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Abstract

This dissertation studies two sequences,
(
S̃n√
n

∣∣n ∈ N+
)
and

(
Sn√
n

∣∣n ∈ N+
)
, of random variables on

(0, 1) which have the same distributions, but are otherwise quite di�erent. Sn, the random walk,

is immediately intuitive, but quite disorderly. This disorder is mirrored in that
{
Sn√
n

}
converges

weakly to the standard normal on (0, 1), but not almost surely. We show how to e�ectively

�rearrange� Sn to get Skorokhod's S̃n, a quite orderly step function, which has the property that{
S̃n√
n

}
converges almost surely. Our rearrangements provide explicit representations of each S̃n

as the sum of an i.i.d. family, depending only on the �rst n terms in the dyadic expansion of x,

uniformly and e�ectively in n, similar to the obvious representations for the Sn. The absence of

such representations was considered by some to be the main missing piece of the puzzle for the

S̃n.

Chapter 2 of this dissertation presents our results on the �ne structure of Sn; the Chapter

begins with a number of notions from which there emerges an appealing natural structure theory.

Chapter 3 develops an explicit characterization of the S̃n, and proves one of our main results

on their representability. This paves the way for Chapter 4, where we provide an explicit,

computationally tractable approach to obtaining �nice� sequences of rearrangements uniformly

in n. Each �nice� sequence of rearrangements is encoded in a suitable sense by a primitive

recursive function of two variables.
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Chapter 1

Introduction

The main goal of this dissertation is to elucidate the di�erences and similarities between the

sequences of random variables, (Xn|n ∈ N+) and
(
X̃n

∣∣n ∈ N+
)
, via a very explicit construction

and analysis of the latter. Xn = Sn√
n
, where Sn is the random walk, and so, by the Central Limit

Theorem, {Xn} converges weakly to the standard normal (on (0, 1)).

The Sn have been the subject of intense study; their de�nition is immediately accessible

and intuitive and each Sn is readily representable as the sum of an i.i.d. family (of size n) of

irreducibly simpler random variables depending only on the �rst n terms in the dyadic expansion

of x (�coordinates�, in what follows). Nevertheless, as we will see, they are quite disorderly and

this disorder is mirrored by the fact that, pointwise, (Xn|n ∈ N+) behaves quite badly.

The tale of the two sequences begins with a theorem of Skorokhod, [9]. As a special case of his

result (and by an analysis of his general construction in this special case, carried out in �3.2, be-

low), for each n ∈ N+, X̃n has the same distribution as Xn, and the sequence
(
X̃n

∣∣n ∈ N+
)
con-

verges almost surely to the standard normal on (0, 1). We take S̃n =
√
nX̃n, and in what follows,

we will mainly compare and contrast
(
S̃n
∣∣n ∈ N+

)
and (Sn|n ∈ N+) rather than

(
X̃n

∣∣n ∈ N+
)

and (Xn|n ∈ N+).

By analogy with the discussion of the second paragraph, the S̃n have not received nearly

as much attention as the Sn (perhaps as a consequence of their much simpler structure), and

although there are other routes to the S̃n than via Skorokhod's construction, none of their

possible de�nitions is as accessible and intuitive as the de�nition of the Sn. As already mentioned

parenthetically, the S̃n are quite orderly: they are monotone non-decreasing step functions, and

the almost sure convergence of
(
X̃n

∣∣n ∈ N+
)
�ows from this simple, orderly structure.
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Thus, the S̃n have many virtues by comparison with the Sn. The main missing piece of

the puzzle was the relative indirectness of their de�nition, one aspect of which is the apparent

absence of explicit representations as sums of i.i.d. families (of size n) of simpler random

variables depending only on the �rst n coordinates of x.

The principal results of this dissertation directly address this issue. In particular, we will show,

in Chapter 3, that each S̃n is the sum of n independent random variables R̃n,i, i = 1, . . . , n, such

that R̃n,i takes on values −1, 1 with equal probability. Each R̃n,i depends only on the �rst n

coordinates of x. In fact, somewhat surprisingly, there are a large number of such representations

of each S̃n. In Chapter 4, we provide an explicit, highly e�ective construction of a �preferred�

sequence of such representations, uniformly and highly e�ectively, in n.

1.1 Notation and Preliminaries

It is our hope that the next two paragraphs explain all notation that is not entirely standard

or is not explicitly introduced later on. We will use cardx or card (x) to denote the cardinality of

the set x, rather than the more usual |x|, to avoid clashes with the usual absolute value notation.

We will use the symbol
⊔

to denote a disjoint union either of two sets (a
⊔
b) or of an indexed

family of sets (
⊔
i∈I ai).

C will denote Cantor space, which we take to be {0, 1}N
+

rather than the somewhat more

usual {0, 1}N. We also take C ′ to be the set of those x ∈ C such that x−1 [{0}] is in�nite, i.e.,

viewing x as (xi|i ∈ N+), such that for in�nitely many i, xi = 0. Thus, as usual, C ′ can be

identi�ed with the half-open unit interval, [0, 1). This is in accord with our above convention

for dyadic rationals. Via this identi�cation, even when we are regarding x as being a member of

[0, 1), we shall not hesitate to act as though x were the corresponding member of C ′, and to use

notations such as xi or (more rarely) x (i) accordingly. If s is a �nite sequence of bits, then by

Ns we mean the basic open neighborhood (relative to C ′) corresponding to s, ie {x ∈ C ′|x ⊇ s}.

De�nition 1.1. For x ∈ C, identify x with
∑∞
i=1

xi

2i ∈ [0, 1] . This is one-to-one except for

those x which are identi�ed with dyadic rationals. The restriction to C ′ is one way of remedying

this, at the price of losing the right endpoint, 1. For x ∈ C ′, and n ∈ N+, by Sn (x) we mean∑n
i=1 (−1)

1+xi . Note that, obviously, Sn depends only on the �rst n coordinates of x. We exploit

3



this to regard Sn as having domain {0, 1}n when it suits our purposes to do so:

Sn (r) := Sn (x) for any x ∈ C ′ such that x ⊇ r.

For such x ∈ C ′, we set x ∈ Xk,n if and only if |Sn (x)| > k
√
n. We also take Xk to be

⋃
n∈N+ Xk,n,

and we de�ne Yk,n to be Xk,n r
⋃n−1
m=1 Xk,m.

Remark 1.2. Note that clearly Xk =
⊔
n∈N+ Yk,n. Also note that the Xk,n, Yk,n are open (in

fact, both are �nite unions of intervals whose endpoints are dyadic rationals), and therefore, so

are the Xk. Also, it is immediate that if x ∈ C ′ ∩ Xk, then there is a unique n∗ = n∗k (x) such

that x ∈ Yk,n∗ , and that this n∗ is the least n such that x ∈ Xk,n.

For �nite-length binary sequences r, Weight (r) is the number of coordinates i such that

ri = 1. Observe that Sn (r) = −n+ 2Weight (r).

De�nition 1.3. In what follows, λ will denote Lebesgue measure on [0, 1] (or on one of the

variants with either endpoint or both excluded; note that this includes the case of C ′ via the

identi�cation with [0, 1)). As usual, a probability space is a triple (Ω,S , P ), where Ω is the

set of points, S is the σ-algebra of Borel subsets of Ω, and P : S → [0, 1] is the (σ-additive)

probability measure. In this dissertation we will always have Ω = [0, 1), S will always be the

σ-algebra of Borel subsets of Ω, and P will be the restriction of Lebesgue measure to the Borel

sets.

1.2 Context and Motivation

The Law of the Iterated Logarithm [6], originally proved by Khintchine [8], states

lim sup
n→∞

Sn (x)√
2n log log n

= 1,

for almost all x, and

lim inf
n→∞

Sn (x)√
2n log log n

= −1,

for almost all x. An easy argument then shows that λ (
⋂
k Xk) = 1, and that

lim infn→∞
Sn(x)√

n
= −∞ and lim supn→∞

Sn(x)√
n

=∞ for almost all x. Since lim inf and lim sup

are split on a set of measure one, for almost all x,
{
Sn√
n

}
does not converge pointwise.

4



Skorokhod was able to obtain almost sure convergence for a modi�ed sequence of random

variables S̃n√
n
. The S̃n are analogues of the Sn and are explicitly constructed in Chapter 3. In

recognition of his work, we will call our construction of the random variables S̃n√
n
, starting from

the random variables Sn√
n
, the �Skorokhod treatment� of the Sn√

n
.

A natural question is whether there are representations of S̃n similar to the representation

for Sn, where for x ∈ [0, 1), we represent Sn (x) as the sum of Rn,i (x), i = 1, . . . , n, with

Rn.i = (−1)
1+xi . Once this question is answered in the a�rmative, the next problem arises:

we would also like to know exactly how �close to� the representation of Sn can we take the

representations of S̃n.

The questions of the above paragraph will be answered in Chapters 3 and 4. In Chapter

2 we will present our results on the �ne structure of Sn that lay the groundwork for further

developments where k is a function of n. In this dissertation, however, we will treat k as a

constant.

Remark 1.4. If k is a function of n, then Xk,n becomes Xk(n),n, which can be naturally collapsed

to X∗n, at least if the function k is clear from the context. Then the union of all the Xk(n),n

becomes X∗ =
⋃
n∈N+ X∗n, an analogue of Xk.

De�nition 1.5. For k ∈ N+, we set Uk := {n ∈ N+|Yk,n 6= ∅}. In this dissertation, we will

sometimes refer to the n ∈ Uk as �successes�.

1.3 Results and Organization

A major result, Theorem 2.24, of Chapter 2 is that, surprisingly, n + 1 ∈ Uk is equivalent

to a purely arithmetical condition on n, involving no overt reference to x ∈ [0, 1) or to Sn.

On the way to this result, we will see that Uk is in�nite and we take (uk,j |j ≥ 1) to be its

increasing enumeration. We provide a complete analysis of Uk, concentrating on the �gaps�, i.e.,

the uk,j+1 − uk,j . In �2.2, we compute the di�erence in measure between Xk,uj and Xk,uj+1 .

Chapter 3 begins with an explicit construction of S̃n (the �Skorokhod treatment�) extracted

from Skorokhod's general method. In �3.3, we �rst prove Theorem 3.4 which establishes an

equivalence that is fundamental for all that follows it: representations S̃n =
∑n
i=1 R̃n,i, as above,

are canonically in one-to-one correspondence with permutations, F , of {0, 1}n that satisfy the

composition equation, S̃n = Sn◦F . In Theorem 3.5 and Corollary 3.6 we obtain a straightforward

5



count of the (at �rst sight surprisingly large) number of such permutations, and therefore of the

number of such representations of S̃n.

This (initially somewhat bewildering) abundance of such permutations/representations natu-

rally led to such questions as whether there are additional properties of such permutations which

make some more natural than (and therefore preferable to) others, and whether there are �nice�

sequences, (Fn|n ∈ N+), of preferred permutations. This line of questioning led us to formulate

(De�nition 3.7) the notion of a suitable sequence of permutations, and to pose (Problem 3.8)

the fundamental problem of proving their existence. We have little doubt that, informed as they

are by the connection to representation, each of the criteria (e.g., e�ectiveness and uniformity

in n) in the de�nition of suitable sequence belongs in any reasonable attempt to single out nat-

ural families of permutations/representations. We are less convinced that the list of criteria is

complete.

We solve this problem in Chapter 4, more precisely in �4.3, where we construct (Lemma 4.13)

our currently preferred suitable sequence (Fn|n ∈ N+) of permutations. In Theorem 4.14, we

establish its e�ectiveness, by showing that it is (in the appropriate sense) uniformly primitive

recursive. In �4.1 we provide a bare-bones overview of the basic notions related to primitive

recursion with the intent of making our work in ��4.2, 4.3 accessible to the reader with no prior

acquaintance with this material.

�4.2 is a �warm-up� for our main results of �4.3. We construct (Lemma 4.6) a simpler variant,

(Gn|n ∈ N+), and prove (Theorem 4.8) that it is uniformly primitive recursive. By sacri�cing

one of the main properties of the Fn, we get by with a much simpler construction, allowing us to

introduce many of the main ideas and techniques involved in the work of �4.3 in this simpli�ed

setting. Finally, in �4.4, we take stock of what has been accomplished and look ahead to future

work.

6



Chapter 2

The Fine Structure of Sn

We introduce a number of notions from which there emerges an appealing natural structure

theory for the Yk,n. Notable results include Proposition 2.13, Theorem 2.24 and Lemmas 2.26,

2.27. The �rst of these establishes that Uk is in�nite, but in a strong way: if n ∈ Uk then for some

1 ≤ j∗ ≤ 4, n+ j∗ ∈ Uk; in Lemma 2.23 we show that, in fact, the least such j∗ is at least two.

This Lemma and the sequence of smaller steps that lead to it lay the groundwork for Theorem

2.24, where, as noted in �1.3, we prove that n + 1 ∈ Uk is equivalent to a purely arithmetical

condition on n. Lemmas 2.26 and 2.27 complete the structure theory. Lemma 2.26 completely

characterizes the gaps in Uk in terms of the growth of the function g (n) = [k
√
n]. Lemma 2.27

builds on this. Part (a) improves on Proposition 2.13 by showing that far enough out the gaps of

four disappear: a fairly tight lower bound is given as a function of k. Part (b) shows, in a strong

way, that the gaps of two eventually predominate by showing that liml→∞
ul

l = 2.

In �2.2, we give exact calculations for λ (Xk,n+1) − λ (Xk,n), showing that this is negative

if n + 1 6∈ Uk and positive if n + 1 ∈ Uk. We use these results to obtain exact calculations

of λ
(
Xk,uj+1

)
− λ

(
Xk,uj

)
, showing this to be slightly positive, when uj+1 − uj = 2, and, for

su�ciently large j, signi�cantly negative when uj+1 − uj = 3 (recall that (uj |j ∈ N+) is the

increasing enumeration of Uk). It is worth noting that these calculations go over, with only very

minor changes, to the setting where k is a function of n. The same is true for the the results of

�2.1 cited in the previous paragraph.

7



2.1 Extreme Sequences and Structural Results

In analyzing and discussing the Xk,n, Yk,n, it will be helpful to adopt the following

terminology: we will call the inequality |Sn (x)| > k
√
n the main condition on x at n, and will

refer to this inequality as Ik,n. Thus (for x ∈ C ′), x ∈ Xk,n if and only if x satis�es Ik,n. Also,

we call the inequalities |St (x)| ≤ k
√
t, for t ∈ [1, n) ∩ N, the side conditions on x at n, and the

preceding non-strict inequality is the tth side condition on x at n; we refer to it as Ek,t. Thus,

(for x ∈ C ′), x ∈ Yk,n if and only if x satis�es Ik,n and all of the Ek,t for t ∈ [1, n) ∩ N.

De�nition 2.1. For x ∈ C ′, and n ∈ N+, we set majn (x) := 1 if and only if Sn (x) ≥ 0;

otherwise, majn (x) := −1. We set minn (x) := −majn (x).

Remark 2.2. majn (x), minn (x) are the majority and minority values in Sn (x), with ties (when

Sn (x) = 0) being in favor of 1 as the majority.

De�nition 2.3. For x, n as in De�nition 2.1, we set Majn (x) :=
{
i ∈ [1, n] ∩ N

∣∣ (−1)
1+xi = majn (x)

}
,

and similarly for Minn (x) and minn (x), and we set Mn (x) := card (Majn (x)), mn (x) :=

card (Minn (x)).

Remark 2.4. Thus, for example, for such x and n, Majn (x) is the set of coordinates, i, with

1 ≤ i ≤ n, where the majority value in Sn (x) occurs. Also, note that n = Mn (x) + mn (x),

|Sn (x)| = Mn (x) −mn (x) = n − 2mn (x) = 2Mn (x) − n, and so Sn (x) always has the same

parity as n.

Lemma 2.5. We have the following three simple observations.

(a) If n ≤ k2 then Xk,n = ∅.

(b) Xk,k2+1 = Yk,k2+1 =
{
x|x �

[
1, k2 + 1

]
∩ N is constant

}
.

(c) λ
(
Xk,k2+1

)
= λ

(
Yk,k2+1

)
= 2 · 1

2k2+1
= 1

2k2 .

Proof. Immediate from the de�nitions.

For 1 ≤ j ≤ 4, we now present a purely arithmetical analysis of whether or not k2 + j ∈ Uk.

By Lemma 2.5 (b), we know k2 + 1 ∈ Uk. If x 6∈ Yk,k2+1, then by (b), there is at least one

minority summand somewhere at or below level k2 + 1. Then |Sk2+2 (x)| ≤ k2 < k
√
k2 + 2, so

8



Yk,k2+2 = ∅. Similarly, still for x 6∈ Yk,k2+1, |Sk2+3 (x)| ≤ k2 + 1 ≤ k
√
k2 + 3 for k ≥ 3, so

Yk,k2+3 = ∅. Now suppose Mink2+4 (x) = {i} for some 1 ≤ i ≤ k2 + 1. Then x /∈ Xk,k2+1. Also,

|Sk2+4 (x)| = k2 + 2 > k
√
k2 + 4, so x ∈ Xk,k2+4. Thus x ∈ Yk,k2+4 and so k2 + 4 ∈ Uk. This

brief discussion forshadows the construction of Proposition 2.13.

Remark 2.6. Before going farther, it is worth pointing out that if Yk,t = ∅, (i.e., if t 6∈ Uk), then⋃
i∈[1,t)∩N Xk,i =

⋃
i∈[1,t]∩N Xk,i. This can be restated as: if t /∈ Uk and if x satis�es all the Ek,i,

1 ≤ i < t, then x (automatically) satis�es Ek,t. In other words, the only side conditions that

matter occur at elements of Uk.

A key step was the formulation of the following notion.

De�nition 2.7. For k, n ∈ N+, we de�ne σk,n := [k
√
n] + 2, if [k

√
n] has the same parity as n,

and σk,n := [k
√
n]+1, otherwise. We also set mk,n := 1

2 (n− σk,n) and ck,n := card (Uk ∩ [1, n)).

Lemma 2.8. If x ∈ Yk,n then |Sn (x)| = σk,n.

Proof. σk,n is the smallest integer greater than k
√
n which has the same parity as n. Also, |Sn (x)|

always has the same parity as n. So |Sn (x)| > k
√
n if and only if |Sn (x)| ≥ σk,n. Let x ∈ Yk,n.

Then x ∈ Xk,n, so |Sn (x)| ≥ σk,n. Assume, towards a contradiction, that |Sn (x)| > σk,n. Then

|Sn (x)| ≥ σk,n + 2, since they have the same parity. Since |Sn (x)| ≤ |Sn−1 (x)|+ 1, we have

|Sn−1 (x)| ≥ |Sn (x)| − 1 ≥ σk,n + 2− 1 = σk,n + 1 > k
√
n ≥ k

√
n− 1.

So |Sn−1 (x)| > k
√
n− 1 and x ∈ Xk,n−1, a contradiction, since x ∈ Yk,n. This proves |Sn (x)| =

σk,n.

Remark 2.9. Lemma 2.8 implies that for n ∈ Uk, mk,n = mn (x) for all x ∈ Yk,n and we can let

mn := mn (x) for any x ∈ Yk,n. And so for n ∈ Uk, mn = mk,n.

The next De�nition and Lemma are purely arithmetical:

De�nition 2.10. We de�ne the following notions.

(a) The greatest integer jumps at n if and only if
[
k
√
n+ 1

]
= [k
√
n] + 1.

(b) The parity situation is the same at n if and only if [k
√
n] ≡ n (mod 2) and the parity

situation is di�erent otherwise.

9



Lemma 2.11. The relation between De�nition 2.10 (a) and (b) is as follows: if the greatest

integer does not jump at n, then, in passing from n to n+ 1, the parity situation changes. If the

greatest integer jumps at n, then, in passing from n to n+ 1, the parity situation does not

change. Further, σk,n depends on whether the greatest integer jumps at n as described below. In

particular, |σk,n+1 − σk,n| = 1.

Proof. There are four possible cases. In Cases 1, 2, we assume that the greatest integer does not

jump at n, and we consider the possibilities for the parity situation. In Cases 3, 4, we assume

the greatest integer does jump at n and the parity situation is as in Cases 1, 2, respectively.

So �rst assume
[
k
√
n+ 1

]
= [k
√
n], and, in addition:

Case 1: Suppose [k
√
n] ≡ n (mod 2). Then [k

√
n] =

[
k
√
n+ 1

]
6≡ n + 1 (mod 2), i.e., the

parity situation changes. Note also that in this case, σk,n = [k
√
n]+2, σk,n+1 =

[
k
√
n+ 1

]
+1 =

[k
√
n] + 1, i.e., σk,n+1 = σk,n − 1.

Case 2: Suppose [k
√
n] 6≡ n (mod 2). Then [k

√
n] =

[
k
√
n+ 1

]
≡ n+1 (mod 2), so, here too,

the parity situation changes. Also, here σk,n = [k
√
n]+1, and σk,n+1 =

[
k
√
n+ 1

]
+2 = [k

√
n]+2,

i.e., σk,n+1 = σk,n + 1.

So, when the greatest integer does not jump, the parity situation changes. Now assume that

the greatest integer does jump, i.e.,
[
k
√
n+ 1

]
= [k
√
n] + 1, and, in addition:

Case 3: Suppose [k
√
n] ≡ n (mod 2). Then [k

√
n] + 1 =

[
k
√
n+ 1

]
≡ n+ 1 (mod 2) so the

parity situation does not change. Also, here, σk,n = [k
√
n]+2 and also σk,n+1 =

[
k
√
n+ 1

]
+2 =

(k
√
n+ 1) + 2, i.e., σk,n+1 = σk,n + 1.

Case 4: Suppose [k
√
n] 6≡ n (mod 2). Then [k

√
n] + 1 =

[
k
√
n+ 1

]
6≡ n + 1 (mod 2), so,

here too, the parity situation does not change. Also, here, σk,n = [k
√
n] + 1 and σk,n+1 =[

k
√
n+ 1

]
+ 1 = (k

√
n+ 1) + 1, i.e., σk,n+1 = σk,n + 1.

Lemma 2.12. If n ∈ Uk then (−1)
1+xn = majn (x).

Proof. Suppose x ∈ Yk,n and n ∈ Minn (x) . Note that the case where Sn−1 (x) = 0 and the

majority value at n switches cannot arise, since n ∈ Uk ⇒ n ≥ k2 + 1 ⇒ |Sn (x)| ≥ k2 + 1.

Then since |Sn (x)| ≥ 2, |Sn (x)| = |Sn−1 (x)| − 1 and so |Sn−1 (x)| = |Sn (x)| + 1 > k
√
n + 1 ≥

k
√
n− 1 + 1 > k

√
n− 1. But then x ∈ Xk,n−1, a contradiction since x ∈ Yk,n. So if x ∈ Yk,n,

then n ∈ Majn (x) and |Sn (x)| = |Sn−1 (x)|+ 1.

Proposition 2.13. Suppose n ∈ Uk. Then there is 1 ≤ j∗ ≤ 4 such that n+ j∗ ∈ Uk.

10



Proof. Suppose x ∈ Yk,n. We will construct a modi�cation, x∗, of x, which is in Xk,n+4 and not

in Xk,n, as follows.

Step 1: x∗i = xi for i < n or i > n+ 4.

Step 2: x∗n = 1− xn.

Step 3: x∗n+j is such that (−1)
1+x∗

n+j = majn (x), 1 ≤ j ≤ 4.

Then Step 1 implies x∗ satis�es all the side conditions below level n. Step 1 and Step 2 imply

|Sn (x∗)| = |Sn (x)| − 2, so x∗ /∈ Xk,n. Note that, by construction, |Sn+4 (x∗)| = |Sn (x)| + 2.

Recall that Yk,n 6= φ⇒ n > k2 ⇒
√
n > k. We have that

|Sn+4 (x∗)|2 = |Sn (x)|2+4 |Sn (x)|+4 > k2n+4k
√
n+4 > k2n+4k2+4 > k2n+4k2 = k2 (n+ 4) ,

so |Sn+4 (x∗)| > k
√
n+ 4, and therefore, x∗ ∈ Xk,n+4.

We will not show x∗ /∈ (Xk,n+1 ∪ Xk,n+2 ∪ Xk,n+3); indeed this may be false. Rather, we have

shown there is 1 ≤ j ≤ 4 such that x∗ ∈ Xk,n+j . Let j
∗ be the least such j. Then x∗ ∈ Yk,n+j∗ .

So there is u ∈ Uk such that n < u ≤ n+ 4.

Corollary 2.14. Thus, Uk is in�nite.

Remark 2.15. If we let (uk,j |j ≥ 1) be the increasing enumeration of Uk, then Proposition 2.13

can be restated as uk,j+1 − uk,j ≤ 4 for all j ∈ N+. It is also worth noting that for all j ≥ 1,

ck,uj = j − 1.

When we are taking k to be �xed, we will lighten the notation by using uj in place of uk,j .

Conventionally, we set uk,0 = u0 = 0 for all k ∈ N+.

Lemma 2.16. t ∈ Uk ⇒ σk,t =
[
k
√
t
]

+ 1.

Proof. Let y ∈ Yk,t. Then y /∈ Xk,t−1, so |St−1 (y)| ≤
[
k
√
t− 1

]
. Suppose, towards a

contradiction, that σk,t =
[
k
√
t
]

+ 2. Since y ∈ Yk,t, |St (y)| = σk,t =
[
k
√
t
]

+ 2. Also, Lemma

2.12 shows that |St−1 (y)|+ 1 = |St (y)|. Then |St−1 (y)|+ 1 =
[
k
√
t
]

+ 2, and so

|St−1 (y)| =
[
k
√
t
]

+ 1 ≥
[
k
√
t− 1

]
+ 1. Then |St−1 (y)| > k

√
t− 1, a contradiction since

y /∈ Xk,t−1.

The next few lemmas are a major step: they relate the number of side conditions (that

matter, viz Remark 2.6) below n to mk,n. It is worth noting that mk,n is actually negative when

n < k2 + 1 and becomes 0 at k2 + 1. Also, the number of side conditions (that matter) below n

11



is 0 when n ≤ k2 + 1 and becomes 1 at k2 + 2. Lemmas 2.17 through 2.21 demonstrate that this

pattern persists:

mk,n �keeps chasing� card (Uk ∩ [1, n)); it �catches up� exactly when n ∈ Uk after which it �falls

behind� again (for a bit).

Lemma 2.17. If n ∈ Uk then mn = ck,n (= card (Uk ∩ [1, n))). That is, the minority count is

the number of previous successes.

Proof. Suppose n ∈ Uk, so n = ut, for some t. Then, for all x ∈ Yk,ut , |Sut (x)| = ut − 2mut .

Claim: mut
= t− 1 (= ck,ut

= card (Uk ∩ [1, ut))).

We prove, by induction on s, that the equation of the Claim holds, with s in place of t.

The basis is mu1 = 0, which is true since u1 = k2 + 1. Assume mus = s − 1. We will show

mus+1
= mus

+1. Thenmus+1
= (s− 1)+1 = s = (s+ 1)−1. Let x ∈ Yk,us

and construct x∗, j∗

as in Proposition 2.13. Then us+j
∗ = us+1 and, by construction of x

∗,mus+j∗ (x∗) = mus
(x)+1.

So mus+1 = mus+1 (x∗) = mus (x) + 1 = mus + 1.

The next Lemma gives the converse.

Lemma 2.18. mk,t = ck,t ⇒ t ∈ Uk.

Proof. Recall mk,n = 1
2 (n− σk,n). Suppose mk,t = ck,t. We construct a y ∈ Yk,t by setting

yi =

 1 if i ∈ Uk ∩ [1, t)

0 otherwise.

Then mt (y) = card (Uk ∩ [1, t)) = mk,t = 1
2 (t− σk,t). So |St (y)| = t− 2mt (y) = t− t + σk,t =

σk,t > k
√
t, so y ∈ Xk,t. Now we show that for all 1 ≤ r < t, y /∈ Xk,r. Towards a contradiction,

suppose otherwise. Consider the smallest r such that y ∈ Xk,r. Then also y ∈ Yk,r. Then r ∈ Uk,

so ck,r = mk,r = mr (y). By construction, mr (y) = card (Uk ∩ [1, r]) = ck,r + 1 since r ∈ Uk.

But then we have ck,r = mr (y) = ck,r + 1, a contradiction. So there is no such r. So y ∈ Yk,t.

Remark 2.19. mk,t < ck,t ⇒ t /∈ Uk. This is since t ∈ Uk ⇒ mk,t = ck,t by Lemma 2.17.

Lemma 2.20. mk,n ≤ ck,n for all n ≥ 1.
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Proof. By induction. Our induction hypothesis is that

mk,n ≤ ck,n.

ck,n is non-decreasing and increases by 1 from n to n+ 1 if and only if n ∈ Uk. Also σk,n either

increases or decreases by 1. Therefore, mk,n is also non-decreasing, increases by 1 from n to n+1

if σk,n+1 = σk,n − 1, and does not change if σk,n+1 = σk,n + 1. We show that mk,n+1 ≤ ck,n+1.

Case 1: Suppose that mk,n < ck,n. Then mk,n+1 ≤ ck,n+1.

Case 2: Suppose that mk,n = ck,n. Then n ∈ Uk, so ck,n+1 = ck,n + 1. Thus mk,n+1 ≤

mk,n + 1 ≤ ck,n + 1 = ck,n+1.

Lemma 2.21. ck,n ≤ mk,n + 1 for all n ≥ 1.

Proof. We prove that for all t ≥ u1, mk,t ≤ ck,t ≤ mk,t+1. Lemma 2.20 gives the �rst inequality,

so we are only concerned with the second. The proof is by induction on t; the basis is that for

t = u1, we have ck,u1 = 0 = mk,u1 . For the induction step, the crucial point is that the mk,n's

are non-decreasing. So, suppose that ck,t ≤ mk,t + 1. Towards a contradiction, assume that

ck,t+1 > mk,t+1 + 1. We consider cases.

Case 1: Suppose t /∈ Uk. Then ck,t > mk,t, and so, by the induction hypothesis, ck,t =

mk,t + 1. Also, since t /∈ Uk, ck,t+1 = ck,t, so mk,t + 1 = ck,t+1 > mk,t+1 + 1, i.e, mk,t > mk,t+1,

a contradiction.

Case 2: Suppose t ∈ Uk. Then ck,t = mk,t, and mk,t + 1 = ck,t + 1 = ck,t+1 > mk,t+1 + 1,

and the contradiction is as before.

The next corollary follows immediately from Lemma 2.17.

Corollary 2.22. For all j, there is exactly one n such that Yk,n 6= ∅ and card (Uk ∩ [1, n)) =

j − 1 = mn (namely n = uj).

Lemma 2.23. If n+ 1 ∈ Uk then Yk,n = ∅ (so there are never two consecutive successes).

Proof. We �rst prove the following:

Claim: If σk,n < σk,n+1, then n+ 1 6∈ Uk.

To prove the claim, suppose, towards a contradiction, that σk,n < σk,n+1 and n + 1 ∈ Uk.

Then, by Lemma 2.17, ck,n+1 =
n+1−σk,n+1

2 =
n+1−σk,n−1

2 =
n−σk,n

2 . Recall that ck,n+1 = ck,n if

and only if n 6∈ Uk and ck,n+1 = ck,n + 1 if and only if n ∈ Uk. In the �rst case, apply Lemma
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2.18 to n to get n 6∈ Uk if and only if n ∈ Uk, a contradiction. In the second case, apply Lemma

2.17 to n to get ck,n + 1 =
n−σk,n

2 = ck,n, again, a contradiction, and the Claim is proved.

We now complete the proof of the Lemma. If n, n+1 ∈ Uk, then, applying the Claim to n−1, n

and then to n, n+ 1 successively, we have σk,n+1 = σk,n − 1 = σk,n−1 − 2. Since σk,n > σk,n+1,

we are in the case where [k
√
n] ≡ n (mod 2) and so σk,n = [k

√
n] + 2. Since σk,n−1 > σk,n

we have σk,n−1 = σk,n + 1 = [k
√
n] + 3. But then, by de�nition, σk,n−1 ≤

[
k
√
n− 1

]
+ 2 <[

k
√
n− 1

]
+ 3 ≤ [k

√
n] + 3 = σk,n−1, a contradiction.

Theorem 2.24. n+ 1 ∈ Uk if and only if
([
k
√
n+ 1

]
= [k
√
n] and n ≡ [k

√
n] (mod 2)

)
.

Proof. (⇒) By the proof of Lemma 2.11,
([
k
√
n+ 1

]
= [k
√
n] and n ≡ [k

√
n] (mod 2)

)
if and

only if σk,n+1 = σk,n − 1, and, if n + 1 ∈ Uk, then σk,n+1 = σk,n − 1, by Lemma 2.11 and the

Claim of Lemma 2.23.

(⇐) Suppose (
[
k
√
n+ 1

]
= [k
√
n] and n ≡ [k

√
n] (mod 2)), i.e., σk,n+1 = σk,n − 1. Then

σk,n = [k
√
n] + 2, σk,n+1 = [k

√
n] + 1. Since σk,n 6= [k

√
n] + 1, by Lemma 2.16, n 6∈ Uk. Note

that mk,n+1 =
n+1−σk,n+1

2 =
n+1−σk,n+1

2 =
n−σk,n

2 + 1 = mk,n + 1. Since n 6∈ Uk, ck,n = ck,n+1.

Also, by Lemmas 2.18, 2.20, 2.21, mk,n + 1 = ck,n. Thus mk,n+1 = mk,n + 1 = ck,n = ck,n+1,

and so, by Lemma 2.18, again, n+ 1 ∈ Uk.

Remark 2.25. As already noted, Theorem 2.24 gives a purely arithmetical condition on n

equivalent to n+ 1 ∈ Uk. As is clear from the proof, the Theorem can be reformulated as

n+ 1 ∈ Uk if and only if σk,n+1 < σk,n.

Lemma 2.26. Suppose n ∈ Uk.

(a) n+ 2 ∈ Uk if and only if [k
√
n] =

[
k
√
n+ 2

]
.

(b) If n+ 2 6∈ Uk then

(i) n+ 3 ∈ Uk if and only if
[
k
√
n+ 3

]
= [k
√
n] + 1,

(ii) n+ 4 ∈ Uk if and only if
[
k
√
n+ 3

]
= [k
√
n] + 2.

Proof. For (a), suppose n ∈ Uk.

(⇒) If also n+ 2 ∈ Uk, then we are in the case where σk,n+2 = σk,n+1 − 1 and
[
k
√
n+ 2

]
=[

k
√
n+ 1

]
6≡ n+2 (mod 2). Since n ∈ Uk, we also have σk,n = σk,n−1−1 and [k

√
n] 6≡ n (mod 2).

If [k
√
n] 6=

[
k
√
n+ 1

]
then we would have

[
k
√
n+ 1

]
≡ n ≡ n+ 2 (mod 2), a contradiction. So

[k
√
n] =

[
k
√
n+ 1

]
=
[
k
√
n+ 2

]
.
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(⇐) Let [k
√
n] =

[
k
√
n+ 2

]
. Since n ∈ Uk, we are in the case where σk,n = σk,n−1 − 1

and [k
√
n] 6≡ n (mod 2). Then

[
k
√
n+ 2

]
6≡ n (mod 2) and σk,n+2 =

[
k
√
n+ 2

]
+ 1 = σk,n.

Since there are never two consecutive successes, card (Uk ∩ [1, n+ 2)) = card (Uk ∩ [1, n)) + 1 =

n−σk,n

2 + 1 =
n+2−σk,n+2

2 , so n+ 2 ∈ Uk.

For (b), suppose n ∈ Uk but n+2 6∈ Uk. Since n ∈ Uk, [k
√
n] 6≡ n mod 2 and σk,n = [k

√
n]+1.

For (i): (⇒) Suppose n + 3 ∈ Uk. Then, by Theorem 2.24,
[
k
√
n+ 2

]
=
[
k
√
n+ 3

]
. So the

greatest integer does not jump at n+ 2. Since n+ 2 6∈ Uk, by (a), above, [k
√
n] 6=

[
k
√
n+ 2

]
, so

there is a jump at n or n+ 1. Since there is no jump at n+ 2, thus there is a jump only at n or

n+ 1, i.e.,
[
k
√
n+ 3

]
= [k
√
n] + 1.

(⇐) First suppose there is a jump only at n+ 1, i.e.,
[
k
√
n+ 3

]
=
[
k
√
n+ 2

]
=
[
k
√
n+ 1

]
+

1 = [k
√
n] + 1 6≡ n+ 1 (mod 2). Then we have

[
k
√
n+ 3

]
=
[
k
√
n+ 2

]
≡ n+ 2 (mod 2), so by

Theorem 2.24, n+ 3 ∈ Uk.

Now suppose there is a jump only at n, i.e.,
[
k
√
n+ 3

]
=
[
k
√
n+ 2

]
=
[
k
√
n+ 1

]
= [k
√
n] +

1 6≡ n+ 1 (mod 2). Then, just as above, we have
[
k
√
n+ 3

]
=
[
k
√
n+ 2

]
≡ n+ 2 (mod 2), and

so n+ 3 ∈ Uk.

For (ii): (⇒) Suppose n + 4 ∈ Uk. Then, by Theorem 2.24,
[
k
√
n+ 4

]
=
[
k
√
n+ 3

]
≡

n + 3 (mod 2). So the greatest integer does not jump at n + 3. Since n ∈ Uk and n + 2 6∈ Uk,[
k
√
n+ 2

]
6= [k

√
n] 6≡ n (mod 2), so there is a jump at n or n + 1, and

[
k
√
n+ 2

]
≡ n ≡

n + 2 (mod 2). Then, since
[
k
√
n+ 3

]
≡ n + 3 (mod 2),

[
k
√
n+ 2

]
6=
[
k
√
n+ 3

]
, i.e., the

greatest integer jumps at n + 2. We cannot have two consecutive jumps, so we conclude there

are jumps at n and at n+ 2, i.e.,
[
k
√
n+ 3

]
= [k
√
n] + 2.

(⇐) Suppose
[
k
√
n+ 4

]
=
[
k
√
n+ 3

]
=
[
k
√
n+ 2

]
+ 1 =

[
k
√
n+ 1

]
+ 1 = [k

√
n] + 2 6≡ n+

2 (mod 2). Then
[
k
√
n+ 4

]
=
[
k
√
n+ 3

]
≡ n+3 (mod 2), and, by Theorem 2.24, n+4 ∈ Uk.

Lemma 2.27. Suppose j, l ∈ N+. Then

(a) for su�ciently large j, uj+1 − uj ≤ 3,

(b) liml→∞
ul

l = 2.

Proof. For (a), a fairly tight lower bound is uj ≥ 9k2

4 . In order to have uj+1 − uj = 4 (a gap of

four) for some j ∈ N+, letting n = uj , there must be a jump at n and n+ 2; we must have

[k
√
n] + 2 =

[
k
√
n+ 3

]
. We consider the necessary conditions so that the least l such that[

k
√
n+ l

]
≥ [k
√
n] + 2 is greater than or equal to four.
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Note that k
√
n+ l = k

√
n ·
√

1 + l
n . The series expansion at 0 of

√
1 + x, for |x| < 1, is 1+

the alternating series

x

2
− x2

8
+
x3

16
− 5x4

128
+

7x5

256
+O

(
x6
)
.

Since it is alternating, the sum is less than 1+ x
2 . Putting

3
n for x, we have

√
1 + 3

n ≤ 1+ 3
2n . Then

k
√
n+ 3 ≤ k

√
n
(
1 + 3

2n

)
= k
√
n + 3k

2
√
n
. If there is a gap of four, i.e., [k

√
n] + 2 =

[
k
√
n+ 3

]
,

then we will have [
k
√
n
]

+ 2 ≤
[
k
√
n+ 3

]
≤ k
√
n+ 3 ≤ k

√
n+

3k

2
√
n
.

For a contradiction, it is su�cient to have 3k
2
√
n
≤ 1. Thus for n ≥ 9

4k
2 there are no more gaps of

four, so for n = uj with j su�ciently large, uj+1 − uj ≤ 3.

For (b), for 9k2

4 < j < l, let

T2 (j, l) := {i|j < i ≤ l and ui − ui−1 = 2} ,

T3 (j, l) := {i|j < i ≤ l and ui − ui−1 = 3} .

Then T2 (j, l) ∪ T3 (j, l) = (j, l] ∩ N. Also ul − uj = 2card (T2 (j, l)) + 3card (T3 (j, l)).

Claim: For any ε > 0 there is a j such that for all l > j, card(T3(j,l))

card(T2(j,l))
≤ ε.

To prove the claim, �x ε > 0 and let d = 2
ε + 3 (in fact d ≥ 2

ε + 3 is enough). Choose j

su�ciently large so that uj >
9k
4 , uj−uj−1 = 3 and k

2
√
uj
< 1

d+2 . Let j < l, let c = card (T3 (j, l))

and let (ti|1 ≤ i ≤ c) be the increasing enumeration of T3 (j, l). Also, let t0 = j. Note that by

Lemma 2.26, for all 0 ≤ i < c, k
√
uti+1

− 1 − k
√
uti − 3 > 1. Therefore, by the Mean Value

Theorem, for all such i, d+ 2 <
(
uti+1 − 1

)
− (uti − 3), i.e., d < uti+1 − uti . But

3c+ 2card (T2 (j, l)) = ul − uj

≥
c−1∑
i=0

(
uti+1

− uti
)

> cd.

So

c

card (T2 (j, l))
<

2

d− 3
≤ ε,

as required.

Temporarily �xing ε > 0, �x a j as in the Claim. For large enough l > j, card (T2 (j, l)) is
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large enough so that
uj

card(T2(j,l))
< ε. We have

ul = uj + ul − uj

= uj + 2card (T2 (j, l)) + 3card (T3 (j, l))

=
uj

card (T2 (j, l))
card (T2 (j, l)) + 2card (T2 (j, l)) + 3

card (T3 (j, l))

card (T2 (j, l))
card (T2 (j, l))

=

(
uj

card (T2 (j, l))
+ 2 + 3

card (T3 (j, l))

card (T2 (j, l))

)
card (T2 (j, l))

< (ε+ 2 + 3ε) card (T2 (j, l))

So ul < (4ε+ 2) card (T2 (j, l)), and since l > l − j > card (T2 (j, l)), ul

l <
ul

card(T2(j,l))
< 4ε + 2.

So for su�ciently large l, ul

l < 4ε+ 2. This is true for any ε, so liml→∞
ul

l = 2.

Numerical calculation has shown that (even for k = 3, for example), gaps of four do occur and in

fact, early on, gaps of three and four predominate, but the gaps of four disappear fairly quickly,

and eventually, the gaps of two predominate.

2.2 Measure: Gain and Loss

To provide further insight into the behaviour of Sn√
n
, we will now compute λ

(
Xk,uj+1

)
−λ

(
Xk,uj

)
in a gap of two and in a gap of three. For any n,

λ (Xk,n) =
1

2n−1

((
n

0

)
+ · · ·+

(
n

mk,n

))
;

note that when n = uj , mk,n = j − 1.

Suppose n+ 1 /∈ Uk. Then Xk,n+1 $ Xk,n, and, in fact,

λ (Xk,n r Xk,n+1) =
1

2

(
1

2n−1

(
n

mk,n

))
=

(
n

mk,n

)
2n

:

half of the x's such that |Sn (x)| = σk,n = n−2mk,n will have a �minority summand� as (−1)
1+xn .

Such x's will no longer be in Xk,n+1, but they are the only ones that will disappear.

Now suppose n + 1 ∈ Uk. Then Xk,n ⊆ Xk,n+1, and x ∈ Xk,n+1 r Xk,n if and only if
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(|Sn (x)| = σk,n − 2 and n+ 1 ∈ Majn+1 (x)). Another view of λ (Xk,n) is that

λ
(

(Xk,n)
C
)

=
1

2n

((
n

1
2 (n− (σk,n − 2))

)
+ · · ·+

(
n

1
2 (n+ (σk,n − 2))

))
.

The �rst and last summands correspond to the only possible x's that enter Xk,n+1, and for each

summand, half of the x's do, namely, the ones that go in the majority direction.

Thus, if n+ 1 /∈ Uk, then

λ (Xk,n+1) = λ (Xk,n)−

(
n

mk,n

)
2n

,

and, if n+ 1 ∈ Uk, then

λ (Xk,n+1) = λ (Xk,n) +

(
n

mk,n+1

)
2n

.

Suppose uj+1 = uj + 2. Then, since uj ∈ Uk, uj + 1 /∈ Uk, so

λ
(
Xk,uj+1

)
= λ

(
Xk,uj

)
−
(
uj

j−1
)

2uj
.

Note that

mk,uj+1 = cuj+1 − 1 = cuj
+ 1− 1 = cuj

= j − 1,

and so,

λ
(
Xk,uj+2

)
= λ

(
Xk,uj+1

)
+

(
uj+1
j

)
2uj+1

= λ
(
Xk,uj

)
+

(
uj+1
j

)
2uj+1

−
2 ·
(
uj

j−1
)

2uj+1

= λ
(
Xk,uj

)
+

(
uj

j

)
+
(
uj

j−1
)

2uj+1
−

2
(
uj

j−1
)

2uj+1
,

since
(
uj

j

)
+
(
uj

j−1
)

=
(
uj+1
j

)
. Thus

λ
(
Xk,uj+2

)
= λ

(
Xk,uj

)
+

1

2uj+1

((
uj
j

)
−
(

uj
j − 1

))
.

Since
(
uj

j

)
>
(
uj

j−1
)
, we have λ

(
Xk,uj+2

)
> λ

(
Xk,uj

)
: measure increases in gaps of two.
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Next we show measure decreases in gaps of three. Suppose uj+1 = uj + 3. Then,

λ
(
Xk,uj+3

)
= λ

(
Xk,uj+2

)
+

(
uj+2

mk,uj+2+1

)
2uj+2

= λ
(
Xk,uj+1

)
+

(
uj+2

mk,uj+2+1

)
2uj+2

−

(
uj+1

mk,uj+1

)
2uj+1

= λ
(
Xk,uj

)
+

(
uj+2

mk,uj+2+1

)
2uj+2

−

(
uj+1

mk,uj+1

)
2uj+1

−

(
uj

mk,uj

)
2uj

.

Since uj+1 = uj + 3, we have

mk,uj
= j − 1 = ck,uj

,

mk,uj+1 < ck,uj+1 = ck,uj
+ 1 = j

and

mk,uj+2 < ck,uj+2 = ck,uj
+ 1 = j,

so mk,uj+1 = j − 1 and mk,uj+2 = j − 1. So we have

λ
(
Xk,uj+3

)
= λ

(
Xk,uj

)
+

(
uj+2
j

)
− 2
(
uj+1
j−1

)
− 4
(
uj

j−1
)

2uj+2
.

Note that
(
uj+2
j

)
−
(
uj+1
j−1

)
=
(
uj+1
j

)
and

(
uj+1
j

)
−
(
uj

j−1
)

=
(
uj

j

)
. Thus in a gap of three, we

have

λ
(
Xk,uj+3

)
− λ

(
Xk,uj

)
=

(
uj+2
j

)
− 2
(
uj+1
j−1

)
− 4
(
uj

j−1
)

2uj+2

=

(
uj+2
j

)
−
(
uj+1
j−1

)
− 4
(
uj

j−1
)
−
(
uj+1
j−1

)
2uj+2

=

(
uj+1
j

)
− 4
(
uj

j−1
)
−
(
uj+1
j−1

)
2uj+2

=

(
uj+1
j

)
−
(
uj

j−1
)
− 3
(
uj

j−1
)
−
(
uj+1
j−1

)
2uj+2

=

(
uj

j

)
− 3
(
uj

j−1
)
−
(
uj+1
j−1

)
2uj+2

=

(
uj

j

)
−
(
uj

j−1
)
− 2
(
uj

j−1
)
−
(
uj+1
j−1

)
2uj+2

. (2.1)

In order to compute
(
uj

j

)
−
(
uj

j−1
)
we �rst compute the ratio:
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(
uj

j

)(
uj

j−1
) =

uj − (j − 1)

j
=
uj −mk,uj

j
=
mk,uj + σk,uj

j
.

Since uj ∈ Uk, σk,uj
= [k
√
uj ] + 1, and so

mk,uj + σk,uj

j
=

1/2
(
uj −

[
k
√
uj
]
− 1
)

+
[
k
√
uj
]

+ 1

j
=

1/2
(
uj +

[
k
√
uj
]

+ 1
)

j
.

For j su�ciently large, by Lemma 2.27 (b), uj ≈ 2j, and so,

(
uj
j

)
−
(

uj
j − 1

)
=

(
uj
j − 1

)(
1/2
(
uj +

[
k
√
uj
]

+ 1
)

j
− 1

)

≈
(

uj
j − 1

)(
j + 1/2

([
k
√
uj
]

+ 1
)

j
− 1

)

=

(
uj
j − 1

)(
1/2
([
k
√
uj
]

+ 1
)

j

)
.

With this in mind, (2.1) becomes

λ
(
Xk,uj+3

)
− λ

(
Xk,uj

)
≈

(
uj

j−1
)( 1/2([k√uj]+1)

j

)
− 2
(
uj

j−1
)
−
(
uj+1
j−1

)
2uj+2

.

For su�ciently large j, 1/2
([
k
√
uj
]

+ 1
)
< j and the di�erence λ

(
Xk,uj+3

)
−λ
(
Xk,uj

)
is certainly

negative. Thus, far enough out, measure decreases in gaps of three.

20



Chapter 3

S̃n: Construction/Representation

3.1 Introduction

The material of this Chapter is based on a theorem of Skorokhod, Theorem 3.1, below. In �3.2, we

analyze Skorokhod's construction when it is applied to the sequence
(
Sn
∣∣n ∈ N+

)
, culminating

in the de�nitions of the X̃n and S̃n (De�nition 3.2).

Recall that we seek to express each S̃n (x) as
∑n
i=1 R̃n,i (x), for all x ∈ (0, 1), where for each

n,
{
R̃n,i

∣∣1 ≤ i ≤ n} are to be independent random variables on (0, 1), each of which depends

only on the �rst n coordinates of x and takes on values −1, 1 with equal probability. For Sn (x)

we can simply take Rn,i (x) = (−1)
1+xi .

In Theorem 3.4, we establish one of our fundamental results: representations S̃n =
∑n
i=1 R̃n,i (x),

as above, are in canonical one-to-one correspondence with permutations, F , of {0, 1}n satisfying

the composition equation S̃n = Sn ◦ F . This, in turn, paves the way for Theorem 3.5, where

we show that there are many such permutations F , and therefore (Corollary 3.6) many such

representations,
(
R̃n,i

∣∣n ∈ N+
)
, of each S̃n.

Theorems 3.4 and 3.5 are proved in �3.3. At the end of that section, we pose a series of

questions that establish the groundwork and motivation for Chapter 4: among the continuum

many sequences f = (fn|n ∈ N+) of permutations, such that for each n ∈ N+, S̃n = Sn ◦ fn, are

some more natural than (and therefore preferable to) others? Are any such sequences e�ective?

This culminates in De�nition 3.7, where we de�ne the notion of a suitable sequence.

In [9], Skorokhod proved:

Theorem 3.1. Suppose that on a probability space, we have random variables Xn, n ∈ N+,
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and X such that {Xn} converges to X weakly. Then on ([0, 1] , B ([0, 1]) , λ), there are random

variables Yn, n ∈ N+, and Y , with the same distributions as the Xn and X, respectively, and

such that {Yn} converges to Y almost surely.

Note that we can replace [0, 1]R in the statement of the above theorem by (0, 1).

A special case of the Central Limit Theorem is that
{
Sn√
n

}
converges weakly to the standard

normal on (0, 1), [3], for example. In the above theorem, we take our initial probability space

to be [0, 1), and we put Xn = Sn√
n
. Then the Yn that result will be precisely the X̃n = S̃n√

n
. We

will explicitly carry out the construction, which we call the Skorokhod treatment, involved in

the proof of this theorem in this special case, to obtain an explicit characterization of X̃n = S̃n√
n

(which, by Skorokhod's Theorem, will converge to the standard normal almost surely).

3.2 Skorokhod's Route to Almost Sure Convergence

Now we will look closely at Skorokhod's construction so as to obtain an explicit

characterization of S̃n. Let At := {y ∈ (0, 1) |Sn (y) ≤ t
√
n}. So λ (A (t)) = P

(
Sn√
n
≤ t
)

=

P (Xn ≤ t) (see De�nition 1.3). Then At = ∅ for t < −
√
n, and At = (0, 1) for t ≥

√
n. More

generally, At will be constant on these intervals of t:

(
−∞,−

√
n
)
,

[
−
√
n,

2− n√
n

)
, . . . ,

[
−n+ 2k√

n
,
−n+ 2 (k + 1)√

n

)
, . . . ,

[
n− 2√
n
,
√
n

)
,
[√
n,∞

)
,

for 0 ≤ k < n. For x ∈ (0, 1], de�ne X̃n (x) := inf {t ∈ R|λ (At) ≥ x}. A straightforward

computation shows that X̃n is a non-decreasing step function with �steps� An,i, i = 0, . . . , n,

where

An,i =

 1

2n

i−1∑
j=0

 n

j

 ,
1

2n

i∑
j=0

 n

j


 .

De�nition 3.2. For such i, and for all x ∈ An,i, letting

vn,i =
−n+ 2i√

n
,

we de�ne

X̃n (x) := vn,i,
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and

S̃n (x) := −n+ 2i.

This sequence of de�nitions, culminating in the de�nition of S̃n, carries out Skorokhod's construc-

tion starting from the sequence
(
Sn√
n

∣∣n ∈ N+
)
. Therefore the �Skorokhod sequence�

(
S̃n√
n

∣∣n ∈ N+
)

converges almost surely to the standard normal, this time on (0, 1]R, but the fact that S̃n (1) hap-

pens to be de�ned turns out to be more of an annoyance than a feature, so we'll view S̃n as de�ned

only on (0, 1). Note that the de�nition of S̃n (x) requires only that we identify the �step�, An,i,

to which x belongs. This depends only on the �rst n coordinates of x, and so the same holds for

S̃n (x) (as indeed it does for Sn (x)). This, in turn, means that we can view S̃n as being de�ned

on {0, 1}n just as we did for Sn in De�nition 2.1:

S̃n (r) := S̃n (x) for any x ∈ C ′ such that x ⊇ r.

Finally, note that we have carried out all of the preceding without showing how S̃n can be

represented as the sum of the R̃n,i, described above. This will be done in �3.3.

For �xed n ∈ N+ and x ∈ (0, 1), let κn = κn (x) be de�ned by:

κn =

n∑
i=1

xi2
n−i.

Then x ∈
[
κn(x)
2n , κn(x)+1

2n

)
and of course this depends only on the �rst n coordinates of x. We

exploit this observation by viewing κn as a function with domain {0, 1}n: κn (r) = κn (x) for any

x such that x ⊇ r. From this point of view, κn is a bijection from {0, 1}n to [0, 2n)∩N. Further, κn

is order preserving if we take {0, 1}n to be linearly ordered by lexicographic order. Finally, note

that r is the binary representation of κn (r), and that, letting Nr be the basic open neighborhood

in Cantor space corresponding to r (so Nr = {x ∈ C ′|x ⊇ r}), Nr =
[
κn(r)
2n , κn(r)+1

2n

)
.

In view of these observations, in what follows, for �xed n, we will often identify r ∈ {0, 1}n

with κn (r) and dyadic intervals,
[
κ
2n ,

κ+1
2n

)
, of length 1

2n , with κ ∈ [0, 2n) ∩ N. From this point

of view, for x ∈ (0, 1), we compute S̃n (x) by identifying the step, An,i, that includes the interval

κn (x).

Remark 3.3. Note that, for each n ∈ N+ and for κ ∈ [0, 2n) ∩ N, −n ≤ Sn (κ) , S̃n (κ) ≤ n and

Sn, S̃n satisfy the dualization equations Sn (κ) = −Sn (2n − 1− κ), S̃n (κ) = −S̃n (2n − 1− κ).
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The graphs of Sn and S̃n through n = 7 are illustrated in the �gures below. Sn is shown in

magenta, while S̃n is shown in green.

Figure 3.1: S1, S̃1

Figure 3.2: S2, S̃2
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Figure 3.3: S3, S̃3

Figure 3.4: S4, S̃4
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Figure 3.5: S5, S̃5

Figure 3.6: S6, S̃6
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Figure 3.7: S7, S̃7

3.3 Mapping Step to Weight (to Represent the S̃n)

In this section, we carry out the stated goal of obaining �many� representations of each S̃n.

Theorem 3.4. For any n, there is a canonical one-to-one correspondence between permutations

F : {0, 1}n → {0, 1}n such that S̃n = Sn ◦ F , and representations S̃n =
∑n
i=1 R̃n,i, where(

R̃n,i
∣∣1 ≤ i ≤ n) is an i.i.d. family of random variables on (0, 1) such that each R̃n,i depends

only on the �rst n coordinates of x and takes on values −1, 1 with equal probability.

Proof. Temporarily, let �balanced� mean �takes on values −1, 1 each with probability 1
2 .� Suppose

S̃n = Sn ◦ F . De�ne

R̃n,i (x) := (−1)
1+(F (x1,...,xn))i .

Since Sn (x) =
∑n
i=1 (−1)

1+xi , Sn (F (x)) =
∑n
i=1 R̃n,i (x). To show the R̃n,i are balanced, it

su�ces to show for all i = 1, . . . , n and ε ∈ {0, 1},

λ
({
x
∣∣ (F (x1, . . . , xn))i = ε

})
=

1

2
.

Let A =
{
t ∈ {0, 1}n

∣∣ti = ε
}
. So card (A) = 2n

2 = 2n−1. Since F is 1-1, card
(
F−1 [A]

)
= 2n−1.

Now, F−1 [A] =
{
r ∈ {0, 1}n

∣∣ (F (r))i = ε
}
and {x| (F (x1, . . . , xn))i = ε} =

⊔
r∈F−1[A]Nr. So,

λ ({x| (F (x1, . . . , xn))i = ε})= λ
(⋃

r∈F−1[A]Nr

)
= 2n−1 · 1

2n = 1
2 .
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To show the R̃n,i are independent, it su�ces to show for all s ∈ {−1, 1}n,

p (s1, . . . , sn) = p1 (s1) · . . . · pn (sn) ,

where p is the joint pmf of the R̃n,i and pi is the pmf of R̃n,i alone. We showed the right

hand side is simply
(
1
2

)n
, so it su�ces to show p (s1, . . . , sn) = 1

2n . Recall that p (s1, . . . , sn) =

P
(
R̃n,1 = s1, . . . , R̃n,n = sn

)
. Let t ∈ {0, 1}n be such that ti =

 0 if si = −1

1 if si = 1.

F is one-to-one, so there is a unique r ∈ {0, 1}n such that F (r) = t. Then the probability of the

event Es =
(
R̃n,1 = s1, . . . , R̃n,n = sn

)
is exactly

λ ({x| (F (x1, . . . , xn))1 = t1, . . . , (F (x1, . . . , xn))n = tn}) = λ
({
x
∣∣F (x1, . . . , xn) = t

})
= λ ({x| (x1, . . . , xn) = r})

= λ (Nr)

=
1

2n
.

Now suppose
(
R̃n,i

∣∣1 ≤ i ≤ n) is as above. Fix r ∈ {0, 1}n.
(
R̃n,1 (x) , . . . , R̃n,n (x)

)
is

constant on Nr. Denote that constant value by G (r). So G : {0, 1}n → {−1, 1}n. G is one-to-

one since if u ∈ {0, 1}n, u 6= r, and G (u) = G (r), then

P
(
R̃n,1 = (G (r))1 , . . . , R̃n,n = (G (r))n

)
≥ λ (Nr) + λ (Nu) =

1

2n−1
,

but by our hypotheses of �balanced� and independent, P
(
R̃n,1 = (G (r))1 , . . . , R̃n,n = (G (r))n

)
= 1

2n . Since G : {0, 1}n → {−1, 1}n, and since the domain and target of G are �nite sets of

the same cardinality, G is one-to-one if and only if it is onto. So we have that G is both one-

to-one and onto. De�ne F (r) = t, where ti =

 0 if (G (r))i = −1

1 if (G (r))i = 1.
Then Sn (F (x)) =

∑n
i=1 (−1)

1+ti =
∑n
i=1 R̃n,i (x) = S̃n (x), i.e., F is as required.

Theorem 3.5. For each n, there are exactly
∏n
i=0

((
n
i

)
!
)
permutations F : {0, 1}n → {0, 1}n

such that S̃n = Sn ◦ F .
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Proof. Recall that

An,i =
{
s ∈ {0, 1}n

∣∣S̃n (x) = −n+ 2i for all x ⊇ s
}
,

and let

Bn,i =
{
s ∈ {0, 1}n

∣∣Sn (s) = −n+ 2i
}
.

Let f be a permutation of {0, 1} n. Then S̃n = Sn◦f if and only if for all 0 ≤ i ≤ n, f [An,i] = Bn,i,

i.e., if and only if f � An,i is a bijection from An,i to Bn,i, and of course there are
(
n
i

)
! such

bijections. Since f =
⋃n
i=0 (f � An,i) and since the An,i (respectively Bn,i) are pairwise disjoint,

the conclusion is clear.

Corollary 3.6. For each n, there are exactly
∏n
i=0

((
n
i

)
!
)
families

(
R̃n,i

∣∣i = 1, . . . , n
)
as above.

Theorem 3.5 shows that for all n, there are many permutations, F , of {0, 1}n satisfying S̃n =

Sn ◦ F . Are there some additional criteria according to which some of these permutations are

more natural than (and therefore preferable to) others? Are there sequences, (Fn|n ∈ N+), of

preferred permutations, one for each n, exhibiting some uniformities in terms of n? Is there such

a sequence which is also highly e�ective? The motivation is that by isolating suitable additional

criteria and identifying such sequences, we obtain representations of the S̃n which are rather

close to those of the Sn. Moreover, the individual permutations �transfer� the computationally

pleasant features of each sequence to the other while at the same time crystallizing the di�erences

between the chaotic Sn and the orderly S̃n. A potentially important di�erent view of what is at

issue is that each permutation of {0, 1}n amounts to a re-ordering of {0, 1}n, di�erent from the

usual lexicographical order (which is the restriction of the usual metric ordering of (0, 1) to the

dyadic rationals).

Before turning to the next Chapter, where we establish some positive answers to the questions

of the previous paragraph, we put forward our current understanding of the �right criteria�. It

should be noted that we view the positive answer to the second and third questions, above, as

so important that we have put the �yes� answer as the �rst of our critera, even though this is

something of a misnomer: the remaining criteria state properties of the individual Fn, whereas

the �rst one requires the existence of a �nice� sequence all of whose terms satisfy the remaining

criteria.
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De�nition 3.7. (Fn|n ∈ N+) is suitable if and only if for all n, Fn is a permutation of {0, 1}n

satisfying S̃n = Sn ◦ F and such that:

(a) (Fn|n ∈ N+) is explicitly and naturally de�nable, uniformly and highly e�ectively in n,

(b) if r ∈ {0, 1}n and S̃n (r) = Sn (r), then Fn (r) = r,

(c) Fn is "as close as possible" to being self-inverse (it is not hard to show that even for fairly

small n (such as n = 5, 6, 7), it is impossible for Fn to literally be self-inverse).

Note that criterion (b) amounts to imposing on the bijections between the An,i and Bn,i that

they should be the identity on the intersection.

For r, s ∈ {0, 1}n, if Fn (r) = s and Fn (s) = r, then the orbit of r under Fn is just {r, s},

and, then we refer to (r, s) as a �swap�; this includes the case where r = s. If every r ∈ {0, 1}n is

in a swap, then Fn is literally self-inverse. Thus, a reformulation of criterion (c) is: the number

of non-identity swaps is as large as possible.

Having formulated the notion of suitable sequence, a basic issue (alluded to at the outset of

the discussion leading to De�nition 3.7) immediately arises:

Problem 3.8. Show that suitable sequences exist.

The next (and �nal) Chapter is devoted to our (positive) solution of this problem.
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Chapter 4

Suitable E�ective Representations

In this Chapter, we prove one of our main results, solving Problem 3.8 by answering, in the

a�rmative, the questions posed prior to De�nition 3.7. There are (in the terminology of this

de�nition) suitable sequences (Fn|n ∈ N+) of permutations, and therefore, by Theorem 3.4, the

corresponding sequences
((
R̃n,i

∣∣1 ≤ i ≤ n) ∣∣n ∈ N+
)
of representations of the S̃n are also

uniform and highly e�ective. This is the conjunction of Lemma 4.13 and Theorem 4.14, in �4.3.

In order to introduce many of the main ideas in a simpler setting, in �4.2, we prove the

existence of a simpler variant, (Gn|n ∈ N+) which satis�es the same composition equation and

criteria (a), (b), but not criterion (c) of De�nition 3.7. Lemma 4.6 and Theorem 4.8 are the

analogues, for the sequence (Gn|n ∈ N+), of Lemma 4.13 and Theorem 4.14. In Lemmas 4.12

and 4.23 we establish an additional desirable property of (Gn|n ∈ N+), (Fn|n ∈ N+), respectively:

each Gn (respectively Fn) �commutes with dualization�.

We establish the e�ectiveness of (Gn|n ∈ N+) and (Fn|n ∈ N+) by showing that they are

uniformly primitive recursive in the sense that there are primitive recursive functions G (n, κ),

F (n, κ) such that for all n ∈ N+ and all 0 ≤ κ < 2n, Gn (κ) = G (n, κ), Fn (κ) = F (n, κ). While

primitive recursion is a standard notion in computability theory, in �4.1 we supply an overview

of what is involved with the intent of making the proofs of Theorems 4.8, 4.14 accessible to the

reader with no prior knowledge of computability theory. At the end of this section, we also exploit

the discussion at the end of �3.2 in order to deal with permutations of {0, . . . , 2n − 1} rather than

of {0, 1}n, this allows for a �smooth� application, in �4.2, 4.3, of the primitive recursion notions

introduced in �4.1.
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4.1 Primitive Recursion: an Overview

A d-place relation on N is said to be primitive recursive if and only if its characteristic function

(as a subset of Nd) is a primitive recursive function. The primitive recursive functions and

relations form very natural subcollections of the collections of computable functions and

decidable relations, respectively, and they enjoy very pleasant properties. Starting from a very

simple collection of (very simple) initial functions, closing under the operations of substitution

and primitive recursion generates the collection of primitive recursive functions. The initial

functions are the (one-place) constant zero function, the (one-place) successor function, and the

projection functions, i.e., for 1 ≤ i ≤ n, Uni , where Uni (x1, . . . , xn) = xi. We will not give a

detailed presentation here of the operation of substitution; su�ce it to say that it is a

generalization of composition of functions appropriate for the context of functions of several

variables.

We do, however, present the operation of primitive recursion; if n ≥ 0 and f and g are total

(i.e. everywhere de�ned) n-place, n + 2-place functions, respectively (a zero-place function is a

constant), then the (total n+1-place) function h whose de�nition follows is the function obtained

from f ,g by primitive recursion.

h (−→x , 0) := f (−→x ) ( = the constant a, if n = 0),

h (−→x , y + 1) := g (−→x , y, h (−→x , y)) .

The following familiar simple applications show the operations of addition and multiplication

are primitive recursive. For addition,

x+ 0 = x,

x+ (y + 1) = (x+ y) + 1.

Formally, we take f to be the identity function and g to be the successor of U3
3 (x, y, z). For

multiplication,

x0 = 0,

x (y + 1) = xy + x.
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Formally, f is the constant zero function and g (x, y, z) = z + x = U3
3 (x, y, z) + U3

1 (x, y, z).

Standard Computability texts, e.g. Cutland [1], develop additional closure properties of the

collections of primitive recursive functions and relations, some of which we use below without

comment, and also begin to build a catalogue of interesting primitive recursive functions, includ-

ing the ones discussed in the next few paragraphs. Some of these interesting primitive recursive

functions we single out as de�nitions because of the important role they play in what follows.

One important closure property is closure under the bounded minimalization operation. The

closure property is that if f is primitive recursive, then so is g, the function obtained from f by

bounded minimalization, i.e., if f : Nn+1 → N is primitive recursive, then so is g : Nn+1 → N,

where

g (−→x , y) = (µz < y) (f (−→x , z) = 0) , i.e.,

g (−→x , y) =

 the least z < y such that f (−→x , z) = 0, if such a z exists;

y if there is no such z.

Remark 4.1. Just as the class of primitive recursive functions is closed under bounded minimal-

ization, the class of primitive recursive relations is closed under the bounded quanti�ers (∀x < y),

(∃x < y). The combination of these closure properties is particularly powerful when we can �nd

(as a primitive recursive function of the remaining variables) a suitable bound for the bounded

minimalization operator and the bounded quanti�ers. An example of such a bound will be the

notion of a �master code� introduced in �4.2.

Now we develop some machinary for the coding of �nite sequences of natural numbers by

natural numbers. There are various approaches to such a coding, including Godel's coding by

prime powers, but we will prefer a slight variant of one developed in [1] (shifting indices down

to allow 0 as an index value in various places), since the prominent role played by the binary

expansion dovetails nicely with our concerns. Note that the section of [1] developing the coding

only talks about computable functions, although the proofs that are provided establish primitive

recursiveness, and this is important for our purposes.

The sequence coding is accomplished by a bijection τ :
⋃
d Nd+1 → N de�ned by

τ (a0, . . . , ad) = 2a0 + 2a0+a1+1 + 2a0+a1+a2+2 + . . .+ 2a0+a1+...+ad+d − 1.

For i ≤ d, it will be helpful, in what follows, to de�ne bi to be the exponent of 2 in the ith
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term of the previous formula. If we wanted to have 0 available for coding the empty sequence,

we could omit the �nal −1, but the approach we have taken is more natural for our purposes.

While τ is clearly �e�ectively computable� intuitively, it would be formally incorrect to call it

primitive recursive because of its domain. We take the usual way around this; we will develop

primitive recursive functions l (t) and a (i, t) such that for all �nite sequences (a0, . . . , ad), setting

t = τ (a0, . . . , ad), we will have l (t) = d+ 1 and for all i ≤ d

a (i, t) = ai.

Thus τ−1 (t) = (a (0, t) , . . . , a (l (t)− 1, t)).

In the discussion that follows we use − to denote the binary operation of so-called cuto�

subtraction, which is de�ned so as to give value 0 if the second argument is greater than the

�rst, and is thus total on N2. This turns out to be a primitive recursive function. We will also

make use of the two-place primitive recursive function exp (a, b) de�ned to be the exponent of a

in b, i.e., the largest c such that ac divides b (when a, b ≥ 2), and an appropriate default value

otherwise.

The �rst step toward showing that l and a are primitive recursive is to de�ne a function σ.

The idea is that (with t as above)

σ (0, t) = 0,

and for 0 < i ≤ l (t) it should turn out that σ (i, t) = τ (a0, . . . , ai−1). Of course, since σ is a

stepping stone to showing that l, a are primitive recursive, we have to take another approach to

obtaining the second equation. Indeed, we de�ne σ by primitive recursion:

σ (0, t) = 0,

(as desired) and

σ (s+ 1, t) =

 t+ 1 if σ (s, t) ≥ t+ 1

σ (s, t) + 2exp(2,t+1−σ(s,t)) otherwise.

The condition in the �rst case will turn out to hold if l (t) ≤ s, and the exponent of 2 in the

second case will turn out to be bs+1. Now we can state:
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l (t) := (µs < t+ 1) (t+ 1 = σ (s, t)) ,

b (i, t) :=

 exp (2, t+ 1− σ (i, t)) if i ≤ l (t)

0 if i > l (t) ,

a (i, t) =


b (i, t) if i = 0

b (i, t)− b (i− 1, t)− i if 0 < i < l (t)

0 if i ≥ l (t) .

Remark 4.2. In view of the preceding, l, a (and b) are primitive recursive. This is because the

two-place functions addition, cut-o� subtraction, exponentiation, and exp are all primitive

recursive, and because the collection of primitive recursive functions is closed under de�nition

by cases, primitive recursion (of course), and bounded minimalization (which is used in the

de�nition of l, and extensively in what follows).

The functions κn, de�ned at the end of �3.2 (just prior to Figure 3.1) allow us to transfer

notions naturally associated with {0, 1}n to [0, 2n)∩N. In particular, we could de�ne Weight (κ)

to be Weight (r), where κ = κn (r), i.e., Weight (κ) is the number of 1's in the binary expansion

of κ. We will proceed somewhat di�erently so as to emphasize that Weight (κ) is independent

of n and, even more importantly, is a primitive recursive function of κ. But it is important to

realize that the following de�nition of Weight (κ) coincides with the informal de�nition we have

just given.

De�nition 4.3. For κ ∈ N,

Weight (κ) := l (κ) ,

and for n ∈ N+, κ ∈ [0, 2n) ∩ N,

Step (n, κ) := (µi < n+ 1)

κ < i∑
j=0

 n

j


 .

Note that then Step (n, κ) is that i such that step An,i includes the dyadic interval
[
κ
2n ,

κ+1
2n

)
,

or, simply the level n interval κ, according to the conventions established in the �nal paragraphs of

�3.2. Using well known properties of primitive recursive functions, the functions Step and Weight
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are primitive recursive. We will sometimes denote Step (n, κ) by Stepn (κ). When Stepn (κ) 6=

Weight (κ), we say κ is �out of place� at level n.

Remark 4.4. Note that, for each n ∈ N+ and for κ ∈ [0, 2n)∩N, we have 0 ≤Weight (κ) , Stepn (κ) ≤

n and Weight, Step satisfy the dualization equations Weight (κ) = n − Weight (2n − 1− κ),

Stepn (κ) = n− Stepn (2n − 1− κ).

Remark 4.5. An important theme in what follows will be the use of bounded minimalization

and the bounded quanti�ers in de�nitions which establish that various functions and relations

are primitive recursive. In many cases, the minimalization or quanti�cation will be over natural

numbers which are to be codes of the increasing enumerations of certain �nite sets of natural

numbers. Thus, it will be important, as noted in Remark 4.1, to be able to �nd a bound (as

it turns out, as a primitive recursive function of n alone) for all of the codes of interest. The

�master code� function, MC (n), introduced in De�nition 4.9, below, and discussed more fully in

Appendix I, will serve this purpose.

4.2 A Simple Variant and Some General Methods

After this brief introduction to primitive recursion, we pick up the thread of De�nition 3.7. As

we will see (Remark 4.22, in �4.3), there is a fairly wide range of suitable sequences

(Fn|n ∈ N+). In �4.3 we will present our current preferred one. As a �warm-up�, we will �rst

present a variant, (Gn|n ∈ N+), satisfying only the �rst two criteria of De�nition 3.7.

(Gn|n ∈ N+) will also have the property that each Gn will satisfy the composition equation,

S̃n = Sn ◦Gn, i.e., each Gn will �map Step to Weight� (i.e., Stepn (κ) = Weight (Gn (κ))), and

what is more, the mapping will be in an order-preserving fashion (except as ruled out by

criterion (b) of De�nition 3.7). This means that for all 0 ≤ κ < 2n,

(i) If Stepn (κ) = Weight (κ), then Gn (κ) = κ,

(ii) If Stepn (κ) 6= Weight (κ), and, if further, κ < m < 2n and

Stepn (κ) = Stepn (m) 6= Weight (m), then Gn (κ) < Gn (m).

Lemma 4.6. (i) and (ii) de�ne a unique sequence (Gn|n ∈ N+) such that each Gn satis�es the

composition equation Sn ◦Gn = S̃n.

Proof. Recall that in the proof of Theorem 3.5 we de�ned subsets An,i and Bn,i of {0, 1}n,

which, via the identi�cation provided by the function κn of �3.2, we now choose to view as the
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corresponding subsets of [0, 2n) ∩ N. From this point of view,

An,i = {κ|Stepn (κ) = i} ,

Bn,i = {κ|Weight (κ) = i} .

The proof of Theorem 3.5 is essentially the simple observation that for any permutation, g, of

{0, 1}n, Sn ◦ g = S̃n if and only if

for all 0 ≤ i ≤ n, g [An,i] = Bn,i, (4.1)

together with the (easy) count of the number of g which do satisfy (4.1). This count depends on

the fact that for all 0 ≤ 1 ≤ n, card (An,i) = card (Bn,i) since if this failed for even one i, there

would be no g satisfying (4.1), but since card (An,i) = card (Bn,i) =
(
n
i

)
, the number of such g is

as in Theorem 3.5.

From the vantage point of the �nal remarks of �4.1, criterion (b) of De�nition 3.7 is understood

as imposing the additional requirement on a permutation, g, of [0, 2n) ∩ N, that for all κ, if

Stepn (κ) = Weight (κ), then g (κ) = κ. Suppose that 0 ≤ i ≤ n and κ ∈ An,i. Note that

Stepn (κ) = Weight (κ) if and only if κ ∈ An,i ∩Bn,i. Thus, what is imposed by criterion (b) is:

for all 0 ≤ i ≤ n, g � (An,i ∩Bn,i) = id � (An,i ∩Bn,i) . (4.2)

Then, putting together (4.1) and (4.2), we must have

for all 0 ≤ i ≤ n, g [An,i rBn,i] = Bn,i rAn,i. (4.3)

Arguing as for Theorem 3.5, there will be some g satisfying (4.2), (4.3) if and only if

for all 0 ≤ i ≤ n, card (An,i rBn,i) = card (Bn,i rAn,i) ; (4.4)

further, if (4.4) is true, then we can, for each 0 ≤ i ≤ n, choose g � (An,i rBn,i) to be the

unique order-preserving map from An,i r Bn,i to Bn,i r An,i, i.e., in order to complete the

proof of the Lemma it su�ces to verify (4.4). Happily, this is immediate since An,i r Bn,i =
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An,i r (An,i ∩Bn,i); Bn,i rAn,i = Bn,i r (An,i ∩Bn,i), and so

card (An,i rBn,i) = cardAn,i − card (An,i ∩Bn,i)

= cardBn,i − card (An,i ∩Bn,i)

= card (Bn,i rAn,i) . (4.5)

The procedure we have just described is obviously uniform in n, and therefore we have satis�ed

the �uniformity part� of criterion (a) as well. The �e�ectiveness part� of criterion (a) will be

established in Theorem 4.8.

Remark 4.7. With an eye to upcoming developments, in the previous proof, we could have

de�ned:

A1
n,i := An,i rBn,i = An,i r (An,i ∩Bn,i) ,

B1
n,i := Bn,i rAn,i = Bn,i r (An,i ∩Bn,i) .

These are the sets of things that are out of place on the ith step, or of the ith weight, respectively.

From this point of view, note that (4.5) is really the following equation:

card
(
A1
n,i

)
=

(
n

i

)
− card (An,i ∩Bn,i) = card

(
B1
n,i

)
,

while (4.3) becomes g
[
A1
n,i

]
= B1

n,i.

In fact, our construction of (Gn|n ∈ N+) �ts into a more general framework. Certain types of

procedures will always yield sequences of permutations satisfying the composition equations and

the �rst two criteria of De�nition 3.7. By (4.4), any permutation, g, of [0, 2n) ∩ N satisfying

(4.3) will satisfy the composition equations Sn ◦ g = S̃n and criterion (b) of De�nition 3.7. The

procedure starts with the sets An,i, Bn,i (stage zero), where card (An,i) = card (Bn,i). In stage

one, we remove An,i ∩Bn,i (on which we have a prescribed (by criterion (b)) method of de�ning

g) from both, leaving A1
n,i, B

1
n,i, and we have card

(
A1
n,i

)
= card

(
B1
n,i

)
. The procedure continues

by determining our bijection between A1
n,i and B

1
n,i.

In our construction of the sequence (Gn|n ∈ N+) above, we were only trying to satisfy s∗ = 1

criterion: criterion (b). In a more general setting (e.g., that of the construction of (Fn|n ∈ N+)

in �4.3) we will try to satisfy s∗ > 1 criteria, always including criterion (b). We enumerate

these criteria as c1, . . . , cs∗ , always taking criterion (b) to be c1. We will satisfy these criteria in
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stages, dealing with cs in stage s. Thus, the passage from stage zero to stage one will always

be as above. At each stage 0 ≤ s ≤ s∗ we will have subsets Asn,i ⊆ An,i, B
s
n,i ⊆ Bn,i with

card
(
Asn,i

)
= card

(
Bsn,i

)
. In particular, we'll have A0

n,i = An,i, B
0
n,i = Bn,i and A1

n,i, B
1
n,i as

above. Asn,i, B
s
n,i will be �what is left� of An,i, Bn,i, respectively, after satisfying c1, . . . , cs−1.

The terminal stage will always be stage s∗+ 1, and we will always pass from stage s∗ to stage

s∗ + 1 as we passed from stage one to stage two in the construction, above, of (Gn|n ∈ N+): we

simply take the order-preserving bijections from As
∗

n,i to B
s∗

n,i. Before indicating how to proceed

at intermediate stages s where 0 ≤ s < s∗, we should note that there is really a �xed order in

which the criteria must be enumerated (beyond the mere stipulation that c1 is to be criterion

(b)). This has to do with the priority assigned to the criteria (higher priority criteria are dealt

with earlier) but also with the way we must be able to satisfy them.

At an intermediate stage s, as above, we must be able to satisfy cs by choosing non-empty

subsets asn,i, b
s
n,i of A

s
n,i, B

s
n,i, with card

(
asn,i

)
= card

(
bsn,i
)
, and, for each (n, i) choosing hsn,i from

a nonempty set of �admissable� bijections from asn,i to b
s
n,i, and declaring that g � asn,i = hsn,i.

This was the situation in the above construction of (Gn|n ∈ N+) with s = 0:

a0n,i = b0n,i = A0
n,i ∩B0

n,i = An,i ∩Bn,i,

and the only �admissable� bijection is the identity. In the more general setting, with s > 0, things

will be more complicated. For such s, Asn,i ∩ Bsn,i = ∅ (by the construction of the A1
n,i, B

1
n,i),

and typically (as in �4.3), for some index set IND (n) we will have that asn,i =
⊔
u∈IND(n) a

s
n,i,u,

bsn,i =
⊔
u∈IND(n) b

s
n,i,u, where for each (n, i, u), card

(
asn,i,u

)
= card

(
bsn,i,u

)
. Also, typically hsn,i

will not be the order-preserving bijection from asn,i to b
s
n,i, but this will be true on the smaller

pieces: we will typically be able to take hsn,i � a
s
n,i,u to be the order-preserving bijection from

asn,i,u to bsn,i,u. Finally, we complete the passage from stage s to stage s + 1 by (predictably)

de�ning As+1
n,i = Asn,i r asn,i, B

s+1
n,i = Bsn,i r bsn,i. For future reference, notably looking ahead to

the �out of swaps� case in the proof of Theorem 4.14, for all s < s∗ + 1,
⋃
i a
s
n,i =

⋃
i b
s
n,i, and

therefore (by induction), for all s ≤ s∗ + 1,
⋃
iA

s
n,i =

⋃
iB

s
n,i.

Just as in the above construction of (Gn|n ∈ N+), the criteria, cs, will be uniform in n, i.e.,

the de�nitions of IND (n) and the
(
asn,i,u|0 ≤ i ≤ n, u ∈ IND (n)

)
,
(
bsn,i,u|0 ≤ i ≤ n, u ∈ IND (n)

)
,(

hsn,i,u|0 ≤ i ≤ n, u ∈ IND (n)
)
will be uniform in n. This being the case, just as in the construc-

tion of (Gn|n ∈ N+) above, the procedure will specify a sequence of bijections (gn|n ∈ N+) whose

39



de�nition is uniform in n, and so we have satis�ed the uniformity part of criterion (a) of De�nition

3.7.

Our next result will supply an even stronger notion of uniformity. We will prove (Gn|n ∈ N+)

is uniformly primitive recursive in the following precise sense: there exists a single primitive

recursive function G (n, κ) such that for all n, G (n, ·) � {0, . . . , 2n − 1} = Gn. In fact, if we

simply take G (n, κ) to be equal to Gn (κ), when 0 ≤ κ < 2n, and supply a suitable default value

(e.g., G (n, κ) = 0, or G (n, κ) = κ), when κ ≥ 2n or n = 0, then we have de�ned a unique

function G : N2 → N. The issue is whether this G is primitive recursive. We now prove that it

is.

Theorem 4.8. The function G (n, κ) which we have just de�ned is primitive recursive.

Proof. We de�ne two primitive recursive three-place relations. Let W (κ, n, i) be the relation

�0 ≤ κ < 2n and Weight (κ) = i 6= Step (n, κ)�. Let S (κ, n, i) be the relation �0 ≤ κ < 2n and

Step (n, κ) = i 6= Weight (κ)�. Then the relations W and S are primitive recursive. Observe

that {κ|S (κ, n, i)} = A1
n,i, {κ|W (κ, n, i)} = B1

n,i.

For 0 ≤ i ≤ n and 0 ≤ κ < 2n, let w (n, i), s (n, i) be the τ -codes (as functions of (n, i),

which we will see are primitive recursive) of the increasing enumerations of {κ|W (κ, n, i)},

{κ|S (κ, n, i)}, respectively. These are typical codes for which we want to �nd a bound (see the dis-

cussion in Remark 4.5 above). The largest possible cardinality of each of the sets {κ|W (κ, n, i)},

{κ|S (κ, n, i)} is
(
n

[n
2 ]
)
, which we will denote by q (n).

In �4.3 we will need to obtain the codes of the increasing enumerations of more complicated

sets, but what we do next for S (κ, n, i) ,W (κ, n, i) presents the main ideas in a simpler setting.

De�nition 4.9. MC will denote the master code function and MC (n) will denote its value at

level n, i.e., the master code at level n, which we take to be MC (n) := τ (2n − 1, . . . , 2n − 1)

where (2n − 1, . . . , 2n − 1) has length q (n).

Remark 4.10. See the Appendix for a fuller discussion of what is involved in the choice of a

master code.

First we require that if t is the code of the increasing enumeration of {κ|W (κ, n, i)}, then

�t codes an increasing sequence all of whose coordinates satisfy primitive recursive condition

W (κ, n, i)�:

(∀s < l (t)) (W (a (s, t) , n, i) ∧ (s+ 1 < l (t)→ a (s, t) < a (s+ 1, t))) . (4.6)
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Let W1 (n, i, t) be the three-place relation de�ned by (4.6). To make sure t codes the increasing

enumeration of all of {κ|W (κ, n, i)} we need:

W1 (n, i, t) ∧ (∀κ < 2n) (W (κ, n, i)→ (∃s < l (t)) (a (s, t) = κ)) . (4.7)

Let W2 (n, i, t) be the three-place relation de�ned by (4.7). Analogously, if t is the code of the

increasing enumeration of {κ|S (κ, n, i)}, we require that �t codes an increasing sequence all of

whose coordinates satisfy primitive recursive condition S (κ, n, i)�:

(∀s < l (t)) (S (a (s, t) , n, i) ∧ (s+ 1 < l (t)→ a (s, t) < a (s+ 1, t))) . (4.8)

Let S1 (n, i, t) be the three-place relation de�ned by (4.8). To make sure t codes the increasing

enumeration of all of {κ|S (κ, n, i)} we need:

S1 (n, i, t) ∧ (∀κ < 2n) (S (κ, n, i)→ (∃s < l (t)) (a (s, t) = κ)) . (4.9)

Finally, let S2 (n, i, t) be the three-place relation de�ned by (4.9).

With our master code as de�ned above, we have that for all n, i as above, w (n, i) , s (n, i) <

MC (n) and therefore w (n, i) is given by

w (n, i) = (µt < MC (n)) (W2 (n, i, t)) ,

and s (n, i) is given by

s (n, i) = (µt < MC (n)) (S2 (n, i, t)) .

De�nition 4.11. De�ne the least position of κ in the sequence coded by t as

lp (κ, t) := (µs < l (t)) (a (s, t) = κ) .

If κ doesn't occur in the sequence coded by t, then lp (κ, t) takes the default value associated

with the bounded minimalization operator. In what follows, the default will not arise as κ will au-

tomatically occur in the relevant coded sequence, namely the sequence coded by s (n, Step (n, κ)).

We can now de�ne G. For 0 ≤ κ < 2n, G (n, κ) = κ if Weight (κ) = Step (n, κ). Otherwise, still

for 0 ≤ κ < 2n,

G (n, κ) = a (lp (κ, s (n, Step (n, κ))) , w (n, Step (n, κ))) .
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Now a more substantial issue arises; we need to be sure that there is no κ0 ∈ [0, 2n) ∩ N

for which G (n, κ0) takes the default value 0 of the function a. This will follow if we have

l (s (n,Step (n, κ0))) = l (w (n, Step (n, κ0))), i.e., once we know that the increasing enumeration

of {κ|S (κ, n,Step (n, κ0))} (which is coded by s (n, Step (n, κ0))) has the same length as the in-

creasing enumeration of {m|W (m,n,Step (n, κ0))} (which is coded by w (n, Step (n, κ0))), i.e.,

once we know that {κ|S (κ, n,Step (n, κ0))} and {m|W (m,n,Step (n, κ0))} have the same car-

dinality. We have that {κ|S (κ, n, i)} = A1
n,i, {κ|W (κ, n, i)} = B1

n,i, and that the two sets have

the same cardinality and so, it indeed follows that there is no κ0 ∈ [0, 2n)∩N for which G (n, κ0)

takes the default value 0 of the function a. So, as required, G (with a suitable default when

κ ≥ 2n or n = 0) is primitive recursive.

�

Since Gn satis�es criterion (b) of De�nition 3.7, for �xed n, and for each κ ∈ [0, 2n)∩N such

that Step (n, κ) = Weight (κ), the orbit of κ under Gn is simply {κ}. For n = 3, 4, 5, 6, 7 and

each κ such that Step (n, κ) 6= Weight (κ) (i.e., κ is out of place at level n), the orbit of κ under

Gn is presented in the table below.

Table 4.1: Some orbits under Gn

n Orbits under Gn

3 {3, 4}

4 {7, 3, 8, 12}

5 {16, 7, 3, 8, 5} , {15, 24, 28, 23, 26} , {11, 17} , {13, 18} , {14, 20}

6
{32, 42, 15, 34, 49, 30, 19, 40, 56, 60, 55, 58, 47, 27, 13, 24, 11, 6} ,

{31, 21, 48, 29, 14, 33, 44, 23, 7, 3, 8, 5, 16, 36, 50, 39, 52, 57}

7

{64, 15, 34, 21, 48, 73, 46, 69, 39, 25, 68, 30, 11, 5, 16, 36, 22, 65, 23, 66,

27, 80, 57, 84, 99, 31, 13, 6, 32, 14, 33, 19, 40, 26, 72, 45, 67, 29, 7} ,

{63, 112, 93, 106, 79, 54, 81, 58, 88, 102, 59, 97, 116, 122, 111, 91, 105, 62, 104,

61, 100, 47, 70, 43, 28, 96, 114, 121, 95, 113, 94, 108, 87, 101, 55, 82, 60, 98, 120} ,

{3, 8} , {51, 74} , {53, 76} , {124, 119}

The next Lemma gives an additional property of G.

Lemma 4.12. Each Gn satis�es the dualization equation Gn (2n − 1− κ) = 2n − 1−Gn (κ).
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Proof. To simplify notation, we take n as �xed (but arbitrary). For 0 < i < n, let

γi = card
(
A1
n,i

)
,

and so,

γi = card
(
B1
n,i

)
as well. Further, γn−i = γi, for all such i (by Remark 4.4). Let (αi,t|1 ≤ t ≤ γi), (βi,t|1 ≤ t ≤ γi)

be the increasing enumerations of A1
n,i, B

1
n,i, respectively . Then we have that for all 0 < i < n,

Gn (αi,t) = βi,t.

For κ ∈ {0, . . . , 2n − 1}, let κ̂ denote the dual of κ, i.e., de�ne κ̂ := 2n − 1− κ. We also have

that for 0 < i < n and 1 ≤ t ≤ γi,

α̂i,t = αn−i,γi−t+1,

and

β̂i,t = βn−i,γi−t+1.

So, in particular, the set of duals of elements of A1
n,i (respectively B

1
n,i) is just A

1
n,n−i (respectively

B1
n,n−i), but with the extra observation that if we enumerate the sets of duals in the order they

inherit from the increasing enumerations of A1
n,i (respectively B1

n,i), this gives the decreasing

enumeration of the sets of duals.

Finally, let 0 < i < n, and let κ ∈ A1
n,i; let t be such that κ = αi,t. Then κ̂ = αn−i,γi−t+1,

and so

Gn (κ̂) = Gn (αn−i,γi−t+1) = βn−i,γi−t+1,

but also, Gn (κ) = βi,t and so

Ĝ (κ) = β̂i,t = βn−i,γi−t+1 = Gn (κ̂) .
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4.3 Primitive Recursive Uniform Fn

In this section, we complete our analysis of the S̃n. The construction of our preferred suitable

sequence (Fn|n ∈ N+) of representing permutations begins in the next paragraph and culminates

with the statement of Lemma 4.13, which summarizes what has been achieved. In Theorem 4.14,

we show that (in the terminology developed in �4.2 and recalled just prior to the statement of

the Theorem) (Fn|n ∈ N+) is uniformly primitive recursive, and therefore highly �e�ective�.

Our construction of (Fn|n ∈ N+) takes place within the general framework provided by �4.2,

more precisely, by the discussion between the end of the proof of Lemma 4.6 and the statement

of Theorem 4.8. We adopt the notation and terminology of that framework, and draw upon its

arguments without further comment, except to explicitly establish the correspondence between

the notions introduced below and those of �4.2.

We now have a second criterion to satisfy, criterion (c) of De�nition 3.7, which becomes c2

(criterion (b) of De�nition 3.7 remains c1). Thus we will have s
∗ = 2, and our construction will

be in s∗+ 1 = 3 stages. Just as in �4.2, the uniformity part of criterion (a) of De�nition 3.7, will

be immediate, since both of our criteria are uniform in n. The e�ectiveness part of criterion (a)

will be established in Theorem 4.14. Since the passages from stage zero to stage one, and from

stage two to stage three will be exactly as in �4.2, we focus on the passage from stage one to

stage two where we satisfy criterion c2. This said, in the course of the proof of Theorem 4.14,

we will have additional comments on the passage from stage two to stage three.

We de�ne a four-place relation Q (κ, n, i, j). Looking ahead to the proof of Theorem 4.14,

in fact Q is primitive recursive, but that observation is not needed until then. Let Q (κ, n, i, j)

be the relation �0 ≤ κ < 2n and Step (n, κ) = i and Weight (κ) = j�. Let Pair (n, i, j) :=

{κ|Q (κ, n, i, j)}. We will maximize swaps by adopting the �swapping convention�: exclude �the

extremes� in what participates in the swaps when there is a choice about this, i.e., when the

cardinalities of the sets Pair (n, i, j) and Pair (n, j, i) are unequal. It is certainly possible for

these cardinalities to be unequal, and when this happens, the general approach will be to exclude

the d extreme elements from the larger set, where d is the di�erence between the cardinality of

the larger set and the cardinality of the smaller set. To illustrate what is involved in deciding

what �extreme� means, an example follows.

When n = 8, we have:

Pair (8, 2, 4) = {15, 23, 27, 29, 30} ,
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while

Pair (8, 4, 2) = {96, 129, 130, 132, 136, 144, 160} .

Observe that there are two extra elements in Pair (8, 4, 2). Our swapping convention takes the

�extremes� to be those elements of the larger set that are farthest away (i.e., have the largest

di�erence in value) from elements of the smaller set, in order that we may minimize the distance

(i.e., di�erence) between two elements in a swap. In our example, we exclude 144 and 160 from

participating in swaps, because they are the farthest away from the elements of Pair (8, 2, 4).

We will further discuss the details of the swapping convention in the proof of Theorem 4.14. In

particular, we will provide a general method for choosing the extremes.

For 0 < i, j < n, and i 6= j, let Pair (n, i, j) be the set of κ ∈ Pair (n, i, j) which are chosen

to participate in swaps; thus Pair (n, i, j) = Pair (n, i, j) if and only if card (Pair (n, i, j)) ≤

card (Pair (n, j, i)). Once we have determined the sets Pair (n, i, j), the swapping will be done by

mapping Pair (n, i, j) in an order-preserving fashion onto Pair (n, j, i). In the above example, we

have

Pair (8, 2, 4) = Pair (8, 2, 4) = {15, 23, 27, 29, 30}

and

Pair (8, 4, 2) = Pair (8, 4, 2) r {144, 160} = {96, 129, 130, 132, 136} ,

and the resulting swaps are

(15, 96) , (23, 129) , (27, 130) , (29, 132) , (30, 136) .

In terms of the framework of �4.2, we let IND (n) = {(i, j) |0 < i, j < n, i 6= j}, a2n,i (i, j) =

Pair (n, i, j), b2n,i (i, j) = Pair (n, j, i), h2n,i (i, j) be the order-preserving bijection, and then:

A2
n,i := A1

n,i r
⋃
j 6=i

Pair (n, i, j) ,

B2
n,i := B1

n,i r
⋃
j 6=i

Pair (n, j, i) .

and so a2n,i =
⋃
j 6=i Pair (n, i, j) and b2n,i =

⋃
j 6=i Pair (n, j, i). According to the general framework

in �4.2, since A1
n,i, B

1
n,i have the same cardinality, and we are removing sets of the same cardinality

from each, card
(
A2
n,i

)
= card

(
B2
n,i

)
. So at stage three, the terminal stage, as speci�ed by the
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general framework, we map A2
n,i onto B

2
n,i in an order-preserving fashion, and mapping Step

to Weight is guaranteed, since A2
n,i, B

2
n,i are subsets of An,i, Bn,i, respectively; thus we have

speci�ed a unique sequence (Fn|n ∈ N+) satisfying all the properties of De�nition 3.7, except

possibly the e�ectiveness part of criterion (a), and such that each Fn maps Step to Weight.

This discussion proves the following Lemma.

Lemma 4.13. The procedure we have just described de�nes a unique sequence (Fn|n ∈ N+)

satisfying the composition equations Sn ◦ Fn = S̃n.

Just as we did for (Gn|n ∈ N+), we will prove this (Fn|n ∈ N+) is uniformly primitive recursive

in the following precise sense: there exists a single primitive recursive function F (n, κ) such that

for all n, F (n, ·) � {0, . . . , 2n − 1} = Fn. As before, if we simply take F (n, κ) to be equal to

Fn (κ), when 0 ≤ κ < 2n, and supply a suitable default value (e.g., F (n, κ) = 0, or F (n, κ) = κ),

when κ ≥ 2n or n = 0, then we have de�ned a unique function F : N2 → N.

Theorem 4.14. The function F (n, κ) we have just de�ned is primitive recursive.

Proof. As in the proof of Theorem 4.8, in order to satisfy criterion (b) of De�nition 3.7, we will

have that for n ∈ N+ and κ ∈ [0, 2n) ∩ N, F (n, κ) = κ, if Weight (κ) = Step (n, κ). This

completes the passage from stage 0 to stage 1 in the construction of Lemma 4.13. Strictly

speaking, this should be one case in a �nal de�nition by (three) cases of the function F , but we

will dispense with this level of formality. However, we will note that the second case

(corresponding to the second stage of the construction of Lemma 4.13) is carried out in

De�nition 4.19, below and the third case (corresponding to the third stage of the construction)

is carried out in De�nition 4.21. Also, as in the proof of Theorem 4.8, when n = 0 or (n ∈ N+

and 2n ≤ κ) we supply an appropriate default value for F (n, κ). Thus, in what follows, we let

n ∈ N+ and we let κ vary over [0, 2n) ∩ N, always assuming that Weight (κ) 6= Step (n, κ). We

proceed to formalize, in a primitive recursive fashion, the next two stages of the construction.

As should be clear from the construction of Lemma 4.13, the crucial point is to distinguish,

in a primitive recursive fashion, which κ are to participate in swaps. Properly understood, this

is really a decision about the triple (n, i, j), where i = Step (n, κ), j = Weight (κ): should all

the elements of Pair (n, i, j) participate in swaps? Or only a proper initial (respectively �nal)

segment? This motivates what follows, through the next three de�nitions.

We will �rst need to get the code of the increasing enumeration of Pair (n, i, j) as a primitive

recursive function of (n, i, j). In addition to obtaining the code of the increasing enumeration of
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the whole set Pair (n, i, j), we will also need to obtain the codes of the increasing enumerations of

certain subsets. We proceed exactly as in �4.2, starting with the relation Q, de�ned at the start

of the fourth paragraph of this section, instead of the relations S andW . The passages to Q1 and

Q2 will mirror the passages to S1, S2,W1,W2. For the increasing enumeration of Pair (n, i, j), we

�rst require that if t is the code, then �t codes an increasing sequence all of whose coordinates

satisfy primitive recursive condition Q (κ, n, i, j)�:

(∀s < l (t)) (Q (a (s, t) , n, i, j) ∧ (s+ 1 < l (t)→ a (s, t) < a (s+ 1, t))) . (4.10)

Let Q1 (n, i, j, t) be the four-place relation de�ned by (4.10). To make sure t codes the increasing

enumeration of {κ|Q (κ, n, i, j)} we need:

Q1 (n, i, j, t) ∧ (∀κ < 2n) (Q (k, n, i, j)→ (∃s < l (t)) (a (s, t) = κ)) . (4.11)

Let Q2 (n, i, j, t) be the four-place relation de�ned by (4.11). Letting P (n, i, j) denote the code

of the increasing enumeration of Pair (n, i, j), using the master code de�ned in �4.2, we have that

P (n, i, j) is given by

P (n, i, j) = (µt < MC (n)) (Q2 (n, i, j, t)) .

De�nition 4.15. We de�ne some additional notions.

� min∗ (n, i, j) := min (l (P (n, i, j)) , l (P (n, j, i))).

� max∗ (n, i, j) := max (l (P (n, i, j)) , l (P (n, j, i))).

� d (n, i, j) := max∗ (n, i, j)−min∗ (n, i, j).

Thus, min∗ (n, i, j) = max∗ (n, i, j) if and only if Pair (n, i, j) and Pair (n, j, i) are equipotent,

if and only if d (n, i, j) = 0; otherwise, min∗ (n, i, j) (respectively max∗ (n, i, j)) is the smaller

(respectively larger) one of the cardinalities of these two sets, d (n, i, j) is the (positive) di�erence

in cardinalities and we always have min∗ (n, i, j) = min∗ (n, j, i), and similarly for max∗, d.

De�nition 4.16. Assume that n, i, j ∈ N, 0 < i, j < n, i 6= j. In what follows, this will be

abbreviated by saying that (n, i, j) is relevant.

� (n, i, j) is simple if d (n, i, j) = 0.
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� (n, i, j) is light if l (Pair (n, j, i)) > l (Pair (n, i, j)).

� (n, i, j) is right heavy (respectively left heavy) if l (Pair (n, j, i)) < l (Pair (n, i, j)) and j < i

(respectively i < j).

� (n, i, j) is heavy if and only if it is right heavy or left heavy, i.e., if and only if l (Pair (n, j, i)) <

l (Pair (n, i, j)).

Note that (n, i, j) is simple if and only if (n, j, i) is simple and (n, i, j) is light if and only if (n, j, i)

is heavy. Also, note that all of the notions in the last two de�nitions are primitive recursive.

As should already by clear, if (n, i, j) is simple or light, then all elements of Pair (n, i, j) will

participate in swaps (i.e., we will have Pair (n, i, j) = Pair (n, i, j)).

We will now indicate why the notion of right heavy (respectively left heavy) correctly for-

malizes when we will have that Pair (n, i, j) is the size min∗ (n, i, j) initial (respectively �nal)

segment of Pair (n, i, j). This is simply because if j < i, then all of the elements of An,j are

smaller than all of the elements of An,i, and so this holds with Pair (n, j, i), Pair (n, i, j) in place

of their respective �full steps�. But then clearly it is the smallest elements of Pair (n, i, j) that

are closest to the elements of Pair (n, j, i) with which they are to be swapped.

We are now ready to extract the τ -codes of increasing enumerations of the Pair (n, i, j).

De�nition 4.17. Assume that n, i, j ∈ N.

� If (n, i, j) is not relevant, set P (n, i, j) := 0.

� If (n, i, j) is simple or light, set P (n, i, j) := P (n, i, j).

� If (n, i, j) is right heavy, set:

P (n, i, j) := (µt < P (n, i, j)) (l (t) = min∗ (n, i, j))∧(∀s < l (t)) (a (s, t) = a (s, P (n, i, j))) .

� If (n, i, j) is left heavy, set:

P (n, i, j) := (µt < P (n, i, j))

(l (t) = min∗ (n, i, j)) ∧ (∀s < l (t)) (a (s, t) = a (d (n, i, j) + s, P (n, i, j))) .

We are nearly in a position to do our swapping and thereby to complete the passage from stage 1

to stage 2 in the construction. We �rst develop a few more useful bits of notation, and point out
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that we can completely characterize the κ involved. Recall that the primitive recursive function

lp (κ, t) was de�ned in �4.2, and in non-default situations gives the least (most often, unique)

position of κ in the sequence coded by t. The use we now make of this function will not lead to

any default situations.

De�nition 4.18. Suppose n, κ ∈ N. If n = 0 or Step (n, κ) = Weight (κ) or κ ≥ 2n, set

p (n, κ) := 0. Otherwise, let i (n, κ) := Step (n, κ), j (κ) := Weight (κ) and set

p (n, κ) := lp (κ, P (n, i (n, κ) , j (κ)))

and note that κ will participate in swaps at level n if and only if (n, i (n, κ) , j (κ)) is either

simple, light, or (right heavy and p (n, κ) < min∗ (n, i (n, κ) , j (κ))) or (left heavy and

p (n, κ) ≥ d (n, i (n, κ) , j (κ))). If κ does participate in swaps at level n, then let

p∗ (n, κ) := lp
(
κ, P (n, i (n, κ) , j (κ))

)
(and = 0, otherwise).

As usual, these are all primitive recursive notions.

De�nition 4.19. If κ participates in swaps at level n, then let

F (n, κ) := a
(
p∗ (n, κ) , P (n, j (κ) , i (n, κ))

)
.

Thus, we have a primitive recursive implementation of our stage 2. We turn to stage 3, �rst

showing that the sets A2
n,i, B

2
n,i are primitive recursive. To this end, note: κ ∈ A2

n,i if and only

if, letting i = i(n, κ), j = j(κ):

(
(n, i, j) is heavy ∧ (∀s < min∗ (n, i, j))

(
κ 6= a

(
s, P (n, i, j)

)))
,

and similarly for κ ∈ B2
n,i (interchanging the roles of i and j). Also note that A2

n,i = ∅

(respectively B2
n,i = ∅) is a primitive recursive condition on (n, i): A2

n,i = ∅ if and only if

(∀κ < 2n)
(
κ 6∈ A2

n,i

)
.

We then obtain the τ -codes of the increasing enumerations, ST (n, i) and WT (n, i), (taking

default 0 when one is empty) of the sets A2
n,i, B

2
n,i, respectively, in the now familiar way:
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De�nition 4.20. We have

ST (n, i) = (µt < MC (n)) (∀s < l (t))
(
κ ∈ A2

n,i ∧ (s+ 1 < l (t)→ a (s, t) < a (s+ 1, t))
)

∧ (∀κ < 2n)
(
κ ∈ A2

n,i → (∃s < l (t)) (κ = a (s, t))
)
,

WT (n, i) = (µt < MC (n)) (∀s < l (t))
(
κ ∈ B2

n,i ∧ (s+ 1 < l (t)→ a (s, t) < a (s+ 1, t))
)

∧ (∀κ < 2n)
(
κ ∈ B2

n,i → (∃s < l (t)) (κ = a (s, t))
)
.

Finally, we complete our de�nition of F with a primitive recursive implementation of our

passage from stage 2 to stage 3 by:

De�nition 4.21. For κ ∈ A2
n,i, we de�ne F (n, κ) := a (lp (κ, ST (n, i)) ,WT (n, i)).

Remark 4.22. In the second sentence of �4.2, we mentioned that there is a fairly wide range of

suitable sequences. We are now in a position to back up this assertion. Examining the construc-

tion of Lemma 4.13, it is clear that if we were to relax the (crucial) conditions of uniformity

and e�ectiveness, then, instead of taking Fn � Pair (n, i, j) to be the order-preserving bijection to

Pair (n, j, i), we could take it to be any of the min∗ (n, i, j)! possible bijections from Pair (n, i, j)

to Pair (n, j, i). Similarly, in the passage from stage two to stage three, instead of taking Fn � A2
n,i

to be the order-preserving bijection to B2
n,i, we could take it to be any of the card

(
A2
n,i

)
! such

bijections.

In order to recover the crucial conditions of uniformity and e�ectiveness, it su�ces to have

some uniform and e�ective method of making these choices. Thus, a suitable alternative,

among many possible ones, to our preferred (Fn|n ∈ N+) would come from always choosing

the order-reversing bijection. Another source of variants arises from how we choose which

min∗ (n, i, j)-many elements of Pair (n, i, j) to allow into Pair (n, i, j), when card (Pair (n, i, j)) >

card (Pair (n, j, i)).

�

As noted in �4.2, the �rst time there are �out of place� values of κ is when n = 3. Below are

the graphs of Fn for n = 3 and n = 4.
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Figure 4.1: Graph of F3

Figure 4.2: Graph of F4

The �rst time there are �out of swaps� values of κ is when n = 5. For n = 5, 6, 7, in the table

below we present the orbits under Fn for �out of swaps� values of κ at level n.

Table 4.2: Some orbits under Fn

n Orbits under Fn

5 {16, 28, 15, 3}

6 {32, 56, 60, 31, 7, 3}

7
{64, 108, 31, 11, 3} , {13, 72, 113, 47} ,

{14, 80, 114, 55} , {63, 19, 96, 116, 124}

51



The resulting cycles of these �out of swaps� values of κ, corresponding to each of the rows of the

table, are illustrated in the graphs below. We have a single four-cycle at n = 5 and a single

six-cycle at n = 6.

Figure 4.3: Graph of F5

Figure 4.4: Graph of F6

At n = 7 we have two four-cycles and two �ve-cycles. Because the graph of Fn is rather

complicated by n = 7, we will leave out the swaps from the picture and only illustrate the

cycles. The four-cycles are highlighted in orange in the �gure below.
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Figure 4.5: Cycles of F7

As the work of this section demonstrates, the existence of "out of swaps" values of κ at level n,

starting at n = 5, is the last phenomenon (illustrated in �gures 4.3-4.5) to create complications

in the de�nition of the function F . It is conceivable that further interesting phenomena (which

do not create additional complications for the de�nition of F ) �rst occur for some n larger than

5, and it is far from certain whether there are �nitely many such n.

The next Lemma proves the dualization property for F .

Lemma 4.23. Each Fn satis�es the dualization equation Fn (2n − 1− κ) = 2n − 1− Fn (κ).

Proof. To simplify notation, we take n as �xed (but arbitrary). Recall that we denote the dual

of κ by κ̂ = 2n− 1−κ. We will �rst show Fn (κ̂) = F̂n (κ) for κ that is in a swap. For 0 < i < n,

observe that Pair (n, n− i, n− j) = {κ̂|κ ∈ Pair (n, i, j)}. Thus

card (Pair (n, i, j)) = card (Pair (n, n− i, n− j))

and

card (Pair (n, j, i)) = card (Pair (n, n− j, n− i)) .

Thus, min∗ (n, n− i, n− j) = min∗ (n, i, j) for all such i, j. Let (δi,j,t|1 ≤ t ≤ min∗ (n, i, j)),

(ηi,j,t|1 ≤ t ≤ min∗ (n, i, j)) be the increasing enumerations of Pair (n, i, j), Pair (n, j, i), respec-

tively . Then we have that for all 0 < i, j < n, Fn (δi,j,t) = ηi,j,t.
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We also have that for 0 < i, j < n and 1 ≤ t ≤ min∗ (n, i, j),

δ̂i,j,t = δn−i,n−j,min∗
(n,i,j)−t+1,

and

η̂i,j,t = ηn−i,n−j,min∗
(n,i,j)−t+1:

just as in the proof of Lemma 4.12, it is obvious that dualization reverses the order of enumeration.

Let 0 < i, j < n, κ ∈ Pair (n, i, j) and let t be such that κ = δi,j,t. Then κ̂ = δn−i,n−j,min∗
(n,i,j)−t+1,

and so

Fn (κ̂) = Fn

(
δn−i,n−j,min∗

(n,i,j)−t+1

)
= ηn−i,n−j,min∗

(n,i,j)−t+1,

but also, Fn (κ) = ηi,j,t and so

F̂ (κ) = η̂i,j,t = ηn−i,n−j,min∗
(n,i,j)−t+1 = Fn (κ̂) .

Now we will show Fn (κ̂) = F̂n (κ) for �out of swaps� values of κ. For 0 < i < n, let

ξi = card
(
A2
n,i

)
,

and so,

ξi = card
(
B2
n,i

)
as well. Further, we have shown in the discussion preceding Lemma 4.13 that ξn−i = ξi, for

all such i. Let (θi,t|1 ≤ t ≤ ξi), (ψi,t|1 ≤ t ≤ ξi) be the increasing enumerations of A2
n,i, B

2
n,i,

respectively . Then we have that for all 0 < i < n, Fn (θi,t) = ψi,t.

Now,

B2
n,i =

⋃
j 6=i

(
Pair (n, j, i) r Pair (n, j, i)

)
.

Suppose for some 0 < i < n, 1 ≤ t1, t2 ≤ ξi, 0 < j1, j2 < n with j1, j2 6= i, we have κ1, κ2 such

that κ1 = ψi,t1 ∈ Pair (n, j1, i) r Pair (n, j1, i) and κ2 = ψi,t2 ∈ Pair (n, j2, i) r Pair (n, j2, i). If

j1 < j2, then we have

Stepn (κ1) = j1 < j2 = Stepn (κ2) ,
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and so, since Step is a non-decreasing function, κ1 < κ2. Thus, the natural ordering of elements,

ψi,t ∈ B2
n,i, coincides with the lexicographic ordering of (j, p), where j is such that ψi,t ∈

Pair(n, j, i) \Pair(n, j, i) and p is the position of ψi,t in Pair(n, j, i) \Pair(n, j, i). It then follows,

much as in �4.2, that for 0 < i < n and 1 ≤ t ≤ ξi,

ψ̂i,t = ψn−i,ξi−t+1.

Finally, let 0 < i < n, and let i = Stepn (κ); let t be such that κ = θi,t. Then κ̂ = θn−i,ξi−t+1.

Since Fn (θi,t) = ψi,t, we have

F̂n (κ) = ̂Fn (θi,t) = ψ̂i,t = ψn−i,ξi−t+1 = Fn (θn−i,ξi−t+1) = Fn (κ̂) .

4.4 Epilogue and Directions for Future Work

The results of Chapters 3, 4 do indeed narrow the distance between the Sn and the S̃n with

respect to the important issue of representation. The form of the composition equation that

we have given in Chapter 3, S̃n = Sn ◦ Fn, emphasizes the point of view of providing suitable

representations of the S̃n. But this equation could just as well have been written in the form

Sn = S̃n ◦ F−1n , which would emphasize the point of view of seeking to �tame the disorder�

of the Sn. This is related to the rearrangement idea that is illustrated in �gures 4.1-4.4: we

rearrange Sn to get S̃n, and thus achieve almost sure convergence. The question remains how

much rearranging of the Sn is optimal.

One possible direction of our work involves attempting to minimize the graph-theoretic com-

plexity of the function F . As described in detail in �4.3, F maximizes the number of swaps

(with the proper choice of swapping convention), but then will act just as the function G on the

remaining �out of swaps� κ's. Of course we know by Theorem 3.5 that there are many other

possible variants for the function F .

One might attempt to add some additional stages to the construction of F . In stage three

(which might no longer be the terminal stage), one might seek to maximize the number of three-

cycles just as we maximized the number of swaps (two-cycles) in stage two, and �xed all the κ's

which were �in place� (thereby maximizing the number of one-cycles) in stage one. If some κ
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remain outside the domain, proceed to stage four and continue. The goal would be to minimize

lengths of cycles which could be viewed as one way of seeking to minimize the graph-theoretic

complexity of the permutations.

Another current direction of our work involves picking up the thread of Chapter 2, and

determining a precise count or good estimate of the number of gaps of two in between each

gap of three. This analysis, combined with the results of �2.2, may provide an approach to an

alternate proof of the Law of the Iterated Logarithm, when we replace our �xed integer k of

��2.1, 2.2 by suitable functions, k (n), of n.

The discussion immediately preceding Lemma 4.17 raises an interesting possibility, namely

looking into the question of whether �interesting� phenomena keep appearing arbitrarily far out.

However, intriguing as this question may be, it seems di�cult to attack it, if only because of the

vagueness of the notion of �interesting phenomena�.
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Appendix

The master code function is one measure of the complexity of the functions G of �4.2 and F of �4.3

(of course complexity in terms of bound is just one possible complexity measure among many).

We adopt the notation and terminology of these sections. Since the largest possible cardinality of

a set Pair (n, i, j) is
(
n

[n
2 ]
)
, which we denote by q (n), two obvious choices for the master code are

MC1 (n) := τ (0, . . . , 2n − 1) and MC2 (n) := τ (2n − 1, . . . , 2n − 1), where (2n − 1, . . . , 2n − 1)

has length q (n). There are possibly more re�ned choices for MC (n), but of these two obvious

choices, we choose the smaller one to minimize the complexity of G and F . In the course of

determining which one is smaller, we obtain an upper bound for the (bound) complexity, and

show that each is a primitive recursive function of n.

Claim. For all n, MC2 (n) < MC1 (n).

Proof. Recall that τ (a0, . . . , ad) = 2a0 + 2a0+a1+1 + 2a0+a1+a2+2 + . . .+ 2a0+a1+...+ad+d − 1. We

have

MC1 (n) := τ (0, . . . , 2n − 1)

= −1 + 20 +

2n−1∑
i=1

2i+
∑i

j=0 j

=

2n−1∑
i=1

2
i2+3i

2 ,
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while

MC2 (n) := τ (2n − 1, . . . , 2n − 1)

= −1 +

q(n)−1∑
i=0

2i+
∑i

j=0(2
n−1)

= −1 +

q(n)−1∑
i=0

22
n(i+1)−1,

where (2n − 1, . . . , 2n − 1) has length q (n) :=
(
n

[n
2 ]
)
. Thus, both MC1, MC2 are primitive

recursive functions of n alone.

For i > 0, the exponent of 2 in the ith term of the sum for MC1 (n) is i2

2 + 3i
2 . For i = 15

162n,

the exponent of 2 is
( 15

16 2
n)

2

2 +
3( 15

16 2
n)

2 >
( 15

16 2
n)

2

2 = 225
51222n. Let a1 := 225

51222n. There are

2n − 15
162n = 2n−4 terms after the i = 15

162n term in MC1 (n). Each of these 2n−4 terms has

exponent of 2 greater than a1, so each term is greater than 2a1 , and the sum of these terms is

greater than 2n−4 · 2a1 = 2n−4+a1 . Letting s1 := 2n−4+a1 , we have MC1 (n) > s1.

On the other hand, the exponent of 2 in the largest term of the sum forMC2 (n) is 2nq (n)−1.

We consider the case when n is even and the case when n is odd separately.

First suppose n is even. Putting k = n
2 ,

q (n) =

(
2k

k

)
=

(2k)!

k!k!

=
2k
∏k
i=1 (2i− 1)

k!

= 2k

(
k∏
i=4

2i− 1

i

)
· 5

3
· 3

2
· 1

< 2k · 2k−3 · 5

2

=
5

16
22k

=
5

16
2n.

Thus the exponent of 2 in the largest term of the sum forMC2 (n) is 2nq (n)−1 < 2nq (n) < 5
1622n.

Letting a2 := 5
1622n = 160

51222n, the largest term of the sum for MC2 (n) is 2a2 . There are q (n)

terms in the sum for MC2 (n), so MC2 (n) < 2a2q (n) < 2a2 · 5
162n. Letting s2 := 5

162n+a2 , we

have MC2 (n) < s2. Then s1
s2

= 2n+a1−4

5
16 2

n+a2
= 1

52
65
512 2

2n

so s1 > s2. Since MC1 (n) > s1 while

59



MC2 (n) < s2, MC1 (n) is greater than MC2 (n).

Now suppose n is odd. Putting k = n−1
2 ,

q (n) =

(
2k + 1

k

)
=

(2k + 1)!

k! (k + 1)!

=
2k
∏k+1
i=1 (2i− 1)

k!

= 2k

(
k∏
i=4

2i− 1

i+ 1

)
· 5

4
· 3

3
· 1

2
· 1

< 2k · 2k−2 · 5

8

=
5

64
22k+1

=
5

64
2n.

Thus the exponent of 2 in the largest term of the sum for MC2 (n) is 2nq (n) − 1 < 2nq (n) <

5
6422n. Letting b2 := 5

6422n = 40
51222n, the largest term of the sum for MC2 (n) is 2b2 . There

are q (n) terms in MC2 (n), so MC22 (n) < 2b2q (n) < 2b2 · 5
642n. Letting t2 := 5

642n+b2 , we

have MC2 (n) < t2. Then s1
t2

= 2n+a1−4

5
64 2

n+b2
= 4

52
182
512 2

2n

so s1 > t2. Since MC1 (n) > s1 while

MC2 (n) < t2, MC1 (n) is greater than MC2 (n).
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