

(
1 +

log2 p

1− p

)
Proof. i.

When k = [np], we have from Table 3.1 that

lim
n→∞

n

µ2
V ar

(
θ̂B

)
= lim

n→∞

n

µ2
µ2

n∑
j=[np]

1

j2

= lim
n→∞

n

n∫
[np]

1

x2
dx

= lim
n→∞

n

(
1

np
− 1

n

)
=

1− p
p

.

ii.

Also from Table 3.1, we have that

lim
n→∞

n

µ2
V ar

(
θ̃B

)
= lim

n→∞
n

 n∑
j=[np]

1

j2
+

1

[np]− 1

 n∑
j=[np]

1

j

2
=

1− p
p

+ lim
n→∞

n

np
log2 p

=
1− p
p

(
1 +

log2 p

1− p

)
.
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Remark 11. It should be noted that both the functions in Theorem 10 have asymp-

totic normalized variances that approach zero as p → 1, indicating that they must

cross the line y = 1 for some value of p. The asymptotic variance of θ̂B crosses one

at p = 0.5, making it a better estimator than µ̂B for p ≥ 0.5. The other asymptotic

variance intersects y = 1 for some value of p > 0.5. The point is they are both better

estimators if a high enough percentage of the upper order statistics is retained.

We conclude this chapter with a plot of the two variance functions for the BLUEs

of θ.

Figure 3.3: 1−p
p , 1−p

p

(
1 + log2 p

1−p

)
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Chapter 4

Maximum Likelihood Estimation

and the Minimum Mean Square

Error Conjecture

4.1 Introduction

Up until this point in the thesis, we have only been dealing with the BLUEs for each

of the three estimation scenarios. We have made several observations in regards to

the advantages of knowing a certain parameter when estimating the other parameter.

(e.g., The marginal advantage of knowing θ for the estimation of µ) One of the

primary objectives in this chapter is to compare the four BLUE estimators’ Mean

Square Errors (MSE) with the MSEs of their corresponding Maximum Likelihood

Estimators. (MLE) In this Type-II censoring scheme that we have used, it is not

possible to derive an explicit formula for the MLE of µ when θ is known, but

surprisingly, when both µ and θ are unknown, it is possible to find the MLEs for

both µ and θ. (See [4].) As we mentioned in Chapter 2, in all of the references cited

in the bibliography section, no one has considered estimating θ with µ being known,

so the derivation of that MLE is original, yet easily follows from the case when

both parameters are unknown. So unlike in Chapter 2 where we derived the BLUEs
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and their variances, we do not derive the MLEs and their MSEs and biases squared

in this chapter, but rather reserve those derivations for A2 in the appendix. It is

also worth mentioning that our derivations of the BLUEs in Chapter 3 is original

too for the very same reason as the derivations of the BLUEs from Chapter 2.

For the case of where there is no explicit solution of the MLE, we use in A2 the

method of Approximate Maximum Likelihood Estimation (AMLE) introduced by

Balakrishnan and Cohen. (See [4].) In Chapter 2, we used a transformation on the

vector (Y1, Y2, ..., Yk) to a vector with k independent random variables, and in that

regard, our work there is distinguishable from any of the authors who have derived

the BLUEs in all of the estimation scenarios. In Section 4.2, we simply state the

formulas for the MLEs and their respective MSEs and bias squares and note the

similarity of the formulas of the MLEs to those of the BLUEs. In Section 4.3, we

come to one of the main results in this chapter which is a theorem stating that

asymptotically, the MSEs of the MLEs and the BLUEs are equal. The critical point

of Section 4.3 is that the BLUEs may in fact be asymptotically the minimal variance

unbiased estimators based on the data recorded, and this is because typically, the

MLEs are asymptotically the minimum variance unbiased estimators. In Section

4.4, we show that the bias squares for the MLEs are increasingly small compared

to their variances as n increases. For all four MLEs, the variances tend to zero at

the rate of 1/n, while the bias squares tend to zero at the rate of 1/n2. Since the

bias squares when multiplied by n2/µ2 actually have limits which are functions of

p for each of the MLEs, it would at first glance seem conceivable that the BLUEs

may possibly for large n have lower MSEs than those of the MLEs. In fact it

is clear that MSE
(
θ̂B

)
< MSE

(
θ̂M

)
for all n, since it is always the case that

V ar
(
θ̂B

)
= V ar

(
θ̂M

)
. However, the difference of the variance of the BLUE minus

the variance of the MLE when multiplied by n2/µ2 we prove has a limiting function

in three out of the four cases, (particularly the one we mentioned in the previous

sentence) and as for the other case, there is probably a limiting function there as

well for which we leave as an open question. The main premise of Section 4.4 is

that the difference in the MSEs for the BLUEs and their respective MLEs tends
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to a function in at least three out of four cases, while in Section 4.3, we show

that the ratio of the MSEs for the BLUEs and their respective MLEs tends to one.

So Section 4.4 shows Section 4.3 to be a bit misleading, yet also shows that the

BLUEs in conceivably three out of the four cases can have a lower MSE than their

respective MLEs. One of those cases depends on value of p, in particular. In Section

4.5, we show that not only asymptotically µ̂B and µ̂M are unbiased, but they also

asymptotically achieve the CRLB based on our data
(
Y1, Y2, ..., Y[np]

)
so that they

are asymptotically the minimum variance unbiased estimators. For the purpose of

clarity, we give a definition to the meaning of asymptotically attaining the CRLB

based on the data recorded also in Section 4.5. The purpose of Section 4.5 is to claim

minimum variance among all asymptotically unbiased estimators. Unfortunately, we

can only prove this in one out of the three estimation scenarios, since in the other

two, the support depends on an unknown parameter θ. The other three BLUE and

three MLE estimators we conjecture in Chapter 5 to be the asymptotically minimum

variance unbiased estimators. Finally in Section 4.6, we regress back to Section 2.3

and Theorem 3 and revisit the function s (p) = r (p) /p. We use a CRLB argument

to support the reasons for why s (p) > 1 and also why s (p) tends to one as quickly

as it does. At p = 0.2, s (p) ≈ 1.18, which means that when only 20% of the

upper order statistics are observed, the variances of µ̂B and µ̂M are only 18% above

the CRLB based on all the X ′s. Section 4.6 is really a continuation of Section 4.5

because we continue to use the Fisher Information for the entire data set and that

for Y[np] by itself.

4.2 Formulas for MLEs, Variances and Bias Squares

In Tables 4.1 and 4.2, the formulas for the MLEs, their variances and their bias

squares are given. One can determine the MSE for each of the MLEs simply by

adding the variance to the bias squared. In Tables 4.1 and 4.2,

qk =
k

k +R∗k
,
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Y ∗∗k =
Yk − θ
log
(
n
k

) , (with θ being known)

and

R∗k =

(
n∫
k

1
x
dx

)2

n∫
k

1
x2
dx

=
nk

n− k
log2

(n
k

)
.

Table 4.1: MLE and Variance

MLE Expression Variance

µ̂AM qk

k−1∑
j=1

Tj

k
+ (1− qk)Y ∗∗k µ2q2k

(
k−1
k2

+ n2

(n−k)2 log2
(
n
k

) n∑
j=k

1
j2

)

µ̃M

k−1∑
j=1

Tj

k
µ2 k−1

k2

θ̃M Yk + µ̃M log
(
k
n

)
µ2

(
n∑
j=k

1
j2

+
(k−1) log2( k

n)
k2

)
θ̂M Yk + µ log

(
k
n

)
µ2

n∑
j=k

1
j2

By Theorem 7 and 3.14, one can see that when θ = 0, µ̂AM and µ̂B are both

weighted linear combinations of two independent estimators involving
k−1∑
j=1

Tj and Yk.

The difference is that µ̂M is a weighted linear combination of two biased estimators

which are µ̃M and Y ∗∗k . For both the estimators of θ,
n∑
j=k

1
j

is replaced by log
(
n
k

)
,

and obviously µ̃M appears nearly identical to µ̃B. Also notice the resemblance of qk

to rk. Adopting the same notation we did in Chapter 2, (See 2.8.) when k = [np],

we change qk to qn (p), and by Lemma 3 and A1, it is clear that qn (p) → r (p) as

n→∞. We use that result in several theorems/corollaries throughout this chapter.
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Table 4.2: Bias Squares of MLEs

MLE Bias Squared

µ̂AM µ2

qk
 (k−1)

k
−

n∑
j=k

1
j

log(n
k )

+

 n∑
j=k

1
j

log(n
k )
− 1

2

µ̃M
µ2

k2

θ̃M

µ2

(
(k−1) log( k

n)+k
n∑

j=k

1
j

)2

k2

θ̂M µ2

(
n∑
j=k

1
j

+ log
(
k
n

))2

4.3 The Asymptotic MSEs of the MLEs

It is often the case that the MLEs are optimal in the sense that asymptotically, they

have minimal variance. They are almost always asymptotically unbiased. Surpris-

ingly, the BLUEs have asymptotically the same MSEs as the MLEs as we prove in

Theorem 12. This suggests that perhaps the BLUEs are asymptotically the mini-

mum variance unbiased estimators. Theorem 12 is as follows, and we immediately

prove the result using the formulas given in Tables 4.1 and 4.2..

Theorem 12. Let X1, X2, ..., Xn be iid random variables such that Xi = Wi + θ

for 1 ≤ i ≤ n with W1
d
= exp (µ) and Y1 > Y2 > ... > Y[np] be the upper [np] order

statistics of the X ′s. Then for all p ∈ (0, 1),

i.

lim
n→∞

n

µ2
MSE (µ̂AM) = lim

n→∞

n

µ2
V ar (µ̂AM) =

1

p
(

1 + log2 p
1−p

) .

ii.

lim
n→∞

n

µ2
MSE (µ̃M) = lim

n→∞

n

µ2
V ar (µ̃M) =

1

p

iii.

lim
n→∞

n

µ2
MSE

(
θ̃M

)
= lim

n→∞

n

µ2
V ar

(
θ̃M

)
=

1− p
p

(
1 +

log2 p

1− p

)
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iv.

lim
n→∞

n

µ2
MSE

(
θ̂M

)
= lim

n→∞

n

µ2
V ar

(
θ̂M

)
=

1− p
p

Proof. i.

Note that by Table 4.1,

lim
n→∞

n

µ2
V ar (µ̂AM)

= lim
n→∞

n

µ2
µ2q2n (p)

 [np]− 1

[np]2
+

n2

(n− [np])2
log2

(
n

[np]

) n∑
j=[np]

1

j2


= r2 (p) lim

n→∞

(
n

np
+

n

(1− p)2
log2 p

(
1

np
− 1

n

))
= r2 (p)

(
1

p
+

log2 p

p (1− p)

)
=

1

p
r2 (p) r−1 (p)

=
1

p
(

1 + log2 p
1−p

) .

Now by Table 4.2,

lim
n→∞

n

µ2
Bias2 (µ̂AM)

= lim
n→∞

n

µ2
µ2

qn (p)

([np]− 1)

[np]
−

n∑
j=[np]

1
j

log
(

n
[np]

)
+


n∑

j=[np]

1
j

log
(

n
[np]

) − 1




2

= lim
n→∞

qn (p)
√
n

([np]− 1)

[np]
−

n∑
j=[np]

1
j

log
(

n
[np]

)
+

√
n


n∑

j=[np]

1
j

log
(

n
[np]

) − 1




2

55



Note that

lim
n→∞

√
n

(
([np]− 1)

[np]
− 1

)
= − lim

n→∞

√
n

1

np

= 0.

So therefore by A1,

lim
n→∞

n

µ2
Bias2 (µ̂AM)

=

r (p) lim
n→∞

√
n

([np]− 1)

[np]
−

n∑
j=[np]

1
j

log
(

n
[np]

)
+ lim

n→∞

√
n


n∑

j=[np]

1
j

log
(

n
[np]

) − 1




2

= 0.

ii. Also by Table 4.1,

lim
n→∞

n

µ2
V ar (µ̃M)

= lim
n→∞

n

µ2

([np]− 1)µ2

[np]2

=
1

p
.

By Table 4.2,

lim
n→∞

n

µ2
Bias2 (µ̃M)

= lim
n→∞

n

µ2

µ2

[np]2

= 0.

iii.

By Table 4.1,
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lim
n→∞

n

µ2
V ar

(
θ̃M

)
= lim

n→∞

n

µ2
µ2

 n∑
j=[np]

1

j2
+

[np]− 1

[np]2
log2

(
[np]

n

)
= lim

n→∞
n

(
1

np
− 1

n
+

[np]− 1

[np]2
log2

(
[np]

n

))
=

1− p
p

+
1

p
log2 p

=
1− p
p

(
1 +

log2 p

1− p

)
.

Now by Table 4.2,

lim
n→∞

n

µ2
Bias2

(
θ̃M

)
= lim

n→∞

√n([np]− 1)

[np]
log

(
[np]

n

)
+
√
n

n∑
j=[np]

1

j

2

= lim
n→∞

√n
 n∑
j=[np]

1

j
− log

(
n

[np]

)− √n
[np]

log

(
[np]

n

)2

= 0.

again using A1.

iv. By Table 4.1,

lim
n→∞

n

µ2
V ar

(
θ̂M

)
= lim

n→∞

n

µ2
µ2

(
1

np
− 1

n

)
=

1− p
p

,
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and by Table 4.2,

lim
n→∞

n

µ2
Bias2

(
θ̂M

)
= lim

n→∞

n

µ2
µ2

log

(
[np]

n

)
+

n∑
j=[np]

1

j

2

= 0,

once again by A1.

4.4 The Asymptotic Normalized Difference Be-

tween the MSEs

Although by Theorem 12, it is clear that the ratio of the MSEs for the MLEs to

their corresponding BLUEs approaches one, that does not mean that the MSEs of

the MLEs are lower or higher than the MSEs of the BLUEs asymptotically. By

multiplying the variance and the bias squared of each MLE by n/µ2, we saw in

Theorem 12 that the asymptotic normalized variance tends to a function of p, while

the corresponding bias squared portion tends to zero. It turns out that in at least

three out of four cases, the difference in the MSEs of the BLUEs and the MLEs does

have a limiting function, only to obtain it, we need multiply by n2/µ2. The bias

squares of the MLEs are a multiple of 1/n times smaller than their variances, and

each bias squared when multiplied by n2/µ2 does tend to a limiting function of p.

This is established in Theorem 14. Theorem 15 is a bit more restricted in that we

try to obtain a limiting function by multiplying the difference of the variances of the

MLEs and their respective BLUEs by n2/µ2, but for the case of θ being known and

µ being unknown, we were unable to determine the existence of a limiting function

simply because of the algebraic complexity involved. Thus, we only conclude with

three functions for the difference of the MSEs. When we say difference of the MSEs,

we mean the MSE of the MLE minus the MSE of the BLUE. In two out of four
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cases, the BLUE actually has the lower asymptotic MSE. In one of the cases, the

difference of the MSEs depends on p. When we say ”equal asymptotically,” we really

mean the ratio of the MSEs tends to one. In this section, we are putting a more

powerful microscope on the comparison by multiplying the difference of the MSEs

by n2/µ2. By multiplying each MSE by just n/µ2 we cannot see any difference,

which is what is hidden in Theorem 12. Our objective in this section is to find the

limiting functions of the following as n→∞.

i.
n2

µ2
(MSE (µ̂AM)−MSE (µ̂B))

ii.
n2

µ2
(MSE (µ̃M)−MSE (µ̃B))

iii.
n2

µ2

(
MSE

(
θ̃M

)
−MSE

(
θ̃B

))
iv.

n2

µ2

(
MSE

(
θ̂M

)
−MSE

(
θ̂B

))

Part i. is the one we only were able to obtain the first part of given in Theorem

14, assuming of course there is a limit to the second part of the difference. (when

decomposed as a difference of two different terms) Theorem 14 captures the limiting

functions for the bias squared terms, while Theorem 15 takes care of the rest of the

expression in parts ii. through iv..

Lemma 13. For each p ∈ (0, 1),

lim
n→∞

n

 n∑
j=[np]

1

j
− log

(
n

[np]

) =
1 + p

2p
.

Theorem 14. Let X1, X2, ..., Xn be iid random variables such that Xi = Wi + θ

for 1 ≤ i ≤ n with W1
d
= exp (µ) and Y1 > Y2 > ... > Y[np] be the upper [np] order

statistics of the X ′s. Then for all p ∈ (0, 1),
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i.

lim
n→∞

n2

µ2
Bias2 (µ̂AM) =

1 + p

2p

(
log p

1− p+ log2 p

)
+

1

p
(

1 + log2 p
1−p

)
2

ii.

lim
n→∞

n2

µ2
Bias2 (µ̃M) =

1

p2

iii.

lim
n→∞

n2

µ2
Bias2

(
θ̃M

)
=

(
1 + p

2p
− log p

p

)2

iv.

lim
n→∞

n2

µ2
Bias2

(
θ̂M

)
=

(1 + p)2

4p2

Proof. i. From Table 4.2 and Lemma 13,

lim
n→∞

n2

µ2
Bias2 (µ̂AM)

= lim
n→∞

n2

µ2
µ2

qn (p)

([np]− 1)

[np]
−

n∑
j=[np]

1
j

log
(

n
[np]

)
+


n∑

j=[np]

1
j

log
(

n
[np]

) − 1




2

= lim
n→∞

nqn (p)

1−

n∑
j=[np]

1
j

log
(

n
[np]

)
+ nqn (p)

(
[np]− 1

[np]
− 1

)
+ n


n∑

j=[np]

1
j

log
(

n
[np]

) − 1




2

=

(
r (p)

1 + p

2p log p
− r (p)

p
− 1 + p

2p log p

)2

=

− 1 + p

2p log p

(
log2 p

1− p+ log2 p

)
− 1

p
(

1 + log2 p
1−p

)
2

=

1 + p

2p

(
log p

1− p+ log2 p

)
+

1

p
(

1 + log2 p
1−p

)
2
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ii. By Table 4.2,

lim
n→∞

n2

µ2
Bias2 (µ̃M)

= lim
n→∞

n2

µ2

µ2

[np]2

=
1

p2
.

iii. By Table 4.2 and Lemma 13,

lim
n→∞

n2

µ2
Bias2

(
θ̃M

)
= lim

n→∞

n([np]− 1)

[np]
log

(
[np]

n

)
+ n

n∑
j=[np]

1

j

2

= lim
n→∞

n
 n∑
j=[np]

1

j
− log

(
n

[np]

)− n

[np]
log

(
[np]

n

)2

=

(
1 + p

2p
− log p

p

)2

.

iv. Also by Table 4.2 and Lemma 13,

lim
n→∞

n2

µ2
Bias2

(
θ̂M

)
= lim

n→∞

n2

µ2
µ2

log

(
[np]

n

)
+

n∑
j=[np]

1

j

2

=
(1 + p)2

4p2
.

As a consequence of Theorem 14, we have the following, which is our main result

for this section.
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Theorem 15. Let X1, X2, ..., Xn be iid random variables such that Xi = Wi + θ

for 1 ≤ i ≤ n with W1
d
= exp (µ) and Y1 > Y2 > ... > Y[np] be the upper [np] order

statistics of the X ′s. Then for all p ∈ (0, 1),

i.

lim
n→∞

n2

µ2
(MSE (µ̃M)−MSE (µ̃B)) = − 1

p2
.

ii.

lim
n→∞

n2

µ2

(
MSE

(
θ̃M

)
−MSE

(
θ̃B

))
= − log2 p

p2
+

(1 + p)2

4p2

iii.

lim
n→∞

n2

µ2

(
MSE

(
θ̂M

)
−MSE

(
θ̂B

))
=

(1 + p)2

4p2

Proof. i. From Tables 4.1 and 2.1,

lim
n→∞

n2

µ2
(V ar (µ̃B)− V ar (µ̃M))

= lim
n→∞

n2

(
1

[np]− 1
− [np]− 1

[np]2

)
= lim

n→∞
n2

(
[np]2 − [np]2 + 2 [np]− 1

n3p3

)
=

2

p2
.

Combining this with part ii. of Theorem 14, we arrive at the result.
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ii. From Tables 4.1 and 2.1, it follows from Lemma 13 that

lim
n→∞

n2

µ2

(
V ar

(
θ̃B

)
− V ar

(
θ̃M

))
= lim

n→∞
n2

 1

[np]− 1

 n∑
j=[np]

1

j

2

− [np]− 1

[np]2
log2

(
n

[np]

)
= lim

n→∞
n2

 1

[np]− 1

 n∑
j=[np]

1

j

2

− ([np]− 1)2

[np]2
log2

(
n

[np]

)
= lim

n→∞
n2

 1

[np]− 1

 n∑
j=[np]

1

j

2

− log2

(
n

[np]

)+
2

n2p2
log2 (p)− 1

n3p3
log2 p


= lim

n→∞

n

p

 n∑
j=[np]

1

j

2

− log2

(
n

[np]

)+ 2
log2 p

p2

=
1

p
lim
n→∞

n

 n∑
j=[np]

1

j
− log

(
n

[np]

) n∑
j=[np]

1

j
+ log

(
n

[np]

)+ 2
log2 p

p2

= −2 log p

p

1 + p

2p
+ 2

log2 p

p2

= −(1 + p) log p

p2
+ 2

log2 p

p2
.

Combining this with part iii. of Theorem 14, we have

lim
n→∞

n2

µ2

(
MSE

(
θ̃M

)
−MSE

(
θ̃B

))
=

(
1 + p

2p
− log p

p

)2

+
(1 + p) log p

p2
− 2

log2 p

p2

=
(1 + p)2

4p2
− log2 p

p2

iii. This is immediate from Theorem 14.
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Tables 4.3 through Tables 4.10 numerically give the asymptotic normalized differ-

ence in the MSEs of the MSE of the MLE minus the MSE of the BLUE. Based on the

values given in the third column of Tables 4.3 and 4.4, it seems apparent that conver-

gence of n2/µ2 (V ar (µ̂B)− V ar (µ̂AM)) does occur. (to some function of p) What-

ever function it is, it would be very small compared to n2/µ2 (Bias (µ̂B)−Bias (µ̂AM))

for moderately large values of p. In fact, it would be practically zero for p ≥ 0.5.

This would make the MSE of µ̂B lower than µ̂AM , (as can be seen in the fourth

column of Tables 4.3 and 4.4) but the difference becomes less as p increases.

Tables 4.3-4.10: Asymptotic Difference of MSEs

Table 4.3: µ unknown, θ known, n = 500

p 5002

µ2
Bias2 (µ̂AM) 5002

µ2
(V ar (µ̂B)− V ar (µ̂AM)) 5002

µ2
(MSE (µ̂AM)−MSE (µ̂B))

0.1 0.356 35 −1. 75 2. 106 4
0.25 3. 083 9× 10−2 −0.4 0.430 84
0.50 0.001 67 −0.1 0.101 67
0.75 4. 915 6× 10−5 0 4. 915 6× 10−5

0.90 9. 255 6× 10−7 0 9. 255 6× 10−7

Table 4.4: µ unknown, θ known, n = 1000 *

p 10002

µ2
B2 (µ̂AM) 10002

µ2
(V (µ̂B)− V (µ̂AM)) 10002

µ2
(MSE (µ̂AM)−MSE (µ̂B))

0.1 0.352 70 −1. 7 2. 052 7
0.25 3. 061 2× 10−2 −0.4 0.430 61
0.50 1. 655 6× 10−3 0 1. 655 6× 10−3

0.75 4. 837 4× 10−5 −0.1 0.100 05
0.90 8. 902 3× 10−7 0 8. 902 3× 10−7

*-For p = 0.75, we most likely have a round-off error in the third column.
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Table 4.5: µ unknown, θ unknown, n = 500

p 5002

µ2
Bias2 (µ̃M) 5002

µ2
(V ar (µ̃B)− V ar (µ̃M)) 5002

µ2
(MSE (µ̃M)−MSE (µ̃B))

0.1 100.0 202.0 −102
0.25 16.0 32. 15 −16.15
0.50 4.0 8.0 −4
0.75 1. 777 8 3. 55 −1. 772 2
0.90 1. 234 6 2. 5 −1. 265 4

Table 4.6: µ unknown, θ unknown, n = 1000

p 10002

µ2
Bias2 (µ̃M) 10002

µ2
(V ar (µ̃B)− V ar (µ̃M)) 10002

µ2
(MSE (µ̃M)−MSE (µ̃B))

0.1 100.0 201.0 −101
0.25 16.0 32. 1 −16.1
0.50 4.0 8.0 −4
0.75 1. 777 8 3. 5 −1. 722 2
0.90 1. 234 6 2. 4 −1. 165 4

We conclude this section by graphing the limiting function given in part ii. of

Theorem 15 for the purpose of illustration. MSE
(
θ̃B

)
> MSE

(
θ̃M

)
for roughly

p < 0.5 based on Figure 4.1, and the inequality reverses for p > 0.5. The other two

functions are monotonically decreasing or increasing and strictly positive or negative

on the entire interval (0, 1). Once again, we leave it as a conjecture in Chapter 5 to

show the existence and determine the limiting function (if the limit exists) of

n2

µ2
(V ar (µ̂B)− V ar (µ̂M))

as n→∞.

4.5 The Asymptotic Optimality of µ̂B

With the help of Theorem 12 and Balakrishnan (See [1].), we can claim that µ̂B is

optimal in the sense that

lim
n→∞

n

µ2
V ar (µ̂B) =

r (p)

p
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Table 4.7: µ unknown, θ unknown, n = 500

p 5002

µ2
Bias2

(
θ̃M

)
5002

µ2

(
V ar

(
θ̃B

)
− V ar

(
θ̃M

))
5002

µ2

(
MSE

(
θ̃M

)
−MSE

(
θ̃B

))
0.1 814. 67 1331.0 −516. 33
0.25 64. 765 89. 5 −24. 735
0.50 8. 333 6 8.0 0.333 6
0.75 2. 403 7 1. 195 1. 208 7
0.90 1. 375 1 0.28 1. 095 1

Table 4.8: µ unknown, θ unknown, n = 1000

p 10002

µ2
Bias2

(
θ̃M

)
10002

µ2

(
V ar

(
θ̃B

)
− V ar

(
θ̃M

))
10002

µ2

(
MSE

(
θ̃M

)
−MSE

(
θ̃B

))
0.1 814. 19 1323.0 −508. 81
0.25 64. 745 90.0 −25. 255
0.50 8. 332 1 8.0 0.332 1
0.75 2. 403 5 1. 2 1. 203 5
0.90 1. 375 1 0.28 1. 095 1

has the smallest asymptotic variance for all p among all asymptotically unbiased

estimators (for all p asymptotically unbiased) by establishing in Theorem 17 that

lim
n→∞

V ar (µ̂B)

I−1T1,T2,...,T[np]−1,Y[np]
(µ)

= 1 for all p ∈ (0, 1) . (4.1)

(See Definition 16.)

Among the three estimation scenarios, this is the only one where the Fisher

Table 4.9: µ known, θ unknown, n = 500

p 5002

µ2

(
MSE

(
θ̂M

)
−MSE

(
θ̂B

))
0.1 30. 432
0.25 6. 262 5
0.50 2. 251 5
0.75 1. 361 4
0.90 1. 114 3
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Table 4.10: µ known, θ unknown, n = 1000

p 10002

µ2

(
MSE

(
θ̂M

)
−MSE

(
θ̂B

))
0.1 30. 341
0.25 6. 256 3
0.50 2. 250 8
0.75 1. 361 3
0.90 1. 114 2

Figure 4.1: lim
n→∞

n2

µ2

(
MSE

(
θ̃M

)
−MSE

(
θ̃B

))
, 0 < p < 1

Information exists for the vector
(
T1, T2, ..., T[np]−1, Y[np]

)
. We leave the other two

cases of such optimality as two additional conjectures in Chapter 5. We formally

define what it means for an estimator to asymptotically achieve its CRLB (provided

the Fisher Information exists).

Definition 16. Let Xn be a random vector indexed by a parameter θ and having

Fisher Information IXn (θ). (See [7].) We say that an estimator T (Xn) of θ asymp-

totically attains the CRLB based on Xn if the following criteria are satisfied.
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i.

lim
n→∞

Bias2 (T (Xn))

V ar (T (Xn))
= 0

ii.

Bias2 (T (Xn)) , V ar (T (Xn))→ 0 as n→∞

iii.

lim
n→∞

V ar (T (Xn))

I−1Xn
(θ)

= 1

Note that Definition 16 can be reduced to 4.1 for µ̂B. Also by Theorems 12 and

14, µ̂AM also satisfies these three conditions given in Definition 16. For this one

parameter case, the Fisher Information for the kth highest order statistic (See [1].)

is given by

IYk (µ) =
1

µ2
+

1

µ2

n (n− (n− k + 1) + 1)

n− k − 1

( n−1∑
j=k−1

1

j

)2

+
n−1∑
j=k−1

1

j2


=

1

µ2
+

1

µ2

n (n− (n− k + 1) + 1)

n− k − 1

( n−1∑
j=k−1

1

j

)2

+
n−1∑
j=k−1

1

j2


=

1

µ2
+

1

µ2

nk

n− k − 1

( n−1∑
j=k−1

1

j

)2

+
n−1∑
j=k−1

1

j2

 . (4.2)

With k = [np], we will recognize the

lim
n→∞

n

µ2
I−1Y[np]

(µ)

function to be the same as 3.18, which shows that

Y ∗[np] =
Y[np]
n∑

j=[np]

1
j

is asymptotically optimal in the same sense as 4.1. Now since T1
d
= exp (µ), we have
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that

IT1 (µ)

= V ar

(
d

dµ
log

(
1

µ
exp

(
− 1

µ
T1

)))
= V ar

(
d

dµ

(
−T1
µ

))
=

1

µ4
µ2

=
1

µ2
. (4.3)

So by independence it follows that

IT1,T2,...,T[np]−1,Y[np]
(µ)

=
[np]− 1

µ2
+ IY[np]

(µ) . (4.4)

In light of 4.2 and 4.4, we can now establish 4.1 as given in Theorem 17.

Theorem 17. Let X1, X2, ..., Xn be iid exp (µ) random variables and Y1 > Y2 >

.... > Y[np] be the upper [np] order statistics. Then,

i. lim
n→∞

n

µ2
I−1Y[np]

(µ) =
1− p
p log2 p

and consequently,

ii. lim
n→∞

V ar (µ̂B)

I−1T1,T2,...,T[np]−1,Y[np]
(µ)

= 1.

Proof. i. By 4.2,

lim
n→∞

µ2

n
IY[np]

(µ)

= lim
n→∞

 1

n
+

[np]

n− [np]− 1

 n−1∑
j=[np]−1

1

j

2

+
n−1∑

j=[np]−1

1

j2


=

p

1− p
log2 p+

p

1− p
lim
n→∞

(
1

np
− 1

n

)
=

p

1− p
log2 p,
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and then taking the inverse of this, we arrive at i..

ii. By 4.4 and part i.,

lim
n→∞

µ2

n
IT1,T2,...,T[np]−1,Y[np]

(µ)

= p+
p

1− p
log2 p

=
p

r (p)
.

So by part i. of Theorem 12,

lim
n→∞

V ar (µ̂B)

I−1T1,T2,...,T[np]−1,Y[np]
(µ)

= lim
n→∞

n
µ2
V ar (µ̂B)

n
µ2
I−1T1,T2,...,T[np]−1,Y[np]

(µ)

=

r(p)
p

r(p)
p

= 1.

As we stated in Section 4.1, we cannot establish optimality in the sense of 4.1

in all three estimation scenarios, so we leave that generalization as a conjecture in

Chapter 5.

4.6 The Relevance of Theorem 17 to the Limiting

Ratio Function r (p)

Recall the definition of s (p) = r (p) /p given in Section 2.3. We have already seen

from Theorem 3, Table 2.3 and Figure 2.1 that s (p) > 1 and also have seen how

quickly s (p) approaches one. There is practically a horizontal asymptote at y = 1

for that function, and that limit is nearly attained at p = 0.5. This illustrates how
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high a percentage of the lower order statistics can be censored before the function

lim
n→∞

n

µ2
V ar (µ̂B) = s (p)

approaches one, or in more practical terms how high a percentage of the lower

order statistics can be lost before V ar (µ̂B) is to within a certain level of accuracy

of the CRLB based on all the X ′s, µ2/n. We give intuition of these properties for

the ratio function using the Fisher Information introduced in Section 4.5. Other

than by using the formulas, there is no real probabilistic and/or statistical proof for

these properties. However they are essentially intuitively obvious, and so our only

objective in this section is to further illustrate where we left off in Section 2.3. Note

that for finite n and p ∈ (0, 1) it should follow that,

V ar (µ̂B) ≥ I−1T1,T2,...,T[np]−1,Y[np]
(µ) > I−1X1,X2,...,Xn

(µ) =
µ2

n
. (4.5)

Since p < 1, one would then think by 4.5 and as a consequence of part ii. of

Theorem 17 that

s (p) = lim
n→∞

n

µ2
I−1T1,T2,...,T[np]−1,Y[np]

(µ) > 1,

which would suggest that r (p) > p, and indeed this is the case since

s−1 (p) =
p

r (p)

= p+
p

1− p
log2 p

can be shown to be an increasing function which increases from zero to one on the

interval (0, 1). (This means that s (p) decreases from infinity to one on the interval

(0, 1).) More interestingly, the reason why s (p) approaches one as quickly as it does

is really because of the help of the last order statistic Y[np]. The contribution of

information from Y[np] to

s−1 (p) = lim
n→∞

µ2

n
IT1,T2,...,T[np]−1,Y[np]

(µ)

is by part i. of Theorem 17

lim
n→∞

µ2

n
IY[np]

(µ) =
p

1− p
log2 p. (4.6)
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Note that

d

dp

p

1− p
log2 p

=
1− p+ p

(1− p)2
log2 p+

2 log p

1− p
,

or rearranging and setting the derivative to zero, we have

log2 p+ 2 log p (1− p) = 0, and so this happens when

log p (log p+ 2 (1− p)) = 0, or when

log p = −2 (1− p) . (4.7)

The solution to 4.7 is approximately p ≈ 0.1953, and 4.7 agrees with the re-

sult given by Balakrishnan for where the asymptotic Fisher Information of Y[np]

maximizes. (See [1].) So when p ≈ 0.1953,

lim
n→∞

µ2

n
IY[np]

(µ)

maximizes. At that value where it is maximized,

lim
n→∞

µ2

n
IY[np]

(µ) = 0.647 38,

so therefore,

s−1 (0.1953) = 0.1953 + 0.647 38

= 0.842 68, or

s (0.1953) = (0.1953 + 0.647 38)−1

= 1. 186 7.

So because of the fact that IY[np]
(µ) maximizes at such a low value of p = 0.1953,

this causes the asymptotic normalized Fisher Information

s−1 (p) = lim
n→∞

µ2

n
IT1,T2,...,T[np]−1,Y[np]

(µ)
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to already increase to over 84% of its maximum value of one, or in other words

drop the variance of µ̂B to just 18.67% above the CRLB based on all the data.

Since by Theorems 8 and Theorem 17 µ̂B and Y ∗[np] asymptotically attain the CRLB

with respect to their own data, (i.e., Y ∗[np] with respect to the CRLB based on

Y[np]) the inverses of their respective Fisher Informations are asymptotically equal

to their asymptotic variances. So it does not matter whether we study the inverse

of their Fisher Informations or their variances asymptotically. They are the same

according to Definition 16. This is the statistical reasoning for why the variance of

µ̂B approaches one as quickly as it does. Corollary 4 from Chapter 2 is simply a

numerical proof based on the asymptotic normalized variance of µ̂B. For finite n,

µ̂B does not quite reach the CRLB based on just T1, T2, ..., T[np]−1 and Y[np] because

the unbiased estimator Y ∗[np] does not achieve the CRLB based on Y[np] for finite n.

It is considerably close though according to Balakrishnan’s approximation for the

Fisher Information of Y[np]. (See [1].)
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Chapter 5

Further Ideas to Consider

5.1 The Decision of Which Parameter to Esti-

mate When Neither is Known

Recall the limiting functions of p given in Theorem 3 and Theorem 12. For the sake

of argument in this section, we have plot in Figure 5.1 the asymptotic normalized

variances for the four estimators µ̂B, θ̂B, µ̃B and θ̃B.

Figure 5.1: 1

p
(
1+ log2 p

1−p

) , 1
p , 1−p

p , 1−p
p

(
1 + log2 p

1−p

)
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The estimators of µ have curves bounded below by one which is of course because

of the CRLB based on all the X ′s. The θ estimator functions are not bounded below

by any positive constant because the CRLB does not apply to them. Recall the three

estimation scenarios.

i. Know θ

ii. Do not know either of the parameters

iii. Know µ

You can only be in exactly one of those three situations, and in ii., which param-

eter being targeted for estimation is questionable. (assuming we are only interested

in one of them) That being said, there are six comparisons here, and one of them

is built in to ii.. The reason one of these comparisons is built in to ii. is because

we might ask are we better off estimating µ or θ in situation ii.. As it turns out for

p < 0.5, it is better to be estimating µ when in ii., and when p > 0.5, it is better to

be estimating θ when in ii., and that is evident by the plots in Figure 5.1. A fourth

comparison (since we have discussed two of them in this thesis) is i. and iii., or in

other words, are we better off knowing θ or µ? The estimator for µ when knowing

θ is better than the estimator for θ when knowing µ for p < 0.5, and for p > 0.5, it

is the exact opposite. So being in i. is better for p < 0.5, and being in iii. is better

for p > 0.5. (comparing i. and iii.) Rewriting the ratio identity we have that

V ar (µ̂B)

V ar
(
θ̂B

) =
V ar (µ̃B)

V ar
(
θ̃B

) , (5.1)

which gives yet another interpretation we are hinting towards. In particular, at

p ≈ 0.5, these two ratios given in 5.1 are both equal to one. So two comparisons we

never mentioned also have a ratio identity. The difference between the comparison

on the left of 5.1 and the right of 5.1 is that on the left, these are two different

situations, while on the right, they are the same situation. If we were in situation

ii., we would have the option of estimating µ or θ, and our judgement would be

based on the value of p. If we are in situations i. or iii., we only have one of the two

parameters to estimate, and since we can only be in one of those two situations, we
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do not have a choice of which parameter to estimate contrary to being in situation

ii.. If p < 0.5 and if we knew one parameter, the more helpful parameter to know

would be θ. If p > 0.5, the more helpful parameter to know is µ. That is the

disadvantage of being in i. and iii. as opposed to ii. because we cannot in reality

decide which parameter to know. So for instance if p < 0.5 and we know neither of

the parameters, we would choose µ̃B over θ̃B. Suppose that another observer knows

µ with the same proportion p < 0.5 of upper order statistics available so that he is

estimating θ using θ̂B. Recall that

lim
n→∞

n

µ2
V ar

(
θ̂B

)
=

1− p
p

, (5.2)

and

lim
n→∞

n

µ2
V ar (µ̃B) =

1

p
, (5.3)

so that 5.2 is just 5.3 shifted down by one. This difference is insignificant if

p << 0.5 and close to zero as can be seen from Figure 5.1. Just consider the fact

that

lim
p→0

1
p

1−p
p

= 1.

The point is if p is small, θ̂B is not that much of a better estimator than µ̃B,

and when in situation ii., we do have the option of choosing between µ̃B over θ̃B.

(or targeting µ as the parameter of interest when in ii.) When p ≈ 0.5, the ratio of

5.2 divided by 5.3 is 0.5. In other words near p = 0.5, V ar (µ̃B) ≈ 2V ar
(
θ̂B

)
, and

V ar (µ̃B) ≈ V ar
(
θ̃B

)
. So near p = 0.5, it really does not matter which parameter

you choose to estimate when you do not know either of the parameters. (i.e., situ-

ation ii.) The question is how small does p have to be so that V ar (µ̃B) /V ar
(
θ̂B

)
is ”close” enough to one. How ”close” is close in other words? You as the one who

knows neither of the parameters is trying to outmatch someone who knows µ, and it

is no contest if p is not small or anywhere near 0.5 for that matter. You ideally want

a very small percentage of upper order statistics available if you are the blinded
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observer who does not know the value of either of the parameters versus someone

who knows µ. That covers the fifth comparison. Now suppose p > 0.5 once again.

Then in situation ii., we would select θ̃B. Suppose another man knows θ so he has

nothing better to do with his time than to estimate µ. This would be situation i.

for this guy. Now recall that

lim
n→∞

n

µ2
V ar

(
θ̃B

)
=

1− p
p

(
1 +

log2 p

1− p

)
, (5.4)

and

lim
n→∞

n

µ2
V ar (µ̂B) =

1

p
(

1 + log2 p
1−p

) . (5.5)

Equating 5.4 to 5.5 and solving for p, we obtain p = 0.615 47. Unlike the previous

example, for p > 0.61547, θ̃B is in fact a better estimator than µ̂B, so why not

choose θ̃B over µ̃B for that interval of (0.61547, 1)? If we choose to estimate θ

when p > 0.61547, we would out perform the one using µ̂B, and that is the sixth

comparison between the four estimators. There may be an advantage in knowing a

parameter, but there is also a possible disadvantage in knowing a parameter because

the one who knows neither parameter can choose. However, the one who knows

neither parameter in reality has no control over how high a percentage of the lower

order statistics are misplaced. In conclusion, which parameter do we estimate? It

seems that the answer would depend on the practicallity of the problem. In what real

world situation would p be small, intermediate or high? Two of the six comparisons

between the estimators we covered, and they are independent of p. However with

those two which we discussed, we were a bit tunnel visioned in only being open

to estimating one parameter. We summarize our analysis in Table 5.1 and leave it

up to the reader to determine in what particular instances p is small, large or in

between. That will determine in the other four cases which parameter is better to

estimate. Cases i. through iii. are just as above.

Key Questions: 1. When is p in the last four cases in Table 5.1 applicable?

2. How small does p have to be in the last case? (case six)

3. Is it better to know a parameter or to not know either of

the parameters?
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Table 5.1: Estimator scenarios from two different observers

Case Observer A (Estimator 1) Observer B (Estimator 2)
µ̂B, µ̃B Wins for all p Loses for all p

θ̂B, θ̃B Wins for all p Loses for all p

µ̂B, θ̂B Wins for p < 0.5 Wins for p > 0.5

µ̃B, θ̃B Wins for p < 0.5 Wins for p > 0.5

µ̂B, θ̃B Wins for p < 0.61547 Wins for p > 0.61547

θ̂B, µ̃B* Wins for all p Loses for all p
*-Observer A always has a lower variance, but for small p, he is not much better off
than Observer B!

5.2 Type-II Right Censoring and the CRLB Par-

odox

Consider as in this thesis X1, X2, ..., Xn being iid random variables where Xi =

Wi + θ, where W1,W2, ...,Wn are iid exp (µ) random variables. We did Type-II

Left Censoring, and the difference maker in the estimation of µ was the kth highest

order statistic Yk when determining the observer knowing θ over another who does

not know θ. Consider only having the lowest k order statistics instead given by

Y1 < Y2 < ..... < Yk. Suppose we know θ and would like to estimate µ. If k < n,

we cannot use Theorem 1 to derive the BLUE because Yk is not independent of the

lower k − 1 spacings. The BLUE for µ is (See [1].)

µ̂B =

k−1∑
j=1

(n− j) (Yj+1 − Yj) + nY1

k
,

and

V ar (µ̂B) =
µ2

k
. (5.6)

If θ is unknown, the BLUE is

µ̃B =

k−1∑
j=1

(n− j) (Yj+1 − Yj)

k − 1
,
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and

V ar (µ̃B) =
µ2

k − 1
, (5.7)

so if we set k = [np],
V ar (µ̂B)

V ar (µ̃B)
→ 1,

and further V ar (µ̃B) − V ar (µ̂B) → 0 at the rate of 1/n. Note that no infor-

mation was given up when not knowing θ contrary to when we were observing the

highest k order statistics. Knowing θ would only have a significant advantage if k

were fixed and small. In fact, 5.7 is exactly the same as its upper k order statistics

analog. (without knowing θ) The difference here is 5.6. Note that

lim
n→∞

n

µ2
V ar (µ̂B) =

1

p
,

so unlike where we were looking at the upper k order statistics, V ar (µ̂B) does

not approach the CRLB based on all the X ′s fast at all contrary to its upper order

statistics analog which has an asymptotic expression of (when also multiplied by

n/µ2)
1

p
(

1 + log2 p
1−p

) .

Whether θ is known or not here, the BLUEs for µ have variances which only

(for the most part, the latter) reach the CRLB as if we just observed any of the

k random iid random variables such as X1, X2, ...., Xk. So when observing the

lower k order statistics, there is no significant advantage in knowing θ, which is not

surprising because after all, we have the minimum recorded Y1. What is surprising

is the fact that having the upper say 50% order statistics we nearly approach the

CRLB of µ2/n, while if we have the lower 50% of the order statistics, the asymptotic

normalized variance is nearly twice as high as the CRLB of µ2/n. We compare the

two asymptotic normalized variances here in the following table.

The only way the lower and upper 100p% variances for the one parameter BLUE

of µ cross over is if in fact p = 1. Otherwise, the BLUE based on the upper 100p%

always has the lower variance than the lower 100p%.
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Table 5.2: Lower versus upper asymptotically

p Lower 100p% Upper 100p%
0.1 10 1. 451 2
0.5 2 1. 019 9
0.75 1. 3333 1. 001 7
0.95 1. 052 6 1.0

Key Questions: 1. Does the ratio identity hold when we only have the lower

100p% of the data recorded?

2. In what real world applications do either of these situations

arise?

Lower 100p% lost or upper 100p%?

3. Why is it better to be observing the upper 100p% order

statistics when estimating µ?

5.3 The CRLB Based on the Data Given

The CRLB based on the k upper order statistics can be calculated by using the

independence of Yk and the upper k− 1 spacings. To explain why in Chapter 3 the

variance of Y ∗[np] minimized when p = 0.2 seems to be consistent with Balakrishnan’s

statement of the Fisher Information of an order statistic being maximized when

looking at the 80th sample percentile. (See [1].) We invite the reader to compare

the asymptotic normalized variance of Y ∗[np] with the approximation of the inverse

of the Fisher Information given by Balakrishnan, which is

I−1Y[np]
(µ) ≈

(
2

µ2
+

np

µ2 (1− p)
log2 p

)−1
=
µ2

n

(
2

n
+

p

1− p
log2 p

)−1
(5.8)

Recall from Theorem 8 that

lim
n→∞

n

µ2
V ar

(
Y ∗[np]

)
=

1− p
p log2 p

. (5.9)

80



Rewriting 5.9 as an approximation, we have

V ar
(
Y ∗[np]

)
≈ µ2

n

1− p
p log2 p

. (5.10)

For finite n, 5.8 and 5.10 are practically identical. Why is Y ∗[np] not perfectly

efficient though? This would prevent the estimator of µ̂B from being 100% efficient

as well as µ̂AM . The problem does not lie in the upper [np] − 1 spacings. It lies

in Y[np], and the question is what is the reason for it. Further, in the other two

estimation scenarios, is it possible to obtain an unbiased estimator which at least

asymptotically achieves the CRLB?

5.4 Approximate Maximum Likelihood Estima-

tion of µ (one parameter exponential)

How accurate are our variance and bias squared calculations for our AMLE µ̂AM?

Further, does the function (of p)

n2

µ2
(MSE (µ̂AM)−MSE (µ̂B))

converge? We conjecture that it does based on the consistency of the values

in Tables 4.3 and 4.4. We would imagine some significant numerical error in the

variance and bias squared calculations because we do not have the MLE, but a mere

approximation of it based on a Taylor Series expansion. (See [4].)

5.5 A Generalization to Non-Exponential Distri-

butions

Without the independence of the upper spacings, other authors still managed to

derive BLUEs and MLEs using other methods. How much of these results apply

to other distributions if any? The conjecture we have is none at all unless they
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are close to being exponential. For example, a more practical model than having

a distribution function being F (x) = 1 − exp
(
− 1
µ

(x− θ)
)

, x ≥ θ would be one

satisfying the condition F (x) = 1−exp
(
− 1
µ

(x− θ)
)

for sufficiently large x. Here in

addition to being interested in the mean µ, one might want to estimate the projected

start time θ. An even more general distribution would be one that simply satisfies

the condition
1− F (x)

exp
(
− 1
µ

(x− θ)
) → 1

as x→∞.
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Appendix A

Limiting Results, MLE

Derivations

A1: Limiting Results

Theorem 18. Let p ∈ (0, 1). Then,

i.

lim
n→∞

n∑
j=[np]

1
j

log
(

n
[np]

) = 1

ii.

lim
n→∞

n∑
j=[np]

1
j2

n∫
[np]

1
x2
dx

= 1

iii.

lim
n→∞

n∑
j=[np]

1
j3

n∫
[np]

1
x3
dx

= 1

iv.

lim
n→∞

n

 n∑
j=[np]

1

j
− log

(
n

[np]

) =
1 + p

2p
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Proof. i. To prove i., first note by over approximating the integral, (by left end-

points) it is clear that
n−1∑
j=[np]

1

j
− log

(
n

[np]

)
≥ 0. (1)

By under approximating the integral, it is clear that

n∑
j=[np]+1

1

j
− log

(
n

[np]

)
≤ 0. (2)

So by (2)

n−1∑
j=[np]

1

j
− log

(
n

[np]

)

≤
n−1∑
j=[np]

1

j
−

n∑
j=[np]+1

1

j

=
1

[np]
− 1

n

≤ 1

[np]
,

and therefore by (1),

0 ≤
n∑

j=[np]

1

j
− log

(
n

[np]

)
≤ 1

[np]
+

1

n

So it follows from this that

lim
n→∞

n∑
j=[np]

1
j

log
(

n
[np]

) = 1.

ii. Observe by over approximating the integral, we arrive at

n−1∑
j=[np]

1

j2
−

n∫
[np]

1

x2
dx ≥ 0. (3)
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Also by under approximating, we obtain

n∑
j=[np]+1

1

j2
−

n∫
[np]

1

x2
dx ≤ 0. (4)

So

n∑
j=[np]

1

j2
−

n∫
[np]

1

x2
dx

≤
n∑

j=[np]

1

j2
−

n∑
j=[np]+1

1

j2

=
1

[np]2
(5)

Rewriting (5) and using (3) we have that

0 ≤

n∑
j=[np]

1
j2

n∫
[np]

1
x2
dx

− 1 ≤ 1

[np]2
1

1
[np]
− 1

n

=
1

[np]− [np]2

n

→ 0

as n→∞.

iii. Observe by over approximating the integral, we arrive at

n−1∑
j=[np]

1

j3
−

n∫
[np]

1

x3
dx ≥ 0. (6)

Also by under approximating, we obtain

n∑
j=[np]+1

1

j3
−

n∫
[np]

1

x3
dx ≤ 0. (7)
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So

n∑
j=[np]

1

j3
−

n∫
[np]

1

x3
dx

≤
n∑

j=[np]

1

j3
−

n∑
j=[np]+1

1

j3

=
1

[np]3
. (8)

Rewriting (8) and using (6) we have that

0 ≤

n∑
j=[np]

1
j3

n∫
[np]

1
x3
dx

− 1 ≤ 1

[np]3
1

1
2[np]2

− 1
2n2

→ 0

as n→∞.

This establishes iii..

iv.

Figure A.1: Plot on the interval (1, 2)

Consider the function f (x) = 1/x on the interval (1, 2). The function in the

middle is f (x). The other two are lines where the upper line is formed by connecting

86



the coordinates (1, 1) to (2, 1/2), while the other is the tangent line running through

the point (1, 1) on the graph of f (x). If we draw two horizontal lines at y = 1 and

y = 1/2 with the second horizontal line being cut off where the line intersects the

tangent line, we form two triangles and a trapezoid as depicted in Figure A1.The

area of the upper triangle is

A1 =
1

2

(
1− 1

2

)
=

1

4
.

The area of the lower triangle is A2 = AT − A1, where AT is the area of the

trapezoid. The slope of the tangent line is equal to m = −1/12 = −1, so the

equation for the tangent line is y = 2 − x. This means that when x = 3/2, the

line intersects the horizontal line y = 1/2. So the length of the upper base of the

trapezoid is one, while the length of the lower base is 1/2. So

AT =
1

2

(
1 +

1

2

)
1

2

=
3

8
.

And therefore, A2 = 1/8. More generally, consider the interval (j, j + 1), where

j is a positive integer. We can form a line from (j, 1/j) to (j + 1, 1/ (j + 1)) and

create a second lower line which is tangent to the curve at x = j. The slope of this

tangent line would then be m = −1/j2. The line must satisfy the equation

1

j
= − 1

j2
j + b,

so

b =
2

j
.

The equation of the tangent line is then

y = − 1

j2
x+

2

j
.
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Let A1, A2 and AT be the analogs of the previous example on the current interval

we are considering. Then,

A1 =
1

2

(
1

j
− 1

j + 1

)
.

We would like to determine where the tangent line intersects the horizontal line

y = 1/ (j + 1). Substituting in to the linear equation, we have that

1

j + 1
= − 1

j2
x+

2

j
, or

x = 2j − j2

j + 1

=
j2 + 2j

j + 1
.

This means that the length of the lower base of the trapezoid is

j + 1− j2 + 2j

j + 1

=
j2 + 2j + 1− j2 − 2j

j + 1

=
1

j + 1
.

The area of the trapezoid is then

AT =
1

2

(
1 +

1

j + 1

)(
1

j
− 1

j + 1

)
=

1

2

j + 2

j + 1

1

j (j + 1)

=
1

2

j + 2

j (j + 1)2
.

So,

A2 =
1

2

j + 2

j (j + 1)2
− 1

2

(
1

j
− 1

j + 1

)
=

1

2j (j + 1)

(
j + 2

j + 1
− 1

)
=

1

2j (j + 1)2
.
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Now note by the concavity of the function f (x) = 1/x,

A1 ≤
1

j
−

j+1∫
j

1

x
dx ≤ A1 + A2, or

1

2

(
1

j
− 1

j + 1

)
≤ 1

j
−

j+1∫
j

1

x
dx ≤ 1

2

(
1

j
− 1

j + 1

)
+

1

2j (j + 1)2
for 1 ≤ j ≤ n− 1. (9)

Adding the terms up in (9) from j = k to j = n− 1 we obtain

1

2

(
1

k
− 1

n

)
≤

n−1∑
j=k

1

j
− log

(n
k

)
≤ 1

2

(
1

k
− 1

n

)
+

n−1∑
j=k

1

2j (j + 1)2
, or

n

2

(
1

k
+

1

n

)
≤ n

(
n∑
j=k

1

j
− log

(n
k

))
≤ n

2

(
1

k
+

1

n

)
+ n

n−1∑
j=k

1

2j (j + 1)2
. (10)

Let k = [np]. Then,

lim
n→∞

n

2

(
1

k
+

1

n

)
= lim

n→∞

n

2

(
1

[np]
+

1

n

)
=

1 + p

2p
,

and note that this is the limit of the left-side of (10). Now by part iii.,

lim
n→∞

n

n−1∑
j=[np]

1

2j (j + 1)2

≤ lim
n→∞

n

n∑
j=[np]

1

2j3

= lim
n→∞

n

2

n∫
[np]

1

x3
dx

= lim
n→∞

n

4

(
1

[np]2
− 1

n2

)
= 0.
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So by letting k = [np] and taking the limit of the right-side of (10) as n → ∞,

we establish iv..

A2: MLE Derivations

Table A.1: MLE Formulas

Parameter Known? µ known µ unknown

θ known N/A µ̂M = qk

k−1∑
j=1

Tj

k
+ (1− qk)Y ∗∗k

θ unknown θ̂M = Yk + µ log
(
k
n

)
µ̃M =

k−1∑
j=1

Tj

k
, θ̃M = Yk + µ̃M log

(
k
n

)
where

qk =
k

R∗k + k
,

R∗k =

(
n∫
k

1
x
dx

)2

n∫
k

1
x2
dx

=
nk

n− k
log2

(n
k

)
and

Y ∗∗k =
Yk − θ
log
(
n
k

) .

The variance and bias squared for the MLEs shown in Table A1 are given by the

following, which once again in addition to the formulas in Table A1, we will also

derive. The formulas for the MSEs of each estimator can be determined simply by

adding its variance and its biased squared.

Variances and Squared Biases for MLEs for µ and θ

i. µ unknown, θ known
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V ar (µ̂M) = µ2q2k

(
k − 1

k2
+

n2

(n− k)2
log2

(n
k

) n∑
j=k

1

j2

)

Bias2 (µ̂M) = µ2

qk
(k − 1)

k
−

n∑
j=k

1
j

log
(
n
k

)
+


n∑
j=k

1
j

log
(
n
k

) − 1




2

ii. µ unknown, θ unknown

V ar (µ̃M) =
(k − 1)µ2

k2

Bias2 (µ̃M) =
µ2

k2
.

V ar
(
θ̃M

)
= µ2

(
n∑
j=k

1

j2
+
k − 1

k2
log2

(
k

n

))

Bias2
(
θ̃M

)
=

µ2

(
(k − 1) log

(
k
n

)
+ k

n∑
j=k

1
j

)2

k2

iii. θ unknown, µ known

V ar
(
θ̂M

)
= µ2

n∑
j=k

1

j2

Bias2
(
θ̂M

)
= µ2

(
n∑
j=k

1

j
+ log

(
k

n

))2

Case 1: µ and θ Unknown

The general likelihood function takes the form

L (λ, θ) = C (1− exp (−λ (Yk − θ)))n−k λk exp

(
−λ

k∑
j=1

(Yj − θ)

)
, Yk ≥ θ,

91



where C is a constant which is independent of λ = µ−1 and θ. We are using λ

here instead of µ to simplify the calculus and algebra to follow. The log likelihood

function then takes the form

l (λ, θ) = K + (n− k) log (1− exp (−λ (Yk − θ))) + k log λ− λ
k∑
j=1

(Yj − θ)

l (λ, θ) = K + (n− k) log (1− exp (−λ (Yk − θ))) + k log λ− λk (Yk − θ)− λ
k−1∑
j=1

Tj, θ ≤ Yk (11)

To find the MLEs in this case, it is easiest to derive the MLE of θ in terms of

λ. Notice in 11, we have singled out Yk from the sum so that we have a function in

the sum of one variable, which is

x = Yk − θ, Yk ≥ θ (12)

We can then call the function which only involves θ and rewrite it in terms of x.

h (x) = (n− k) log (1− exp (−λx))− λkx, x ≥ 0. (13)

Note that if k = n in 13, the maximum is clearly achieved when x = 0, or when

θ = Yn-that is, in the full sample case, the MLE for θ would be the upper bound

which in the case of k = n is the sample minimum Yn. When k < n, h is a smooth

function which comes up from −∞ and increases to a unique maximum and then

decreases back down to −∞. Therefore, to find the maximum, we differentiate the

function with respect to x and set the derivative equal to zero and then solve for x.

h (x) = (n− k) log (1− exp (−λx))− λkx

h
′
(x) =

λ (n− k) exp (−λx)

1− exp (−λx)
− λk = 0

λ (n− k) exp (−λx)− λk + λk exp (−λx) = 0

n exp (−λx) = k

x = −1

λ
log

(
k

n

)
, for all λ > 0. (14)
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Substituting 14 back in to 13 and in turn 13 back in to 11, we can then solve for

the MLE of λ. Then by substitution back in to 12, we can determine the MLE of θ.

l
(
λ, θ̃M

)
= K + (n− k) log

(
1− k

n

)
+ k log λ+ k log

(
k

n

)
− λ

k−1∑
j=1

Tj

∂

∂λ
l
(
λ, θ̃M

)
=
k

λ
−

k−1∑
j=1

Tj = 0

λ̃M=
k

k−1∑
j=1

Tj

(15)

Yk − θ̃M = −

k−1∑
j=1

Tj

k
log

(
k

n

)

θ̃M = Yk +

k−1∑
j=1

Tj

k
log

(
k

n

)
. (16)

Since our focus on estimation of the parameter µ, we should mention that it

immediately follows from 15 that

µ̃M =

k−1∑
j=1

Tj

k
. (17)

In this case of both parameters being unknown, note the similarity of the MLEs

for µ and θ to the BLUEs of µ and θ given in Table 3.2. Now by 17,

V ar (µ̃M) = V ar (µ̃M)

=
(k − 1)µ2

k2
, and (18)

E2


k−1∑
j=1

Tj

k
− µ

 =

(
k − 1

k
µ− µ

)2

=
µ2

k2
. (19)
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Also by 16 we have,

V ar
(
θ̃M

)
= µ2

n∑
j=k

1

j2
+
k − 1

k2
µ2 log2

(
k

n

)
, (20) and

Bias2
(
θ̃M

)
= E2

Yk +

k−1∑
j=1

Tj

k
log

(
k

n

)
− Yk +

k−1∑
j=1

Tj

k − 1

n∑
j=k

1

j



=

 log
(
k
n

)
k

+

n∑
j=k

1
j

k − 1


2

(k − 1)2 µ2. (21)

Case 2: µ unknown, θ known

With θ being known, once again without loss of generality assume that θ = 0.

Once again to simplify the differentiation, we use the parameter λ = µ−1. Then the

likelihood function takes the form

L (λ) = C (1− exp (−λYk))n−k λk exp

(
−λ

k∑
j=1

Yj

)
. (22)

The log-likelihood function is

l (λ) = K + (n− k) log (1− exp (−λYk)) + k log λ− λ
k∑
j=1

Yj. (23)

As λ → 0+, l (λ) tends to −∞, increases up to a unique maximum l
(
λ̂M

)
and then goes right back down to −∞ as λ → ∞ as can be seen from 23. So

differentiating and setting the derivative equal to zero, we obtain the equality

l
′
(λ) =

(n− k)Yk exp (−λYk)
1− exp (−λYk)

+
k

λ
−

k∑
j=1

Yj = 0. (24)

As we said in the introduction, the solution of 24 does not have an explicit form.

However by the very argument preceding 24 describing the behavior of the the log-

likelihood function, there is a unique solution to 24. Balakrishnan uses a linear
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Taylor Series approximation of the random variable

h (Yk) =
Yk exp (−λYk)

1− exp (−λYk)
(25)

around the n−k+1
n

100th percentile of the exp (λ) distribution. Our work here is

actually a special case of his in his paper. (See [4].) We will follow his exact steps.

Considering the function

h (x) =
x exp (−λx)

1− exp (−λx)
,

note that

h
′
(x) =

− exp (−2λx) + exp (−λx)− λx exp (−λx)

(1− exp (−λx))2
. (26)

Setting p = exp (−λxp), we can find the upper 100pth percentile of the exp (λ)

distribution. The solution can easily be determined and is well known to be

xp = − log p

λ
.

Following the same method of Balakrishnan for this type of problem, (See [4].) we

should now expand the function h (x) about the point

x = −
log
(
k
n

)
λ

,

since Yk should be around the upper 100 k
n

th
percentile. We then obtain a linear

approximation to the random function h (Yk) given in 25. By 25 and 26,

h

(
−

log
(
k
n

)
λ

)
=
− log( k

n)
λ

k
n

n−k
n

= −
k log

(
k
n

)
λ (n− k)

, (27)

and

h
′

(
−

log
(
k
n

)
λ

)
=
−
(
k
n

)2
+ k

n
+ log

(
k
n

)
k
n(

n−k
n

)2 . (28)
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So the random variable in 25 can be approximated by the first order Taylor

Series expansion

h (Yk) ≈
k
n

(
log
(
k
n

))2
λ
(
1− k

n

)2 +
kYk
n− k

(
1 +

(
n

n− k

)
log

(
k

n

))
. (29)

Substituting 29 in to 24, we obtain

(n− k)

(
k
n

(
log
(
k
n

))2
λ
(
1− k

n

)2 +
kYk
n− k

(
1 +

(
n

n− k

)
log

(
k

n

)))
+
k

λ
−

k∑
j=1

Yj = 0. (30)

It is understood that 30 is only an approximate equality, but now we can obtain

the Approximate Maximum Likelihood Estimator (AMLE) for µ. Rearranging 30

and solving for µ, we have

1

λ

(
(n− k)

k
n

(
log
(
k
n

))2(
1− k

n

)2 + k

)
=

k∑
j=1

Yj − kYk
(

1 +

(
n

n− k

)
log

(
k

n

))

µ̂M =

k−1∑
j=1

Tj +
(

n
n−k

)
log
(
n
k

)
kYk

k
(

n
n−k

(
log
(
k
n

))2
+ 1
)

= qk

k−1∑
j=1

Tj

k
+ (1− qk)Y ∗∗k . (31)
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By 31,

V ar (µ̂M) = q2k
(k − 1)µ2

k2
+ (1− qk)2

n∑
j=k

1
j2

log2
(
n
k

)
= µ2q2k

(
k − 1

k2
+

n2

(n− k)2
log2

(n
k

) n∑
j=k

1

j2

)
, (32) and

Bias2 (µ̂M) = E2 (µ̂M − µ̂B)

= E2

qk
k−1∑
j=1

Tj

k
+ (1− qk)Y ∗∗k − rkT − (1− rk)Y ∗k



= E2

k−1∑
j=1

Tj

(
qk
k
− rk
k − 1

)
+ Yk

 1− qk
log
(
n
k

) − 1− rk
n∑
j=k

1
j




= µ2

(k − 1) qk
k

− rk +

n∑
j=k

1
j

log
(
n
k

) (1− qk)− (1− rk)


2

= µ2

qk
(k − 1)

k
−

n∑
j=k

1
j

log
(
n
k

)
+


n∑
j=k

1
j

log
(
n
k

) − 1




2

. (33)

Case 3: θ unknown, µ known

In this case, the likelihood function takes the form

L (θ) = C

(
1− exp

(
− 1

µ
(Yk − θ)

))n−k
exp

(
− 1

µ

k∑
j=1

(Yj − θ)

)
, θ ≤ Yk.

This can be rewritten as

L (θ) = C

(
1− exp

(
− 1

µ
(Yk − θ)

))n−k
exp

(
−k
µ

(Yk − θ)
)

exp

(
− 1

µ

k−1∑
j=1

Tj

)
, θ ≤ Yk.
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The log-likelihood is then

l (θ) = K+(n− k) log

(
1− exp

(
− 1

µ
(Yk − θ)

))
−k
µ

(Yk − θ)−
1

µ

k−1∑
j=1

Tj, θ ≤ Yk. (34)

We have already obtained the MLE for θ when µ is unknown. The part of the

function in 34 where θ appears is the same function we rewrote as the expression in

13. In this case however, µ is a known constant. 14 leads directly to the solution

for the MLE of θ upon substituting it in to 13 in the case where µ is known. So

therefore,

θ̂M = Yk + µ log

(
k

n

)
. (35)

By 35,

V ar
(
θ̂M

)
= µ2

n∑
j=k

1

j2
, (36) and

E2

(
Yk + µ log

(
k

n

)
− θ
)

=

(
µ

n∑
j=k

1

j
+ θ + µ log

(
k

n

)
− θ

)2

= µ2

(
n∑
j=k

1

j
+ log

(
k

n

))2

. (37)
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