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Abstract

In this dissertation we are concerned with sharp degree conditions that guarantee

the existence of certain types of subdivisions in large graphs. Of particular interest

are subdivisions with a certain number of arbitrarily specified vertices and with pre-

scribed path lengths. Our non-standard approach makes heavy use of the Regularity

Lemma (Szemerédi, 1978), the Blow-Up Lemma (Komlós, Sárközy, and Szemerédi,

1994), and the minimum degree panconnectivity criterion (Williamson, 1977).

Sharp minimum degree criteria for a graph G to be H-linked have recently been

discovered. We define (H,w, d)-linkage, a condition stronger than H-linkage, by

including a weighting function w consisting of required lengths for each edge-path

of a desired H-subdivision. We establish sharp minimum degree criteria for a large

graph G to be (H,w, d)-linked for all d ≥ 0. We similarly define the weaker con-

dition (H,S, w, d)-semi-linkage, where S denotes the set of vertices of H whose

corresponding vertices in an H-subdivision are arbitrarily specified. We prove sim-

ilar sharp minimum degree criteria for a large graph, i.e., a graph large enough to

permit non-trivial use of the Regularity Lemma, to be (H,S, w, d)-semi-linked for

all d ≥ 0.

We also examine path coverings in large graphs, which are here viewed for the

first time as a special case of (H,S, w)-semi-linkage. In 2000, Enomoto and Ota

conjectured that a graph G of order n with degree sum σ2(G) satisfying

σ2(G) ≥ n+ k − 1

may be partitioned into k paths, each of prescribed order and with a specified

starting vertex. We prove the Enomoto-Ota Conjecture for graphs of sufficiently

1



large order.
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Introduction

Extremal graph theory is the study of the ways in which the structure of a graph

affects the existence or structure of certain subgraphs. This field of study began in

1941, when Turán proved [38] that a graph of order n not containing the complete

graph Kr+1 contains at most
(
1− 1

r

)
· n2

2
edges. Turán’s Theorem gave rise to

the question, “what is the upper bound for the number of edges for a graph of

order n not containing a specific (non-complete) subgraph?” This question was

answered by Erdös and Stone [11], who in 1946 generalized Turán’s theorem for

non-complete subgraphs of G. Since these two landmark results, much has been

done to determine the necessary properties of a graph G so that G necessarily

contains certain subgraphs.

In particular, a fundamental problem in extremal graph theory is a variant of an

age-old problem from combinatorial optimization, the traveling salesman problem.

There are many variants of this problem [6] but a simplified version goes as follows:

given a list of cities and roads connecting the cites, find a route that allows the sales-

man to visit each city exactly once and return to the starting city. This problem can

be modeled by a graph where the cities are the graph’s vertices, roads between cities

are the graph’s edges, and the solution to the problem lies in finding a hamiltonian

(spanning) cycle. After Dirac [8] and Ore [33] proved sharp minimum degree and

degree-sum bounds for a graph to be hamiltonian, Bondy and Chvátal proved [2] in

1976 that a graph is hamiltonian if and only if its closure is hamiltonian. A modifi-

cation of the traveling salesman problem was recently considered in [12] where the

authors asked: how many vertices and edges must a graph G contain so that if we

specify a certain number of vertices in G and the distances between them (assume

3



that the distance between adjacent vertices is 1), then we may guarantee that G

contains such a hamiltonian route? In [12] sharp minimum degree conditions on the

host graph were proven to imply the existence of such subgraphs.

A natural extension of classifying hamiltonian graphs is to find the necessary

and sufficient conditions for a graph to be partitioned into paths. Partitioning a

graph into vertex-disjoint paths has been considered since Ore [33], who showed

that a graph G of order n is hamiltonian if the minimum degree sum of G is at

least n, which immediately implies that G may be partitioned into vertex-disjoint

paths on any set of vertices, or that G may be partitioned into vertex-disjoint paths

of arbitrary order. Prescribed path order on arbitrary endvertices is not something

guaranteed simply by hamiltonicity, however. Enomoto and Ota conjectured [10]

in 2000 that a graph of order n with minimum degree sum at least n + k − 1 can

be partitioned into k paths, with each path having specified order and a specified

endvertex. Progress on the Enomoto-Ota Conjecture has been made with weaker

conditions [25], but no result includes the sharp bound n+k−1, the prescription of

path lengths, and the prescription of the vertex locations. We prove the Enomoto-

Ota Conjecture for graphs of sufficiently large order in Chapter 2.

An alternate extension of the traveling salesman problem is the question of the

existence of subdivisions on specified vertices of prescribed size. The idea of ubiq-

uitous H-subdivisions in a graph (i.e., of H-linked graphs) was first introduced by

Jung in [24] and then developed in [18] and [39]. Further progress has been made in

the last decade (see [17], [29], [16], and [5]). Each of these works provided sufficient

(usually sharp) minimum degree conditions for a large graph to be H-linked. While

the minimum degree requirements have always been high (slightly greater than n
2

)
,

this has been to assure high enough connectivity to permit the H-subdivision to

travel between components of the host graph. We prove similar results in Chap-

ter 3.

The Regularity Lemma [36], proved by Szemerédi in 1978, states that every

sufficiently large graph can be partitioned into a bounded number of vertex sets

called clusters, each of the same size, and one small “garbage” cluster such that all

pairs of non-garbage clusters behave almost like random bipartite graphs. A weaker

4



version of this surprising result was used to prove Szemerédi’s Theorem [35] about

arithmetic sequences in 1975. While the Regularity Lemma is true for all graphs, it

is only meaningful for large graphs with many edges—this is the reason our results

only concern large graphs. The Regularity Lemma concerns (ǫ, δ)-regularity, further

discussed in Chapter 1, which measures the uniformity and density of the number of

edges between a pair of clusters. A stronger version of (ǫ, d)-regularity is used in the

statement of the powerful Blow-Up Lemma [27], proved by Komlós, Sárközy, and

Szemerédi in 1994, which states that a partition of a sufficiently large graph as in

the Regularity Lemma contains arbitrary subgraphs of bounded maximum degree

between every highly dense pair of clusters. The Regularity and Blow-Up Lemmas

combine to show that sufficiently large graphs may be partitioned into dense clusters

that behave as complete bipartite graphs.

While the Regularity Lemma gives information about the entire structure of a

large, dense graph, we require a method of forming paths of arbitrary length be-

tween any pair of vertices; i.e., we need our graph to be panconnected. Fortunately,

Williamson and Alavi established a number of extremal results for graphs contain-

ing paths of arbitrary length between any pair of vertices, a property commonly

called panconnectivity. In particular, they noted in [1] that both the square of a

hamiltonian graph and the cube of any graph are panconnected. In [40], Willamson

showed that graphs of order n and minimum degree at least n+2
2

are panconnected.

We refer to this result as the Panconnectivity Criterion, as it is used heavily in this

work. This wonderful result has been used in works that concern hamiltonian cycles

with specified vertex locations (see [12], [13], [14]), cyclic decompositions of graphs

(see [32]), and subdivisions (see [19]).

5



Chapter 1

Preliminaries

In this chapter, we detail the Regularity Lemma, the Blow-Up Lemma, and the

Panconnectivity Criterion, the three main lemmas used heavily in this work. We

start with an introduction to ǫ-regularity and then give a brief summary of the

known results on panconnectivity.

For general definitions and notation of graph theory terminology, see [3].

1.1 Regularity

The Regularity Lemma, proved in [36] by Szemerédi in 1978, states that large graphs

behave almost like random graphs. The Blow-Up Lemma, proved in [27] by Komlós,

Sárközy, and Szemerédi in 1994, states that sufficiently large graphs with sufficiently

many edges contain all subgraphs of certain fixed degree. This certain fixed degree

can be a large number for our purposes, since we assume a minimum degree for G

above n
2
.

1.1.1 Density and ǫ-Regularity

The Regularity and Blow-Up Lemmas are based on the concept of ǫ-regularity, which

gauges the edge-uniformity between two pairs of vertex sets. Let A and B be disjoint

6



vertex sets. The density of the pair (A,B) is the value

d(A,B) =
e(A,B)

|A||B|
.

Note that 0 ≤ d(A,B) ≤ 1. Fix ǫ > 0. A pair (A,B) is ǫ-regular if for all subsets

X ⊆ A and Y ⊆ B satisfying |X| ≥ ǫ|A| and |Y | ≥ ǫ|B|, we have |d(X, Y ) −

d(A,B)| < ǫ. Some sources, such as [28], write |X| > ǫ|A| and |Y | > ǫ|B|, but for

our purposes this difference is insignificant. We say (A,B) is (ǫ, δ)-regular to mean

(A,B) is ǫ-regular with density greater than δ. (Note that δ here is different from

δ(G).)

Naturally, the smaller ǫ is, the more uniformly dense a pair is. Note that from

[28], to show ǫ-regularity it suffices to only check all subsets X and Y of orders

⌊ǫ|A|⌋ + 1 and ⌊ǫ|B|⌋ + 1, respectively. Even with this sufficient condition, we still

must check
(

|A|
⌊ǫ|A|⌋+1

)(
|B|

⌊ǫ|B|⌋+1

)
subpairs of (A,B) to determine ǫ-regularity.

1.1.2 Examples

We want to keep two (albeit simple) examples in mind when considering ǫ-regular

pairs. First, the pair (A,B) with no edges between A and B is trivially ǫ-regular

for all ǫ > 0. Second, the pair (A,B) with all possible edges between A and B (that

is, the complete bipartite graph K|A|,|B| on (A,B)) is also ǫ-regular for all ǫ.

Example 1.1.1. A third, slightly more involved example is as follows. Fix ǫ > 0,

and consider a bipartite graph G = A ∪ B of sufficiently large order n ≥ n(ǫ) that

satisfies the following property: Assume |A| = |B| = n
2
, and for each pair of vertices

a, b ∈ V (G), the probability that the edge ab ∈ E(G) is 1
2
. Since n is a sufficiently

large function of ǫ, we can say |N(v)| ≈ n
2
for all but at most a tiny portion of

vertices v in G with extremely high probability. In such instances, since almost all

vertices have degree arbitrarily close to n
2
, any large enough subsets X ⊂ A and

Y ⊂ B form a pair whose density is well within ǫ of d(A,B). Hence, the graph G

forms an ǫ-regular pair with an extemely high probability.

7



1.1.3 Regularity Lemma

The following result was proved by Szemerédi in 1978.

Lemma 1.1.2 (Regularity Lemma - Szemerédi [36]). For every ǫ > 0, there is an

M = M(ǫ) such that if G is any graph and δ ∈ (0, 1) is any real number, then

there is a partition of V (G) into r+1 clusters V0, V1, . . . , Vr, and there is a subgraph

G′ ⊆ G with the following properties:

(1) r ≤ M ,

(2) |V0| ≤ ǫ|V (G)|,

(3) |V1| = · · · = |Vr| = L ≤ ǫ|V (G)|,

(4) degG′(v) > degG(v)− (δ + ǫ)|V (G)| for all v ∈ V (G),

(5) e(G′[Vi]) = 0 for all i ≥ 1,

(6) for all 1 ≤ i < j ≤ r the graph G′[Vi, Vj] is ǫ-regular and has density either 0

or greater than δ.

Although Lemma 1.1.2 holds for all positive values of ǫ, δ, and |V (G)|, for this

work we assume the relations

0 <
1

|V (G)|
≪ ǫ ≪ δ ≪ 1, (1.1)

with |V (G)| ≥ N(ǫ, δ) for some function N . The sets Vi in Lemma 1.1.2 are called

clusters, with V0 being the garbage cluster. Typically, we are concerned with graphs

G with |V (G)| ≫ M , since the result is trivially true for G of order M .

Lemma 1.1.2 states that for fixed values ǫ and δ, each graph G of large order has

a spanning subgraph G′ with almost as many edges as G (Item 4) and independent

sets V1, . . . , Vr, all of which have the same number of vertices (Item 3). Furthermore,

these clusters either have many edges between them in a highly uniform way, by

ǫ-regularity, or no edges between them (Item 6). Since r is bounded above and below

(Item 1), if n is large, then each cluster contains many, but not too many vertices.

8



Note that the garbage cluster V0 disobeys these rules, but its order is bounded above

(Item 2). We also do not know anything about the number of edges (if any) between

V0 and other clusters. This misbehavior is mainly problematic in Chapter 2, when

we wish to find a set of disjoint paths of prescribed lengths that cover all vertices

of G. Somewhat ironically in Chapter 3, the set V0 often aids us in the proofs of

Lemmas 3.4.1–3.4.4.

We consider a trivial application of the Regularity Lemma.

Example 1.1.3. For any ǫ > 0, Lemma 1.1.2 is trivially true for a graph G of order

M = M (ǫ) and any δ ∈ (0, 1). We can write r = M and partition the graph into

r clusters Vi for 1 ≤ i ≤ M , each comprising a single vertex (i.e., L = 1), where

V0 = ∅. Then G′ = G trivially.

Unfortunately, the value M in Lemma 1.1.2 is so absurdly high that a more

practial example cannot be illustrated. Gowers showed in [20] that the sharp lower

bound for M , which we call m, is “given by a tower of 2s of height proportional to

log(1/ǫ),” and that the upper bound for M is at least as large as a δ−1/16-level tower

function of m. This means that an example involving clusters with more than one

vertex each would require a graph with r clusters, where

m =

log(1/ǫ)
︷︸︸︷

2.
..
2

≤ M ≤

δ−1/16

︷ ︸︸ ︷

m..
.m

.

1.1.4 Reduced Graph

We now define the reduced graph to easily encapsulate the general structure of G.

Definition 1.1.4. Given a graph G and appropriate choices of ǫ and δ, let G′ be

a spanning subgraph of G obtained from Lemma 1.1.2. The reduced graph R =

R(G, ǫ, δ) of G contains a vertex vi for each cluster Vi in G′ \ V0 and has an edge

between vi and vj if and only if d(Vi, Vj) > δ. Hence, V (R) = {vi | 1 ≤ i ≤ r} and

E(R) = {vivj | 1 ≤ i, j ≤ r, d(Vi, Vj) > δ}. See Figure 1.1 for an illustration of G,

G′, and R(G, ǫ, d).

9



Throughout this work, we let r = |R|.

G

V0

G′ R

Figure 1.1: Applying Lemma 1.1.2 to obtain G′ and R(G, ǫ, δ).

1.1.5 Blow-Up Lemma

In order to state the Blow-Up Lemma, we introduce a stronger form of regularity.

For fixed ǫ, δ > 0, a pair (A,B) is (ǫ, δ)-super-regular if for all subsets X ⊆ A and

Y ⊆ B satisfying |X| ≥ ǫ|A| and |Y | ≥ ǫ|B|, we have d(X, Y ) > δ, along with

degB(a) > δ|B| for all a in A and degA(b) > δ|A| for all b in B.

In particular, if (A,B) is super-regular, then all vertices in A and B have degree

at least 1. The primary example of an (ǫ, δ)-super-regular pair (A,B) is a complete

bipartite graph, which is (ǫ, δ)-super-regular for all ǫ > 0 and δ > 0.

The following lemma says that we can remove a small number of vertices from

an (ǫ, δ)-regular pair to form an (ǫ, δ − ǫ)-super-regular pair.

Lemma 1.1.5 ([7] Lemma 7.5.1). Let (A,B) be an ǫ-regular pair of density d and

let Y ⊆ B have size |Y | ≥ ǫ|B|. Then all but at most ǫ|A| of the vertices in A have

(each) at least (d− ǫ)|Y | neighbors in Y .

We will use a simple corollary of this result.

10



Lemma 1.1.6. Let (A,B) be an ǫ-regular pair of density d. Then there exist subsets

A′ ⊆ A and B′ ⊆ B with |A′| ≥ (1 − ǫ)|A| and |B| ≥ (1 − ǫ)|B| such that the pair

(A′, B′) is (ǫ, d− 2ǫ)-super-regular.

Frequently, when Lemma 1.1.5 is applied with δ = δ0, it is followed immediately

with an application of Lemma 1.1.6 so we may then use the value δ = δ0 − 2ǫ in

Lemma 1.1.7.

Lemma 1.1.7 (Blow-Up Lemma - Komlós, Sárközy, Szemerédi [27]). Given a graph

R of order r and positive parameters δ,∆, there exists an ǫ0 = ǫ0(δ,∆, r) > 0 such

that the following holds. Let n1, n2, . . . , nr be arbitrary positive integers, and let us

replace the vertices v1, v2, . . . , vr of R with pairwise disjoint sets V1, V2, . . . , Vr of

orders n1, n2, . . . , nr (blowing up). We construct two graphs on the same vertex-set

V = ∪Vi. The first graph R is obtained by replacing each edge vivj of R with the

complete bipartite graph between the corresponding vertex-sets Vi and Vj. A sparser

graph G is constructed by replacing each edge vivj with any (ǫ0, δ)-super-regular pair

between Vi and Vj. If a graph H with ∆(H) ≤ ∆ is embeddable into R, then it is

already embeddable into G.

Essentially, when finding subgraphs of bounded minimum degree ∆, we can treat

super-regular pairs like complete bipartite graphs. The use of Lemmas 1.1.2, 1.1.5,

and 1.1.7 ensures that a sufficiently large and dense graph G consisting of super-

regular pairs of clusters contains every subgraph H of bounded maximum degree

∆(H). This will help us greatly when establishing (H,w)-linkage in a graph G. See

Figure 1.2 for an application of Lemma 1.1.7 on a triangle T contained in a graph

R.

Since we will apply Lemma 1.1.7 to a triangle, we extend the definitions of

(ǫ, d)-regularity and (ǫ, d)-super-regularity to include triples. That is, (T1, T2, T3)

is an (ǫ, d)-regular triple if the pairs (T1, T2), (T2, T3), and (T1, T3) are all regular.

Similarly, (T1, T2, T3) is an (ǫ, d)-super-regular triple if the pairs (T1, T2), (T2, T3),

and (T1, T3) are all super-regular.
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T

R \ T

Blown-up T

R \ T

Figure 1.2: Lemma 1.1.7 is applied to a triangle within a graph R.

For the remainder of this work, when convenient, we will assume appropriate

choices of ǫ > 0 and n such that ǫn is an integer. We also adhere to (1.1) when

choosing δ.

1.2 Panconnectivity

A graph G is panconnected if for every pair of vertices u, v ∈ V (G) and all 2 ≤ t ≤

|G| − 1, there exists a u, v-path of length t in G. Williamson proved the following

sufficient condition for a graph to be panconnected.

Theorem 1.2.1 (Panconnectivity Criterion - Williamson [40]). A graph G of order

n is panconnected if δ(G) ≥ n+2
2
.

We often use Lemma 1.2.1 when we wish to construct a path of arbitrary length

within a component of a graph with high minimum degree.

We define an analogous concept for bipartite graphs. A bipartite graph U ∪V is

bipanconnected if for every pair of vertices x, y ∈ U ∪ V , there exist (x, y)-paths of

all possible lengths at least 2 of appropriate parity in U ∪ V . That is, for every pair

of vertices x ∈ U and y ∈ V , there exist (x, y)-paths of every possible odd length

except 1, and for every pair of vertices x, y ∈ U (and V ), there exist (x, y)-paths
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of every even length. Note that we must exclude the value 1 from our definition in

order to allow graphs U ∪ V that are not complete bipartite. Also observe that the

partite sets of a bipanconnected graph must have order within one of each other.

The following lemma is a generalization of Claim 1 in [12] that establishes the

odd bipanconnectivity of sufficiently dense balanced bipartite graphs. Recall that a

bipartite graph U ∪ V is balanced if |U | = |V |.

Lemma 1.2.2. If U∪V is a balanced bipartite graph of order 2m with δ(U∪V ) ≥ 3m
4
,

then U ∪ V is bipanconnected.

Proof. Consider a balanced bipartite graph U ∪V of order 2m with δ(U ∪V ) ≥ 3m
4
.

First suppose u ∈ U and v ∈ V . We prove this result using induction on the desired

length of a (u, v)-path. The base case is straightforward since, under the assumed

minimum degree of U ∪V , the vertices u and v must have adjacent neighbors. Now

suppose there is a (u, v)-path P of length 2k − 1 for some 3 ≤ k < m.

First assume k ≤ m
2
. For an edge xy ∈ P , there exists a vertex w ∈ N(x) such

that N(w) ∩ N(y) \ P 6= ∅. Call a vertex in this set z. Replacing xy with xwzy in

P gives a path of length 2k + 1. Next, suppose k > m
2
and further suppose there

exists an edge wz with w ∈ U \ P and z ∈ V \ P . Since δ(U ∪ V ) > 3m
4
, the vertex

z must be adjacent to more than half of P ∩ U and the vertex w must be adjacent

to more than half of P ∩ V . Then there must be some edge xy ∈ P such that

xw, yz ∈ E(U ∪ V ). Replacing xy with xwzy in P gives a path of length 2k + 1.

Finally, suppose k > m
2
and there is no edge xy outside P . Since δ(U ∪V ) > 3m

4
,

we must have k > 3m
4
. Consider vertices x ∈ U \ P and y ∈ V \ P . Then x has

δ(U ∪ V ) edges into V ∩ P and y has δ(U ∪ V ) edges into U ∩ P . Call an vertex

z ∈ P replaceable if either x or y is adjacent to both neighbors of z in P (meaning

this vertex can be replaced in P by x or y). Then at least n
2
vertices in U ∩ P and

m
2
vertices in V ∩ P are replaceable. It follows then that there must be an edge

wz ∈ E(U ∩ V ) such that both w and z are replaceable. Replacing w with x and

z with y gives a path of length 2k − 1 with an edge outside of P . This reduces the

problem to the previous case.
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Now, suppose the two selected vertices are either both in U or both in V . With-

out loss of generality, suppose u1, u2 ∈ U . We again use induction on the desired

length of a (u1, u2)-path. The base case is straightforward since, given the assumed

minimum degree of U ∪ V , the vertices u1 and u2 must share a neighbor. Now

suppose there is a (u1, u2)-path P of length 2k for 2 ≤ k < m. By an argument

identical to the previous case above, we get a (u1, u2)-path of length 2k + 2.

Hence, U ∪ V is bipanconnected.

We use Lemma 1.2.2 when the reduced graph of G is bipartite (and hence, the

graph G is nearly bipartite) and we wish to construct paths of arbitrary length in

G.
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Chapter 2

The Enomoto-Ota Conjecture for

Large Graphs

In this chapter, we prove the Enomoto-Ota Conjecture for graphs of sufficiently

large order. We divide the proof into four lemmas and make heavy use of Lem-

mas 1.1.2 and 1.1.7, along with Theorem 1.2.1.

2.1 Introduction

The degree sum of a graph G, denoted σ2(G), is defined to be

σ2(G) = min
uv/∈E(G)

{d(u) + d(v)}.

Assume that the term disjoint means vertex-disjoint when describing paths. In

2000, Enomoto and Ota conjectured the following.

Conjecture 2.1.1 (Enomoto, Ota [10]). Given an integer k ≥ 3, let G be a graph

of order n and let n1, n2, . . . , nk be a set of k positive integers with
∑

ni = n. If

σ2(G) ≥ n + k − 1, then for any k distinct vertices x1, x2, . . . , xk in G, there exists

a set of disjoint paths P1, P2, . . . , Pk such that |Pi| = ni and Pi starts at xi for all i

with 1 ≤ i ≤ k.
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Previously, in [23], Johansson showed that a graph of order
∑k

i=1 ni with min-

imum degree sum at least
∑k

i=1⌊ni/2⌋ can be partitioned into k disjoint paths of

order n1, . . . , nk. This result was later improved by Chen in [4], who found a result

for a lower minimum degree sum by incorporating the number of even integers in

{n1, . . . , nk}. In both cases, however, the endvertices of these paths are not specified.

Shortly after Enomoto and Ota made their conjecture in 2000, Kawarabayashi

showed [25] in 2001 that a graph with the significantly larger minimum degree sum
∑k

i=1max
{⌊

4
3
ni

⌋
, ni + 1

}
− 1 satisfies the conjecture. Magnant and Martin [31]

later proved an asymptotic version of Conjecture 2.1.1 for large graphs with pre-

scribed path orders that were fractions of n. Hall, Magnant, and Wang later used

Szemerédi’s Regularity Lemma to show in [21] that a large graph with minimum

degree sum at least n + k − 2 contains a non-spanning collection of paths starting

at specified vertices with prescribed lengths. We prove Theorem 2.2.1, which states

that Conjecture 2.1.1 holds for graphs of sufficiently large order.

2.2 Theorem 2.2.1

When n is sufficiently large relative to k, we prove that Conjecture 2.1.1 is true for

graphs of sufficiently large order.

Theorem 2.2.1. Conjecture 2.1.1 holds for graphs of sufficiently large order.

As in [21], the approach uses Regularity Lemma, along with the Blow-Up Lemma

and the Panconnectivity Criterion. We use inductive arguments combined with the

Panconnectivity Criterion to prove our results. Letting nk be the largest prescribed

path order, we show G satisfies our result when δ(G) ≥ nk

8
for large n =

∑k
i=1 ni.

The subsequent results all focus on graphs with minimum degree greater than nk

8
.

We then choose small, positive values of ǫ and d and a positive integer k in order

to consider a graph G of order n ≥ n(ǫ, d, k). After applying Lemma 1.1.2 to G,

we examine the structure of the reduced graph R. We divide our proof into three

extremal cases and one non-extremal case. The extremal cases are:

1. δ(G) ≤ nk

8
,
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2. R has connectivity 0 or 1, and

3. R is bipartite save for a matching of at most 1
145

edges.

The non-extremal case consists of all other possible structures of R with δ(G) > nk

8
.

To prove the non-extremal case, we also use the Blow-Up Lemma to ensure the

existence of dense pairs of clusters in G. We also use Lemma 2.3.10, a stronger

version of the Blow-Up Lemma, to prove that all pairs of vertices within these dense

cluster pairs are connected by a short path.

2.2.1 Proof Outline

We use a sequence of lemmas to eliminate extremal cases of the proof. Without loss

of generality, we assume n1 ≤ n2 ≤ · · · ≤ nk.

Lemma 2.2.2. Conjecture 2.1.1 holds when δ(G) ≤ nk

8
.

Lemma 2.2.2 is proven in Subsection 2.3.1. By Lemma 2.2.2, we may assume

δ(G) ≥ nk

8
.

Say that a graphG is λ-almost-bipartite if there exists a spanning edge-maximum

bipartite subgraph B such that the largest matching in G \E(B) has at most λ|G|

edges. Call B a λ-subgraph of G.

Lemma 2.2.3. Given small real numbers ǫ, δ > 0, an integer k ≥ 0, and λ satisfying

0 < λ < 1
145k

, let G be a graph of order n ≥ n(ǫ, δ, k) with δ(G) ≥ nk

8
. If the reduced

graph of G is λ-almost-bipartite, then Conjecture 2.1.1 holds.

Lemma 2.2.3 is proven in Subsection 2.3.2.

Lemma 2.2.4. Given small real numbers ǫ, δ > 0 and a positive integer k, let G

be a graph of order n ≥ n(ǫ, δ, k) with δ(G) ≥ nk

8
. If the reduced graph of G has

connectivity at most 1, then Conjecture 2.1.1 holds.

Lemma 2.2.4 is proven in Subsection 2.3.3.

Once all these (extremal) lemmas are in place, we use Ore’s Theorem [33] to

construct a long cycle in the reduced graph. Alternating edges of this cycle are
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made into super-regular pairs of the graph. This structure is then used to construct

the desired paths.

Lemma 2.2.5. Given small real numbers ǫ, δ > 0, a positive integer k, and λ

satisfying 0 < λ < 1
145k

, let G be a graph of order n ≥ n(ǫ, δ, k) with δ(G) ≥ nk

8
. If

the reduced graph of G has connectivity at least 2 and is not λ-almost-bipartite, then

Conjecture 2.1.1 holds.

The complete proof of Theorem 2.2.1 comprises the previous four lemmas.

Proof of Theorem 2.2.1. Use Lemmas 2.2.2–2.2.5.

2.3 Proof of Theorem 2.2.1

We present the proof of Lemma 2.2.2.

2.3.1 δ(G) ≤ nk

8

Proof of Lemma 2.2.2. Let a ∈ V (G), with |N(a)| = δ(G) ≤ nk

8
, and partition

V (G) as follows (see Figure 2.1);

B = G \ (a ∪N(a))

A =

{

v ∈ a ∪N(a)

∣
∣
∣
∣
∣
|N(v) ∩ V (B)| <

1

8
(n+ k − δ(G)− 1)

}

C =

{

v ∈ a ∪N(a)

∣
∣
∣
∣
∣
|N(v) ∩ V (B)| ≥

1

8
(n + k − δ(G)− 1)

}

Note that, since σ2(G) ≥ n+k−1, the set A induces a complete graph. Furthermore,

the set B has order n − 1 − δ(G), and A is nonempty since a ∈ A. We also have

k fixed vertices X = {x1, . . . , xk} ⊆ V (G). Since σ2(G) ≥ n + k − 1 and a has no

edges to B, each vertex in B has degree at least n + k − 1 − δ(G) which means

δ(G[B]) ≥ n+ k − 1− 2δ(G). Note that also G is at least (k + 1)-connected. First,

we make a claim about subsets of B.
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A C B

G

Figure 2.1: G = (A ∪ C) ∪B, where A induces a complete graph.

Claim 2.3.1. Every subset of B of order at least 3nk

8
is panconnected.

Proof. With |B| = n − δ(G) − 1 and δ(G[B]) ≥ n + k − 1 − 2δ(G), we see that

δ(G[B]) ≥ |B| − δ(G) ≥ |B| − nk

8
. Therefore, for any subset B′ ⊆ B with |B′| ≥

3nk

8
, we have δ(G[B′]) ≥ |B′| − nk

8
> |B′|+2

2
. By Theorem 1.2.1, we see that B′ is

panconnected.

Let XA denote the (possibly empty) set X ∩A and let X ′
A denote XA ∪ v where

v ∈ A \XA if such a vertex v exists. If no such vertex v exists, let X ′
A = XA. The

vertices of X ′
A will serve as start vertices for paths that will be used to cover all of

A. By Menger’s Theorem, since κ(G) ≥ k + 1, there exists a set of disjoint paths

PA starting at the vertices of X ′
A and ending in B and avoiding all other vertices

of X . Choose such a collection so that each path is as short as possible, so each

path contains only one vertex of B and, by construction, each path has order at

most 4. If any of the paths in PA begins at a selected vertex xi and has order at

least ni, we call this desired path completed and remove the first ni vertices of the

path from the graph and continue the construction process. If A\V (PA) 6= ∅, then

let Pv be a path using all remaining vertices in A and ending at v. This path Pv

together with the path of PA corresponding to v provides a single path that cleans
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up the remaining vertices of A and ends in B. The ending vertices of these paths,

the vertices of B, will serve as proxy vertices for the start vertices (xi ∈ X ∩A or v).

Thusfar, we have constructed paths that cover all of A, start at vertices of X ∩ A

(when such vertices exist) and end in B.

As vertices of B are selected and used on various paths, we continuously call the

set of vertices in B that have not already been prescribed or otherwise mentioned

the remaining vertices in B. For example, so far, B\(X∪V (PA)) are the remaining

vertices of B. Our goal is to maintain at least nk

2
remaining vertices to be able to

apply Claim 2.3.1 as needed within the remaining vertices.

Since |C| ≤ δ(G) ≤ nk

8
and dB(u) ≥

1
8
(n+k−δ(G)−1) for all u ∈ C, there exists

a set of two distinct neighbors in B \ (X ∪ V (PA)) for each vertex in C. For each

vertex xi ∈ X ∩ C, select one such vertex to serve as a proxy for xi and leave the

other aforementioned neighbor in the remaining vertices of B. By Claim 2.3.1, there

exists a path through the remaining vertices of B with at most one intermediate

vertex from one neighbor of a vertex of C to a neighbor of another vertex of C.

Since |C| ≤ nk

8
, such paths can be built and strung together into a single path PC

starting and ending in B, containing all vertices of C \X with |PC | < 4|C| ≤ nk

2
.

We may now construct what is left of the desired paths within B. The paths

P1, P2, . . . , Pk−1 can be constructed in any order starting at corresponding proxy

vertices and ending at arbitrary remaining vertices of B using the Claim 2.3.1 in

the remaining vertices of B. Finally, there are at least

|B| − |B ∩ (∪k−1
i=1 V (Pi))| − |B ∩ V (PA)| − |B ∩ V (PC)|

≥ (n− 1− δ(G))− (k + 1)− 3|C|

>
3nk

8
+ 1

remaining vertices in B. With these and Claim 2.3.1, we construct a path with

at most one internal vertex from an end of PC to the proxy of v (if such a vertex

exists) and a path containing all remaining vertices of B from xk (or its proxy)

to the other end of PC . This completes the construction of the desired paths and

thereby completes the proof of Lemma 2.2.2.
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2.3.2 R is λ-Almost-Bipartite

We recall a result from [34] that provides a lower bound for a matching in a graph

based solely on its order, minimum degree, and maximum degree.

Lemma 2.3.2 ([34]). Let G be a graph of order n and let S ⊂ V (G) with |S| ≤ n
2
.

Then in G there is a matching of size at least

δ(G)
n− |S|

2(δ(G) + ∆(G))
≥ δ(G)

n

8∆(G)

such that for each matching edge at least one of the endpoints is from V (G) \ S.

Whenever we apply Lemma 2.3.2, we always let S = ∅. We apply Lemma 2.3.2

to a set B ⊂ G that corresponds to an almost-partite set of R. The abundance of

independent edges in B allows us to construct a path P0 that uses vertices in B

without using edges in R.

The following theorem from [30] details the similarity between the minimum

degree sum of a graph and its reduced graph. In Theorem 2.3.3, assume Lemma 1.1.2

has been applied for small ǫ, δ > 0 on a graph G of order n with reduced graph R.

Theorem 2.3.3 ([30]). Given a constant c, if σ2(G) ≥ cn, then σ2(R) ≥ (c− 2δ −

4ǫ)r.

Using Theorem 2.3.3, we can determine upper and lower bounds on all vertices

in V (G) \ V0.

Fact 2.3.4. Given an integer k ≥ 0 and small real numbers ǫ, δ > 0, let G be a

sufficiently large graph of order n =
∑k

i=1 ni ≥ n(ǫ, δ, k) with σ2(G) ≥ n+k−1 and

garbage set V0. Suppose the reduced graph R of G is λ-almost-bipartite for some

0 < λ ≤ 1
2
with λ-matching MR, and let M be the vertex set in G corresponding to

MR. For all v ∈ G, we have

d(v) >

(
1

2
− δ − 2ǫ− 2λ

)

n + k − 1, (2.1)

and for all v ∈ G \ (V0 ∪M), we have

d(v) <

(
1

2
+ δ + 2ǫ+ 2λ

)

n. (2.2)
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Proof. Recall that r = |R|. Let UR ∪ VR be the λ-subgraph of R. By definition, we

have V (R) = V (UR ∪ VR) and |MR| ≤ 2λr. By Theorem 2.3.3, we have σ2(R) ≥

(1− 2δ − 4ǫ)r, and hence that

(1− 2δ − 4ǫ− 4λ)r < |UR|, |VR| < (1 + 2δ + 4ǫ+ 4λ)r.

Then for all r ∈ R \ MR, we have d(r) < 1
2
(1 + 2δ + 4ǫ + 4λ)r. It follows from

Items 3, 4, and 6 in Lemma 1.1.2, that for all v ∈ G \ (V0 ∪ M), we have d(v) <
(
1
2
+ δ + 2ǫ+ 2λ

)
n, which is precisely (2.2). This in turn implies (2.1).

There is no upper bound on the number of possible neighbors of vertices in

V0 ∪M , but this is not a problem. The established lower bound in (2.1) allows us

to group vertices in V0 ∪ M with other vertices in V (G) \ (V0 ∪M) depending on

the location of the majority of their neighbors.

We present the proof of Lemma 2.2.3.

Proof of Lemma 2.2.3. Applying Lemma 1.1.2 to G, suppose we get a λ-almost-

bipartite reduced graph R with λ-bipartite graph A′
R∪B′

R and λ-matching MR. By

definition, we see V (MR) ⊂ V (A′
R∪B′

R), and by definition, we see |MR| ≤ 2λr. Let

AR = A′
R \MR and BR = B′

R \MR. Let V (G) = A ∪B ∪M ∪ V0, where A, B, and

M correspond to AR, BR, and MR, respectively, and V0 is the garbage cluster in G.

Letting M0 = V0 ∪M , by Fact 2.3.4, our assumptions immediately imply

0 ≤ |M0| ≤ (ǫ+ 2λ)n

≪

(
1

2
− δ − 2ǫ− 2λ

)

n+ k − 1 < |A|, |B| <

(
1

2
+ δ + 2ǫ+ 2λ

)

n.

Claim 2.3.5. For m ≥ n
9k

> 16λn, every balanced bipartite graph consisting of m

vertices in A and m vertices in B is bipanconnected.

Proof. By Fact 2.3.4, for all v ∈ G, we have d(v) >
(
1
2
− (δ + 2ǫ)− 2λ

)
n + k − 1

and |A| ≤ |B| <
(
1
2
+ (δ + 2ǫ) + 2λ

)
. Hence, if v ∈ A, then there are fewer than

(2δ + 4ǫ+ 4λ)n < n
36k

vertices in B \N(v). A symmetric result is true for all v ∈ B.

Hence, for any sets U ⊆ A and V ⊆ B each containing m ≥ n
9k

≥ 16λn vertices,

the graph G[U ∪ V ] is a balanced bipartite graph satisfying δ(U ∪ V ) ≥ 3m
4
. By

Lemma 1.2.2, the graph G[U ∪ V ] is bipanconnected.
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We cannot extend this result to include vertices in M0, which may only be

adjacent to roughly n
5
vertices in A or B. Hence, we construct a single path that

contains all vertices in M0. We accomplish this by using Claim 2.3.5 multiple times

to string together neighbors of the vertices in M0.

Let X = {x1, . . . , xk} ⊂ V (G), and let B′ denote the set of all vertices with at

most 9λn < n
16k

neighbors in B. Define A′ symmetrically, and note that A′∩B′ = ∅.

Let VB be the set of vertices v ∈ M0 satisfying |NA′(v)| ≥ |NB′(v)|. Define VA

symmetrically; then VA ∪ VB ⊆ M0. Then

|B′ ∪ VB| ≤ |B|+ |M0| <

(
1

2
+ (δ + 3ǫ) + 4λ

)

n,

with a symmetric inequality for |A′ ∪ VA|.

Given a graph G and a vertex xi, let an xi-path be a path in G that begins at

xi. For example, each path Pi we wish to create is an xi-path. Let ι be the number

of even (order) xi-paths with xi ∈ B′ ∪ VB minus the number of even xi-paths

with xi ∈ A′ ∪ VA. When creating our xi-paths, we generally alternate between

A′ ∪ VA and B′ ∪ VB, and the value ι counts each extra vertex in A′ ∪ VA or B′ ∪ VB

resulting from even paths. Lastly, let dAB = |B′ ∪ VB| − |A′ ∪ VA|+ ι, and note that

dAB < (2δ + 8ǫ+ 4λ)n < n
36k

. Without loss of generality, assume dAB ≥ 0.

VA A

A′

VB B

B′

C

Figure 2.2: G = (A′ ∪ VA) ∪ (B′ ∪ VB).
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Claim 2.3.6. There exists a path P0 in G \ X with fewer than 5(dAB + |M0|) <

5(2δ+9ǫ+6λ)n < n
4k

vertices that contains all vertices in M0 \X and contains dAB

more vertices in B′ ∪ VB than in A′ ∪ VA.

Proof. Ignore all vertices in X for this proof. We create two paths, P1 and P2,

where P1 contains dAB more vertices in B′ than in A′, and P2 contains all remaining

vertices in M0 \ P1. Linking these two paths together gives us P0.

If |VB| ≥
dAB

2
, then each vertex in VB has at least n

16k
> 2dAB neighbors in B

to string together all vertices in VB into a single path P1 in the following way. For

b1 ∈ VB, reserve v1 ∈ B′ and a1 ∈ A′. For each bj ∈ VB \ b1, reserve two distinct

neighbors uj, vj ∈ B′ and a distinct vertex aj ∈ A′. Since each vertex in B′ has

greater than n
3
neighbors in A′, we may choose aj so that aj ∈ N(vj) ∩ N(uj+1).

Adjoin the paths P1 = {b1, v1, a1} and each successive copy of {uj, bj, vj , aj} to form

the path P1. Then P1 consists of

• dAB

2
vertices in VB,

• dAB vertices in B′, and

• dAB

2
vertices in A′.

Now suppose |VB| <
dAB

2
. Let C be the set of vertices in B′ that have fewer than

1
2
(n+k−1) neighbors in G, and note that |C| < |M0|+(δ+2ǫ) < (δ + 3ǫ+ 2λ)n <

dB′ (b)

5
for all b ∈ VB. Note that C induces a complete graph; hence, if |C| >

dAB − 2|VB|, then string together all vertices in VB as above, and adjoin all vertices

of C to create P1. Here, the path P1 consists of

• all vertices in VB,

• 2|VB| vertices in B′ \ C,

• dAB − 2|VB|+ 1 vertices in C, and

• |VB|+ 1 vertices in A′.

24



Lastly, if |C| ≤ dAB − 2|VB|, then all vertices in B′ \C have at least dAB − |VB| > 0

neighbors in B′. Create a new graph Γ[B′] by adjoining dAB

2
− |VB| − d(c) edges to

each vertex c ∈ C. Then δ(Γ[B′]) ≥ dAB

2
, and by Lemma 2.3.2, there are at least

dAB/2−|VB |
8(δ+2ǫ+9λ)

independent edges in Γ[B′]. It then follows there are at least dAB/2−|VB |
8(δ+2ǫ+9λ)

−

|C| independent edges in G[B′]. Since λ < 1
145k

by assumption, there are

2|VB|+
dAB/2− |VB|

8(δ + 2ǫ+ 9λ)
> dAB

extra vertices in B′ ∪ VB than in A′; hence P1 may always be constructed to con-

tain exactly dAB more vertices in B′ ∪ VB than in A′ in the following way. Begin

constructing P1 by stringing together all vertices in VB and adjoining all vertices

in C as above. Given that each vertex in B′ has greater than n
3
neighbors in A′,

for each pair of independent edges u1v1, u2v2 ∈ G[B′], we may choose a vertex

a ∈ N(v1)∩N(u2) ⊆ A′. String together dAB − 2|VB| − |C| independent edges in B′

with dAB − 2|VB| − |C| vertices in A. In this final case, the path P1 consists of

• all vertices in VB,

• all vertices in C,

• 2|VB|+ 1 + 2(dAB − 2|VB| − |C|) vertices in B′ \ C, and

• |VB|+ 1 + (dAB − 2|VB| − |C|) vertices in A′.

In all cases, the path P1 has fewer than 5dAB < n
7k

vertices and contains dAB more

vertices in B′ than in A′.

We now create P2 containing all vertices in M0 \ P1. We may choose distinct

neighbors in A or B for each vertex in M0 \ P1. We repeatedly use Claim 2.3.5 be-

tween each pair of remaining vertices to create a path of length 2 or 3 between these

neighbors, depending on whether or not both neighbors are in A (symmetrically B).

It is clear that we may avoid P1 when performing this process. Then there exists a

path P2 with fewer than 5|M0| <
6n
29k

vertices that contains all vertices in M0. We

may construct P2 to contain at most 1 more vertex in A′ ∪ VA than in B′ ∪ VB, or

vice versa.
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Connect P1 and P2 using Claim 2.3.5 similarly and call the resulting path P0. (If

P0 would no longer have exactly dAB more vertices in B′ ∪ VB than in A′ ∪ VA, then

adjust P1 appropriately.) Then P0 contains fewer than
(

1
7k

+ 6
29k

)
n < n

4k
vertices.

Furthermore, the path P0 contains all vertices in M0 (save for vertices in X , of

course) and contains precisely dAB more vertices in B′ ∪ VB than in A′ ∪ VA.

By the Pigeonhole Principle, there must exist some ni ≥
n
k
> 4|P0|. Without loss

of generality, assume n1 ≤ · · · ≤ nk, and hence nk ≥
n
k
. We induct on i to construct

all desired disjoint xi-paths Pi. Let X i = X \ {x1, . . . , xi} = {xi+1, . . . , xk}, let

mi =
⌈
max

{
ni,

n
4k

}⌉
, and let P i =

⋃i
j=1 Pj.

First consider the base case. By Fact 2.3.4, the vertex x1 contains at least n
5

neighbors in either A or B. We may choose one neighbor of x1 and include it in a

balanced bipartite graph U1 ∪ V1 ⊂ (A∪B) \ (X1 ∪ P0) consisting of m1 (or m1 + 1

if m1 is odd) vertices. By Claim 2.3.5, there exists an x1-path P1 ⊆ x1 ∪ U1 ∪ V1

with n1 vertices. Similarly, for all i < k, we have

n− |P i−1 ∪ P0 ∪X i| ≥
(k − i+ 1)n

k
− (k − i+ 1)−

n

4k

>
n

k
.

Hence, there are always enough vertices to create a balanced bipartite graph Ui∪Vi ⊂

(A ∪ B) \ (P i−1 ∪ P0 ∪ X i) that includes xi with mi vertices. By Claim 2.3.5, we

may construct an xi-path Pi in Ui ∪ Vi with ni vertices.

Finally, for i = k, we wish for Pk to contain all vertices in V (G) \ Pk−1. Note

that this final path must include P0. We have Xk = ∅, and hence

n− |Pk−1 ∪ P0 ∪Xk| > n−

(
n

4k
+

k − 1

k

)

n

>
3n

4k
.

By Claim 2.3.6 and the definition of dAB, the graph G \
⋃k−1

i=1 Pi is a balanced

bipartite graph. Hence, we may construct a balanced bipartite graph of order n
4k

that contains xk and an endpoint of P0, and then use Claim 2.3.5 to create a path

with 2 (or 3) vertices connecting xk to P0, so that what remains in G (including the
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other endpoint of P0) is still a balanced bipartite graph. Since this path containing

xk and P0 contains fewer than
n
4k

vertices, we may create a path starting at the other

endpoint of P0 that consists of all remaining vertices in G. This resulting xk-path

is Pk, which necessarily contains nk vertices.

We have therefore created disjoint xi-paths on ni vertices for all 1 ≤ i ≤ k that

together cover V (G).

2.3.3 κ(R) ≤ ǫr

We begin with a lemma ensuring that low connectivity in the reduced graph R

results in at most two components in the main graph G. As in previous sections,

let r = |R|.

Lemma 2.3.7. Let ǫ, δ > 0 be small reals and k be a positive integer. If G is

a graph with σ2(G) ≥ n + k − 1 and reduced graph R with connectivity at most
(

1
10

− 3
5
(δ + 2ǫ)

)
r, then R consists of only two components (and a cutset if κ(R) >

0).

Proof. Applying Lemma 1.1.2 to G, let G′′ = G′[V (G)\V0]. Since dG′′(v) > dG(v)−

(δ+2ǫ)n, it immediately follows that σ2(R) > (1−2(δ+2ǫ))r. LetD be a cutset of R

(if one exists). Suppose R (or R\D) contains at least 3 components, three of which

being A, B, and C. Let a ∈ A, b ∈ B and c ∈ C. Then d(a)+d(b) > (1−2(δ+2ǫ))r,

which implies |A| + |B| > (1 − 2(δ + 2ǫ))r − 2|D|. Similarly, the same is true for

|B| + |C| and |A| + |C|. So 2(|A| + |B| + |C|) > 3(1 − 2(δ + 2ǫ))r − 6|D|, or

|D| >
(

1
10

− 3
5
(δ + 2ǫ)

)
r, a contradiction.

Note that the connectivity of R may be considerably larger than ǫr for us to be

guaranteed two components in G. Also note that A, B, C, and D were vertex sets

in R. In the following remark, the same symbols are used to denote vertex sets in

G.

Remark 2.3.8. Given small real numbers ǫ, δ > 0 and a positive integer k, let G be

a graph of order n =
∑k

i=1 ni ≥ n(ǫ, δ, k) with σ2(G) ≥ n+ k − 1 and δ(G) ≥ nk

8
. If
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the reduced graph ofG has connectivity at most ǫr, then letD ⊂ V (G) be the cluster

corresponding to a cut vertex of R. (If R contains no cut vertices, then D = ∅.) Let

V0 be the garbage cluster of G resulting from Lemma 1.1.2, and let C be a minimum

cutset of G. Then C ⊆ D ∪ V0. By Lemma 1.1.2, each vertex of R corresponds to a

cluster in G of order L = ξn. Hence, we have k + 1 ≤ |C| ≤ |D|+ |V0| ≤ ǫξrn+ ǫn.

By Lemma 2.3.7, we may define A and B to be the components of G \C and write

G = A ∪ C ∪ B. It immediately follows from σ2(G) ≥ n+ k − 1 that

δ(G[A]) > |A| − |C| > |A| − (ǫξr + ǫ)n,

δ(G[B]) > |B| − |C| > |B| − (ǫξr + ǫ)n.
(2.3)

From the condition δ(G) ≥ nk

8
≥ n

2k
, we know |A|, |B| ≥ nk

8
−|C| ≥

(
1
8k

− ǫξr − ǫ
)
n >

n
8(k+1)

.

Note that ǫ2r ≪ 1.

Lemma 2.3.9. Let ǫ, δ, k, and G = A ∪ C ∪ B be defined as in Remark 2.3.8.

Then the induced graph on any subgraph of A or B of order at least 2(ǫξr + ǫ)n is

panconnected.

Proof. We see from (2.3) that δ(G[A]) > |A| − |C| > |A| − (ǫξr + ǫ)n. Then for all

U ⊂ A of order at least 2(ǫξr + ǫ)n, we have

δ(G[U ]) ≥ |S| − (ǫξr + ǫ)n + 1

≥
|S|+ 2

2
.

By Theorem 1.2.1, the graph G[U ] is panconnected. A symmetric argument shows

that if U ⊂ B has order at least (ǫξr + ǫ)n, then G[U ] is panconnected.

While panconnected sets give paths of arbitrary length, only the endpoints are

specified. Hence, to create disjoint paths of arbitrary length, we must create sets

using vertices that are not part of an already existing desired path. Fortunately,

even small subsets of A and B induce panconnected graphs.

28



Proof of Lemma 2.2.4. Suppose κ(R) ≤ ǫr, and let G = A ∪ C ∪ B as in Re-

mark 2.3.8. As noted before (2.3), we know k + 1 ≤ |C| ≤ (ǫξr + ǫ)n. As noted

after (2.3), we know |A|, |B| > n
8(k+1)

. For each c ∈ C, we may reserve 2 distinct

neighbors ac ∈ A and bc ∈ B. Call AC = {ac ∈ A \ X | c ∈ C} (symmetrically

BC = {bc ∈ B \X | c ∈ C}) the set of proxy vertices in A (symmetrically B). In

particular, note that every vertex in C has unique proxy vertices in both AC and

BC , and hence

|C| = |AC | = |BC |.

Given a vertex xi, let an xi-path be a path containing xi as an endpoint. Namely,

each desired path Pi in G is an xi-path. Recall that X = {xi | ni ≤ ni+1}. For some

i ≤ k, let

A∗ = A \
i−1⋃

j=1

Pj,

and define B∗ and C∗ similarly. In particular, note that A∗ = A for i = 1. Let

Av = (A∗ \ (AC ∪X)) ∪ v,

Bv = (B∗ \ (BC ∪X)) ∪ v;

i.e., Av∩ (X ∪AC) = v, and symmetrically for Bv and BC . For the sake of notation,

if v = xi, then we write Ax and Bx. Both notations A∗ and Ax will never cause an

issue, as we never discuss A∗ or xi for different values of i at the same time.

We induct on i to prove our result. Consider the base case i = 1. If x1 ∈ A and

n1 ≤ |Ax| − 4(ǫξr + ǫ)n, then use Lemma 2.3.9 to construct an x1-path P1 ⊂ Ax

containing n1 vertices. If x1 ∈ A and n1 > |Ax| − 4(ǫξr + ǫ)n, then let c ∈ C

with proxy vertices a ∈ AC and b ∈ BC . Use Lemma 2.3.9 to create an x1, a-

path PA consisting of all but 4(ǫξr + ǫ)n vertices of x1 ∪ Aa. Also create a b-path

PB ⊆ Bb with n1 − |PA| − 1 vertices. Then P1 = PA ∪ c ∪ PB is an x1-path with

n1 vertices. If x1 ∈ B, then a symmetric argument works. Lastly, if x1 ∈ C,

then suppose without loss of generality that |A \ (AC ∪X)| ≥ |B \ (BC ∪X)|. Since

|C|+ |AC∪X| ≤ 2(ǫξr+ǫ)n+k < 4(ǫξr+ǫ)n and n1 ≤
n
k
, this implies n1 < |Ax∪a|.

Let a ∈ AC be the proxy vertex of x1, and use Lemma 2.3.9 to create an a-path

PA ⊂ Aa with n1 − 1 vertices. Then P1 = x1 ∪ PA is an x1-path with n1 vertices.
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Now suppose 1 < i < k and that the disjoint xj-paths P1, . . . , Pi−1 have been

constructed in G. If xi ∈ A∗∪C∗ and ni ≤ |Ax|−4(ǫξr+ ǫ)n, then use Lemma 2.3.9

to construct an xi-path Pi ⊂ Ax containing ni vertices. If xi ∈ A∗ ∪ C∗ and

ni > |Ax| − 4(ǫξr + ǫ)n, then

|Bb| = n− |A∗| − |C∗| − |{xi, . . . , xk}| −

∣
∣
∣
∣
∣

i−1⋃

j=1

Pj

∣
∣
∣
∣
∣

≥ n− ni − 4(ǫξr + ǫ)n− (ǫξr + ǫ)n− (k − i+ 1)−
i−1∑

j=1

nj

≥
k∑

j=i+1

nj − 6(ǫξr + ǫ)n.

(2.4)

Hence, if i < k − 1, then |Bb| > ni+1 ≥ ni. If i = k − 1, then by the Pigeonhole

Principle, we have

|Bb| > nk − 6(ǫξr + ǫ)n

>
n

k
− 6(ǫξr + ǫ)n

(2.5)

Furthemore, since |C∗ \ xi| ≥ k + 1 − (i− 1)− 1 ≥ 2, we know there exists c ∈ C∗

with proxy vertices a ∈ AC and b ∈ BC . If |A
x| > 4(ǫξr+ǫ)n, then use Lemma 2.3.9

to create an xi, a-path PA consisting of all but 4(ǫξr + ǫ)n vertices of a ∪ Ax. If

|Ax| ≤ 4(ǫξr + ǫ)n and a ∈ A∗, then use Lemma 2.3.9 to create an xi, a-path PA

consisting of three vertices in a ∪ Ax. If |Ax| ≤ 4(ǫξr + ǫ)n and a ∈ C∗, then let

PA = ∅. Regardless of the initial size of Ax, we now have

3(ǫξr + ǫ)n < |Ax \ PA| ≤ 4(ǫξr + ǫ)n. (2.6)

From (2.4) and (2.5), we may similarly use Lemma 2.3.9 to create a b-path PB ⊂ Bb

with ni − |PA| − 1 vertices. Then Pi = PA ∪ c∪PB is an xi-path with ni vertices. If

xi ∈ B∗, then a symmetric argument works.

Finally, suppose i = k and that the disjoint xj-paths P1, . . . , Pk−1 have been

constructed in G. From (2.5) and (2.6), we know

|A∗ \ (X ∪ AC)| > 3(ǫξr + ǫ)n,

|B∗ \ (X ∪ BC)| > 3(ǫξr + ǫ)n.
(2.7)

30



From the Pigeonhole Principle, we also know

nk ≥
n

k
≫ |AC |+ |C∗|+ |BC |.

Without loss of generality, assume xk ∈ A∗∪C∗. Note that |C∗ \xk| ≥ 1, and hence,

that we must have nk > |Ax|. Define A∗
C and B∗

C similarly to the way A∗ and B∗

are defined. Use Lemma 2.3.9 |C∗| ≤ (ǫξr + ǫ)n times within A∗ and within B∗

each to create a path PC that strings together all vertices in C∗ by using all proxy

vertices in A∗
C and B∗

C . Since A
∗
C , B

∗
C , and C∗ each have at most (ǫξr+ ǫ)n vertices,

and since |C∗ \ xk| ≥ 1, we know 7 ≤ |PC | < 5(ǫξr + ǫ)n. Given the high value

of δ(G), we may ensure that PC starts with a proxy vertex in A∗ and ends with a

proxy vertex in B∗ by including an additional vertex in A∗ or B∗ adjacent to some

vertex in C∗. Let the endpoints of PC be a ∈ A∗ and b ∈ B∗. Noting (2.7), we may

use Lemma 2.3.9 in A∗ and B∗ to create an xk, a-path PA that contains all vertices

in A∗ \PC . Similarly, use (2.7) and Lemma 2.3.9 to create a b-path PB that contains

all vertices in B∗ \ PC . Then Pk = PA ∪ PC ∪ PB is an xk-path that contains all

remaining nk vertices in G.

We have created k paths P1, . . . , Pk in G, with each path Pi starting at xi and

having ni vertices.

2.3.4 Generalized Blow-Up Lemma

Before proving the non-extremal case of Theorem 2.2.1, weshow that every (ǫ, δ)-

super-regular pair contains a short path between any two specified vertices. To

prove this, we first state an expanded version of Lemma 1.1.7.

Lemma 2.3.10 (Generalized Blow-Up Lemma - Komlós, Sárközy, Szemerédi [27]).

Given a graph R of order r and positive parameters δ,∆, there exists an ǫ0 =

ǫ0(δ,∆, r) > 0 such that the following holds. Let n1, n2, . . . , nr be arbitrary positive

integers, and let us replace the vertices v1, v2, . . . , vr of R with pairwise disjoint sets

V1, V2, . . . , Vr of orders n1, n2, . . . , nr (blowing up). For a graph H with ∆(H) ≤ ∆

and r < ǫmin
i
{ni}, let {u1, . . . , ur} ⊆ V (H), and let U1, . . . , Ur be vertex sets with
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Ui ⊂ Vj for some j and |Ui| > δnj. If H with ∆(H) ≤ ∆ is embeddable into R,

then H is already embeddable into G with ui ∈ Ui for all i.

See Theorem 1, Remark 13 of [27] for the proof. Lemma 2.3.10 is more general

than Lemma 1.1.7 because it allows for a graph H to be embedded within specific

areas of clusters within G. While these areas are not pinpoint accurate, the lower

bound δnj for |Ui| is sufficiently small to establish the existence of a short path

beginning and ending at specified vertices, as in Lemma 2.3.11.

Lemma 2.3.11. Given an (ǫ, δ)-super-regular pair (A,B) and a pair of vertices

a ∈ A and b ∈ B, there exists a path of length at most 3 from a to b in (A,B).

Proof. If |A| or |B| is small, then A ∪ B is a complete bipartite graph, and we

are done. Assume |A| and |B| are large, and choose a ∈ A and b ∈ B. We have

|N(a) \ a| ≥ δ|A|
2

and |N(b) \ b| ≥ δ|B|
2
. Since the pair (A \ a, B \ b) is

(
2ǫ, δ

2

)
-super-

regular, then by Lemma 2.3.10 there exists an edge uv with u ∈ N(a) and v ∈ N(b).

Then {a, u, v, b} is an a, b-path of length 3.

The statement and proof of Lemma 2.3.11 are analogous to those in [22], where

Hladky proves that every pair of endpoints within an (ǫ, δ)-super-regular pair is

connected by a hamiltonian path.

We also use the following theorem of Ore.

Theorem 2.3.12 ([33]). If G is 2-connected, then G contains a cycle of length at

least σ2(G).

2.3.5 Non-Extremal Case

Proof of Lemma 2.2.5. Given an integer k ≥ 3 and desired path orders n1, . . . , nk

as functions of the order n of a graph, we choose constants ǫ and d as follows:

ǫ ≪ d ≪
1

k
.

Let n be sufficiently large to apply Lemma 1.1.2 with constant ǫ to get large clus-

ters and let R be the corresponding reduced graph. Note that, when applying

Lemma 1.1.2, there are at least n
ǫ
clusters so |R| ≥ n

ǫ
.
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By Lemma 2.2.4, we may assume R is 2-connected. By Theorem 2.3.3, we know

that σ2(R) ≥ (1 − 2δ − 4ǫ)|R|. Thus, we may apply Theorem 2.3.12 to obtain a

cycle C of length at least (1− 2δ − 4ǫ)|R| in R.

Color the edges of C with red and blue such that no two red edges are adjacent

and, as few blue edges as possible are adjacent. Note that if C is even, the colors

will alternate and if C is odd, there will be only one consecutive pair of blue edges

while all others are alternating. Apply Lemma 1.1.6 on the pairs of clusters in G

corresponding to the red edges of R to obtain super-regular pairs where the two

sets of each super-regular pair have the same order. All vertices discarded in this

process are added to the garbage set. Note that we have added at most ǫn vertices

to the garbage set.

If C is odd, let c0 be the vertex with two blue edges, let C0 be the corresponding

cluster and let C+
0 and C−

0 be the neighboring clusters. Since the pairs (C−
0 , C0) and

(C0, C
+
0 ) are both large and ǫ-regular, there exists a set of k vertices T0 ⊆ C0 with

a matching to each of C−
0 and C+

0 . We will use these vertices as transportation and

move all of C0 \ T0 to the garbage set.

Let GC denote the set of vertices remaining in clusters associated with C that

have not been moved to the garbage set and let D denote the garbage set. Note

that |D| ≤ (2δ + 6ǫ)n.

By Lemma 2.2.2, we may assume δ(G) ≥ nk

8
. In particular, the vertices in D

each have at least nk

8
− (|D| − 1) ≫ ǫn edges to GC .

A path is said to balance the super-regular pairs in GC if for every super-regular

pair the path visits, it uses an equal number of vertices from each set in the pair.

Note that the removal of a balancing path preserves the fact that if a pair of clusters

is super-regular, then the two clusters have the same order. Let (A,B) be a super-

regular pair of clusters on C. A balancing path starting in A and ending in B which

contains at least one vertex v ∈ D is called v-absorbing.

Claim 2.3.13. Avoiding any selected set of at most ǫr clusters and any set of at

most 16(2δ+6ǫ)n
ǫr

vertices in each of the remaining clusters, there exists a v-absorbing

path of order at most 16. Otherwise, the desired path partition already exists.
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Proof of Claim 2.3.13. If for all selected vertices in the garbage cluster there exists

an absorbing path then we are done. We create the most possible absorbing paths

for selected vertices in X0.

Absorbing paths are constructed iteratively, one for each vertex of D, in an

arbitrary order. Suppose some number of such absorbing paths has been created.

If we have created one for each vertex of D within the restrictions of the claim,

the proof is complete so suppose we have constructed at most |D| − 1 absorbing

paths. Clusters that have lost at least 16(2δ+6ǫ)n
ǫr

vertices removed from consideration

in following iterations.

Fact 2.3.14. If we have created |D| − 1 such paths, at most ǫr clusters would have

order at most L− 16(2δ+6ǫ)n
ǫr

.

Proof of Fact 2.3.14. Since each absorbing path constructed in this claim has order

at most 16, we lose at most 16 vertices from GC for each vertex of D. The result

follows.

Let v ∈ X0 such that there is no absorbing path for v of order at most 16. Since

d(v) ≥ nk

8
, v must have edges to at least r

8k
clusters. Let A and B be two clusters

which are not already ignored to which v has at least one edge to at least one vertex

that is not already in a path or an absorbing path. For convenience, we call two

clusters X and Y a couple or spouses if X and Y are consecutive on C and the pair

is super-regular.

The following facts are easily proven using using the structure we have provided

and the lemmas proven before.

Fact 2.3.15. A and B are not a couple.

Otherwise, it would be trivial to produce a v-absorbing path.

We call the spouses of these two clusters A′ and B′, and define the following sets

of clusters:

• XA := {all couples of clusters such that both clusters have an edge to A′ in

R},
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• XB := {all couples of clusters such that both clusters have an edge to B′ in

R}, and

• XC := {all couples of clusters such that one spouse has an edge to both A′

and B′ in R}. In particular, let X ′
C denote the clusters in XC that are not the

neighbors of A′ and B′.

From the definitions, it is clear that these sets are disjoint since otherwise we

could easily build a v-absorbing path of order at most 16. This fact follows from

the fact that σ2(R) ≥ (1− 2δ − 4ǫ)|R|.

Fact 2.3.16. There are at most (2δ− 4ǫ)|R| clusters in C which are in none of XA,

XB and XC .

Since we are assuming there is no short v-absorbing path, we may also exclude

several other edges from R.

Fact 2.3.17. There are no edges of the following form in R:

• from a cluster in XA to a cluster in XB,

• from a cluster in XA ∪XB to cluster in X ′
C , or

• between two clusters in X ′
C .

If both XA∪XB and XC are large, then the clusters in X ′
C could not have enough

edges to satisfy the degree sum condition. Thus, we get the following fact.

Fact 2.3.18. At least one of XA ∪XB or XC contains very few clusters.

By Fact 2.3.18, if XC is large, then it must contain most of C. In this case,

R contains an almost-spanning almost-bipartite subgraph with X ′
C in one part and

XC \X ′
C in the other. We may then apply Lemma 2.2.3 to obtain the desired result.

Thus, we get this fact.

Fact 2.3.19. The set XC contains very few clusters.
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This means XA ∪XB cover almost all of the clusters in C, and therefore almost

all of G. If they are both large, then we may apply Lemma 2.2.4 since there are no

edges between XA and XB. Thus, the following fact is immediate.

Fact 2.3.20. One of XA or XB must be very small.

Without loss of generality, suppose XA is very small, meaning that XB covers

almost all of the clusters in C. This means that vertices in A′ have almost no

edges out, contradicting the minimum degree condition on R that follows from

Lemma 2.2.2 and completing the proof of Claim 2.3.13.

For each desired vertex xi, if xi /∈ GC , use Menger’s Theorem to construct a

shortest path to a vertex, say x′
i, in GC . Using an edge of a super-regular pair first,

construct a balancing path from x′
i through every cluster of GC . Note that, since

the pairs are either ǫ-regular or (ǫ, δ)-super-regular, using Lemma 2.3.11, this path

can be constructed to use at most 3 vertices from each cluster.

By Claim 2.3.13, since |D| ≤ (2δ+6ǫ)n, we can construct an absorbing path for

each vertex v ∈ D where these paths are all disjoint. Let P v be an absorbing path

for v with ends of P v in clusters Ci and Ci+1. Suppose uw is the edge of Pk from Ci

to Ci+1. Then using Lemma 2.3.11, we can replace the edge uw with the path P v

with the addition of at most 4 extra vertices at either end. By this process, all of

D can be absorbed into Pk. This makes |Pk| larger but since |D| ≤ (2δ + 6ǫ)n and

each path P v has order at most 16, we get |Pk| ≤ 3|C|+ 16(2δ + 6ǫ)n < nk.

For each i with ni small, absorb only a few vertices from each super-regular pair

until Pi has the desired order. For each remaining index i, absorb entire super-

regular pairs at a time (with possibly a few vertices from other super-regular pairs)

until Pi has the desired order to complete the proof.
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Chapter 3

H-Linked Graphs

In this chapter, we prove that large graphs with high minimum degree contain H-

subdivisions whose paths have prescribed length and have specified endpoints. To

give a brief history of H-linked graphs and to state our results, we must first state

some definitions.

3.1 Introduction

Unless otherwise noted, H refers to a multigraph with at least one edge, and G

refers to a simple graph. Denote multiedges in H by (uv, i), where u and v are the

endpoints, and t is the indexing integer. We may refer to multiedges in H simply

as edges when the meaning is unambiguous. Let |H| = |V (H)| and e(H) = |E(H)|.

Let “→֒” denote that a map is injective, and let P(G) be the set of all paths in

G. By an embedding of H into G, we mean a pair of maps (f : V (H) →֒ V (G), g :

E(H) → P(G)) that maps all edges (uv, i) ∈ E(H) to edge-disjoint f(u), f(v)-paths

in G. If the embedding (f, g) maps edges in E(H) to internally (vertex-) disjoint

paths in G, then we say the embedding, or corresponding subgraph of G, is called an

H-subdivision in G (see Figure 3.1). We say image(f) is the set of ground vertices

and image(g) is the set of edge-paths in G.
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(f, g)

H G

Figure 3.1: (f, g) is an H-subdivision in G.

Given a multigraphH , a graph G isH-linked if every map f : V (H) →֒ V (G) can

be extended into an H-subdivision in G (see Figure 3.2). Jung [24] first developed

the concept of H-linked graphs, but it was not until Whalen [39] along with Ferrara,

Gould, and Tansey [16] that specific criteria were established for a graph to be

H-linked. At the same time, Kostochka and Yu proved [29] similar results about

H-linked graphs for slightly fewer multigraphs H but significantly smaller graphs G.

However, both sets of authors actually discovered the same sharp minimum degree

condition for a large graph to be H-linked. Gould, Kostochka, and Yu combined

their results in [17] to show that graphs of reasonably large order with minimum

degree slightly higher than |G|
2

are H-linked. We specify the lower bounds on |G|

and δ(G) below.

Many of these same authors expanded upon the idea of H-linkage and consid-

ered the total number of edges of all H-subdivisions on specified vertices in G. In

particular, letting h0 and h1 be the number of vertices in H with degree 0 and 1,

respectively, Gould and Whalen showed in [18] that if a graph G of order n and

minimum degree

δ(G) ≥
n + e(H)− |H|+ h1 + 2h0

2
(3.1)

contains anH-subdivisionH, then G contains a spanning H-subdivision on the same

set of ground vertices as H. The bound on δ(G) is sharp. Ferrara, Magnant, and

Powell in turn expanded upon this and proved a similar result for H-subdivisions

in G of all sizes. In [15], Ferrara et al. showed that a sufficiently large graph G
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satsifying (3.1) is pan-H-linked ; i.e., contains H-subdivisions of all possible sizes on

the same set of specified ground vertices for multigraphs H of average degree at least

four. The bound in (3.1) is sharp for this result as well. In a sense, this contrasts

the result in [17], which guaranteed the existence of a small H-subdivision in G.

The use of (3.1) in both [18] and [15] gave rise to the question [5] of whether the

sharp bound in [17] could be extended to show that sufficiently large graphs G are

H-linked with varying H-subdivision sizes. Theorem 3.2.2 answers this question in

the affirmative for large graphs G.

Given a multigraph H and an integer sequence w = {we | e ∈ E(H), we ≥ 2}, a

graph G is (H,w, d)-linked if every map f : V (H) →֒ V (G) can be extended into an

H-subdivision (f, g) in G such that each path g(e) has length within d of we. We

require we ≥ 2 for all we ∈ w, for if even one we = 1, then G is (H,S, w)-semi-linked

if and only if G is complete. If d = 0, then we say G is (H,w)-linked.

We assign weights to the lengths of edge-paths in our desired H-subdivions, and

not the orders, as we did in Chapter 2 for Theorem 2.2.1. This is for two reasons.

The first and most important reason is for convenience. Since we are specifying all

endvertices for all desired edge-paths in an H-subdivision in G, it is easier to count

edges between endvertices than multiply count the same endvertices of different

edge-paths. Secondly, other similar terms (such as pan-H-linkage) also reference

edge-path lengths instead of orders. No doubt they do this for convenience’s sake

as well.

For all sets w with each value we ∈ w at least 14, we establish a sharp minimum

degree condition for a large graph G to be (H,w, 1)-linked. The value 14 is used in

the results solely for technical reasons (see Lemmas 3.3.7 and 3.3.8, along with the

proof of Lemma 3.4.1) and most likely is not sharp. We hope to improve on this

lower bound in the future.

39



(f1, g1)

(f2, g2)

H G

Figure 3.2: G is H-linked.

If G is (H,w, d)-linked for specific H and w, then we can choose the specific

length of each edge-path for a given H-subdivision. While this is similar to the idea

of pan-H-linked graphs, there are significant differences as well. Namely, pan-H-

linkage does not specify lengths of individual edge-paths in G. On the other hand,

pan-H-linkage implies an H-subdivision in G can be extended to span G. As a

result, Theorems 3.2.1 and 3.2.2 are neither stronger nor weaker than Theorem 6 in

[15].

In order to state our main results, we require a definition from [17]. Let B(H)

be the number of edges in a maximum edge-cut of H and let c(H) be the number

of components in H not containing an even cycle. Let

b(H) =







|H| − 1 H contains no even cycles,

B(H) + c(H) otherwise.

The authors of [17] showed that given a multigraph H , a graph G of order n ≥

9.5(e(H)+c(H)+1) isH-linked ifG satisfies the sharp condition δ(G) ≥
⌈
n+b(H)

2

⌉

−1.

Note that this is the same as δ(G) ≥ n+b(H)−2
2

, the same sharp bound we use in

Theorem 3.2.1. Theorem 3.2.1 shows that given an integer sequence w with values

all at least 14, a sufficiently large graph G with this same sharp minimum degree

condition is also (H,w, 1)-linked. If we also consider e(H) and the number of isolated

vertices in H , we get a similar sharp lower bound for δ(G) when establishing (H,w)-

linkage in G.
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3.2 Minimum Degree Criteria for (H,w, 1)- and

(H,w)-Linkage

We now state our main results.

Theorem 3.2.1. Let H be a multigraph, and let w = {we | e ∈ E(H), we ≥ 14} be

a sequence of integers. If G is a graph of order n ≥ n(H,w) with δ(G) ≥ n+b(H)−2
2

,

then G is (H,w, 1)-linked. Furthermore, the lower bound for δ(G) is sharp.

The sharpness of Theorem 3.2.1 is established in [17].

Theorem 3.2.2. Let H be a multigraph with h0 isolated vertices, and let w =

{we | e ∈ E(H), we ≥ 14} be a sequence of integers. If G is a graph of order

n ≥ n(H,w) with δ(G) ≥ max
{

n+b(H)−2
2

, n+e(H)+h0

2

}

, then G is (H,w)-linked. Fur-

thermore, the lower bound for δ(G) is sharp.

For Theorem 3.2.2, when b(H)−2 ≥ e(H)+h0 the example in [17] also establishes

the sharpness of the bound for δ(G). If instead b(H) − 2 < e(H) + h0, then the

following example shows the sharpness of δ(G) ≥ n+e(H)+h0

2
.

Example 3.2.3. Let H be a multigraph with h0 isolated vertices. Let H0 denote

the set of isolated vertices in H . Let G be a complete tripartite graph on n vertices

with independent sets A, B, and A′ satisfying

|A| =

⌈
n− (e(H) + h0 − 1)

2

⌉

|B| =

⌊
n− (e(H) + h0 − 1)

2

⌋

|A′| = e(H) + h0 − 1.

As a result, we have δ(G) =
⌈
n+e(H)+h0−2

2

⌉

. Although G is complete tripartite, note

that G \ E(A′, A) and G \ E(A′, B) are bipartite. In fact, the graph G is complete
(

|B||A′|
|A||A′|+|A||B|+|B||A′|

)

-almost-bipartite.

Consider a map f : V (H) →֒ V (G) that is defined as follows: if v ∈ H0, then let

f(v) ∈ A′; otherwise, let f(v) ∈ B. Let w be a sequence of order e(H) consisting
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of only odd integers. In order to create an H-subdivision (f, g) in G where each

edge-path has odd length, we need to create paths of odd length between the ground

vertices inB. It follows that each edge-path must use at least one vertex ofA′\f(H0).

However, since |A′ \f(H0)| = e(H)−1, we cannot construct all of the edge-paths in

our H-subdivision with the correct parity. Therefore, G is (H,w, 1)-linked but not

(H,w)-linked. This shows that the condition δ(G) ≥ n+e(H)+h0

2
in Theorem 3.2.2 is

sharp. See Figure 3.3 for an example with w = {3, 3, 3, 3}.

u1

u2

u3u4

3

33

3

H

f(u1)

f(u2)

f(u3)f(u4)

A′

G

Figure 3.3: Given H and w = {3, 3, 3, 3}, the graph G = A∪B∪A′ is not (H,w)-linked.

In Section 3.3 we prove necessary results for Lemmas 3.4.1-3.4.4, which in turn

constitute the proofs of Theorems 3.2.1 and 3.2.2.
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3.3 Preliminaries

In this section, we frequently apply all definitions and lemmas from Section 1.1.

Before we prove Theorems 3.2.1 and 3.2.2, we state and prove several lemmas.

Throughout our proofs, we assume the relationships in (1.1) and that ǫn is an

integer.

3.3.1 Reduced Graph with High Minimum Degree

The following lemma provides a minimum degree condition on the reduced graph.

Lemma 3.3.1. If a graph G satisfies δ(G) ≥ n
2
, then for fixed ǫ > 0 and δ > 0, the

reduced graph R = R(G, ǫ, δ) has minimum degree condition

δ(R) ≥

(
1

2
− (δ + 2ǫ)

)

r.

Proof. The proof follows from a simple edge-counting argument. Fix ǫ and δ, and

apply Lemma 1.1.2 on G to create the subgraph G′ = G′′∪V0 and the reduced graph

R. Since δ(G) ≥ n
2
, we have δ(G′) >

(
1
2
− (δ + ǫ)

)
n. From |V0| ≤ ǫn, it follows that

δ(G′) ≥

(
1

2
− (δ + 2ǫ)

)

n.

Using Item 6 of Lemma 1.1.2, we see that if a vertex v ∈ Vi is adjacent to vertices

in another cluster Vj, then d(Vi, Vj) > δ, and hence vivj ∈ E(R). Since each cluster

in G′′ has order L,

δ(R) ≥
δ(G)

L
≥

(
1

2
− (δ + 2ǫ)

)

r.

Our next lemma shows the existence of a triangle in the reduced graph.

Lemma 3.3.2. Let G be a graph of order n with δ(G) ≥ n
2
, and let ǫ, δ > 0 be small.

If R = R(G, ǫ, δ) is not bipartite, then R contains a triangle.
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Proof. The proof follows by considering a shortest odd cycle and using the degree

assumption to force the cycle to be shorter than its assumed length. Since R is not

bipartite, it contains an odd cycle. Consider a shortest odd cycle C = {c1, . . . , cr, c1}

in R, and suppose for a contradiction that r ≥ 5. Furthermore, C is chosen to be a

shortest odd cycle and hence contains no chords. We must have N(ci)∩N(ci+1) = ∅

(where indices are taken modulo r), or else we have a triangle. Recall r = |R|.

Letting γ = (δ + 2ǫ), by Lemma 3.3.1, we have |N(ci)| ≥
(
1
2
− γ

)
r for all i. There

are at most

r −

(
1

2
− γ

)

r =

(
1

2
− γ

)

r + 2γr

other vertices in R, with at least
(
1
2
− γ

)
r of them inN(ci+1). It follows that we have

at most 2γr vertices in R\ (N(ci)∪N(ci+1)). Hence, |N(ci)∩N(ci+2)| ≥
(
1
2
− 3γ

)
r.

In particular, we have |N(c1)∩N(c3)| ≥
(
1
2
− 3γ

)
r and |N(c3)∩N(c5)| ≥

(
1
2
− 3γ

)
r.

C

C ′

Figure 3.4: C ′ is a shorter cycle than C.

This implies |N(c1) ∩N(c5)| ≥
(
1
2
− 7γ

)
r for sufficiently small ǫ and d. Letting

u be a vertex in N(c1) ∩N(c5), we have the odd cycle C ′ = {c1, u, c5, . . . , cr, c1}. If

r ≥ 7, then C ′ is a shorter odd cycle than C; if r = 5, then C ′ is the desired triangle

(see Figure 3.4). Either way, we have a contradiction to the choice of C. Hence, R

must contain a triangle.
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3.3.2 Component Structure When δ(G) ≥ n
2 for Large n

The following fact provides upper and lower bounds on the sizes of components of

a graph after a minimum cutset is removed.

Fact 3.3.3. Let G be a graph of order n with δ(G) ≥ n
2
, and let S be a minimum

cutset of G. It follows that G = A ∪ S ∪ B, where there are no edges between A

and B, and we have
n

2
− |S|+ 1 ≤|A| ≤

n

2
,

with the same upper and lower bounds for |B|.

This next lemma establishes a lower bound for κ(G) when the reduced graph is

connected.

Lemma 3.3.4. Suppose G is a graph of sufficiently large order n with δ(G) ≥ n
2
,

and let ǫ, δ > 0 be small. If R(G, ǫ, δ) has order r and is connected, then G is
(

ǫ(1−ǫ)
r

n
)

-connected.

Proof. The proof follows from an easy but technical contradiction argument. Apply

Lemma 1.1.2 on G to obtain G′ = G′′∪V0. We first prove G′′ is
(

ǫ(1−ǫ)
r

n
)

-connected

and then extend this to G′ and G.

Suppose κ(G′′) <
(

ǫ(1−ǫ)
r

)

n and let S be a minimum cutset of G′′. Since δ(G) ≥
n
2
, we know from Lemma 1.1.2 that δ(G′′) >

(
1
2
− (δ + 2ǫ)

)
n. By Fact 3.3.3, G′′ =

A ∪ S ∪B with
(
1

2
− (δ + 2ǫ)

)

n− |S|+ 1 ≤|A| ≤

(
1

2
+ (δ + 2ǫ)

)

n− 1, and

(
1

2
− (δ + 2ǫ)

)

n− |S|+ 1 ≤|B| ≤

(
1

2
+ (δ + 2ǫ)

)

n− 1.

From Lemma 1.1.2, we have |V0| ≤ ǫn and |Vi| = L ≥
(

(1−ǫ)
r

)

n for all 1 ≤ i ≤ r.

Note, however, that a cluster in G′′ could have vertices in A, B, and S.

Claim 3.3.5. For all i satisfying 1 ≤ i ≤ r, we have either

|Vi ∩A| < ǫL, or

|Vi ∩B| < ǫL.
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Proof. Let V A
1 = V1 ∩A and V B

1 = V1 ∩B. Suppose without loss of generality that

|V A
1 | ≥ ǫL and |V B

1 | ≥ ǫL. From the minimum degree condition on G′′, there must

be some cluster V2 such that (V1, V2) forms an ǫ-regular pair with d(V1, V2) > δ. Since

|S| <
(

ǫ(1−ǫ)
r

)

n < (1− ǫ)ǫL, we must have more than ǫL vertices of V2 in either A

or B. Without loss of generality, we will assume these vertices are in A. Call this set

of vertices V A
2 . The pair (V B

1 , V A
2 ) has no edges, contradicting the (ǫ, δ)-regularity

of (V1, V2) (see Figure 3.5). Hence, either |V1 ∩A| < ǫL or |V1 ∩B| < ǫL.

A B

SV A
1

V A
2 V B

1

Figure 3.5: There are no edges between V A
2 and V B

1 .

The statement of Claim 3.3.5 is equivalent to saying that for all i satisfying

1 ≤ i ≤ r, we have either

|Vi ∩ A| > (1− ǫ)L (3.2)

or

|Vi ∩B| > (1− ǫ)L. (3.3)

Since R is connected and r ≥ 2, there must be a cluster Vi satisfying (3.2) and

a cluster Vj satisfying (3.3) such that (Vi, Vj) is an ǫ-regular pair. However, the

pair (V A
1 , V B

2 ) has no edges, contradicting the (ǫ, δ)-regularity of (V1, V2). This

contradicts the bound on |S|, meaning that G′′ is
(

ǫ(1−ǫ)
r

)

n-connected.

Now consider G′ = G′′ ∪ V0. Every vertex in V0 has at least n
2
− ǫn edges into

G′′. Since the addition of a k, J-star to a k-connected graph J yields a k-connected

graph, we can add each vertex of V0 to G′′ preserving the connectivity. It follows

that G′, and therefore G as well, is
(

ǫ(1−ǫ)
r

)

n-connected.
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3.3.3 Proxy Vertices

Let G = A ∪ C ∪ B be a graph with a minimum cutset C, and components A and

B. Assume |C| ≤ 1
2
|A|, 1

2
|B|. For each c ∈ C, let Ac denote a set of neighbors of c

in A. Define Bc similarly. Call Ac ∪ Bc the set of proxy vertices of c. Let

Ap =
⋃

c∈C

Ac

be the set of all proxy vertices in A, and define Bp symmetrically.

The next fact establishes the existence of proxy vertices to represent the vertices

in a minimum cutset.

Fact 3.3.6. Given a positive integer k and an injective map f : V (H) →֒ V (G), if

G = A∪C ∪B is a graph of sufficiently large order n = n(k, f) with δ(G) ≥ n
2
and

connectivity at most n
6
, then for each c ∈ C, there exist sets Ac ⊂ A and Bc ⊂ B

satisfying

1. (Ac1 ∪ Bc1) ∩ (Ac2 ∪ Bc2) = ∅,

2. (Ac ∪Bc) ∩ f(V (H)) = ∅,

3. |(Ac ∪ Bc)| ≥ k,

4. |Ac|, |Bc| ≥ 1,

5. |Ap|, |Bp| <
n
100

.

We let k = e(H) when citing Fact 3.3.6, and we let the map f be a vertex map

of an H-subdivision in G.

The following lemma provides many short paths between every pair of vertices

in G.

Lemma 3.3.7. Given λ > 0, every graph G with κ(G) ≥ λn and δ(G) ≥ n
2
has at

least min
{

n
24

− 2, λn− 2
}
internally disjoint paths, each of length at most 6, between

every pair of vertices.
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Proof. If κ(G) ≥ n
3
, then the average path length in G is at most 4. By Menger’s

Theorem, we know G contains at least n
3
internally disjoint paths between every

pair of vertices in G. This means that at least n
9
of these paths have length at most

6.

Now suppose κ(G) ≤ n
3
, and let S be a minimum cutset of G. By the minimum

degree condition on G, there exist at most 4 components of G \ S, each having

at least n
6
vertices. Let A and B be two components of G \ S. Without loss of

generality, for every y, z ∈ G, we have

1. |N(y) ∩ A|, |N(z) ∩ A| ≥ n
24
, and/or

2. |N(y) ∩ A|, |N(z) ∩ B| ≥ n
24
.

Case 1. |N(y) ∩ A|, |N(z) ∩ A| ≥ n
24
.

By assumption, we have |N(y)|, |N(z)| ≥ n
2
. Since |A ∪ S| ≤ 5n

6
, we have

|N(y) ∩ N(z)| ≥ n
6
. There are at least n

24
internally disjoint y, z-paths passing

through N(y) ∩N(z).

Case 2. |N(y) ∩ A| ≥ n
24

and |N(z) ∩ B| ≥ n
24

First suppose |A| ≥ |S| and |B| ≥ |S|, and then define Ap and Bp as in Fact 3.3.6.

For each proxy vertex a ∈ Ap, we have

|N(a) ∩N(y)| ≥
n

6
.

A similar argument shows |N(b) ∩ N(z)| ≥ n
6

for each b ∈ Bp as well. For

σ ∈ S, consider proxy vertices aσ ∈ Ap and bσ ∈ Bp. Letting aσy and bσz de-

note vertices in N(aσ) ∩ N(y) and N(bσ) ∩ N(z), respectively, we have the path

{y, aσy, aσ, σ, bσ, bσz , z}. It follows that G contains at least min
{

n
24
, λn− 2

}
inter-

nally disjoint y, z-paths of length 6 passing through N(y) ∩N(Ap), Ap, S, Bp, and

N(z) ∩N(Bp).

Now suppose without loss of generality |B| < |S|. First assume |A| ≥ |S|.

Letting Ap be the set of proxy vertices in A, we have

n

6
≤ |B| < |S| = |Ap| ≤

n

3
< |A| <

n

2
.
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We also know
|N(y) ∩N(a)| ≥

n

6
for each a ∈ Ap,

|N(z) ∩ S| ≥
n

2
− |B| ≥

n

6
.

Then G contains at least n
24

internally disjoint y, z-paths of length 4 passing through

N(y) ∩N(Ap), Ap, and N(z) ∩ S. Now assume n
6
≤ |A| < |S|. We know

|N(y) ∩ S| ≥
n

2
− |A| >

n

6
,

|N(z) ∩ S| ≥
n

2
− |B| >

n

6
.

Then we have at least λn−2 internally disjoint y, z-paths of length 2 passing though

S.

The next lemma is similar to the well-known Fan Lemma, providing many short

paths between a vertex and a set.

Lemma 3.3.8. Let G be a graph with at least ξn internally disjoint paths of length

at most 6 between each pair of vertices. Let v ∈ V (G), and let W be a set of

γn =
⌊
ξn+5
6

⌋
vertices in G \ {v}. There are γn paths, each of length at most 6, from

v to W that are disjoint except for v.

Proof. Let v be a vertex in G, and let W = {w1, . . . , wγn} be a set of γn ver-

tices in G \ {v}. By assumption, we know there exist at least ξn paths, each

of length at most 6, from v to each vertex in W . For each wi ∈ W , let Pi =

{P | P is a v, wi-path of length at most 6}. We use an inductive construction to

build the desired set of paths {P1, P2, . . . , Pγ(n)}. For P1, choose any v, w1-path in

P1.

Now suppose we have selected t < γn paths from v to {w1, . . . , wt}. From

Lemma 3.3.7, we know |Pt+1| ≥ ξn. There are a total of at most 6t vertices (not

counting v) used in the paths P1, . . . , Pt. Each such vertex could be in at most one

path in Pt+1. Hence, there are at least ξn − 6t paths in Pt+1, each of length at

49



most 6, that do not intersect {P1, P2, . . . , Pt}. Since we have

ξn− 6t ≥ ξn− 6

(⌊
ξn+ 5

6

⌋

− 1

)

≥ ξn− (ξn+ 5− 6)

= 1,

there is at least one path in Pt+1 that is internally disjoint from P1 ∪ P2 ∪ · · · ∪ Pt.

Setting Pt+1 to be this path completes the induction step of the construction. Thus,

there are at least γn internally disjoint paths, each of length at most 6, from v to

W .

3.3.4 Structure of G when R is Disconnected

When using the following results in the proofs of Theorems 3.2.1 and 3.2.2, we will

let b = b(H)− 2 or b = max{b(H)− 2, e(H) + h0}, depending on the situation.

When R is disconnected, the next lemma provides a bipartition of G into almost

equal vertex sets with few edges in between.

Lemma 3.3.9. Let b be a positive integer, let ǫ, δ > 0, and let G be a graph G order

n ≥ n(ǫ, δ, b) with δ(G) ≥ n+b
2

and disconnected reduced graph R = R(G, ǫ, δ) This

implies there is a bipartition G = A ∪B satisfying

n+ b

2
− (δ + 1.5ǫ)n ≤ |A|, |B| ≤

n+ b

2
+ (δ + 1.5ǫ)n, (3.4)

and

e(A,B) < (d+ 3ǫ)n2. (3.5)

Proof. Let b, ǫ, δ, G and n be as given in the statement. Apply Lemma 1.1.2 to

obtain the spanning subgraph G′ = G′′ ∪ V0. From Lemma 1.1.2, we have dG′(v) >
n
2
+ b− (δ + ǫ)n for all n vertices v ∈ G. Since |V0| ≤ ǫn, it follows that

δ(G′′) >
n+ b

2
− (δ + 2ǫ)n. (3.6)
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Since R is disconnected, we see that G′′ must be disconnected as well. From (3.6),

we see G′′ has two components; call them C1 and C2. It follows that

n + b

2
− (δ + 2ǫ)n+ 1 < |Ci| <

n+ b

2
+ (δ + 2ǫ)n− 1

for i = 1, 2. Since G′′ can have as many as n vertices, each having at most (δ+2ǫ)n

edges in G \G′′, there must be fewer than (δ+2ǫ)n2 edges in G between C1 and C2.

From Lemma 1.1.2, we again note |V0| ≤ ǫn, which implies there are at most ǫn2

edges in G incident to vertices of V0. There at most (δ + 3ǫ)n2 edges between the

components C1, C2, and V0. Now divide V0 into two even sets, CA and CB. Create

a bipartition of G by adjoining CA with C1 and CB with C2. Let

A = C1 ∪ CA

B = C2 ∪ CB.

Note |CA|, |CB| ≤
ǫ
2
n. It follows that A and B have fewer than (δ + 3ǫ)n2 edges

between them, and that

n + b

2
− (δ + 1.5ǫ)n ≤ |A| ≤

n

2
+ (δ + 1.5ǫ)n,

with the same bounds on |B|.

Although (δ+3ǫ)n2 may seem large, it is small compared to the minimum of n2

4

edges in G. Also note that we may assume vertices in A have at least n
4
neighbors

in A—otherwise, such a vertex should be put in B. A similar statement is true for

vertices in B. This ensures that we have the smallest number of paths between A

and B possible.

The next fact establishes an upper bound for the set of vertices in each of A and

B that have many edges to the opposite set.

Lemma 3.3.10. Let b be a positive integer, and let ǫ, δ > 0. Consider a graph G

of sufficiently large order n ≥ n(ǫ, δ, b) with δ(G) ≥ n+b
2

and disconnected reduced

graph R(G, ǫ, δ). Bipartition G into A∪B such that A and B satisfy (3.4) and (3.5).

Let DA be the set of all vertices in A, each with more than n
100b2

edges into B, and

define DB similarly. If D = DA ∪DB, then |D| < 200b2(δ + 2ǫ)n.
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Proof. Let b, ǫ, δ, G, n and D be as given in the statement. Consider a graph G of

sufficiently large order n ≥ n(ǫ, δ, b) with δ(G) ≥ n+b
2

and disconnected reduced

graph R(G, ǫ, δ). Letting ξn be the number of vertices in DA, there are at least

ξn · n
100b2

edges between DA and B. However, from Lemma 3.3.9 we know

ξ

100b2
n2 < (δ + 3ǫ)n2.

Solving for ξ we get ξ < 100b2(δ + 3ǫ). Using the same logic for DB, we have

|D| < 200b2(δ + 3ǫ)n.

3.3.5 Panconnected Induced Graphs in G

The following lemma, a generalization of Claim 5 in [16], shows that almost any

reasonably-sized subset of A or B is panconnected.

Lemma 3.3.11. Let b be a positive integer, and let ǫ, δ > 0. Consider a graph G of

order n ≥ n(ǫ, δ, b) with δ(G) ≥ n+b
2

and disconnected reduced graph R. Bipartition

G into A ∪ B such that A and B satisfy (3.4) and (3.5). Define D = DA ∪DB as

in Lemma 3.3.10. For each set A′ ⊆ A \DA and B′ ⊆ B \DB with |A′|, |B′| ≥ n
10b2

,

the graphs G[A′] and G[B′] are panconnected.

Proof. This is immediate for b ≤ 2. Consider b > 2. By Lemma 3.3.10 we know

δ(A \DA) ≥
n+b
2

− (δ+1.5ǫ)n− n
100b2

− 18b2(δ+2ǫ)n ≥
(
1
2
− 1

50b2

)
n. By symmetry,

we know δ(B \DB) ≥
(
1
2
− 1

50b2

)
n as well. It follows that we have

δ(A \DA) ≥

(
1

2
−

1

50b2

)

n

=
n

2
−

n

50b2

=
|A|+ |B|

2
−

n

50b2

≥
2|A| − n

25b2

2
−

n

50b2

= |A| −
n

25b2

≥ |A \DA| −
n

25b2
.
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Thus, given A′ ⊆ A \DA with |A′| ≥ n
10b2

,

δ(A′) ≥ |A′| −
n

25b2

≥
|A′|+ 2

2
+

n

25b2
−

n

25b2

≥
|A′|+ 2

2
.

By Theorem 2.15, A′ and likewise B′ are panconnected.

We can also use the connectivity of such a graph G when κ(G) is small. Consider

a minimum cutset S ⊂ G and the resulting components A and B that make up G\S.

The following lemma is analogous to Lemma 3.3.11 but deals with the partition

G = A ∪ S ∪B.

Lemma 3.3.12. Let b be a positive integer, and let ǫ, δ > 0. Consider a graph G of

order n ≥ n(ǫ, δ, b) with δ(G) ≥ n+b
2
. Suppose in addition that κ(G) ≤ n

6
. Consider

a minimum cutset S ⊂ G and the resulting two components A and B that make up

G \S. For each set A′ ⊆ A (or B′ ⊆ B) with |A′| ≥ 3|A|
4

(or |B′| ≥ 3|B|
4
), the graphs

G[A′] and G[B′] are panconnected.

Proof. Letting b, ǫ, δ, G, n, S, A, and B be as given in the statement, we have n
3
≤

|A| ≤ n
2
and δ(G[A]) ≥ 2|A|

3
. It follows that for every set A′ of order at least 3|A|

4
, we

have
δ(A′) ≥ |A′| −

n

12

≥
|A′|+ 2

2
.

Similar logic is true for all B′ ⊂ B of order at least 3|B|
4
. By Theorem 2.15, A′ and

likewise B′ are panconnected.

Note that this lemma does not require that R(G, ǫ, δ) be connected. We use

Lemma 3.3.12 to prove Lemma 3.4.2, where we assume a disconnected reduced

graph for G.
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3.3.6 Independent Edges when R is Bipartite

The next lemma provides either a large matching or several large stars.

Lemma 3.3.13. If G is a graph of sufficiently large order n with δ(G) ≥ k, then

either

1. there exist 2k independent edges in G, or

2. there exist k vertices of degree at least n
5k
.

Proof. Consider a graph G of sufficiently large order n with δ(G) ≥ k. If there exist

2k independent edges in G, then we are done, so suppose not. Consider the largest

collection of c < 2k independent edges, i.e., the largest perfect matching inG. Caling

this set of edges Mc, we have G = Mc ∪A, where A must induce an independent set

of n− 2c vertices. Since δ(G) ≥ k, each vertex in A must be adjacent to k vertices

in Mc. This means there are at least k(n−2c) edges from A to Mc. Therefore, there

are at least k vertices in Mc with degree at least kn−2ck
2c

=
(
k
c

)
n
2
− k > n

5k
.

When G is close to being bipartite, it may be difficult to construct paths having

length with the correct parity. For example, two vertices x and y in the same partite

set of a bipartite graph can only have paths of even length between them, so all x, y-

path lengths have even parity. All path lengths between a fixed pair of vertices in a

bipartite graph must have the same parity. Since our main results involve specific

path lengths between arbitrary pairs within any sufficiently large and dense graph

(including potentially bipartite graphs), we sometimes will only be able to get within

1 of the desired length of a path.

Recall the definition of bipanconnected graphs and Lemma 1.2.2 from Chapter 2,

as they will be used in the proof of Lemmas 3.4.3 and 3.4.4.

3.4 Proof Outline of Theorems 3.2.1 and 3.2.2

We prove Theorems 3.2.1 and 3.2.2 by applying Lemma 1.1.2 to G and then deter-

mining the structure of the reduced graph R. From there, we prove Lemmas 3.4.1–

3.4.4, which combine to immediately imply Theorems 3.2.1 and 3.2.2.
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The first lemma provides criteria for (H,w)-linkage in a sufficiently large graph

with δ(G) ≥ n
2
and a connected, non-bipartite reduced graph, provided all integers

in w are at least 14.

Lemma 3.4.1. Let H be a multigraph, and let w = {we | e ∈ E(H), we ≥ 14} be

a sequence of integers. Let G be a graph of order n ≥ n(H,w) with δ(G) ≥ n
2
and

reduced graph R. If R is connected and not bipartite, then G is (H,w)-linked.

Our next lemma provides criteria for (H,w)-linkage in a sufficiently large graph

G with δ(G) ≥ n+b(H)−2
2

whose reduced graph R is disconnected. Although we need

a higher minimum degree here, we only need each prescribed path length to be at

least 8.

Lemma 3.4.2. Let H be a multigraph, and let w = {we | e ∈ E(H), we ≥ 8} be a

sequence of integers. Consider a graph G of order n ≥ n(H,w) with δ(G) ≥ n+b(H)−2
2

and reduced graph R. If R is disconnected, then G is (H,w)-linked.

Our next lemma provides criteria for (H,w, 1)-linkage in a sufficiently large graph

with δ(G) ≥ n
2
and a bipartite reduced graph, provided all integers in w are at least

3.

Lemma 3.4.3. Let H be a multigraph, and let w = {we | e ∈ E(H), we ≥ 3} be a

sequence of integers. Consider a graph G of order n ≥ n(H,w) with δ(G) ≥ n
2
and

reduced graph R. If R is bipartite, then G is (H,w, 1)-linked.

Our final lemma provides criteria for (H,w)-linkage in a sufficiently large graph

G with δ(G) ≥ n
2
and a bipartite reduced graph, provided all integers in w are at

least 3.

Lemma 3.4.4. Let H be a multigraph with h0 isolated vertices, and let w = {we | e ∈

E(H), we ≥ 3} be a sequence of integers. Consider a graph G of order n ≥ n(H,w)

with δ(G) ≥ n+e(H)+h0

2
and reduced graph R. If R is bipartite, then G is (H,w)-

linked.

Lemmas 3.4.1–3.4.4 combine to prove Theorems 3.2.2 and 3.2.1.
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Proof of Theorem 3.2.1. Use Lemmas 3.4.1, 3.4.2, and 3.4.3.

Proof of Theorem 3.2.2. Use Lemmas 3.4.1, 3.4.2, and 3.4.4.

It remains to be shown that a sufficiently large graph G is H-linked for H-

subdivisions with prescribed distances each a fraction of |G|. Such a result could

lead to a criterion for G to be H-linked for spanning H-subdivisions. We may

use a proof technique similar to the ones above; in particular, we still would use

the Regularity Lemma on G to determine its reduced graph. However, the Blow-

Up Lemma only gives information about the existence of a small subgraph within

blown-up clusters and would probably not be useful. Most likely, panconnectivity

and bipanconnectivity would be the primary tools.

3.5 Proof of Theorems 3.2.1 and 3.2.2

In Lemmas 3.4.1-3.4.4, for a graph G, we assume appropriate choices of ǫ, δ > 0 to

determine the reduced graph R = R(G, ǫ, δ).

3.5.1 R is Connected and not Bipartite

Proof of Lemma 3.4.1. For a multigraph H , let w = {we | e ∈ E(H), we ≥ 14} be

a sequence of integers. Consider a sufficiently small δ0 ∈ (0, 1). Choose parameters

δ = δ0
2
and ∆ ≫

∑

e∈E(H)we as in Lemma 1.1.7. If T1, T2, and T3 are independent

sets, then let B(T1, T2, T3) denote the complete tripartite graph on (T1, T2, T3). By

Lemma 1.1.7, there exists a value ǫ0 = ǫ0 (δ,∆, 3) such that the following is true:

if (T1, T2, T3) is an (ǫ0, δ)-super-regular triple on sufficiently many vertices, then

(T1, T2, T3) contains all subgraphs of maximum degree at most ∆ that are contained

in B(T1, T2, T3). Since this result is true for all ǫ ≤ ǫ0, it suffices to choose ǫ ≤ ǫ0

that also satisfies ǫ ≪ δ0.

Apply Lemma 1.1.2 with parameters ǫ and δ0 on the graph G of order n ≥

n(H,w, ǫ, δ0) with δ(G) ≥ n
2
to obtain the reduced graph R = R(G, ǫ, δ), which
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from Lemma 3.3.1 satisfies

δ(R) ≥

(
1

2
− (δ + 2ǫ)

)

r.

Suppose R is connected and not bipartite. From Lemma 3.3.2, we see that R must

have a triangle, which implies the existence of a corresponding (ǫ, δ)-regular triple of

clusters (V1, V2, V3) ⊂ G. By Lemma 1.1.6, there exists an (ǫ, δ − 2ǫ)-super-regular

triple (T1, T2, T3) ⊂ (V1, V2, V3). However, this implies that (T1, T2, T3) is also an

(ǫ, δ)-super-regular triple since δ < δ0 − 2ǫ.

By Lemma 1.1.7, there exists a complete tripartite graph B(X1, X2, X3) ⊂

(T1, T2, T3) with |X1| = |X2| = |X3| = ∆. Let γ(n) be a sufficiently small frac-

tion of n. Consider a map f : V (H) →֒ V (G).

For each edge e = (uv, s) ∈ E(H), do the following. Consider a set Xe ⊃

(X1, X2, X3) of γn vertices. From Lemma 3.3.7, there exist both f(u), Xe- and

f(v), Xe-fans, each consisting of γn internally disjoint paths of length at most 6.

Choose a vertex in X1 whose path in the f(u), Xe-fan has length b; denote this

vertex by xe,b+1. Similarly, choose a vertex in X3 whose path in the f(v), Xe-fan has

length c; denote this vertex by xe,we−c+1. It follows that we − b− c ≥ 2.

Case 1. we − b− c ≡ 0 mod 3 and is odd.

Designate the vertex sets

•
{
xe,b+2m | m = 1, . . . , 1

2
(we − b− c− 1)

}
⊂ X2 and

•
{
xe,b+2m+1 | m = 1, . . . , 1

2
(we − b− c− 1)

}
⊂ X1.

Case 2. we − b− c ≡ 0 mod 3 and is even.

Designate vertices xe,b+2 ∈ X3, xe,b+3 ∈ X2, and xe,b+4 ∈ X1, along with the

vertex sets

•
{
xe,b+2m | m = 2, . . . , 1

2
(we − b− c− 1)

}
⊂ X2 and

•
{
xe,b+2m+1 | m = 2, . . . , 1

2
(we − b− c− 1)

}
⊂ X1.

Case 3. we − b− c ≡ 1 mod 3.
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Designate vertex sets

•
{
xe,b+2+3m | m = 0, . . . , 1

3
(we − b− c− 4)

}
⊂ X2,

•
{
xe,b+3+3m | m = 0, . . . , 1

3
(we − b− c− 4)

}
⊂ X3, and

•
{
xe,b+4+3m | m = 0, . . . , 1

3
(we − b− c− 4

}
⊂ X1.

Case 4. we − b− c ≡ 2 mod 3.

Designate the vertex sets

•
{
xe,b+2+3m | m = 0, . . . , 1

3
(we − b− c− 2)

}
⊂ X3,

•
{
xe,b+3+3m | m = 0, . . . , 1

3
(we − b− c− 5)

}
⊂ X2, and

•
{
xe,b+4+3m | m = 0, . . . , 1

3
(we − b− c− 5)

}
⊂ X1.

In each case, the path

{f(u), . . . , xe,b+1, xe,b+2, xe,b+3, . . . , xe,we−c−1, xe,we−c, xe,we−c+1, . . . , f(v)}

has length we. See Figure 3.6 for an example of a length 5 edge-path construction in

G. Also note that B(X1, X2, X3) is large enough that we can choose each (wi, wj)-

edge-path to be internally disjoint from all other such edge-paths. Hence, G is

(H,w)-linked.

X1

X3

X2

Blown-up T

R \ T

y

z

xe,b+1

xe,we−c

Figure 3.6: Construction of an f(u), f(v)-path.
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There is little indication that the minimum degree assumption in the previous

lemma is sharp.

3.5.2 R is Disconnected

Proof of Lemma 3.4.2. Let H be a multigraph, and let {we | e ∈ E(H), we ≥ 8}

be a sequence of integers. Consider a vertex map f : V (H) →֒ V (G). Consider a

(simple) graph G of sufficiently large order n with δ(G) ≥ n+b(H)−2
2

.

Apply Lemma 1.1.2 on G to obtain the reduced graph R of G. Since δ(G) ≥
n+b(H)−2

2
, from Lemma 3.3.1 we have

δ(R) ≥

(
1

2
− (δ + 2ǫ)

)

r +
b(H)− 2

2
.

We divide the remainder of the proof into two cases based on the connectivity

of G. For each edge e = (uv, s) ∈ E(H), let y = f(u) and z = f(v).

Case 1. κ(G) ≤ n
6
.

Let S be a minimum cutset of G, and let A and B be the components of G \ S.

Recall the definition of the proxy vertex sets Ap and Bp from Fact 3.3.6. Given

vertex sets U, V ⊂ V (G), define a vertex set X in G to be (U, V )-large if

• X ⊂ A or X ⊂ B,

• |X| ≥ n
10b(H)2

,

• X ∩ f(V (H)) = U , and

• X ∩ (Ap \ U) = V or X ∩ (Bp \ U) = V .

By Lemma 3.3.12, the first two items guarantee that (U, V )-large sets are pancon-

nected. The purpose of (U, V )-large sets is to construct paths of length 2 either

between two proxy vertices or between a proxy vertex and y (or z). To construct

all desired edge-paths in G, we create at most 2e(H) total (U, V )-large paths in G

in the various cases below, using at most a total of n
5
vertices in G. Thus, G always

contains enough vertices to create all desired (U, V )-large paths. We say a vertex
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x is unused if, during the construction of the desired (H,w)-linkage, x is not in an

edge-path.

Subcase 1.1. y, z ∈ A (or y, z ∈ B).

Suppose without loss of generality that y, z ∈ A. Define a ({y, z}, ∅)-large set

Ae ⊂ A. It follows that Ae contains a y, z-path of length we ≥ 2. Similar logic works

for y, z ∈ B.

Subcase 1.2. y ∈ A (or y ∈ B) and z ∈ S.

Suppose without loss of generality that y ∈ A and z ∈ S. First suppose that z

has an unused proxy vertex in Ap. For some proxy vertex az of z, define a ({y}, {az})-

large set Ae ⊂ A. Since there exists a y, az-path of length we−1 in Ae, there exists a

y, z-path of length we in G. Now suppose z does not have an unused proxy vertex in

Ap; it follows that z has an unused proxy vertex b1 ∈ Bp. Since |S| ≥ b(H)−2, there

exists an unused vertex σ2 ∈ S with unused proxy vertices b2 ∈ Bp and a2 ∈ Ap. If

such an unused vertex did not exist, then G would not be H-linked, which would

contradict Theorem 2 in [17]. Define a (∅, {b1, b2})-large vertex set Be ⊂ B. There

exists a b1, b2-path of length 2 in Be. Create a ({y}, {a2})-large set Ae ⊂ A. There

exists an a2, y-path of length we − 5 in Ae. It follows that G contains a y, z-path of

length we ≥ 7.

Similar logic works for y ∈ B.

Subcase 1.3. Without loss of generality, y ∈ A and z ∈ B.

Consider a vertex σ ∈ S with proxy vertices a ∈ Ap and b ∈ Bp. Create a

({y}, {a2})-large set Ae ⊂ A and a ({z}, {b2})-large set Be ⊂ B. There exists a

y, a-path of length 2 within Ae and a z, b-path of length we−4 within Be. It follows

that G contains a y, z-path of length we ≥ 6.

Subcase 1.4. y, z ∈ S

This final case uses reasoning similar to that of Subcase 1.2. Recall that both

y and z have sufficiently many proxy vertices to construct all necessary edge-paths,

but also that y and z may not have multiple proxy vertices in both Ap and Bp.
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Without loss of generality suppose that y has an unused proxy vertex ay ∈ Ap. In

addition, suppose first that z has an unused proxy vertex az ∈ Ap as well. Create a

(∅, {ay, az})-large set Ae ⊂ A. The set Ae contains an ay, az-path of length we−2. It

follows that G contains a y, z-path of length we. Now suppose that z does not have

any unused proxy vertices in Ap. The vertex z must have at least 1 unused proxy

vertex bz ∈ Bp. Since |S| ≥ b(H) − 2, there exists an unused vertex σ ∈ S with

unused proxy vertices a ∈ Ap and b ∈ Bp. If such an unused vertex did not exist,

then G would not be H-linked, which would contradict Theorem 2 in [17]. Create

a (∅, {ay, a})-large set Ae ⊂ A and a (∅, {bz, b})-large set Be ⊂ B. There exists an

ay, a-path of length 2 in Ae and a bz , b-path of length we − 6 in Be. It follows that

G contains a y, z-path of length we ≥ 8.

Note that in each subcase, we use at most one vertex in S (excluding y and z)

when constructing the desired edge-path. From the sufficiently large order of G and

the fact that |f(V (H))| ≤ |Ap|, |Bp|, we can construct all necessary sets and paths

to be disjoint where necessary. Hence, G is (H,w)-linked.

Case 2. κ(G) ≥ n
6
.

Consider two vertices y, z ∈ f(V (H)). By Lemma 3.3.9, we can bipartition G

into sets A and B so that A and B satisfy (3.4) and (3.5) in Lemma 3.3.9. (Note

that G = A ∪B in this case, which is not to be confused with G = A ∪ S ∪B from

Case 1.) Define

DA =

{

x ∈ A

∣
∣
∣
∣
|N(x) ∩ B| >

n

100b(H)2

}

,

and symmetrically define DB. By Lemma 3.3.10, each vertex in DA has at least n
5

edges into A\DA. We consider several different scenarios depending on the locations

of y and z. In each case, we construct a y, z-path in G that is internally disjoint

from all other such paths. If y, z ∈ A, then since δ(G[A]) ≥ n
5
, we can define sets

Ae ⊂ A such that

• |Ae| ≥
n

10b(H)2
,

• Ae ∩ f(V (H)) = {y, z}, and
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• Ae ∩DA ⊆ {y, z}.

Note that these sets can be chosen so that Ae is disjoint from all other such sets,

except possibly for y and z. By Lemma 3.3.11, we see Ae is panconnected. Hence,

we can construct a y, z-path of length we through Ae. An analogous argument works

for the case when y, z ∈ B.

Next, suppose y ∈ DA and z ∈ B. By the definition of DA and the fact that

δ(G[A]) ≥ n
5
, there exists a set Be ⊂ B ∪ {y} such that

• |Be| ≥
n

10b(H)2
,

• Be ∩ f(V (H)) = {y, z}, and

• (Be \ {z}) ∩N(y) 6= ∅.

Note that these sets can be chosen so that Be is disjoint from all other such sets,

except possibly for y and z. Again using Lemma 3.3.10 and Lemma 3.3.11, we see

Be is panconnected. Hence, we can construct a y, z-path of length we through Be.

A symmetric argument works for the case when y ∈ DB and z ∈ A. Note that in all

of these cases, the orders of Ae and Be are chosen to be small enough to be disjoint

from all other such sets where necessary. It follows that the constructed y, z-paths

are all internally disjoint.

The only remaining case is that in which y ∈ A \ DA and z ∈ B \ DB. While

this is by far the most difficult situation, we do use a similar technique as in the

previous cases.

Since δ(G) ≥ n+b(H)−2
2

, there exists a set M of exactly b(H) disjoint paths from

A \ DA to B \ DB, each having length at most 2. Call these paths transportation

paths. By Menger’s Theorem, there are at least n
6
≫ e(H) transportation paths

in G. Hence, it suffices to show that we use only one transportation path for each

y, z-path with y ∈ A \DA and z ∈ B \DB.

For each edge e ∈ E(H), create the y, z-path in G as follows. Choose a vertex

set Ae ∈ A \DA such that

• Ae ∩ f(V (H)) = {y} and
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• Ae ∩M = {ae} for a distinct ae ∈ Pe.

Choose Be ∈ B \DB symmetrically. By Lemma 3.3.10 and Fact 3.3.6, we know

|DA ∪ (f(V (H) \ y))| < 2(e(H))2(δ + 2ǫ)n+ e(H)

< 3(e(H))2(δ + 2ǫ)n.

Similarly, |DB∪Bp∪(f(V (H)\z))| < 3(e(H))2(δ+2ǫ)n. It follows that ae and Be can

be chosen to be disjoint from all other such sets where necessary. By Lemma 3.3.11,

we know Ae and Be are panconnected. Let Pe be a path in M corresponding to the

edge e ∈ E(H). Suppose Pe has length c (i.e., c = 1 or c = 2). Create a wi, ae-path

PA,e of length
⌊
we−c

2

⌋
in Ae and a be, wj-path PB,e of length

⌈
we−c

2

⌉
in Be. It follows

that PA,e ∪Pe ∪PB,e is a y, z-path of length we in G. Hence, G is (H,w)-linked.

3.5.3 Bipartite R Implies G is (H,w, 1)-Linked

Proof of Lemma 3.4.3. Let H be a multigraph, and let {we | e ∈ E(H), we ≥ 3}

be a sequence of integers. Consider a sufficiently large graph G of order n with

δ(G) ≥ n
2
whose reduced graph R is bipartite. Let AR and BR be the independent

sets composing R, and let A and B be the sets of clusters in G corresponding to AR

and BR, respectively. For all e = (uv, s) ∈ E(H), let y = f(u) and z = f(v). By

Lemma 3.3.1 we have
(
1

2
− (δ + 2ǫ)

)

n + 1 ≤ |A| ≤

(
1

2
+ (δ + 2ǫ)

)

n− 1,

and similarly for |B|. For each edge e, define sets Te ⊂ G satisfying

• |Te| = 5(δ + 2ǫ)n,

• Te induces a balanced bipartite graph in G (i.e., Te has equally many vertices

in A and in B), and

• Te ∩ f(V (H)) = {y, z}.

Note that these sets can be chosen so that Te is disjoint from all other such sets,

except possibly for y and z. By Lemma 1.2.2, Te is bipanconnected. First suppose
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y, z ∈ A or y, z ∈ B. If we is even, then create a y, z-path in Te of length we. If

we is odd, then create a y, z-path in Te of length we − 1. Now suppose y ∈ A and

z ∈ B or vice versa. If we is odd, then create a y, z-path in Te of length we. If we is

even, then create a y, z-path in Te of length we − 1.

It follows that G is (H,w, 1)-linked.

We believe that the degree assumption used in the previous lemma is likely far

from sharp under the assumption that the reduced graph is bipartite.

3.5.4 Bipartite R Implies G is (H,w)-Linked

Proof of Lemma 3.4.4. Let H be a multigraph. We can assume H has no isolated

vertices since the images of these vertices can be removed from G, preserving the in-

tegrity of the minimum degree condition and the result. Let {we | e ∈ E(H), we ≥ 3}

be a sequence of integers. Consider a sufficiently large graph G of order n with

δ(G) ≥ n+e(H)
2

whose reduced graph R is bipartite. Let AR and BR be the indepen-

dent sets composing R, and let A and B be the sets of clusters in G corresponding

to AR and BR, respectively. By Lemma 3.3.1 we have

(
1

2
− (δ + 2ǫ)

)

n + 1 ≤ |A| ≤

(
1

2
+ (δ + 2ǫ)

)

n− 1,

and similarly for |B|. By Lemma 3.3.13, A and B have either 2e(H) independent

edges or e(H) stars, each of size at least n
5e(H)

. For each edge e = (uv, s) ∈ E(H),

let y = f(u) and z = f(v).

First suppose G[A] ∪G[B] contains a set of 2e(H) independent edges. Call this

set of independent edges I. For each edge e ∈ E(H), consider a unique independent

edge ie = jk ∈ I. Also define sets Te ⊂ G satisfying

• |Te| = 5(δ + 2ǫ)n,

• Te induces a balanced bipartite graph in G (i.e., Te has equally many vertices

in A and in B),

• Te ∩ f(V (H)) = {y, z}, and
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• E(Te) ∩ I = {ie}.

Note that these sets can be chosen so that Te is disjoint from all other such sets,

except possibly for y and z. By Lemma 1.2.2, Te is bipanconnected.

Suppose y, z ∈ A or y, z ∈ B. If we is even, then there must exist a y, z-path in

Te of length we. If instead we is odd, then we must use the edge ie. If ie and y are

both in A or both in B, then consider a y, j-path of length 2 (or length 0 if y = j)

and an k, z-path of length we − 3 (or we if y = j), both within Te. If instead ie ∈ A

and y ∈ B or vice versa, then there exists a y, j-path of length 3 and an k, z-path of

length we − 4, both within Te. In either case, we have a y, z-path in G of length we.

A similar argument works for when y ∈ A and z ∈ B. Regardless of the situation,

since we have chosen sets Te to be disjoint from one another (except possibly for y

and z), the y, z-path is disjoint from all other edge-paths in G. It follows that G is

(H,w)-linked.

Next, suppose G[A] ∪G[B] have e(H) stars of size at least n
5e(H)

. Let Y denote

the set of these stars. For each edge e ∈ E(H), assign a star Se to y and z and

choose an edge ie = jk ∈ Se. Create the set Te ⊂ G satisfying

• |Te| = 5(δ + 2ǫ)n,

• Te induces a balanced bipartite graph in G (i.e., Te has equally many vertices

in A and in B),

• Te ∩ f(V (H)) = {y, z}, and

• E(Te) ∩ Se = {ie} for some edge ie ∈ Se.

Note that these sets can be chosen so that Te is disjoint from all other such sets,

except possibly for y and z. By Lemma 1.2.2, Te is bipanconnected.

Let y, z ∈ A or y, z ∈ B. If de is even, then there must exist a y, z-path in Te of

length we. If instead we is odd, then we must use the edge ie. First suppose y and

ie are both in A (or B). Since Te is bipanconnected, we can consider a y, j-path of

length 2 (or length 0 if y is the center of Se) and a k, z-path of length we − 3 (or

length we − 1 if y is the center of Se). If instead y ∈ A and i ∈ B, then we can
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consider a y, j-path of length 3 and a k, z-path of length we−4. A similar argument

works with the edge yk in place of jk.

In all cases, we have a y, z-path in Te of length we. Regardless of the situation,

since we have chosen sets Te to be disjoint from one another (except possibly for y

and z), the y, z-path is disjoint from all other edge-paths in G. It follows that G is

(H,w)-linked.

We can therefore conclude that G is (H,w)-linked.
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Chapter 4

(H,S)-Semi-Linked Graphs

In this chapter we define (H,S)-semi-linkage, a weaker form of H-linkage, where

we only specify the locations of some vertices in V (H) and then map the rest into

G in the way that uses the fewest number of vertices in a cutset of G. As with

H-linkage, we show sharp minimum degree conditions for a graph to be (H,S)-

semi-linked, both with and without prescribed path lengths. The proof structures

for these results are similar (but not completely symmetric) to those in Chapter 3.

4.1 Introduction

Recall that a graph G is k-connected if for every pair of vertices u and v, there exist

k disjoint u, v-paths in G. As noted in [3], we may remove the vertices u and v and

say that a graph is k-connected if for every choice of 2k vertices s1, . . . , sk, t1, . . . , tk,

there exist k disjoint si, tj-paths. A stronger form of k-connectivity is the concept of

k-linkage. A graph G is k-linked if for every choice of 2k vertices s1, . . . , sk, t1, . . . , tk,

there exist k disjoint si, ti-paths. It was shown in [37] that a graph G is k-linked

if either G is 2k-connected and has at least 5k|G| edges or if G is 10k-connected,

formally stated in Theorem 4.2.2. The authors of [26] modified the proof of the

former criterion to show k-linkage for 2k-connected graphs with average degree at

least 12k.
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4.2 (H,S)-Semi-Linkage

Let G be a graph and let P(G) be the set of paths in G. Suppose we are given a

multigraph H , possibly with loops and a subset S ⊆ V (H). A graph G is (H,S)-

semi-linked if, for every injective function f : S → V (G), there exists an injective

function g : V (H \ S) → V (G \ f(S)) and a set of |E(H)| internally disjoint paths

P ⊆ P(G) connecting vertices of f(S) ∪ g(V (H \ S)) for every edge between

corresponding vertices of H . In particular, if S = V (H) (with f2 being the empty

function), then a graph G is (H,S)-semi-linked if and only if G is H-linked. At the

opposite extreme, if S = ∅, then a graph G is (H,S)-semi-linked if and only if G

contains an H-subdivision. Given the function f , such a subgraph of G consisting of

[f(S)∪ g(V (H \ S))]∪P is called an (H,S)-semi-linkage. Call f(S)∪ g(V (H \S))

the set of ground vertices and the paths in P edge-paths. In this chapter, when we

refer to ground vertices and edge-paths, we are referring to those of an (H,S)-semi-

linkage and not an H-linkage.

(f1 ∪ f2, g)

H G

Figure 4.1: (f1 ∪ f2, g) is an (H,S)-semi-linkage in G.
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4.2.1 Minimum Degree Criterion for (H, S)-Semi-Linkage

Suppose we are given a multigraph H and a subset S ⊆ V (H). Let cS and cV (H\S)

be colorings of S and V (H \S), respectively, using the color set {red,blue, green}.

Given a coloring cS, let m(cS, H) be the minimum, over all colorings cV (H\S), of

the number of green vertices in H plus the number of edges between red and blue

vertices in H . If G is a graph with minimum cutset C, then C must be large enough

to contain all green ground vertices and allow the images of all red-to-blue edges to

pass through C. I.e., we must have

|C| ≥ max
cS

{m(cS, H)}

since this lower bound for |C| assumes the highest-connectivity mapping of S into

G and the resulting lowest-connectivity mapping of V (H \ S) into G. Letting

s(H,S) = max
cS

{m(cS, H)} − 2,

the condition δ(G) ≥ n+s(H,S)
2

guarantees κ(G) ≥ max{m(cS, H)}. We now state

our first main result, which gives a sharp minimum degree condition for a graph to

be (H,S)-semi-linked.

A

C

B

G

Figure 4.2: G must have connectivity at least s(H,S) + 2 to be (H,S)-semi-linked.
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Theorem 4.2.1. Given a multigraph H and a subset S ⊆ V (H), if a graph G of

order n ≥ 13(10e(H)+ |H|)3 satisfies δ(G) ≥ n+s(H,S)
2

, then G is (H,S)-semi-linked.

By the definition of s(H,S), such a result is certainly sharp. The concept be-

hind s(H,S) is similar to those behind η(H) in [16] and b(H) in [17]. As in Chap-

ters 2 and 3, we make no attempt to optimize the bound on n.

4.2.2 Component Degree and Panconnectivity in G

In order to prove our main theorem, we use the following result from [37].

Theorem 4.2.2 ([37]). If a graph G is 10k-connected, then G is k-linked.

Recall that a graph G of order n is panconnected if for every pair of vertices

u, v ∈ G and all t satisfying 2 ≤ t ≤ n, there exists a u, v-path of length t in

G, and that Theorem 1.2.1 guarantees that a graph of order n with δ(G) ≥ n+2
2

is panconnected. The following corollary of Theorem 1.2.1 states that every large

induced subgraph of a sufficiently large graph with very high minimum degree is

panconnected.

Corollary 4.2.3. Let h be an integer and G be a graph of order n ≥ 13h3 with

δ(G) ≥ n − 6h2. For every set A ⊆ V (G) satisfying |A| ≥ n
h
, the graph G[A] is

panconnected.

Proof. Given A ⊆ V (G) with |A| ≥ n
h
, we have

δ(G[A]) ≥ |A| − 6h2

≥
|A|+ 2

2
.

By Theorem 1.2.1, the graph G[A] is panconnected.

The next lemma will be useful when G has low connectivity. First note that if G

as defined in Theorem 4.2.1 has a minimum cutset C with |C| < 10e(H)+ |H|, then

G\C consists of exactly two components A and B. We simply write G = A∪C∪B.

Combined with Corollary 4.2.3, Lemma 4.2.4 shows that if G = A ∪ B ∪ C has
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connectivity less than 10e(H) + |H|, then sufficiently large induced subgraphs of

G[A] and G[B] are panconnected.

Lemma 4.2.4. Given a multigraph H, let G = A ∪ C ∪ B be a graph of order

n ≥ 13(10e(H) + |H|)3 with δ(G) ≥ n+s(H,S)
2

and κ(G) < 10e(H) + |H|. The

graph G[A] (respectively G[B]) satisfies δ(G[A]) > |A|− (10e(H)+ |H|) (respectively

δ(G[B]) > |B| − (10e(H) + |H|)).

Proof. Let H be a multigraph with S ⊆ V (H), and let G, A, B, and C be as defined

above. Since s(H,S) < 10e(H) + |H|, the condition δ(G) ≥ n+s(H,S)
2

ensures that

n+ s(H,S)

2
− (10e(H)+ |H|) <

n+ s(H,S)

2
−|C| ≤ |A|, |B| <

n− s(H,S)

2
. (4.1)

Each vertex in A can only be adjacent to vertices in A and C, which gives

δ(G[A]) ≥
n+ s(H,S)

2
− 2(10e(H) + |H|)

> |A| − (10e(H) + |H|).

Similarly, we have δ(G[B]) > |B| − (10e(H) + |H|).

Note the similarity between Lemma 3.3.11 and Lemma 4.2.4.

4.2.3 Blocked Vertices

Given a multigraph H , let G = A∪C∪B be a graph of order n ≥ 13(10e(H)+ |H|)3

with κ(G) < 10e(H) + |H|. For all c ∈ C satisfying |N(c) ∩A| ≥ 5|C|(e(H) + |H|),

consider a set Ac ⊂ N(c) ∩ A of 5(e(H) + |H|) vertices disjoint from all other such

sets. For all other c ∈ C, define Ac = ∅. Call Ac the set of proxy vertices of c in A.

If Ac = ∅, then c is blocked to A. Let CA denote the set of all vertices in C that are

blocked to A. Define Bc and CB symmetrically.

Fact 4.2.5. Given a multigraph H with S ⊆ V (H), if G = A∪C ∪B is a graph of

order n ≥ 13(10e(H) + |H|)3 with δ(G) ≥ n+s(H,S)
2

and κ(G) < 10e(H) + |H|, then

CA ∩ CB = ∅.
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Proof. From the high minimum degree condition on G, we see that s(H,S) + 2 ≤

|C| < 10e(H) + |H| and since n is large, all c ∈ C satisfy either |N(c) ∩ A| ≥

5|C|(e(H) + |H|) or |N(c) ∩B| ≥ 5|C|(e(H) + |H|).

4.2.4 Proof of Theorem 4.2.1

Proof of Theorem 4.2.1. Let H be a multigraph with S ⊆ V (H). Let G be a graph

of order n ≥ 13(10e(H) + |H|)3 with δ(G) ≥ n+s(H,S)
2

, and let f(S) ⊆ G be the

image of S under f .

First suppose κ(G) ≥ 10e(H) + |H|. In this case, we observe that G is H-

linked and therefore (H,S)-semi-linked. For each vertex v ∈ H and incident edge

e ∈ E(H), let v′e be a neighbor of f(v) in G. Since δ(G) ≥ n
2
and n is sufficiently

large, the vertices {v′e | e ∈ E(H)} can be chosen to be distinct. By Theorem 4.2.2,

we know that G \ f(S) is e(H)-linked. In particular, for each edge e = (uv, k) ∈

E(H), we can link the pairs (u′
e, v

′
e). This implies that G is H-linked, which in

turn implies that G is (H,S)-semi-linked. Furthermore, every edge-path in this

(H,S)-semi-linkage has length 3. Thus, we may assume κ(G) < 10e(H) + |H|.
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Figure 4.3: κ(G) ≥ 10e(H) + |H| implies G is k-linked.

If e(H) = 0, then G is clearly H-linked and hence (H,S)-semi-linked for all

S ⊆ V (H). As a result, we may assume e(H) ≥ 1. The high minimum degree and

low connectivity of G imply that G = A ∪ C ∪ B for some minimum cutset C with

s(H,S) + 2 ≤ |C| = κ(G) < 10e(H) + |H|. Both components A and B must have

order approximately n
2
and be very dense. More specifically, we have (4.1), and by

Lemma 4.2.4 and Corollary 4.2.3, any reasonably large induced subgraph of G[A]

or G[B] is panconnected.

After choosing S ⊆ V (H) and f : S → V (G), determine the function g :

V (H \S) → V (G \ f(S)) by mapping all vertices in such a way that, when creating

all edge-paths between all pairs of vertices in f(S) ∪ g(V (H \ S)), the minimum

number of vertices in C must be used (note that this is at most s(H,S) + 2). Such

an optimal mapping must exist since G contains a finite number of vertices.
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We now prove that a sufficiently large graph G′ = A′ ∪C ′ ∪B′ with low connec-

tivity, dense induced subgraphs G′[A′] and G′[B′], and no vertices blocked to A′ or

B′ is (H,S)-semi-linked.

Fact 4.2.6. Let H be a multigraph with S ⊆ V (H). If G′ = A′ ∪C ′ ∪B′ has order

n ≥ 13(10e(H) + |H|)3 and satisfies

1. s(H,S) + 2 ≤ κ(G′) < 10e(H) + |H|,

2. δ(G′[A′]) ≥ |A′| − 6(10e(H) + |H|)2 and δ(G[B′]) ≥ |B′| − 6(10e(H) + |H|)2,

3. C ′
A′ ∪ C ′

B′ = ∅,

then G′ is (H,S)-semi-linked. In particular, for every set of |S| vertices in G, there

exists an (H,S)-semi-linkage in G whose edge-paths have length at most 6.

Proof. We show the existence of all necessary internally disjoint edge-paths between

ground vertices. Note that C ′
A′∪C ′

B′ = ∅ is equivalent to saying |Ac|, |Bc| = 5(e(H)+

|H|) for all c ∈ C. Let A′
p and B′

p be the set of all proxy vertices in A′ and B′,

respectively. Since we assume H contains at least one edge, we have

|A′
p ∪ B′

p| = 10(e(H) + |H|)(10e(H) + |H|)

<
n

10
,

which implies |A′ \ A′
p|, |B

′ \ B′
p| >

4n
5
. By Corollary 4.2.3, there exist internally

disjoint paths of length 2 between all pairs of ground vertices in A′ (respectively

B′). Denote multiedges between vertices u, v ∈ H by (uv, t). Suppose we wish to

construct an edge-path between ground vertices a ∈ A′ and b ∈ B′ to correspond to

the multiedge (vavb, t) ∈ E(H). By Item 1 and the definition of s(H,S), there exists

a distinct vertex c ∈ C ′ corresponding to (vavb, k). By Item 3, the sets A′
c and B′

c

each contain many more vertices than there are edges in H . Let ac ∈ A′
c and bc ∈ B′

c

be distinct proxy vertices of c ∈ C ′. By Corollary 4.2.3, there exists an a, ac-path

of length 2 in A′ and a b, bc-path of length 2 in B′. It follows that G′ contains an

a, b-edge-path of length 6. For ground vertices a ∈ A′ and c ∈ C ′, we again use

Corollary 4.2.3 and a proxy vertex in A′ to show that G′ contains an a, c-edge-path
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of length 3. A symmetric approach works for ground vertices b ∈ B′ and c ∈ C ′.

Lastly, to create an edge-path between ground vertices c1, c2 ∈ C ′, simply designate

a proxy vertex a1 ∈ A′
c1
for c1 and a2 ∈ A′

c2
for c2. By Corollary 4.2.3, there exists an

a1, a2-path of length 2 internally disjoint from all other paths created, and hence, G′

contains a c1, c2-edge-path in G′ of length 4. Since all necessary edge-paths exist in

G′ and are internally disjoint, we have that G′ is (H,S)-semi-linked. Furthermore,

each edge-path has length at most 6 if desired.

Absent from the assumptions on G′ in Fact 4.2.6 is the condition δ(G′) ≥
n+s(H,S)

2
, which, by Lemma 4.2.4, implies the density of G′[A′] and G′[B′]. Indeed,

Fact 4.2.6 only requires δ(G′) > 10(e(H)+ |H|). We start with this weaker assump-

tion on G′ so that Fact 4.2.6 can be used to prove a certain spanning subgraph of

G is (H,S)-semi-linked when G does contain vertices blocked to A or B.

Corollary 4.2.7. If CA ∪ CB = ∅, then G is (H,S)-semi-linked. In particular,

for every set of |S| vertices in G, there exists an (H,S)-semi-linkage in G whose

edge-paths have length at most 6.

Proof. By Lemma 4.2.4, we have δ(G[A]) ≥ |A| − (10e(H) + |H|) and δ(G[B]) ≥

|B| − (10e(H) + |H|). It follows that G is (H,S)-semi-linked with each edge-path

having length at most 6 as desired by Fact 4.2.6.

In the proof of Fact 4.2.6, the only edge-paths whose interiors contained one

vertex in the minimum cutset were those from one component to another. However,

if G contains vertices blocked to A or B, then this may not be possible. If a vertex

c ∈ C blocked to A requires more than |Ac| edge-paths into A, then we must use

an extra vertex in C for each additional edge-path. A similar issue arises when

constructing an edge-path between a vertex blocked from A and a vertex blocked

from B. We must show that C is large enough to contain these “extra” required

vertices. We start by giving an upper bound on |CA ∪ CB|, the number of blocked

vertices.

Fact 4.2.8. |CA ∪ CB| ≤ |C| − (s(H,S) + 2).
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Proof. We prove this result by first showing |CA| ≤ |C| −
(

n+s(H,S)
2

− |A|+ 1
)

and

|CB| ≤ |C| −
(

n+s(H,S)
2

− |B|+ 1
)

. Suppose |CA| > |C| −
(

n+s(H,S)
2

− |A|+ 1
)

. It

follows that
e(A,CA) < 5|C|(e(H) + |H|) · |C|

< 5(e(H) + |H|)(10e(H) + |H|)2

< 5(10e(H) + |H|)3

and

e(A,C \ CA) ≤ |A|

(
n + s(H,S)

2
− |A|

)

,

and hence

e(A,C) < 5(10e(H) + |H|)3 + |A|

(
n+ s(H,S)

2
− |A|

)

. (4.2)

However, since δ(G) ≥ n+s(H,S)
2

, each vertex in A is adjacent to at least n+s(H,S)
2

−

|A|+ 1 vertices in C, which gives

e(A,C) ≥ |A|

(
n+ s(H,S)

2
− |A|+ 1

)

. (4.3)

Combining (4.2) and (4.3) gives

|A|

(
n + s(H,S)

2
− |A|+ 1

)

≤ e(A,C)

< 5(10e(H) + |H|)3 + |A|

(
n+ s(H,S)

2
− |A|

)

,

which reduces to |A| ≤ 5(10e(H) + |H|)3. By (4.1), this is a contradiction. Hence,

CA ≤ |C| −
(

n+s(H,S)
2

− |A|+ 1
)

, and symmetrically, we see that CB ≤ |C| −
(

n+s(H,S)
2

− |B|+ 1
)

. It follows that

|CA ∪ CB| ≤ 2|C| −

(
n+ s(H,S)

2
− |A|+ 1 +

n+ s(H,S)

2
− |B|+ 1

)

= 2|C| − (|C|+ s(H,S) + 2)

= |C| − (s(H,S) + 2).
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Consider the spanning subgraph G′ ⊂ G that results from removing all edges

between CA and A, between CB and B, and between CA and CB.

Fact 4.2.9. G′ is (H,S)-semi-linked. In particular, for every set of ground vertices

in G, there exists an (H,S)-semi-linkage in G whose edge-paths have length at most

6.

Proof. Let

A′ = A ∪ CB

B′ = B ∪ CA

C ′ = C \ (CA ∪ CB).

By definition, we see G′ = A′ ∪ C ′ ∪ B′ and has order n ≥ 13(10e(H) + |H|)3

with C ′
A′ ∪ C ′

B′ = ∅. The inequality s(H,S) + 2 ≤ κ(G′) < 10e(H) + |H| follows

immediately from Fact 4.2.8. Also note that

δ(G′[A′]) > |A′| − (|C| − |CA|)− 5|C|(e(H) + |H|)

> |A′| − 6(10e(H) + |H|)2

which by Corollary 4.2.3 implies that all sets A∗ ⊆ A′ of order at least n
10e(H)+|H|

the graph G′[A∗] is panconnected. Then G′ satisfies all the criteria for Fact 4.2.6

and hence is (H,S)-semi-linked with each edge-path having length at most 6 if

desired.

Since G′ ⊂ G, Fact 4.2.9 implies that G is (H,S)-semi-linked. This completes

the proof of Theorem 4.2.1.

4.2.5 Conclusion

Corollary 4.2.3 and Lemma 4.2.4 could have been combined into a single lemma.

However, the proof of Fact 4.2.6 in Section 4.2.4 involves a spanning subgraph G′ ⊆

G with δ(G′) ≤ δ(G), which means we cannot necessarily apply Lemma 4.2.4 to G′.

Instead, we apply Corollary 4.2.3 to the components of G′ and let h = 10e(H)+ |H|.
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4.3 (H,S, w, 1)- and (H,S, w)-Semi-Linkage

Now that we have determined a minimum degree criterion for a graph to be (H,S)-

semi-linked, we establish minimum degree criteria for a graph to be (H,S, w)-linked

and (H,S, w, 1)-linked. Our approach to (H,S)-semi-linked graphs here mimics that

for H-linked graphs in Chapter 3. In Chapter 3, we cited various works that showed

certain conditions for a graph to be H-linked and then extended their results by

showing (H,w, 1)- and (H,w)-linkage in large graphs using the Regularity Lemma.

We proceed similarly here.

Let H be a multigraph and S ⊆ V (H). Considering a set w = {we | e ∈

E(H), we ≥ 2} and a tolerance value d, a graph G is (H,S, w, d)-semi-linked if for

every f1 : S →֒ V (G), there exist the maps f2 : V (H \ S) → V (G) and g : E(H) →

paths(G) such that (f1 ∪ f2, g) is an H-subdivision in G with each edge-path g(e)

having length we. If d = 0, then we omit d and say G is (H,S, w)-semi-linked.

In particular, if S = V (H) (with f2 being the empty function), then a graph G is

(H,S, w)-semi-linked if and only if G is (H,w)-linked. An analogous relation holds

between (H,S, w, 1)-semi-linked and (H,w, 1)-linked graphs for S = V (H).

To give an example of this notion, we restate Conjecture 2.1.1 in terms of

(H,S, w)-semi-linkage.

Conjecture 2.1.1 (Enomoto, Ota [10]). Let H be a matching on k edges, let S

contain exactly one end of each edge of the matching, and let w be an integer sequence

w = {we | e ∈ E(H), we ≥ 2,
∑

e∈E(H)we = n− k}. If σ2(G) ≥ n+ k − 1, then G is

(H,S, w)-semi-linked.

4.3.1 Minimum Degree Criteria for (H, S, w, 1)- and (H, S, w)-

Semi-Linkage

We now state our main results, which give sharp minimum degree conditions for a

graph to be (H,S, w, 1)- and (H,S, w)-semi-linked.

Theorem 4.3.1. Let H be a multigraph with S ⊆ V (H), and let w = {we | e ∈

E(H), we ≥ 14} be a sequence of integers. If G is a graph of order n ≥ n(H,S, w)
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with δ(G) ≥ n+s(H,S)
2

, then G is (H,S, w, 1)-semi-linked. Furthermore, the lower

bound for δ(G) is sharp.

The sharpness of Theorem 4.3.1 is established in 4.2.1. Note the parallel between

the statements of Theorems 4.3.1 and3.2.1. In fact, the proof of Theorem 4.3.1

largely parallels that of Theorem 3.2.1 as well. Lemmas 3.4.1 and 3.4.3 are used to

prove Theorem 4.3.1 when R is connected. Furthemore, Lemma 4.3.4 is symmetric

to Lemma 3.4.2, and Lemma 4.3.4 is symmetric to Lemma 3.4.2.

To state Theorem 4.3.2, we must first define the value t(H,S). We combine the

sharp example of G (a large, complete
(

|B||A′|
|A||A′|+|A||B|+|B||A′|

)

-almost-bipartite graph)

with the coloring technique used to create s(H,S) in Section 4.2.1. Suppose we are

given a multigraph H and a subset S ⊆ V (H). Let cS and cV (H\S) be colorings of

S and V (H \ S), respectively, using the color set {red,blue, green}. Also let the

assigned value of an edge e be the value in w. Given a coloring cS, let

• g be the number of green vertices in H ,

• rr denote the number of edges with odd assigned values between red vertices,

• bb denote the number of edges with odd assigned values between blue vertices,

• rb denote the number of edges with even assigned values between red and blue

vertices.

Let p(cS, H) be the minimum, over all colorings cV (H\S), of g + rr + bb + rb, and

let

t(H,S) = max
cS

{p(cS, H)} − 2.

The condition δ(G) ≥ n+t(H,S)
2

guarantees κ(G) ≥ max{p(cS, H)}. We now state

our main result, an extension of Theorem 4.2.1 for large graphs.

Theorem 4.3.2. Let H be a multigraph with S ⊆ V (H), and let w = {we | e ∈

E(H), we ≥ 14} be a sequence of integers. If G is a graph of order n ≥ n(H,S, w)

with δ(G) ≥ n+t(H,S)
2

, then G is (H,S, w)-semi-linked. Furthermore, the lower bound

for δ(G) is sharp.
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To see that δ(G) ≥ n+t(H,S)
2

is sharp, consider the following example.

Example 4.3.3. Given a multigraph H , a set S ⊆ V (H), and an integer sequence

w = {we | e ∈ E(H), we ≥ 14}, let G be a complete tripartite graph on n vertices

with independent sets A, B, and A′ satisfying

|A| =

⌈
n− (t(H,S)− 1)

2

⌉

|B| =

⌊
n− (t(H,S)− 1)

2

⌋

|A′| = t(H,S)− 1.

As a result, we have δ(G) =
⌈
n+t(H,S)−1

2

⌉

. Although G is tripartite, note that

G \ E(A′, A) and G \ E(A′, B) are bipartite. We can think of G as being “almost”

bipartite.

Let cS and cV (H\S) be the colorings such that g + rr + bb + rb = t(H,S), and

let c = cS ∪ cV (H\S). Let c(v) represent the coloring of a vertex under c. Define f1

such that

f1(v)







∈ A if v is red

∈ B if v is blue

∈ A′ if v is green.

By the definition of t(H,S), it follows that defining f2 such that

f2(v)







∈ A if v is red

∈ B if v is blue

∈ A′ if v is green

results in the smallest necessary size of A′, which is t(H,S). However, we see

|A′| = t(H,S) − 1, which means A′ is not large enough to contain all necessary

paths in our desired (H,S)-semi-linkage in G. This shows that δ(G) ≥ n+t(H,S)
2

is

sharp.
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4.3.2 Proof of Theorems 4.3.1 and 4.3.2

As with Theorems 3.2.1 and 3.2.2, we split the proof into four lemmas. Two of those

lemmas have already been proven: If G is a sufficiently large graph of order n with

δ(G) ≥ n
2
, then Lemma 3.4.1 establishes (H,w)-linkage when R is connected and

not bipartite, and 3.4.3 establishes (H,w, 1)-linkage when R is connected.

We prove a sharp minimum degree condition for a graph G with disconnected

reduced graph to be (H,S, w)-semi-linked.

Lemma 4.3.4. Let H be a multigraph with S ⊆ V (H), and let w = {we | e ∈

E(H), we ≥ 8} be a sequence of integers. Consider a graph G of order n ≥ n(H,S, w)

with δ(G) ≥ n+s(H,S)
2

and reduced graph R. If R is disconnected, then G is (H,S, w)-

semi-linked.

Proof. The proof of Lemma 4.3.4 is similar to that of Lemma 4.3.4.

Let H be a multigraph with S ⊆ V (H), and let {we | e ∈ E(H), we ≥ 8} be a

sequence of integers. Consider a vertex map f : V (H) →֒ V (G). Consider a (simple)

graph G of sufficiently large order n with δ(G) ≥ n+s(H,S)
2

.

Apply Lemma 1.1.2 on G to obtain the reduced graph R of G. Since δ(G) ≥
n+s(H,S)

2
, from Lemma 3.3.1 we have

δ(R) ≥

(
1

2
− (δ + 2ǫ)

)

r +
s(H,S)

2
.

We divide the remainder of the proof into two cases based on the connectivity

of G. Let f = f1 ∪ f2, and for each edge e = (uv, i) ∈ E(H), let y = f(u) and

z = f(v).

Case 1. κ(G) ≤ n
6
.

Let C be a minimum cutset of G, and let A and B be the components of G \C.

Recall the definition of the proxy vertex sets Ap and Bp from Fact 3.3.6. Given

vertex sets U, V ⊂ V (G), define a vertex set X in G to be (U, V )-large if

• X ⊂ A or X ⊂ B,

81



• |X| ≥ n
10s(H,S)2

,

• X ∩ f(V (H)) = U , and

• X ∩ (Ap \ U) = V or X ∩ (Bp \ U) = V .

By Lemma 3.3.12, the first two items guarantee that (U, V )-large sets are pancon-

nected. The purpose of (U, V )-large sets is to construct paths of length 2 either

between two proxy vertices or between a proxy vertex and y (or z). To construct

all desired edge-paths in G, we create at most 2e(H) total (U, V )-large paths in G

in the various cases below, using at most a total of n
5
vertices in G. Thus, G always

contains enough vertices to create all desired (U, V )-large paths. We say a vertex x

is unused if, during the construction of the desired (H,S, w)-semi-linkage, x is not

in an edge-path.

Subcase 1.1. y, z ∈ A (or y, z ∈ B).

Suppose without loss of generality that y, z ∈ A. Define a ({y, z}, ∅)-large set

Ae ⊂ A. It follows that Ae contains a y, z-path of length we ≥ 2. Similar logic works

for y, z ∈ B.

Subcase 1.2. y ∈ A (or y ∈ B) and z ∈ C.

Suppose without loss of generality that y ∈ A and z ∈ C. First suppose that

z has an unused proxy vertex in Ap. For some proxy vertex az of z, define a

({y}, {az})-large set Ae ⊂ A. Since there exists a y, az-path of length we − 1 in Ae,

there exists a y, z-path of length we in G. Now suppose z does not have an unused

proxy vertex in Ap; it follows that z has an unused proxy vertex b1 ∈ Bp. Since

|C| ≥ s(H,S), there exists an unused vertex σ2 ∈ C with unused proxy vertices

b2 ∈ Bp and a2 ∈ Ap. If such an unused vertex did not exist, then G would not

be (H,S)-semi-linked, which would contradict Theorem 4.2.1. Define a (∅, {b1, b2})-

large vertex set Be ⊂ B. There exists a b1, b2-path of length 2 in Be. Create a

({y}, {a2})-large set Ae ⊂ A. There exists an a2, y-path of length we − 5 in Ae. It

follows that G contains a y, z-path of length we ≥ 7.

Similar logic works for y ∈ B.
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Subcase 1.3. Without loss of generality, y ∈ A and z ∈ B.

Consider a vertex σ ∈ C with proxy vertices a ∈ Ap and b ∈ Bp. Create a

({y}, {a2})-large set Ae ⊂ A and a ({z}, {b2})-large set Be ⊂ B. There exists a

y, a-path of length 2 within Ae and a z, b-path of length we−4 within Be. It follows

that G contains a y, z-path of length we ≥ 6.

Subcase 1.4. y, z ∈ C

This final case uses reasoning similar to that of Subcase 1.2. Recall that both

y and z have sufficiently many proxy vertices to construct all necessary edge-paths,

but also that y and z may not have multiple proxy vertices in both Ap and Bp.

Without loss of generality suppose that y has an unused proxy vertex ay ∈ Ap. In

addition, suppose first that z has an unused proxy vertex az ∈ Ap as well. Create a

(∅, {ay, az})-large set Ae ⊂ A. The set Ae contains an ay, az-path of length we − 2.

It follows that G contains a y, z-path of length we. Now suppose that z does not

have any unused proxy vertices in Ap. It follows that z must have at least 1 unused

proxy vertex bz ∈ Bp. Since |C| ≥ s(H,S), there exists an unused vertex σ ∈ C with

unused proxy vertices a ∈ Ap and b ∈ Bp. If such an unused vertex did not exist,

then G would not be (H,S)-semi-linked, which would contradict Theorem 4.2.1.

Create a (∅, {ay, a})-large set Ae ⊂ A and a (∅, {bz, b})-large set Be ⊂ B. There

exists an ay, a-path of length 2 in Ae and a bz, b-path of length we − 6 in Be. It

follows that G contains a y, z-path of length we ≥ 8.

Note that in each subcase, we use at most one vertex in C (excluding y and z)

when constructing the desired edge-path. From the sufficiently large order of G and

the fact that |f(V (H))| ≤ |Ap|, |Bp|, we can construct all necessary sets and paths

to be disjoint where necessary. Hence, G is (H,S, w)-semi-linked.

Case 2. κ(G) ≥ n
6
.

By Lemma 3.3.9, we can bipartition G into sets A and B so that A and B satisfy

(3.4) and (3.5) in Lemma 3.3.9. (Note that G = A ∪B in this case, which is not to
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be confused with G = A ∪ C ∪B from Case 1.) Define

DA =

{

x ∈ A

∣
∣
∣
∣
|N(x) ∩B| >

n

100s(H,S)2

}

,

and symmetrically define DB. By Lemma 3.3.10, each vertex in DA has at least n
5

edges into A\DA. We consider several different scenarios depending on the locations

of y and z. In each case, we construct a y, z-path in G that is internally disjoint

from all other such paths. If y, z ∈ A, then since δ(G[A]) ≥ n
5
, we can define sets

Ae ⊂ A such that

• |Ae| ≥
n

10s(H,S)2
,

• Ae ∩ f(V (H)) = {y, z}, and

• Ae ∩DA ⊆ {y, z}.

Note that these sets can be chosen so that Ae is disjoint from all other such sets,

except possibly for y and z. By Lemma 3.3.11, we see Ae is panconnected. Hence,

we can construct a y, z-path of length we through Ae. An analogous argument works

for the case when y, z ∈ B.

Next, suppose y ∈ DA and z ∈ B. By the definition of DA and the fact that

δ(G[A]) ≥ n
5
, there exists a set Be ⊂ B ∪ {y} such that

• |Be| ≥
n

10s(H,S)2
,

• Be ∩ f(V (H)) = {y, z}, and

• (Be \ {z}) ∩N(y) 6= ∅.

Note that these sets can be chosen so that Be is disjoint from all other such sets,

except possibly for y and z. Again using Lemma 3.3.10 and Lemma 3.3.11, we see

Be is panconnected. Hence, we can construct a y, z-path of length we through Be.

A symmetric argument works for the case when y ∈ DB and z ∈ A. Note that in all

of these cases, the orders of Ae and Be are chosen to be small enough to be disjoint

from all other such sets where necessary. It follows that the constructed y, z-paths

are all internally disjoint.
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The only remaining case is that in which y ∈ A \ DA and z ∈ B \ DB. While

this is by far the most difficult situation, we do use a similar technique as in the

previous cases.

Since δ(G) ≥ n+s(H,S)
2

, there exists a set M of exactly s(H,S) + 2 disjoint paths

from A\DA to B\DB, each having length at most 2. Call these paths transportation

paths. By Menger’s Theorem, there are at least n
6
≫ e(H) transportation paths in

G. Hence, it suffices to show that we use only one transportation path for each

y, z-path with y ∈ A \DA and z ∈ B \DB.

For each edge e ∈ E(H), create the y, z-path in G as follows. Choose a vertex

set Ae ∈ A \DA such that

• Ae ∩ f(V (H)) = {y} and

• Ae ∩M = {ae} for a distinct ae ∈ Pe.

Choose Be ∈ B \DB symmetrically. By Lemma 3.3.10 and Fact 3.3.6, we know

|DA ∪ (f(V (H) \ y))| < 2(e(H))2(δ + 2ǫ)n+ e(H)

< 3(e(H))2(δ + 2ǫ)n.

Similarly, |DB∪Bp∪(f(V (H)\z))| < 3(e(H))2(δ+2ǫ)n. It follows that ae and Be can

be chosen to be disjoint from all other such sets where necessary. By Lemma 3.3.11,

we know Ae and Be are panconnected. Let Pe be a path in M corresponding to

the edge e ∈ E(H). Suppose Pe has length c (i.e., c = 1 or c = 2). Create a

wi, ae-path PA,e of length
⌊
we−c

2

⌋
in Ae and a be, wj-path PB,e of length

⌈
we−c

2

⌉
in

Be. It follows that PA,e ∪ Pe ∪ PB,e is a y, z-path of length we in G. Hence, G is

(H,S, w)-semi-linked.

We now prove a sharp minimum degree condition for a graph G with bipartite

reduced graph to be (H,S, w)-semi-linked.

Lemma 4.3.5. Let H be a multigraph with S ⊆ V (H), and let w = {we | e ∈

E(H), we ≥ 3} be a sequence of integers. Consider a graph G of order n ≥ n(H,S, w)

with δ(G) ≥ n+t(H,S)
2

and reduced graph R. If R is bipartite, then G is (H,S, w)-

semi-linked.
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Proof. Let H be a multigraph with S ⊆ V (H). Let {we | e ∈ E(H), we ≥ 3} be a

sequence of integers. Consider a sufficiently large graph G of order n with δ(G) ≥
n+t(H)

2
whose reduced graph R is bipartite. Let AR and BR be the independent sets

composing R, and let A and B be the sets of clusters in G corresponding to AR and

BR, respectively. By Lemma 3.3.1 we have

(
1

2
− (δ + 2ǫ)

)

n + 1 ≤ |A| ≤

(
1

2
+ (δ + 2ǫ)

)

n− 1,

and similarly for |B|. By Lemma 3.3.13, A and B have either 2t(H,S) independent

edges or t(H,S) stars, each of size at least n
5t(H,S)

. For each edge e = (uv, s) ∈ E(H),

let y = f(u) and z = f(v).

First suppose G[A]∪G[B] contains a set of 2t(H,S) independent edges. Call this

set of independent edges I. For each edge e ∈ E(H), consider a unique independent

edge ie = jk ∈ I. Also define sets Te ⊂ G satisfying

• |Te| = 5(δ + 2ǫ)n,

• Te induces a balanced bipartite graph in G (i.e., Te has equally many vertices

in A and in B),

• Te ∩ f(V (H)) = {y, z}, and

• E(Te) ∩ I = {ie}.

Note that these sets can be chosen so that Te is disjoint from all other such sets,

except possibly for y and z. By Lemma 1.2.2, Te is bipanconnected.

Suppose y, z ∈ A or y, z ∈ B. If we is even, then there must exist a y, z-path in

Te of length we. If instead we is odd, then we must use the edge ie. If ie and y are

both in A or both in B, then consider a y, j-path of length 2 (or length 0 if y = j)

and an k, z-path of length we − 3 (or we if y = j), both within Te. If instead ie ∈ A

and y ∈ B or vice versa, then there exists a y, j-path of length 3 and an k, z-path of

length we − 4, both within Te. In either case, we have a y, z-path in G of length we.

A similar argument works for when y ∈ A and z ∈ B. Regardless of the situation,

since we have chosen sets Te to be disjoint from one another (except possibly for y
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and z), the y, z-path is disjoint from all other edge-paths in G. It follows that G is

(H,S, w)-semi-linked.

Next, suppose G[A] ∪ G[B] have t(H,S) stars of size at least n
5t(H,S)

. Let Y

denote the set of these stars. For each edge e ∈ E(H), assign a star Se to y and z

and choose an edge ie = jk ∈ Se. Create the set Te ⊂ G satisfying

• |Te| = 5(δ + 2ǫ)n,

• Te induces a balanced bipartite graph in G (i.e., Te has equally many vertices

in A and in B),

• Te ∩ f(V (H)) = {y, z}, and

• E(Te) ∩ Se = {ie} for some edge ie ∈ Se.

Note that these sets can be chosen so that Te is disjoint from all other such sets,

except possibly for y and z. By Lemma 1.2.2, Te is bipanconnected.

Let y, z ∈ A or y, z ∈ B. If de is even, then there must exist a y, z-path in Te of

length we. If instead we is odd, then we must use the edge ie. First suppose y and

ie are both in A (or B). Since Te is bipanconnected, we can consider a y, j-path of

length 2 (or length 0 if y is the center of Se) and a k, z-path of length we − 3 (or

length we − 1 if y is the center of Se). If instead y ∈ A and i ∈ B, then we can

consider a y, j-path of length 3 and a k, z-path of length we−4. A similar argument

works with the edge yk in place of jk.

In all cases, we have a y, z-path in Te of length we. Regardless of the situation,

since we have chosen sets Te to be disjoint from one another (except possibly for y

and z), the y, z-path is disjoint from all other edge-paths in G. It follows that G is

(H,S, w)-semi-linked.

We can therefore conclude that G is (H,S, w)-semi-linked.

Lemmas 3.4.1, 3.4.3, 4.3.4, and 4.3.5 combine to prove Theorems 4.3.2 and 4.3.1.

Proof of Theorem 3.2.1. Use Lemmas 3.4.1, 4.3.4, and 3.4.3.

Proof of Theorem 3.2.2. Use Lemmas 3.4.1, 3.4.2, and 4.3.5.

87



Chapter 5

Conclusion

We have proved several degree conditions for a large graph to contain certain types

of subdivisions. We would like to extend our results in a number of ways.

In particular, our large-graph approach using the Regularity Lemma might be

applied to make progress on a longstanding conjecture by El-Zahar [9].

Conjecture 5.0.6 ([9]). Suppose n =
∑k

i=1 ni with ni ≥ 3 for all i and δ(G) ≥
∑k

i=1

⌈
ni

2

⌉
. Then G can be partitioned into cycles of length n1, . . . , nk.

Note that n
2
≤

∑k
i=1

⌈
ni

2

⌉
≤ n+k

2
. Although Conjecture 5.0.6 uses δ(G), it may be

possible to use techniques similar to those in Subsection 2.3.5 to create long paths

such with adjacent endpoints, resulting in cycles. Another route may be to prove a

result similar to Conjecture 5.0.6 for large graphs using σ2(G) instead of δ(G).

With both (H,w, d)-linkage and (H,S, w, d)-linkage in a large graph G of order

n, we would like to increase the order of the resulting H-subdivisions to be ap-

proximately (1 − ǫ)n, with the discrepancy of ǫn coming from the garbage set V0

obtained from Lemma 1.1.2. Naturally, the sharp minimum degree bounds from

Theorems 3.2.1, 3.2.2, 4.3.1, and 4.3.2 should all remain the same. We believe that

the v-absorbing paths technique from Subsection 2.3.5 may be used to extend the

lengths of each edge-path in an H-subdivision to be fractions of n.

We would also like to define the values s(H,S) and t(H,S) without using color-

ings. Such a description would reveal more about the effects the structure of H has
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on the connectivity of G and would make s(H,S) and t(H,S) easier to determine

(although finding s(H,S) and t(H,S) for a large multigraph H still might be dif-

ficult). An ideal result would be a description similar to those of b(H) in [17]. We

imagine that, as with b(H), both s(H,S) and t(H,S) must relate to the size of a

maximum edge-cut of H , as the conditions for δ(G) in Theorems 4.3.1 and 4.3.2 are

sharp because of the resulting connectivity of G.
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