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Abstract

A multiresolution analysis is a tool used in the construction of orthogonal wavelets.

The dilation equation is an equation that arises naturally when using an MRA

to construct a wavelet basis. One way to understand the dilation equation, and

its solution, the scaling function, is through a measure theoretic approach. By

constructing a solution to the signed measure dilation equation, we give a new way

of approximating the scaling function by dyadic step functions. We also give a

method of controlling the support in the two-dimensional case.
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Chapter 1

Introduction

In many applications, given a signal f(t), one is interested in its frequency con-

tent locally in time. The standard Fourier transform gives a representation of the

frequency content of f , but local features can get lost and if the signal is not sta-

tionary then this is not captured by the Fourier transform. Time-localization can

be achieved by first windowing the signal to cut off only a well-localized slice of

f , and then taking its Fourier transform. The way the function is windowed is by

taking its inner-product with a time window function g(t), which has unit norm and

is centered at t = 0.

This is a standard technique for time-frequency localization, known as the win-

dowed Fourier transform. The wavelet transform yields a similar time-frequency

description, with a couple of important differences. One similarity between the

wavelet and windowed Fourier transform is that they both take the inner products

of f with a family of functions with two indices: gω,t for the windowed Fourier

transform and ψa,b for the wavelet transform. In each of these bases, one index

represents frequency and the other represents time localization. The main differ-

ence between the wavelet and windowed Fourier transforms is in the shapes of the

basis functions. The windowed Fourier transform basis functions all consist of the

same function, translated to the proper time location, and “filled in” with higher

frequency oscillations. Therefore, supports of the gω,t all have the same width. In

contrast, the wavelet basis functions have widths adapted to their frequency: high
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frequency are narrow, while low frequency are broader. As a result, the wavelet

transform is better able than the windowed Fourier transform to “zoom in” on very

short lived high frequency information. The figure on page 4 of Daubechies’ Ten

Lectures on Wavelets [1] displays the differences in the shapes of the functions gω,t

and ψa,b.

In the 80’s, Mallat [2] and Meyer [3] formalized multiresolution analysis (MRA),

which set the groundwork for the construction of orthogonal wavelets. The dilation

equation is an equation that arises naturally from an MRA. A solution to the dilation

equation, called a scaling function, canonically determines a corresponding wavelet

basis [4].

Let Γ ⊂ Rd be a lattice and let M be an integer-valued expanding matrix. That

is, all eigenvalues of M are greater than 1 in absolute value; so M preserves the

lattice. A dilation equation is an equation of the form

φ(x) = | detM |
∑
ak∈Γ

pkφ(Mx− ak). (1.1)

If the sequence (p) := (pk) is in l2(Γ) then the dilation equation always has a

solution in the distributional sense [1]. Functional solutions to dilation equations are

useful in many applications such as subdivision schemes, interpolation methods, and

the construction of wavelet bases of L2(Rd) [1, 5, 6]. Depending on conditions placed

upon the sequence (p), solutions to the dilation equation can be scaling functions

or prescale functions. Integer translates of a scaling function form an orthonormal

basis in the MRA, while integer translates of a prescale function form a Riesz basis

in the MRA. Curry [7] has considered the class of dilation equations in multiple

dimensions in which there are infinitely many coefficients and prescale functions are

constructed. She did her work by looking at the dilation equation from the Fourier

side. Gundy [8] considered the class of dilation equations in one dimension in which

there are infinitely many coefficients and scaling functions are considered. He did his

work by looking at the dilation equation from the Fourier side as well. Lawton et al.

[9] have found general conditions which guarantee the existence and uniqueness of

a scaling function; however the typical method used involves looking at the dilation
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equation from the Fourier side.

In the chapters that follow, we consider a special class of dilation equations: the

class for which the sequence (p) is finitely supported (i.e. pk = 0 for all but finitely

many k), and pk satisfy certain orthonormality conditions. In this case, the sequence

(p) can be considered to be the set of weights of a signed measure which is defined

to be the finite sum of weighted Dirac-δ measures. While measure-valued solutions

are interesting in their own right, the absolute continuity of a signed measure can

give us a solution to the functional dilation equation almost everywhere. We can

state the problem as follows: Let µ be a signed measure defined on Rd. Then µ is

a solution to a signed measure dilation equation if µ satisfies

µ(A) =
∑
k

pkµ(MA− ak), (1.2)

for A ∈ B(Rd), ie for Borel measurable sets A. If µ has a density, say fµ, then

fµ solves (1.1) almost everywhere. Therefore, the questions we seek to answer are:

Under certain orthonormality conditions, which we detail later, is there a measure

valued solution? How can the solution to the signed measure dilation equation be

used to find a scaling function?

A probabilistic approach to the construction of a scaling function has been con-

sidered by Dobric, Gundy, and Hitczenko (1-D case) [10] and by Belock and Dobric

(2-D case) [11]. This is natural because the right-hand side of the dilation equation

can be interpreted as the convolution of two probability measures (under the con-

dition that all pk are positive). This approach considers a random variable Z which

satisfies a random variable dilation equation (which is explained in more detail on

page 11). Assume that Z is absolutely continuous with respect to Lebesgue measure

and denote its density by φ. Then φ satisfies the dilation equation almost every-

where [11]. However, by considering the dilation equation through a probabilistic

approach, we limit ourselves to only constructing non-negative scaling functions.

This is an unnatural constraint because several well-known scaling functions, in-

cluding those of Daubechies’ wavelets [4], aren’t, in fact, non-negative. This is why

we are now considering a signed measure approach.
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In Chapter 3, we describe conditions and a method for constructing signed mea-

sure solutions to the dilation equation in one dimension and in Chapter 4 we extend

these results to two-dimensions. In two-dimensions, this dilation equation involves

a fractal object called the Twin Dragon, which creates a self-similar tiling of the

plane. This tiling naturally makes use of a radix expansion of complex numbers

helpful.

Our investigations of dilation equations are motivated by the application to

multiresolution analysis and wavelet bases. Daubechies [1] has shown that if a

scaling function satisfies certain conditions then it can be used to generate an MRA

and therefore a wavelet basis. These conditions are detailed in the preliminary

material in Chapter 2, but the main condition is that the lattice translates of the

scaling function should form an orthonormal basis of its closed linear span.
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Chapter 2

Preliminaries

2.1 Multiresolution Analysis

Burt and Adelson [12] introduced a multiresolution pyramid that can be used to

process an image in low-resolution at first and then selectively increase the resolu-

tion locally wherever necessary. Mallat [2] and Meyer [3] built upon this idea by

formalizing a multiresolution analysis (MRA), which set the groundwork for the con-

struction of orthogonal wavelets. The approximation of a function f at a resolution

2−j is given by averages of f over neighborhoods of size 2−j. An MRA is composed

of a nested sequence of subspaces Vj of L2(R2), which gives a finer approximation

of a function at each subsequent space. Here we introduce the rigorous definition of

an MRA. We will use some new notation; given an expanding linear transformation

M : Rd → Rd, for any function f , define the function fj,k(x) = f(M jx− k).

Definition 1. An MRA consists of an expanding linear transformation, M : Rd →
Rd, together with a sequence of closed subspaces Vj, which satisfy:

1. · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . .

2.
⋃
j∈Z Vj is dense in L2(Rd)

3.
⋂
j∈Z Vj = {0}
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4. f ∈ Vj ⇐⇒ f1,0 ∈ Vj+1

5. f ∈ V0 ⇐⇒ f0,γ ∈ V0 for all γ ∈ Zd

6. There exists a function φ ∈ V0 called a scaling function, such that {φ0,γ : γ ∈
Zd} forms an orthonormal basis for V0.

It is possible to generalize this by replacing Zd with any discrete lattice Γ ⊂ Rd.

Since f ∈ Vj ⇐⇒ f1,0 ∈ Vj+1 and for any n ∈ Zd, we have f ∈ V0 ⇐⇒ f0,n ∈ V0, we

have that φj,k ∈ Vj. In fact, (φj,n)n is an orthonormal basis in Vj.

Since φ ∈ V0 ⊂ V1, and (φ1,n)n forms an orthonormal basis in V1, we have

φ =
∑
n

hnφ1,n, (2.1)

with hn = 〈φ, φ1,n〉L2 .

We can write this in Rd as the dilation equation,

φ(x) = | detM |
∑
k∈Γ

pkφ(Mx− ak). (2.2)

We only consider compactly supported scaling measures. In other words, only

finitely many of the pk are non-zero. For the sake of notation in the following

conditions, we can assume that for k ≥ 2N , pk = 0. We work under the following

conditions: 
∑2N−1

i=0 pi = 1 (1)∑2N−1
i=0 pipi+2l = 1

2
δ0l, (2)

where δij is the Kronecker delta function, i.e., δij = 1 if i = j and 0 otherwise. These

conditions have been shown to be necessary for determining an MRA. Lawton [13]

and Cohen [14] have independently established necessary and sufficient conditions

under which the scaling function will be orthogonal to its integer translates[15].

Lawton’s formulation is the following:

Theorem 2. Define the operator G : l2 → l2 by

(Ga)l =
1

2

∑
j,k

pjpka2l+j−k
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for a ∈ l2. Then the coefficients {pk} determine an MRA if and only if

1. Conditions (1) and (2) are satisfied, and

2. δ0l is the only eigenvector for G for the eigenvalue 1.

Cohen’s conditions, which have been shown to be equivalent to Lawton’s are the

following:

Theorem 3. The coefficients {pk} determine an MRA if and only if

1. Conditions (1) and (2) are satisfied, and

2. there exists a γ ∈ [−π/2, π/2] such that f̂(γ + 2kπ) = 0 for every k ∈ Z,

where f is the solution to the dilation equation.

The way that the scaling function relates to the wavelet function is as follows.

Suppose you have MRA with scaling function φ which satisfies the dilation equation

φ(x) = 2
2N−1∑
k=0

pkφ(2x− k).

Then define the space Wj := Vj − Vj−1. So we have that Vj+1 = Vj ⊕Wj+1 and

L2(R) can be decomposed as a direct sum of the spaces Wj. The wavelet function

is the function ψ where
{
ψ0,n

∣∣n ∈ Z
}

forms an orthonormal basis of W0. Then, ψ

can be written as [16],

ψ(x) = 2
2N−1∑
k=0

(−1)kp2N−1−kφ(2x− k).

2.2 Twin Dragon

Given a dilation M , let D be a complete set of coset representatives for Zn/M(Zn).

We assume that D, called the digit set, contains the zero vector. Let P denote the

set of all k ∈ Zn that can be written as a finite sum of the form

k =

N(k)∑
j=0

M jdj
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with dj ∈ D. The pair (M,D) is called a number system if P = Zn. In this case

M is said to be the radix of the system. If the digit set consists of all nonnegative

multiples, m = 0, 1, ..., (q − 1), of a single coordinate unit vector, ej, the system is

called canonical [17]. Lagarias and Wang [18] have classified all expanding matrices

in R2, up to integral similarity by a unimodular matrix U ∈M2(Z). Their list is as

follows: if det(M) = −2,

M ∼ C1 =

(
0 2

1 0

)
is the canonical representative of the class. If det(M) = 2 there are five classes,

defined by the following canonical representatives:

C2 =

(
0 2

−1 0

)

±C3 = ±

(
1 1

−1 1

)

±C4 = ±

(
0 2

−1 1

)
.

For each of these cases, a digit set D exists such that the set T (M,D) ={∑∞
j=1M

−jdj

}
is a tile [17], where a tile T is a subset of the plane where trans-

lations of T by Gaussian integers γ are disjoint up to a set of Lebesgue measure 0

and ∪γ (T + γ) = R2 covers the entire plane. The following theorem from Gundy

and Jonsson [17] summarizes their results regarding these classes of dilation.

Theorem 4. For no choice of D is (C1,D) a number system. The matrices C2,

−C3, ±C4 all generate number systems with the canonical digit set D1 = {0, ε1},
where ε1 = (1, 0)′. The pair (+C3,D1) generates a self-affine tile T (+C3,D1), but

for no digit set D is (+C3,D) a number system.

The pair (+C3,D1) is the exceptional case in the list in that it generates a self-

affine tile but does not generate a number system. We find it easier to identify R2

9



Figure 2.1: The Twin Dragon

with the complex plane C in order to simplify computations and notation. In this

case, multiplication by the matrix +C3 is equivalent to multiplication by 1 + i. The

Twin Dragon is the tile which is generated by (+C3,D1) and can we written as the

following:

T =

{
∞∑
k=1

εk
(1 + i)k

∣∣εk ∈ {0, 1} ∀k} .
2.3 Probabilistic Approach

One way to understand the dilation equation is through a probabilistic approach.

Belock and Dobric [11] and Gundy and Zhang [19] examined this concept. This is

natural because the right-hand side of the dilation equation can be interpreted as

the convolution of two measures. Namely, the weighted sum of Dirac delta measures:∑
pkδk, and the measure µ, whose density φ satisfies the dilation equation. Since the
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measure
∑
pkδk does not have a density, we look at this from the measure side. We

introduce here the Random Variable Dilation Equation. Consider a discrete random

variable G with values in a subset Γ1 of Γ and a random variable Z independent of

G, with values in Rd, both defined on a complete probability space, which satisfy

MZ
d
=Z +G. (2.3)

Here,
d
= denotes equality of the corresponding laws. Assume that Z is abso-

lutely continuous with respect to Lebesgue measure and denote its density by φ.

Equation (2.3) implies that φ satisfies the dilation equation almost everywhere. An

approach to constructing candidates for prescale functions comes from understand-

ing the structure of the solution of this random variable dilation equation [11].

In the one-dimensional case with M = 2, an unpublished result of Gundy and

Zhang [19] proved that Z is absolutely continuous with respect to Lebesgue measure

if and only if the fractional part of Z is uniform. They also gave a sufficient condition

for the uniformity of the fractional part. The fractional part of a random variable

Z can defined as Z − bZc. In the higher dimensional case, Belock and Dobric [11]

show that the statements of Gundy and Zhang hold true when a proper notion of

the “fractional” part of a random variable is introduced.

However, by considering the dilation equation through a probabilistic approach,

we limit ourselves to only constructing non-negative prescale functions. This is

an unnatural constraint because several well known scaling functions, including

those of Daubechies’ wavelets, aren’t, in fact, non-negative. Therefore, we are now

considering a general measure theoretic approach.

2.4 Pseudo-Probability

We may define real random variables with pseudo-probability distributions, in other

words, real valued Borel measures µ with µ(R) = 1. This allows consistent def-

inition of independent random variables, even though, in general, the underlying

pseudo-probability space may only support a finitely additive measure. Very much
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of probability theory may be transferred to this setting [20]. For example, Hochberg

[21, 22] derived a generalization of Brownian motion governed by signed distributions

which are the fundamental solutions of higher even-order parabolic partial differen-

tial equations. As a consequence of this research he proved some central limit the-

orems for equally distributed components. Our work does not explore generalizing

probability results, but does take advantage of this notion of pseudo-probabilities.

Baez-Duarte [20] explored how signed measures “give the subject a decidedly

different flavor.” The first instance of this is that it is not the case that µn → µ

implies (µn)+ → (µ)+. Moreover, the Portmanteau Theorem does not carry over. He

goes on to state that the classical Lévy Convergence Theorem, which states that the

weak convergence of a sequence of probability measures µn to a probability measure

µ is equivalent to the pointwise convergence of the corresponding characteristic

functions fails in the case of signed measures. Initially, we thought that we might

be able to generalize the theorems in the paper by Belock and Dobric by applying

similar techniques as what Belock and Dobric had used, but the work proved to

be more complex than that. We eventually looked into the weak convergence of an

approximating measure.
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Chapter 3

Signed measure dilation equations

3.1 Existence

We begin by defining the signed measure dilation equation on B(R):

µ(A) =
2N−1∑
k=0

pkµ(2A− k)

for any Borel set A ⊂ R and some integer N .

We work under the same orthogonality conditions on the pk as in the functional

dilation equation: 
∑2N−1

i=0 pi = 1 (1)∑2N−1
i=0 pipi+2l = 1

2
δ0l. (2)

We form a solution to this dilation equation in an iterative manner. Let µ0 =∑2N−1
i=0 piδ i

2
. Then, we define the discrete measures µn. Let D : R → R be defined

as D(x) = x
2
. The push forward of the function D, denoted D?, is defined as

D?ν(·) = ν(D−1·). The convolution of two measures ν and µ, denoted ν ? µ, is

defined as ν ? µ(·) =
∫
ν(· − y)dµ(y). Then, we define the sequence (µn) by

µn = µ0 ? D?(µn−1).

We claim that the limit of µn is a solution of the dilation equation for measures on R.

These discrete measures, µn, can be written as a linear combination of Dirac-delta

13



measures: Let Sn =: x ∈ R|x = k
2n+1 for some k ∈ Z . Note that supp(µn) ⊂ Sn.

So we can write µn =
∑

x∈Sn wn(x)δx, where wn(x) are the pseudo probabilities

associated with the points x ∈ Sn. Level 0 contains only the points 0
2
, 1

2
, 2

2
, ..., 2N−1

2

with pseudo probabilities p0, p1, p2, ... p2N−1 respectively.

First, we show why this sequence of measures is worth looking at. That is, if the

limit exists, it is indeed a solution to the dilation equation for measures.

Lemma 5. If (µn)n weakly converges to a limiting measure µ, then µ satisfies the

dilation equation for measures.

Proof. Assume that µ = limn→∞ µn. First, we can see that, by definition, µn =

Fn
k=0(D?)

k(µ0). So, we have

µ = lim
n→∞

Fn
k=0(D?)

k(µ0)

=(µ0) ? lim
n→∞

Fn
k=1(D?)

k(µ0)

=(µ0) ? lim
n→∞

(D?)
(
Fn−1

k=0(D?)
k(µ0)

)
=(µ0) ? (D?)

(
lim
n→∞

Fn−1
k=0(D?)

k(µ0)
)

=(µ0) ? (D?)(µ).

Note that it is permissible to take the convolution of (µ0) and (D?) outside of

the limit because they are both continuous operations. Therefore, it will not cause

a problem to change the order in which we take the convolution and apply D?.

Therefore, this measure µ = limn→∞ µn satisfies the dilation equation for mea-

sures.

We’ve illustrated that if the limit of µn exists, then the limit will be a solution

to the dilation equation for measures. It remains to prove that this limit does exist.

Lemma 6. The coefficients at level n satisfy the following:
∑

x∈Sn (wn(x))2 = 1
2n+1 .

14



Figure 3.1: Finding wn(x) from wn−1(x)

Proof. We proceed by induction on n. The base case is given as Condition (2) where

l = 0. Assume the induction hypothesis that
∑

x∈Sn−1
(wn−1(x))2 = 1

2n
.

First, we use Figure 3.1 to see how the pseudo probabilities at level n can be

written in terms of the pseudo-probabilities at level n− 1.

So we have, for x ∈ Sn−1:

wn(x) =
∑
k

p2kwn−1

(
x− 2k

2n+1

)
wn(x+

1

2n+1
) =

∑
k

p2k+1wn−1

(
x− 2k

2n+1

)
.

Squaring these, we have:

(wn(x))2 =
∑
k=0

∑
l=1

2p2kp2k+2lwn−1

(
x− k

2n

)
wn−1

(
x− k + l

2n

)
+
∑
k

p2
2kw

2
n−1

(
x− k

2n

)
(
wn

(
x+

1

2n+1

))2

=
∑
k=0

∑
l=1

2p2k+1p2k+1+2lwn−1

(
x− k

2n

)
wn−1

(
x− k + l

2n

)
+
∑
k

p2
2k+1w

2
n−1

(
x− k

2n

)
.

Note that in the following summations, we begin with summing over the indices k

and j which cover Z2. We can re-index this by k and m = j − k. This is a bijection
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on Z2 and so it will still sum over the same points. Finally, by taking the sum of

the squares, we obtain the following:

∑
y∈Sn

(wn(y))2 =
∑

x∈Sn−1

(wn(x))2 +

(
wn

(
x+

1

2n+1

))2

=
∑
j∈Z

(∑
k=0

∑
l=1

2 (p2kp2k+2l + p2k+1p2k+1+2l)wn−1

(
j − k

2n

)

× wn−1

(
j − k − l

2n

)
+
∑
k

(
p2

2k + p2
2k+1

)
w2
n−1

(
j − k

2n

))

=
∑
m∈Z

(∑
l=1

∑
k=0

2 (p2kp2k+2l + p2k+1p2k+1+2l)wn−1

(m
2n

)
wn−1

(
m− l

2n

)

+
∑
k

(
p2

2k + p2
2k+1

) (
wn−1

(m
2n

))2
)

=
∑
m∈Z

∑
k

(
p2

2k + p2
2k+1

) (
wn−1

(m
2n

))2

by condition (2)

=

(
1

2

)∑
m∈Z

(
wn−1

(m
2n

))2

by condition (2)

=

(
1

2

)(
1

2n

)
by the induction hypothesis

=
1

2n+1
.

This gives us our desired equality.

Using this information, we would like to prove that µn has uniformly bounded

total variation.

Lemma 7. For any continuous bounded function f , suppose ||f ||∞ ≤ B, i.e., f(x) ≤
B ∀x. Then ∀n, ∣∣∣ ∫ fdµn

∣∣∣ ≤ B
√

2N.

Proof. It is helpful to first note that at any level n, an upper bound for the total

number of points with nontrivial weight is | supp(µn)| ≤ 2N · 2n+1. Let f be a

continuous bounded function with ‖f‖∞ ≤ B. Then, we have:
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∣∣∣ ∫ fdµn

∣∣∣ =
∣∣∣ ∑
x∈Sn

wn(x)f(x)
∣∣∣

≤
√∑

x∈Sn

|wn(x)|2 ·
∑

x∈supp(µn)

|f(x)|2 by Cauchy-Schwarz

=

√
1

2n+1
·

∑
x∈supp(µn)

|f(x)|2 by Lemma 4

≤
√

1

2n+1
· ‖f‖2

∞ ·
∑

supp(µn)

1

≤ B
√

2N.

Therefore, since the integral of any continuous bounded function against µn is

bounded ∀n, then the sequence, ||µn||TV , of the total variation of the measures

µn must be bounded.

Finally, we can show that µn converges weakly to a measure µ. Recall that a

sequence of vectors xn in a normed space E is called weakly convergent to a vector x

if l(xn)→ l(x) for all l ∈ E∗, where E∗ is the space of all continuous linear functions

on E. This convergence can be described by means of the weak topology on E [23].

We show weak convergence by proving that
∫
fdµn is a Cauchy sequence for any

continuous function f .

Theorem 8. The sequence of integrals of any continuous function with respect to

µn converges weakly.

Proof. Let f be a continuous function with ‖f‖∞ ≤ B. Let ε > 0. Since supp(µ) is

compact, f is continuous and bounded on a compact set, so f is uniformly continuous

on supp(µ). So there exists δ such that for all x and y with |x − y| < δ, we have

|f(x)− f(y)| < ε. Choose M large enough so that δ > 2N−1
2M

. Then for m > M , we

want to show that for any k > 0, |
∫
fdµm+k −

∫
fdµm| < ε.
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We define a set and make a couple of remarks first. Let

Bk = {0, 1, 2, ..., 2N − 1}k.

Note that

1 = 1k =

(
2N−1∑
i=0

pi

)k

=
∑

(a)=(a1,a2,...,ak)∈Bk

(
k∏
j=1

paj

)
.

Also, we have for m > M and for any k > 0:

k∑
j=1

aj
2m+j

≤
k∑
j=1

2N − 1

2m+j
=

2N − 1

2m

k∑
j=1

1

2j
<

2N − 1

2m
<

2N − 1

2M
< δ.

It will be helpful to look at the integral
∫
fdµm+k in terms of the points in Sm.

In order to do this, we will think about the definition of µm+k. Thus we have

µm+k = Fm+k
j=0 (D?)

j(µ0)

=
(
Fm+k

j=m+1(D?)
j(µ0)

)
? µm

=
(
Fk

j=1(D?)
j+m(µ0)

)
?

(∑
x∈Sm

wm(x)δx

)

=
∑
x∈Sm

 ∑
(aj)∈Bk

k∏
j=1

paj

wm(x)δ
x+

∑k
j=1

aj

2m+j
.

We will now use these observations to look at the difference of the integrals∫
fdµm+k and

∫
fdµm:
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∣∣∣∣∫ fdµm+k−
∫
fdµm

∣∣∣∣
=

∣∣∣∣∣∣
∑
x∈Sm

 ∑
(aj)∈Bk

(
k∏
j=1

paj

)
wm(x)f

(
x+

k∑
j=1

aj
2m+j

)
−
∑
y∈Sm

wm(y)f(y)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
x∈Sm

 ∑
(aj)∈Bk

(
k∏
j=1

paj

)
wm(x)f

(
x+

k∑
j=1

aj
2m+j

)
−
∑
y∈Sm

(
2N−1∑
i=0

pi

)k

wm(y)f(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
x∈Sm

 ∑
(aj)∈Bk

(
k∏
j=1

paj

)
wm(x)f

(
x+

k∑
j=1

aj
2m+j

)
−
∑
y∈Sm

∑
(aj)∈Bk

(
k∏
j=1

paj

)
wm(y)f(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
x∈Sm

 ∑
(aj)∈Bk

(
k∏
j=1

paj

)
wm(x)

(
f

(
x+

k∑
j=1

aj
2m+j

)
− f(x)

)∣∣∣∣∣∣ .

In the above computations, we used the definition of the integral against the

measure µm and the integral against the measure µm+k in terms of the points from

Sm. From here, we used the fact that (
∑2N−1

i=0 pi)
k = 1 in order to group terms

together. So, we have
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∣∣∣∣∣∣
∑
x∈Sm

 ∑
(aj)∈Bk

(
k∏
j=1

paj

)
wm(x)

(
f

(
x+

k∑
j=1

aj
2m+j

)
− f(x)

)∣∣∣∣∣∣
<

∣∣∣∣∣∣
∑
x∈Sm

∑
(aj)∈Bk

(
k∏
j=1

paj

)
wm(x)ε

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
x∈Sm

(
2N−1∑
i=0

pi

)k

wm(x)ε

∣∣∣∣∣∣
=

∣∣∣∣∣∑
x∈Sm

wm(x)ε

∣∣∣∣∣ .

In the above approximation, we used the uniform continuity of f . The second

and third line of this equation follow from the fact that
∑

(aj)∈Bk

(∏k
j=1 paj

)
=(∑2N−1

i=0 pi

)k
= 1. The final approximations follow from the Cauchy Schwarz

inequality, Lemma 4, and the fact that we have the upper bound | supp(µm)| ≤
2N · 2m+1. We have

∣∣∣ ∑
x∈Sm

wm(x)ε
∣∣∣ ≤√∑

x∈Sm

|wm(x)|2 ·
∑

supp(µm)

|ε|2

≤
√

1

2m+1
· ε2 · 2N · 2m+1

≤ ε
√

2N.

Therefore, our sequence (
∫
fdµn)n is Cauchy, so (µn) converges weakly to a

limiting measure, µ.

So we have found a solution for the dilation equation for signed measures! We

would like to find whether or not this is the unique solution for the dilation equation
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for measures and whether or not this solution is absolutely continuous with respect

to Lebesgue measure.

3.2 Uniqueness

Theorem 9. The measure that we constructed, µ = limn→∞ µn is the unique solu-

tion in the set of signed measures with compact support, up to scaling by a constant,

for the signed measure dilation equation.

Proof. Suppose ν is any signed measure with compact support. Recall the function

D(x) := x
2
.Then, we claim that Dn+1

? ν → ν(R)δ0 weakly as n → ∞. We can show

this by letting f be any bounded continuous function. Then, we have∫
fdDn

?ν(x) =

∫
f(2−nx)dν.

Now we take the limit, and have the following:

lim
n→∞

∫
f(2−nx)dν =

∫
f(0)dν

= f(0)ν(R).

Therefore, we have the weak convergence, limn→∞D
n+1
? ν → ν(R)δ0. So now, let µ̃

be any solution to the signed measure dilation equation with compact support. We

take the limit as n→∞ to get

µ̃ = lim
n→∞

(
µ0 ? D?µ0 ? D

2
?µ0 · · · ? Dn

?µ0

)
? Dn+1

? µ̃

= (F∞n=0D
n
?µ0) ? µ̃(R)δ0

= µ̃(R) (F∞n=0D
n
?µ0) .

By definition of our solution, µ(x) = F∞n=0D
n
?µ0. So it must be the unique solution

up to multiplication by a constant, in particular, µ̃(R). Moreover, solutions are

unique within the class of measures ν such that ν(2n+1x)→ ν(R)δ0, which includes

more than just measures with compact support.
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We also showed that the standard uniqueness condition holds for the signed

measure dilation equation. This condition is relevant to the Fourier transform of

the resulting measure.

Proposition 10. The Fourier Transform of µ is continuous at 0, ie:

lim
ξ→0

µ̂(ξ) = µ̂(0) = µ(R).

Proof. We can show that the regular condition holds under the case of µ being a

signed measure as well. So, we would like to show that

lim
ξ→0

µ̂(ξ) = µ̂(0).

We start with the following:

µ̂(0) = µ(R)

= µ̂(R)δ0

= lim
n→∞

D̂n
?µ(ξ)

= lim
n→∞

∫
R
e−iπx·ξdDn

?µ(x)

= lim
n→∞

∫
R
e−iπx·ξdµ(2n+1x).

Now we can make a change of variable, where y = 2n+1x. So, we have x = y
2n+1 .

Therefore, we have:

lim
n→∞

∫
R
e−iπx·ξdµ(2n+1x) = lim

n→∞

∫
R
e−iπ

y

2n+1 ·ξdµ(y)

= lim
n→∞

∫
R
e−iπy·

ξ

2n+1 dµ(y)

= lim
ξ→0

∫
R
e−iπy·ξdµ(y)

= lim
ξ→0

µ̂(ξ).
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3.3 Absolute Continuity

Now that we have the existence of the unique solution to the signed measure dilation

equation, we must show that it is absolutely continuous with respect to Lebesgue

measure. As long as this is the case, its Radon-Nikodym derivative will be a solution

to the functional dilation equation almost everywhere.

Proposition 11. The solution to the signed measure dilation equation, µ, is abso-

lutely continuous with respect to Lebesgue measure.

Proof. We approach this proof by contraction. Suppose thatA is a Borel-measureable

set with λ(A) = 0 but |µ|(A) = 2a > 0. Then, since |µ| is a Borel regular measure,

there is a compact subset K ⊂ A with |µ|(K) > a. Because K has Lebesgue mea-

sure 0, for any ε > 0, we can cover K with open intervals whose areas have sum

< ε. And since K is compact, we have a finite subcover, E. Then, we see that the

number of points in Sm−1 contained in E is asymptotic to |E| ·2m. In addition, since

the sum-of-squares of the wm−1(x) is 1/2m, this trivially bounds the sum-of-squares

of the wm−1(x) in E. By Urysohn Lemma, we have a function f with 0 ≤ f ≤ 1

that has f = 1 on K and f = 0 on R \ E. Then we have the following:

|µ|(K) ≤
∫
fd|µ|

≤ lim sup

∫
fd|µm−1|

= lim sup
∑

f(x)|wm−1(x)|

≤ lim sup

√ ∑
x∈E∩Sm−1

f 2(x)
∑

x∈E∩Sm−1

w2
m−1(x)

≤ lim sup

√
(|E| · 2m + o(2m))

(
1

2m

)
=
√
|E| ≤

√
ε.

From here, it follows that the total variation of µ and |µ| over E is less than or

equal to
√
ε. So we can choose ε to be small enough that

√
ε < a. However, since E
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covers K, we assumed that |µ|(E) ≥ |µ|(K) > a, which is a contraction. Therefore,

we must have that |µ|(A) = 0, so µ and |µ| are both absolutely continuous with

respect to Lebesgue measure.

We also claim that the solution µ to the dilation equation for signed measures

has density satisfying the functional dilation equation almost everywhere.

Corollary 12. Let φ be the density of µ. We have that φ ∈ L2(R).

Proof. We begin by letting f be a continuous smooth function with compact support.

Then, by definition of µ and µn, we have∫
fdµ = lim

n→∞

∫
fdµn

= lim
n→∞

∑
x∈Sn

f(x)wn(x).

Now we can apply the Cauchy Schwarz inequality to the sum on the right-hand

side, followed by Lemma 4. So we have,∫
fdµ ≤ lim

n→∞

√∑
x∈Sn

w2
n(x)

∑
x∈supp(µn)

f 2(x)

= lim
n→∞

√
1

2n+1

∑
x∈supp(µn)

f 2(x)

= lim
n→∞

√
N · 1

N · 2n+1

∑
x∈supp(µn)

f 2(x).

Note that | supp(µn)| ≤ N · 2n+1. So, considering the refinement of the real line by

dyadic intervals, by the definition of Lebesgue integral, we have the following:∫
fdµ ≤

√
N

√∫
f 2(x)dx

=
√
N ||f ||2.

Therefore integration of a smooth function f against µ is bounded by a constant

multiple of ||f ||2. Since any L2 function can be approximated by smooth functions,
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we can find the integral of an L2 function g against µ by taking the limit of integrals

against approximating smooth functions. Therefore, µ is a bounded linear functional

on L2. So by Riesz Representation Theorem, φ ∈ L2.

Corollary 13. The density φ of the solution µ of the dilation equation for signed

measures satisfies the functional dilation equation almost everywhere.

Proof. Let φ be the density of the solution to the dilation equation for signed mea-

sures, µ. Let x0 be any point in supp(φ) and r ∈ R+. Let B(x0, r) denote the ball of

radius r about the point x0. Then we have the following, from the dilation equation

for signed measures:

µ(B(x0, r)) =
∑
k

pkµ(2(B(x0, r))− k).

We can re-write each side of this equation using φ, the density of µ. Thus we see

∫
B(x0,r)

φ(x)dx =
∑
k

pk

∫
2(B(x0,r))−k

φ(y)dy

= 2
∑
k

pk

∫
B(x0,r)

φ(2x− k)dx,

where the second equality is true by substituting in x = 1
2

(y + k). Now we can take

the limit as r → 0.

lim
r→0

∫
B(x0,r)

φ(x)dx = 2 lim
r→0

∑
k

pk

∫
B(x0,r)

φ(2x− k)dx.

By the Lebesgue Differentiation Theorem, for almost every x0, we have:

φ(x0) = 2
∑
k

pk · φ(2x0 − k).

Therefore, the density of the solution of the dilation equation for signed measures

satisfies the functional dilation equation almost everywhere.
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3.4 Example of computing a scaling function

We can consider the example of Daubechies’ D4 wavelet. The dilation equation

has pseudo-probabilities: p0 = 1+
√

3
8

, p1 = 3+
√

3
8

, p2 = 3−
√

3
8

, and p3 = 1−
√

3
8

. We

know that supp(µ) ⊂ [0, 3], so we apply the dilation equation the intervals of length

1: [0, 1], [1, 2], and [2, 3]. By doing this, we obtain the following system of linear

equations:

µ([0, 1]) = p0µ([0, 2]− 0) + p1µ([0, 2]− 1) + p2µ([0, 2]− 2) + p3µ([0, 2]− 3)

= p0µ([0, 1]) + p0µ([1, 2]) + p1µ([−1, 0]) + p1µ([0, 1]) + p2µ([−2,−1])

+ p2µ([−1, 0]) + p3µ([−3,−2]) + p3µ([−2,−1])

= (p0 + p1)µ([0, 1]) + p0µ([1, 2]),

µ([1, 2]) = p0µ([2, 4]− 0) + p1µ([2, 4]− 1) + p2µ([2, 4]− 2) + p3µ([2, 4]− 3)

= p0µ([2, 3]) + p0µ([3, 4]) + p1µ([1, 2]) + p1µ([2, 3]) + p2µ([0, 1])

+ p2µ([1, 2]) + p3µ([−1, 0]) + p3µ([0, 1])

= (p2 + p3)µ([0, 1]) + (p1 + p2)µ([1, 2]) + (p0 + p1)µ([2, 3]),

µ([2, 3]) = p0µ([4, 6]− 0) + p1µ([4, 6]− 1) + p2µ([4, 6]− 2) + p3µ([4, 6]− 3)

= p0µ([4, 5]) + p0µ([5, 6]) + p1µ([3, 4]) + p1µ([4, 5]) + p2µ([2, 3])

+ p2µ([3, 4]) + p3µ([1, 2]) + p3µ([2, 3])

= p3µ([1, 2]) + (p2 + p3)µ([2, 3]).

Using this, we form the matrix A which has a right-1 eigenvector:
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A =


p0 + p1 p0 0

p2 + p3 p1 + p2 p0 + p1

0 p3 p2 + p3

 =


4+2
√

3
8

1+
√

3
8

0
4−2
√

3
8

3
4

4+2
√

3
8

0 1−
√

3
8

4−2
√

3
8

 .

We find that this has eigenvalue 1, so we look at A− I to find the corresponding

eigenspace:

A− I =


√

3−2
4

1+
√

3
8

0
2−
√

3
4

−1
4

2+
√

3
4

0 1−
√

3
8

−2−
√

3
4

 .

After row reducing this, we have:

A− I =


1 1+

√
3

2
√

3−4
0

0 1 2+2
√

3√
3−1

0 0 0

 .

Therefore, the eigenspace is one dimensional and is spanned by the vector V ′:

V ′ =


−1−

√
3

2
√

3−4

1
√

3−1
−2−2

√
3

 .

We can normalize this vector so that its sum is 1, which would correspond with

the scaling function having total mass 1, giving

V =


−1−

√
3

2−3
√

3
2

5+4
√

3√
3−1

−17−9
√

3

 .

This tells us, specifically, that µ(0, 1) = −1−
√

3
2−3
√

3
, µ(1, 2) = 2

5+4
√

3
, and µ(2, 3) =

√
3−1

−17−9
√

3
. From here, we use the signed measure dilation equation to find the mea-

sures of the intervals of length 1
2
, then 1

4
, and so on. We apply the dilation equation

to the intervals of length 1
2

(specifically (0, 1
2
),
(

1
2
, 1
)
,
(
1, 3

2

)
, etc.). This gives us the
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equations:

µ

(
0,

1

2

)
= p0µ(0, 1)

µ

(
1

2
, 1

)
= p0µ(1, 2) + p1µ(0, 1)

µ

(
1,

3

2

)
= p0µ(2, 3) + p1µ(1, 2) + p2µ(0, 1)

µ

(
3

2
, 2

)
= p1µ(2, 3) + p2µ(1, 2) + p3µ(0, 1)

µ

(
2,

5

2

)
= p2µ(2, 3) + p3µ(1, 2)

µ

(
5

2
, 3

)
= p3µ(2, 3).

Using Matlab at this level, as well at the subsequent levels, we are able to find

that

µ

(
0,

1

2

)
= 0.290170901

µ

(
1

2
, 1

)
= 0.559508468

µ

(
1,

3

2

)
= 0.227670901

µ

(
3

2
, 2

)
= −0.061004234

µ

(
2,

5

2

)
= −0.017841801

µ

(
5

2
, 3

)
= 0.001495766.

28



Further,

µ

(
0,

1

4

)
= 1.866025404

µ

(
1

4
,
1

2

)
= 3.598076211

µ

(
1

2
,
3

4

)
= 4.696152423

µ

(
3

4
, 1

)
= 5.839745962

µ

(
1,

5

4

)
= 3.287187079

µ

(
5

4
,
3

2

)
= 1

µ

(
3

2
,
7

4

)
= −0.019237886

µ

(
7

4
, 2

)
= −1.129510429

µ

(
2,

9

4

)
= −0.445554338

µ

(
9

4
,
5

2

)
= 0.109581934

µ

(
5

2
,
11

4

)
= 0.030743609

µ

(
11

4
, 3

)
= −0.002577388.

This yields step function approximations of φ illustrated in Figure 3.2.
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Figure 3.2: Dyadic step-function approximations of scaling function D4
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Chapter 4

Two-dimensions

4.1 Scaling Functions in two-dimensions

It is helpful to compare the Twin Dragon tile, T (+C3,D1), with the unit interval

{x : 0 ≤ x ≤ 1}, T (2,D1), viewed as a tile with dilation 2 and a digit set D1 = {0, 1}.
It is worth noting that the tiles T (+C3,D1) and T (2,D1) both have the property

that they contain exactly two lattice boundary points. The unit interval contains

the points 0 and 1 while the twin dragon contains the points 0 and −i. These

similarities are significant for a procedure that maps a space of binary sequences

into the spaces Z and Z2. This coding is generated by the pair (2,D1) on one hand,

and by (+C3,D1) on the other.

In one dimension, the coding procedure is performed simply by writing the real

number in its binary representation. In two dimensions, the coding procedure is

performed in a similar manner, except that the base for this representation is 1 + i.

The first of these codings will map onto the non-negative half of the real line.

Similarly, the latter will map onto half of the complex plane in some way [17].

We will detail two different methods of constructing scaling functions in two-

dimensions. The first is inspired by techniques proposed by Gundy and Jonsson

[17], while the second is analogous to our method used in one-dimension.

31



4.1.1 Gundy’s method of pushing to two-dimensions

Gundy’s principal result [17] is relevant to our work. It states that if there exists

a scaling function in one-dimension with coefficients (pk) in the dilation equation,

then there exists a scaling function in two-dimensions with the same coefficients in

the dilation equation with dilation by a factor of M , where M belongs to the class

+C3.

The way this is proven is by pushing a known scaling function (or measure) from

one-dimension to two-dimensions. This is done by the following method. Suppose φ

is a scaling function in one dimension. Then, each point in the positive real line can

be written as its binary expansion: x =
∑

k
dk
2k

. So we can think of φ as a function

on the sequences dk. Now we will identify a point in the complex plane with each

of these points from the real line in the following way: x =
∑

k
dk
2k
∼
∑

k
dk

(1+i)k
= x′.

Then we will have scaling function φ′ defined by φ′(x′) = φ(x).

This transformation of the scaling function from one-dimension to two-dimensions,

by identifying points with the same radix expansion, does not preserve continuity.

Consider for example, the Daubechies’ D4 scaling function. The following figure

illustrates the transformation for the D4 scaling function on the interval [0, 1] to the

Twin Dragon. The coloring in this figure represents the height of the function lying

over the plane.

In this case,

p0 =
1 +
√

3

8
p1 =

3 +
√

3

8

p2 =
3−
√

3

8
p3 =

1−
√

3

8
.

Recall the functional dilation equation:

φ(x) = 2
∑
k

pkφ(2x− k).

Then, by applying the dilation equation to the integers 0, 1, 2, and 3, we find the

system of equations:
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Figure 4.1: D4 scaling function restricted to [0, 1], approximated to the refinement on
intervals of length 1

25
, translated to the plane

φ(0) = 2p0φ(0)

φ(1) = 2p0φ(2) + 2p1φ(1) + 2p2φ(0)

φ(2) = 2p1φ(3) + 2p2φ(2) + 2p3φ(1)

φ(3) = 2p3φ(3).

This immediately gives φ(0) = φ(3) = 0. We are left with the following system
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of equations:

φ(1) = 2p0φ(2) + 2p1φ(1)

φ(2) = 2p2φ(2) + 2p3φ(1).

Solving these, we find the following possible solution:

φ(1) = 1

φ(2) =
1−
√

3

1 +
√

3
.

Further, we can apply the dilation equation to the points which are multiples of
1
2
. This gives us the following:

φ

(
1

2

)
= 2p0φ(1) =

1 +
√

3

4

φ

(
3

2

)
= 2p1φ(2) + 2p2φ(1) = 0.

We can then apply the dilation equation to the points which are multiples of 1
4
.

We find that

φ

(
1

4

)
= p0φ

(
1

2

)
=

2 +
√

3

16

φ

(
3

4

)
= p0φ

(
3

2

)
+ p1φ

(
1

2

)
=

3 + 2
√

3

16
.

The dyadic expansion of the points 1
4

and 3
4

are, respectively, .01 and .101̄. Both

of these expansions correspond with the complex number −i
2

when using the base

1 + i. Let T.01 denote the tile which begins with the radix expansion .01 and T.10

denote the tile which begins with the radix expansion .10. Then, we see that

lim
x→−i

2
via T.01

φ(x) =
2 +
√

3

16
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and we have

lim
x→−i

2
via T.10

φ(x) =
3 + 2

√
3

16
.

Therefore, this two-dimensional version of the Daubechies’ D4 scaling function is

not continuous. So the transformation does not preserve continuity.

4.1.2 A second method for constructing scaling functions

on R2

We can create an ordering of a certain subset of the Gaussian integers, Z[i]. Define

a Gaussian integer to be even if and only if it can be written as the product of a

Gaussian Integer with 1 + i. Additionally, if a Gaussian integer is not even, it is

odd. This corresponds with the two different cosets of Z[i]/(1 + i)Z[i].We begin by

choosing any odd Gaussian integer, s. Then define the sequence (a) by

a2k = k(1 + i)

and

a2k+1 = k(1 + i) + s.

Note that this set of points is not the most general possible set to begin with, but

we have found that it works. We will have M = 1 + i as our dilation.

We begin by considering the dilation equation for measures on R2:

µ(A) =
∑
k

pkµ(MA− ak).

Assume that only a finite number of pk are non-zero. The following work is very

similar to that in one-dimension. We form a solution to this dilation equation in an

iterative manner. Let µ0 =
∑

k pkδM−1ak . Then, we define the discrete measures µn.

Let D : C→ C be defined as D(x) = M−1x. Denote the push forward of this map

as D?. Then, we have

µn = µ0 ? D?(µn−1).

We claim that the limit of µn is a solution of the signed measure dilation equation in

two-dimensions. Define the set Sn := M−(n+1)Z[i]. Note that supp(µn) ⊂ Sn. These
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discrete measures can be written as a linear combination of Dirac-delta measures:

µn =
∑

x∈Sn wn(x)δx, where wn(x) is the pseudo probability associated with the

point x for the measure µn. We work under the same orthogonality conditions

which were considered in the one-dimensional case.
∑2N−1

i=0 pi = 1 (1)∑2N−1
i=0 pipi+2l = 1

2
δ0l. (2)

We first show that these are necessary and almost sufficient conditions to form

an orthonormal basis. Since there are a finite number of non-zero p’s, say {pn} for

all n ∈ Λ, where Λ is a finite subset of the Gaussian integers. (Our Λ has evens

given by 0, 1 + i, . . . , N(1 + i) for some N and odds given by all of these plus a fixed

odd , for a total of 2N points.) Then by the coarse estimate on the support of µ,

we know that the density φ(x) : R2 → R has support in some large ball around the

origin of radius R (we can estimate R in terms of Λ, but this is only relevant in

concrete cases). Thus, if we let

αz =

∫
R2

φ(x)φ(x− z) dx for z ∈ Z[i],

we see that αz = 0 whenever z is distance more than 2R from the origin, because

the integrand is identically 0. Thus, we can restrict our attention to only those

Gaussian integers inside B2R, the ball of radius 2R centered at the origin. Note that

φ and its Gaussian integer translates form an orthonormal basis for their span in

L2(C) exactly when αz = δ0,z (where δ here is Kronecker’s delta function). This is

then also the condition for φ to be a scaling function.

We want to give necessary and (almost) sufficient conditions for such a φ, given

as the solution of a dilation equation, to be a scaling function. First, note that by

applying the dilation equation, we have that

αz =

∫
R2

4
∑
k,j∈Λ

pkpjφ((1 + i)x− k)φ((1 + i)x− (1 + i)z − j) dx

and the change of indices j = `− (1 + i)z gives

αz = 4
∑
k∈Λ
`∈Λ+2

pkp`−2z

∫
R2

φ((1 + i)x− k)φ((1 + i)x− `) dx.
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Writing the integral on the right-hand side in terms of α, and gaining a factor of

1/2 from the change of variables, we see that

αz = 2
∑
k∈Λ

`∈Λ+2z

pkp`−2zα`−k.

If we adopt the convention that pk = 0 for k 6∈ Λ, then we can neglect the range of

summation for k and `.

If we assume that φ is a scaling function, then αz = δ0,z, and we see that

δ0,z = 2
∑
k,`

pkp`−2zδ`,k = 2
∑
k

pkp`−2z,

which are exactly the Lawton conditions mentioned in Chapter 3 [13]. Thus, these

conditions are necessary for a solution to the doubling equation to be a scaling

function.

On the other hand, suppose these conditions hold. Then making the change of

indices j = `− k and eliminating `, we see that

αz =
∑
j

αj

( ∑
k∈Λ∩Λ+2z−j

2pkpk+j−2z

)
. (4.1)

Because we only need to consider z ∈ B2R ∩ Z2, this becomes a finite relationship

among a finite number of αz. To be more precise, order the points of B2R ∩ Z2 as

z1, z2, . . . , zL, and assume that z1 = 0. If we then consider the column L-vector

α = [α′zj ]
L
j=1 and let β be the column L-vector with first component 1 and all other

components 0, then φ is a scaling function exactly when α = β. Further, let A be

the L-by-L matrix with entries

Anj =
∑
k

2pkpk+j−2zn .

Then the system of equations given by (4.1) can be written as the matrix equation

α = Aα. In other words, α is a right 1-eigenvector of A. Next, note that β is always

a right 1-eigenvector of A, since the nth component of Aβ is

[Aβ]n =
∑
k

pkpk−2zn = δ1,n.
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So if A has a 1-dimensional right 1-eigenspace, α must be a multiple of β, and

because φ is normalized to have L2-norm 1, αmust equal β. Thus, if the Lawton-type

conditions hold and the associated matrix A has a 1-dimensional right 1-eigenspace,

the solution φ to the corresponding dilation equation will be a scaling function. This

is the “almost sufficiency” we referred to earlier.

Now that we have established the necessity and almost sufficiency of the orthog-

onality conditions in two dimensions, we begin with the following lemma, exempli-

fying why this sequence of measures is worth studying.

Lemma 14. If limn→∞ µn exists, then it satisfies the dilation equation for measures.

Note that, with only changing the definition of D to now be D(x) := x
1+i

, the

proof for the analogous lemma in one-dimension, Lemma 5 in Chapter 3, carries

over for the two-dimensional case. Therefore, this measure µ = limn→∞ µn satisfies

the dilation equation for measures. It remains to prove that this limit does exist.

Lemma 15. For the weights of measure µn, we have that
∑

x (wn(x))2 = 1
2n+1 .

Proof. We proceed by induction on n. The base case is given as Condition (2) with

l = 0. We can see that going from level n to n+1 is just a zoomed in, rotated version

of going from level −1 to 0. So, to keep notation simple, I will be relating w0 back

to w−1 Assume the induction hypothesis that
∑

x (w−1(x))2 = 1. For x ∈ suppw−1:

w0(x) =
∑
k

p2kw−1(x− a2k)

w0(x+ s) =
∑
k

p2k+1w−1(x− a2k).

Squaring each of these, we have:
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(w0(x))2 =
∑
k

p2
2k (w−1(x− a2k))

2

+ 2
∑
k

∑
l

p2kp2k+2lw−1(x− a2k)w−1(x− a2k+2l)(
w2

0(x+ s)
)2

=
∑
k

p2
2k+1 (w−1(x− a2k))

2

+ 2
∑
k

∑
l

p2k+1p2k+2l+1w−1(x− a2k)w−1(x− a2k+2l).

Finally, by taking the sum of the squares, we obtain the following:

∑
y∈S0

(wn(y))2 =
∑
x∈S−1

(w0(x))2 + (w0(x+ s))2

=
∑
x∈S−1

(∑
k

(
p2

2k + p2
2k+1

)
(w−1(x− a2k))

2

+2
∑
k

∑
l

(p2kp2k+2l + p2k+1p2k+2l+1)w−1(x− a2k)w−1(x− a2k+2l)

)

=
∑
x∈S−1

(
2
∑
k=0

∑
l=1

pkpk+2lw−1(x− ak)wn−1(x− ak+2l)

+
∑
k

p2
k (w−1(x− ak))2

)
=
∑

x∈Sn−1

∑
k

p2
k (w−1(x− ak))2 by condition (2)

=

(
1

2

) ∑
x∈S−1

(w−1(x− ak))2 by condition (2)

=

(
1

2

)
by the induction hypothesis.

This gives us our desired equality.
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Using this information, we would like to prove that µn has bounded total varia-

tion.

Lemma 16. For any continuous bounded function f , suppose ‖f‖∞ ≤ B, then ∀n,∣∣∣ ∫ fdµn

∣∣∣ ≤ B
√

2N.

Note that the proof for this Lemma is identical to that of Lemma 7 from Chapter

3. Finally, we can show that µn converges weakly to a measure µ by proving that∫
fdµn is a Cauchy sequence for any continuous function f .

Theorem 17. The sequence µn weakly converges.

Proof. Let f be a continuous function with ‖f‖∞ ≤ B and ε > 0. Since supp(µ) is

bounded and closed, f is continuous and bounded on a closed set. So f is uniformly

continuous. So ∃δ such that for all x and y with ||x−y|| < δ, we have |f(x)−f(y)| <
ε. Let Amax = max(||ak||). Choose M large enough so that δ > Amax√

2
M

1√
2−1

. Then

for m >M, we want to show that for any k > 0, |
∫
fdµm+k −

∫
fdµm| < ε. We

plan on writing both integrals,
∫
fdµm+k and

∫
fdµm in terms of the measure µm.

We can do this by taking advantage of how µm+k can be derived from convolutions

starting with µm.

We define a set and make a couple of remarks first. Let

Bk = {0, 1, 2, ..., 2N − 1}k.

Note that

1 = 1k =

(
2N−1∑
i=0

pi

)k

=
∑
Bk

(
k∏
j=1

paj

)
.

Also, we have that for m >M and for any k > 0:∣∣∣∣∣
k∑
j=1

M−(m+j)aj

∣∣∣∣∣ ≤
∣∣∣∣∣
k∑
j=1

Amax√
2
m+j

∣∣∣∣∣ =

∣∣∣∣∣Amax√
2
m

k∑
j=1

1
√

2
j

∣∣∣∣∣
<

∣∣∣∣∣Amax√
2
m

√
2

1−
√

2

∣∣∣∣∣ <
∣∣∣∣∣Amax
√

2
M

√
2

1−
√

2

∣∣∣∣∣ < δ.
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So, by taking the difference of the integrals
∫
fdµm+k, and

∫
fdµm, we have∣∣∣∣∫ fd µm+k −

∫
fdµm

∣∣∣∣
=

∣∣∣∣∣∣
∑
x∈Sm

 ∑
(aj)∈Bk

(
k∏
j=1

paj

)
wm(x)f

(
x+

k∑
j=1

aj
Mm+j

)−∑
y∈Sm

wm(y)f(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
x∈Sm

 ∑
(aj)∈Bk

(
k∏
j=1

paj

)
wm(x)f

(
x+

k∑
j=1

aj
Mm+j

)
−
∑
y∈Sm

(
2N−1∑
i=0

pi

)k

wm(y)f(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
x∈Sm

 ∑
(aj)∈Bk

(
k∏
j=1

paj

)
wm(x)f

(
x+

k∑
j=1

aj
Mm+j

)
−
∑
y∈Sm

∑
(aj)∈Bk

(
k∏
j=1

paj

)
wm(y)f(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
x∈Sm

 ∑
(aj)∈Bk

(
k∏
j=1

paj

)
wm(x)

(
f

(
x+

k∑
j=1

aj
Mm+j

)
− f(x)

)∣∣∣∣∣∣ .

In the above computations, we use the definition of the integral against measure

µm and write the integral against measure µm+k in terms of the points from Sm.

From here, we can use the fact that (
∑2N−1

i=0 pi) = 1 to rearrange the terms to group
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them together:∣∣∣∣∣∣
∑
x∈Sm

 ∑
(aj)∈Bk

(
k∏
j=1

paj

)
wm(x)

(
f

(
x+

k∑
j=1

aj
Mm+j

)
− f(x)

))∣∣∣∣∣
<

∣∣∣∣∣∣
∑
x∈Sm

 ∑
(aj)∈Bk

(
k∏
j=1

paj

)
wm(x)ε

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
x∈Sm

(
2N−1∑
i=0

pi

)k

wm(x)ε

∣∣∣∣∣∣
=

∣∣∣∣∣∑
x∈Sm

wm(x)ε

∣∣∣∣∣ .

In the above approximation, we use the uniform continuity of f . The second

and third line of this equation follow from the fact that
(∑

(aj)∈Bk

(∏k
j=1 paj

)
=

(
∑2N−1

i=0 pi)
k = 1. The final approximations follow from Cauchy-Schwarz, Lemma 9,

and the fact that we have the upper bound | supp(µm)| ≤ 2N · 2m+1.

∣∣∣∣∣∑
x∈Sm

wm(x)ε

∣∣∣∣∣ ≤
√∑

x∈Sm

|wm(x)|2 ·
∑

supp(µm)

|ε|2

≤
√

1

2m+1
· ε2 · 2N · 2m+1

≤ ε
√

2N.

Therefore, the sequence (
∫
fdµn)n is Cauchy and so it converges. Thus µn weakly

converges.

Now we have shown that the sequence of the discrete measures µn converges

weakly to some measure µ. Now we will show that this limiting measure µ is the

unique solution, up to scaling by a constant for the signed measure dilation equation

in two-dimensions.
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Theorem 18. This solution µ = limn→∞ µn is the unique solution in the set of

signed measures with compact support, up to scaling by a constant, for the signed

measure dilation equation.

Proof. Suppose ν is any signed measure with compact support. Recall the function

D(x) := x
1+i

.Then, we claim that Dn+1
? ν → ν(R)δ0 weakly as n→∞. We can show

this by letting f be any bounded continuous function. Then, we have∫
fdDn

?ν(x) =

∫
f(2−nx)dν.

Now we take the limit, and have the following:

lim
n→∞

∫
f(2−nx)dν =

∫
f(0)dν

= f(0)ν(C).

Therefore, we have the weak convergence, limn→∞D
n+1
? ν → ν(R)δ0. So now, let µ̃

be any solution to the signed measure dilation equation with compact support. We

take the limit as n→∞ to obtain

µ̃ = lim
n→∞

(
µ0 ? D?µ0 ? D

2
?µ0 · · · ? Dn

?µ0

)
? Dn+1

? µ̃

= (F∞n=0D
n
?µ0) ? µ̃(C)δ0

= µ̃(C) (F∞n=0D
n
?µ0) .

By definition of our solution, µ(x) = F∞n=0D
n
?µ0. So it must be the unique solution

up to multiplication by a constant.

Theorem 19. The solution to the dilation equation for signed measures, µ, is ab-

solutely continuous with respect to Lebesgue measure.

Proof. We approach this proof by contradiction. Suppose thatA is a Borel-measureable

set with λ(A) = 0 but |µ|(A) = 2a > 0. Then, since |µ| is a Borel regular measure,

there is a compact subset K ⊂ A with |µ|(K) > a. Because K has Lebesgue mea-

sure 0, for any ε > 0, we can cover K with open rectangles whose areas have sum

< ε. And since K is compact, we have a finite subcover, E. Then, we see that the
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number of points in Sm−1 contained in E is asymptotic to |E| ·2m. In addition, since

the sum-of-squares of the wm−1(x) is 1/2m, this trivially bounds the sum-of-squares

of the wm−1(x) in E. By Urysohn Lemma, we have a function f with 0 ≤ f ≤ 1

that has f = 1 on K and f = 0 on C \ E. Then we have the following:

|µ|(K) ≤
∫
fd|µ|

≤ lim sup

∫
fd|µm−1|

= lim sup
∑

f(x)|wm−1(x)|

≤ lim sup

√ ∑
x∈E∩Sm−1

f 2(x)
∑

x∈E∩Sm−1

w2
m−1(x)

≤ lim sup

√
(|E| · 2m + o(2m))

(
1

2m

)
=
√
|E| ≤

√
ε.

From here, it follows that the total variation of µ and |µ| over E is less than or

equal to
√
ε. So we can choose ε to be small enough that

√
ε < a. However, since E

covers K, we assumed that |µ|(E) ≥ |µ|(K) > a, which is a contraction. Therefore,

we must have that |µ|(A) = 0, so µ and |µ| are both absolutely continuous with

respect to Lebesgue measure.

We also claim that the solution µ to the dilation equation for signed measures

has density satisfying the functional dilation equation almost everywhere.

Corollary 20. For φ, the density of µ, we have that φ ∈ L2(C).

Note the proof in two-dimensions follows exactly the proof in one-dimension,

found in Chapter 3, with the exception that we are now considering the refinement

of the complex plane by sub-twin dragons, rather than the refinement of the real

line by dyadic intervals.

Corollary 21. The density φ of the solution µ of the dilation equation for signed

measures satisfies the functional dilation equation almost everywhere.
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Proof. Let φ be the density of the solution to the dilation equation for signed mea-

sures, µ. Let x0 be any point in supp(µ) and r ∈ R+. Let B(x0, r) denote the ball of

radius r about the point x. Then we have the following, from the dilation equation

for signed measures:

µ(B(x0, r)) =
∑
k

pkµ(M(B(x0, r))− ak).

We can re-write each side of this equation using φ, the density of µ.∫
B(x0,r)

φ(x)dx =
∑
k

pk

∫
M(B(x0,r))−ak

φ(y)dy

=
∑
k

pk| detM | ·
∫
B(x0,r)

φ(Mx− ak)dx.

Where the second equality is true by substituting in x = M−1 (y − ak). Now we can

take the limit as r → 0:

lim
r→0

∫
B(x0,r)

φ(x)dx = lim
r→0

∑
k

pk| detM |
∫
B(x0,r)

φ(Mx− ak)dx.

By the Lebesgue Differentiation Theorem, for almost every x0, we have:

φ(x0) = | detM |
∑
k

pkφ(Mx0 − ak).

Therefore, the density of the solution of the dilation equation for signed measures

satisfies the functional dilation equation almost everywhere.

We summarize the results of this chapter in the following.

Theorem 22. Under the orthogonality conditions, the sequence µn converges to the

unique solution µ for the dilation equation for signed measures. Furthermore, this

limiting measure is absolutely continuous with respect to Lebesgue measure and its

density, fµ is a scaling function which satisfies the functional dilation equation.
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4.2 Some examples

In this section, we will explore three different examples of finding the support of

scaling and prescale measures in two dimensions. In the first example, we look

at a simple, interesting case of using signed measures. This is the case which has

(a) = {0, 1, 1 + i, 2 + i}. In the last two examples, we consider prescale measures

which satisfy the probability case. A prescale function is one which generates a

Riesz basis for an MRA rather than an orthonormal basis. A Riesz basis of V0 is a

sequence of functions gk ∈ V0 such that there exist constants 0 < c < C such that

c

(∑
k

|ak|2
)
≤

∣∣∣∣∣
∣∣∣∣∣∑
k

akgk

∣∣∣∣∣
∣∣∣∣∣
2

L2

≤ C

(∑
k

|ak|2
)

for all square summable sequences of scalars (ak) and span(gk) = V0.

In addition, for the examples where we consider prescale functions, the coeffi-

cients satisfy the probability case. That is, they are positive, following the construc-

tions considered by Belock and Dobric [11], who considered constructing prescale

probability measures. The only restrictions placed upon their positive coefficients

pk were that ∑
k

pk = 1,

∑
keven

pk =
∑
kodd

pk =
1

2

and

(pk) ∈ l2.

There is no orthogonality condition, and this is why these conditions will only guar-

antee prescale measures rather than scaling measures. For this reason, we will call

them “prescale conditions.” They have proven that under these conditions, the

limiting measure will exist and be absolutely continuous [11]. Our work extended

their results, in finding a method to solve for the support of the resulting prescale

measure.
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The main difficulty with finding the solution to the dilation equation in two-

dimensions lies in identifying the support of measure µ. In one-dimension, the sup-

port is the sum of the set [0, 1] some number of times. This is easy to understand

though, because
∑2N−1

k=0 [0, 1] = [0, 2N ]. In two dimensions, it is much more compli-

cated, because the support is the sum of the Twin Dragon tile, T some number of

times. However,
∑2N−1

k=0 T 6= 2N · T .

An important thing to mention is that in the following work, both Sage and

Python were used to compute eigenvalues and corresponding eigenspaces. In all

of these cases, unless otherwise noted, the resulting solutions are exact and not

approximations.

4.2.1 A four coefficient case

We assume that µ is a signed measure on B (R2) (the Borel sets on R2) such that

µ satisfies a dilation equation, which we now describe. For four real pseudo prob-

abilities, p0, p1, p2, and p3, which satisfy the orthogonality conditions, we assume

that µ satisfies the dilation equation with shifts 0, 1, 1 + i, and 2 + i. Obviously,

the zero measure satisfies this equation for any choice of coefficients p0, p1, p2, and

p3. Further, if µ is any solution, so is cµ for any c ∈ R, and thus the natural

form of uniqueness to consider is uniqueness up to scaling. We are interested in

the existence, uniqueness, and also the computation of non-trivial µ satisfying this

equation.

Support and “top level”

Recall the Twin Dragon, the subset of C given by

T =

{
∞∑
n=1

γn
(1 + i)n

: γn ∈ {0, 1} for all n

}
.

Note that T is a compact set, and the translates of T by the Gaussian integers tile

the complex plane (see [17]). We’re interested in the set of Gaussian integers S̃ such

that the translates of the tile T by S̃ cover the support of µ, but no proper subset of
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S̃ does. In other words, we want the set of translates of T that intersect the support

of µ in a set of positive Lebesgue measure. This is interesting in its own right, as a

way of controlling the support of µ, and also as the first step in determining µ on

the “top level” of our dyadic decomposition scheme.

One way of approaching the support of µ (or more precisely, the minimal set

of translated tiles that contain the support of µ) is to observe that supp(µ) has a

representation analogous to that of T , namely

supp(µ) =

{
∞∑
n=1

γ̃n
(1 + i)n

: γ̃n ∈ {0, 1, 1 + i, 2 + i} for all n

}
.

This is true by the definition of µ in terms of µn. Recall that

µ = lim
n→∞

µn

= lim
n→∞

Fn
j=0(D?)

j(µ0)

= lim
n→∞

Fn
j=0(D?)

j

(∑
k

pkδ pk
1+i

)
,

where D(x) := x
1+i

. Two things follow from this. First, we find an estimate on the

modulus of any element of supp(µ). Since any point, x0, in the support satisfies

|x0| =

∣∣∣∣∣
∞∑
n=1

γ̃n
(1 + i)n

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑
n=1

2 + i

(1 + i)n

∣∣∣∣∣
≤

∞∑
n=1

√
5√
2
n

=
√

5 ·
√

2√
2− 1

,
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no Gaussian integer with modulus greater than
√

5 ·
√

2√
2−1
≈ 7.6344 is in S̃. This

leaves a finite set of candidates for S̃. Second, by taking all finite sums up to some

level, we can determine a set of points that must belong to S̃.

If we compute all the points of the form{
12∑
n=1

γ̃n
(1 + i)n

: γ̃n ∈ {0, 1, 1 + i, 2 + i}

}
,

with Python, we find 14 Gaussian integers that must be in S̃, which, for future use,

we give in order as follows

S = [0,−i, 1− i, 1, 1 + i, i,−1 + i,−1,−1− i,−2i, 1− 2i, 2− 2i, 2− i, 2] .

Now we will consider the other points which have modulus < 8, but are not included

in S. The idea is as follows. Suppose we pick a Gaussian integer z and apply the

dilation equation some number of times. This will express µ (z + T ) as a linear

combination of the measures of some other translated tiles, say µ (zn + T ) for 1 ≤
n ≤ N . But if |zn| ≥ 8 for all n, then by our previous remarks about supp(µ), we

have µ (zn + T ) = 0 for 1 ≤ n ≤ N . Then µ (z + T ) = 0, and further, this reasoning

applies to any Borel subset of z + T . Thus z 6∈ S̃. In other words once we know

that the entire tile has measure 0, we know that it must not intersect the support of

measure µ. This is because, the measure of any half-tile of this tile can be written in

terms of a linear combination of measures of whole tiles, all of which have measure

0. Similarly, the measure of any quarter-tile of this tile can be written in terms of a

linear combination of measures of half tiles, all of which have measure 0, and so on.

We call a shifted tile with this quality of being a linear combination of measures of

tiles with measure zero, a tile which is “pushed out.” We now wish to carry out this

procedure for every Gaussian integer with modulus less than or equal to 8 that is

not in set(S), where set(S) = {s|s is an entry in the vector S}. However, there are

an additional 14 Gaussian integers which don’t get pushed out. We give these 14
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points, in order, as

S ′ = [2i,−1 + 2i,−2 + i,−2,−2− i,−1− 2i,−3i,

1− 3i, 2− 3i, 3− 2i, 3− i, 3, 2 + i, 1 + 2i].

Now we need to consider the 28 points given in order by S ⊕S ′, which is the vector

whose first 14 components are given by S and whose last 14 components are given

by S ′.

So we have now determined the translates of T that contain the support of µ.

However, it is possible that we have included more than necessary.

Let V = vS ⊕ vS
′

be the vector of real numbers, the kth entry of which is

µ((S ⊕ S ′)k + T ) for 1 ≤ k ≤ 28. We are interested in computing the entries of V .

Remark 23. Even for the four points 0, 1, 1 + i, and 2 + i, the size of the vectors

and matrices under consideration is unwieldy. So even though V is more natural as

a column vector, we write it as a row vector to save space and then transpose it as

necessary.

First note that (1 + i)T = T ∪ (1 + T ). We have this because

(1 + i)T = (1 + i)

{
∞∑
n=1

γn
(1 + i)n

: γn ∈ {0, 1}

}

= (1 + i)

{(
∞∑
n=2

γn
(1 + i)n

)⋃(
1

1 + i
+

(
∞∑
n=2

γn
(1 + i)n

))
: γn ∈ {0, 1}

}

=

{(
∞∑
n=1

γn
(1 + i)n

)⋃(
1 +

(
∞∑
n=1

γn
(1 + i)n

))
: γn ∈ {0, 1}

}
= T ∪ (1 + T ).

Thus, from the dilation equation, we have

µ (T ) = p0µ (T ∪ (1 + T )) + p1µ ((−1 + T ) ∪ (T )) +

p2µ ((−i− 1 + T ) ∪ (−i+ T ) + p3µ ((−i− 2 + T ) ∪ (−i− 1 + T )) .
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Because any two translates of T by distinct Gaussian integers are disjoint up to a set

of Lebesgue measure zero (by the tiling property), and µ is absolutely continuous

with respect to Lebesgue measure, we can split each of the four terms of the right-

hand side of the above equation to get

µ (T ) = p0µ (T ) + p0µ (1 + T ) + p1µ (−1 + T ) + p1µ (T )

+ p2µ (−i− 1 + T ) + µ (−i+ T ) + p3µ (−i− 2 + T ) + p3µ (−i− 1 + T ) .

Further, all of the translates on the right-hand side belong to set(S) ∪ set(S ′), so

none of these are zero a priori, so we have (in terms of V ):

v1 = (p0 + p1) v1 + p2v2 + p0v4 + p1v8 + (p2 + p3) v9 + p3v19.

A similar computation can be performed for the other 27 components of V , where

any shifted tile involving a shift by a Gaussian integer outside of set(S) ∪ set(S ′)

that appears is discarded, because we know that µ of such a shifted tile is necessarily

zero. The result is a system of 28 linear equations, which we can write as

(V )ᵀ = Â(p0, p1, p2, p3) (V )ᵀ ,

where Â(p0, p1, p2, p3) is a 28× 28 matrix that we must now describe. We find that

Â has a block upper-triangular decomposition as

Â =

[
A ∗
0 A′

]
,
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where, if we let P0,1 = p0 + p1 and P2,3 = p2 + p3, A is

P0, 1 p2 0 p0 0 0 0 p1 P2,3 0 0 0 0 0

0 p1 P0,1 0 0 0 0 0 0 P2,3 p2 0 p0 0

0 p3 P2,3 p1 0 0 0 0 0 0 0 0 p2 P0,1

P2,3 0 0 p2 P0,1 p1 0 p3 0 0 0 0 0 0

0 0 0 0 0 p2 p2 + p3 0 0 0 0 0 0 0

0 0 0 0 0 p0 P0,1 p2 0 0 0 0 0 0

0 0 0 0 0 0 0 p0 0 0 0 0 0 0

0 p0 0 0 0 0 0 0 P0,1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 P0,1 p0 0 0 0

0 0 0 0 0 0 0 0 0 0 p1 P0,1 0 0

0 0 0 0 0 0 0 0 0 0 p3 P2,3 p1 0

0 0 0 0 0 0 0 0 0 0 0 0 p3 0

0 0 0 p3 0 0 0 0 0 0 0 0 0 P2,3

0 0 0 0 P2,3 p3 0 0 0 0 0 0 0 0



,

A′ is 

0 p0 p2 0 0 0 0 0 0 0 0 0 0 0

0 0 p0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 p0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 p0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 p0 0 0 0 0 0 0 0

0 0 0 0 0 0 p1 p0 + p1 p0 0 0 0 0 0

0 0 0 0 0 0 0 0 p1 0 0 0 0 0

0 0 0 0 0 0 0 0 p3 p1 0 0 0 0

0 0 0 0 0 0 0 0 0 p3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 p3 0 0

0 0 0 0 0 0 0 0 0 0 0 0 p3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 p3

p2 + p3 p3 0 0 0 0 0 0 0 0 0 0 0 p2

0 p2 0 0 0 0 0 0 0 0 0 0 0 0



,
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∗ is a 14× 14 block that we don’t compute explicitly (for reasons that will be clear

in a moment), and “0” is the 14× 14 zero matrix.

Next, Sage computes that

det (A′ − I) = 1− p3
0p1p2p

3
3

where I is the 14×14 identity matrix. Under our orthogonality conditions, the p· all

have absolute value strictly less than 1. Thus, under our orthogonality conditions,

this determinant is always positive, and in particular 1 cannot be an eigenvalue of

A′. This means that in order for (V )ᵀ to be a right 1-eigenvector for Â(p0, p1, p2, p3),

we must have that vS
′

is the zero vector. One consequence of this (and the upper

triangular block structure of Â) is that set(S ′) is not in S̃. In other words, we

have now shown that S̃ = set(S). (Note that this also explains what we saw by

considering points which had “binary” expansions up to 12 places.) Further, we see

that we only need to consider the system(
vS
)ᵀ

= A(p0, p1, p2, p3)
(
vS
)ᵀ
,

for the 14×14 matrix A given above. (This is the reason we don’t bother to compute

the upper right block “*”, and the reason we chose our notation is this way.)

Since we are able to compute the scaling measure on full Twin Dragons, which

are sets of Lebesgue measure 1, this uniquely determines the scaling measures on

all measureable sets. This is because once we know the scaling measure on sets of

Lebesgue measure 1, we can use the dilation equation to find the scaling measure

on sets of Lebesgue measure 1
2
, and then 1

4
, and so on. Since µ is determined on

all dyadic sets by the relationship dictated by the dilation equation, it is uniquely

determined.

The right 1-eigenspace is always at least one-dimensional, since the vector of all

1’s is a left 1-eigenvector. We can see this is true for this example since for the A

above, we see that each column sums to p0 + p1 + p1+i + p2+i = 1.
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Special cases

We specialize to the case when p0 = (1 +
√

3)/8, p1 = (3 +
√

3)/8, p2 = (3−
√

3)/8,

and p3 = (1 −
√

3)/8 to mimic the D4 case. We find that A has a 1-dimensional

right 1-eigenspace, the right 1-eigenspace is spanned by[
0.988473215486, 0.0991927845318, 0.0476287661136, 0.0956000986321,

0.00421010706117, 0.0221507197936, 0.0104401680866,

0.0305709339159, −0.00354125079226, −0.00205532069064, −0.00475426145644,

0.000811194910171, −0.00886490283771, −0.00174490784237
]
,

where the notation was switched to a decimal approximation in order for this vector

to fit on the page. So this gives
(
vS
)ᵀ

uniquely up to scaling.

4.2.2 The case of 0, 1, and i

We summarize the results in a parallel way to the previous case. We assume that

µ is a signed measure on B (R2) such that µ is absolutely continuous with respect

to Lebesgue measure and satisfies a dilation equation, which we now describe. For

three constants p0, p1, and pi which satisfy the prescale conditions, we assume that

µ satisfies the dilation equation

µ (A) = p0µ ((1 + i)A) + p1µ ((1 + i)A− 1) + piµ ((1 + i)A− i) (4.2)

for all A ∈ B (C). Although this set of shifts do not satisfy our spacing conditions,

they will still determine a prescale function [11].

4.2.3 The supporting tiles

We need the set S̃ of tiles that cover the support of µ. First, no Gaussian integer

with modulus greater than 2√
2−1
≈ 4.828 is in S̃. This leaves a finite set of candidates

for S̃. Second, by taking all finite sums up to some level, we can determine a set of

points that must belong to S̃. In particular, by considering{
12∑
n=1

γ̃n
(1 + i)n

: γ̃n ∈ {0, 1, i}

}
,
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which was done with a Python script, we see that there are at least 16 Gaussian

integers in S̃. Namely, S̃ contains set(S) where S is the 16-dimensional vector

S = [0, i, 1 + i, 1, 1− i,−i,−1,−1 + i, 2i, 1 + 2i, 2 + i, 2, 2− i, 1− 2i,−2i,−1− i] .

We have written S as a vector, or equivalently, given these 16 points an order,

because it will be useful for the linear algebra that follows. But for now, the question

is whether these points are all of S̃, or whether we need more points.

We now try to show that no other Gaussian integers are in S̃ by showing that

they “get pushed” outside of the ball of radius 5 (centered at the origin). If we use

a simple Python script to apply the dilation equation, say 10 times, to each such

Gaussian integer, we see that they all “get pushed” outside of the ball of radius

5 centered at the origin, so none of them are in S̃. In other words, we see that

S̃ = set(S).

The “top level” values of µ

Having determined the translates of T that contain the support of µ, we now turn

our attention to the uniqueness and computation of µ. We consider the vector vS,

which gives µ of the corresponding shifted tiles. As before, the doubling equation

gives relationships among the components of vS. We have(
vS
)ᵀ

= A(p0, p1, pi)
(
vS
)ᵀ
,

where A(p0, p1, pi) is the 16× 16 matrix given by

55





P0,1 0 0 p0 pi pi p1 0 0 0 0 0 0 0 0 0

pi p0 0 0 0 0 pi P0,1 0 0 0 0 0 0 0 0

0 pi pi 0 0 0 0 0 p0,1 p0 0 0 0 0 0 0

0 p1 P0,1 pi 0 0 0 0 0 0 p0 pi 0 0 0 0

0 0 0 p1 0 0 0 0 0 0 0 P0,1 pi 0 0 0

0 0 0 0 P0,1 p1 0 0 0 0 0 0 p0 pi 0 0

0 0 0 0 0 p0 0 0 0 0 0 0 0 0 pi P0,1

0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 pi

0 0 0 0 0 0 0 pi 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 pi 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 pi 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 p1 pi 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 p1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 p1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 p0 P0,1 0


where P0,1 = p0 + p1.

Remark 24. The order of the components in S is chosen so that they spiral out

clockwise as points in the plane. This is related to the action multiplication by 1 + i

on the plane, and, maybe more importantly, gives A the structure seen above of one

roughly diagonal band and one roughly above-diagonal band.

So vS must be a right 1-eigenvector ofA. If the right 1-eigenspace is 1-dimensional,

then any solution must be unique up to scaling. This is because once we have vS, µ

is completely determined. To see this, note that the translations of T by elements

of set(S),
16⋃
k=1

Sk + T
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decomposes into 32 half-tiles, given by T/(1 + i) translated by the 32 elements of

the rescaled lattice Z2/(1 + i) given by

set(S) ∪
{
zk +

1

1 + i
: zk ∈ set(S)

}
.

Said more simply, we just cut each of the original 16 tiles in half in the standard

way coming from M . Then applying the doubling equation to each of these 32

half-tiles, µ of each of them is given as a linear combination of components of vS.

Then we can similarly compute µ of each of the quarter-tiles, and so on. This shows

that vS determines µ on arbitrary dyadically-subdivided tiles, and since such tiles

generate B (R2), vS uniquely determines µ. Viewed differently, this gives an iterative

procedure for determining µ on dyadically-subdivided tiles as many “levels down”

as we wish to go.

Special cases

From the earlier paper of Dobric and Belock [11], we know that there will be an

absolutely continuous probability measure µ satisfying the dilation equation if p0 = 1
2

and p1 and pi are strictly between 0 and 1 and sum to 1/2. Restricting our attention

to this case, we have one degree of freedom; namely, set p1 = (1/2) − pi and let

pi ∈ (0, 1/2). Making these substitutions explicitly in A makes the resulting matrix

too big to include here. However, for any value of pi, the resulting matrix has a

1-dimensional right 1-eigenspace.

Specializing even further, we take the concrete example with p0 = 1/2 and
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p1 = pi = 1/4. Then we get that A(1/2, 1/4, 1/4) is

3
4

0 0 1
2

1
4

1
4

1
4

0 0 0 0 0 0 0 0 0
1
4

1
2

0 0 0 0 1
4

3
4

0 0 0 0 0 0 0 0

0 1
4

1
4

0 0 0 0 0 3
4

1
2

0 0 0 0 0 0

0 1
4

3
4

1
4

0 0 0 0 0 0 1
2

1
4

0 0 0 0

0 0 0 1
4

0 0 0 0 0 0 0 3
4

1
4

0 0 0

0 0 0 0 3
4

1
4

0 0 0 0 0 0 1
2

1
4

0 0

0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 1
4

3
4

0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 1
4

0 0 0 0 0 0 0 1
4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
4

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
4

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
4

1
4

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
4

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
4

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
4

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

3
4

0



.

The (right) 1-eigenspace is one-dimensional and is spanned by the vector[
1,

767262

1370695
,

795934

4112085
,

104324

274139
,

130917

1370695
,

131013

1370695
,

13105

274139
,

32768

1370695
,

8192

1370695
,

2048

1370695
,

512

1370695
,

128

274139
,

128

1370695
,

32

1370695
,

8

1370695
,

22

1370695

]
.

This is normalized so that the first coordinate is 1, rather than being normalized to

give a probability. Nonetheless, this determines vS up to a scaling factor, and thus

the corresponding µ is unique up to scaling.

4.2.4 The case of −1, 0, and 1

We now give the parallel computations in the case where our points are −1, 0, and

1, with corresponding weights p−1, p0, and p1 satisfying the prescale conditions.

Because it is so similar to the previous, we’ll just summarize many things.
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Here, the dilation equation is

µ (A) = p0µ ((1 + i)A) + p1µ ((1 + i)A− 1) + p−1µ ((1 + i)A+ 1) .

Support and “top level”

First, we need the set S̃ of tiles that cover the support of µ. If we compute all the

points of the form {
12∑
n=1

γ̃n
(1 + i)n

: γ̃n ∈ {0, 1,−1}

}
,

with Python, we find 10 Gaussian integers that must be in S̃, which, for future use,

we give in order as follows

S = [i, 0, 1, 1 + i, 2i,−1 + 2i,−1 + i,−1,−i, 1− i] .

However, if we now try to show that no other Gaussian integers are in S̃ by showing

that they “get pushed” outside of the ball of radius 5 (centered at the origin), we

don’t succeed. In particular, there are an additional 12 Gaussian integers which

don’t get pushed out. We give these 12 points as

S ′ = [3i,−1 + 3i,−2 + 2i,−2 + i,−2,−1− i,−2i, 1− 2i, 2− i, 2, 2 + i, 1 + 2i] .

Now we need to consider the 22 points given in order by S ⊕S ′, which is the vector

whose first 10 components are given by S and whose last 12 components are given

by S ′.

Next, we consider the vector vS⊕vS′ , which gives µ of the corresponding shifted

tiles. As before, the dilation equation gives relationships among the components of

vS ⊕ vS′ . We have (
vS ⊕ vS′

)ᵀ
= Â(p−1, p0, p1)

(
vS ⊕ vS′

)ᵀ
,

where Â(p−1, p0, p1) is a 22× 22 matrix that we must now describe. We find that Â

has a block upper-triangular decomposition as

Â =

[
A ∗
0 A′

]
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where A is

P0,−1 0 0 p−1 0 0 P0,−1 0 0 0

0 P0,1 P0,−1 0 0 0 0 p1 0 0

p1 0 0 P0,1 0 0 0 0 0 0

0 0 0 0 P0,1 p1 0 0 0 0

0 0 0 0 p−1 P0,−1 0 0 0 0

0 0 0 0 0 0 p−1 0 0 0

0 p−1 0 0 0 0 0 P0,−1 0 0

0 0 0 0 0 0 0 0 P0,−1 p−1

0 0 0 0 0 0 0 0 p1 P0,1

0 0 p1 0 0 0 0 0 0 0



,

where P0,−1 = p0 + p−1, P0,1 = p0 + p1 and A′ is

0 p−1 0 0 0 0 0 0 0 0 0 0

0 0 p−1 0 0 0 0 0 0 0 0 0

0 0 0 0 p−1 0 0 0 0 0 0 0

0 0 0 0 0 p−1 0 0 0 0 0 0

0 0 0 0 0 0 p−1 0 0 0 0 0

0 0 0 0 0 0 P0,1 P0,−1 0 0 0 0

0 0 0 0 0 0 0 p1 0 0 0 0

0 0 0 0 0 0 0 0 p1 0 0 0

0 0 0 0 0 0 0 0 0 0 p1 0

0 0 0 0 0 0 0 0 0 0 0 p1

p1 0 0 0 0 0 0 0 0 0 0 0

P0,−1 P0,1 0 0 0 0 0 0 0 0 0 0



,

∗ is a 10 × 12 block that we don’t compute explicitly, and “0” is the 12 × 10 zero

matrix.

We first compute that A′ does not have a 1-eigenvector for any real values of

p−1, p0, and p1. The determinant of the “bad block” minus the identity, det(A′−I),

is 1 − p4
−1p

4
1. Since we’re in the probability case, where p−1, p0, and p1 are all
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non-negative and sum to 1, for any admissible coefficient values, this determinant is

positive, and thus A′ has no 1-eigenvectors. This means that in order for
(
vS ⊕ vS′

)ᵀ
to be a 1-eigenvector for Â(p−1, p0, p1), we must have that vS

′
is the zero vector. One

consequence of this and the upper triangular block structure of Â is that set(S ′) is

not in S̃. In other words, we have now shown that S̃ = set(S). Further, we see that

we only need to consider the system(
vS
)ᵀ

= A(p−1, p0, p1)
(
vS
)ᵀ
,

for the 10 × 10 matrix A given above. Again, studying the 1-eigenspace of A is

the key to both the uniqueness of µ and to computing vS, which then allows us to

compute µ on successive levels of dyadic decomposition.

Special cases

Similar to before, we consider the case where p0 = 1/2 and p1 = (1/2)−p−1, because

then we know that an absolutely continuous µ solving the doubling equation exists.

Analogously to the above, Sage claims that the resulting matrix A(p−1, 1/2, (1/2)−
p−1) has a 1-dimensional right 1-eigenspace for any value of p−1. If we specialize

further to the case when p0 = 1/2 and p1 = p−1 = 1/4, then we get that the matrix

A(1/2, 1/4, 1/4) is 

3
4

0 0 1
4

0 0 3
4

0 0 0

0 3
4

3
4

0 0 0 0 1
4

0 0
1
4

0 0 3
4

0 0 0 0 0 0

0 0 0 0 3
4

1
4

0 0 0 0

0 0 0 0 1
4

3
4

0 0 0 0

0 0 0 0 0 0 1
4

0 0 0

0 1
4

0 0 0 0 0 3
4

0 0

0 0 0 0 0 0 0 0 3
4

1
4

0 0 0 0 0 0 0 0 1
4

3
4

0 0 1
4

0 0 0 0 0 0 0



.
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This matrix has a 1-dimensional 1-eigenspace, spanned by[
1, 1,

4

13
,

1

13
,

1

13
,

1

13
,

4

13
,

1

13
,

1

13
,

1

13

]
.
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